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Correct prediction of particle transport by surface waves is crucial in many practical
applications such as search and rescue or salvage operations and pollution tracking
and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017,
pp. 364–391) and Pizzo et al. (J. Phys. Oceanogr., vol. 49, no. 4, 2019, pp. 983–992)
have indicated transport by deep-water breaking waves is enhanced compared with
non-breaking waves. To model particle transport in irregular waves, some of which break,
we develop a stochastic differential equation describing both mean particle transport and
its uncertainty. The equation combines a Brownian motion, which captures non-breaking
drift-diffusion effects, and a compound Poisson process, which captures jumps in particle
positions due to breaking. From the corresponding Fokker–Planck equation for the
evolution of the probability density function for particle position, we obtain closed-form
expressions for its first three moments. We corroborate these predictions with new
experiments, in which we track large numbers of particles in irregular breaking waves.
For breaking and non-breaking wave fields, our experiments confirm that the variance of
the particle position grows linearly with time, in accordance with Taylor’s single-particle
dispersion theory. For wave fields that include breaking, the compound Poisson process
increases the linear growth rate of the mean and variance and introduces a finite skewness
of the particle position distribution.
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D. Eeltink and others

1. Introduction

Correctly understanding and predicting the motion of objects on the ocean surface is
crucial for several applications. For example, floating plastic marine litter has rapidly
become an acute environmental problem (e.g. Eriksen et al. 2014). A mismatch exists
between the estimated amount of land-generated plastic entering coastal waters (5–12
million tonnes yr−1, Jambeck et al. 2015) and the estimated total amount of plastic floating
at sea (less than 0.3 million tonnes, Cózar et al. 2014; Eriksen et al. 2014; van Sebille et al.
2015), which necessitates more accurate transport and dispersion models (van Sebille et al.
2020) as well as better modelling of vertical concentrations (DiBenedetto et al. 2023).
In addition, efforts to clean up floating plastics rely on an accurate prediction of the
distribution and trajectories of particles to deploy clean-up devices at the right location
(e.g. Sainte-Rose et al. 2020). Similarly, estimating environmental impact for oil spills
and open-sea rescue operations relies crucially on transport models (e.g. Christensen et al.
2018).

During the periodic motion of a (deep-water) surface gravity wave, a fluid parcel does
not follow a perfectly circular trajectory. Instead, it experiences a net drift in the direction
of wave propagation, known as the Stokes drift (Stokes 1847). Wave models such as WAM
(The WAMDI Group 1988) and WaveWatch III (Tolman et al. 2009) predict wave field
properties averaged over longer time scales (typically 3 hours), based on which estimates
of the mean Stokes drift over that period can be made (Webb & Fox-Kemper 2011; Breivik,
Janssen & Bidlot 2014). This Stokes drift prediction is typically superimposed onto a
Eulerian flow field, often given by ocean general circulation models or measurements. A
number of recent studies have shown that the inclusion of the Stokes drift in this way can
alter the predicted direction of plastic pollution transport, shifting convergence regions
(Dobler et al. 2019) and pushing microplastics closer to the coast (Delandmeter & van
Sebille 2019; Onink et al. 2019).

However, for several reasons, the Stokes drift alone should not be the velocity with
which waves actually transport objects on the ocean surface. First and foremost, it is
the wave-induced Lagrangian-mean velocity, made up of the sum of the Stokes drift
and the wave-induced Eulerian-mean velocity, with which waves transport particles.
On the rotating Earth, the Coriolis force in combination with the Stokes drift
drive an Eulerian-mean current in the turbulent upper-ocean boundary layer, known
as the Ekman–Stokes flow, which includes the effect of boundary-layer streaming
(Longuet-Higgins 1953). This Ekman–Stokes flow needs to be added to the Stokes drift
in order to predict the wave-induced Lagrangian-mean flow with which particles are
transported (Higgins, Vanneste & Bremer 2020a), or wave and ocean circulation models
need to be properly coupled (e.g. Staneva et al. 2021). The Ekman–Stokes flow can
have significant consequences for global floating marine litter accumulation patterns
(Cunningham, Higgins & van den Bremer 2022). Wave-induced Eulerian-mean currents
can also play a role in laboratory experiments (van den Bremer & Breivik 2018; van den
Bremer, Yassin & Sutherland 2019). Second, the properties of the object itself such as
its shape, size and buoyancy can cause the object’s trajectory to be different from that
of an infinitesimally small Lagrangian particle with a different mean transport as a result
(Santamaria et al. 2013; Huang, Huang & Law 2016; Alsina, Jongedijk & van Sebille 2020;
Calvert et al. 2021; DiBenedetto, Clark & Pujara 2022). Third, breaking waves are known
to transport particles much faster than non-breaking waves. For steep waves, particles may
surf on the wave (Pizzo 2017) and be subject to transport faster than the Stokes drift due
to wave breaking (Deike, Pizzo & Melville 2017; Pizzo, Melville & Deike 2019). In this
paper, we will focus on (almost) perfect Lagrangian particles and consider the influence
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Stochastic transport by breaking waves

of unidirectional irregular deep-water waves and wave breaking, thus ignoring the effects
of Coriolis forces, wind and non-wave-driven currents, which evidently also determine the
drift of an object in the real ocean.

For non-breaking waves, the Stokes drift can be estimated for various sea states (e.g.
Webb & Fox-Kemper 2011; Breivik et al. 2014) with an important but not always resolved
role for the spectral tail (Lenain & Pizzo 2020). In an irregular or random wave field, the
Stokes drift becomes a stochastic process itself. That is, due to the random wave field,
particles will diffuse with respect to this mean velocity, yielding a distribution in their
predicted position (Herterich & Hasselmann 1982). Estimates of the variance of the Stokes
drift can either be obtained from the spectrum (Herterich & Hasselmann 1982) or from the
joint distribution of the significant wave height and peak period (Longuet-Higgins 1983;
Myrhaug, Wang & Holmedal 2014). Alternatively, deterministic simulations of the particle
trajectories can be performed (e.g. Farazmand & Sapsis 2019; Li & Li 2021), which could
then allow for calculation of statistics of the evolution for different initial conditions using
Monte Carlo methods.

The particle transport of breaking waves can be described at different scales. At the
scale of individual waves or wave groups, deterministic models for particle trajectories
can be formulated to include wave breaking. Direct numerical simulations of breaking
focused wave groups show a linear scaling of the net particle transport with the theoretical
steepness of the wave group at the focus point S (Deike et al. 2017), in contrast to
the quadratic scaling of Stokes drift with steepness for non-breaking waves. Restrepo &
Ramirez (2019) confirm the linear scaling with S and calculate the variance of the drift.
Experimental confirmation of the enhanced drift and the linear scaling with steepness for
wave groups is provided in Lenain, Pizzo & Melville (2019) and Sinnis et al. (2021), where
Sinnis et al. (2021) also consider the effects of bandwidth. Considering much larger scales,
relevant for application to the real ocean, requires a stochastic approach. Pizzo et al. (2019)
extend the result obtained by Deike et al. (2017) for wave groups to sea states. Based on the
wave spectrum (peak wavenumber) and wind speed, one can estimate the breaking statistic
Λ(c) dc (Ochi & Tsai 1983; Holthuijsen & Herbers 1986; Dawson, Kriebel & Wallendorf
1993; Banner, Babanin & Young 2000; Sullivan, McWilliams & Melville 2007), defined
as the average length of breaking crests moving with a velocity in the range (c, c + dc),
where c is the phase speed (Phillips 1985). Consequently, the breaking drift speed found in
Pizzo et al. (2019) is weighted by the percentage of broken sea surface per unit area, which
in turn can be computed as a function of peak wavenumber and wind speed. Comparing
their prediction of the drift speed with the Stokes drift for non-breaking waves shows that,
as the wind velocity and wave steepness increase, the wave breaking component of drift
becomes more important and can be as large as 30 % of the Stokes drift for non-breaking
waves (Pizzo et al. 2019).

A series of papers have examined stochastic Stokes drift (Jansons & Lythe 1998; Bena,
Copelli & Van Den Broeck 2000), focusing on diffusion in the case of two opposing
waves, for which the mean drift should be zero, yet diffusion still causes transport. Their
insights cannot immediately be applied to realistic ocean waves. More generally, several
authors have examined the Taylor particle diffusion of a random surface gravity wave
field (Herterich & Hasselmann 1982; Sanderson & Okubo 1988; Weichman & Glazman
2000; Balk 2002, 2006). Bühler & Holmes-Cerfon (2009) derive the Taylor single-particle
diffusivity for random waves in a shallow-water system under the influence of the Coriolis
force and corroborate their results with Monte Carlo simulations. A generally applicable
stochastic framework is provided in Bühler & Guo (2015), who derive a stochastic
differential equation (SDE) for the particle position and a Kolmogorov backward equation
for particles along quasi-horizontal stratification surfaces induced by small-amplitude
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internal gravity waves that are forced by white noise and dissipated by nonlinear damping
designed to model attenuation of internal waves.

In this paper, we propose a SDE for the evolution of particle position in a unidirectional
irregular deep-water wave field with wave breaking and obtain the corresponding
Fokker–Planck equation for the evolution of the distribution. The SDE combines a
Brownian motion, which captures non-breaking drift-diffusion effects, and a compound
Poisson process, which captures jumps in particle positions due to breaking. We focus on
the short-time regime over which the properties of the sea state (i.e. its spectrum) stay
constant and corroborate the predictions of our SDE with new laboratory experiments in
which we track a large number of particles. That is, given a wave spectrum with random
phases, we examine if the drift-diffusion behaviour of particle position can be described
by a SDE with a reasonable parameterization, which varies continuously with average
steepness. We demonstrate that a stochastic framework, as opposed to a deterministic
framework, is necessary, and that the model we propose consisting of a Brownian and
jump process is a feasible option.

The paper is organized as follows. First, § 2 introduces the Brownian drift-diffusion
process to model particle position evolution without breaking and the Poisson process
to model the surfing behaviour experienced when a particle encounters a breaking crest.
The corresponding Fokker–Planck equation for the evolution of the probability density
function of particle position and its mean, variance and kurtosis are also derived in § 2.
Then, § 3 outlines the wave basin experiments performed, where particles are tracked in
irregular waves. In § 4, we corroborate our theoretical predictions with the experimental
results for different wave steepnesses and, consequently, different fractions of breaking
waves. Finally, we conclude in § 5.

2. Stochastic model for particle transport

For a given initial particle position X0 = X(t = 0), we seek to determine the (long-term)
evolution of the particle position X(t) and its distribution, where we will only consider
wave-averaged (Eulerian-mean or Lagrangian-mean) quantities. Particles are transported
with the Lagrangian-mean velocity, which consists of the sum of the Eulerian-mean
velocity and the Stokes drift (e.g. Bühler 2014). In our case, we consider the
Lagrangian-mean velocity

uL = uE,NB + uS + uB︸ ︷︷ ︸
uD

, (2.1)

which consists of the sum of the Eulerian-mean velocity that excludes the effects of wave
breaking uE,NB and a drift velocity uD, which in turn consists of the Stokes drift for
non-breaking waves uS and a breaking contribution uB. For simplicity, we subsequently
ignore the wave-induced Eulerian-mean velocity uE,NB in our model, as its contribution
to drift on the surface of the (non-rotating) ocean is negligible for deep-water waves (e.g.
van den Bremer & Taylor 2015; Higgins, van den Bremer & Vanneste 2020a). To compare
with basin experiments (in § 3), we will take the effect of Eulerian flow (wave induced or
otherwise) into account.

We propose to model the (wave-averaged) particle position X(t) as a jump-diffusion
process for which the SDE can be written as

d X = b(X(t), t) dt︸ ︷︷ ︸
Mean drift

+ σ(X(t), t) dW(t)︸ ︷︷ ︸
Diffusion process

+ dJ(t),︸ ︷︷ ︸
Compound jump process

(2.2)

= 〈uS〉 dt + σ dW(t) + dJ(Λ(ε), G(s; ε); t), (2.3)
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Stochastic transport by breaking waves

where b(X(t)) = 〈uS〉 is the mean Stokes drift of a stochastic or irregular non-breaking
wave field (angular brackets denote the mean of a stochastic process); σ(X(t), t) = σ

the standard deviation of the wave-averaged drift rate caused by stochastic nature of the
individual waves, with D = σ 2/2 the resulting diffusion coefficient; and W(t) denotes
a Wiener process (Brownian motion). The effect of wave breaking is captured by the
compound Poisson process J(t), which represents the jumps in particle position induced
by breaking. Note this process has a non-zero mean, 〈uB〉 /= 0, reflecting the contribution
of breaking to mean drift.

Taking the terms in (2.2) in turn, we will proceed to outline how particle displacement
can be viewed as a drift-diffusion process in the absence of breaking waves (§ 2.1) and
then introduce a compound-jump process to account for wave breaking (§ 2.2). Finally,
in § 2.3, we will propose a Fokker–Planck equation for the evolution of the probability
density function of particle position P(X, t) and give analytical solutions for the first three
moments of P(X, t) (given a Dirac delta function for the initial particle distribution).

2.1. Stochastic Stokes drift in the absence of breaking
The first term in (2.2) pertains to the average drift experienced by a particle in the absence
of breaking, known as the Stokes drift. For a deep-water monochromatic, unidirectional
wave, the Stokes drift is given by (Stokes 1847)

US(z) = a2ωk e2kz, (2.4)

where ω is the angular frequency of the wave, k its wavenumber, a its amplitude and z the
vertical position measured upwards from the still-water level. The value of the Stokes drift
at the surface uS is consistently approximated as uS = US(z = 0). Written in terms of the
(commonly estimated) wave period T and wave height for periodic linear waves H = 2a

uS = (ak)2c = a2ω3

g
= (2π)3

g
H2

T3 , (2.5)

where c = ω/k, and we have used the linear deep-water dispersion relationship ω2 = gk
with g the gravitational constant. The Stokes drift is proportional the square of the
steepness ak, as is evident from (2.5).

An irregular or stochastic wave field consists of a distribution of different wave periods
and heights. The mean Stokes drift can be obtained by summing up the Stokes drift
contributions of the different spectral components (Kenyon 1969; Webb & Fox-Kemper
2011)

〈uS〉 = 16π3

g

∫ ∞

0
S( f )f 3 df , (2.6)

where the unidirectional frequency spectral density S( f ) is defined so that
∫∞

0 S( f ) df =
〈η2〉, with η(t) the surface elevation time series, and f the wave frequency. Naturally, for a
monochromatic wave, (2.6) gives the same result as (2.5).

The second term in (2.2), d X = σ dW, models stochastic deviations from the mean
as a Wiener or normal diffusion process. Conceptually, deviations from the mean arise
because, on the wave-averaged time scale, each different wavelength and wave height in
an irregular sea contributes a different Stokes drift and, therefore, a different displacement.
Regardless of the distribution of the Stokes drift, as long as its variance is finite, the central
limit theorem states that this will result in a normal distribution for particle position X(t).
For a normal process, the second central moment or variance 〈(X(t) − 〈X(t)〉)2 = 2Dt,
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where D is the diffusion coefficient. Assuming a stationary underlying random process,
the statistics of fluctuations in the drift velocity (i.e. ũS = uS − 〈uS〉) do not depend on
time. One can write D = 〈ũ2

S〉τ = σ 2
S τ , with τ ∝ �ω−1 the integral correlation time of the

drift velocity, �ω a measure of the width of the underlying spectrum and with σ 2
S = 〈ũ2

S〉
the variance of the Stokes drift (Taylor 1922; Herterich & Hasselmann 1982; Farazmand
& Sapsis 2019). Therefore, σ = √

2D = √
2τσS in (2.2).

To estimate the diffusion coefficient D, it is therefore necessary to obtain a distribution
for the Stokes drift P(uS) and derive from this its standard deviation σS. In Herterich
& Hasselmann (1982) the spectrum is assumed to be narrow, implying a constant
(non-stochastic) value for the period T = Tp. Consequently, the distribution for the Stokes
drift can be derived directly from the Rayleigh distribution for the wave height using
(2.5) (Longuet-Higgins 1952). Since uS ∝ H2

s , the Stokes drift follows an exponential
distribution. Specifically, the probability density function for uS reads

P(uS; Hs, Tp) = gT3
p

4π3
1

H2
s

exp

[
−gT3

p

4π3
uS

H2
s

]
. (2.7)

Alternatively, Myrhaug et al. (2014) and Longuet-Higgins (1983) derive an exponential
distribution for the Pierson–Moskowitz spectrum, taking into account the joint distribution
of wave heights and wave periods. In both cases, an exponential distribution is obtained,
which has the property that the mean is equal to the standard deviation. We therefore have
σS = 〈uS〉, which we will use to predict the diffusion coefficient D.

2.2. Breaking encounters as a jump process
Our experiments will show (cf. § 3 and figure 2 in particular) that for waves that are steep
enough so that they start to break, in addition to the slow gradual drift and diffusion of
the particles predicted for non-breaking waves, a significant increase in forward velocity
can occur on the front of a breaking wave; see Pizzo (2017) and Deike et al. (2017) for
detailed discussions of the dynamics of this surfing mechanism. We refer to this rapid and
finite-time increase in forward velocity as a ‘jump’ in particle position. Each jump event
represents an encounter of a particle with (the crest of) a breaking wave. We model these
jump events by a compound Poisson process J(t) in (2.2)

J(t) =
NΛ(t)∑
i=0

si, (2.8)

where NΛ(t) is a counting of a Poisson point process, and the arrival rate Λ corresponds
to the expected number of jumps per unit time for the compound Poisson process.

We expect the arrival rate Λ to increase with the steepness ε. Assuming a gradual
increase of the arrival rate with steepness followed by followed by saturation at large
enough steepness, we propose a three-parameter sigmoid function (see figure 3a)

Λ(ε; τΛ, φΛ, ε0,Λ) = 1/τΛ

1 + exp [−φΛ(ε − ε0,Λ)]
, (2.9)

where the parameters τΛ, φΛ and ε0,Λ will be estimated from our experimental data (see
§ 3). Furthermore, we assume that the amplitude of the jumps si follows a two-parameter
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gamma distribution with probability density function G(s;α(ε), β(ε)) (see figure 3b)

G(s;α, β) = βα

Γ (α)
sα−1 e−βs, (2.10)

where α > 0 is the shape parameter, β > 0 the rate parameter and Γ (α) a gamma function.
Based on experimental data, we will show in § 3 that both α and β can be effectively
modelled as linear functions of steepness ε.

2.3. Fokker–Planck equation and analytical solutions
Two methods exist to integrate the stochastic differential equation (2.2) in order to obtain
a probability distribution for particle position X(t). Monte Carlo simulations of (2.2) can
be numerically integrated (e.g. Milstein 1995; Higham 2001), and an empirical probability
density function can be obtained at each time step from the statistics of these trajectories.
Alternatively, the evolution equation for the probability density function P(x, t) of the
random variable X(t) corresponding to (2.2), the so-called Fokker–Planck equation, can
be solved directly. For (2.2), the Fokker–Planck equation is given by (e.g. Gardiner 1983;
Denisov, Horsthemke & Hänggi 2009; Gaviraghi, Annunziato & Borzì 2017)

∂

∂t
P(x, t) = −〈uS〉 ∂

∂x
P(x, t) + σ 2

2
∂2

∂x2 P(x, t) − ΛP(x, t) + Λ

∫ ∞

−∞
dx′P(x′, t)J(x − x′).

(2.11)
This partial differential equation can be solved numerically (e.g. Gaviraghi 2017).
Alternatively, by employing the characteristic functions of the distribution

P̂(l) =
∫ ∞

−∞
dx eilxP(x), (2.12)

we obtain the ordinary differential equation

∂

∂t
P̂(l) = i〈uS〉lP̂(l) − σ 2

2
l2P̂(l) − ΛP̂(l) + ΛĜP̂(l), (2.13)

where the characteristic function of the gamma distribution is

Ĝ(l) =
(

1 − i
l
β

)−α

. (2.14)

Equation (2.13) can be solved exactly, with solution

P̂(l, t) = A(l) exp

[(
i〈uS〉l − σ 2

2
l2 − Λ + Λ

(
1 − i

l
β

)−α
)

t

]
, (2.15)

where A(l) is an unknown function that is determined by the initial condition.
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Raw moments of a probability density function can be readily evaluated using its
characteristic function

mn = 〈Xn〉 =
∫ ∞

−∞
dxxn eilxP(x) = (−i)n ∂nP̂(l)

∂ dln

∣∣∣∣∣
l=0

. (2.16)

For a Dirac delta function as the initial condition (i.e. P̂(t = 0) = 1), we have A = 1 in
(2.15) and we can obtain exact solutions for the first (three) central moments of (2.11)

〈X(t)〉 = −i
∂P̂(l, t)

∂l

∣∣∣∣∣
l=0

=
(

〈uS〉 + α

β
Λ

)
t, (2.17)

〈X̃(t)2〉 = −∂2P̂(l, t)
∂l2

∣∣∣∣∣
l=0

− m2
1 =

(
σ 2 + α(α + 1)

β
Λ

)
t, (2.18)

〈X̃(t)3〉 = i
∂3P̂(l, t)

∂l3

∣∣∣∣∣
l=0

− 3m1m2 + 2m3
1 = α(1 + α)(2 + α)

β2 Λt, (2.19)

where X̃(t) = X(t) − 〈X(t)〉. In (2.17)–(2.19), the expected Stokes drift for non-breaking
waves 〈uS〉(ε), the arrival rate Λ(ε) and the shape and scale factors α(ε) and β(ε) are all
functions of steepness; their dependence on ε will be estimated from experimental data in
the next section. Note from (2.17)–(2.19) that each central moment is linearly increasing
with time. Breaking increases both the mean drift (cf. (2.17)) and the variance of particle
position (cf. (2.18)); it also introduces a non-zero (positive) skewness not predicted for
non-breaking waves (cf. (2.19)).

3. Laboratory experiments

3.1. Laboratory set-up and input conditions

3.1.1. Wave conditions
Experiments were performed in the 8.7 m wide and 75 m long Atlantic Basin at Deltares,
the Netherlands. Figure 1 provides an overview of the set-up. The basin was equipped
with a segmented piston-type wavemaker, consisting of 20 wave paddles at one end and an
absorbing beach at the other. The water depth d was 1 m. The experiments were carried out
with irregular waves prescribed by the Joint North Sea Wave Project (JONSWAP) spectral
density S(ω)

S(ω) = Kg2

ω5 exp
[
−5

4

(ωp

ω

)4
]

γ r, (3.1)

with ω the frequency of the waves (in rad s−1), g the gravitational acceleration, ωp
the peak frequency and r = exp[−(ω − ωp)

2/(2σ 2
S ω2

p)] with (non-dimensional) spectral
width σS = 0.07 for ω ≤ ωp and σS = 0.09 for ω > ωp. The shape parameter γ captures
the ‘peakedness’ and thereby also the bandwidth of the spectrum, and we set γ = 3.3
for all experiments. The bandwidth is important as it determines the correlation time τ

and thereby the variance of particle position predicted by (2.2) (i.e. σ = √
2D = √

2τσS).
Using a second moment of the spectrum, we calculate the spectral width as �ω =
1.39 rad s−1 and set τ = 1/�ω. The prefactor K in (3.1) is adjusted to obtain the desired
significant wave height Hs. Phases of a discretized spectrum were chosen randomly in

971 A38-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.671


Stochastic transport by breaking waves
W

av
e

g
en

er
at

o
r

Wavesy
x

Camera
FOV

Velocity

measurement

probe

Wave gauges

8.7 m

75 m

Figure 1. Experimental set-up, indicating the overhead particle-tracking camera’s field of view (FOV), wave
gauges (red dots) and velocity measurement probes (blue dots).

Hs (m) Hs,exp (m) εexp �t (s) Ntraj Λ (1/s)
〈uS〉

(mm s−1)
〈uL,exp〉

(mm s−1)
〈uE,fit〉

(mm s−1)

0.050 0.053 0.074 257 143 3.25 × 10−5 13.1 13.7 +4.1
0.090 0.087 0.122 167 136 1.42 × 10−2 24.9 22.5 +0.8
0.120 0.115 0.162 122 85 6.96 × 10−2 35.3 30.0 −5.7
0.170 0.132 0.185 143 113 6.59 × 10−2 43.8 31.2 −10.8

Table 1. Overview of experiments and parameter values. For all experiments Tp = 1.2 s. The subscript exp
refers to the values measured in experiments, �t is the time length of a (segmented) trajectory, Ntraj corresponds
to the number of spheres tracked and Λ is the arrival rate of jumps in particle position. The mean Stokes drift
〈uS〉 is calculated using (2.6), the mean Lagrangian velocity 〈uL,exp〉 is obtained from tracer particle positions
in experiments and the Eulerian-mean velocity 〈uE,fit〉 is obtained so that experiments and model predictions
for the mean agree (see § 3.1.3).

order to create an irregular wave times series of 30 min duration, which was used as
(linear) forcing to the wavemakers. Reflections were generally less than 5 %.

We note that the JONSWAP spectrum we use, which describes fetch-limited seas, is not
representative of all realistic ocean conditions. In particular, the JONSWAP spectrum does
not capture well the shape of the spectrum of seas that are not fetch limited. In particular,
the transition from the equilibrium to the saturation range for high wavenumbers is not
described well, for which parameterizations based on wind velocity have been proposed
(Phillips 1985; Romero & Melville 2010; Lenain & Melville 2017) and which could have
significant consequences for the magnitude of the Stokes drift (Lenain & Pizzo 2020).
However, as the laboratory (especially without directional spreading and wind generation)
is not the right environment to study these effects, the JONSWAP spectrum suffices for
our purposes.

Parameter values chosen for the experiments are given in table 1. The peak period Tp =
1.2 s, and four (input) significant wave heights are examined, Hs = 0.05, 0.09, 0.12 and
0.17 m (input), with an increasing fraction of breaking waves. Defining a characteristic
steepness as ε = kpHs/2, with kp the wavenumber corresponding to Tp, we obtain ε =
0.070, 0.126, 0.168 and 0.238 (input). Experiments were performed in deep water (kpd =
2.8). A total of 6 wave gauges were placed in the basin. The time series of the surface
elevation η(t) at wave gauge 2 (co-located with the velocity measurement probes) was
used to calculate the values of the parameters measured in experiments reported in table 1,
where they arelabelled with the subscript exp to be distinguished from input values, and the
power spectrum S( f ) (used to estimate the Stokes drift according to (2.6)). From table 1 it
is evident that Hs is under-produced in the experiments for the larger values of Hs, which
is in large part due to wave breaking.
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3.1.2. Lagrangian tracer particles
The tracer particles were 20 mm diameter yellow polypropylene spheres, which were
chosen to be as small as possible, but large enough to be tracked by the overhead camera.
The density of the particles was 920 kg m−3, so the particles were as submerged as
possible so that they would follow the motion of the fluid, but remained detectable from
above. The experiments were carried out in fresh water (998 kg m−3). An automated
device was used to drop a set of approximately 20 spheres into the basin every 10 s, with a
spacing of 15 cm along a 3.0 m spanwise section of the basin (y-direction) a short distance
(in the x-direction) before entering the camera’s FOV. A Z-CAM camera was mounted at
a height of 11.9 m above the basin, allowing it to capture an area of approximately 8 m
along the length of the basin and 6 m of its width (see figure 1).

To examine whether our tracer particles behave as idealized Lagrangian particles, we
compare the measured velocity spectrum of the tracer particles with the velocity spectrum
obtained from the measured surface elevation using linear wave theory in Appendix D.
For frequencies up to a high-frequency cutoff that lies much above the spectral peak, we
find good agreement between the two, confirming Lagrangian behaviour of the tracer
particles. Based on Calvert et al. (2021), we estimate that spherical particles with a
diameter of less than 10 % of the wavelength typically behave as Lagrangian particles.
For 20 mm diameter spheres, this corresponds to a cutoff frequency of 2.8 Hz (from
linear dispersion), which in turn agrees with what we find in the aforementioned spectral
comparison in Appendix D. Since D/λp = 0.9 %, we do not expect our tracer particles to
experience enhanced transport compared with the Stokes drift in non-breaking waves due
to mechanisms described in Calvert et al. (2021).

For breaking waves, we cannot exclude the possibility of inertial (and therefore
particle-property dependent) behaviour during the rapid accelerations (and decelerations)
associated with breaking, although we have tried to minimize these effects by choosing
particles that are as small and dense as possible. Using the definition of Stokes number in
Santamaria et al. (2013), St = ωτ , where τ = D2/(12βν) and β = 3/(1 + 2ρw/ρp) with
ρw and ρp the densities of water and the particle, respectively, we find a Stokes number
that is a factor 3 larger than for the smaller (D = 12 mm vs D = 20 mm) and denser
(ρp = 996 kg m−3 vs ρp = 920 kg m−3) used by Lenain et al. (2019). If we use a Stokes
number that does not take added mass into account, this factor becomes much larger.
Lenain et al. (2019) estimate there is a two-order-of-magnitude difference between the
particle velocities during breaking and the particle rise velocity, justifying the assumption
the particle behaves as a faithful tracer. The fact that we find similar ‘jump’ or ‘surf’
velocities as Lenain et al. (2019) provides support that this assumption also applies here
(see Appendix B).

3.1.3. Role of Eulerian-mean flow
While we do not take into account the Eulerian-mean flow uE in our model (2.2), this
flow is present in experiments and therefore has to be accounted for to enable comparison
(cf. (2.1)). Wave-induced Eulerian-mean flows have often prevented observation of Stokes
drift in laboratory wave flumes; they are notoriously difficult to predict, specific to each
laboratory basin and experiment and, when observed in the laboratory, not representative
of wave-induced Eulerian-mean flows in the field (see reviews by van den Bremer &
Breivik 2017 and Monismith 2020).

The Eulerian flow was measured using three velocity measurement devices at three
different depths (always fully submerged) and one horizontal position ((x, y = 14.2,
4.05–4.65) m). This allowed estimation of the basin-specific Eulerian-mean flow for each
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experimental condition at fixed depths of z = −20, −30 and −50 cm with z = 0 the
still-water level.

Although we have measured the Eulerian flow directly, we do not use the Eulerian-mean
flow that we obtain from these measurements (by wave averaging) directly in the
comparison between experiments and model predictions (cf. (2.1)). The reason is that
these Eulerian flow measurements, for reasons of practicality, are only at a single point
in space (x, y) and at a certain distance below the free surface, making extrapolation to
the surface a potential source of error. Nevertheless, we can infer from the measurements
that the Eulerian-mean flow is non-stochastic, that is, it does not show variability on the
same time scale and with the same order of magnitude as the measured Lagrangian-mean
velocity.

We therefore correct b, the mean non-breaking drift in our model (2.2), with an arbitrary
(not measured) Eulerian-mean flow 〈uE,fit〉, so that b = 〈uS〉 + 〈uE,fit〉. The mean Stokes
drift 〈uS〉 is calculated using (2.6) from (a JONSWAP spectrum fitted to) the measured
surface elevation spectrum. The arbitrary value of the Eulerian-mean flow 〈uE,fit〉 is then
chosen so that the mean Lagrangian drift predicted by the model 〈uL,mod〉 = d〈X(t)〉/dt
(using b = 〈uS〉 + 〈uE,fit〉) is equal to the mean Lagrangian drift in experiments 〈uL,exp〉,
that is 〈uL,mod〉 = 〈uL,exp〉. Our interest in § 4, where we compare model predictions with
experiments, is therefore in higher-order moments of particle position. The values 〈uE,fit〉
thus obtained are within a reasonable margin of the values measured at depth 〈uE,exp〉
(see Table 5 in Appendix C). We note for completeness that, for non-breaking waves,
we expect that 〈uL,mod〉 = 〈uS〉 + 〈uE,fit〉, while for breaking waves the jumps also make
a contribution to the mean, 〈uB〉. The next section will explain how this contribution is
calculated, which must be done before 〈uE,fit〉 can be found. Table 1 gives the values of the
different mean velocities for the different experiments.

3.2. Trajectory data processing
Our goal is to predict particle trajectories and properties of the probability distribution
of particle position based on information of the spectrum of the waves. To this end, we
first have to process the camera images to obtain particle trajectories. We subsequently use
these trajectories to obtain properties of the jump process that is used to model breaking.

3.2.1. Image processing
The yellow spheres were tracked using OpenCV. The spheres were identified using a
Hue saturation filter and subsequently tracked using a discriminative correlation filter
with channel and spatial reliability (Lukežič et al. 2018), obtaining the sub-pixel location
(xp, yp) of the centre of each sphere at each point in time. The time step is determined by
the frame rate of the camera of 24 Hz. The trajectories were undistorted by calculating
the camera intrinsics using a checkerboard with 75 mm squares. The pixel locations were
then transformed into basin coordinates (x, y), assumed to be in the plane of the still-water
level, z = 0, defined by a floating checkerboard at a known position. See Appendix A for
further details.

3.2.2. Creating sample trajectories
To create samples that can be used to compare with predictions of our stochastic model,
particle trajectories Xi(t) were segmented to trajectory lengths of �t and all offset to have
initial position Xi(t = 0) = 0, as illustrated in figure 2. The resulting initial distribution

971 A38-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.671


D. Eeltink and others

6

5

4

3

2

1

0 20

10 15 20

0.4

0.2

20 25 30

1.5

1.0

40 60 80 100

6

5

4

3

2

1

0 20 40 60

t/Tp

x(
m

)

t/Tp

80 100

(b)(a)

Figure 2. Example particle trajectories in irregular waves, showing experiments (light grey, blue) and Monte
Carlo simulations of our model (orange): (a) Hs = 0.05 m, ε = 0.074, showing almost no breaking events
and trajectories evolving according to a Brownian motion; (b) Hs = 0.17 m, ε = 0.185, showing particles
regularly surfing on a breaking wave, causing a jump in the position. This is modelled by discrete jumps
in the simulations. The insets show a zoomed-in view of the blue lines, where blue dashed lines show an
oscillating trajectory, corresponding to the effect of waves, obtained from the experimental data before wave
averaging. All the other (solid) lines show the wave-averaged position data (obtained from averaging using a
period corresponding to the peak period of the waves Tp).

is a Dirac delta function, and we obtain Ntraj trajectories of equal length �t (for each
significant wave height).

The dashed lines in the insets in figure 2 show particle position X(t) at the time
resolution of the camera (24 Hz), showing the oscillatory motion of the particle with
every wave. The stochastic model (2.2) is valid for a large enough time scale, so that the
oscillatory effects of the waves are averaged out, but the stochastic effect of the irregular
wave field on particle transport is retained. We therefore sample the trajectories at time
interval Tp to obtain stochastic wave-averaged trajectories. These are indicated by the solid
lines in the insets in figure 2 (and by all the lines in figure 2 itself).

3.2.3. Breaking detection
For the lowest significant wave height we have considered, breaking is negligible,
whereas for the highest, the particles have many encounters with breaking crests, as
indicated in table 1 by the jump arrival rate Λ, which measures the number of jumps
per unit time. Figure 2 illustrates the evolution of particle position for both these
extremes.

We classify particle motion as a ‘jump’ when the instantaneous horizontal velocity
(obtained from the trajectories before wave averaging) surpasses a velocity threshold set
as uth = 0.3c, where c = ω/k is the phase velocity obtained from the linear dispersion
relationship. Although this threshold is arbitrary, lowering it results in a high number of
jump events for Hs = 0.05 m or ε = 0.074, whilst breaking only rarely occurred for these
experiments. The symbols � and � respectively indicate the values of Λ for 5 % lower and
higher velocity thresholds to detect jumps, suggesting moderate sensitivity to the value of
the threshold. Physically, the threshold reflects the idea that particles during breaking are
transported with the crest at the phase velocity of the wave c (they ‘surf’ the wave) instead
of the much smaller Stokes drift velocity. The distance covered at velocities higher than
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Figure 3. Calibration of the jump process for transport by breaking waves: (a) jump arrival rate Λ as a function
of steepness ε. The symbols � and � respectively indicate the values of Λ for 5 % lower and higher velocity
thresholds to detect jumps. (b) Probability density function of jump size G(s) = Γ (s;α, β) for ε = 0.122 (red),
0.162 (green) and 0.185 m (yellow) (the case of ε = 0.074, Hs = 0.05 m is not shown, as no jumps are detected
for this case), (c) scale and shape parameters α and β for the probability density function of jump size as a
function of ε as given by (3.2a,b).

Λ(ε) G(s;α(ε), β(ε))

τΛ [s] φΛ ε0,Λ aα bα aβ bβ

0.0677 503 0.128 −6.49 3.46, 0.305 −0.003

Table 2. Calibrated values of the parameters describing the dependence of the jump process for breaking
waves on steepness ε, distinguishing the jump arrival rate Λ(ε) according to (2.9) and the jump size probability
density function G(s) according to (2.10).

this threshold during one breaking event is the jump amplitude s. See Appendix B for an
example of this breaking detection procedure and for a comparison of the average jump
velocity with the Stokes drift and with the results of Lenain et al. (2019).

We use the jumps thus obtained to calibrate the jump process described by (2.9)–(2.10).
Figure 3(a) shows the jump arrival rate Λ as a function of steepness ε estimated from the
experimental data for the four values of steepness. Also shown is the sigmoid function for
Λ(ε) given by (2.9) with estimated values of the parameters in table 2. The variation
in jump amplitudes s estimated from the experimental data in figure 3(b) is captured
well by the gamma distribution (2.10). Finally, we estimate the parameters of the gamma
distribution (2.10) as linear function of steepness

α = aα + bαε, β = aβ + bβε, (3.2a,b)

as shown in figure 3(c) with coefficients in table 2.

4. Results

In this section, we will compare Monte Carlo simulations of our model (2.2) (using 105

trajectories) with experiments. The Monte Carlo simulations agree perfectly with the exact
solutions for the first three moments (2.17)–(2.19), so we will only show the former. We
will examine non-breaking (§ 4.1) and breaking waves (§ 4.2) in turn, followed by model
predictions as a function of steepness (§ 4.3).
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Figure 4. Comparison between model (orange) and experimental data (blue) for non-breaking irregular waves
(ε = 0.074, Hs = 0.05 m): (a) normalized mean position 〈X(t)〉/λp (thick line) and ±1 standard deviation
(dashed) for experiments (blue) and model simulations (orange), (b) normalized mean position (thick line)
for experiments (solid blue), model simulations (dashed-dotted orange) and Stokes theory for non-breaking
waves (dotted black), showing proportionality to t. Normalized variance 〈|X̃(t)|2〉/λ2

p (medium-thickness line)
for experiments (solid blue) and model simulations (dashed-dotted orange) are approximately proportional to
time t. The normalized skewness 〈|X̃(t)|3〉/λ3

p (thin line) is negligible in the experiments (solid blue).

4.1. Non-breaking waves: comparison between experiments and model predictions
Figure 4(a) shows the normalized mean 〈X(t)〉/λp (dashed-dotted), where λp is the peak
wavelength, for the experiments (red) and the Monte Carlo simulations of (2.2) (orange)
for the smallest steepness waves (ε = 0.074, Hs = 0.05 m). A negligible number of waves
break for this case such that Λ ≈ 0, and the wave breaking term does not contribute
in (2.2). Therefore, the mean displacement by the Stokes drift (dotted line) coincides
with the mean drift predicted by the model, which in turn is equal to that observed
in the experiments (by definition here, as we have used this agreement to estimate the
Eulerian-mean flow, see § 3.1.3). The dashed lines show ±1 standard deviation.

More importantly, the normalized variance 〈|X̃(t)|2〉/λ2
p, with X̃(t) = X(t) − 〈X(t)〉, of

the model simulations follows the experiment closely in figure 4(b). Indeed, extracting the
power-law behaviour in figure 4(b), the experimental particle position variance exhibits
a linear t dependence, in accordance with the single-particle Taylor diffusion prediction
by Herterich & Hasselmann (1982), which in turn agrees with our theoretical prediction
(2.18) when Λ = 0 (no breaking). It is interesting to note that a Wiener or normal diffusion
process results in a particle position variance that has a linear dependence on time, in
contrast to either sub- or superdiffusion, for which the conditions of the central limit
theorem are violated. Note that this result (the linear dependence on time predicted by
Herterich & Hasselmann (1982) and observed in our experiments) is in disagreement with
Farazmand & Sapsis (2019), who predict a superdiffusion 〈|X̃(t)|2〉 ∝ t4 for t > Tp based
on the nonlinear John–Sclavounos equation. The particle distribution we observe remains
Gaussian with zero skewness (see figure 4), as predicted by the analytical solutions for the
third central moment in (2.19).

4.2. Breaking waves: comparison between experiments and model predictions
Figure 5(a) shows the mean particle position (dashed-dotted) ±1 standard deviation
(dashed lines) in the experiments (red) and the Monte Carlo simulations of (2.2) (orange)
for the largest steepness waves (ε = 0.185, Hs = 0.17 m). For this significant wave height,
many jumps in position due to breaking occur, as illustrated earlier in figure 2(b). Due to
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Figure 5. Comparison between model (orange) and experiment data (blue) for breaking irregular waves
(ε = 0.074, Hs = 0.17 m): (a) normalized mean position 〈X(t)〉/λp (thick line) and ±1 standard deviation
(dashed lines) for experiments (blue) and model simulations (orange), (b) normalized mean position (thick line)
for experiment (solid, blue), model simulations (dashed-dotted, orange) and Stokes theory for non-breaking
waves (dotted black), showing proportionality to t. Normalized variance 〈|X̃(t)|2〉/λ2

p (medium thickness) for
experiments (solid blue) and model simulations (dashed-dotted orange) are approximately proportional to time
t. The normalized skewness 〈|X̃(t)|3〉/λ3

p (thin line) is finite for this wave steepness with order-of-magnitude
agreement between experiments (solid blue) and model simulations (dashed-dotted, orange).

the jump events, the mean drift (the slope of the line in figure 5a) is higher than the
theoretical prediction by the Stokes drift (dotted black line) and instead follows that of
(2.17) with Λ /= 0. The power-law behaviour in figure 5(b) indicates that, in agreement
with (2.18), the variance still scales linearly with time. Here, the diffusion based on the
Stokes drift alone (black dashed line) underestimates the measured diffusion. Adding
the effect of breaking according to (2.18) gives good agreement with experimental data,
demonstrating that the contribution of breaking to particle diffusion can be modelled
effectively as a Poisson process. Finally, the finite skewness predicted by the model (2.19),
thin orange dashed-dotted line in figure 5(b), is also observed in experiment (thin blue
solid line).

Pizzo (2017) and Deike et al. (2017) have shown earlier that Lagrangian tracers on
a sweet spot just below the crest ‘surf’ forward, having a forward velocity an order of
magnitude higher than the Stokes drift, as confirmed by experiments in Lenain et al. (2019)
and Sinnis et al. (2021). As Lenain et al. (2019) and Sinnis et al. (2021) used wave groups
instead of random waves, a direct comparison cannot be made. Nevertheless, we observe
comparable mean ‘jump’ or ‘surf’ velocities to those observed by Lenain et al. (2019) (see
figures B3–B4 and table 4 in Appendix B).

4.3. Model predictions as a function of steepness
As we describe particle transport as a stochastic process, we will examine how the first
three moments, that is the mean velocity and variance and skewness of the particle position
distribution, are affected by the number of breaking encounters. We perform simulations
for the characteristic steepness range ε = [0.05, 0.3] setting the Eulerian-mean flow to
zero, as summarized in figure 6.

Figure 6(a) shows the mean drift 〈uL,mod〉 = d〈X(t)〉/dt based on (2.2). If the breaking
term is not taken into account in (2.2) (i.e. Λ = 0), this drift would be equal to
the theoretical Stokes drift value 〈uS〉 ∝ ε2 (dashed line). Taking into account the
jump-diffusion process of (2.2), 〈uL,mod〉 starts deviating from 〈uS〉 for steep waves in

971 A38-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.671


D. Eeltink and others

4 5

4

3

2

1

1.5

1.0

0.5

0 0

3

2

1

0.1 0.2

(l × 10–2) (l × 10–3) (l × 10–5)

ε ε ε
0.1 0.2 0.1 0.2

〈X
(t)

/(
tλ

p)
〉 (

1
/s

)

〈|X̃
(t)

|2
/(

tλ
p2
)〉 

(1
/s

)

〈|X̃
(t)

|3
/(

tλ
p3
)〉 

(1
/s

)

(a) (b) (c)

Model
Model w/o jumps

Model
Model w/o jumps

Model
Model w/o jumps

Figure 6. Model predictions with and without the jumps that transport by breaking waves, showing
(a) normalized mean velocity as a function of characteristic steepness ε, (b) variance of particle position and
(c) skewness of particle position.

which many breaking events occur. The nature of this deviation is given in (2.17), where
〈uL,mod〉 is increased by a factor (1 + αΛ/(〈uS〉β)). The second moment or variance
deviates in a similar fashion from the non-breaking case in figure 6(b), deviating by a
factor (1 + α(α + 1)Λ/(σ 2β)). The jump process can therefore induce a significantly
increased spread in particle position. The third moment or skewness (figure 6c) becomes
non-zero as the steepness increases, and the particle position distribution only remains
symmetric (zero skewness) for small steepness. The finite skewness marks a deviation
from the normal distribution and breaks the symmetry. Note that, physically, a Gaussian
distribution can only evolve to a non-Gaussian distribution through a nonlinear process. A
practical implication is that there will be more extremes as the tails of the distribution are
larger relatively.

Note that when studying drift induced by individual focused wave groups, Pizzo et al.
(2019) observed a sharp transition from a quadratic dependence of the drift velocity
on steepness below the breaking threshold to a linear dependence above the breaking
threshold. For individual waves or wave groups there is a clear threshold for the steepness
above which breaking occurs. However, because we are considering many irregular waves
only some of which break, the number of breaking events and thus the mean drift velocity
increase continuously as a function of ε as shown in figure 3(a).

5. Conclusions

In this paper we have developed a stochastic framework to describe particle drift in
irregular sea states using a jump-diffusion process to model the enhanced drift due
to breaking previously observed by Deike et al. (2017), Pizzo et al. (2019), Lenain
et al. (2019) and Sinnis et al. (2021). The framework consisting of a SDE for particle
transport and a corresponding Fokker–Planck equation for the evolution of its probability
distribution can be used to predict mean drift and its higher-order statistical moments given
basic information describing the sea state, such as its spectrum or summary parameters
thereof (i.e. significant wave height and peak period). We compare long-time laboratory
experiments with a large number of particles with our theoretical predictions and find
good agreement, including specifically for the contribution of the jump process to model
enhanced transport by breaking waves.
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For an irregular wave field with negligible amount of breaking, we experimentally
verify that the variance of particle position or the single-particle dispersion is proportional
to time, confirming that the assumption of normal diffusion is valid. Furthermore, we
have described the evolution and quantified the uncertainty of particle transport under
the influence of wave breaking by modelling this as a compound Poisson process,
where the amplitudes of the jumps follow a gamma distribution that is parameterized
by the wave steepness. We find that taking into account the jumps induced by breaking
waves increases the mean drift and the variance, and introduces a finite skewness into
the particle position distribution, whereas for the non-breaking diffusion problem, the
distribution remains normal and thus has zero skewness. Particle-tracking laboratory
experiments corroborate this. We show that a jump-diffusion process is a feasible option
for describing the experimentally obtained drift and diffusion of particle position by means
of a parameterization that is a continuous function of mean wave steepness. Our results for
the enhanced mean drift due to breaking waves are in approximate quantitative agreement
with the experiments of Lenain et al. (2019), who considered focused wave groups instead
of irregular waves.

Looking forward, it will be desirable to develop a predictive rather than just a descriptive
model for realistic ocean applications. That is, for given wave properties such as steepness
(or even wind speed), one would like to be able to predict particle drift and diffusion.
For our model to make such a prediction requires knowing the jump frequency (number
of encounters with a breaking crest per unit time) and the jump amplitude distribution
(modelled as a gamma distribution). Currently, we have fitted these parameters as a
function of steepness based on four experiments. For these parametric relations with
steepness to apply in more general settings, more experimental data need to be gathered.
In this paper, we have considered long-crested (or unidirectional) waves. In the ocean, sea
states are almost always directionally spread (or short crested). We envisage our model can
be readily extended to directional seas using the results of Kenyon (1969) for non-breaking
waves. Calibrating the jump-diffusion process for directionally spread breaking waves will
be one example that requires new laboratory experiments. We also recommend future
experiments consider the role of particle size and density to ensure particles act as faithful
(i.e. Lagrangian) tracers during breaking and results are particle-property independent.

As an alternative to the Poisson process and the relationships with steepness in our
model, the jump frequency and the jump amplitude could be related to the breaking
statistic Λ(c) (Phillips 1985). This would also allow existing parameterizations for Λ(c)
as a function of wind speed (Romero & Melville 2010; Sutherland & Melville 2013;
Lenain & Melville 2017; Deike & Melville 2018) to be used for particle transport
predictions, such that this can be implemented based on spectral wave-model predictions
(e.g. WaveWatchIII) of the sea state (Romero 2019). New laboratory experiments would
have to simultaneously measure Λ(c), for example using infra-red cameras (see Deike &
Melville 2018).

Finally, we emphasize that any parameterization from observed quantities will come
with an uncertainty. To be able to give a truly stochastic prediction, this uncertainty should
be included by making the parameters in our model stochastic quantities too. We believe
that the simple stochastic framework we have developed, which is based on stochastic
differential equations used widely in financial economics and climate physics, can be
an important tool in uncertainty quantification of prediction models in practical settings,
including search and rescue or salvage operations and pollution tracking and clean-up
efforts.
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(b)(a)

Figure 7. (a) Footage of the Atlantic Basin from the downward-looking camera. The small yellow spheres can
be seen floating on the surface. (b) Identification of the spheres after application of the Hue saturation filter in
OpenCV.
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Appendix A. Particle tracking

A downward-looking camera mounted on a walkway above the basin was used to
track particles as they moved across the basin. The camera intrinsics were found by
detecting multiple images of a checkerboard in different orientations across the entire
FOV. Figure 7(a) shows a top view of the Atlantic Basin with more or less randomly
distributed yellow plastic spheres floating on the surface. The spheres are identified and
tracked using OpenCV in Python. The image is first filtered using a Hue filter, which
produces figure 7(b). A correlation filter with channel and spatial reliability algorithm was
used to track the objects between frames to create trajectories in sub-pixel locations and
time. The trajectories were then transformed to the still-water plane, defined by an image of
a floating checkerboard, and tank coordinates (x, y) by detecting and inverting the camera
intrinsics and applying a measured translation from camera FOV.

The trackers and trajectories were post-processed to eliminate any erroneous tracking
events, such as spheres colliding, loss of tracking or jumps of the particle tracked by
the algorithm to a nearby particle, which sometimes occurred when particles were lost
momentarily under breaking waves. Finally, the trajectories were manually inspected for
quality control.
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Figure 8. Jump detection and amplitude estimation process for (a,c,e) the least steep waves with ε = 0.074
and (b,d, f ) the steepest waves with ε = 0.185. (a,b) Instantaneous particle velocity (before wave averaging)
obtained from the derivative of particle position at the camera frame rate uI = δX/δt. The dashed line indicates
the threshold value uth = 0.3c, with c the phase velocity. (c,d) The Heaviside function H(uI(t) − uth) marks
the time segments where the particle is ‘jumping’. (e, f ) Particle position X(t) at the camera frame rate, where
the red crosses mark the positions for which the Heaviside function is positive and behaviour is classified as
‘jumping’.

Appendix B. Jump detection

Figure 8 displays the steps of the jump detection and jump amplitude (distance travelled
in a jump) estimation process for two example trajectories. For ε = 0.074, panel (a)
shows the derivative of particle position over a time step δt determined by the camera
frame rate: uI = δX/δt; we consider this to be the instantaneous velocity (before wave
averaging). The dashed line indicates the threshold value uth = 0.3c, where c = ω/k is the
phase velocity obtained from the linear dispersion relationship. In panels (c) and (d) the
Heaviside functions H(uI(t) − uth) mark the time segments where the particle is classified
as ‘jumping’. In panels (e) and ( f ), based on the Heaviside functions in panels (c) and (d),
the jump amplitude s (the distance covered during a jump) can be estimated.
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Figure 9. Histogram of the (discretized) instantaneous velocity δX/δt, normalized by c, for the four values of
steepness considered.
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Figure 10. Histogram of the mean jump velocity uj = s/ts, normalized by c, for the four values of
steepness considered.

Hs (m) ε 〈uS〉/c 〈uj〉/c

0.050 0.074 0.007 0.164
0.090 0.122 0.013 0.253
0.120 0.162 0.019 0.340
0.170 0.185 0.023 0.339

Table 3. Comparison between the normalized average Stokes drift and the normalized average jump velocity.
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Figure 11. Normalized average jump velocity 〈uj〉/c and normalized average Stokes drift 〈us〉/c as a function
of steepness for the four steepness conditions. Dashed black line: linear fit 〈uj〉/c = 2.02ε, red dashed line:
quadratic fit 〈us〉/c = 0.75ε2.

Coefficient Our study

Lenain et al.
(2019) and Deike et al. (2017)

(approximate conversion)

a1 0.75 0.41–0.64
a2 2.02 4.3–6.3

Table 4. Fitted coefficients for 〈uS〉/c = a1ε
2 and 〈uj〉/c = a2ε for our study and Deike et al. (2017) and

Lenain et al. (2019).

Figure 9 displays a histogram of uI = δX/δt at each time step δt. For ε = 0.074 m, the
distribution is symmetric, whereas for higher steepnesses, a heavier tail is observed on the
right. Note that as the histogram shows (discretized) instantaneous velocities, this does not
imply the mean velocity during a jump attains these higher values. In addition, we note
that when the velocity exceeds the threshold for only one time step this is not considered
to be a jump. Figure 10 then shows the mean velocity during each jump, calculated as
uj = s/ts with s the distance travelled during the jump and ts the duration of the jump,
estimated as illustrated in figure 8.

Table 3 shows a comparison between the normalized mean Stokes drift calculated from
the measured wave spectrum (i.e. using (2.6)) and the normalized mean jump velocity

〈uj〉/c = 1
Nj

Nj∑
i=1

uj,i/c, (B1)

where Nj is the number of jumps. The normalized mean jump velocity is an order of
magnitude higher.

Figure 11 shows that, as in Deike et al. (2017) and Lenain et al. (2019), the scaling with
steepness is also different for the two velocities. Performing a linear fit for the average
jump velocity, 〈uj〉/c = a2ε (black dashed line), we find a slope a2 = 2.02. Performing a
quadratic fit for the average Stokes drift 〈uS〉/c = a1ε

2 gives a1 = 0.75.
Deike et al. (2017) and Lenain et al. (2019) calculate a similar metric, based on the

displacement caused by a single focused wave group. In these papers, the surface drift
velocity is not directly measured but calculated as 〈�x〉/T , where T = 1/fc, fc the central
frequency of the packet and �x the total displacement. In addition, these papers calculate
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Figure 12. Drift velocity estimations and measurements as a function of steepness. Stokes drift based on a
JONSWAP fit on the spectrum truncated at 〈uS,f 〉 (�) and its quadratic fit (dashed line), measured particle drift
〈uL,exp〉 (thick ×), measured particle drift corrected by model mean flow 〈uL,exp〉 − 〈uE,fit〉 (thin ×).

Hs (m) ε 〈uE,exp〉 (mm s−1) 〈uE,fit〉 (mm s−1)

0.050 0.074 −2 +4.1
0.090 0.122 −10 +0.8
0.120 0.162 −6 −5.6
0.170 0.185 −17 −10.8

Table 5. Difference between the experimentally measured Eulerian-mean flow and its value used
in the model.

the velocities as a function of the maximum linear slope S instead of the characteristic
steepness ε. That is, 〈uj〉/c = χ2S and 〈uS〉/c = χ1S2, and Deike et al. (2017) and Lenain
et al. (2019) estimate χ2 in the range 6.1–9 and χ1 in the range 0.82–1.28.

To make an approximate comparison with these values, we assume S = akp and
Hs = 2

√
2a, yielding ε = √

2S and, therefore, a2 = χ2/
√

2 and a1 = χ1/2. Using this
conversion, Table 4 shows the approximate values for a1 and a2 for Deike et al. (2017) and
Lenain et al. (2019). Our study gives comparable values. We ascribe the lower value of
the average drift velocity to the fact that ε is an average steepness, and consequently there
will be a higher number of lower-sloped breaking waves contributing to the average drift
in B1.

Appendix C. Drift velocities

Figure 12 shows various drift velocity estimations. For our experiments, the Stokes drift is
based on a JONSWAP spectrum fitted to the measured spectrum, namely 〈uS,f 〉, indicated
by the blue triangles, with the dashed blue line its quadratic fit.

We correct the experimentally measured mean drift velocity 〈uL,exp〉 by the mean flow
in the model 〈uE,fit〉, resulting in the thin red crosses (×). The difference between these
and dashed blue line, i.e. the Stokes drift, shows that, for low characteristic steepness, this
coincides with the Stokes drift, whereas for high steepness, the Stokes drift underestimates
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Figure 13. Case Hs = 0.05 m, ε = 0.074. Spectrum of the velocity of the particles (red), dashed lines indicate
±1 standard deviation. The linear velocity calculated from the spectrum of the surface elevation η is shown in
pink. The grey dashed line indicates f = 3f0. (a) Linear scale. (b) Log scale.
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Figure 14. Case Hs = 0.09 m, ε = 0.122. Lines same as in figure 13.
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Figure 15. Case Hs = 0.12 m, ε = 0.162. Lines same as in figure 13.
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Figure 16. Case Hs = 0.17 m, ε = 0.185. Lines same as in figure 13.

the mean drift velocity by a certain fraction. The difference is attributed to the jump
process in the model.

Appendix D. Velocity spectrum particles

Figures 13–16 compare the velocity spectrum of the particle trajectories (dark red) with
that of the first-order velocity spectrum calculated from the surface elevation (pink). The
later has much spectral power for higher frequencies that is not present in the former.
Therefore, if this first order velocity does not contribute to the particle movement at these
frequencies, the higher-order velocity (the Stokes drift) cannot contribute either.
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