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Abstract

Contract bridge is a challenging card game that combines strategic bidding, teamwork, and
probabilistic outcomes. This thesis develops a rigorous mathematical framework for analyzing
duplicate bridge tournaments, with a focus on fair and accurate player ranking. We introduce
a threshold ranking model that extends the classic Bradley—Terry model by incorporating a tie
parameter, allowing us to model the non-negligible probability of tied scores in bridge results. We
derive theoretical results for this model, notably, we prove that the total match-points and number
of tied boards are sufficient statistics for the estimation of players’ skill levels and the tie parameter.
Using both a reference dataset from literature and the results of the 2024 China National Bridge
Championship, we demonstrate that our model can reliably estimate skill parameters: the inferred
rankings align with actual tournament outcomes and distinguish the strongest and weakest pairs. To
complement the parametric model, we employ a fuzzy logic approach to categorize board-by-board
performance into qualitative grades (“Excellent”, “Good”, etc.) and compute aggregate fuzzy
performance scores. This provides an additional lens to evaluate each pair’s consistency and
tendency for extreme results. The combined analysis yields a richer understanding of performance:
while the statistical model emphasizes overall consistency and head-to-head advantages, the fuzzy
analysis highlights variability and exceptional highs or lows. Our results show that both methods
concur on the identification of top performers, reinforcing confidence in the findings, and together
they reveal nuanced differences among closely ranked competitors. These insights further confirm
the fairness of the duplicate format (skill prevails in the long run) while quantifying the impact of
chance and strategic diversity on interim rankings.

In summary, the contributions of this thesis are: (1) a new tie-aware mathematical model for ranking
players in duplicate bridge, supported by theoretical guarantees and validated by empirical data; (2)
the integration of fuzzy logic metrics into bridge performance evaluation, offering practical measures
of consistency; and (3) a comprehensive case study on championship data illustrating how our
methods can be applied to draw meaningful conclusions about player abilities and game dynamics.
This work not only advances the methodology for analyzing bridge tournaments but also provides
tools and perspectives that can inform the design of fair competition systems and the training of
competitive bridge players.
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1 INTRODUCTION

1 Introduction

Bridge, or Contract Bridge, is a card game played with a standard 52-card deck(without jokers). The
game usually consists of four players, forming two competing partners who sit opposite each other.
Bridge is widely regarded as one of the most popular card games in the world [37]. It appeared in
1925 and is largely attributed to the scoring innovations of Harold Stirling Vanderbilt. His innovations
included scoring only contract tricks below the game or slam prize line, introducing perishability to
increase the complexity of sacrifice strategies, and adjusting scores for balance [41].

Contract Bridge combines skill and luck, with the element of luck arising from the random dealing of
cards. There are many different types of Bridges, but most club and tournament games are played
in duplicate Bridges, which is also the focus of this article. In the duplicate Bridge, much of the
randomness is mitigated by comparing the results of multiple pairs of the same hand. This format
requires at least eight players at two or more tables, with hands being saved and passed to other
tables. At the end of the session, scores are compared across tables, with the player who performed
best on each hand receiving the highest score. This setup measures relative skill while retaining a
degree of luck, as all participants are judged on their handling of the same hand.

Duplicate Bridge tournaments can accommodate hundreds of players and are usually held in clubs or
large venues. The first officially sanctioned world championship was held in 1935; in 1958, the World
Bridge Federation (WBF) was formed to promote Bridge worldwide, coordinate periodic revisions of
the rules, and oversee the conduct of world championships [12]. Although the popularity of Bridge
has declined since its peak in the 1940s (when 44 per cent of American households participated),
the game still maintains a particular popularity. In 2005, the American Bridge Association estimated
that 25 million Americans still play Bridge [32].

Many celebrities enjoy contract Bridge. Bill Gates calls it ‘the best mind game ever, and Warren
Buffett believes that Bridge hones logic and decision-making skills. Queen Elizabeth Il of the
United Kingdom regards Bridge as an elegant activity that demonstrates one’s intelligence and
cool-headedness. Winston Churchill compared the Bridge to the epitome of war, emphasizing its
fighting spirit and strategy. Deng Xiaoping, who was intensely passionate about contract Bridge, once
stated, “Bridge, like music, is a universal language and should become a Bridge of communication,
understanding, and friendship between the Chinese people and people around the world " [33]. For
these celebrities, Bridge was a game of leisure and the perfect combination of intellectual challenge
and social art.

1.1 The rules of contract Bridge

The game is played through a series of deals, each of which consists of four stages: dealing, bidding,
playing, and scoring. Bridge is a zero-sum game played with two pairs of partners, each composed
of two players. In a zero-sum game, one side’s gain is exactly the other side’s loss. This means
that every point scored by one side is subtracted from the opponent’s score, making the game highly
competitive and strategic. The game begins with each of the four card players sorting out the 13
cards that belong to them and then bidding.

The auction determines the contract, specifying the number of tricks a partnership must win and
the trump suit (or no trump). The dealer opens the auction, and calls proceed clockwise. A player
may pass, bid a contract higher than the last bid, double the opponents’ bid, or redouble [21]. Bids
represent the number of tricks above six (e.g., a bid of 14 commits to seven tricks with spades as
trumps). Denominations are ranked in ascending order: &, ¢, ©, &, NT (no trump). Each subsequent
bid must either increase the number of tricks or specify a higher-ranking suit than the previous bid.
The auction phase ends when three consecutive players fold, at which point the final contract is
determined.

When bidding, the Bridge players bid on a contract that specifies the number of tricks their partner
(i.e., the declarer) will take to score points. During the auction, players communicate information
about their hands by bidding, such as card points (as in the Acol bidding system, where A-4 points,
K-3 points, Q-2 points, J-1 points, and others-0 points) and suit (spades, hearts, diamonds, clubs)
distributions, and any other form of communication is forbidden. The playing phase begins, with

1



1 INTRODUCTION

the declarer trying to fulfill the contract and the defender trying to stop it. Scoring depends on the
suit won, the contract, the vulnerability of partnerships, and game-specific variations [23]. Bridge
combines computational and psychological elements that require logical analysis as well as deception
and reasoning, making it both strategically deep and entertaining.

1.1.1 Setup and dealing

In Bridge, four players form two pairs of partners who sit on opposite sides of the table. These
partners are designated North-South and East-West. The cards can be freshly shuffled or split in
advance in the case of duplicate Bridge for comparative scoring. The base game requires only one
deck of cards and one scoring method, although equipment such as duplicate Bridge boards, call
boxes or screens are often used in tournaments.

In duplicate Bridge, the cards are distributed manually or by computer in advance. After dealing, the
cards are placed into a "board" with designated slots for each player’s position (North, East, South,
or West). After completing a game, the cards are returned to their slots for use at other tables [1].

1.1.2 Auction and bidding

The auction phase is one of the most complex aspects of the Bridge, as partnerships aim to arrive
at a makeable contract. Partners must exchange information about their hands while adhering to
restrictions that limit communication to the calls made and later to the cards played. All agreed-upon
meanings of calls must also be disclosed to the opponents, adding an element of transparency to the
strategy.

A bidding system is a set of agreements between partners about the meanings of calls. It consists
of a core framework supplemented by conventions—specialized agreements for handling specific
scenarios. Systems range from natural systems like Standard American and Acol to artificial systems
like Precision Club.

+ Natural Calls: Reflect the hand’s strength and distribution. For example, a 1NT bid indicates a
balanced hand with a specific high-card point (HCP) range.

« Conventional (Artificial) Calls: Convey specific pre-agreed meanings, such as Blackwood
(asking for the number of aces) or Stayman (inquiring about four-card major suits).

Conventions like preemptive bids serve dual purposes: they communicate a long suit in a weak hand
and disrupt opponents’ ability to exchange information effectively.
Key principles of bidding

» Point Count: High card points (HCP) form the foundation of hand evaluation, with aces, kings,
queens, and jacks valued at 4, 3, 2, and 1 points, respectively. A hand with 12-13 points is
generally strong enough to open the bidding.

» Balanced Hands: A 1NT opening typically indicates a balanced hand with a specific HCP
range, often 12-14, 15-17, or 16-18.

* Preemptive Bids: High-level bids with long suits disrupt opponents and communicate hand
shape, such as an opening bid of 34 with a weak hand but a strong spade suit.
Advanced bidding techniques

» Forcing and Non-Forcing Bids: Certain bids require a response from the partner, while others
do not.

» Cue Bids: Bidding the opponents’ suit to show strength or a desire for partner input.
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» Takeout Doubles: Indicate strength but lack a clear suit, asking the partner to choose a suit.

Some conventions and systems also include specialized agreements, such as Jacoby Transfers,
Texas Transfers, and Cappelletti over 1NT. Advanced bidding techniques often rely on subtle
inferences and predefined agreements between partners.

Doubling increases penalties for undertricks and rewards for making the contract. Redoubling further
increases these values. The auction ends when three players pass consecutively after the last bid.
Bidding systems help partnerships communicate hand strengths and distributions.

In tournaments, bidding boxes are widely used to eliminate the risk of verbal bidding being heard
by nearby tables. These measures ensure fairness by limiting communication and reducing the
possibility of unauthorized information sharing. Each box contains all the possible bids a player may
make during the auction, and players place their bid cards on the table in order during the auction.

1.1.3 Playing

The player from the declaring side who first bids the final contract's denomination becomes the
declarer. The player to the left of the declarer leads the first card, after which the declarer’s partner,
known as the dummy, lays their cards face-up on the table, organized by suit. The declarer controls
the dummy’s cards, instructing their play. Play proceeds clockwise, with players following suit if
possible. A trick is won by the highest card of the suit led or by the highest trump if trumps are played
[2].

Players may claim the remaining tricks at any time, laying their cards face-up and explaining their
intended play sequence. Opponents can either accept the claim or dispute it. If disputed in duplicate
Bridge, the tournament director resolves the claim.

There are four fundamental ways to take a trick:

1. Establishing Long Suits: The last cards in a suit win if opponents run out of that suit.
2. Playing High Cards: Using the highest card remaining in play.
3. Finessing: Playing for opponents’ high cards to be in a specific position.

4. Trumping: Using trumps to beat an opponent’s high card.

Most advanced techniques are extensions or refinements of the four basic techniques.

1.1.4 Scoring

Points are awarded to the side that completes the pact or to the defending side that successfully
defeats the pact. In duplicate Bridge, vulnerability is pre-assigned and affects rewards and penalties.
Contract points are awarded for tricks bid and made beyond six [7]:

+ 20 points per odd trick for clubs or diamonds,
» 30 points per odd trick for hearts or spades,

* 40 points for the first odd trick in no trump and 30 for subsequent tricks.

These points are doubled or redoubled if the contract was doubled or redoubled.

Bonuses
Bonuses are awarded for slams:
» Small slam (12 tricks): 500 points if not vulnerable, 750 if vulnerable.
» Grand slam (13 tricks): 1000 points if not vulnerable, 1500 if vulnerable.

For play by another table.
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1.2 An illustrative 3NT example

This example demonstrates how a partnership arrives at a SNT contract. It explains the techniques
required to fulfill the contract and describes the associated scoring under various conditions of

vulnerability.

¢ QJ10874
v 109

* A2

& AB2

& Kb
v A2
¢ QJ843
* QJ93
& 932
N v 18765
Wk 965
5 * 64
& A5
Y KQ43
¢ K107
& K1075

Figure 1: A possible real-life layout of all four players’ cards.

West

pass

North

3NT

® K6

v A2

¢ QJ843
* QJ93

N
w E
§

® A5

¥ KQ43
¢ K107

® K1075

South
TNT

East

all pass

Figure 2: Focus on the North-South hands, along with the complete bidding sequence.

Figure 1 illustrates how the four hands might appear in an actual Bridge deal, showing each player’s
cards in spades, hearts, diamonds, and clubs. In contrast, figure 2 highlights the specific North-South
hands used in this 3NT contract discussion, together with the final bidding sequence, thereby focusing

on the essential details for our analysis.
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1.2.1 Bidding

South typically holds 15-17 high-card points (HCP) in a balanced or semi-balanced distribution
(e.g., 4-3-3-3, 4-4-3-2, or 5-3-3-2) and opens 1NT to convey this shape and strength. North,
recognizing sufficient combined values for a game and finding no four-card major-suit fit, raises
directly to 3NT. This straightforward approach reflects standard practice: once the partnership has
at least 25 total points and cannot locate an eight-card major-suit fit, 3NT is the most efficient contract
to secure the game bonus.

1.2.2 Declarer play as a decision tree

The choices the declarer (South) faces in a 3NT contract can be viewed as a complex decision
tree. Each decision requires balancing the development of a long suit (to gain extra tricks) with the
need to retain sufficient control to avoid surrendering the lead prematurely. There is an important
difference between the diamond suit and the club suit. In clubs you have four cards in each hand
whereas in diamonds you have five in one hand and three in the other. So by knocking out the A you
can develop four tricks in diamonds but only three in clubs. Since you need four more tricks for your
contract, you must attack diamonds.

Suppose the North-South partnership collectively holds eight cards in diamonds—three in South’s
hand and five in North’s—implying that the two opponents together hold the remaining five diamonds.
Assuming the opponents’ hands are otherwise unknown and that the remaining 26 cards are equally
likely to be distributed, we analyze the possible suit splits using combinatorial enumeration.

Let P(a-b) denote the probability that the opponents’ five diamonds are split as a cards in one hand
and b cards in the other (with a + » = 5 and a > b). Since there are two opponents, the labeling of
hands is symmetric, and we consider both permutations of each asymmetric split.

The probabilities are given by:

P(3-2) = 25 X2 ~ 67.8%
(5)
13\ (13

P(4-1) = (4121) X2 ~ 28.3%
(5)
5
13y (13

P(5-0) = (5120) X2 ~ 3.9%
(5)

Here, each binomial coefficient (}) represents the number of ways to choose k cards out of , and

the total number of possible 5-card combinations from the opponents’ 26 unknown cards is (256) The
factor of 2 accounts for the symmetry in assigning the distributions to either opponent.

Although a 5-0 split represents only about 4% of all deals, at higher levels of competition it cannot
be disregarded. If one opponent holds all five diamonds, including the A and a key card (e.g., the
9), the declarer risks conceding an additional trick while establishing the suit, thereby disrupting the
original plan. Even with a 4-1 split, if the defender who holds four diamonds also has the A and 9
immediately behind the dummy, maintaining transportation and control becomes more difficult.

Note that there is not time to develop both suits. You have the aA and &K, one of which will win the
first trick, and the defense will continue spades when they take their ¢A, so you will be exposed in
spades after you win that trick. If you lose the lead again the opponents will take four spade tricks, so
you cannot profitably knock out the #A as well as the ¢A. Playing on diamonds, you take two spades,
three hearts and four diamonds and make your contract.
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Declarer Play Decision Tree (Horizontal Layout)

Evaluate Spades

Normal Play
(3-2 split)

Evaluate Hearts /

;:\Q)

z
<

\

Adjust Strategy

___»(aisplin
28.3%

Start (Declarer Play)

Distribution

= 399
T high Risk

(5-0 split)

/]

Evaluate Clubs

Figure 3: A schematic representation of the declarer’s decision-making process in a 3NT contract.

Prior to commencing play, the declarer should approximate the probability of each distribution and
formulate a strategy to counter potential setbacks. This could involve forcing out the opponents’ A
of diamonds at an opportune time, while preserving sufficient high cards and entries in the other
suits to prevent the opponents from cashing multiple tricks once they gain the lead. Such planning
and execution highlight the intellectual depth of Bridge: success depends not only on probability and
technical skill, but also on the ability to read opponents’ holdings and time plays effectively.

1.2.3 Scoring in this example

If South successfully wins nine or more tricks, the final score depends on the vulnerability status
of the declaring side. When non-vulnerable, the contract yields 40 points for the first notrump trick
over six and 30 points for each of the subsequent two tricks, totaling 100 contract points. Fulfilling a
non-vulnerable 3NT also earns a 300-point bonus, bringing the overall total to 400. Under vulnerable
conditions, the same 100 contract points apply, but the game bonus increases to 500, resulting in a
total of 600. Conversely, if the defenders defeat the contract, they receive penalty points based on
the number of undertricks and on the declarer’s vulnerability. This zero-sum dynamic underlines the
need for precise bidding and careful play: a single error can drastically shift the outcome in favor of
the defenders.

1.3 Movements in Bridge Tournament

In bridge tournaments, rationalising the order of play is essential to ensure a fair and fully competitive
game. To solve the problems of balance and efficiency in the pairings, tournaments usually adopt
systematic pairing mechanisms. The two most common methods are the ‘Mitchell Movement’ and the
‘Howell Movement’. With their different designs, these two approaches provide effective matchmaking
strategies for bridge tournaments.

1.3.1 Mitchell Movement

In the Mitchell Movement mechanism, the arrangement of bridge matches ensures that all bridge
pairs compete against different opponents in different rounds, thereby maintaining fairness and
symmetry throughout the competition. Specifically, all participating pairs are divided into two groups:
one group always sits in the North-South (N/S) direction, and the other always sits in the East-West
(E/W) direction. The boards remain fixed at the tables throughout the competition, while the E/W
pairs rotate each round. This ensures that each board is played by different partnerships under
comparable conditions, allowing objective performance comparisons.

In the example of a three-table Mitchell Movement, suppose there are n = 6 bridge pairs and B = 3
boards. The pairs are divided into two groups:
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* N/S pairs: {1, 2, 3}
* E/W pairs: {4, 5, 6}

t a(b,t) B(b,1)
blt=1 t=2 t=3]|t=1 t=2 t=3
1 1 3 2 4 5 6
2 2 1 3 5 6 4
3 3 2 1 6 4 5

Table 1: A 3-table Mitchell movement

In each round, N/S pairs compete against E/W pairs, while pairs within the same group do not
compete against each other. This ensures fairness because multiple partners are involved on each
board, and results can be compared based on identical hands, rather than direct competition between
pairs. Since the boards remain fixed, only the players rotate, ensuring that no pair plays the same
board twice. The specific rotations are as follows:

Rotation Arrangement
* Round 1:

— N/S pairs: 1, 3, 2

— E/W pairs: 4,5, 6

— Matchups:
= Pair 1 (N/S) vs Pair 4 (E/W)
= Pair 3 (N/S) vs Pair 5 (E/W)
= Pair 2 (N/S) vs Pair 6 (E/W)

* Round 2:

— N/S pairs: 2,1, 3

— E/W pairs: 5, 6, 4

— Matchups:
= Pair 2 (N/S) vs Pair 5 (E/W)
= Pair 1 (N/S) vs Pair 6 (E/W)
= Pair 3 (N/S) vs Pair 4 (E/W)

* Round 3:

— N/S pairs: 3, 2, 1

— E/W pairs: 6,4, 5

— Matchups:
« Pair 3 (N/S) vs Pair 6 (E/W)
= Pair 2 (N/S) vs Pair 4 (E/W)
= Pair 1 (N/S) vs Pair 5 (E/W)

Each N/S pair faces different E/W pairs in each round with this rotation arrangement. The key aspect
of this mechanism is that N/S pairs always compete against E/W pairs, minimizing the impact of
random card distribution on match outcomes. Each group is ranked independently: N/S pairs 1,2,3
are compared among themselves and E/W pairs 4, 5, 6 are compared among themselves. Therefore,
the tournament produces two winners: one in the N/S direction and one in the E/W direction.
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1.3.2 Mathematical properties of the Mitchell Movement

The Mitchell Movement is a structured rotation system designed to ensure fairness in duplicate bridge
tournaments. It consists of n bridge pairs, denoted as P = {1,2,...,n}, competing across ¢ tables,
denoted as T = {1,2,...,t}, using b boards, denoted as B = {1,2,...,b}. In each round, matches
occur at fixed tables, where North-South (N/S) pairs remain stationary, while East-West (E/W) pairs
rotate systematically. The boards remain fixed at their respective tables, ensuring that the same set
of hands is played by different partnerships under comparable conditions.

To formalize this structure, we define two mapping functions: @ : BxT — P, where a(b,t) returns
the N/S pair playing board b at table 7, and g : Bx T — P, where B(b, t) returns the E/W pair for the
same board and table. The pairing matrix M, defined as M;,, = (a(b, 1), (b, 1)), records all matchups
in a tabular form. Since each E/W pair faces a different N/S pair at every table, the resulting pairing
matrix exhibits the structure of a Latin square, where each symbol appears exactly once in each row
and column [43].

To illustrate, consider a three-table Mitchell Movement where the rotation follows a structured cyclic
permutation:

(2,5 (1,6) (3,4
(3,6) (2,4 (1,5)

Observing this arrangement, each row represents a different table, each N/S pair competes with a
unique E/W pair, and each column ensures a unique game between different tables. This fulfils the
fundamental property of the Latin square that there are no duplicate elements in any row or column.
The structural rotation inherent in the Mitchell movement ensures that each pair of players competes
on equal terms while maintaining fairness and balance. This combined arrangement ensures that
comparisons between the N/S and E/W pairs of players are unbiased, thus reinforcing the integrity of
the outcome of the game.

(1,4) (3,5 (2,6)
M_|:

1.3.3 Howell Movement

The Howell Movement differs from the Mitchell Movement in that it does not divide Bridge pairs into
North/South (N/S) and East/West (E/W) groups with fixed positions. Instead, it employs a systematic
rotation so that every pair has the opportunity to play against every other pair exactly once over the
course of the tournament. As a result, the Howell format typically produces one overall ranking for all
participating pairs, rather than separate rankings for N/S and E/W.

Compared to the Mitchell Movement, the Howell Movement can offer a more comprehensive
comparison of pairs’ skills, because each pair meets every other pair. However, it requires more
complex scheduling: for 2x total pairs, there are 2n — 1 rounds so that each pair can face every other
pair exactly once. In addition, there is only one overall winner determined by comparing the total
match points (r;,i = 1,...,2nr) among all pairs.

Nevertheless, in certain practical situations (e.g., time constraints or limited boards), organizers may
choose a curtailed version of the Howell Movement where not all matchups occur. For the ideal case,
though, the full schedule ensures that every pair is compared with every other pair on equal footing.

1.3.4 Mathematical objectives of the Howell Movement

To formalize the Howell Movement, assume there are 2n pairs. In a full Howell schedule, we need
exactly 2n — 1 rounds (labeled r = 1,2,...,2n — 1) so that every pair meets each other pair. Within
each round, matches take place at n tables (since 2n players split into pairs, each table seats exactly
two pairs). We adopt the following notation:

* a(r,t) represents the pair seated in the North-South (N/S) position at table ¢ in round r.

* B(r,t) represents the pair seated in the East-West (E/W) position at table ¢ in round r.
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The key requirements to ensure a valid (and complete) Howell Movement are:

* Unique Matchup Rule: For every distinct pair of players i # j, there must be exactly one round
r (and one table ) such that

{a(r,0),p(r.,0)} = {i,j}.
This enforces that each pair faces every other pair exactly once.

« Injectivity Constraint: Within the same round r, the mappings ¢ — a(r, ) and ¢ — B(r,t) must
be injective, i.e., no pair can appear more than once in a round. This ensures a valid seating
arrangement without duplications.
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Round-Robin Construction and Example

A well-known method for constructing such a schedule is the round-robin technique, sometimes
referred to as the “circle method.” Label the 2n pairs by 1,2, ...,2n. Then:

1. Fix one pair in position (say pair 1).
2. Rotate the remaining 2n — 1 pairs circularly each round.

This guarantees that across the 2n — 1 rounds, each pair meets every other pair exactly once. To
illustrate, consider 2n = 8 (i.e., n = 4 tables) and label the pairs as 1,2,3,4,5,6,7,8. A possible
round-by-round schedule is given in Table 2.

Round | Pairings (each sub-row = a table)
118
2|7

1 3|6
4|5
117
8|6
2 2|5
3|4
116
715
< 8|4
2|3
115
6|4
4 73
8|2
1|4
5|3
2 6|2
718
113
4|2
6 5|8
6|7
112
3|8
/ 4|7
5|6

Table 2: A standard 7-round Howell schedule for 8 pairs

Here, each round lists 4 pairings (one per table). After 7 rounds, every pair has encountered
each of the other 7 pairs exactly once, satisfying the Unique Matchup Rule. The Injectivity
Constraint holds in each round because no pair is repeated at any table. Hence, this round-robin
approach provides a complete and systematic construction for the Howell Movement, and it
extends naturally to any even number of pairs 2n.

In summary, the Howell Movement provides a framework in which all pairs compare against each
other. This leads to a single, unified ranking and a more balanced measure of performance than the
Mitchell Movement (where pairs stay mostly in fixed directions). Although the schedule can be more

10
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complex to implement, it achieves the desirable property that no pair is advantaged or disadvantaged
by facing or missing a particular opponent—every matchup happens exactly once.

1.4 Scientific literature on the game of Bridge

Compared to other fields such as chess or Go, there is not much scientific literature on the game
of Bridge. However, Bridge research has still produced fascinating results in the fields of statistics,
game theory, artificial intelligence, and social sciences. This section will survey the existing literature
and highlight some representative works.

1.4.1 Statistical studies

Statistical methods are important for assessing and measuring the skills of contract Bridge players.
Yu and Lam (1996) proposed the use of a paired data approach to analyse scoring points using a
permutation model to relate the skills of different opponents in a Bridge match [34]. This is the paper
on which | have based my MSc thesis. In addition, Michael Gr. Voskoglou proposed a method to
assess the overall performance of a tournament using fuzzy logic [40]. This approach improves the
accuracy of Bridge data collection and analysis by designing fuzzy sets for player pairs and merging
them to apply defuzzification of the centre of gravity. These statistical applications not only help
assess Bridge players’ skills but also provide a more accurate scenario for in-game evaluation. We
will discuss the comparison of these two approaches in section 7.1.

1.4.2 A game theory study

Game theory is used in games of incomplete information, such as Bridge, to help make optimal
decisions in the presence of asymmetric information. The application of game theory to Bridge
usually focuses on strategy formulation, opponent modelling, and the solution of optimal behaviour,
and the work of lan Frank and David Basin provides an insight into the use of search algorithms to
compute optimal strategies in games with incomplete information [13].

They proposed an algorithm for calculating equilibrium strategies based on the ‘best defence’ model.
In this game model, players not only need to choose the best action based on the current information
but also need to consider the possible strategies adopted by their opponents. By introducing the
‘best defence’ simulation, a method is proposed that can provide Bridge players with optimal strategy
suggestions. This approach is particularly suitable for dealing with situations where information is
incomplete, such as when the opponent’s hand is not fully known.

Furthermore, lan Frank and David Basin analyse the limitations of using sampling algorithms in
games with incomplete information and point out two major problems in complex games such as
Bridge: ‘strategy fusion’ and ‘non-locality’ [13]. The term ‘strategy fusion’ refers to the fact that subtle
differences between different strategies cannot be accurately distinguished during game simulation,
which may lead to unclear final decisions and thus affect the accuracy of the results. ‘Non-locality’
means that players often need to consider information beyond the current situation when making
decisions, which increases the complexity and computational difficulty of decision-making.

1.4.3 Al and Bridge

There are also notable applications of Al and computer science in the field of contract Bridge. First,
Yeh et al. proposed a Bridge calling system based on deep reinforcement learning [47]. The system
uses a deep neural network to autonomously learn the calling rules from the raw data and achieves a
balance between exploration and exploitation through an upper confidence bound (UCB) algorithm.
Experiments show that the model outperforms computer programs that use manually designed calling
systems. This result demonstrates the potential for learning effective calling strategies without prior
human knowledge.

Secondly, Smith et al. developed a program called Bridge BARON, which uses Hierarchical Task
Network (HTN) planning to simulate the process of playing a bright hand of Bridge [39]. This

11
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approach breaks down complex game planning into smaller subtasks and avoids the inefficiencies of
traditional game tree search in an incomplete information environment such as Bridge. The success
of Bridge BARON demonstrates the feasibility of Al planning techniques in card games and provides
an important direction for the subsequent development of computer Bridge programs.

Furthermore, in dealing with uncertainty in decision-making of Bridge Al, recursive Monte Carlo
(RMC) searching has been applied to this game with incomplete information [14]. Compared to
traditional Monte Carlo methods, RMC performs much better in Bridge scenarios, especially in the
no-bid phase. It significantly improves the average results and provides important insights into the
development of Bridge Al and computational methods in complex decision-making.

1.4.4 Studies in social sciences

The social study of Bridge focuses on how players make decisions and interact in uncertain
environments. Many researchers have studied the behavioural patterns and coping strategies
of Bridge players when facing incomplete information. Punch’s research analyzed how Bridge
players use experience from tournaments to handle uncertainty, emphasizing how players improve
their performance under high-pressure conditions through constant practice and feedback [36].
Additionally, interviews with 52 elite Bridge players revealed that these players exhibit a high level
of impression management and strategic interaction during matches, demonstrating notable abilities
in cooperation, discipline, and dealing with errors [24].

Furthermore, social research on the Bridge also covers the discussion of gender differences. Some
scholars have analyzed the impact of women’s Bridge tournaments on female players [38]. Women’s
tournaments provide opportunities for women to participate in international competitions, but they
also reinforce gender differences to some extent, leading to perceptions that female players are
technically inferior to open-category players. This separation not only brings opportunities but also
exacerbates gender inequality in the Bridge community.

These studies show that Bridge is not only a competition of intellect but also a context in which players
engage in complex interactions and apply strategies in social situations.

1.5 Conclusion

In section 1.1, we surveyed the historical background and fundamental rules of contract Bridge,
highlighting its four-phase structure (dealing, bidding, play, and scoring) and emphasizing the
balanced yet competitive nature of duplicate Bridge tournaments.

We explored the Mitchell and Howell movements (section 1.3) to see how structural rotations can
fairly match pairs in large tournaments, then outlined each method’s mathematical implications. We
also reviewed scientific literature that spans statistics, game theory, artificial intelligence, and social
sciences (section 1.4), revealing that Bridge constitutes not just an intellectual pastime but also a rich
domain for rigorous study.

From this chapter, we have gained an integrated understanding of how Bridge is played, organized,
and researched, providing essential context for the modeling and data analyses in later chapters.
In the upcoming chapter, we will shift focus to the mathematical underpinnings of our study,
covering essential statistical and inferential concepts. These tools will guide the construction of
likelihood functions, hypothesis tests, and confidence intervals, all of which are vital for robust Bridge
tournament analysis.

12
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2 Mathematics background

Before going into the statistical modeling of Bridge tournaments, we must establish the key
mathematical and statistical tools underpinning our analysis. This section provides the basic
concepts of probability theory and inference that we will use to assess player performance, construct
likelihood-based models, and interpret the resulting estimates and tests.

Section 2.1 begins with an overview of probability distributions and sampling principles, focusing
on describing random variables (e.g., through cumulative distribution functions) and how to derive
sampling statistics, such as mean and variance, from data. These basic ideas will guide us later
in developing more advanced frameworks, such as permutation models and maximum likelihood
inference, in section 3.2 and section 3.3.1.

2.1 Notions from statistics

Although Bridge scores may not always follow common distributions, understanding basic distribution
shapes and sample variability is essential. Statistics provides methods to describe and infer data
properties. We briefly review several essential ideas.

Cumulative Distribution Function (CDF): Denoted as F(x), representing the probability that a
random variable X takes a value less than or equal to x, i.e.,

F(x) = P(X < x)

Probability Density Function (PDF): Denoted as f(x), representing the probability density of a
random variable around a specific value.

Below are the cumulative distribution function (CDF) and probability density function (PDF) results for
the maximum and minimum values.

+ Cumulative Distribution Function (CDF) of the Maximum Value X ,,)
Fx,, (x) = [F(x)]"
* Probability Density Function (PDF) of the Maximum Value X,
fxo @) =n- [F]"" - f(x)
+ Cumulative Distribution Function (CDF) of the Minimum Value X

Fx,) () = 1= [1- F(x)]"

+ Probability Density Function (PDF) of the Minimum Value X

fxy @) =n-[1=F@)I"" - f(x)

2.2 Parameter estimation

Building upon the generic statistical concepts above, we now turn to the specific context of Bridge
tournaments. In Bridge, pairs of players accumulate scores board by board. We aim to use these
observed scores to infer each pair’s relative skill level.

2.2.1 Match-Point (MP) scores as a statistic

When multiple pairs play the same deal (or set of deals), their performance can be ranked, and match-
point (MP) scoring assigns points based on these rankings. For each board, a pair's MP on that board
is computed by comparing its result with all other pairs who played the same board. Summing these
MP across all boards yields a single numerical value for each pair’'s overall performance. Hence, the

13
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total MP is a statistic. It is derived solely from the observed data (the board-by-board results) and
encapsulates how well a pair performed relative to others.

We often postulate that each pair has a latent “ability” parameter to analyze and compare skills. In
later sections, we will formalize this idea with a permutation model, hypothesizing that the probability
of one pair outscoring another depends on their relative abilities. We treat the observed MP outcomes
as realizations of random events driven by the pairs’ skill parameters. We estimate each pair’s skill
by fitting a statistical model to these outcomes and comparing it across all participants.

A complete mathematical definition of this permutation model and detailed estimation procedures will
be provided in section 3, especially in section 3.2.

Connecting the raw scoreboard data to meaningful skill inferences relies on the fundamental ideas
discussed in section 2.1. MP scores serve as a univariate summary (a statistic) from which we
estimate parameters. Methods such as likelihood ratio tests or confidence intervals help us evaluate
whether observed differences in scores are statistically significant or could be due to random variation
in card dealing.

With these elements in place, the following sections will show how to apply standard statistical
inference, informed by the concepts of random variables, sampling, estimation, and hypothesis
testing to the Bridge tournament data.

2.2.2 Statistics and order statistics

Definition 1: Statistics

Let (Xi,...,X,) be a sample drawn from a population, where X; denotes the i-th observation
in the sample. The population consists of all individuals or elements under study, whereas a
sample is a finite subset of the population selected for analysis.

A statistic T is a numerical value computed from the sample data, represented as:

T=T(X,Xa,...,Xp)

A statistic typically summarizes sample information, serving inferential or descriptive purposes.
Common examples of statistics include the sample mean and sample median.

In many cases, a statistic is employed to estimate an unknown parameter of the population model.
When used in this way, it is referred to as an estimator. Statistics are a function of the observed data
and do not depend on any unknown parameters. However, when a statistic is specifically designed
to estimate a population parameter, it is called an estimator.

Sample Statistics and Estimators

Let X1, X, ..., X,, be arandom sample from a population with unknown mean u and variance o.
+ Sample mean:
_ 1
X=- DX

This is a statistic, as it is computed solely from observed data and does not involve any
unknown parameters. It is commonly used as an estimator of the population mean p.

+ Sample variance:

n—1

2 1 - v\ 2
S2 = Z(Xl- - X)
i=1

This is also a statistic, derived entirely from the sample. It serves as an estimator of the
population variance o2.

14
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Definition 2: Order Statistics

Let X1, X,,---, X, be independent and identically distributed random variables, representing
observed values from the same population sample. Order statistics are obtained by arranging
these random variables in ascending order. Specifically, we arrange the values in the sample
from smallest to largest, resulting in the ordered random variables X1, X(2), -, X(n), Which
satisfy

X =X = = X@w)

where X(;) represents the i-th smallest value in the sample.

Order statistics help describe the distribution characteristics of sample data, such as the
minimum value X(;), the maximum value X(,), and the median. These statistics help better
understand the overall trend and characteristics of the sample data.

In Bridge tournaments, order statistics, particularly the maximum and minimum values, are used to
evaluate player performance. The maximum value X(,) helps assess peak performance, identifying
top-performing players, while the minimum value X,y highlights weaknesses. By combining these
values, we can evaluate the stability of player performance. As order statistics, these values
also reveal the distribution of player scores, such as the gap between maximum and minimum
scores, which reflects the consistency of performance and competitive differences among players.
Such analysis supports optimizing tournament rules, ensuring fairness and accuracy in evaluations.
These applications provide a comprehensive understanding of player performance characteristics
and support the development of more effective tournament strategies.

2.2.3 Likelihood function and maximum likelihood estimation (MLE)

Likelihood function is a fundamental statistical concept used to quantify how likely it is to observe
given data for different parameter values of a statistical model. It is defined for a sample of
parametrized random variables. It is the probability that the sample occurs, depending on the
parameters. For instance, if a sample of ten coin tosses has seven heads, then the likelihood is
p’(1-p)3 since the model is Ber(p). The MLE is the p that maximizes this function. For this particular
example, p is equal to 0.7.

The likelihood function is used in Maximum Likelihood Estimation, which aims to find the parameter
values that make the observed data most likely. In other words, we want to see the value of 9 that
maximizes L(6).

Definition 3: Likelihood Function

For a set of observed data X = (x1,x3,...,x,) and a set of unknown model parameters 6, the
likelihood function L(6) represents the probability of observing the data X given the parameters
0. It is usually defined as the joint probability density function or joint probability mass function
of the observed data: L(08) = f(X | 9)

This is one more MLE example of continuous probability. Consider a random variable X ~ U(0, a),
where a is unknown. The probability density function (PDF) is:

f(x):{%’ O<x<a

0, otherwise
Given n independent samples Xi, Xa, ..., X,, the likelihood function is:
L(a) = (é)n , O<uxi<a,Vi.
Maximizing L(a) implies choosing the smallest valid a, which must satisfy a > max(xj,...,x,). Thus,

the maximum likelihood estimate is:d = max(x1,...,x,).

15
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The likelihood function is used to estimate the skill parameters of Bridge players. Maximum Likelihood
Estimates (MLE) are obtained by maximizing this likelihood function to quantify each player’s skill
level. The data from Bridge tournaments are treated as observations of players’ relative skills, and
the likelihood function evaluates the probability of these observations under a specified parameterized
probability distribution, seeking the most suitable parameter estimates.

A parameterized probability distribution is a mathematical function that assigns probabilities to
outcomes based on one or more parameters. In our context, these parameters represent the
unknown skill levels of bridge pairs (denoted by 6 or 1) and in the permutation model, a tie parameter
¢. By varying these parameters, the distribution adjusts the probabilities of different outcomes,
allowing the model to fit the observed data.

This parameterized distribution follows the Bradley—Terry model when ties are absent, and extends
to the Davidson model (next section) when ties are considered. These models define the probability
of one pair beating, losing to, or tying with another, based on their respective skill parameters.

MLE is widely used for skill quantification because it is asymptotically unbiased and efficient. It
leverages all available data to produce reliable estimates of players’ skill levels. Specifically, MLE
establishes a relationship between model parameters and observed outcomes, identifying the values
that make the observed data most likely, and thus providing a sound statistical basis for ranking and
comparison.

2.2.4 Sufficient statistic

A sufficient statistic effectively summarizes all the information about the parameter 6 present in the
sample. Once the value of a sufficient statistic is known, the remaining data provide no additional
information about the parameter. This concept is fundamental in statistical estimation as it allows the
reduction of data without losing information about the parameter of interest.

We will see that MP scores are a sufficient statistic for Bridge players’ skills, meaning they contain
all the information necessary for skill inference without additional variables. This allows the model to
infer skill parameters using only the total MP scores, simplifying the estimation process and ensuring
statistical efficiency. In essence, MP scores enable direct and accurate skill comparisons while
reducing the complexity of data processing.

Definition 4: Sufficient Statistic

Consider a random sample X, X5, ..., X,, drawn from a distribution that depends on an unknown
parameter 6. A statistic T = T(X,, X», ..., X,,) is called a sufficient statistic for the parameter 6
if, given the value of T, the conditional distribution of the sample (X, X5, ..., X;,) is independent
of the parameter 6. In other words, T is sufficient for 6 if

P(X] =x,X2=x2,...,X, =xn|T=t)

is independent of the parameter 6.

For example, let X1, X», ..., X,, be independent and identically distributed random variables from a
distribution dependent on a parameter 4. The statistic T is considered sufficient if it contains all the
information needed to estimate 9. This means that given T, the joint distribution of the sample no
longer depends on 6, indicating that the data have been adequately summarized by T.
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Example Under Poisson Distribution

Let X1, X2, ..., X,, be independent and identically distributed (i.i.d.) random variables following a
Poisson distribution P(2), i.e.:
/lxie_’l

o

Define the statistic T = 3./, X; and determine if T' is a sufficient statistic.

p(Xi=x;) =

proof:

To show that T is a sufficient statistic, we first note that
P(T=t|Xi=xi,....Xn=xa) = 1,

because once all X; are specified, the value of T is completely determined. Hence, knowing T
captures all information needed about the sum of the sample.
Next, we compute

L A% e—/l ,12?:1Xi e—n/l

P(X1=X1,...,X =X)= =
" " 1:1[ x,'! H;‘zlxi!

Since T = ¥/ | X;, we know T follows a Poisson distribution with parameter n4, so

B (n/l)’ e 4

P(T =1) 0
Using Bayes’ formula:

P(Xi=x1,....X, = - P(T =t
P(X1:x1,...,Xn:xn|T:t): 04 2% n = %n) ( )

P(T =1) ’
we substitute the above probabilities and canceling out e~":
2 Xi p—nAd
. n;z AZX gl

P(X] =X1,..., Xy =Xp | T:t):

() e T Tx! (nd)t

t!

This expression no longer depends on A. Therefore, T is a sufficient statistic.
mi

The factorization theorem was first introduced by Fisher in the 1920s [11]. Later, Koopman (1936)
[25] and Pitman (1936) [35] provided formal statements and proofs of the theorem.

Theorem 2.1: Factorization Theorem

Let X1, X, ..., X,, be a sample from a distribution family with joint probability density function (for
continuous random variables) or joint probability mass function (for discrete random variables)
f(X1,Xa,...,X, | 0), where 6 is an unknown parameter. A statistic 7 = T(X1, X, ..., X,) is called
a sufficient statistic for 6 if the joint function can be factorized into two parts:

F(X1, X ... X | ) = 8(T(X1, X2s - .., Xn), 0) - h(X1, Xas . . ., Xp)

where g is a non-negative function that depends on the sufficient statistic 7 and the parameter
6, and h is a non-negative function that does not depend on 6.

This means that all the information about the parameter 6 is contained in the sufficient statistic
T, thereby ensuring that T is sufficient.
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Example of Continuous Function (Exponential Distribution)

Let X follow a generalized exponential distribution with the probability density function:
f(x) = mxm ! e—me—(x/O)m, x>0,0>0,m>0.

Given a sample X;, X», ..., X,,, we want to verify if the statistic

T = Z X
i=1
Is a sufficient statistic.

proof:

Given a sample X, X», ..., X,,, the joint probability density function (or likelihood function) is:

n

n
L=] [ few) =] [(map=tem e-tuiomy.
i=1

i=1
This can be simplified as:
L= mn o r[xl’.n_l o G_nm o e_zgll(xi/g)m‘
i=1
To further simplify, we decompose it into:
L L on _m
L = |m" x:-"_l A gm em o T N
(m [ ) - { )
Applying the factorization theorem 2.1: To check for sufficiency, we need:
* A function g(T|9) that depends only on 7 and 6.
A function h(x,...,x,) that does not involve 4.

Hence, we identify:

n
g(T10) = 67"~ T/"  where T=Zx;",
i=1

n

h(xi,...,x,) = m" l_[x;"_l.

i=1

Because g depends only on T and 6, and i does not involve 6, the factorization theorem 2.1 is
n

satisfied. Therefore, T = Zx;" is a sufficient statistic for the parameter 6. o
i=1
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Example of Discrete Function (Poisson Distribution)

In the previous Poisson example 2.2.4, we have a sample X, X5, ..., X,,, each from a Poisson
distribution with parameter A. Its probability mass function is:

Axi e—/l

Xi! ’

pXi=x; | ) =

xi=0,1,2,....

The joint probability mass function is:

n

L /lxie_/l n 1 1
p(Xi=x1,..., Xn=x, | ) = l_l Pl AZiz1Xi p=n l—[;

i=1 L i=1 "t

Define the statistic 7 = 3\, X;. We can factorize the joint PMF as:

At g4 t!

. — ,
t! l.:lxi!

N———
gTID  pxy,...Xn)

p(Xi,....Xn | ) =

where t =T(X1,...,X,) = 20, xi.
We see that g(T | 1) depends only on T and A, whereas h does not involve 1. Hence, by the
n

factorization theorem 2.1 , T = Z X; is a sufficient statistic for A. O

i=1

2.2.5 Is the sample mean a sufficient statistic?

A further question we can ask is: Is the sample mean a sufficient statistic? In other words,
does the sample mean contain all the information about the parameter, such that, given the sample
mean, the original sample no longer contains additional information? We illustrate this by comparing
two different distributions, Uniform and Poisson, to show how the same question can yield opposite
answers depending on the model’s structure.
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Analysis of Uniform Distribution ( the sample mean isn’t a sufficient statistic)

Consider independent random variables Xi, X, ..., X,, drawn from a uniform distribution U(0, 6),
where 6 is unknown. The probability density function (PDF) of each sample is:

L 0<x<o,

fx(x16) = {5’

0, otherwise.

The joint PDF is:

Ao lg)_{%, 0<x; <6 Vi),
) 00 O oA o) -

0, otherwise.

Define the sample maximum:
X(n) = max(Xy, ..., Xp).

Using the Factorization Theorem 2.1 , we write:

fOt,. %0 10) == 10< Xy <6) - 1,

g(x(n)le) h(x1,..., Xn)

showing that X, is a sufficient statistic for 6.

The sample mean is defined as:X = 1 ¥ | X;. From the perspective of minimal sufficiency, if X
were sufficient, it would have to include the complete information of X,,). Since different samples
with the same X can yield different X(,,), we conclude that no alternative factorization exists that
makes X a sufficient statistic.

Conclusion For U(0,6), X, is a sufficient statistic, whereas X is not. Since sufficiency
requires capturing all information about 6, and X, is minimally sufficient, any statistic failing
to determine X, is not sufficient. The sample mean does not uniquely determine X(,,. Hence,
it is not a sulfficient statistic.

Analysis of Poisson Distribution P(1) (the sample mean is a sufficient statistic)

Consider X1, ..., X, i.i.d. from a Poisson() distribution:

/lxie—/l
pXi=x)=—7pm—, x=01,....

As shown previously, the statistic

is sufficient for A. For Poisson(1), we also have

X =

S 1=
2
I

i=1

Since T is sufficient, and X is just 7 multiplied by the constant % X is likewise sufficient. That is,
the sample mean for a Poisson distribution carries the same information about A as the sum.
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2.3 Accuracy of the estimation
2.3.1 Confidence interval

A confidence interval (Cl) measures the uncertainty of an estimate through probability. It provides
a range of possible values for a parameter at a given level of confidence 1 — a, where « is the
significance level. This indicates the likelihood that the confidence interval does not contain the
proper overall parameter. In other words, the confidence level 1 — a suggests the probability that the
actual value will fall into the interval in repeated sampling. For example, if the confidence level is 95%,
then a = 0.05, which means that the probability that the interval contains the overall mean is 95%.
Confidence intervals give upper and lower bounds on the estimates and help in understanding the
statistic’s precision and the uncertainty caused by sampling error.

When estimating the overall variance, the chi-square distribution can describe the relationship
between the sample variance and the overall variance. This is particularly useful when assessing
overall variability and is applicable when dealing with variance inference problems. In Bridge
tournament analyses, the chi-square distribution is used to deal with tournament tie scores to assess
whether player skill differences are statistically significant. Using the chi-square distribution can better
understand how tie scores affect overall inferences and ensure that conclusions are accurate and
reliable.

Definition 5: Chi-Square Distribution and Confidence Interval (Confidence Interval for the
Population Variance with Unknown Mean and Variance)

Consider a random sample from a normal distribution:
X],Xg,. ..,Xn Y N(/J,O'2),

where the population mean u is unknown, and the population variance o2 is also unknown. Note
that the assumption of normality is sufficient for the chi-square distribution to hold, regardless
of the value of u. That is, the population mean u does not need to be zero for the chi-square
distribution of the sample variance to be valid.
The relationship between the sample variance and the population variance can be described by
the chi-square distribution: )
B= DS -y
o
where y?(n—1) represents a chi-square distribution with n—1 degrees of freedom. The confidence
interval for the population variance o2 at confidence level 1 — a is:

(n-18%> (n-1)8?
2 ' 2
Xi—a/2,n-1 Xaf2,n-1

Where Xi/z ., and )(f_a/z . are the quantiles of the chi-square distribution for the left-tail and
right-tail cumulative probabilities, respectively.

2.3.2 Hypothesis testing for population mean

Hypothesis testing is used in statistics to determine whether sample data provide sufficient evidence
to reject the null hypothesis about the overall parameters. It includes the null hypothesis (Hy) and the
alternative hypothesis (H;). The null hypothesis usually means no significant effect or difference like a
population mean equal to a certain value (u = ug). The alternative hypothesis suggests a significant
effect or difference, like the mean not equal to that value (u # wo). The goal is to use the data to
decide if the null hypothesis should be rejected.

Hypothesis testing in Bridge tournament data is used to estimate Bridge players’ skills. It helps
compare players’ abilities by clearly defining the null and alternative hypotheses. This allows us to
see if there is a real difference in skills. Hypothesis testing and confidence intervals are useful in
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statistics but have different goals. Hypothesis testing decides if there is a significant difference from a
given value, while a confidence interval provides a range for the parameter. In practice, they work well
together. For example, if the value in the null hypothesis is outside the confidence interval, it supports
rejecting the null hypothesis. This approach makes the conclusions more reliable and supports better
decision-making.

Lemma 1: Chi-Square Test for Population Variance(Testing the Population Variance with
Unknown Population Mean)

Consider a hypothesis test for the population variance o?, where the population mean is
unknown. We use the chi-square test statistic:

(n-1)8§?
xX=——~x(n-1

0

where $? is the sample variance, o; is the hypothesized population variance, and x?(n—1) is the
chi-square distribution with n — 1 degrees of freedom.
For a two-tailed test with significance level «, the rejection region is defined by:

2 2 2 2
X <Xa/2,n—1 or x >X1—a/2,n—1

where y2,. . and y? ., are the critical values from the chi-square distribution. If the
a/2,n-1 l-a/2,n-1
calculated y? falls in the rejection region, we reject the null hypothesis Hy.

Example of Chi-Square Test for Population Variance

Suppose we want to test the variance of a component’s durability, with a sample size of n = 9,
sample variance $* = 0.007, and hypothesized variance o;; = 0.005°.

Solution:

State the Hypotheses:
Hy : o> = 0.005°

H; : o> # 0.005>
Calculate the test statistic:

_ 2 2
X2=(n 1S :8><0.007 _ 15.68

o 0.0052

Determine the rejection region for a = 0.05:
2 =17.53 2 =2.18 2218 2517.53
Xajpg = 1712%  Xi_qps == = x <2 or x>17.

Since 2.18 < x? = 15.68 < 17.53, we do not reject Hy. Thus, there is insufficient evidence to
conclude that the population variance differs from 0.0052.

2.3.3 Likelihood ratio test

In statistics, the likelihood ratio test (LRT) is a hypothesis testing method used to compare the fit of
two competing statistical models [31]. Typically, one model is obtained by maximizing the likelihood
function over the entire parameter space, while the other is obtained by imposing certain constraints.
The test is based on the likelihood ratio of these two models. If the constrained model (i.e., the null
hypothesis) fits the observed data well, the difference between the likelihood values of the two models
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should not exceed the sampling error.

Definition 6: Likelihood Ratio Test

Suppose we have a statistical model with parameter space ®. The null hypothesis typically
states that the parameter 6 lies within a specified subset ©, of ®, while the alternative hypothesis
assumes that 6 lies in the complement of ©y, denoted as ©g.

The likelihood ratio test statistic is defined as follows:

SUPgeg, L(0)
Supgee L(0) I’

Here, the numerator and denominator represent the maximum values of the likelihood function
under the null hypothesis and the full parameter space, respectively [45]. Since all likelihoods
are positive and the constrained maximum cannot exceed the unconstrained maximum, the
likelihood ratio is always between 0 and 1.

Typically, the likelihood ratio test statistic can also be expressed as a difference in log-likelihoods:

/lLR =—-2In

ALr = =2[£(60) - €(D)].
where £(d) = Insup,.e L(6) is the log of the maximum likelihood function.

The Likelihood Ratio Test (LRT) is a widely used statistical method for model comparison, particularly
in evaluating whether imposing constraints on a more complex model significantly affects its
explanatory power. According to Wilks’ theorem, under the null hypothesis, the likelihood ratio statistic
Arr asymptotically follows a chi-square distribution, where the degrees of freedom correspond to the
difference in the number of parameters between the competing models [45].

For the test to be valid, the models must be nested, meaning that the restricted model is obtained
by applying additional constraints to the parameter space of the full model [30]. This ensures that
the restricted model is a special case of the full model, allowing LRT to assess whether the imposed
constraints significantly reduce the model’s explanatory power. If the reduction in explanatory ability
is statistically significant, the null hypothesis supporting the restricted model is rejected in favor of the
more complex alternative.

Definition 7: Nested Models

A statistical model M; is said to be nested within another model M, if the parameter space of
M, denoted as 0y, is a subset of the parameter space of M,, denoted as ©:

®)Cc 0B

This means that the simpler (restricted) model M; can be obtained by applying additional
constraints to the parameters of the more complex (full) model M.

In the context of Bridge tournament analysis, we apply this concept to assess whether assuming a
uniform skill level for all players is statistically justified. Specifically, we compare the following nested
models:

» Full Model: Each player has an independently estimated skill parameter, allowing for variation
across individuals.

» Restricted Model: All players share the same skill level, hence only one parameter for skill.

Since the restricted model can be derived from the full model by setting all individual skill parameters
equal, it is a nested version of the full model. This property allows us to apply the Likelihood Ratio
Test (LRT) to determine whether the assumption of uniform skill level significantly reduces the model’s
ability to explain match outcomes.
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Example: Testing whether a coin is fair using the likelihood ratio test (LRT)

We aim to test if the probability of the coin landing on heads (p) is equal to 0.5 or if it differs from
0.5. A coin is flipped 10 times, and the number of heads observed is X = 7.

Under the null hypothesis (Hy), the coin is fair, i.e. the probability of landing on heads is p = 0.5.
In this case, the data follow a binomial distribution:

X ~ Binomial(n = 10, p = 0.5).

Under the alternative hypothesis (H;), the coin is not fair (p # 0.5), so the data still follow a
binomial distribution but with p as an unknown parameter:

X ~ Binomial(n = 10, p).

To compute the maximum likelihood estimates:

» Under Hy, we fix p =0.5.

* Under H{,the MLE is p = X/n=7/10=0.7.
Log-likelihood under Hy:

€(Hp) = In((}Y)) +7 In(0.5) + 3 1n(0.5).
A more precise calculation yields
£(Hp) = 1n(120) + 10 In(0.5) ~ 4.7875 + 10 X (=0.6931) = —2.144.

Log-likelihood under H;:
¢(Hy) =1n((")) +7 In(0.7) + 3 In(0.3).

Numerically, In(0.7) ~ —0.3567, In(0.3) ~ —1.204, so
C(H)) ~ 47875 + 7x(-0.3567) + 3 x (—1.204) = —1.321.
Likelihood Ratio Test statistic:

Arr = —2|e(Hy) - f(Hl)] = —2[(—2.144) - (—1.321)] = —2 x (~0.823) = 1.646.

Under Hy, Az asymptotically follows a y? distribution with 1 degree of freedom. At the 5%
significance level, the critical value is

2
Xeritical = 3-841.

Since A.r ~ 1.646 < 3.841, we fail to reject Hy. Therefore, the observed data (7 heads out of 10)
do not provide sufficient evidence to conclude that the coin is biased. O
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2.4 Conclusion

This section outlined the essential statistical and mathematical concepts foundational to our
subsequent analysis of Bridge tournaments. We began with fundamental notions from statistics
(section 2.1), reviewing core concepts such as cumulative distribution functions (CDF) and probability
density functions (PDF), emphasizing their applications in describing distributions and deriving
relevant statistics. This groundwork is critical, particularly as we introduce advanced statistical
methods such as permutation models and maximum likelihood estimation (MLE).

Subsequently, we discussed applying these general statistical concepts within the context of Bridge
tournaments (section 2.2). We specifically explored how match-point (MP) scores function as a
vital statistic summarizing player performance, providing a quantitative measure from which skill
inferences can be made. Understanding MP scores as a statistic is instrumental when formalising
the permutation model in subsequent sections.

Moreover, we examined order statistics, highlighting their significance in analyzing tournament
player performance. By employing maximum and minimum order statistics, we can assess peak
performances and consistency among players, which are critical aspects of designing fair and
accurate competitive assessments.

We also provided an in-depth review of the likelihood function and maximum likelihood estimation,
demonstrating their effective role in quantifying player skills. This methodology is central to
subsequent analyses as it provides a robust statistical framework for accurately estimating individual
player abilities based on tournament data.

Furthermore, sufficient statistics were introduced, emphasizing how certain statistics, like total MP
scores, encapsulate all necessary information about player skills. Recognizing sufficient statistics
simplifies the estimation process and enhances computational efficiency, a valuable property utilized
extensively in practical Bridge data analysis.

Finally, we addressed statistical inference techniques, including confidence intervals, hypothesis
testing, and the likelihood ratio test (section 2.3), underscoring their utility in evaluating the statistical
significance of observed data and differences in player performance. These techniques provide
critical tools for rigorously evaluating and comparing Bridge tournament outcomes.

In summary, this section established the theoretical statistical foundation necessary for the robust
analysis of Bridge tournaments. Having established the statistical foundation, the following section
will present a concrete framework for analyzing duplicate Bridge tournament data. We will define
the scoring system, discuss pairwise comparisons, and set the stage for modeling player skills using
likelihood-based approaches.
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3 Scores, rankings, and strengths of Bridge pairs

3.1 Scoring system in a duplicate Bridge tournament

The scoring system in a duplicate Bridge tournament aims to assess each pair’s skills fairly by
ensuring that multiple pairs across different tables play each board. Match points (MP) help rank
pairs effectively while eliminating the "deal effect" and providing a level playing field. The final score
calculation and ranking based on accumulated match points allow an accurate comparison of the
pairs’ relative skills in the tournament.

3.1.1 Symbols and N/S and E/W pair assignments
» n: Number of participating pairs, ranging from 1 to n.
» B: Number of boards in the tournament, ranging from 1 to B.

e T: Number of tables, from 1 to T.

In a duplicate Bridge tournament, each board is played at multiple tables to ensure fairness by
eliminating the luck of the deal. Symbols a and g represent the North/South (N/S) and East/West
(E/W) pairs, respectively. These symbols @ and g are mappings from {1,...,B} x {l,...,T} into
{1,2,...,n}. This means that for each board and table combination, « and g help determine which
pairs are playing against each other on any given board.

The concept of ‘boards’ refers to a set of boards that appear several times in a tournament at different
tables. The boards are pre-determined before the start of the tournament, and it is also specified
which players will play against each other at each table for each table of boards. This arrangement
can be understood as a ‘matching’ problem in combinatorial mathematics, similar to the concept
found in graph theory, where teams are systematically paired to ensure fairness.

* a(b,t): denotes the pairs of south/north orientated players on board » and table .

* B(b,1): denotes the pairs of East/West pair on board » and table .

Each board » can appear on different tables r in different tournament rounds. It is essential to
distinguish between the terms ‘table’ and ‘round’. A ‘table’ refers to the physical location where
the boards are played. At the same time, a round indicates the order in which the boards are played
in a tournament, which allows each pair of players to play multiple tables of boards against different
opponents.

3.1.2 Scoring system and final score calculation

The ranking method is used to make fair comparisons between pairs of players holding similar boards,
thus eliminating the effects of randomly dealt distributions.

* Sps: the raw score obtained by the North/South player pair a(b,t) on board b and table .
» The corresponding East/West player’s score for B(b, t) is —Sp;.

* Ry,: the ranking of the score S;,, among all the North/South scores of the board 4.This value is
between 0 and T — 1. The E/W pair at the same table receives a score of T — 1 — Ry;.

Match points are awarded based on the relative performance of each pair compared to others playing
the same board. The final score of pair i, denoted by r;, is the sum of all match points earned by the
pair over all boards played. The formula for calculating r; is:

ri= ). R+ ) (T—1-Rp) (1)

(b,t) (b,t)
i=a(b,t) i=B(b,t)
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Where (b,t) are the boards and tables where pair i played, either as an N/S or E/W pair, the
two components of this sum represent the match points obtained when playing in the N/S or E/W
positions, respectively. For any fixed board b, pair i participates only once, either in the N/S or E/W
position. This ensures that each participant competes fairly in the tournament.

Example of Scoring

Consider an example with five N/S pairs at a particular board, with raw scores of +420, +450,
+420, —100, and —100. The corresponding match points are 2.5, 4, 2.5, 0.5, and 0.5 respectively,
based on their ranking among all N/S pairs. The E/W pairs receive complementary scores such
that the total points for each table are T - 1.

3.1.3 Determining the winner

The pair with the highest total match-points r; is declared the tournament winner. The maximum
possible match-points for a pair is m(T — 1), where m is the number of boards the pair plays. A
summarized score can be expressed as a percentage:

ri
This scoring system ensures that the final rankings reflect the pairs’ relative skills and exclude the
influence of luck.

3.2 Permutation model

The permutation model is a statistical model for analysing rankings by comparing the relative
performance between multiple groups to estimate their intrinsic ability. The model assumes that
each group has a fixed parameter of ability, which is assessed through repeated comparisons. This
eliminates the influence of random factors and obtains a more accurate estimate of ability. The
permutation model is particularly well-suited to scenarios involving repeated comparisons and can
be extended to deal with ties and other special situations.

In duplicate Bridge tournaments, permutation models are used to analyze the match point (MP)
scores of Bridge players to assess their intrinsic skill levels. The performance of each pair of players
on the same deck is affected by the skill of their opponents and random factors. By comparing the
scores of all players on the same deck, the permutation model relates the game’s outcome to the
skill of each pair, thus eliminating ‘dealing effects’ and allowing for fair comparisons. This section
describes the model's assumptions and methodology and how it can be used to infer the skills and
rankings of Bridge players.

3.2.1 Likelihood function and model to link probabilities to player skills

We use the vector R, = (Rp1, - .., Rpr) to denote the MP scores for each pair of players on board b.
These scores have been defined in the previous section. The likelihood function for the entire game
can be expressed as the product of the scores for each board:

B
P(R\,Rs,...,Rp) = | | P(Ry). (3)
b=1

Here, we assume all boards’ scores are independent, simplifying the model’s analysis and statistical
treatment. However, this assumption of independence does not always hold true in actual Bridge
games. Bridge is a multifaceted intellectual game, and each player’s performance is affected not
only by intrinsic skills but also by psychological states, strategic decisions, and external disturbances.
These factors include mood swings and strategic adjustments. For example, when a player performs
poorly on a particular board, they may be affected by negative emotions in subsequent boards,
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resulting in more aggressive or conservative strategies to compensate for previous mistakes or to
reduce risk. These strategic choices affect players’ performance on a single board and trigger a
chain reaction throughout the game, leading to score correlations across boards.

Therefore, although we usually assume independence in our modeling, the correlation between
different boards cannot be ignored in real tournaments. In the subsequent sections related to the
analysis of actual tournament data, we will discuss the impact of this non-independence in more
detail, analyzing how players adjusted their strategies based on previous results and how these
adjustments affected the overall score distribution and tournament results.

The goal of the permutation model is to link the set of scores P(R;,) of board b to the skill levels
of the participating pairs. For each board, pairs are represented by «a(b,1),...,a(b,T), with pair
a(b, r) sharing the MP scores with pair 8(b, t). The MP score obtained by pair (b, r) depends on the
difference in skill between a(b,t) and B(b, 1).

Each pair is assumed to have an intrinsic skill value 6;, and the score of pair a(b, r) depends on the
skill difference between «a(b, ) and B(b,t), specifically given by:

Oa(bt) = O8(b.1)- (4)

This assumption implies that a pair with a higher skill value is likelier to outperform those with a lower
skill value. It should be noted that if 6 is a parameter from a continuous distribution, the probability of
a tie is zero, which should be considered when applying the model.

3.2.2 Pairwise comparisons and likelihood function

Notation Clarification:

(1) b denotes the board index (i.e., the deal number).

(2) i, j represent the pair indices, ranging from 1 to 7, where T is the total number of pairs.

(3) Rp.; is a random variable for the score (or rank) of pair i on board b.

(4) a(b,i) and B(b,i) stand for the skill parameters associated with pair i on board b, for its two seats
(e.g., North-South or East-West). If needed, they can be interpreted as the skill difference between
the two players within a pair. Note that we do not explicitly include the table index ¢ here, because we
focus on the comparisons within the same board b.

For board b, suppose we observe that pair i scores lower than pair j. We write this event as
a(b,i) loses to a(b, j),
and collect all such pairwise comparisons into the set
Ly ={(i,j) : a(b,i) loses to a(b, j)}. (5)
Babington Smith (1950) assumed that the permutation model satisfies [3]:

P(Rp) o l_[ P(Rp,i < Rp,j), (6)

(i,j)eLlp

meaning that the overall score distribution on board b is determined by the pairwise outcomes among
all pairs. In other words, if we know which pair beats which on each board, we can reconstruct the
final ranking for that board.

Furthermore, under the Bradley—Terry model [4],

P(Rp; <Rp ;) = ([9a(b,j) - O, )] — [Oaw.i) — Gﬁ(b,i)]), (7)

where F(-) is the CDF of a known distribution. Intuitively, if the skill difference in pair j is higher than
that in pair i, pair j is more likely to achieve a higher score on that board.

To understand P(R;,; < Ry, ;) more concretely, consider that each pair’'s performance can be viewed
as a random draw (e.g., X for pair i and Y for pair j) from distributions shaped by their skill levels.
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The probability P(X < Y) can be expressed using the cumulative distribution function F(-), which
incorporates both the skill gap and inherent randomness. Consequently, a larger skill difference for
pair j yields a higher probability of j surpassing i in board b.

For further mathematical details and formal derivations of this model, we refer the reader to the
references [34].

3.2.3 Bradley-Terry model application

From the Bradley-Terry model [4], F(x) is assumed to follow a logistic distribution, which takes the
form:

1

S ErT)

—00 < X < 00, (8)
Although the functional form of F(x) is fixed, the input x itself depends on unknown skill parameters.
Modeling the probability of a pair winning in the interval [0, 1]. Suppose that

Apr = explOab,r) = O] 9)

Here, 0,5,y and 6g() are the parameters to be estimated via maximum likelihood, thereby making
the distribution parameterized. Then, the expression for the pairwise comparison probability can be
simplified as:

Apj

P(Rpi < Rpj) = PP
it Apj

(10)

indicating that the model can effectively describe the skill dynamics between pairs playing the same
board. Mathematical details refer to Yu and Lam [34].
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Proof of equation (10) simplification for pairwise probability

Given the pairwise probability expression from the Bradley-Terry model equation (7):

P(Rpi < Rpj) = F ([8ab.j) = Osw.)] = [8aw.i) = Opw.i)]) »
where F(-) is the CDF of a logistic distribution, expressed as equation (8):

1

" et

—00 < X < 00,

We know the skill-based strength of a pair on board » and table ¢ as:

Apr = explOa(b,r) = Op(o,n) ]

To compare two pairs i and j on board b, we assume they are both North/South (or both
East/West), and we rank their scores relative to other pairs playing the same role on the same
board. In section 3.2.4, it will be explained why this formula can be used for Bridge. In this case,
their performance depends not only on their own skill but also on the strength of their opponents.
Let #; and ¢; denote the tables where pairs i and j played board b, and let opp(i) = (b, 1),
opp(j) = B(b,t;) be their respective opponents. We define the skill strength of each pair in its
match as:

Api = exp[6; — Qopp(i)], Apj = exp[l; — gopp(j)],
Substituting into the original formula, we have:

P(Rpi < Rpj) = F (0 = Oopp(j) — (6i = Oopp(i))) = F ((8; = 6:) = (Bopp(j) — Bopp(i))) -

This expression still depends on the skill difference between the opponents. In practical
applications, to simplify the model and reduce variance from unknown or unbalanced opponent
strength, we assume that opponent skill differences average out. leading to:

P(Rpi < Rypj) = F (log(Ap;) —log(Api)) = F(0; — 6;).
Since the logistic cdf function F(x) is used, we have:

1

P(Rp; < Rpj) = 1+exp (—(6; - 6)

Simplifying the exponential term:

oy L xp(6) g
exp( (9] 91)) = eXp(Qj) = /lbj"

we substitute back to get:

1 Abj
P(Rpi < Rpj) = = )
l e Abi Api + Apj
bj
which matches the simplified form:
Apj
P(Rp; < Rpj) = ———.
( bi b}) /lbi"'/lbj

This derivation shows the connection between the full opponent-aware formulation and the
simplified expression commonly used for maximum likelihood estimation.

The simplified form of the pairwise probability (10) is derived by applying the logistic distribution
as the cumulative distribution function and substituting the skill differences.

O
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3.2.4 Model justification for Bridge data analysis

This section explains why the permutation model is suitable for Bridge tournament data. The model
satisfies three conditions: the Reversibility Condition, the Skill Parameter Explanation, and the
Sufficiency of Total Match Points.

i. Reversibility condition

The reversibility condition implies that the rank order of the N/S pairs, denoted by R;, can be reflected
in the rank order of the E/W pairs, denoted by R;. From Critchlow et al.(1991) [9], we have:

R, =T —1-Ry, (11)

where the model for R, is based on the skill differences 64 (5.1) — 0p(p.r), While the model for R; is
based on the skill differences 05,1y = O (p,1)-

The reversibility condition means that if we swap South/North player pairs and East/West player pairs,
the original scoring order should be reflected symmetrically. For example, if a particular N/S pair is
ranked first among all players, the corresponding E/W pair should be ranked last after the exchange.
The essence of this condition lies in the symmetry of the Bridge game rules, i.e., the N/S and E/W
pairs face the same conditions, so the relative skill differences between the two sides should remain
consistent.

To better understand this condition, we can think of it as a ‘mirror relationship’. When looking at the
entire match, the relative strengths between the N/S and E/W and East/West pairs should remain
the same after the exchange. This is the core meaning of the reversibility condition in the model and
serves as the basis for deriving the ranking relationship between the N/S and E/W pairs.

ii. Skill parameters explanation

The skill parameter 6 indicates the intrinsic skill level of a Bridge pair. When considering rankings in
a Bridge tournament, assume that two pairs of players a(b,i) and a(b, j) have similar skill levels.
This comparison relies on the assumption that both pairs have played against opponents of
comparable skill levels. Under this assumption, the difference in outcomes between the two pairs
can be reasonably attributed to their intrinsic skill parameters.

When comparing these two pairs of players, we can use the probability ratio of their rankings as a
measure of skill difference. The ranked probability ratio is expressed as follows:

P("'<ij<Rbi<"')
P(-— <Rpi <Rpj<---)

= explOa(b,i) = Oaib, )] (12)

The formula shows that when the neighbour rankings of two pairs of players are exchanged, the
probability ratio of these two rankings is represented by the difference between their  values. The
difference in 6 values can be interpreted as the logarithm of the two probability ratio values. In other
words, if the 8 value is larger, the corresponding Bridge pair is more likely to be ranked ahead of the
other pair, and vice versa. This interpretation makes skill differences between Bridge player pairs
more intuitive and allows us to quantify relative skill levels when assessing their performance. For a
more detailed description, see Yu and Lam(1996) [34].

Lemma 2: Skill Parameters Representation

Assuming that the two pairs face opponents of similar overall skill, the difference in skill
parameters between two pairs, a(b,i) and a(b, j), can be expressed as the logarithm of the
odds ratio of their ranking probabilities. Specifically, we have:

P(Rp; < Rbi))

Oa(b,i) = Oa(b,j) =log (P(Rb—<Rb])

31



3 SCORES, RANKINGS, AND STRENGTHS OF BRIDGE PAIRS

Proof of skill parameters explanation

To prove this lemma, let P(--- < Rp; < Rp; < ---) denote the probability that pair a/(b, j) ranks
ahead of pair (b, ). Suppose that the pairs B(b,i) and B(b, j) are equally skillful, i.e., 6g.,;) =
Os(b,j)- From equation (9), we define 4;, as follows:

Apr = explOo(p,i) — eﬁ(b,z)], t=1,...,T.
Using equation (10), the expression for the pairwise comparison probability can be simplified as:

A,

P(Rbi < Rb]) = m
v J

Similarly, the probability that pair a(b, j) ranks higher than pair a(b, i) is given by:

Abi

P(RbJ < Rbi) = m
l J

To proceed, we first express the ratio of 1, ; to 1;; using their definitions:
Api = exp(Oa(b,i) — 0pb.i))»  Abj =exp(Oa(b,j) — Op(b.j))-

The ratio can then be written as:

Api
Abl~ = exp((0a(p,i) = Opb.1) = (Oa(b,j) = Opb./)));
J

where Hﬁ(b,i) = Hﬁ(b’j).

Now, consider the ratio of the two probabilities:
P(Rp; < Rpi) _ Api
P(Rp; < Rpj)  Apj

This shows that the difference in skill parameters between pairs a(b,i) and «a(b, j) is represented

by the logarithm of the odds ratio of their ranking probabilities.
Thus, the skill difference between pairs a(b,i) and a(b, j) can be interpreted as:

P(Rp; < Rbi))
P(Rpi < Rpj) |

= exp(Oa(b,i) — Oa(b,)))-

Oa(b,i) — Ba(b,j) =log (

In other words, the skill difference is represented by the log ratio of the two probabilities,
indicating the log odds of one pair ranking ahead of the other. O

iii. Sufficiency of total match Points

The total MP scores obtained by the pairs are sufficient statistics for the skill parameters. This means
the skill parameters can be effectively estimated using the total MP scores, summarized as sufficient
statistics. Critchlow and Fligner (1993) discuss this property in detail [8]. The proof of this result is
provided in Section 3.3.
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3.3 Permutation model in the presence of ties

In this section, the permutation model used to analyse Bridge game scores is extended to deal with
the case of tied scores. This section discusses the modifications needed to more realistically analyse
match point (MP) data, considering that tie scores occur frequently in actual Bridge tournaments. To
incorporate tie scores, two sets are defined for pairwise comparisons between players:

» Set L,: denotes the pair in which a player « (b, i) loses to player a(b, j). This set is denoted as:
Ly ={(,)) : a(b,i) loses to a(b, j)}

» Set D,: denotes the pair in which a player a(b, 1) draws with player a(b, j). This is defined as:

Dy ={(i,j) : a(b,i) draws with a(b, j),i < j} (13)
The probability P(R;) for a given ranking is calculated by considering both the losses and ties:
P(Ry) = P(Ry1,--- \Rpr) o || P(Rui<Rp) || P(Roi=Ry)) (14)
(i.j)€Lp (i.j)eDp

This expression takes into account both the comparison of one player’s rankings over another and
the occurrence of a tie.

3.3.1 Probability of pairwise comparisons in the case of a specified tie

When modeling pairwise comparison probabilities in Bridge tournaments, the traditional logistic
distribution model (such as the Bradley-Terry model) performs well in describing win-loss situations
but fails to effectively handle ties. Since logistic distribution is continuous when two teams have equal
strength parameters, the probability of a tie is zero. However, in actual Bridge matches, ties are not
uncommon, especially when two teams have similar strengths. Therefore, relying solely on logistic
distribution is insufficient for accurately reflecting all possible outcomes in real matches.

In the model, we refer to the method proposed by Davidson (1970) and introduce a parameter ¢ > 0
to handle the possibility of ties [10]. The sum of the probabilities of all outcomes is equal to 1:

P(Rpi < Rpj) + P(Rp;i > Rpj) + P(Rp; = Rpj) = 1 (15)
Specifically, the probabilities of winning, losing, and tying are calculated using the following formulas:

* Probability of Losing:

Apj
P(Rp; < Rpj) = Yot + oy + O
* Probability of Winning:
P(Rpi > Rpj) = Ao
Api + Apj + G\[Apidp
* Probability of Tying:
P(Rpi = Rpj) = Ny (16)

Api + Apj + P\ Apidp

In these formulas, the introduction of ¢ is key. By adjusting the value of ¢, we can control the
probability of ties:

* When ¢ = 0, the model degenerates to the traditional logistic distribution model, and the
probability of a tie is zero.

* When ¢ > 0, the probability of a tie becomes positive, allowing the model to capture situations
where the two teams are equally matched.

In summary, by introducing discrete components to handle ties, the new model effectively addresses
the shortcomings of the logistic distribution model, making it more consistent with the needs of real
matches, particularly in contract Bridge, where ties are not uncommon.
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3.3.2 Sufficient Statistics analysis for skill parameters

Theorem 3.1 forms a cornerstone in our statistical inference framework. It states that the total match
points r; for each pair (i.e., the sum of MP scores across all boards) and the total number of tied pairs
Zle dp jointly constitute sufficient statistics for the skill parameters {6;} and the tie parameter ¢. By
relying solely on these summaries, we can estimate (6, ¢) without retaining the full set of per-board
configurations, greatly simplifying likelihood-based inference.

Theorem 3.1: Sufficient Statistics for skill parameters

In duplicate Bridge tournaments, the total match points (MPs) obtained by each pair of players,
denoted as {r;}, along with the total number of tied pairs across all rounds, denoted as Zle dp,
are sufficient statistics for estimating both the skill parameters {6;} and the tie parameter ¢.

Based on the permutation model with ties proposed by Yu and Lam (1996), using equations (14) and
(16), the likelihood function for the observed outcomes across all B boards is given by:

¢db/le1 . /leT

B
P(Ri,...,R H . (17)

« ¢%: The impact of ties on board b, where d,, is the number of tied pairs. The more ties
observed, the greater the weight of the tie parameter ¢ in the likelihood.

. /lft’": The contribution of pair r on board b. Here, A;; = exp(04(b,1) —Op (b)) Captures the relative
skill between the North/South and East/West pairs at table . The exponent R,, denotes how
many other pairs the pair at table ¢ beat on board b (i.e., their number of pairwise victories).

* Cp(0, ¢) is a normalizing constant ensuring the probabilities over all configurations of board b
sumto 1.

Proof of theorem 3.1

We have B boards and assume equation (17) holds for the observed data R = (Ry,...,Rp).

Thus,
¢db T /let

B
R4, g
P(R|6,9) = ﬂ e @

with Apr = exp(@a(b,t) = aﬁ(b,t))- Rewriting:

N

P(R|6.¢) =

o

¢
Co 0. CXP[Z abt) — O5b.1)) Rbt]-

t=1

Expanding the exponent:

B dp T
PR |6,¢) = H C:(So,qﬁ) exp (; [0 (b.0) Rt + 05,0 (T — 1 - Rbt)])

Further combining the exponential terms:

T B B
P(R|6,¢) = ¢Zm1% exp (Z Z [0a(b.0)Rot + Op(6.0) (T = 1 = sz)]) l_l Cp(6,9)™"

t=1 b=1 b=1

To simplify exp (Zle S0 [0aw.)Roe +0pw.0) (T =1 —Rbt)]), we define r; as the total
accumulated contribution(or total MP scores) for player i across all boards and tables, like
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equation (1). After changing, add each table and each board to sum up the total contribution
for each player. From Yu and Lam, the result is a single summation of all players:

n
exXp (Z Giri)
i=1

Define C(0,¢) = [152.,Cp(8,¢). Thus,

¢ Lo o eXP(Z?=1 0; ri)
C(6,9)

To identify sufficient statistics for (6, ¢), we invoke the Factorization Theorem 2.1, which states

P(R[6,¢) =

P(R|6,¢) = g(S(R),0,¢) x h(R),

where g depends on R only through some statistic S(R), and #(R) does not depend on (0, ¢).
In our case,

B < 1
P(R|6,p) = ¢pZo=1% exp(» 6;r;) X ——,
H20m) % T
N——

h(R)

2(S(R).6,9)
and the data enter g(-) only through

B
S(R) = (r1, 712, ...,1n, Zdb).
b=1

Since C(6, ¢) is a normalizing constant that does not depend on the specific realization R beyond
these sufficient statistics, it follows that {r;} and Zle dy, capture all the information about (6, ¢).
Hence, by the Factorization Theorem,

B
(Moot D)
b=1

is a sufficient statistic for (0, ¢).

3.4 Selecting the best pair: confidence subset approach

In competitive bridge tournaments, it is often of interest not only to estimate each pair’s skill parameter
6;, but also to identify the best-performing pair—the one with the highest true skill level. A natural
approach is to rank the maximum likelihood estimates 6, and declare the top-ranked pair as the best.
When the datas involve sufficient comparisons across all pairs, this approach can be reliable due to
the high connectivity among players and dense match structure. It is often the case in small-scale
tournaments using Howell movements.

However, in large-scale tournaments or in designs such as the Mitchell movement, structural
limitations make accurate comparison more difficult. In these formats, not all pairs compete against
each other directly, and different pairs may play different subsets of boards. As a result, the available
information for pairwise comparisons is incomplete and unbalanced, making it difficult to fairly
assess relative skill levels across the entire pool of participants. In such settings, relying solely on
point estimates 4; may lead to overconfident or misleading conclusions.

To solve this problem, Yu and Lam (1996) proposed a confidence subset method under a permutation
model framework. Their approach constructs a subset S C {1, ..., n} such that, with high confidence,
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the truly best pair lies within S:
P((n)eS) >1-q,

where (n) denotes the index of the pair with the highest skill parameter.

The method is derived under large-sample asymptotics, using simultaneous confidence bounds on
pairwise differences 6; — 6; based on estimated variances from the MLEs. It provides a conservative
alternative to selecting a single “winner,” especially useful when skill estimates are close and
comparisons are incomplete. The approach adjusts for statistical uncertainty via the estimated
variance-covariance structure of § and is most suitable when the number of boards is large and the
tournament design is symmetric.

To further improve the discrimination capability of this method, we propose a weighted extension that
adjusts the confidence thresholds based on the magnitude of each estimated skill level. Specifically,
pairs with higher éj values are assigned smaller correction terms via a scaling factor w;, reflecting
their stronger performance and raising the bar for others to surpass them.

This modification preserves the original coverage guarantee while producing smaller, more
selective confidence subsets. In empirical evaluations across two datasets, the weighted procedure
consistently narrowed the candidate set without excluding the true best pair, achieving better
balance between statistical confidence and practical interpretability.

The full development of this method, including the mathematical formulation, proof of validity, and
detailed comparisons with the unweighted version, is presented in Appendix A.3. A comparison
of results across two datasets demonstrates the empirical advantage of our weighted-correction
approach over the original formulation by Yu and Lam. Since this family of methods is more relevant
to large-scale or Mitchell-style tournaments and less applicable to our dataset, it is not included in
the main analysis.

3.5 Conclusion

In this section, we first reviewed the details of the scoring system in duplicate Bridge tournaments
(section 3.1), covering the assignment of pairs, tables, and boards, as well as the methodology for
scoring and calculating final rankings. Through these discussions, we understood that the scoring
system significantly reduces the luck factor from randomly dealt boards by allowing each pair to
compete under identical conditions. The provided example clarified the scoring process and how
winners are identified. This knowledge is fundamental for conducting statistical analyses of player
skills in subsequent sections.

Next, we examined the permutation Model (section 3.2), a core statistical framework employed in this
study. The model assumes a fixed intrinsic skill parameter for each pair, assessed through repeated
comparisons. We explored how the likelihood function connects pairwise match outcomes to skill
levels, utilizing the Bradley-Terry Model Application. The section also offered rigorous mathematical
justification for using this model in Bridge data analysis, highlighting three critical criteria: the
Reversibility Condition, Skill Parameter Explanation, and the Sufficiency of Total Match Points. These
criteria underpin the robustness of the model when applied to practical data analysis.

Moreover, the permutation model was extended to handle tie situations frequently occurring in
actual Bridge tournaments (section 3.3). The revised model effectively reflects realistic outcomes
by introducing the tie parameter ¢, incorporating tie scenarios explicitly. The section specifically
addressed how probabilities of pairwise comparisons are adjusted to include ties and provided
a formal proof demonstrating that total match points and the number of ties constitute sufficient
statistics for estimating both skill and tie parameters.

Finally, methods for estimating skill parameters were discussed (section 3.4), particularly addressing
the issue of over-parameterization. We learned how simplifying parameter estimation improves
stability.  Additionally, the section proposed a statistically robust method for selecting the
best-performing pairs based on estimated skills, ensuring high confidence through constructing an
appropriate random subset.
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This section established a comprehensive theoretical framework essential for the subsequent
practical analysis of Bridge tournament data. Building on the overview of duplicate tournament
data, the next section applies the permutation model to a real Bridge dataset. We will demonstrate
how maximum likelihood estimation and Bootstrap methods validate our theoretical assumptions and
highlight any shortcomings that prompt further refinements.
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4 Verification of an analysis by Yu and Lam

4.1 Data preparation and representation

The data analysed in this section are derived from [34], which examined a four-table Howell rotating
duplicate Bridge tournament. This dataset is particularly suitable for validating the permutation
model, as it ensures balanced competition and diverse interactions among player pairs. The following
analysis is conducted to verify the findings of Yu and Lam, using their dataset to test the applicability
of the permutation model. This includes a re-examination of the derived skill parameters and
tie-breaking probabilities to confirm their consistency with the original results while incorporating
additional insights. The tournament setup included:

* B =28: Number of boards;
» n = 8: Number of player pairs;

* T =4: Number of North-South (NS) and East-West (EW) pairs per board.

The key data components include:

1. NS and EW Pair Assignments: The assignment of player pairs to North—South («(b,t)) and
East—West (B8(b,1)) positions follows a 28-board Howell rotation pattern. This arrangement
guarantees that each pair competes against a wide range of opponents, thereby reducing
systematic bias. The table below illustrates this rotation scheme.

(b, 1) B, 1)
t
b 1 2 3 4 1 2 3 4
1-4 2 3 5 8 4 7 6 1
5-8 3 4 6 8 5 1 7 2
9-12 4 5 7 8 6 2 1 3
13-16 5 6 1 8 7 3 2 4
17-20 6 7 2 8 1 4 3 5
21-24 7 1 3 8 2 5 4 6
25-28 1 2 4 8 3 6 5 7

Figure 4: 4-Table Howell movements with 28 boards
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2. MP Scores: A 28 x 8 matrix containing Match Points for all player pairs.

Board | 2 3 4 5 6 7 8

1 2 (50) 2.5 (460) O (—100) 0.5(—460) 2.5 (460) 0.5 (—460) 3  (100) 1  (—50)
2 1 (140) 1 (—230) 0 (—450) 2 (230) 3 (100) O (—100) 3 (450) 2 (—140)
3 I (230) 1 (—6200 0 (—1430) 2 (6200 3 (130) 0 (—130) 3 (1430) 2 (—230)
4 2 (1700 2 (80) 0 (—300) 1 (—80) 3 (130) O (—130) 3 (3000 1 (—170)
5 15(—=50) 0 (—150) 0 (—=90) 1.5 (50) 3  (90) 15 (50) 1.5(—50) 3  (150)
6 3 (—150) 1.5(—200) 3  (300) O (150) O (—300) 1.5 (200) 1.5(—200) L5 (200
7 0 (—620) 1 (—600) 1  (100) 3 (6200 2 (—100) O (—140) 3 (140) 2  (600)
8 2 (170) 1 (=S0) 3 (100) 1 (—170) O (—100) O (—180) 3 (180) 2 (50)
9 2 (100) 1 (—=100) 3  (140) 3 (110) 2 (100) 0 (—110) 1 (=100) O (—140)
10 1 (—1200 3 (2000 2 (—100) 3 (800) O (—2000 O (—800) 2 (1200 1  (100)
11 1.5 (480) 3 (490) O  (450) 1.5(—480) O (—490) 1.5 (480) 1.5(—480) 3 (—450)
12 2 (=500) 1 (—600) 3 (—200) 3 (680) 2 (600) O (—680) 1 (5000 O  (200)
13 3 (2000 0 (—2000 2  (180) 1 (100) O (—300) 1 (—180) 3 (3000 2 (—100)
14 1 (400) 0.5(—400) 0.5 (—420) 0.5(—420) 0 (250) 2.5 (420) 3 (—=250) 2.5 (420
15 1 (—130) 05 (130) 0.5 (—50) 0.5(—=50) 0 (—500) 2.5 (50) 3 (500) 25  (50)
16 2 (—130) 2 (130) 2 (600) 3 (6200 3 (100) 1 (—600) O (—100) O (—620)
17 2 (460) 3 (—400) O  (400) 2 (460) 2 (460) 1 (—460) 1 (—460) 1 (—460)
18 0.5(—150) 2.5 (150) 0.5 (—150) 2 (—130) 3 (2000 2.5 (150) 1 (130) O (—200)
19 3 (90) 3 (400) 0 (—400) 2  (50) 1 (—130) O (=90) 1 (—=50) 2  (130)
20 25 (110) 3 (100) 0 (—100) 2.5 (110) 1  (90) 0.5 (—110) 0.5(—110) 2  (—90)
21 1 (=100) 0.5(—130) 2.5 (130) 0.5(—130) 2 (100) 3  (400) 2.5 (130) O (—400)
2 0.5(—630) 0.5 (600) 0.5 (—630) 2.5 (630) 2.5 (630) 0.5 (600) 2.5(—600) 2.5 (—600Q)
23 2 (110) 2 (110) 0 (—140) 3 (140) 1 (—=110) 0 (=1200 1 (=110) 3 (120
24 0.5 (—50) 0 (—140) 0.5 (—50) 2.5 (50) 2.5 (50) 1 (—110) 3 (140) 2  (110)
25 0 (-50) 3 (180) 3 (50) 2 (150) 1 (—150) O (—180) 2 (—80) 1 (80)
26 2 (=100) 0 (—150) 1  (100) 2 (—100) 1 (100) 3  (150) 1 (100) 2 (—100)
27 3 (5000 2 (170) 0 (=500) O (—100) 3 (100) 1 (—=170) 2  (50) 1  (—50)
28 1.5(—100) 3  (630) 1.5 (100) 1.5(—100) 1.5 (100) O (—630) 3 (170) 0 (—170)

Total 44.5 (330) 45.5(—140) 29.5(—2460) 49 (3350) 45 (1410) 24.5(—2880) 56 (2150) 42 (—1760)

Figure 5: Match-point scores and raw scores from Yu and Lam

» Each row represents one board (Board 1 to Board 28).
» Each column corresponds to a player pair (1 to 8).
Each cell contains:

— The raw score achieved;
— The corresponding MP score.

The last row aggregates each pair’s total raw scores and total MP scores.

4.1.1 Illlustration of match point scoring

To demonstrate how match point (MP) scores are calculated in a duplicate bridge tournament, we
take Board 16 as an example. According to the Howell movement design from figure 4, the board
was played at four different tables with the following pairings:

Table 3: Table Assignments for Board 16

Table | N/S Pair | E/W Pair
1 5 7
2 6 3
3 1 2
4 8 4

The raw scores and corresponding MP scores achieved by the N/S pairs are shown below:
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Table 4: Raw Scores and MP Scores for N/S Pairs on Board 16

N/S Pair | Raw Score | MP Score
5 100 3
6 -600 1
1 -130 2
8 -620 0

The E/W pairs receive the complementary MP scores, calculated as 3 — N/S MP. Their raw scores
are the negatives of the corresponding N/S scores:

Table 5: Raw Scores and MP Scores for E/W Pairs on Board 16

E/W Pair | MP Score | Raw Score
7 0 -100
3 2 600
2 1 130
4 3 620

The MP score for pair 2 in the original dataset 5 board 16 was incorrectly recorded as 2. The correct
MP score should be 1. The table below corrects for this discrepancy and ensures that the MP scores
are consistent with the corresponding raw results. Additional examples of data inconsistencies and
their corrections can be found in the appendix A.1.

4.1.2 Corrected match point scores

To ensure consistency with duplicate bridge tournament rules, each board should yield a total of 12
match points (MP) across the four tables (since there are 4 North—South and 4 East—-West pairs,
and each comparison awards a total of 3 points). However, in the original dataset, some rows
do not satisfy this condition. For example, the total MP for Board 14 was only 10.5, indicating an
inconsistency in the scoring.

We reviewed and recalculated all MP scores based on the raw results and tie-handling rules. The
table below presents the corrected MP scores for all 28 boards. Each row now correctly sums to
12.0, ensuring internal consistency and validity for subsequent modeling and analysis.
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Table 6: Corrected Match Point Scores Per Board (Row Sums Equal to 12)

Pair1 Pair2 Pair3 Pair4 Pair5 Pair6 Pair7 Pair8 Row Sum

Board 1 2.0 2.5 0.0 0.5 2.5 0.5 3.0 1.0 12.0
Board 2 1.0 1.0 0.0 2.0 3.0 0.0 3.0 2.0 12.0
Board 3 1.0 1.0 0.0 2.0 3.0 0.0 3.0 2.0 12.0
Board 4 2.0 2.0 0.0 1.0 3.0 0.0 3.0 1.0 12.0
Board 5 1.5 0.0 0.0 1.5 3.0 1.5 1.5 3.0 12.0
Board 6 3.0 1.5 3.0 0.0 0.0 1.5 1.5 1.5 12.0
Board 7 0.0 1.0 1.0 3.0 2.0 0.0 3.0 2.0 12.0
Board 8 2.0 1.0 3.0 1.0 0.0 0.0 3.0 2.0 12.0
Board 9 2.0 1.0 3.0 3.0 2.0 0.0 1.0 0.0 12.0
Board 10 1.0 3.0 2.0 3.0 0.0 0.0 2.0 1.0 12.0
Board 11 1.5 3.0 0.0 1.5 0.0 1.5 1.5 3.0 12.0
Board 12 2.0 1.0 3.0 3.0 2.0 0.0 1.0 0.0 12.0
Board 13 3.0 0.0 2.0 1.0 0.0 1.0 3.0 2.0 12.0
Board 14 1.0 2.0 0.5 0.5 0.0 2.5 3.0 2.5 12.0
Board 15 1.0 2.0 0.5 0.5 0.0 2.5 3.0 2.5 12.0
Board 16 2.0 1.0 2.0 3.0 3.0 1.0 0.0 0.0 12.0
Board 17 2.0 3.0 0.0 2.0 2.0 1.0 1.0 1.0 12.0
Board 18 0.5 2.5 0.5 2.0 3.0 2.5 1.0 0.0 12.0
Board 19 3.0 3.0 0.0 2.0 1.0 0.0 1.0 2.0 12.0
Board 20 2.5 3.0 0.0 2.5 1.0 0.5 0.5 2.0 12.0
Board 21 1.0 0.5 2.5 0.5 2.0 3.0 2.5 0.0 12.0
Board 22 0.5 0.5 0.5 2.5 2.5 0.5 2.5 2.5 12.0
Board 23 2.0 2.0 0.0 3.0 1.0 0.0 1.0 3.0 12.0
Board 24 0.5 0.0 0.5 2.5 2.5 1.0 3.0 2.0 12.0
Board 25 0.0 3.0 3.0 2.0 1.0 0.0 2.0 1.0 12.0
Board 26 2.0 0.0 1.0 2.0 1.0 3.0 1.0 2.0 12.0
Board 27 3.0 2.0 0.0 0.0 3.0 1.0 2.0 1.0 12.0
Board 28 1.5 3.0 1.5 1.5 1.5 0.0 3.0 0.0 12.0

4.2 Maximum likelihood estimation pseudocode

The objective is to estimate Player skill parameters 6 and tie probability parameter ¢. This is
achieved using Maximum Likelihood Estimation (MLE), which shows in section 4.2.4. The complete
implementation in Python is provided in Appendix B.1.

4.2.1 Step 1: Building alpha and beta

We first define two lists of patterns, @_pattrerns for NS pair assignments and g_patterns for EW pair
assignments. Each pattern is repeated 4 times to produce a total of 28 boards. We then convert them
into NumPy arrays, each of shape (28, 4). Additionally, we define B = 28 (boards), n = 8 (teams), and
T = 4 (tables per board).
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Algorithm 1 Constructing alpha and beta
1: procedure BUILDALPHABETA
2 a_patterns «— [(2,3,5,8), (3,4,6,8), (4,5,7,8), ...]
3: B_patterns « [(4,7,6,1), (5,1,7,2), (6,2,1,3), ...]
4 a—[], B<1]

> Repeat each pattern 4 times to form 28 boards in total
fori — 0to6do > since we have 7 patterns
a_pat «— a_patterns|i]
b_pat «— B_patterns|J]
forr — 1to4do
a.append(a_pat)
10: B.append(b_pat)

> Convert to NumPy arrays of shape (28, 4)
11: a < np.array(a)
12: B« np.array(p)
> Set dimensions: B=28, n=8, T =4
13: return (o, 8, B, n, T)

4.2.2 Step 2: Constructing L, and D,

For each board b, we retrieve which teams sit at NS («[b,:]) and EW (B][b,:]) positions. We then
obtain the scores for the 4 NS pairs from mp_scores. Next, we generate pairs (i, j) among these 4
tables and classify them into:

* Dy,: sets of table pairs that result in a draw (equal scores),
» L, sets of table pairs with winners and losers.

We store these results in a dictionary appended to boards_data.

Algorithm 2 Building boards_data with Win/Loss (L_b) and Draw (D_b) Sets

1: procedure BUILDBOARDSDATA(«, B, mp_scores, B,n,T)

2 boards_data « [ ]

3 forb —0toB-1do

4 ns_pairs « alb, ]

5: ew_pairs « B[b,:] > Extract scores for the NS teams
6 scores « mp_scores| b, ns_pairs — 1] > -1 because team indices start from 1
7 L, <[], Dp <[]

8: fori—0to7T-1do

9: forj —i+1toT-1do

10: if isClose(scores|i], scores[/]) then

11: Dy,.append((i, j))

12: else if scores|i] < scores|/] then

13: Ly.append((, j)) > iloses toj
14: else

15: Ly.append((j,i)) > jloses toi

16: return boards_data

4.2.3 Step3: Unpacking parameters

In the permutation model equation (16), ¢ only needs to be greater than zero. However, if ¢ is allowed
to take any positive value without constraint, it may lead to numerical issues during optimization. For
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example, when ¢ becomes very large, the denominator in the likelihood formula can become too
small, causing instability such as division by zero or log(0).

To improve optimization stability and efficiency, we restrict ¢ to the interval (0,1) using a logistic
transformation. This prevents ¢ from growing too large and keeps the optimization within a well-
behaved range. Although this limits the maximum value of ¢, it does not affect the structure or validity
of the model itself.

Yu and Lam do not specify how the tie parameter ¢ is estimated or constrained in practice.
Therefore, we adopt a practical approach that balances numerical stability with model flexibility.

We modeled using a logit transformation:

b= exp(¥)
1 +exp(y)’
We interpret the last element of x as ¢, which is mapped into ¢ € (0, 1) via a logistic function. The first
n — 1 entries of x are taken to be 6y, ..., 0,1, while 8,, is forced to 0 to serve as a reference baseline.

0, = 0 eliminates redundant degrees of freedom in the model, preventing meaningless inflation of
parameter values.

Algorithm 3 UNPACK_PARAMS

function UNPACKPARAMS(x, n)
: U o— x[n-1]

1:

2

3 ¢ — lizzl()l(zlkl)/) > Logistic transform of v
4: 60,

5: fork —0Oton-2do

6: 0[k] — x[k]

7 Oln—1] <0 > Fix baseline for identifiability
8 return (6, ¢)

4.2.4 Step 4: Log-likelihood and gradient

This step focuses on computing the log-likelihood function €(6, ¢) and its gradients with respect to
both 6 and ¢. These quantities are essential for parameter estimation in Step 5, where a BFGS
optimization algorithm minimizes the negative log-likelihood.

MLE Formulation The pairwise outcome probabilities defined in equation (16) include both win/loss
and tie cases. Let L, and D, denote the sets of decisive and tie outcomes on board b, respectively.
Assuming conditional independence across pairwise comparisons within and across boards, with
equation (3), the total likelihood becomes:

L(9,¢)=]£[ [1 & [1 A } (18)

b=1 | (i jyer, Ai T A+ (; Hep, di + A+ ¢ Aid;

Taking logarithms and summing over all boards yields the log-likelihood function:

In + Z In
/li+/lj+¢\//r/lj /li+/lj+¢\//r/lj

(i,j)eLyp (i,j)eDp

B

OEDY

b=1

(19)

Maximizing this function yields the MLEs of 6 and ¢. In practice, we minimize the negative
log-likelihood using gradient-based optimization. Our implementation uses the BFGS algorithm for
efficient convergence.
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The Denominator (denom) The common denominator appearing in both win/loss and tie
probabilities is defined as:

denom = A; +/lj + ¢\ /lj.

Gradient for 9, The total gradient for 6, can be expressed as:
o
00y

For the skill parameter 6, with equation (9), the gradient contributions from ¢;, (win/loss pairs) and
tp, (draw pairs) are computed as follows:

= win/loss contribution + draw contribution.

» Win/loss contribution: For win/loss pairs L, the gradient is:

abe _ 610g(/lj) élog(/li+/1j+¢w//li/lj)]
A0, A0k A0k '

(i,j)€Lp

* Draw contribution: For draw pairs D, the gradient is:

dlp, _ Z dlog(¢) N 4(0.5 log(1;) + 0.5 log(4;)) ~ dlog(A; + A + ¢/ /lj)]
00y 00y 00 00 ’

(i,j)€Dp

Gradient for ¢ via logistic link For the tie probability parameter ¢, we use the logistic map ¢ =
—L_ Hence, the chain rule applies:

1+e-¥ "
ot ot d¢ d¢
— = — =, here — = ¢(1-¢).
- ap g " i ¢(1-¢)
By combining the expressions for g—g and 3—72, we obtain the complete gradient with respect to .

Purpose of the Gradient The gradient vector V¢ = (9¢/06, 0¢/0y) is returned along with the log-
likelihood value and passed to Step 5. Since standard optimization libraries minimize by default, we
return (-¢,-V¢). This ensures an efficient search for the minimum of the negative log-likelihood,
enabling us to estimate the optimal parameters 4 and ¢.

Algorithm 4 LOGLIKELIHOODANDGRADIENT

1: function LOGLIKELIHOODANDG RADIENT(X, boards_data, n, T)

2 (6, ) «— UNPACKPARAMS(x, n) >p=1/(1+eY)
3 ¢ «— 0, grad_theta « 0, grad_psi « 0

4: for each bd in boards_data do

5: Extract L, D}, ns_pairs, ew_pairs from bd

6:

7

8

forr—0toT-1do
ins,lew < Ns_pairs(t], ew_pairs|¢]
A exp(g[ins] - H[iew])

9: Store 1 and its partial derivatives
10: for each (i, j) in L, do
11: Compute 4;,1;,denom
12: Update ¢ with log(4,) and log(denom)
13: Update grad_theta and grad_psi
14: for each (i, j) in D, do
15: Compute 4;,1;,denom
16: Update ¢ using log(¢), log(4;), log(1;), and log(denom)
17: Update grad_theta and grad_psi
18: Combine grad_theta and grad_psi into grad

19: return (-¢, —grad)
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4.2.5 Step 5: Full model estimation via BFGS

We optimise the model parameters in this step using the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm. BFGS is a quasi-Newton method widely recognized for its efficiency in solving
unconstrained nonlinear optimization problems. It dynamically approximates the Hessian matrix
using gradient evaluations, making it computationally efficient while retaining the fast convergence
properties of Newton’s method [28].

The optimization of the negative log-likelihood function —L(6,¢) requires a robust and efficient
algorithm. BFGS offers the following advantages:

» Rapid Convergence: Compared to first-order methods such as gradient descent, BFGS
achieves superlinear convergence near the optimal solution, significantly reducing the number
of iterations required [26].

» Explicit Hessian Computation: Instead of computing and inverting the Hessian matrix (which
can be computationally expensive for high-dimensional problems), BFGS approximates it using
gradient information. This reduces computational complexity while maintaining accuracy [27].

+ Ease of Implementation: BFGS is implemented in many popular optimization libraries, such
as SciPy, making it straightforward to use in practice. For our problem, we use a library
implementation to minimize the negative log-likelihood.

In the model, the optimisation process consists of the following steps:

1. Initialization: We initialize the parameter vector x = (04, ...,60,-1,%) to zeros, implying ; = 0
for all i and ¥ = 0, which corresponds to a draw probability ¢ = 0.5.

2. Optimization: Using a BFGS-based routine (MinimizeBFGS), we minimize the negative log-
likelihood function. This routine requires the function value and gradient, defined in Step 4.

3. Output: Upon convergence, we extract the optimal parameters § and ¢, compute the final
log-likelihood value £, and optionally rank the teams based on their skill parameters 4.

Algorithm 5 Optimizing the Full Model and Outputting Results
procedure FULLMODELESTIMATION(n, boards_data)
: x_init < 0, >01..0,-1=0, 4y =0 = ¢$=0.5
res — MinimizeBFGS(LogLikeIihoodAndGradient, x_init, boards_data, n, T)

1:

2

3

4: X <« res.x
5: G — —res.fun
6

7

8

(9, §) — UNPACKPARAMS(%, n)
print “Converged =", res.success
print “Full model log-likelihood =7, &y
> Display each 6;
9: fori — 1tondo
10: print “theta_i =", 4[i — 1]
11:  print“phi=", ¢
> Sort 6 in descending order to rank teams
12:  theta_indices « argsort(d) (descending)
13: print “Ranking by skill:”
14: fork — 1tondo
15: idx < theta_indices|[k]
16: print “Rank k: theta_(idx) =", 8[idx — 1]
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4.2.6 Permutation model result

From the figure 6, Optimisation results using the BFGS algorithm show successful convergence.
The skill parameters (6) reflect the relative abilities of the players, with 6,, = 0 fixed as the baseline for
identifiability. Rankings based on these parameters show that player 7 has the highest skill 6; = 0.7906
and player 6 has the lowest skill 8 = —0.9986. In addition, the negative log-likelihood value of the final
optimisation (—143.6938) indicates that the model fits the observed data well.

Optimization terminated successfully.
Current function value: 143.693841
Iterations: 14
Function evaluations: 21
Gradient evaluations: 21

Converged: True

Log—likelihood: —143.6938411916855

0 1 =0.1336
0 2 =0.1899

6 3 =-0.7132

0 4 = 0.3866

0 5 =10.1838

0 6 = —0.9896

0 7 =0.7906

0 8 = 0.0000

é = 0.2938

Ranking of © by skill level (from highest to lowest):
Rank 1: 0 7 = 0.7906

Rank 2: 6 4 = 0.3866

Rank 3: 0 2 = 0.1899

Rank 4: 0 5 = 0.1838

Rank 5: 0 1 = 0.1336

Rank 6: 0 8 = 0.0000

Rank 7: 6 3 = -0.7132

Rank 8: 0 6 = —0.9896

Figure 6: Permutation Model result

The optimization results highlight the need for convergence to ensure meaningful and reliable
outputs. Without convergence, the model is not guaranteed to reach the optimum point (minimum
or maximum) of the objective function, resulting in unstable or incorrect parameter estimates (4 and
$). The convergence of the BFGS algorithm ensures computational efficiency, stability and valid
interpretation, as evidenced by the negative log-likelihood of successful optimisation and well-defined
results.

4.3 Bootstrap-Based Inference under the Davidson Model

Due to the limited number of observations in this study (only 28 boards), traditional inferential
methods that rely on large-sample asymptotic theory—such as standard error formulas or normality
assumptions—are often unreliable or inapplicable. Furthermore, the underlying model used in this
thesis is an extension of the Bradley—Terry model with an additional tie parameter ¢, which makes
analytical derivation of uncertainty measures especially difficult.

To overcome these challenges, we adopt the Parametric Bootstrap, a resampling-based method
that allows for data-driven estimation of uncertainty without relying on analytical approximations.
The Bootstrap method is a general statistical technique used to estimate the distribution of sample
statistics, such as the mean, variance, or confidence intervals. In this thesis, we apply the parametric
version, which assumes a specific probabilistic model to simulate new data and re-estimate
parameters. In our case, we use Davidson’s model equation (16).

4.3.1 Uncertainty estimation via parametric bootstrap

To estimate the uncertainty in the model parameters 6 and ¢, we adopt a parametric Bootstrap
procedure based on the fitted Davidson model. Since the Davidson model characterizes the
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probability distribution over win—loss—tie outcomes, the resampling is performed at the level of
pairwise comparison results, rather than using raw scores or match-point totals. The steps are as
follows:

1. Fit the Davidson model to the observed data to obtain the MLE results 4 and ¢.

2. For each observed comparison between players i and j, simulate a new match outcome based
on the model’s probability structure:

Ap Ap
P(Rp;i > Rpj) =

J i
Api + Apj + O\ Apidi; Api + Apj + O/ Apidi;

A\ Apidpj
Api + Apj + P+\JAbidpj

These probabilities are then used to simulate new pairwise comparison outcomes: for example,
if the original result between Pair 1 and Pair 2 was a tie, the simulated outcome might instead
be a win for Pair 1, a win for Pair 2, or remain a tie—each sampled according to the estimated
Davidson probabilities.

P(Rpi < Rpj) =

P(Rpi = Rpj) =

3. Construct a synthetic dataset consisting of these simulated pairwise outcomes. This dataset
retains the same board structure and matchups as the original tournament (i.e., which pair
played against which, and on which board), but replaces the actual results with simulated ones.
Note that the synthetic data contains only outcome labels (win/loss/tie), and not ranks or MP
scores.

4. Refit the Davidson model to the synthetic dataset to obtain a new set of parameter estimates
6 and ¢®).

5. Repeat Steps 2—4 for B = 1000 iterations to generate empirical sampling distributions for all
parameters.

Let {6(») }le denote the set of bootstrap replicates. A 95% confidence interval for each skill parameter
0, is then constructed using the 2.5th and 97.5th percentiles of its empirical distribution:

glower — percentile({@fb)}, 2.5), 6P = percentile({QEb)}, 97.5)

This simulation-based method provides a flexible and robust way to assess parameter uncertainty
while preserving the structural dependencies inherent in tournament matchups. It is particularly
advantageous for small datasets with complex tie behavior, where analytical variance estimation is
either intractable or unreliable.

The complete implementation of this procedure is provided in the Appendix B.2.

4.3.2 Parametric Bootstrap results

We first focus on the results of the parametric Bootstrap method with a repetition number of B =
1000. For each parameter 6;, figure 7 presents the point estimate, along with its approximate 95%
confidence interval.
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=== Starting Parametric Bootstrap Analysis (B=1000) ===

In 1000 simulations, the 95% confidence interval for each 9 1 is:
6 1 =0.1336 95% CI = [-0.5643, 0.8639]

2 = 0.1899 95% CI = [-0.5017, 0.8947]

3 =-0.7132 95% CI = [-1.4697, -0.0153]

4 = 0.3866 95% CI = [-0.2474, 1.0674]

5 =0.1838 95% CI = [-0.4785, 0.8868]
6
7
8

= -0.9896 95% CI = [-1.8629, -0.3386]
= 0.7906 95% CI = [0.1286, 1.4896]
0. 0000 95% CI = [0.0000, 0.0000]

Figure 7: Parametric Bootstrap 95% Confidence Intervals for each 6;. Pair 8 is the benchmark pair
with skill parameter fixed at 0.

The results can be categorized into distinct cases based on the confidence intervals:

* Intervals crossing zero: For example, the confidence intervals of 6y, 6,, 04,05 include zero,
indicating that their relative advantage or disadvantage remains statistically inconclusive at this
sample size. This suggests that further data may be needed to draw definitive conclusions
about their performance.

+ Entirely positive or negative: In contrast, 65 and 6s have confidence intervals entirely below
zero, suggesting a consistent weakness in their performance. Meanwhile, ; remains distinctly
above zero, indicating a stable and significantly stronger skill level. These cases provide more
definitive evidence of the relative strengths of the players.

Compared to the permutation model results in figure 6, both methods identify the same players
at the extremes: 6; consistently shows superior performance, while 6; and ¢ are notably weaker.
However, the results do not support statistically significant distinctions among the remaining players,
especially those with confidence intervals crossing zero. This suggests that point-based rankings
may be misleading in such cases, and it is more appropriate to interpret the results in terms of
performance tiers or uncertainty bands.

In this context, the parametric bootstrap serves not only to estimate parameters but also to quantify
the confidence we can place in comparative skill assessments. Rather than producing strict rankings,
it reveals which differences are statistically credible and which remain uncertain.

4.4 Comparison of results

The following table compares the replicated results with the original values:

Table 7: Comparison of Current Results and Original Results by Yu and Lam

Parameter Current Result Original Result Rank (Current) Rank (Original)

0, 0.1336 0.0702 5 5
0> 0.1899 0.1113 3 3
03 -0.7132 -0.4266 7 7
04 0.3866 0.2271 2 2
05 0.1838 0.1030 4 4
3 -0.9896 -0.5934 8 8
07 0.7906 0.4579 1 1
03 0.0000 0.0000 6 6
¢ 0.2938 0.6845 - -

From table 7, the rankings of the skill parameters 6 are consistent across both sets of results,
ensuring the relative order of player skill levels remains valid. While the numerical values differ
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slightly, for example, 6; has the highest value, and 6 has the lowest in both results. The replicated
result (¢ = 0.2938) is significantly lower than the original value (¢ = 0.6845).

4.4.1 Scatter plot

A scatter plot was used to compare the estimated parameters obtained using the two methods
01,...,0s to assess the consistency of the results. To analyse the results, we chose a scatterplot
rather than a histogram because the The dataset contains only 8 parameter values (6; to 6s), which
is not enough to construct a meaningful histogram. A scatterplot provides a direct comparison of
the two sets of results, with each point corresponding to a specific , making the difference in values
visually apparent and easy to interpret.

Comparison of My Results and Original Results for Theta Parameters

® My Results 0'7306
0731 ® Original Results
0.50
0.3&66 0.4%79
0.25
0.1899 0.1838
01336 ¥ 0.M71 &
o.%02 0113 0.1930 0.0000
B 1 T R S0
v
=2
2
—0.25
0.866
—0.50
-0.9434
0.7132
—0.75 1 J
-0.9896
—-1.00 4 W
T T T T T T T T
91 92 93 94 95 95 9? 93

Theta Parameters

Figure 8: Comparison of My Results and Original Results for Theta Parameters

The scatter plot demonstrates that the overall ranking of parameters is consistent between our results
and the original results, validating the correctness of ourimplementation. The scatterplot shows that
the overall ordering of the parameters is consistent between ourresults and the original results,
which verifies that our implementation is correct. There are numerical differences in some of the
parameters, and we will analyse why these differences occur.

4.4.2 Correlation coefficient

We can plot the scatter diagram of “Current Result” versus “Original Result”.
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Current vs Original ©

® Data Points .
—— Best Fit: y=0.592x+0.005 e
0.75 4 === v=x reference ’

0.50
0.25
0.00

0.25 A

Original Result

—0.50

0.75 A

-1.00 A

T T T T T
-1.00 07 050 025 0.00 0.25 0.50 0.75
Current Result

Figure 9: scatter diagram of “Current Result” versus “Original Result”

After that, we can use the Pearson correlation coefficient R to quantitatively measure the linear
relationship between the two sets of results.

Pearson correlation coefficient

It is computed by:
oo L= Di-7)
\/2?21(xi _2)2 \/Z:‘l:](yi - y)z
where x and y are the means of the two datasets, respectively. When R is close to 1 (or -1),
it indicates a strong positive (or negative) linear correlation, whereas a value close to 0 means

almost no linear relationship.
This can be easily obtained in Python by calling np.corrcoef(x, y)[0, 1].

The results show that the Pearson correlation coefficient R ~ 0.99994, which is extremely close to 1,
indicates a strong positive linear relationship. In other words, these 6 parameters in the ‘current
version’ and the ‘original version’ are almost ‘in step’. The slope and intercept of the red fitted
line are about 0.59 and 0.01, respectively, showing only small differences from the diagonal y = x.
Although the deviation is more pronounced at some points (e.g., 0¢), the overall agreement is very
high, indicating that the differences between the two estimation methods are minimal.

4.4.3 Reasons for the discrepancy

We attempted various optimization methods, including the BFGS algorithm, to replicate the results;
however, some discrepancies remained. These differences are likely due to variations in parameter
initialization, optimization settings, and numerical precision. Yu and Lam do not provide sufficient
implementation details, such as initial values, specific optimisation methods, stopping criteria, or how
tie probabilities were estimated, which makes exact reproduction difficult.

A key factor is how the tie parameter ¢ is modeled. In our implementation, ¢ is restricted to the
interval (0, 1) using a logistic transformation to improve optimization stability. Since Yu and Lam do
not explain how ¢ was estimated or constrained, it is possible that different parameterizations led to
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substantially different values, especially given the tie component’s sensitivity.

Another important reason is a data error identified in the original paper by Yu and Lam. For example,
the MP score for Pair 2 in Board 16 appears to be incorrect and was corrected in our dataset. Even
small inconsistencies like this can affect pairwise comparisons and influence parameter estimation,
particularly for tie-related components.

While different optimization methods may also influence results, a more in-depth comparison of three
algorithms is provided in Appendix A.2. The outcomes were nearly identical under these methods,
but this does not fully rule out the effect of algorithmic settings, such as stopping conditions or search
directions.

4.4.4 Impact of the discrepancy

Although the optimization results show numerical differences, some aspects of the model behavior
remain consistent. In particular, the relative rankings of the skill parameters 6 are unchanged,
preserving the overall ordering of player strength.

However, the actual values of both 6 and ¢ differ noticeably from those reported by Yu and Lam.
These differences affect the model’s output, especially in the predicted probability of ties and the
interpretation of performance gaps between players. As a result, the model may yield different
assessments of how evenly matched two players are or how likely a tie is to occur.

The parameter estimates in my thesis—although numerically different from those by Yu and Lam—are
internally consistent. The values of 8 and ¢ work together coherently within the permutation model to
produce valid probabilistic predictions. This indicates that the model remains self-consistent, even if
the parameters themselves differ.

Overall, both implementations reflect a coherent mapping between skill levels and tie behavior. This
variation underscores that even when rankings are preserved, the model’s quantitative predictions
can shift, highlighting its sensitivity to implementation choices rather than indicating a problem with
the model itself.

4.5 Likelihood ratio test

This section compares the full model (where all skill parameters are freely estimated) with the
restricted model (where all skill parameters are assumed to be equal). A likelihood ratio (LR) test
is used to determine if there is a statistically significant improvement in the full model compared to
the restricted model.

4.5.1 Compared likelihood ratio test and one-way ANOVA

In the task of detecting whether eight pairs of players in a Bridge tournament have the same skill level,
we chose the Likelihood Ratio Test (LRT) over the traditional one-way ANOVA. This is because there
are significant differences in the assumptions and applicability of the two methods, and the complex
nature of the Bridge data lends itself better to the modelled inference of the LRT.

One-way ANOVA assumes that the data are independent, normally distributed, and have equal
variances, and determines whether there is a significant difference between groups by comparing
the means of the different groups [29]. However, this method is based on a simple linear model
requiring errors to obey a normal distribution. In Bridge tournaments, the data are derived from
two-by-two comparisons between pairs of players, which presents a nonlinear probability structure
(nonlinear ranking model) and fails to satisfy the underlying assumptions of ANOVA.

In contrast, the Likelihood Ratio Test (LRT) is based on a nonlinear probability model and is more
suitable for the data structure of a Bridge tournament. In LRT, the null hypothesis assumes that
all players have the same skill level and the model can be reduced to a common skill parameter;
the alternative hypothesis allows each pair to have a different skill parameter. By maximising the
likelihood values under the null and alternative hypotheses and calculating the difference between
the two, LRT provides a natural way of modelling inference [30]. According to Wilkes’ theorem, the
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LRT statistic obeys a chi-square distribution over large samples with degrees of freedom equal to the
difference in the number of model parameters [45].

Thus, LRT provides a more flexible and precise analysis that captures differences in players’ skill
levels in a way that one-way ANOVA cannot.

4.5.2 Methodology

In the full model, each skill parameter 9; (i = 1,2, ..., n) is allowed to vary freely, with a fixed condition
6, =0.
The log-likelihood function for the full model is defined as:

LLgy) = Z [ Z log( Aj(pm) + Z (108(¢) +0.5log(2;4;) —log(A; +4; + ¢\//li/l.i)) ,

b |G, j)ely A+ + (i,)eDyp

The restricted model assumes all skill parameters are equal, i.e., 6; = 6, = --- = 0 = Ocommon- The
tie probability ¢ remains the same as in the full model. The simplified log-likelihood function for each
board is:

1 é
L Lyestricted = m -10g(2+¢) +d-10g(2+¢),

where: m is the number of win-loss pairs (L), and d is the number of tied pairs (D).
The total log-likelihood is the sum across all boards:

1
L Lyestricted = Z [m-log(2+¢) +d'10g(2f¢)

b

The Likelihood Ratio (LR) statistic is defined as:
LR=-2 (LLrestricted - LquII) .

The LR statistic measures the difference in fit between the two models. If LR is large, it indicates
that the restricted model significantly underfits the data compared to the full model, rejecting the
assumption that all skill parameters are equal.

4.5.3 Implementation

* In the restricted model, we assume all teams have the same skill (Ocommon). Therefore, the
probability of winning or losing is 1/(2 + ¢), while the probability of a draw is ¢/(2 + ¢).

» The function above simply counts, for each board, how many win/loss pairs (m) and how many
draw pairs (d) exist, then computes the corresponding log-likelihood contribution under this
restricted assumption.

» We return —¢ because most optimization routines (like BFGS) minimize the target function.
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Algorithm 6 Restricted Model and LR Computation

1: function LOGLIKELIHOODRESTRICTED(x, boardsData, n, T)
2: Bcommon < x[0]

3 Y o— x[1]

4. ¢ —exp(¥)/(1+exp(y))

5: {0

6: for all bd in boardsData do
7.

8

9

0

1

Lb P bd[”Lb”], Db (_ bd[”Db”]

m « len(Lp), d < len(Dy)

: tooard «— m - [~In(2+ ¢)] +d - [In(¢) — In(2 + ¢)]
10: g «— g + Zboard

11: return —¢ > Negative log-likelihood for minimization

» We initialize the restricted-model parameters to zero: the first element x[0] iS Ocommon (NOt used
in the probability formula) and x[1] is ¥, which determines ¢.

« After fitting the restricted model via BFGS, we get ;o5 = —res_res.fun.

« Finally, the Likelihood Ratio (LR) is computed as
-2 (fres - ffull)-

If LR is sufficiently large, the restricted model is significantly worse than the full model.

+ In a formal hypothesis test, one can compare LR to a y? distribution with degrees of freedom
equal to the difference in parameter counts.

Algorithm 7 Fitting the Restricted Model and Computing the LR Statistic
1: x_init_res < [0.0, 0.0] > Ocommon =0, ¥ =0 = ¢ = 0.5 initially
2: res_res « MinimizeBFGS(LogLikeIihoodRestricted, x_init_res)
3: fes «— —res_res.fun
4
5

: print “Restricted model log-likelihood: ”, £res
. print “Restricted model parameters: ”, res_res.x
> Recall that ¢, was computed earlier from the full model.
6: LR « -2 ([res - ffull)
7: print “Likelihood Ratio: ”, LR

4.5.4 Results and interpretation

Using a likelihood ratio test, the full model (in which the skill parameters 6 are freely estimated) and
the restricted model (in which all skill parameters are assumed to be equal) were compared. The
likelihood ratio statistics obtained from our results are LR = 37.76.

Under the null hypothesis, the likelihood ratio statistic LR follows a chi-squared distribution with 7
degrees of freedom. At a significance level of @ = 0.05, the critical value is: Xg.osj = 14.07. The
corresponding P-value for LR = 37.76 is: P < 0.001. Since the P-value is significantly smaller than
0.05, we reject the null hypothesis that all skill parameters are equal.

In the original study, the likelihood ratio statistic was reported as LR = 21.85. Although our result

(LR = 37.76) is higher, the conclusion remains the same. The null hypothesis of equal skill parameters
is rejected, and significant differences exist among the skill parameters 6 of the eight Bridge pairs.
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4.5.5 Comparison between MP total score ranking and 6 ranking

The table below presents the total MP scores, their corresponding ranks, and the ranks derived from
the estimated skill parameters 6:

Pair MP Score MP Rank 6 Value 6 Rank

1 44.5 5 0.1336 5
2 45.5 3 0.1899 3
3 29.5 7 -0.7132 7
4 49.0 2 0.3866 2
5 45.0 4 0.1838 4
6 24.5 8 -0.9896 8
7 56.0 1 0.7906 1
8 42.0 6 0.0000 6

The rankings derived from the total MP scores are identical to those obtained from the estimated
skill parameters 6. This consistency confirms that the MP scores are a valid and reliable measure for
comparing the skills of the Bridge pairs.

4.6 Analysis of Tie Frequencies in the Permutation Model

The main objective of this section is to compute the expected frequency of tied results under the
permutation model, based on the estimated parameters 6 and ¢. When T = 4 tables play the same
board, a tie is defined as the event that two or more tables obtain identical match-point scores for
both the North—South and East—West pairs on that board. Whenever this occurs, the corresponding
tables are said to form a tie group.

To analyze tie patterns systematically, we enumerate all possible ways of grouping the four tables
according to score equality. That is, we list all the partitions of 4 tables where one or more subsets
contain equal scores. For each such grouping, we compute the number of tie pairs—unordered pairs
of tables that received the same score—using combinatorics. The total number of tie pairs on board
b is denoted by |Dy|.

4.6.1 Tie groupings and their combinatorial counting

Lemma 3: Tied Pair Counting

Let a tournament round consist of T tables. If a subset of k tables have identical scores, the
number of tied pairs |D| within this subset is given by:

D)= (1;) _ k(kz— 1)

The total number of tied pairs for a board is the sum of these values across all tie groups.

The following table lists all possible ways to partition the four tables into tie groups, along with the
corresponding number of tied pairs:

54



4 VERIFICATION OF AN ANALYSIS BY YU AND LAM

Table 8: Possible Tie Groupings and Their Tied Pair Counts for T = 4

Grouping | Description Number of | Combinatorial
Tied Pairs | Formula
|Dp|
(4) All four tables have the same score. 6 (‘2‘) =6
(3,1) Three tables share the same score, and the | 3 ) =3
fourth has a different score.
(2,2) Two pairs of tables, each with identical scores. | 2 G)+() =2
(2,1,1) One pair of tied tables, while the other two have | 1 (%) =1
distinct scores.
(1,1,1,1) | All four tables have distinct scores (no ties). 0 -

A clear instance of a (3, 1) tie structure can be found in Board 17. The North—South raw and match-
point (MP) scores for the four tables are summarized in Table 9.

Table 9: Raw Scores and MP Scores for N/S Pairs on Board 17

N/S Pair | Raw Score | MP Score
Pair 6 -460 1
Pair 7 -460 1
Pair 2 -400 3
Pair 8 -460 1

As shown in the table, Pairs 6, 7, and 8 all received identical raw scores of —460, which translated
into the same MP score of 1. This implies that these three tables were tied on this board. In contrast,
Pair 2 achieved a distinct raw score of —400, resulting in a higher MP score of 3.

To determine the number of tied pairs, we list all unordered combinations (6,7), (6,8), (7,8). Each
of these constitutes a tie pair. Hence, the total number of tied pairs in this board is |Ds| = (3) = 3

4.6.2 Results

Table 10: Comparison of Observed and Expected Frequencies of Tied Pairs

Observed Expected Expected Expected
Number of
tied pairs freq_u?ncy freq_u:_ency _ _frequency frequency
(Original) (Original) (Original parameters) (My parameters)
0 14 12.83 12.86 19.73
1 11 12.61 12.60 7.82
2 1 1.40 1.37 0.34
3 2 1.13 1.14 0.11
6 0 0.03 0.03 0.00

* Number of tied pairs: This column indicates the number of tied pairs observed on each board,
occurring when the players score the same. Values include 0, 1, 2, 3 and 6 ties.

» Observed frequency (Original): This is the frequency of tied pairs per deck as observed from
actual tournament data.

+ Expected frequency (Original): This column shows the theoretically expected frequencies
calculated using the model and parameters 6 and ¢) provided in the original paper. These
values were taken directly from the original conclusions in the paper.
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+ Expected frequency (Original parameters): | used the parameters provided by Yu and Lam’s
paper (6 and ¢) and implemented the same model with our code. The expected frequencies
obtained were very close to the original expected values, verifying that our implementation was
correct.

» Expected frequency (My parameters): Using our independently calculated Maximum
Likelihood Estimates (MLE) for 8 and ¢, | recalculated the expected frequencies. These values
differ from the original results, suggesting that the choice of parameters affects the predictive
distribution of ties.

By using the parameters # and ¢) by Yu and Lam, and recalculating the expected frequencies, we
obtained results consistent with those reported in the paper by Yu and Lam. This confirms the
correctness of our model implementation and validates our approach.

4.7 Conclusion

In sections 4.1 and 4.2, we presented the four-table Howell rotating duplicate Bridge dataset from
[34], focusing on how each board was organized and setting up the maximum likelihood estimation
(MLE) pseudo code step by step. These preparatory steps clearly mapped the raw data (including
pair assignments and match-point scores) and the statistical model.

Next, sections 4.3 and 4.4 described how we estimated skill parameters 8 and the tie probability ¢
using a quasi-Newton (BFGS) method, and how we applied a parametric Bootstrap to quantify the
uncertainty of those estimates. In comparing our replicated parameters to the original work, we found
that the overall skill ranking was consistent despite some numerical differences. This close alignment
confirms that the permutation model remains robust under slightly varied conditions.

In section 4.5, we performed a likelihood ratio (LR) test, comparing the full model (distinct skill
parameters) to a restricted model (common skill parameter). The LR statistic rejected the null
hypothesis, indicating significant skill disparities among the eight player pairs. This result matched
the primary conclusion from [34] and reinforced the model’s ability to detect meaningful performance
gaps.

Finally, section 4.6 examined tie frequencies by enumerating the possible scoring patterns and
contrasting the observed counts with those predicted by the estimated parameters. Although our tie
probability estimate diverged somewhat from Yu and Lam’s result, both results captured the essential
properties of ties in a small, competitive Bridge environment.

Overall, this chapter demonstrates that the permutation model, equipped with MLE, bootstrap-based
inference, and a formal LR test, can effectively uncover and validate differences in player abilities.
With the permutation model’s strengths and limitations clarified, we will examine data from the 2024
China National Bridge Championships. We will apply the same modeling framework to a much larger,
high-stakes event, aiming to confirm or refine the insights gleaned so far.
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5 Analysis of the 2024 China National Bridge Championship

5.1 Data preparation and representation

Since its first participation in the Asian Games in 1974, Chinese Bridge has rapidly developed
into an essential intellectual sport in China. 1982 saw the establishment of the Chinese Bridge
Association and its first participation in the World Bridge Championships, which gradually established
its dominant position in the Asian region. The Chinese team has performed well in all the
Asia-Pacific Bridge Championships, with the men’s team winning 8 Asia-Pacific Championships and
1 Asian Cup Championship. In contrast, the women’s team is even more outstanding, winning 16
Asia-Pacific Championships and 1 Asian Cup Championship [5]. These achievements show the
intense competitiveness of the Chinese Bridge.

Bridge’s popularity in China grows daily, from professional competition to universal participation,
covering youth, adult, and senior groups. The China Bridge Championships, as the highest level
of national tournaments, contains several subdivisions, such as Open Pairs, Mixed Pairs, Teams,
and Youth competitions, etc., to satisfy the needs of different Bridge enthusiasts. The schedules and
structures for all events at the 2024 National Bridge Championships are taken from the official scoring
platform, GemBridge [19].

5.1.1 Dataset: 2024 National Bridge Championship Open Pairs Final
The dataset used in this study is from the final stage of the Open Pairs event of the 2024 National
Bridge Championships held in Leshan City, Sichuan Province. The Open Pairs tournament consists
of three stages [19]:
Stage 1: Open pairs preliminary round

» Participants: 161 pairs (322 players).

 Tables: There are 80 tables, with a pair of players taking a turn in each round.

» Boards: A total of 44 boards, with 4 boards played per round. Each board has been played by
80 NS pairs and 80 EW pairs.

+ Pairing Structure: Each pair played against 11 other pairs but did not face all pairs. The pairs
that had their turn played 10 rounds (40 boards), and the other pairs played 11 rounds (44
boards).

» Scoring: Match Points (MP) were calculated for each pair based on their performance on each
board relative to other pairs, and the MP scores were summed up.

* Progression: The top 35 pairs based on cumulative MP scores advanced to the semifinals.

Stage 2: Open pairs semifinal round

* Participants: 35 pairs (70 players).

Tables: There are 17 tables, with a pair of players taking a turn in each round.

» Boards: A total of 44 boards, with 4 boards played per round. Each board has been played by
17 NS pairs and 17 EW pairs.

Pairing Structure: Each pair played against 11 other pairs but did not face all pairs. The pairs
that had their turn played 10 rounds (40 boards), and the other pairs played 11 rounds (44
boards).

* Progression: The top 12 pairs based on cumulative MP scores advanced to the final stage.
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Stage 3: Open pairs final round

+ Participants: 12 pairs (24 players).

Tables: 6 tables.
« Boards: A total of 44 boards.

Pairing Structure: Each pair played against all other 11 pairs, ensuring direct competition with
every other pair.

Results:The winner is ranked first based on the cumulative MP score.

The final stage of the Open Pairs event was chosen for the following reasons:

» The Howell rotation system used in the final stage aligns well with the assumptions of the
permutation model and ensures balanced competition.

» The two-by-two pairwise structure between all pairs provided minimised bias and is consistent
with the assumptions of the permutation model.

» The focus on the final stage helps to capture the skill level of the top performers. This data
selection reduces the impact of outliers and facilitates the validation of our model.

5.1.2 The time schedule

The data is extracted from the official website of the Chinese Contract Bridge Association [6]. The
table below outlines the schedule for the final stage of the 2024 National Bridge Championships Open
Pairs. The 11 rounds held on April 15 2024, were evenly distributed throughout the day, with each
round lasting approximately 32 minutes, with a break scheduled after the sixth round to ensure that
the players were focused [19].

Date Time Stage of Competition
2024-04-15 | 09:00-09:32 | Doubles Final Round 1
2024-04-15 | 09:35—-10:07 | Doubles Final Round 2
2024-04-15 | 10:10-10:42 | Doubles Final Round 3
2024-04-15 | 10:45—-11:17 | Doubles Final Round 4
2024-04-15 | 11:20—-11:52 | Doubles Final Round 5
2024-04-15 | 11:55—-12:27 | Doubles Final Round 6
2024-04-15 | 14:30—15:02 | Doubles Final Round 7
2024-04-15 | 15:05-15:37 | Doubles Final Round 8
2024-04-15 | 15:40—-16:12 | Doubles Final Round 9
2024-04-15 | 16:15-16:47 | Doubles Final Round 10
2024-04-15 | 16:50—-17:22 | Doubles Final Round 11

Table 11: Schedule for Doubles Final on April 15, 2024
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5.1.3 Howell Movement

Seating arrangements and participant details for the 2024 National Bridge Championships Open
Pairs Finals have been extracted from the official scoring website GemBridge [18].

Table 12: NS and EW Pair Assignments by Round and Board

Round | Boards | NS Pairs («(b,t)) | EW Pairs (3(b,1))
1 1-4 12,11,3,9,8,7 1,2,10,4,5,6
2 5-8 12,1,4,10,9, 8 2,3,11,5,6,7
3 9-12 12,2,5,11,10,9 | 3,4,1,6,7,8
4 13-16 | 12,3,6,1,11,10 | 4,5,2,7,8,9
5 17-20 | 12,4,7,2,1, 11 5,6,38,9, 10
6 21-24 | 12,5,8, 3,2, 1 6,7,4,9,10, 11
7 25-28 | 12,6,9,4,3,2 7,8,5,10,11,1
8 29-32 | 12,7,10,5,4,3 [8,9,6,11,1,2
9 33-36 | 12,8,11,6,5,4 |9,10,7,1,2,3
10 37-40 | 12,9,1,7,6,5 10,11,8,2,3,4
11 41-44 | 12,10,2,8,7,6 11,1,9,3,4,5

5.1.4 MP scores by board and pair

The dataset table 24 has been carefully compiled by collating the results of each game played during
the tournament. There were 44 boards and 6 tables in each round, and the dataset contains 528
entries detailing the Total Points (TP) of the North-South (NS) and East-West (EW) pairings, as well
as their respective pairing assignments. This dataset provides the basis for MP scores analysis and
ranking modelling of the results of the championship.

After obtaining the detailed total scores for the 528 pairing points, the raw total scores are converted to
comparative scores to obtain Match Point (MP) scores. The MP scores provide the relative rankings
of each pair in each deck, a method which ensures that the assessments are standardised and reflect
the overall level of each pair in the tournament. The following table lists the 528 MP scores obtained
based on the total scores for the 44 boards and 12 pairs of players participating in the tournament.
Each row corresponds to a board, and each column represents the score of a pair of players [16].
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Table 13: MP Scores by Board and Pair from the 2024 Open Pairs Final
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5.1.5 Final ranking

Final rankings for the 2024 National Bridge Championships Open Pairs Final from the official scoring
platform GemBridge [17]. The numbers in the first column are the rankings; the names in the
third column are the names of the two players in a pair; the MPs in the fourth column are the
scores converted by the common method of Bridge; and the last column is the group number and
combination name for each pair.

HE % e MPs e #

n 60.272% FERR-KIME 253 2.772% 4% hEDAREEFESA1935)
[ 2 ] 59.139%  EHE-TE 248 2.775% St PREIRET
B8 57.687%  FBBAE-ZHSH 240 3.142% 10# UAER
[ 4 ] 54.61% NBE-hSiE 228 2.792% % SIHMER
[ 5 | 53.717%  Ki-SFEE 222 3.262% 124 SIHER
[ 6 | 53.667%  EAE-EFIF 222 3.212% 1# SMRE
7 ] 52.969%  SPEMA-DEE 221 2.742% 3 BRHHRR
[ 8 50.98%  fAIE-HRE 21 3.025% 8# BiEKE
B 50.222%  XI-AlE 209 2.722% 2 Y

[ 10 ] 48.72%  KESE-EEYE 202 2811% 7# HiBEE
[ 11 ] 47.334% IR 196 2.789% 6# =EifE2
[ 12 ] 45.78% LHY-hE 188 3.053% o EHIT

Figure 10: Final rankings for the 2024 National Bridge Championships Open Pairs

In the final ranking of the 2024 National Bridge Championship Open Pairs, the top three pairs were
highly competitive. Wang Guogiang and Zhang Lixiong (pair 4) secured first place with 253 MP,
followed closely by Jia Xinchun and Ning Jun (pair 5) (248 MP) and Sun Minghao and Liang Yuhe
(pair 10)(240 MP).

Specifically, the 5th place (pair 12) and the 6th place (pair 11) both scored 222 MP. Because they
have the same total score, they should generally be ranked side by side. If additional criteria for
determining the rankings were introduced, their rankings would be different. For example, this
difference can be determined by the IMP score or other tie-breaker rules, such as head-to-head
results or performance in key rounds.

The actual rank order is thus:

pair4 > pair 5 > pair 10 > pair 1 > pair 12 > pair 11 > pair 3 > pair 8 > pair2 > pair 7 > pair 6 > pair9.
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5.2 Results interpretation of the permutation model

Converged: True
Log—likelihood: -696. 4726315141663
= 0.0667
-0. 1456
-0.0110
0. 3478
0. 2907
-0. 2908
-0. 2240
-0. 1232
-0. 3803
0 =0.2017
1 = -0.0001
2 = 0.0000
0.6187

= W DN

Il = = = © 00 ~3 O Ul

0
0
0
0
0
0
0
0
0
0
0
0
¢

Ranking of 0 by skill level (from highest to lowest):

Rank 1: 0 _4 = 0.3478
Rank 2: 0 _5 = 0.2907
Rank 3: 6 _10 = 0.2017
Rank 4: 6 1 = 0.0667
Rank 5: 6 _12 = 0.0000
Rank 6: 0 _11 = -0.0001
Rank 7: 6 _3 = -0.0110
Rank 8: 6 8 = -0.1232
Rank 9: 0 2 = -0.1456
Rank 10: 6 _7 = -0.2240
Rank 11: 6 _6 = -0.2908
Rank 12: 6 _9 = -0.3803

Figure 11: Ranking of the Permutation Model with 44 boards

From figure 11, we see that the BFGS optimization has successfully converged, reaching a final
negative log-likelihood of —696.473. Each skill parameter 9; reflects a pair’s relative strength, with
01, = 0 taken as the baseline for identifiability. The estimates show that 6, is the highest (0.3478)
whereas 0y is the lowest (—0.3803), This implies a moderate skill gap across the 12 teams.
Meanwhile, the negative log-likelihood of —696.47 confirms a reasonable fit to the observed data,
and the efficient convergence under BFGS ensures that both {6;} and ¢ are reliably estimated. This
highlights once again the importance of reaching a converged solution: Without convergence, the
model might produce unstable or biased parameter estimates. In contrast, the final ¢ values and
¢ ~ 0.6187 here show a stable interpretation consistent with the observed competition levels.

The permutation model is validated by its high consistency with the actual match results. The
estimated skill parameters are in perfect agreement with the actual match point (MP) rankings,
proving the accuracy of the model in assessing the skill level of the players. This confirms the viability
of the model as a ranking method.

In addition, the dataset used in this study is more extensive than those studied in previous papers,
further proving the reliability of the findings. The high level of agreement between the calculated
rankings and the actual results highlights the usefulness of the model and its potential as an improved
alternative for ranking competitive Bridge players.
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5.3 Bootstrap analysis

Figure 12 lists the estimates of  and y obtained by fitting a permutation model (allowing for ties)
to our Bridge data, along with the 95% confidence intervals obtained by the parameter Bootstrap
(B = 1000 replicates). For identification purposes, the baseline parameter 6, is set to zero so that its
reported point estimate is always 0.0000.

=== Starting Parametric Bootstrap Analysis (B=1000) ===

Parametric Bootstrap done with B=1000.
95% confidence interval for each 0 1i:

6 _1=0.0667 95% CI = [-0.3484, 0.4855]
0_2=-0.1456 95% CI = [-0.5656, 0.2627]
6_3=-0.0110 95% CI = [-0.4301, 0.4069]
0 _4 =0.3478 95% CI = [-0.0701, 0.7855]
0 _5=0.2907 95% CI = [-0.1513, 0.7447]
0_6 =-0.2908 95% CI = [-0.7253, 0.1480]
0 _7=-0.2240 95% CI = [-0.6601, 0.2070]
0.8 =-0.1232 95% CI = [-0.5469, 0.2694]
6.9 =-0.3803 95% CI = [-0.8146, 0.0339]
6 _10 = 0.2017 95% CI = [-0.2038, 0.6442]
6 11 = -0.0001 95% CI = [-0.4117, 0.4126]
6 _12 = 0.0000 95% CI = [0.0000, 0.0000]

Figure 12: Point estimates and 95% Bootstrap confidence intervals for team parameters 9;

From figure 12, all intervals include zero, indicating that none of the teams appear statistically superior
or inferior to the reference team (6, = 0) based on these data alone. Notably, while the point
estimates for 64 and 65 are slightly above zero—suggesting a potentially better performance—and
that of 69 is around —0.3803, these intervals cross zero, so we cannot rule out random variation as
the cause of these differences.

5.4 Likelihood ratio test (LRT)

Using a likelihood ratio test, we compared the full model—in which the skill parameters 64, ...,60:,
(with one baseline fixed) are freely estimated—uwith the restricted model, wherein all skill parameters
are assumed equal. The resulting likelihood ratio statistic from our data is LR = 24.638.

Under the null hypothesis that all skill parameters are equal, the statistic LR approximately follows
a chi-squared distribution with 11 degrees of freedom (i.e. Adf = 11 if the restricted model removes
(12 = 1) = 11 skill parameters). At a significance level of a = 0.05, the critical value is Xg.os, 11 ~ 19.68.
Since LR =24.638 > 19.68, the p-value is therefore < 0.05.

Hence, we reject the null hypothesis that all skill parameters are equal. In other words, allowing
each 6; to vary independently yields a significantly better fit to the observed data, indicating genuine
differences in skill among these 12 players (or pairs).
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5.5 Tie groupings and their combinatorial enumeration for 7 = 6

In order to analyze the frequency of ties when T' = 6 tables play the same board, we enumerate all
possible partitions of the six tables into groups with identical scores. Each configuration corresponds
to a tie grouping, and for each grouping, we compute the number of tied pairs based on Lemma 3,
which states that a group of k tied tables contributes (’;) pairs to the total. The sum of all such
contributions across tie groups gives the total number of tied pairs |D,| for a particular board.

The table below summarizes all admissible tie groupings, their interpretations, the number of tied

pairs for each case, and the associated combinatorial expressions:

Table 14: Tie Groupings and Corresponding Tied Pair Counts for T = 6

Grouping Interpretation Tied Pairs |D,| | Combinatorial Expression
(6) All six tables have the same score. 15 (g) =15
(5,1) Five tables tie; one table has a 10 () =10
distinct score.
(4,2) Four tables tie; the other two form a 7 )+(3)=6+1=7
separate tie.
4,1,1) Four tables tie; the remaining two 6 (3) =6
each differ.
(3,3) Two disjoint groups of three tied 6 3)+()=3+3=6
tables.
(3,2,1) Three tables tie; two tie separately; 4 G)+()=3+1=4
one differs.
(3,1,1,1) Three tables tie; three others are 3 (g) =3
distinct.
(2,2,2) Three separate groups of two tied 3 D+G)+(@)=1+1+1=3
tables.
(2,2,1,1) | Two tie groups of size two; two 2 G)+(G) =1+1=2
distinct tables.
(2,1,1,1,1) | One tie pair; all others have unique 1 (%) =1
scores.
(1,1,1,1,1,1) | All six tables have distinct scores (no 0 -
ties).

Table 13 compares the observed frequency (Observed) of different numbers of tie pairs k in 44 deals
with the theoretical expectations (Expected). Here, k represents how many pairs of tables (out of 15
possible pairwise comparisons among 6 tables) ended in a tie within a single deal.

The model substantially overestimates the probability of having extremely few ties, such as k = 0
or k = 1. Specifically, it predicts around 13.27 deals with no ties (k = 0), but only 1 was observed,
and 20.12 deals with a single tie (k = 1), whereas 12 were actually observed. In contrast, the model
underestimates the probability of observing moderate or higher numbers of ties (e.g., k = 3, k = 4,
k = 6), where the observed frequencies exceed the model’s predictions several times. For instance,
k =3 has a predicted value of only 2.30 yet an observed count of 7; k = 4 has an expected value of
0.88 but occurred 8 times; and even for rarer events such as 6 or more ties, the model assigns nearly
zero probability, although such scenarios did happen in the actual data.
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=== Distribution of ties (Observed vs. Expected) ===

k  Observed Expected
0 1 13.271
1 12 20. 117
2 6 7.324
3 7 2.299
4 8 0. 879
6 5 0.093
7 3 0.015
10 1 0.001
15 1 0. 000

Figure 13: Comparison of Observed and Expected Frequencies of Tied Pairs

Such discrepancies could arise from several factors. Firstly, real Bridge games may be affected by
tactical adjustments, fluctuations in player performance, and other random factors that deviate from
the model’s independence assumptions (similar reasons are analysed in detail in the section 6.4).
Second, the permutation model employs a single global tie parameter, ¢, which may not capture
changes in tie trends between pairs of teams. The changes in the. Third, our data are derived from
assumptions about the scores of MPs already in the tournament. Some of the existing scoring rules
or constraints in tournaments may introduce structural biases that the model does not explain.

5.6 Conclusion

In section 5.1, we introduced the 2024 National Bridge Championships Open Pairs Final dataset,
covering its multi-stage structure (preliminary, semifinal, and final), daily scheduling, Howell
movement details, board-by-board MP scores, and the official final ranking. This material established
a robust empirical context in which each pair competed against all others, ensuring balanced
comparisons suitable for statistical modeling.

In section 5.2, we interpreted the permutation model's estimation results for this championship
dataset. The estimated skill parameters 6 and the tie probability ¢ underscored a moderate skill gap
among the 12 competing pairs, and a final negative log-likelihood around —696 indicated a reasonable
fit. Bootstrap analysis in section 5.3 revealed broad confidence intervals for most 6;, suggesting that
only a few pairs’ estimated skill levels diverged strongly from the chosen baseline.

Section 5.4 presented a likelihood ratio test (LRT) to compare the full, distinct-0 model against a
restricted common-skill model. The significant LRT statistic confirmed that different skill parameters
provide a substantially better fit, indicating genuine performance disparities across pairs. Finally, in
section 5.5, we examined tie groupings for T = 6 tables and contrasted the observed frequency of tied
pairs with those predicted by the permutation model. Despite the model’s solid overall performance,
the underestimation of higher tie frequencies pointed to complex dynamics.

Overall, the 2024 China National Bridge Championships dataset validates the permutation model’s
applicability to large-scale, elite tournaments. In the next chapter, we will introduce a new
threshold-based model armed with lessons from both smaller-scale and major tournament data. This
alternative formulation seeks to improve interpretability and tie-handling by anchoring outcomes on a
skill-difference threshold, offering a fresh perspective on how ties arise.
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6 Extended analysis of the threshold model

In earlier chapters, we examined the Davidson model as an extension of the Bradley—Terry
framework to incorporate tie outcomes, using a tie parameter ¢ to adjust win probabilities. While
effective in accounting for ties probabilistically, this approach offers limited interpretability, as ¢
indirectly affects the outcome probabilities without clearly distinguishing a tie as a third category.
In this chapter, we introduce a modified approach that replaces the ¢ parameter with an explicit
threshold y, allowing ties to emerge deterministically when the skill difference between two players
falls within a specified range. This new formulation provides clearer insight into how skill proximity
leads to draws and offers a more transparent mechanism for modelling ties in competitive settings.

At the same time, in many actual Bridge or other tournament datasets, we have observed that if two
pairs are close enough in skill, a draw is much more likely. This observation suggests an explicit
modelling of ties as an independent outcome category. Hence, we propose a threshold-based
approach in which a single parameter y defines a tie region of width y: whenever |60, - 6] < Z, those
two sides are deemed to tie, otherwise, they have a decisive outcome. It is important to note that
this tie decision is not based on directly observed draws between players i and j, but rather on
their estimated skill parameters 6, and 6;, which are inferred from results against other opponents.
Therefore, the outcome is indirectly affected by the strength and composition of each player’s
matchup history.

A significant benefit is interpretability: y directly represents the half-width of the tie interval so that
any difference in skill within +(y/2) corresponds to a tie. This approach provides a direct and
clear mechanism linking tie outcomes explicitly to the difference in players’ skills: within a certain
threshold, ties become naturally likely, while beyond this threshold, the probability of decisive
outcomes rapidly increases. Thus, the threshold model establishes an intuitive connection between
the "tie" event and skill proximity, whereas the permutation model obscures this relationship implicitly.

Threshold model's practical implementation is more straightforward than Davidson’s 4/1;4;
denominator or permutation enumeration; in Davidson-type models, the A; parameters may implicitly
include information about a player’s interaction with their opponents, such as participation rates or
comparative strength, adding complexity to estimation and interpretation. In contrast, the threshold
model relies only on the estimated skill parameters 6;, which are treated independently and do not
explicitly encode opponent-specific characteristics. In the threshold model, the log-likelihood depends
simply on whether or not |6; — 6;| is within the tie boundaries, and so can be encoded directly.
This flexible thresholding approach allows for multiple or category-specific thresholds (y;,vy,...),
making the model more adaptable. It improves the likelihood fit and provides more intuitive results,
especially when minor skill differences naturally lead to a tie. Furthermore, the threshold framework
extends naturally from the classical Bradley—Terry paradigm, thus demonstrating broader generality
and flexibility for use in other competitive domains such as sports tournaments or rating systems,
especially where tie occurrences are explicitly frequent.
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6.1 Threshold model
6.1.1 Model setup

Suppose there are B boards indexed by b € {1,...,B}. On board b, we compare NS pair i versus
EW pair j. Let 6,(5,i) be the skill parameter of the NS player i on board b, and similarly 6z, ;) for EW
pair j. We introduce a threshold parameter v > 0, which determines the “width” of the tie interval.
Define the skill difference between pairs (b,i) and (b, j):

Xp,i,j = Oa,i)y — 98mb,j) +€bi,j (20)

where ¢, ; ; ~ Logistic(0,1) is an independent random noise term. It accounts for randomness
in observed outcomes not explained by skill differences, and enables a probabilistic formulation
of match results. We adopt the logistic distribution for mathematical convenience, as it yields
closed-form expressions for all relevant probabilities.

In this threshold model:

o It Xp ;> % we say pair i is better than pair j, denoted R, ; > R; ;.
« If -2 < X, ;; < %, then pair i and pair j are tied on board b (Rp,; = Ry, ;).

o I Xy < —%, then pair i is considered worse than pair j, i.e. R, ; < Ry, ;.

6.1.2 Probability formulas

Define the logistic CDF as:
1

1+e2
Then the probabilities of losing, tying, and winning on board b, between pairs i and j, are given by:

F(z) =

(21)

P(Ryi < Rp,j) = F (<2 = [0 = 050 ]) (22)
Y Y
P(Ryi = Rop) = F (£ = 0atvi) = 0p0.0]) = F (<3 = [0 = 0500 ]) (23)
_ y
P(Rp; > Rp;)=1-F (5 = (Oatvir ~ O5(6.)) (24)

Remarks

* When 0,(,i) < 6ps,j), the difference 6,5.i) — Op(». ;) is large negative, making —% — (64(p,i) —
0s(b,j)) large and positive. Hence P(R,,; < Ry, ;) ~ 1, indicating pair i is highly likely to lose.

« Ties occur whenever (645.i) — Op(b.5)) € [—%.%], whose length is y. Thus, y > 0 ensures a
nonzero probability of ties.

* If y =0, then P(Ry; = Rp,j) = 0 for all (b,i,j), reducing the model to a no-tie Bradley—Terry
scenario.
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Proofs of Formulas (22), (23), (24)

Proof of formula (22)

From the model definition and (20), the condition R, ; < Ry, ; implies:

Y
Xb.ij = Oap,i) = Opb.) +€biyj < =5

where €, ; ; ~ Logistic(0, ). Then,
_ Y
P(Rpi < Rpj;) =P (éb,i,j <=5~ Oaw.n - 9ﬁ<b,j))) :
Using the CDF of the Logistic distribution:
_ Y
P(Rb,i < Ro.) = F (=2 = Batvi) ~ 85(6.9)) -

Derivation of z:

P(epij<z)=F(2), z= —% ~ (Oa(.i) = Opb.j)) - (25)

Proof of formula (23)

From the model definition, R, ; = R, ; implies:

Y
—— < Xp;;i < —.
2 =PI =9
Then,
Y Y Y Y
P(Rb’i = Rb,j) =P (—E < Xb,ij < E) =P (—5 < €pij < 5) .
Using the logistic CDF:
Y Y Y Y
P(Rp,i = Rp.j) = P (—5 < €.ij < 5) =F (5 = (Batoir = Op.1)) ) = F (—5 = (Batv) = 650.))
i
Proof of formula (24)
The probability is given by:
_ Y\ _ Y
P(Rb’i > Rb,j) =P Xb,ij > 5 =1-P Xb,ij < 5 .
Thus: - -
P(Xois < 2) = F (£ = 0o — 850)) -
Substituting back, we get:
B Y
P(Rp;>Rpj)=1-F (5 — P — tgﬁ(b,j))) -
Derivation of z: y
Plepij>2) =1-F@), z2=7 = (0ot = 0pw.))-
O
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6.1.3 Theorem: Sufficient statistics

Theorem 6.1: Sufficient Statistics

Consider a tournament with B boards. On each board, pairwise comparisons yield events of
Ry < Ry j (loss), Ry i > Ry, j (Win), or Ry, ; = Ry ; (tie). Let r; denote the total score for player i,
and Z,le dj represent the total number of tie comparisons across all boards.

Under the interval y-model, if the pairwise comparisons fully represent each player’s
participation, the likelihood function £({0;},y) can be factorized as:

f({gi}’ 7) o eXp (Z T[Qi) . 'y21§=1 db.

i

Thus, the sufficient statistics for {6;} and y are {r;} U {35, d»}.

Proof of theorem 6.1

The likelihood function across all B boards is:
B
{0 y) = | | P(Ry),
b=1

where from (13) and (14):
P(Rp) o l_[ P(Rp,i < Rp ;) 1—1 P(Rp,i = Ry j).
(i,j)€Lp (i,7)€Dp

Taking the logarithm:
B
In€({6:},y) = ), InP(Ry).

b=1
Substituting P(Rp):

InP(Ry) = > IP(Rp;<Rp;)+ » InP(Ry;=Rp;)).
(i,j)€Lyp (i,j)€Dy,
See Remark i. Contribution of tie events for details :
InP(Rp; = Rp ;) < dplny.
(i,j)eDyp
See Remark ii. Contribution of lose events for details.

Z lnP(Rb,i < Rb,j) o Zrigi.

(i,j)eLp i

Combining all contributions:

L

B
In€({0;},y) « Zrigi + (Z db) Iny.
b=1
Exponentiating:

4

€({6;},y) «exp (Z rigl.) . ),fo:l dp
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Remarks

i. Contribution of tie events
Assuming 6,».i) = Os(», /), the probability (23) simplifies to:

Y
1 +exp(0a(b,i) — O, /)

P(Rpi =Ry, j) =

Taking the natural logarithm:
InP(Rp,; = Rp,j) = Iny + (other constant terms).
Summing over all tie events:

In P(Rp,; = Rp,;) = dp Iny + (other constant terms).
(i,7)€Dyp

Therefore,
lnP(Rb,l- = Rb,j) o db lny.
(i,j)EDb
ii. Contribution of lose events

From (24):
Z InP(Rp; < Rpj) = Z InF (—% = (Ba.i) — Hﬁ(b,j)))’

(i,j)€Lp (i,j)€Lp

Using (21), we rewrite:
Y — 3 +(0ab.i) = 9B(b.5))
InF (—5 - (ga/(b,i) - H/S‘(b,j))) =—In (1 T @2 &) =55 0.)) ) c
By linear approximation, for small z, the logistic function can be approximated as:
F(z) ~ e*.

Thus:
InF(z) = z.

Applying this and from formula (25) :

Y Y
i (—5 = Bap.) - Gﬁ(b,j))) ~ =5 = Oaw.i) = Opb.)-

Z InP(Rp; < Rpj) ~ Z —%— Z (Oab,i) = Opb,j))-

(i,j)eLy (i,7)€Lp (i,j)€Ly

The first term is a constant: Z y
—

(i,j)€Lp
The second term is reorganized based on player contributions:
Z (Oa(b.i) — Op(b.j)) < Z rib;,
(i9j)€Lh i

where r; represents the total score for player i. O
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6.2 Validation of the threshold model through Yu-Lam data

The following sections will present the construction of the log-likelihood and gradient formulations
of the threshold model, show how the model can be solved by numerical optimisation (e.g.,
BFGS), and compare its performance with existing methods (e.g., Davidson’s method or passivation
methods). This evidence will demonstrate the feasibility and advantages of threshold-based models
for representing draws in competitive environments.

We start by validating our method against our method through code using the data from section 4.1.

6.2.1 The threshold model estimation

Converged: True

Final log-likelihood value: —144.29592643485478

Estimated gamma = 0.5557661903756365 (tie threshold width)
Theta 1 = 0.0432

Theta_2 = 0. 1951
Theta 3 = -0.5991
Theta_4 = 0.3312
Theta_5 = 0. 1669
Theta 6 = —0.8395
Theta 7 = 0.6588
Theta_8 = 0.0000

==== Ranking of player pairs from highest to lowest skill ====

Rank 1: Pair 7, 6 =0.6588
Rank 2: Pair 4, 0=0.3312
Rank 3: Pair 2, 0=0.1951
Rank 4: Pair 5, 0=0.1669
Rank 5: Pair 1, 0=0.0432
Rank 6: Pair 8, 0=0.0000
Rank 7: Pair 3, 0=-0.5991
Rank 8: Pair 6, 0=-0.8395

Figure 14: Results of the threshold model estimation on Dataset from section 4.1

Figure 14 illustrates the outcome of fitting our threshold model to the data using BFGS optimization.
The method attained successful convergence, as evidenced by the final negative log-likelihood value
of —144.29592643. An important parameter in this model is y, the half-width of the tie interval; here it is
estimated as § = 0.5558, indicating that any two players/pairs whose skill difference is within +0.2779
are predicted to tie with significant probability.

Predicted to tie

In the threshold model, y represents the "total width of the tie interval," meaning that |6; — 6;],
is less than %, they are judged to have tied. Therefore, if the estimated = 0.5558, then the
half-width of the interval is:

v 0.5558

= = ~ 0.277

> 3 0.2779

This means that if the difference between any two players does not exceed +0.2779, the model
considers them very likely to tie.

We fix 63 = 0 for identifiability, so each 6; reflects the relative advantage or disadvantage compared
to pair 8. The resulting estimates show that pair 7 achieves the highest skill (6; ~ 0.6588), while pair
6 is the lowest (¢ ~ —0.8395). The rank order is thus:

pair 7 > pair 4 > pair 2 > pair 5 > pair 1 > pair 8 > pair 3 > pair 6.
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This ordering matches intuitively with the performance patterns in the dataset and aligns well with
alternative methods reported in previous literature.

The moderate value of y around 0.556 suggests that ties are neither overly frequent nor vanishingly
rare, consistent with the moderate level of competition in this dataset. Additionally, the relatively large
spread in 4 values (07 — 05 ~ 1.4983) indicates a substantial skill gap from top to bottom. Overall, the
final log-likelihood of —144.296 highlights a good fit to the observed outcomes, and the convergence
of BFGS guarantees stable parameter inference.

6.2.2 Parametric Bootstrap analysis under the threshold model

Figure 15 lists the estimates of 8 and y obtained by fitting a threshold model (allowing for ties) to our
Bridge data, along with the 95% confidence intervals obtained by the parameter Bootstrap (B = 1000
replicates). For identification purposes, the baseline parameter 65 is set to zero, so its reported point
estimate is always 0.0000.

=== Starting Parametric Bootstrap (B=1000) ===

95% CI for each 0 1i:

0 1 =0.0432 CI= [-0.5810, 0.6731]

0 2 =0.1951 CI= [-0.4499, 0.8209]

0 3 =-0.5991 CI= [-1.2805, —0.0296]
0 4 =0.3312 CI= [-0.2446, 0.9472]

0 5=0.1669 CI= [-0.4452, 0.7905]

0 6 =-0.8395 CI= [-1.6303, —0.2679]
0 7 =0.6588 CI= [0.0630, I.3251]

6 8 =0.0000 CI= [0.0000, 0.0000]

95% CI for gamma: [0.3602, 0.8501]

Figure 15: Parametric Bootstrap estimates for the threshold mode with 8 pairs

From Figure 15, the estimate 6; ~ 0.66, with a confidence interval mainly in the positive range,
suggests that pairing 7 has a higher level of competence than pairing 8 (the baseline), which
is statistically unlikely to be judged as negative. In contrast, 93 ~ -0.60 and 6¢ ~ —0.84 lean
toward negative values, with confidence intervals covering a large proportion of the negative values,
suggesting that the probability of being evaluated as below baseline is higher under this model.
Several of the estimated 6; values have wide confidence intervals that cross zero, suggesting that our
data (which includes only 28 boards) does not provide strong statistical evidence to distinguish the
ability of these board pairs from the baseline. This is expected given the relatively small sample size
and the additional complexity associated with allowing ties.

The estimated tie breaker parameter is y ~ 0.56, with a 95% confidence interval of approximately
[0.36,0.85]. Interpreted in terms of a threshold model, this suggests that when the skill difference
|0; — 6] is within approximately 0.18 to 0.43, a tie result is relatively likely. Since the data contain a
certain number of tied pairs, an insignificant y estimate is plausible. In summary, while the model
provides a useful structure for analyzing ability when ties are possible, the wide confidence intervals
reflect limited information from several boards. More data are needed to obtain tighter confidence
intervals.
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6.2.3 Comparison of tied-pair frequencies

Observed vs. Expected frequency of Number of tied pairs

k  Observed Expected
0 14 13. 57

1 11 10. 43

2 1 3. 36

3 2 0.58

4 0 0. 06

5 0 0.00

6 0 0. 00

Figure 16: Comparison of observed vs. expected tie distributions under threshold model with 8 pairs

Table 15: Observed vs. Expected Frequency of Tied Pairs

Number of tied pairs Observed frequency Expected(Original) Expected(New)

0 14 12.83 13.57
1 11 12.61 10.43
2 1 1.40 3.36
3 2 1.13 0.58
4 0 0 0.06
5 0 0 0.00
6 0 0.03 0.00

Figure 16 compares the threshold model’s results to the original table. In both approaches,
most boards have 0—1 tied pairs (with close observed vs. expected counts), whereas k > 2 are
comparatively rare. Our method overestimates k = 2,3, just as the original model also deviates
somewhat for moderate ties. Such differences stem from the single-y plus independent-pairwise
assumption, which can under- or overpredict multi-pair ties. Further enhancements (e.g. multiple y
or random board effects) may reduce these gaps.
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6.3 Validation of the threshold model versus 2024 China Championship data

Then, we validate our method against our method through code using the data from section 5.1.4.

6.3.1 The threshold model estimation

In this threshold model figure17 , one pair (pair 12) is fixed to 6, = 0 for identifiability, and the BFGS
optimization converges at a log-likelihood of approximately —696.5473. The estimated tie-threshold is
v ~ 0.9744, meaning that if two pairs differ by no more than y/2 ~ 0.4872 in skill, the model deems
them likely to tie.

Converged: True

Final log-likelihood: —696.5472856221662
Estimated gamma = 0.9744

Theta_1 = 0. 0622

Theta_2 = 0. 1055
Theta_3 = —-0.0007
Theta 4 = 0.2977
Theta 5 = 0.2372
Theta 6 = -0. 2263
Theta 7 = —0. 1577
Theta 8 = -0.0784
Theta 9 = -0.2962
Theta 10 = 0.1750
Theta 11 = 0.0109
Theta 12 = 0. 0000

=== Ranking by skill, descending order ===
Rank 1: Pair 4, 0. 2977
Rank 2: Pair 5, 0.2372
Rank 3: Pair 10, 6 = 0.1750
Rank 4: Pair 1, 6 = 0.0622

9 =
0 =

Rank 5: Pair 11, 6 = 0.0109
Rank 6: Pair 12, 6 = 0.0000
Rank 7: Pair 3, 0 = -0.0007
Rank 8: Pair 8, 0 = -0.0784
Rank 9: Pair 2, 0 = -0.1055
Rank 10: Pair 7, © = -0.1577
Rank 11: Pair 6, 6 = -0.2263
Rank 12: Pair 9, 0 = -0.2962

Figure 17: Ranking under the threshold model with 12 pairs

Examining the final @ values reveals that pair 4 has the highest skill at 6, = 0.2977, while pair 9 is the
lowest at 69 = —0.2962. Between these extremes, the rank order (from top to bottom) is:

pair4 > pair 5 > pair 10 > pair 1 > pair 11 > pair 12 > pair 3 > pair 8 > pair2 > pair 7 > pair 6 > pair9.

Comparing this with the real ranking results 5.1.5, we find that the rankings are exactly the same,
except for 5th and 6th place. But as we mentioned before, the scores of the fifth and sixth places
are exactly the same, so their rankings can be switched. So it can be concluded that the Threshold
model performs well in ranking and achieves the same results as the real results. The negative
log-likelihood of —696.5473 further indicates a reasonable fit to observed data, and the convergence
of BFGS ensures stable parameter estimates for {6} and y.

6.3.2 Parametric Bootstrap analysis under the threshold model

Figure 18 lists the estimates of 8 and y obtained by fitting a threshold model (allowing for ties) to our
Bridge data, along with the 95% confidence intervals obtained by the parameter Bootstrap (B = 1000
replicates). For identification purposes, the baseline parameter 6, is set to zero so that its reported
point estimate is always 0.0000.
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95% CI for each 0 1i:
0.0622 CI= [-0.2879, 0.4197]
-0.1055 CI= [-0.4418, 0.2451]

ei

— = = O 00 1O U WD
|

T DD DD D DD D DD
o = O
Il

95% CI for gamma:

1

= -0.0007 CI= [-0.3373, 0.3308]
= 0.2977 CI= [-0.0444, 0.6321]

= 0.2372 CI= [-0.0836, 0.5683]

. 2263
. 1577
. 0784
. 2962
. 1750
. 0109
. 0000

CI= [-0. 5564, 0.1425]
CI= [-0.4843, 0.1717]
CT= [-0.3909, 0.2406]
CI= [-0.6331, 0.0426]
CI= [-0. 1527, 0.5135]
CT= [-0. 3528, 0.3576]
CT= [0. 0000, 0.0000]

[0. 8458, 1.1415]

Figure 18: Parametric Bootstrap estimates for the threshold mode with 8 pairs

From 18, most parameters 6; have confidence intervals that include zero. Statistically, we cannot
identify who is significantly stronger or weaker than the baseline. Possible reasons include:

+ Limited sample size or insufficient board data leads to poor discrimination between different

players;

» The true skill levels may be close, producing statistically indistinguishable results;

+ A high tie rate or scoring mechanism that reduces observed win/loss differences.

The tie threshold parameter y is estimated to be in the range [0.85, 1.14]. An approximate threshold
of 0.5 for the skill difference is thus consistent with the large proportion of ties observed.

6.3.3 Analysis of tie frequencies in the threshold model

Figure 19 compares the observed number of tied pairs k per board to the expected frequency
predicted by a single-threshold y model under a pairwise-independence assumption with 7 = 6 pairs.

=== Distribution of #ties (Observed vs. Expected) ===

k
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Figure 19: Comparison of observed vs. expected tie distributions under the threshold model.

As shown in Figure 19, the model generally aligns well with the observed data for low tie counts (k = 0
or k = 2 to 4). However, the model significantly underestimates the occurrence of single ties (k = 1),
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predicting only 3.811 occurrences compared to the observed 12. Furthermore, it struggles to capture
extreme outcomes: while the model predicts no chance of k = 15, one such instance was observed
in reality.

This discrepancy suggests that while effective in capturing moderate tie frequencies, the
single-threshold model may be too simplistic to fully describe the distribution of pairwise ties,
especially in cases where score clustering is more pronounced.

6.3.4 Comparison with the permutation model method

k | Observed | Expected (original) | Expected (New method)
0 1 13.2714 0.842
1 12 20.1172 3.811
2 6 7.3239 8.05
3 7 2.2991 10.527
4 0 0.8789 9.533
5 0 0 6.332
6 5 0.093 3.187
7 3 0.0153 1.237
8 0 0 0.374
9 0 0 0.088
10 1 0.0012 0.016
11 0 0 0.002
12 0 0 0
13 0 0 0
14 0 0 0
15 1 0 0

Table 16: Comparison of Observed and Expected Values

Table 16 contrasts the tie-count distributions predicted by our threshold-based approach (right
column) with those from the original method (left column). We note the following:

+ Our method yields closer alignment with the observed counts for most values of k, especially
k =0 and k = 1, which dominate the distribution.

» The original method exhibits larger discrepancies for moderate or higher k (e.g., k = 2,3,5),
indicating difficulty in capturing multiple-pair ties or rare tie patterns.

By examining the log-likelihood and distributional fit, our threshold model more accurately represents
how often k = 0, 1,2 ties occur per board. Its improvement is evident in smaller numerical errors at
crucial tie counts and a better match to real data. Therefore, our approach offers superior predictive
accuracy for tie frequencies under this dataset.
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6.3.5 Limitations of the threshold model assumptions

The threshold model introduced in this thesis assumes that all pairwise tie outcomes on a given board
are mutually independent. Specifically, for a board involving T = 6 players, the (g) = 15 pairwise tie
indicators are modeled as independent Bernoulli(p;;) random variables. Although this assumption
facilitates computation and enables the analytical derivation of tie count distributions, it fails to capture
structural dependencies frequently arising in practical bridge settings.

The primary issue with this independence assumption is that it neglects board-specific correlations
between tie outcomes. In practice, all players on a given board share the same deal and often reach
similar contracts due to common hand characteristics. If several players adopt analogous bidding
and play strategies, their resulting scores tend to cluster, increasing the likelihood of correlated
ties. Consequently, treating these ties as independent underestimates the probability of multiple
simultaneous ties and may correspondingly overestimate isolated tie scenarios (e.g., k =0or k = 1).

A Concrete Example

Consider a board where players Si, S, S3 adopt the same bidding and play strategies, leading
them to reach the same contract and achieve nearly identical scores. Meanwhile, other players
exhibit greater variability in their strategies, resulting in a more dispersed score distribution. In
this scenario, S1, S2, S3 form multiple ties.

Under the threshold model’s independence assumption, the probability of ties is computed
separately for S; vs. S, S» vs. S3, and S; vs. S3, assuming these events occur independently.
This implies that to obtain £ = 3 or more ties, all these independent events must simultaneously
occur. However, in practice, Si, Sz, S3 are highly correlated due to their shared strategies, making
these ties a systemic outcome rather than independent occurrences.

More specifically, bridge scores depend on individual choices, opponents’ actions, and the overall
deal context. If S1,S,,S3 all decide to play 3NT (No Trump contract), they are also likely to
make similar decisions during play, such as choosing identical opening leads or managing suits
similarly. As a result, their final scores become nearly identical—not by chance, but because
of strategic alignment. These interdependent decisions imply that the outcome of one pair
inherently influences the others, resulting in correlated tie outcomes rather than independently
generated events.

In contrast, the threshold model treats each pairwise tie event as an independent Bernoulli
variable, leading to an inherent underestimation of the likelihood of multiple simultaneous ties,
coupled with a potential overestimation of isolated tie probabilities.

The second limitation arises from the implicit assumption of opponent homogeneity. In the threshold
model, multiple North—South (NS) pairs on the same board are compared based on their scores
to infer relative skill levels. This process implicitly assumes that all NS pairs face East—-West (EW)
opponents of similar skill levels, allowing observed differences in NS scores to be attributed solely
to differences among the NS pairs themselves. However, this assumption may not always hold in
practice.

Although the standard Howell movement ensures each pair eventually plays against all others,
thereby balancing opponent distribution across the tournament, the model conducts pairwise
comparisons on a per-board basis. In doing so, it does not explicitly model individual opponent
effects, instead treating all opponents as averaged. For example, when comparing the scores
of two NS pairs on a particular board, the model ignores potential differences in the strength of
the EW pairs they faced, implicitly assuming such variations average out across the tournament.
However, substantial opponent variability on specific boards, especially involving EW pairs with
distinct strategies or skill levels, may meaningfully influence observed outcomes.

As a result, even though all pairs encounter comparable opponents across the tournament, the
model’s local treatment of individual boards may overlook significant variation in opponent structure.
This oversight can introduce bias in assessing skill differences among NS pairs and potentially
reduce the explanatory power and fairness of rankings derived from the model, particularly in cases
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demanding high precision.

In conclusion, the model faces two critical limitations:

» The independence assumption neglects strategy-induced correlations among players sharing
the same deal;

» The equal-opponent assumption ignores per-board opponent strength variations influencing
observed scores.

While the threshold model provides a coherent and computationally tractable framework for analyzing
ties and ranking players, its simplifying assumptions restrict alignment with real-world observations.
Potential extensions include incorporating board-level random effects to capture deal-specific
clustering or employing hierarchical models to explicitly account for opponent strength. Additionally,
methods that jointly model all scores on a given board, rather than decomposing them into pairwise
outcomes, may yield more realistic and robust insights into tournament dynamics. These refinements
and their implications are discussed further in the concluding section.

6.4 Conclusion

In section 6.1, we introduced the threshold-based approach to modeling ties. We defined a half-width
parameter y that creates a “tie interval” whenever two competitors’ skill parameters lie within +(y/2).
Section 6.1.1 outlined the model setup, while section 6.1.2 provided explicit probability formulas
using the logistic distribution. Section 6.1.3 established a theoretical foundation by characterizing
sufficient statistics for {6;} and y, and section A.3.3 proposed a weighted-correction selection method
to improve confidence-set construction for identifying the best player.

In section 6.2, we tested this threshold model on the smaller dataset from section 4.1. BFGS
optimization produced stable estimates of {6;} and y, while a parametric Bootstrap procedure
underscored the considerable uncertainty inherent in limited board samples. Tie-frequency
comparisons showed that a single-threshold model largely aligns with observed data for small to
moderate tie counts, although multi-tie scenarios sometimes exceed the model’s predictions.

Next, section 6.3 extended the threshold model to the larger 2024 China National Bridge
Championships dataset from section 5.1.4. Here, the final skill rankings nearly matched the
official results, demonstrating that the threshold model can handle real-world tournaments effectively.
We again noted, however, that a single y may not fully capture instances where multiple tables
simultaneously tie. In particular, subsection stressed how the pairwise-independence assumption
can overlook board-level correlations—if players adopt similar bidding and play strategies on a
particular deal, ties can cluster far more than an independent Bernoulli framework suggests.

Overall, this chapter shows that threshold-based tie modeling offers both interpretability and
competitive performance relative to earlier Davidson- or permutation-based models. By letting v
define a straightforward tie interval, we capture the notion that small skill differences often lead to
drawn outcomes. Having explored the threshold model in detail, the upcoming section will consolidate
all key findings. We will summarize each method’s performance, discuss broader implications for
Bridge tournament analytics, and highlight avenues for future research and model enhancements.
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7 Discussions and additional results

This section presents a multifaceted examination of Bridge tournament evaluations, encompassing
a fuzzy logic performance assessment method, an analysis of final rankings in the 2024 National
Bridge Championships Open Pairs event, and a critique of the World Bridge Federation’s Master
Points (MP) system. By contrasting the fuzzy logic framework with threshold-based modeling and
discussing how randomness and multi-stage structures affect rankings, we aim to highlight the
strengths and limitations of different approaches while also proposing viable alternatives to traditional
MP accumulation.

7.1 A fuzzy logic approach to Bridge performance

This section introduces and applies a fuzzy logic method [40] for evaluating Bridge pairs’
performance. Unlike the permutation or threshold-based approaches, fuzzy logic allows us to classify
and combine performance categories into a single “defuzzified” score, providing an alternative view
of each pair’s relative strength. We compare our fuzzy logic results with the threshold model
results presented earlier (Figure 17) to see how different methods can yield distinct rankings and
interpretations. This section compares these two methods regarding their principles, calculation
processes, strengths, and weaknesses.

7.1.1 Introduction to the fuzzy logic approach

Fuzzy logic provides a framework to handle uncertainty and partial truth by defining “membership”
in linguistic categories. Here, we assign each pair’s score percentage (or average Match Point, MP)
to a performance category, such as Excellent, Very Good, Good, Mediocre, and Unsatisfactory,
denoted by {A,B,C,D,F}. Unlike crisp classification—where a pair's score is either in or out
of a category—fuzzy membership can capture gradations in performance. We then aggregate
membership degrees across all pairs to understand how the field is distributed among these
categories.

Definition 8: Membership Function

Suppose there are n pairs, and let nx be the number of pairs whose performance (in percentage)
falls into category X € {A, B, C, D, F}. We define the membership function as:
nx
X) = — X) = 1.
m(X) = =, >, mX)

Xe{A,B,C,D,F}

This function represents the relative frequency of each performance category in the total
population. It allows us to evaluate how the entire group of players is distributed among
categories and serves as the foundation for computing a single “defuzzified” score.

The centroid method is then used to convert these fuzzy categories into a single numerical evaluation
so that more substantial categories have a more significant influence on the final score.

Instead of providing a detailed proof, we note that the resulting centroid coordinates follow directly
from [40], where each category is mapped to a specific numeric center. We assign F — 1, D —
3, C+ 5, B 7, A 9., and we place each membership rectangle over width 2 with height 2%,
ensuring the total area is 1.
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Corollary 1: Centroid Coordinates

Hence, from [40], the final (defuzzified) score is given by:

ve = M) + 3m(D) + 5m(©) + TB) + 9m(a)],

Yo = %[m(F)z + m(D)* + m(C)* + m(B)* + m(A)Z]-

Remark:

» Consistency of area: With each category assigned width 2 and height @ the total area
[J}- dx dy becomes S 2% @ = ¥2_, m(X;) = 1. Hence, dividing the first moment integrals by
1 yields the stated centroid.

* Interpretation of x.: A higher x. value means the membership mass is shifted toward stronger
categories (A or B). Thus, x. is a weighted overall performance indicator.

* Interpretation of y.: The coordinate y. gauges how spread out or concentrated the
memberships are. If one category dominates, Y m(X;)? is larger, which can raise or lower
y. depending on sign conventions. In effect, a higher y. can indicate more disparity (if many
players are in the same category or extremes), whereas a lower y. may indicate a smoother
distribution across categories.

7.1.2 Applying the fuzzy logic approach to 2024 China Championship data

In Bridge tournaments, a simple overall average of Match-Point (MP) scores can hide the fact that
a pair may perform exceptionally well on specific boards but poorly on others. By dividing the
percentage scores for each board into five categories (A/B/C/D/F), we preserved the distribution of
high and low results. The final fuzzy membership of each pair in these categories then reflects the
frequency with which they achieved the highest and lowest results.

Let MP; ; be the MP score of pair j on board i, with maximum 10. We define the percentage:

MP; ;
Pi,j = 10 X 100%.

From [40], we classify p; ; as
Aif p > 65%, Bif55% <p <65%, Cifd48% < p <55%, Dif40% < p <48%, Fif p <40%.

We grouped the percentage scores of the 12 pairs of players on each board into categories
(A/B/C/D/F) and calculated the fuzzy centroid coordinates (x.,y.) by calculating the frequency of
each pair’s entry into these categories on the 44 boards. For pair j, let countAj, ..., countF; be the
number of boards on which pair j is assigned to A/B/C/D/F, respectively. Dividing by the total number

of boards (44) yields
countA ;

m(A)jz 44 s ey m(F)J-=

so that m(A) + m(B) + m(C) + m(D) + m(F) = 1.

countF;
44

To find Fuzzy centroid (x., y.), we assign numeric centers
A—9 BH—7, CrH—5 D—3 Fm1,

and define
Xe = %[1 m(F)+3m(D)+5m(C)+7m(B) +9m(A)],
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Ye = 3[m(F)*+m(D)*+m(C)* +m(B)* + m(A)*].

A larger x. indicates more frequent higher-category (A/B) boards, while y. shows how concentrated
or spread out these categories are.

7.1.3 Detailed analysis of fuzzy results

We extend the fuzzy classification analysis by examining each pair’s fuzzy centroid (x., y.), ranking
based on x., and also interpreting y. as a measure of performance stability. Figure 20 displays each
pair's membership distribution m(A), m(B), m(C), m(D), m(F) and the resulting centroid.

=== Fuzzy Classification Results Per Board ===
Pair 1: m(A)=0.455, m(B)=0.045, m(C)=0.045, m(D) =0. 091, m(F)=0.364 => x c=2.636, y c=0.176

Pair 2: m(A)=0.364, m(B)=0.045, m(C)=0.091, m(D)=0.136, m(F)=0.364 => x_c=2.409, y_c=0. 147
Pair 3: m(A)=0.432, m(B)=0.045, m(C)=0.068, m(D)=0.068, m(F)=0.386 => x_c=2.568, y_c=0.174
Pair 4: m(A)=0.432, m(B)=0.159, m(C)=0.023, m(D)=0.114, m(F)=0.273 => x_c=2.864, y_c=0.150
Pair 5: m(A)=0.455, m(B)=0.114, m(C)=0.045, m(D)=0.091, m(F)=0.295 => x_c=2.841, y_c=0.159
Pair 6: m(A)=0.273, m(B)=0.114, m(C)=0.045, m(D)=0.136, m(F)=0.432 => x_c=2.159, y_c=0. 147
Pair 7: m(A)=0.341, m(B)=0.091, m(C)=0.045, m(D)=0.068, m(F)=0.455 => x_c=2.295, y_c=0.169
Pair 8: m(A)=0.318, m(B)=0.091, m(C)=0.068, m(D)=0.091, m(F)=0.432 => x c=2.273, y c=0. 154

Pair 9: m(A)=0.295, m(B)=0.068, m(C)=0.068, m(D)=0.114, m(F)=0.455 => x_c=2.136, y_c=0. 158
Pair 10: m(A)=0.432, m(B)=0.068, m(C)=0.045, m(D)=0.159, m(F)=0.295 => x_c=2.682, y_c=0.153
Pair 11: m(A)=0.318, m(B)=0.182, m(C)=0.045, m(D)=0.091, m(F)=0.364 => x_c=2.500, y_c=0.138
Pair 12: m(A)=0.341, m(B)=0.205, m(C)=0.045, m(D)=0.068, m(F)=0.341 => x_c=2.636, y_c=0.140

=== Ranking Based on x ¢ (Descending Order) ===
Rank 1: Pair 4, x_c=2.864, y_c=0.150

Rank 2: Pair 5, x ¢=2.841, y c¢=0.159
Rank 3: Pair 10, x ¢=2.682, y c¢=0.153
Rank 4: Pair 1, x ¢=2.636, y ¢=0.176
Rank 5: Pair 12, x ¢=2.636, y c=0.140
Rank 6: Pair 3, x ¢=2.568, y c¢=0.174
Rank 7: Pair 11, x ¢=2.500, y ¢=0.138
Rank 8: Pair 2, x ¢=2.409, y c=0. 147

Rank 9: Pair 7, x_c¢=2.295, y ¢=0.169
Rank 10: Pair 8, x c¢=2.273, y ¢=0.154
Rank 11: Pair 6, x c¢=2.159, y c¢=0.147
Rank 12: Pair 9, x c¢=2.136, y_c=0.158

Figure 20: Fuzzy classification outcomes and x. ranking for each pair.

We further examine x. to highlight the overall ranking. From Figure 20, Pair 4 and Pair 5 have
~ 2.864 and 2.841, placing them in the top two spots. This indicates they have significantly more
boards in A or B, whereas pairs like Pair 9 or Pair 6 end up around x. < 2.2, reflecting more F or
D boards. For instance, Pair 4 has (m(A), m(B)) = (0.432,0.159), while Pair 9 has m(F) = 0.455,
lowering its x..
Meanwhile, we interpret y. as an indicator of how concentrated or spread out each pair’s distribution
is. If a pair is heavily concentrated in a small subset of categories, one or two membership values
will be large, raising Y, m(X)? and hence y.. If the pair is more evenly distributed across multiple
categories, y. remains moderate or smaller. For instance, Pair 1 has (m(A), m(F)) = (0.455, 0.364),
showing a high proportion of extremes (A and F), thus y. ~ 0.176, suggesting notable variability.
Notably, Pair 12 and Pair 1 share the same x. = 2.636, but Pair 12's y. = 0.140 whereas Pair 1’s
ye = 0.176. This implies Pair 1 experiences more drastic swings between top and bottom boards,
while Pair 12 avoids such extremes. The difference in y. reflects their stability discrepancies and
can also serve as an additional reference for coaches or competitors when evaluating overall match
performance.
Moreover, with 44 boards in this event, luck and variability still have some impact. If the tournament
expanded to, say, 60 or 80 boards, we would expect slight fluctuations in x. and y. to average out
more strongly, reducing random effects and making the final rankings more robust.

7.1.4 A consolidated analysis: threshold vs. fuzzy logic Methods

In this section, we compare the findings from both the Threshold Model (Section 6.3) and the fuzzy
logic Model (Section 7.1) on the 2024 Bridge tournament data. The Threshold Model emphasizes
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pairwise skill gaps via parameters 6; and a tie threshold . It sorts pairs based on their estimated
latent skill level, focusing on how likely one pair is to outscore another in head-to-head scenarios.
Fuzzy Logic Model classifies each board outcome into categories (A, B,C, D, F) depending on
the MP percentage, then computes a “defuzzified” centroid (x., y.) per pair. Here, x. is larger for
pairs that accumulate more high-category boards (A or B), whereas y. provides a sense of how
concentrated or volatile those board-level results are.

(a) Threshold Model Ranking:

Pair4 > Pair5 > Pair10 > Pair1 > Pair11 > Pair12 > Pair3 > Pair8 > Pair2 > Pair7 > Pair6 > Pair9.
(b) Fuzzy Logic Ranking:

Pair4 > Pair5 > Pair10 > Pair1 > Pair12 > Pair3 > Pair11 > Pair2 > Pair7 > Pair8 > Pair6 > Pair9.

Both models strongly agree that Top pairs (e.g., Pairs 4, 5, 10) dominate in winning or
high-percentage boards, leading to consistently higher 6 estimates or more frequent A/B categories.
Bottom pairs (e.g., Pairs 9, 6) struggle both in direct comparisons and in generating top-board
outcomes, thus staying near the lower end. This alignment suggests that either method is robust
enough to identify strong enough or weak enough performances.

The middle rankings, such as Pairs 1, 11, 12, 3, 2, and 8, exhibit slight variations across different
evaluation models. In the threshold model, the ranking follows a structured order: Pair1 > Pair11 >
Pairi2 > Pair3 > --.. However, the fuzzy logic approach results in a slight reordering:Pair1 >
Pair12 > Pair3 > Pair11 > --- . These discrepancies stem from fundamental differences in how each
method processes board-level data. The threshold model aggregates incremental gains and losses
into a single skill metric, 6;, giving more weight to consistently medium-to-high finishes. Conversely,
the fuzzy logic model categorizes board scores into discrete performance levels. For example, a
board result in the 55-65% range is classified as category B, meaning that repeated moderate results
contribute less to x. than a few exceptionally high (A) performances.

Each ranking model provides distinct insights into performance evaluation. The threshold model is
particularly useful for pairwise comparisons, answering questions like "If Pair i meets Pair j, who
is favored?" It infers a stable underlying skill difference and incorporates a tie threshold y to refine
comparisons. On the other hand, fuzzy logic highlights performance variability, emphasizing the
frequency of extreme outcomes. The secondary metric y. allows analysts to determine whether a pair
exhibits steady (mostly B/C) or volatile (frequent A/F) performance patterns, offering an alternative
perspective for coaching decisions.

7.1.5 Refinements to the ranking system

To enhance the robustness and fairness of the ranking system, two key refinements can be
considered: adjusting category boundaries and refining the weighting system.

Adjusting Category Boundaries The current classification model assigns performance into fixed
categories based on predefined thresholds (e.g., A: 65%+, B: 55-65%). However, these thresholds
may introduce ranking biases, as small fluctuations in scores near a boundary can shift a board’s
classification.

A simple illustration: if we raise the A-boundary from 65% to 70%, a pair that barely crossed the old
threshold on 4 boards may now only count 2 of those as A. Then m(A) drops from 4/44 ~ 0.091 to
2/44 ~ 0.045, reducing the pair’s x. and potentially altering its rank.

A sensitivity analysis can be conducted by slightly adjusting these thresholds (e.g., raising A from
65% to 70%, or lowering B from 55% to 50%) to observe how rankings respond to such changes.
If rankings remain largely stable, the classification system is robust. However, if minor adjustments
lead to significant ranking shifts, recalibrating the boundaries could improve fairness and ensure
consistent rankings.
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Refining the Weighting System The current weighting approach assigns fixed values (1, 3, 5, 7, 9)
to performance categories, assuming equal spacing between them. However, in competitive settings,
the difference between a top-tier and mid-tier performance is often greater than the difference
between two adjacent mid-tier performances.

A nonlinear weighting scheme can be introduced to amplify the influence of top-tier results, ensuring
that exceptional performances contribute more significantly to rankings. For instance, assigning
weights like {1, 3, 6, 10, 15} would increase the gap between higher tiers and mid-tiers, so a few
A-level boards have more pronounced impact on x..Additionally, not all boards in a tournament are of
equal importance—some may be more difficult or strategically decisive. Board-specific weighting can
be applied to give higher importance to such boards, ensuring that rankings reflect not just overall
consistency but also performance in critical situations.

7.1.6 Effects on fairness, variability, and ranking consistency

Many people believe that contract Bridge is a fair game, but there is still an element of luck because
the hands players receive and how the boards play out can vary. Two ranking models, one based
on performance thresholds and another using fuzzy logic help analyze player performance, but they
treat mid-level players differently, affecting fairness and ranking stability.

One key finding is that both models consistently agree on the strongest and weakest players,
confirming that skill is the biggest factor in large tournaments. No matter which model is used,
the best and worst pairs tend to stay in similar positions. This suggests that in long tournaments, the
impact of luck decreases, and true skill becomes more evident in the rankings.

However, the differences become more noticeable for mid-tier players. Small variations in board
results or how the models classify performance can lead to significant ranking shifts. The threshold
model smooths out minor wins and losses, focusing on overall consistency, while the fuzzy logic
model groups results in a way that may overlook steady, small improvements. This means that factors
like lucky card distributions or slight differences in how the models work can influence mid-range
rankings more than those at the top or bottom.

To make rankings as fair as possible, a combination of both models could be useful. The threshold
model is great for identifying consistent players and making fair head-to-head comparisons, while the
fuzzy logic model helps detect variability and highlight players who perform inconsistently. By using
both approaches together, tournament organizers can create a more balanced ranking system that
accounts for both stability and performance fluctuations.

7.2 Analysis of final rankings in the Open Pairs event

This section provides a comprehensive examination of the final standings in the 2024 National Bridge
Championships Open Pairs event. We begin with an overview of the final ranking table and notable
observations regarding each pair’s progression from the preliminary and semifinal stages. We also
highlight how these results align with statistical findings from other parts of our study, including the
parametric bootstrap approach, thus reinforcing the robustness of the final standings reported.

7.2.1 Observations and trends in final rankings

The final rankings for the 2024 National Bridge Championships Open Pairs show the dynamic
nature of competitive performance at different stages of the tournament. Some pairs maintained
a stable ranking throughout the tournament, while others showed significant fluctuations between the
preliminary round [15], semifinal [20], and final [17].
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Final Stages Names Pinyin Previous Stages
Final Rank Pair Number Semifinal Rank Preliminary Rank
1 4# Wang Guogiang - Zhang Lixiong 10 24
2 5# Jia Xinchun - Ning Jun 9 29
3 10# Sun Minghao - Liang Yuhe 3 17
4 1# Liu Shuping - Shen Qingfeng 7 14
5 12# Zhang Kuo - Wu Xuenan 1 20
6 11# Cao Danan - Pan Liping 2 9
7 3# Zou Chongsong - Ma Guowei 11 6
8 8# He Yong - Yang Tiankui 5 10
9 2# Liu Jun - Shi Feng 12 5
10 T# Zhang Chongbin - Zhou Qinghua 6 19
11 6# Zheng Wei - Li Aimin 8 30
12 o# Zeng Xiang - Yao Tao 4 36

Table 17: Final Rank Comparison with Pinyin and Preliminary Rank

Notably, the championship-winning pair, Wang Guogiang - Zhang Lixiong (#4), ranked 24th in the
preliminaries stage but steadily rose to 10th place in the semi-finals before eventually taking first
place. A similar upward trajectory can be observed for the second-place pair, Jia Xinchun - Ning Jun
(#5), who advanced from 29th in the preliminary to 9th in the semifinals, highlighting the importance
of performance adaptability in the later stages.

Conversely, some pairs that had performed well in the previous rounds slipped in the final stage.
Zhang Kuo - Wu Xuenan (#12), who led the semifinals, ended up in 5th place, illustrating
the increased intensity of the competition and potential changes in results when direct pairwise
comparisons are made. Similarly, Zeng Xiang - Yao Tao (#9) achieved an impressive comeback
from 36th in the preliminary round to 4th in the semifinals but ended up 12th in the final, suggesting
that peaks in performance may not always be sustained at all stages of the competition.

7.2.2 Statistical uncertainty in final rankings

While the final rankings provide a clear order, statistical analysis reveals considerable uncertainty,
particularly for mid-tier players whose placements are susceptible to short-term fluctuations in luck
and performance.

Parametric bootstrap analysis confirms this variability. From figure 18, many estimated skill
parameters have 95% confidence intervals overlapping zero, meaning there is no statistically
significant distinction between these players and the baseline level. Additionally, the estimated tie
threshold (y) falls within [0.85, 1.14], indicating that minor skill differences often result in near-equal
outcomes, making it difficult to distinguish actual performance gaps from random variation.

Mid-tier rankings are especially volatile. The wide confidence intervals suggest that these players’
rankings are unstable, likely influenced by short-term factors such as favorable card distributions or
temporary shifts in form rather than consistent skill superiority.

Moreover, the three-stage competition structure further amplifies this effect. Since rankings are
determined across preliminary, semifinal, and final rounds, even brief streaks of good luck (e.g.,
several advantageous hands) or momentary surges in performance can lead to substantial shifts in
placement.

Ultimately, while the final standings decide the winners, they may not fully reflect actual skill levels.
The statistical uncertainty, particularly for mid-tier players, suggests that some rankings are shaped
more by short-term variability than by long-term ability. The multi-stage format intensifies these
fluctuations, emphasizing the role of randomness in tournament outcomes. Therefore, while the
final results determine the champions, they may not precisely capture each player’s true strength.
This leads us to further examine the sources of randomness in the competition structure and the
strategic considerations behind it, as discussed in the following subsections.
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7.2.3 Scoring method and randomness in Bridge competitions

From the results, it is evident that the ranking of the same team can fluctuate significantly across the
three stages, indicating a strong element of randomness in Bridge competitions. This randomness
mainly arises from the following factors.

The scoring method in Bridge introduces an element of luck. Although the competition rules strive
to be fair—such as having the same board played by different NS/EW pairs and comparing scores
under the same conditions—the varying opponents each pair faces at different stages still introduce
considerable variability in results.

Bridge employs a relative scoring system rather than an absolute one. For example, in the IMP
(International Match Point) scoring system, a pair’s score depends on their performance relative to
other pairs rather than their individual score. This means that even if a pair performs well in a given
match, if other pairs perform even better, their score might still be low. This relative scoring system
amplifies the randomness of the competition, leading to greater ranking fluctuations.

7.2.4 Comparison of Bridge with other competitive games

From a game theory perspective, contract Bridge is an incomplete information game because players
do not have full knowledge of their opponents’ hands and must make decisions under uncertainty.
This is in contrast to complete information games such as chess or Go. In the bidding phase, each
pair of players must not only convey information to their peers, but also control the risk of revealing
too much information to their opponents. Defensive strategy is affected by the opponent’s bidding;
deceptive or aggressive preemptive bidding can force the opponent into a sub-optimal position.
Contract Bridge also exemplifies the dynamics of Bayesian games, in which pairs update and refine
their strategies based on bidding and partial information gained during the game. In addition, Bridge
is a dynamic game: as more is known about the opponent’s style (aggressive or conservative), the
strategy changes as the board changes.

Bridge is very different from complete information games such as Chess or Go. In chess and Go,
all players know the state of the game perfectly well, and strategy is based primarily on calculating
optimal paths. In contrast, Bridge involves hidden information and is a non-zero-sum incomplete
information game, which means that in addition to calculating the optimal moves, both players must
also evaluate risks, predict their opponents’ actions, and dynamically adjust their strategies.

There are also similarities between Bridge and card games such as poker. For example, Texas
Hold’em also involves hidden messages and signalling. In poker, players send mixed signals through
bets, folds, and other actions in an attempt to influence their opponents’ decisions. Similarly, the
bidding and defence strategies of Bridge involve the strategic handling of incomplete information in
order to outwit opponents.

In summary, while the final rankings reflect the ultimate outcomes of the 2024 Open Pairs event,
the relatively large bootstrap confidence intervals demonstrate that these results can hinge heavily
on stochastic swings and short-term performance factors. The pronounced shifts in pair rankings
between stages further underscore how skill, randomness, and adaptive strategy collectively shape
Bridge competitions. Consequently, Bridge stands apart from perfect information games like chess
and Go, presenting a complex environment where partial information, psychological insight, and
probability all intersect in determining winners and losers.

7.3 Limitations of the MP system and an alternative approach

The World Bridge Federation (WBF) ranks players using the Master Points (MP) system, which
accumulates points based on tournament performance, with higher values assigned to prestigious
events. While straightforward, this approach inherently favors experienced players with extensive
participation, often failing to reflect true skill.
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This site shows WBF Masterpoints up to November 2023 please see the main WBF
website for later points

Rank Code Name NBO MPs PPs Title
7074 Pierre Zimmermann Switzerland 3908 44 WGM
10338 Michal Klukowski Switzerland 3344 33 WGM
6965 Sjoert Brink Switzerland 3023 33 WGM
6966 Bas Drijver Switzerland 3017 83 WGM
7727 Jacek Kalita Switzerland 2949 245 WGM
8834 Michal Nowosadzki Switzerland 2916 23 WGM
5473 Geir Helgemo Norway 2890 56 WGM
3879 Bauke Muller Netherlands 2608 31 WGM

W B N AW N =

7314 Simon De Wijs Netherlands 2593 23 WGM

S}

1544 Piotr Gawrys Switzerland 2446 43.5 WGM

Figure 21: WBF Open Ranking by MPs, as of November 2023 [46].

For example, Pierre Zimmermann, the current top-ranked WBF Open player with 3,908 MPs, has a
long history of high-level finishes in global championships. Since 2021, he has also captained the
Swiss national team and organized major tournaments, further cementing his influence in the Bridge
community [44]. Similarly, Bauke Muller, the Netherlands’ leading player since 1962, has competed
internationally for over four decades and played a key role in Dutch victories in the Bermuda Bowl
and European Open Teams Championship. Known as “the professor” for his analytical skills, Muller
exemplifies how longevity and frequent participation shape rankings under the MP system [42].
However, this method of accumulation puts novice players at a distinct disadvantage, especially those
who entered the competitive scene late or have limited opportunities to participate in tournaments.
Even if they show exceptional skill and consistently score well, their low MP totals make it difficult for
them to compete with veteran players who have accumulated points over the years. As a result, these
talented newcomers face an uphill battle as they climb the rankings, which can lead to frustration and
a loss of motivation. Not only does this system limit their recognition, it also prevents newcomers
from fully participating in high-level competition, ultimately slowing the infusion of new competitive
energy into the Bridge community.

In practice, high-prestige events such as the Bermuda Bowl or European Open Teams often award
large MP bonuses, so those with frequent appearances and long careers in such events tend to hold
top positions for extended periods. This skew can mask recent outstanding performances by new or
less frequent participants.

To address these limitations, rankings should emphasize relative skill and recent performance rather
than total points. Our threshold model refines this approach by focusing on board-level match results
rather than long-term point accumulation. Unlike the MP system, which may mask rapid progress or
undervalue new competitors, our approach takes into account both the total match point results and
the probability of a draw estimated through the maximum likelihood method.

There are two major benefits to this model. One is that it reduces the bias against newer or
lesser-played players, as head-to-head performances are assessed equally on each board. The
other benefit is that it captures consistency more accurately, ensuring that players who regularly
outplay their opponents are ranked highly, and that isolated strong performances do not artificially
inflate scores.

Furthermore, one might implement such a system in real tournaments as either a parallel ranking
metric or as a staged replacement for the MP standings. This would help Bridge the gap between
veterans with high accumulated totals and newer but strong-performing players, giving both cohorts
a fair path to recognition.
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7.4 Conclusion

In this discussion, we introduced a fuzzy logic approach to evaluate Bridge pair performance,
offering a fresh viewpoint alongside the threshold-based method. While both methods consistently
identified top and bottom pairs, their mid-tier rankings occasionally diverged, reflecting distinct ways
of quantifying board-level outcomes. Such differences underscore the influence of random factors,
multi-stage formats, and categorization choices on competition results.

Analysis of the 2024 National Bridge Championships Open Pairs event further demonstrated how
randomness can amplify ranking fluctuations, especially for middle-ranked pairs. Yet, consistent
strong performance across multiple boards remains a reliable indicator of high skill, as shown by final
placements and bootstrap confidence intervals. These observations lend support to adopting flexible
models—Ilike the fuzzy logic or threshold-based approaches—that better accommodate short-term
variability.

At the same time, we highlighted the limitations of the World Bridge Federation’s traditional Master
Points system, which tends to favor long-standing competitors. By prioritizing recent performance,
head-to-head outcomes, and variable board weighting, alternative ranking schemes can offer a more
equitable route for emerging talents to gain recognition. In future tournaments, implementing such
combined methods may offer a more dynamic ranking approach, thereby creating a fairer and more
accurate reflection of player skill. Overall, the interplay of fuzzy logic, threshold estimation, and
parametric analysis provides a richer, more nuanced perspective on Bridge tournaments. Future
work might involve combining these methodologies, or refining them further, to deliver fairer, more
accurate rankings for all participants.
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8 Conclusion

In this thesis, we have developed and applied a comprehensive framework for analyzing duplicate
contract Bridge tournaments, combining new statistical modelling techniques with novel performance
evaluation methods. We also study the strength of Bridge players, building on the work of Yu and
Lam [34]. We have reproduced their results and extended that approach by introducing a new
statistical analysis, thereby enriching the existing methodology for pairwise skill assessment. Our
research resulted in several key findings and contributions, both theoretical and practical.

8.1 Key findings and contributions

We introduced a threshold-based extension of the Bradley-Terry model [4] for ranking players (pairs)
in duplicate Bridge, a context in which tied results present a statistical difficulty. In this ranking
framework, bias can arise if ties are disregarded or treated as negligible. Therefore, we address this
bias by incorporating a dedicated tie parameter, enabling us to capture the nontrivial likelihood of
equally matched outcomes. This new model addresses a limitation of classical paired-comparison
approaches, which assume every comparison produces a winner. We derived the model’s likelihood
function and showed analytically that the total match points and number of ties are sufficient
statistics for estimating the skill parameters {6;} and the tie parameter. Furthermore, we proposed a
statistically rigorous selection procedure that identifies the top-performing pair with a pre-specified
confidence level, backed by theoretical guarantees (as presented in theorem A.1 and theorem A.2).
These mathematical contributions provide a strong foundation for the model’s validity and utility.

We validated our model, which extends Yu and Lam’s permutation model by incorporating a tie
parameter, on both a published dataset and a new championship dataset. Using data from a
four-table Howell movement [34], we demonstrated that our threshold model replicates and confirms
previous results, successfully ranking the pairs in line with the original analysis and detecting
significant skill differences via likelihood ratio tests. We then applied the model to the 2024 China
National Bridge Championship (Open Pairs) data, which included 12 finalist pairs and 44 boards in
the final round. The model provided a clear ranking of the pairs, identifying the eventual champions
and top finishers as those with the highest 6 estimates. We also quantified the uncertainty in
the rankings by constructing confidence intervals for each 6; and found that the top and bottom
ranks were separated by statistically significant margins. The tie parameter ¢ estimated from this
data indicated a meaningful probability of ties, validating the need for its inclusion. Compared
to permutation-based methods that treat ties as statistical artifacts, the threshold model offers
an explicit and interpretable structure: when the skill gap is below a certain threshold y, a tie is
the expected outcome. This not only improves model fit but also aligns better with the empirical
behavior of close matches. As a result, our method is both theoretically sound and practically more
transparent. Overall, the model’s performance on real-world data confirms its effectiveness and
practical relevance for tournament analysis.

To complement our ranking model, we applied a fuzzy logic approach from Voskoglou(2014) [40]
to evaluate players’ performance from a different perspective. Each pair's board results were
mapped into qualitative categories (Excellent, Very Good, Good, Mediocre, Unsatisfactory), and
we computed fuzzy centroid coordinates (x.,y.) that summarize their performance level and
consistency. This analysis yielded additional insights, such as identifying which pairs had very
stable performances and which were prone to high variability. When comparing the fuzzy logic
outcomes with the threshold model rankings, we found them largely consistent on the extremes (the
best and worst pairs), while providing nuanced contrasts for mid-ranked pairs. This dual analysis
demonstrated that our fuzzy metric x. can serve as an alternative performance score, and y. as
an indicator of consistency or volatility, thereby offering valuable information that a single-number
ranking cannot capture.

Our results shed light on the dynamics of high-level Bridge competitions. We observed that, over
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the course of a full tournament, skill is the predominant factor in final rankings. An expectation
of the duplicate format that our analysis confirmed with empirical evidence. At the same time, we
documented significant ranking shifts between the preliminary, semifinal, and final stages of the
championship, attributing these to the inherent randomness in short-term match-point results and
the varying field of opponents. We discussed how the relative scoring system and the need for
strategic adjustments introduce variance that can benefit or penalize pairs in shorter spans. These
findings highlight the importance of having multiple boards and stages to achieve fair outcomes. They
also suggest that our methods (particularly the fuzzy y. metric and the statistical confidence intervals
for #) can help discern whether a given ranking difference was likely due to skill or merely due to
chance. Such understanding is important for players and organizers alike. For instance, it can inform
decisions on tournament format or the interpretation of results from any single event.

8.2 Practical significance

The outcomes of this research have practical implications for Bridge analytics and tournament
organization. The threshold model we developed can be used as a tool for improving ranking
fairness and accuracy. For example, tournament directors could use our model alongside traditional
scoring to identify discrepancies or to provide players with an objective skill rating over a series
of events. Coaches and players, on the other hand, can benefit from the fuzzy logic analysis: by
understanding whether a pair's performance was consistently above average or a mix of brilliant
successes and costly errors, training can be tailored accordingly. More broadly, our approach
illustrates how combining rigorous statistical models with interpretable fuzzy assessments can yield
a comprehensive evaluation system, a concept that could be applied not only in Bridge but in
other competitive domains (such as other mind sports or team competitions). Ultimately, our work
contributes to the goal of making competitive Bridge results more analyzable, explainable, and
justifiable, thereby enhancing the transparency and educational value of the game’s outcomes.

8.3 Future research directions

Building on this work, we identify several avenues for future research and improvement. One direction
is to extend the threshold model to account for potential variability in player performance. For
instance, a hierarchical or dynamic model could allow each pair’s skill to evolve across the phases
of a tournament, capturing momentum or fatigue. Additionally, incorporating covariates (like players’
experience levels or system complexity) might explain some of the performance variance and could
be included in an extended model.

Further testing of our methods on different tournament formats and scoring systems is important.
Applying the model to IMP scoring games or team-of-four events would examine its generality. We
also suggest conducting simulation studies to see how the model performs under various known skill
distributions and tie probabilities — this would help quantify the conditions under which the model is
most reliable.

The fuzzy logic approach could be refined by exploring alternative definitions of performance
categories or using a larger set of linguistic terms to capture gradations of performance. One could
also investigate a continuous fuzzy scoring system that avoids hard cut-offs (for example, using
membership functions that assign degrees to all categories for a given board result). This might
smooth out some of the sensitivity we identified regarding category thresholds.

Finally, an intriguing direction would be to integrate the statistical and fuzzy approaches into a unified
framework. This could involve using the fuzzy scores as features in a predictive model of match
outcomes or conversely, using statistical model outputs to inform adaptive fuzzy sets. With the
growing availability of detailed Bridge data (including bidding and play records), machine learning
techniques, possibly combining our ranking insights with features extracted from play-by-play data,
could further enhance performance assessment. Such interdisciplinary efforts at the interface of
statistics, artificial intelligence, and game theory would continue to advance the analytical depth in
understanding games like Bridge.

89



8 CONCLUSION

In closing, this thesis has advanced the quantitative analysis of Bridge by providing a new modeling
approach for rankings and by demonstrating the benefits of blending statistical and fuzzy logic
methods. We have shown that by carefully modeling the structure of duplicate competitions and
by examining performance from multiple viewpoints, one can extract meaningful conclusions about
player skill and the nature of competition even in a game as complex as Bridge. The mathematical
contributions, including the extension of the Bradley—Terry model to incorporate ties with proven
sufficiency and selection results form a foundation for future analytical studies of competitive rankings.
The practical insights, such as distinguishing consistent excellence from volatile performance, offer
valuable guidance for players and organizers aiming to foster fairness and excellence in tournament
play. We hope that our work spurs further research at the intersection of statistics, data science,
and competitive game analysis, and that it ultimately contributes to more informed and equitable
competition in the timeless game of Bridge.
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A SUPPLEMENTARY ANALYSES BY YU AND LAM

A Supplementary analyses by Yu and Lam

A1
A1

The MP score for pair 2 in the original dataset figure 5 board 14 was incorrectly recorded as 0.5. The

Additional modifications of match point scoring by Yu and Lam

Board 14

Table 18: Table Assignments for Board 14

Table | N/S Pair | E/W Pair
1 5 7
2 6 3
3 1 2
4 8 4

Table 19: Raw Scores and MP Scores for N/S Pairs on Board 14

N/S Pair | Raw Score | MP Score
5 250 0
6 420 2.5
1 400 1
8 420 2.5

Table 20: Raw Scores and MP Scores for E/W Pairs on Board 14

E/W Pair | MP Score | Raw Score
7 3 -250
3 0.5 —420
2 2 —-400
4 0.5 -420

correct MP score should be 2.

A1.2

Board 15

Table 22: Raw Scores and MP Scores for N/S Pairs on Board 15

Table 21: Table Assignments for Board 15

Table | N/S Pair | E/W Pair
1 5 7
2 6 3
3 1 2
4 8 4

N/S Pair | Raw Score | MP Score
5 -500 0
6 +50 2.5
1 —-130 1
8 +50 2.5
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Table 23: Raw Scores and MP Scores for E/W Pairs on Board 15

E/W Pair | MP Score | Raw Score
7 3 +500
3 0.5 -50
2 2 +130
4 0.5 -50

The MP score for pair 2 in the original dataset figure 5 board 15 was incorrectly recorded as 0.5. The
correct MP score should be 2.

A.2 Comparison of optimization methods

To further examine whether the choice of optimization algorithm contributes to the observed
discrepancies, | applied three different methods: BFGS, L-BFGS-B, and Newton-CG. The main
results presented in the paper are based on BFGS, while L-BFGS-B and Newton-CG were tested
for comparison.

L-BFGS-B is a quasi-Newton method that approximates the Hessian matrix using limited memory,
making it suitable for large-scale problems with or without bound constraints. Newton-CG is a second-
order method that uses conjugate gradient techniques to compute approximate Newton steps and is
often more efficient near the solution due to explicit curvature information.

Converged: True

Converged: True . .
Full model log-likelihood: —143.69384119168296

Log-likelihood: -143.69384120048267

0 1 =0.1336 971 = 0.1336
0 2 =0.1899 0_2=0.1899
973 = -0.7131 0 3 =-0.7132
0 4 = 0.3866 0 4 = 0.3866
0 5=0.1839 6 5 =10.1838
0 6 = -0.9896 0 6 = —0.9896
0 7 =0.7906 0 _7 =10.7906
0 8 = 0.0000 6_8 = 0.0000
b = 0.2938 b = 0.2938
Ranking of 0 by skill level (from highest to lowest): Ranking of 0 by skill level (from highest to lowest):
Rank 1: 0 7 = 0.7906 Rank 1: 0 _7 = 0.7906
Rank 2: 6 4 = 0.3866 Rank 2: 6 _4 = 0.3866
Rank 3: 6 2 = 0.1899 Rank 3: 0 2 = 0.1899
Rank 4: 0 5 = 0.1839 Rank 4: 0 _5 = 0.1838
Rank 5: 6 1 = 0.1336 Rank 5: 0 1 = 0.1336
Rank 6: 6 8 = 0.0000 Rank 6: 0 _8 = 0.0000
Rank 7: 6 3 = -0.7131 Rank 7: 0 _3 = -0.7132
Rank 8: 6 6 = -0.9896 Rank 8: 6 _6 = —0.9896
(a) 'L-BFGS-B’ Optimized Method (b) Newton-CG Optimized Method

Figure 22: Comparison of Optimization Methods

The optimization results presented in Figure 22a and Figure 22b show that both methods
converged to nearly identical outcomes. The log-likelihood values for L-BFGS-B and Newton-CG
are —143.69384120048267 and —143.69384119168296, respectively, indicating negligible differences.
Similarly, the estimated skill parameters (6) and rankings are consistent across both methods, with
Player 7 having the highest skill (6; ~ 0.7906) and Player 6 the lowest (65 ~ —0.9896). The estimated
tie probability (¢ ~ 0.2938) is also the same across all methods.

These results suggest that, under the current implementation, different optimization methods
do not materially affect the estimation outcome. However, this does not entirely rule out the
influence of optimizer-specific settings—such as initialization points, line search strategy, or stopping
criteria—which may still lead to different solutions in more sensitive scenarios.
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A.3 Supplementary methods

This section provides theoretical extensions and refinements to the ranking framework introduced in
the main text. We begin with a confidence-based subset selection method for identifying the top pair,
and further propose a weighted correction to improve discrimination.

A.3.1 Parameter estimation and confidence-based ranking

This appendix presents an extension of the main model by introducing a framework to select the most
skillful pair in a bridge tournament while accounting for uncertainty in parameter estimation. It begins
with a discussion of parameter identifiability, followed by the construction of a confidence subset that
contains the best pair with high probability.

Estimating the skill level parameters 6,,...,0, and the tie parameter ¢ poses an over-
parameterization problem. To resolve this, one parameter must be fixed. For instance, in a Howell
movement, we typically set 8,, = 0, allowing the remaining 6; to be identified.

In Mitchell movements, where the n = 2k pairs are divided into two disjoint groups G| = {1,...,k}
and G, = {k+1,...,2k}, only within-group comparisons are made. Hence, one may set 8, = 6, =0
to ensure identifiability in both groups. Maximum likelihood estimates (MLEs) are then obtained by
maximizing the log-likelihood using numerical methods such as the quasi-Newton algorithm.

In Mitchell tournaments, the function C(6, ¢) used in the likelihood is symmetric within each group.
As a result, the MLE rankings for 6; typically align with the total match point (MP) scores, justifying
the use of MP rankings as skill proxies. However, in designs such as Howell, where the symmetry
assumption breaks down and comparisons are more comprehensive but less structured, MLE-based
rankings are generally more reliable.

A.3.2 Constructing a confidence subset to contain the best pair

To address the uncertainty associated with selecting the best-performing pair from a group of closely
matched competitors, we apply a confidence-based multiple comparison method adapted from Yu
and Lam (1996). Beyond point estimation, a common objective is to identify the best-performing
pair—the one with the highest true skill parameter:

9(,,) = max{Hl, e, Qn}.

Since the true ranking is unknown and sampling variability may blur differences between skill
estimates, we aim to construct a confidence subset S C {1,...,n} such that:

P[(n)eS]=1-a.

This idea, originating from Gupta (1965) [22], has been adapted by Yu and Lam (1996) into
the context of duplicate bridge under a permutation model. Instead of selecting a single pair
with the largest estimate ;, we identify a set of candidates whose performances are statistically
indistinguishable from the top.

This method is particularly useful when many MLEs 4; are close, and the observed differences may
be attributed to noise. It provides a conservative, multiple-comparison-based approach that balances
confidence with selectivity.

The following theorem, adapted from Yu and Lam (1996), offers a concrete way to construct such a
subset using Bonferroni-adjusted confidence intervals on pairwise differences.
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Theorem A.1: Constructing a random subset that contains the best pair

Let W;; be the estimate for the variance of §; — 4;. Consider constructing a random subset S,
which contains pairs that satisfy the following condition:

S={i:0; >2max(; — za/(n-1)\VW}1), j # i}

where z, is the upper quantile point of a standard normal distribution. The theorem claims that
if the number of boards B is sufficiently large, the following holds:

Pl(n)eS]>1-«a

That is, the probability that the best pair is included in the random subset S is at least 1 — «.

Proof of theorem A.1

We aim to ensure that the best pair (n) appears in S with probability at least 1 — .
Under a normal or asymptotic approximation, for each difference 4, — 4., we have variance W, ..
Using a Bonferroni correction at a/(n — 1) for n parameters, it follows that

P[aj—ec > 0;-0c - 2(:%5)VWj.c, Vj#c‘] 2 l-a.

Let ¢ = (n). If 6, is truly largest, then 6; — 6,y < 0 for all j # (n). Hence, on the above
high-probability event,

02 6;—0m = 0;—0m - 2(:5)VW).(m),

which rearranges to

A

0wy 2 6 — 2G5V (Vi # ().
We define Construct S

$ = fi:6 2 max[d, <G VWl

Since (n) satisfies this inequality against all j # (n), it follows that (n) € S. Hence P((n) € S) >
l1-a.
m|

In section A.3.3, we build upon this method by introducing a weighted correction, which adjusts the
comparison thresholds using the magnitude of §; to improve discrimination and reduce the size of
S. A full comparison of the original and weighted methods is presented in section A.3.4. The full
Python implementation, including Hessian computation and pairwise variance extraction, is provided
in Appendix D.

A.3.3 Weighted-correction selection method

While the original subset selection method provides valid coverage, it may yield overly large candidate
sets when many skill estimates are similar. To solve this, we introduce a weighted correction that
sharpens discrimination by scaling the confidence threshold based on the strength of the compared
player.

This approach introduces a weighting factor w;, which scales the variance correction term based on
the magnitude of the estimated skill level 4;.
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Theorem A.2: Weighted-Correction Selection Method

Let §; (i = 1,...,n) denotes the estimated skill levels of the n competing pairs (players).
DefineW;; ~ Var(d;-0;) as the approximate variance of the difference in skill estimates between
pairs i and j. Further, let z,,(,—1) be the upper a/(n — 1) critical value of the standard normal
distribution at significance level «/(n — 1). In addition, define a weighting factor

1
1+

a)j:

0,1

Under this weighting correction, we construct the subset.

S = {i: él‘ > mgx éj - wj - Za/(n—l)\/Wij]}'
VES

Then, if the “true best” pair is denoted by (n*) (i.e. the one with the largest true skill parameter
0 (n+)), We have

Pl(n) eS| >1-a (26)

In other words, with probability at least (1 — @), the set S contains the truly best pair.

Proof of Theorem A.2

We build upon the argument of Theorem A.1. In large-sample settings, one can construct a
(1 - @) simultaneous confidence region for all differences 6; — 6. (j # c) such that

A

0j—0. > Hj—éc = Za/(n-1) Wj,c, Vi#ec,

Holds jointly with probability at least 1 — a.

Next, define the weighting factor
1

1+10;]

wj =

Replacing za/(u-1) A Wj.c by ©; za/n-1) yW;.c still preserves the joint coverage, because w; < 1
for all j. Hence, with probability at least 1 — «,

A —~

0;=0. > 0;-0. — wjzajm-1yVWj.c» Vj#ec.
Now, suppose the true best pair is n*, s0 6,-y > 6, for all j # n*. Thus
0j —9(,1*) < 0,

and under the above event,

0>060;-0u 2 éj—é(n*) = wjza/(n_l)\/v?j,(,,*), Vj #n".

Oy 2 8) = wjzaju-1) VWi Vi # 0"

Rewriting yields

By the definition of S,

(I’l*) S {l éi > njlgix[éj—wjza/(n_l) Wj,i]}-
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Hence (n*) € S. Because all these comparisons hold simultaneously with probability at least
1 — a, it follows that
P[(n*) € S] > 1l-a,

As claimed. o

Remarks.

* The factor w; = 1/(1 + |éj|) provides a small or large offset depending on the magnitude of éj.
If §; is large in magnitude, then w; is smaller, effectively raising the bar for other players i to
surpass ;.

* When w; = 1 identically, we recover the original unweighted statement of Theorem A.1 (i.e. with
no weighting factor).

* In large-sample (asymptotic) contexts, these weighted bounds still retain the same
simultaneous confidence guarantee: P[(n*) € S| > 1 -«
A.3.4 Comparisons across two methods for selecting the best pair

To assess the empirical performance of the weighted-correction method introduced in Theorem A.2,
we compare it against the original unweighted procedure from theorem A.1on two independent
datasets.

Comparison using data from section 4.1 Applying the original (unweighted) selection rule yields
a confidence subset
Sunweighted = {1, 2, 4, 5, 7, 8}.

In contrast, the weighted-correction procedure produces a smaller subset
Sweighted = {4, 7},

achieving the same 95% confidence level while excluding more borderline cases.

Comparison using data from section 5.1.4 The original method identifies the following subset:
Sunweighted = {19 2’ 3a 4’ 59 8’ 10, 11’ 12}3

indicating that nine players remain statistically indistinguishable from the top. In comparison, the
weighted approach produces a more concise subset:

Swe|ghted = {1, 3, 4, 5, 10, 11, 12},

which remains consistent with previous findings, while providing sharper exclusion.
Across both datasets, the new weighted approach retains the same (1 — a) coverage condition but
achieves:

+ Stronger discrimination: borderline players are more confidently excluded.
* Reasonable set size: S avoids being unnecessarily large.
* No coverage loss: Pr(irue best € §) > 1 — a stays valid.

Hence, the new method consistently outperforms the original scheme in multi-comparison selection
scenarios.
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B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

B Python code for permutation model(use data from Yu and Lam)

B.1 MLE

import numpy as np

from scipy.optimize import minimize

alpha_patterns = [
(2,3,5,8),
(3,4,6,8),
(4,5,7,8),
(5,6,1,8),
(6,7,2,8),
(7,1,3,8),
(1,2,4,8)

]

beta_patterns = [
(4,7,6,1),
(5,1,7,2),
(6,2,1,3),
(7,3,2,4),
(1,4,3,5),
(2,5,4,6),
(3,6,5,7)

]

alpha = []

5 beta = []

for i in range(7):

a_pat = alpha_patterns([i]
b_pat = beta_patterns[i]

for in range(4):

alpha.append(a_pat)

beta.append(b_pat)

alpha = np.array(alpha)
beta = np.array(beta)

B = 28
n =238
T = 4

mp_scores
[z,
[1,
[1,
[2,
[1.5,
(3,
(o,
2,
[2,
[1,
[1.5,
[z,
[3,
[1,
1,
[1,

np.array ([
5

(=]
w1

(]

Nk, WWRRRRENREFE R~ NI
VI kD Wk WWR WRr kNN

NN WINWWRER W @
(=]

[ZS)
N
(=]
(%1

2.5, 0.5, 3, 1
3, 0, 3, 2
3, 0, 3, 2
3, 0, 3, 1
3, 1.5, 1.5, 3
0, 1.5, 1.5, 1.
2 g 0, 3, 2
0, 0, 3, 2
g 0, 1, 0
0, 0, 2, 1
0, 1.5, 1.5, 3
2, 0, 1, 0
0, 1, 3, 2
0, 2.5, 3, 2.5
0, 2.5, 3, 2.5

[ S o Ty S T N S Ty T [y S Sy Y [y |



57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
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88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104

106
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109
110
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B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

s
[2, 1, 2, 3, 3, 1, 0, 0 1,
[2, 3, 0, 2, 2, 1, 1, 1 1,
[0.5, 2.5, 0.5, 2, 3, 2.5, 1, 0 1,
[3, 3, 0, 2, 1, 0, 1, 2 1,
[2.5, 3, 0, 2.5, 1, 0.5, 0.5, 2 1,
[1, 0.5, 2.5, 0.5, 2, 3, 2.5, 0 1,
[6.5, 0.5, .5, 2.5, 2.5, 0.5, 2.5, 2.5 1],
[2, 2, 0, 3, 1, 0, 1, 3 1,
[0.5, O, 0.5, 2.5, 2.5, 1, 3, 2 1,
[0, 3, 3, 2, 1, 0, 2, 1 1,
[2, 0, 1, 2, 1, 3, 1, 2 1,
[3, 2, 0, 0, 3, 1, 2, 1 1,
[1.5, 3, 1.5, 1.5, 1.5, O, 3, 0 ]

D

assert alpha.shape == (28,4)

assert beta.shape == (28,4)

assert mp_scores.shape == (28,8)

boards_data = []

for

def

def

b in range(B):
ns_pairs = alphalb,:]
scores = mp_scores[b, ns_pairs-1]
L.b = []
D_b = []
for i in range(T):
for j in range(i+1,T):
if np.isclose(scores[i], scores[j]):
D_b.append((i, j))
elif scores[i] < scores[j]:
L_b.append((i, j))
else:
L_b.append((j,i))
boards_data.append ({
"alpha’: ns_pairs,
"beta’: betalb,:],
"L_b’: L_b,
'D_b’: D_b
i3]

unpack_params(x, n):

psi = x[-1]

phi = np.exp(psi)/(l+np.exp(psi))
theta = np.zeros(n)

theta[:n-1] = x[:-1]

theta[n-1] = 0.0

return theta, phi

log_likelihood_and_gradient(x, boards_data, n, T):
theta, phi = unpack_params(x, n)

11 = 0.0

grad_theta = np.zeros(n)

grad_psi = 0.0

for bd in boards_data:
ns_pairs = bd[’alpha’]
ew_pairs = bd[’beta’]
L_.b = bd['L_b’]
D_b = bd[’D_b’]

101



B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

118 lambda_b = np.zeros(T)

119 dlam_dtheta = np.zeros((T,n))

120 for t in range(T):

121 i_ns = ns_pairs([t]

122 i_ew = ew_pairs([t]

123 val_ns = theta[i_ns-1]

124 val_ew = theta[i_ew-1]

125 lam = np.exp(val_ns - val_ew)

126 lambda_b[t] = lam

127 dlam = np.zeros(n)

128 dlam[i_ns-1] = lam

129 dlam[i_ew-1] = -lam

130 dlam_dtheta[t,:] = dlam

131

132 # L_b part

133 for (i,j) in L_b:

134 lam_i = lambda_b[i]

135 lam_j = lambda_b[j]

136 sqrt_term = np.sqrt(lam_i*lam_j)

137 denom = lam_i + lam_j + phi*sqrt_term

138 11 += np.log(lam_j) - np.log(denom)

139 dlam_i_theta = dlam_dthetali, :]

140 dlam_j_theta = dlam_dthetal[j, :]

141 d_sqrt_term_theta = 0.5/sqrt_term*(lam_j*dlam_i_theta + lam_i¥*
dlam_j_theta)

142 grad_theta += (dlam_j_theta/lam_j) - (1/denom)*(dlam_i_theta +
dlam_j_theta + phi*d_sqrt_term_theta)

143 dldphi = - sqrt_term/denom

144 dldpsi = dldphi * phi*(1-phi)

145 grad_psi += dldpsi

146

147 # D_b part

148 for (i,j) in D_b:

149 lam_i = lambda_b[i]

150 lam_j = lambda_b[j]

151 sqrt_term = np.sqrt(lam_i*lam_j)

152 denom = lam_i + lam_j + phi*sqrt_term

153 11 += np.log(phi) + 0.5*(np.log(lam_i)+np.log(lam_j)) - np.log(denom
)

154 dlam_i_theta = dlam_dtheta[i,:]

155 dlam_j_theta = dlam_dthetal[j, :]

156 d_sqrt_term_theta = 0.5/sqrt_term*(lam_j*dlam_i_theta + lam_i*
dlam_j_theta)

157 grad_theta += 0.5*(dlam_i_theta/lam_i + dlam_j_theta/lam_j) - (1/
denom) *(dlam_i_theta + dlam_j_theta + phi*d_sqrt_term_theta)

158 dldphi = 1/phi - sqrt_term/denom

159 dldpsi = dldphi*phi*(1-phi)

160 grad_psi += dldpsi

161

162 grad = np.zeros(n)

163 grad[:n-1] = grad_theta[:n-1]

164 grad[-1] = grad_psi

165 return -11, -grad

166

167 # MLE for the full model

168 X_init = np.zeros(n)

169 res = minimize(lambda x: log_likelihood_and_gradient(x, boards_data, n, T),
170 x_init, jac=True, method=’BFGS’, options={’disp’: True})

171

172 hat_params = res.x

173 hat_theta, hat_phi = unpack_paramsChat_params, n)
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174

175 # Store the log-likelihood value of the full model in 11_full for later use
176 11_full = -res.fun

177

178 print ("Converged:", res.success)

179 print ("Full model log-likelihood:", 11_full)

180 for i in range(n):

181 print (f"theta_{i+1} = {hat_theta[i]:.4£f}")

182 print (£f"phi = {hat_phi:.4f}")

183

184 theta_with_index = list(enumerateChat_theta, start=1))

185 theta_sorted = sorted(theta_with_index, key=lambda x: x[1], reverse=True)
186 print ("Ranking of theta by skill level (from highest to lowest):")

187 for rank, (idx, val) in enumerate(theta_sorted, start=1):

188 print (f"Rank {rank}: theta_{idx} = {val:.4£f}")

B.2 Parametric bootstrap 95% confidence intervals for each 6,

1

2 def prob_outcomes(lam_i, lam_j, phi):

3 sqrt_term = np.sqrt(lam_i * lam_j)
4 denom = lam_i + lam_j + phi * sqrt_term
5 p_i_win = lam_i / denom

6 p_j_win = lam_j / denom

7 p_tie = (phi * sqrt_term) / denom

8 return p_i_win, p_tie, p_j_win

9

10 def simulate_data(theta, phi, boards_data):
11 new_boards = []

12 for bd in boards_data:

13 ns_pairs = bd[’alpha’]

14 ew_pairs = bd[’beta’]

15 T = len(ns_pairs)

16 lambda_b = []

17 for t in range(T):

18 i_ns = ns_pairs[t] - 1

19 i_ew = ew_pairs[t] - 1

20 lam_t = np.exp(theta[i_ns] - thetal[i_ew])
21 lambda_b.append(lam_t)

22

23 L.b = []

24 D_b = []

25 for i in range(T):

26 for j in range(i + 1, T):
27 lam_i = lambda_b[i]

28 lam_j = lambda_b[j]

29 p_i, p_tie, p_j = prob_outcomes(lam_i, lam_j, phi)
30 rnd = np.random.rand()
31 if rnd < p_i:

32 L_b.append((j, 1))
33 elif rnd < p_i + p_tie:
34 D_b.append((i, j))
35 else:

36 L_b.append((i, j))
37

38 new_boards . append ({

39 alpha’: bd[’alpha’],

40 "beta’: bd[’beta’],

4 "L_b’: L_b,

103



B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

42 'D_b’: D_b
43 ID)
44 return new_boards

45
46 def parametric_bootstrap(boards_data, B=1000):

47 theta_hat, phi_hat, _ = fit_davidson_model (boards_data, n)
48 boot_thetas = []

49 boot_phis = []

50

51 for b in range(B):

52 sim_data = simulate_data(theta_hat, phi_hat, boards_data)
53 th_b, ph_b, _ = fit_davidson_model (sim_data, n)

54 boot_thetas.append(th_b)

55 boot_phis.append(ph_b)

56

57 boot_thetas = np.array(boot_thetas)

58 boot_phis = np.array(boot_phis)

59 ci_lower = np.percentile(boot_thetas, 2.5, axis=0)

60 ci_upper = np.percentile(boot_thetas, 97.5, axis=0)

61

62 return {

63 "theta_mle’: theta_hat,

64 "phi_mle’: phi_hat,

65 "theta_samples’: boot_thetas,

66 "phi_samples’: boot_phis,

67 "theta_ci_lower’: ci_lower,

68 theta_ci_upper’: ci_upper

69 }

70

71 print ("\n=== Starting Parametric Bootstrap Analysis (B=1000) ===")
72 B = 1000

73 boot_result = parametric_bootstrap(boards_data, B=B)

74 theta_ci_lo = boot_result[’theta_ci_lower’]

75 theta_ci_hi = boot_result[’theta_ci_upper’]

76

77 print (£"In {B} simulations, the 95% confidence interval for each theta_i is:")

78 for i in range(n):

79 print (f"theta_{i+1} = {theta_mle[i]:.4f} 95% CI = [{theta_ci_lo[i]:.4f}, {
theta_ci_hi[i]:.4£3}1™")

B.3 Likelihood ratio test

def log_likelihood_restricted(x, boards_data, n, T):

1

2 theta_common = x[0]

3 psi = x[1]

4 phi = np.exp(psi)/(l+np.exp(psi))

5

6 11 = 0.0

7 for bd in boards_data:

8 L.b = bd[’L_b’]

9 D_b = bd[’D_b’]

10 m = len(L_b)

11 d = len(D_b)

12 # Likelihood under the restricted model
13 11_board = m*(-np.log(2+phi)) + d*(np.log(phi)-np.log(2+phi))
14 11 += 11 _board

15 return -11

17 X_init_res = [0.0, 0.0]
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B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

res_res = minimize(lambda x: log_likelihood_restricted(x, boards_data, n, T),
Xx_init_res, method="BFGS’, options={’disp’: True})

ll_res = -res_res. fun
print ("Restricted model log-likelihood:", 1l_res)
print ("Restricted model parameters:", res_res.x)

# Calculate LR statistic

LR = -2*%(1ll_res

11_full)

print("Likelihood Ratio:", LR)

B.4 Tied frequency

import math
import itertools

def compute_lambda(ns_pairs, ew_pairs, theta):

lambda_array

[]

for t in range(len(ns_pairs)):
i_ns = ns_pairs[t]
i_ew = ew_pairs[t]
lam = math.exp(theta[i_ns-1] - thetal[i_ew-1])
lambda_array.append(lam)
return lambda_array

def P_less(lambda_array, i, j, phi):
lam_i = lambda_array[i]
lam_j = lambda_array[j]
denom = lam_i + lam_j + phi*math.sqrt(lam_i*lam_j)
return lam_j / denom

def P_equal (lambda_array, i, j, phi):
lam_i = lambda_array[i]
lam_j = lambda_array[j]
denom = lam_i + lam_j + phi*math.sqrt(lam_i*lam_j)
return (phi*math.sqrt(lam_i*lam_j)) / denom

def generate_partitions(set_elements):
if not set_elements:

yield []
return

first = set_elements[0]
for rest_partition in generate_partitions(set_elements[1:]):
for i in range(len(rest_partition)):
new_part = rest_partition[:i] + [rest_partition[i] + [first]] +
rest_partition[i+1:]
yield new_part
yield [[first]] + rest_partition

def generate_all_tie_rankings(T):
elements = list(range(T))

all_rankings

(]

for partition in generate_partitions(elements):
for perm in itertools.permutations(partition):
ordered_part = [tuple(sorted(p)) for p in perm]
all_rankings.append(tuple (ordered_part))
# Remove duplicates

all_rankings

list(set(all_rankings))

105



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

100

101

102

103

104

105

106

B PYTHON CODE FOR PERMUTATION MODEL(USE DATA FROM YU AND LAM)

def

def

def

return all_rankings

extract_Lb_Db(ranking):
L.b =[]
D_b = []

# Equal pairs within each tie group
for group in ranking:
if len(group) > 1:
for pair in itertools.combinations(group, 2):

i, j = pair

if i<j:
D_b.append((i,j))

else:

D_b.append((j,1i))
# Ordering between different groups
for a in range(len(ranking)):
for b in range(a+l, len(ranking)):
group_a = ranking[a]
group_b ranking[b]
# group_a beats group_b
for i_idx in group_a:
for j_idx in group_b:
# j_idx loses to i_idx => (j_idx,i_idx)
L_b.append((j_idx,i_idx))
return L_b, D_b

count_ties(ranking):
tie_count = 0
for group in ranking:
m = len(group)
ifm> 1:
tie_count += m*(m-1)//2
return tie_count

expected_tie_frequency(boards_data, theta, phi, T):
tie_counts_of_interest = [0,1,2,3,6]
expected_count = {k:0.0 for k in tie_counts_of_interest}

all_rankings = generate_all_tie_rankings(T)

B = len(boards_data)
for b in range(B):
ns_pairs = boards_data[b][’alpha’]
ew_pairs = boards_data[b][’beta’]
lambda_array = compute_lambda(ns_pairs, ew_pairs, theta)

Q_values = []
tie_of_each = []
for R in all_rankings:
L_b, D_b = extract_Lb_Db(R)
QR =1.0
for (i,j) in L_b:
Q_R *= P_less(lambda_array, i, j, phi)
for (i,j) in D_b:
Q_R *= P_equal(lambda_array, i, j, phi)

Q_values.append (Q_R)
tie_of_each.append(count_ties(R))

sum_Q = sum(Q_values)
for idx, qv in enumerate(Q_values):
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p = quv/sum_Q if sum_Q>0 else 0.0

k = tie_of_each[idx]

if k in expected_count:
expected_count[k] += p

return expected_count

# Use previously obtained MLE parameters
hat_params = res.x

theta = np.zeros(n)

theta[:n-1] = hat_params[:n-1]
theta[n-1] = 0.0

psi hat_params[-1]
phi = math.exp(psi)/(l+math.exp(psi))

expected_freq = expected_tie_frequency(boards_data, theta, phi, T)
print ("Expected frequency:", expected_freq)

B.5 Theta from the paper

# Use the MLE parameters given in the paper (results already known and
independent from previous parts)

theta = [0.0702, 0.1113, -0.4266, 0.2271, 0.1030, -0.5934, 0.4579, 0.0]
phi = 0.6845

expected_freq = expected_tie_frequency(boards_data, theta, phi, T)
print ("Expected frequency:", expected_freq)
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C Python code for Threshold Model(use data from the Chinese
Contract Bridge Association)

C.1 Threshold model for ranking

1 import numpy as np
o from scipy.optimize import minimize

3

4 ns_patterns = [

5 (12, 11, 3, 9, 8, 7)),
6 (12, 1, 4, 16, 9, 8),
7 (12, 2, 5, 11, 10, 9),
8 (12, 3, 6, 1, 11, 10),
9 (12, 4, 7, 2, 1, 11),
10 (12, 5, 8, 3, 2, 1,
11 (12, 6, 9, 4, 3, 2),
12 (12, 7, 10, 5, 4, 3),
13 (12, 8, 11, 6, 5, 4),
14 (12, 9, 1, 7, 6, 5),
15 (12, 10, 2, 8, 7, 6),
16 ]

17

18 ew_patterns = [

19 (1, 2, 10, 4, 5, 6),
20 2, 3, 11, 5, 6, 7),
21 (3, 4, 1, 6, 7, 8),
22 4, 5, 2, 7, 8, 9,
23 (5, 6, 3, 8, 9, 10,
24 6, 7, 4, 9, 10, 11,
25 (z, 8, 5, 10, 11, 1),
26 8, 9, 6, 11, 1, 2),
27 9, 10, 7, 1, 2, 3),
28 (10, 11, 8, 2, 3, 4),
29 (11, 1, 9, 3, 4, 5,

5 T

]

alpha_list = []
beta_list = []
for i in range(len(ns_patterns)):
a_pat = ns_patterns[i]
b_pat = ew_patterns[i]
for _ in range(4):
alpha_list.append(a_pat)
beta_list.append(b_pat)

alpha = np.array(alpha_list)
beta = np.array(beta_list)
B alpha.shape[0]

alpha.shape[1]
12

n

mp_scores = np.array ([

(4, o, 8, 6, 8, 10, 0, 2, 4, 2, 10, 6],
(16,5, 5, 8, 1, 1, 9, 9, 2, 5, 5, O],
(2, 2, 0, 7, 7, 2, 8, 3, 3, 10,8, 8],
(2, , 8,1, 2, 7, 3, 8, 0, 2, 3, 8],
(6, 4,10, 6, O, 4, 8, 2, 6,10, 4, 6],
(8,10, 2, 8, 7, 2, 7, 3, 8, 3, 2, O],
(4, 1, 6, 9, 6,160, 6, 4, 0, 4, 1, 9],
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6],
31,

56
57

4,10, 4, 8],

6,

(10,4,

58

2],

8,10,
4,10,

9,

59

71,
01,

60

4,

9,

61

71,

7,

1,

62

11,
81,
2],
31,
61,

9,
[5,
[5,

63
64
68
69
70
71

72

0,

[6,10,

73
74
75
76
78
79
81
84
85

1 ’ ’

[1,

86

o, 1,
(8, 7,
[z,
[9,

87

8,
5

88
89

90

[160,6, O, 8,
2, 1

[1,

93 1)

91
92
94

=44, n

"mp_scores must be (44,12) to match B

12),

(44,

95 assert mp_scores.shape

12"

96
97

= [1]

data

99 for b in range(B):

98 boards

:]
1]

ns_pairs = alphalb,
betalb,

ew_pairs
scores_ns

1]

ns_pairs -

mp_scores[b,

or i in range(T):

T):

for j in range(i + 1,

scores_ns[i]

si

scores_ns[j]

sj

sj):

if np.isclose(si,

i)

D_b.append ((i,

elif si < sj:

L_b.append((i, j))

else:

i))

L_b.append((j,
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BRIDGE ASSOCIATION)
116
117 boards_data.append ({
118 alpha’: ns_pairs,
119 "beta’: ew_pairs,
120 ‘L_J9" g L_b,
121 'D_b’: D_b,
122 i)
123
124
125 def logistic_cdf(x):
126 return 1 / (1 + np.exp(-x))
127
128 def logistic_pdf(x):
129 e = np.exp(x)
130 return e / (1 + e)**2
131
132 def threshold_loglik_grad(params, boards_data, n, T):
133
134 params: length n, first (n-1) are theta_i, last is psi=log(gamma)
135 R
136 psi = params[-1]
137 gamma = np.exp(psi)
138 theta = np.zeros(n)
139 thetal[:n-1] = params[:-1]
140
141 11 = 0.0
142 grad_theta = np.zeros(n)
143 grad_psi = 0.0
144
145 for bd in boards_data:
146 ns_pairs = bd[’alpha’]
147 ew_pairs = bd[’beta’]
148 L_.b = bd[’'L_b’]
149 D_b = bd[’D_b’]
150
151 skill = np.zeros(T)
152 dskill_dtheta = np.zeros((T, n))
153 for t in range(T):
154 i_ns = ns_pairs[t] - 1
155 i_ew = ew_pairs[t] - 1
156 val = theta[i_ns] - thetal[i_ew]
157 skill[t] = val
158
159 gtemp = np.zeros(n)
160 gtemp[i_ns] = 1.0
161 gtemp[i_ew] = -1.0
162 dskill_dtheta[t, :] = gtemp
163
164 # Process wins/losses
165 for (i, j) in L_b:
166 d_ij = skill[i] - skill[j]
167 z = -(gamma/2 + d_ij)
168 p_ij = logistic_cdf(z)
169 p_ij = max(p_ij, le-15)
170 11 += np.log(p_ij)
171
172 fz = logistic_pdf(z)
173 coeff = (fz / p_ij) * (-1.0)
174 grad_theta += coeff * (dskill_dtheta[i] - dskill_dtheta[j])
175 grad_psi += (fz / p_ij) * (-0.5) * gamma

176
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# Process ties
for (i, j) in D_b:
d_ij = skill[i] - skill[j]

left = -(gamma/2 + d_ij)
right = (gamma/2) - d_ij
p_tie = logistic_cdf(right) - logistic_cdf(left)

p_tie = max(p_tie, le-15)
11 += np.log(p_tie)

f_left = logistic_pdf(left)

f right = logistic_pdf(right)

coeff tie = (-f_right + f_left) / p_tie

grad_theta += coeff_tie * (dskill_dtheta[i] - dskill_dthetal[j])
grad_psi += ( (0.5*f_right) + (0.5*f_left) ) / p_tie * gamma

# assemble gradient

g = np.zeros_like(params)
gl:n-1] = grad_theta[:n-1]
gl[-1] = grad_psi

return -11, -g

def fit_threshold_model (boards_data, n, T):
X_init = np.zeros(n)
x_init[-1] = np.log(1l.0)

res = minimize(
fun=lambda x: threshold_loglik_grad(x, boards_data, n, T),
x0=x_init, jac=True, method=’BFGS’

)
hat_params = res.x
11 = -res.fun

psi = hat_params[-1]

gamma = np.exp(psi)

hat_theta = np.zeros(n)
hat_theta[:n-1] = hat_params[:-1]
return res, hat_theta, gamma, 11

res, hat_theta, hat_gamma, 1l_val = fit_threshold_model (boards_data, n, T)

print ("Converged:", res.success)
print("Final log-likelihood:", 1l_val)
print (f"Estimated gamma = {hat_gamma:.4f}")
for i in range(n):
print (f"Theta_{i+1} = {hat_theta[i]:.4£f}")

theta_indexed = list(enumerate Chat_theta, start=1))
theta_sorted = sorted(theta_indexed, key=lambda x: x[1], reverse=True)
print ("\n=== Ranking by skill, descending order ===")

for rank, (pid, val) in enumerate(theta_sorted, start=1):
print (£f" Rank {rank}: Pair {pid}, theta = {val:.4f}")

C.2 Threshold model for tie probability

def calc_expected_ties_distribution(boards_data, theta, gamma):

import numpy as np
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def

from itertools import product

freq_k = np.zeros(16)
B = len(boards_data)

for bd in boards_data:
ns = bd[’alpha’]
ew = bd[’beta’]

T = len(ns)

skill = []

for t in range(T):
i_ns = ns[t] -1
i_ew = ew[t] - 1

skill.append(theta[i_ns] - thetal[i_ew])

pairs = []
for i in range(T):
for j in range(i+l, T):
pairs.append ((i, j))

p_ties = []
for (i, j) in pairs:
d_ij = skill[i] - skill[j]
left = -(gamma/2 + d_ij)
right (gamma/2) - d_ij
p_tie = logistic_cdf(right) - logistic_cdf(left)

p_tie = np.clip(p_tie, le-15, 1-1le-15)
p_ties.append(p_tie)

pr_k = np.zeros(16)
for bits in product([0,1], repeat=15):
kk = sum(bits)

prob = 1.0
for idx, bval in enumerate(bits):
if bval == 1:
prob *= p_ties[idx]
else:

prob *= (1 - p_ties[idx])
pr_k[kk] += prob

freq_k += pr_k

return freq_k

print_observed_vs_expected_ties(boards_data, theta, gamma):

# (1) Predicted distribution
expected_k = calc_expected_ties_distribution(boards_data, theta, gamma)

# (2) Observed distribution
import numpy as np
observed_k = np.zeros(16)
for bd in boards_data:
k = len(bd[’D_b’])
observed_k[k] += 1

print ("\n=== Distribution of #ties (Observed vs. Expected) ===")
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65 print(" k Observed Expected")
66 for k in range(16):
67 if observed_k[k] == 0 and expected_k[k] < 1le-8:
68 continue
69 print (£"{k:2d} {observed_k[k]:3.0f} {expected_k[k]:7.3£f}")

70
71 print_observed_vs_expected_ties(boards_data, hat_theta, hat_gamma)
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D Python code for selecting the best pair

This section provides the Python implementation for computing the pairwise covariances and
variances of the estimated skill parameters. These are essential for constructing the confidence
subset S (theorem A.1) and for the improved weighted-correction method (theorem A.2).

D.1 Estimating W;; via the numerical Hessian

To apply this method, we require estimates of the variance W;; = Var(d; — 6;). These are obtained
from the asymptotic covariance matrix of the MLE, denoted %, which is approximated using a
finite-difference estimate of the Hessian matrix of the log-likelihood function.

The Hessian matrix is defined as: 4

_ [ 8%eo)
| 06,00,

i,j=1

where £(0) is the negative log-likelihood function. Since analytic expressions are unavailable, we use
a nested finite-difference approximation.

First, we approximate the gradient using forward differences:

9(8) _ L(0+he;) = £(0)
a0; h ’

where & is a small step size and ¢; is the j-th unit vector.
After that, we approximate the second derivatives by differencing partial gradients:

9*(0) 1[06(8+he)) aL(H)
80,00;  h 90; 90;

This is equivalent to computing:
Vlf(g + hej) - Vlf(g)

ij~ s
h
where V; denotes the i-th component of the gradient.
Once H is computed, the asymptotic covariance matrix is approximated as:

$=(-H)",
and the pairwise variance of differences is calculated as:
Wij = iii +ijj - 22,‘].

This method avoids symbolic derivation, is computationally efficient, and respects the correlation
structure among parameters. It provides theoretically grounded and practically tractable estimates of
uncertainty in pairwise comparisons.

D.2 Calculation of covariance and variance

def compute_hessian(x, boards_data, n, T, epsilon=1e-6):

1

2 def func(xx):

3 return negative_log_likelihood(xx, boards_data, n, T)
4 d = len(x)

5 hessian = np.zeros((d, d))

6

7 for i in range(d):

8 def grad_i(xx):

9 #Forward Difference

10 g = approx_fprime(xx, func, epsilon)
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return g[i]
hessian[i, :] = approx_fprime(x, grad_i, epsilon)
return hessian

final_x = res.x
hessian_matrix = compute_hessian(final_x, boards_data, n, T)
cov_matrix = inv(Chessian_matrix)

def extract_pairwise_covariances(cov_matrix, n):
pairwise_cov = []
for i in range(n):
for j in range(i + 1, n):
pairwise_cov.append((i + 1, j + 1, cov_matrix[i, j1))
return pairwise_cov

pairwise_covariances = extract_pairwise_covariances(cov_matrix, n)
print ("\nPairwise Covariances:")
for i, j, cov in pairwise_covariances:

print (f"Cov(theta_{i}, theta_{j}) = {cov:.6£f}")

def compute_pairwise_variances(cov_matrix, n):
pairwise_variances = []
for i in range(n):
for j in range(i + 1, n):

var_i = cov_matrix[i, i]
var_j = cov_matrix[j, jl
cov_ij = cov_matrix[i, j]
w_ij = var_i + var_j - 2 * cov_ij

pairwise_variances.append((i + 1, j + 1, w_ij))
return pairwise_variances

pairwise_variances = compute_pairwise_variances(cov_matrix, n)
print ("\nPairwise Variances (W_ij):")
for i, j, var_ in pairwise_variances:

print (f"Var(theta_{i} - theta_{j}) = {var_:.6f}")
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Optimization terminated successfully.

Current

function value: 143.693841

Iterations: 14

Function evaluations: 21

Gradient evaluations: 21

Optimization success: True

Final negative log—likelihood: 143.6938411916855
Estimated phi: 0.2937590836269098

= 0.1336
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D.3 For Theorem 2 from Yu and Lam

1+ \begin{lstlisting}[language=Python]

2 # W-matrix

3 W = np.zeros((n, n))

4 for i in range(n):

5 for j in range(n):

6 W[li, j] = cov_matrix[i, i] + cov_matrix[j, j]l - 2 * cov_matrix[i, j]

7

g alpha_sig = 0.05 # significance level

9 z_val = norm.ppf(l - alpha_sig / (n - 1))

10 print (f"\nSignificance level alpha={alpha_sig}, multi-comparison z={z_val:.4f}\n

")

11

12 S = []

13 for i in range(n):

14 LBs = []

15 print (£"** Checking candidate i = {i+1} (theta_{i+1} = {hat_theta[i]:.4f})

16 for j in range(n):

17 if j == 1i:

18 continue

19 LB_j = hat_theta[j] - z_val * np.sqrt(W[j, il)

20 LBs.append (LB_j)

21 relation = ">=" if hat_theta[i] >= LB_j else "<"

22 print (£" - Compare vs j={j+1}: LB_j={LB_j:.4f}, so theta_{i+1}({
hat_theta[i]:.4£f}) {relation} LB_j")

23 max_LB = max (LBs)

24 print (£" => max_LB = {max_LB:.4f}. Compare with theta_{i+1}={hat_theta[i
1:.4£}")

25 if hat_theta[i] >= max_LB:

26 S.append(i+1)

27 print (£" => i={i+1} passes, included in S.\n")

28 else:

29 print (£" => i={i+1} fails.\n")

30

3t print("Final subset S =", S)

32 print(f"Interpretation: S contains the truly best pair with probability >= {1 -
alpha_sig:.2f}.")
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0.1336)

SO
SO
SO
SO
SO
SO
SO

0 1(0.
0 1(0.
0 1(0.
0 1(0.
0 1(0.
0 10.
0 10.

1336)
1336)
1336)
1336)
1336)
1336)
1336)

0.1899) s

SO
SO
SO
SO
SO
SO
SO

SO
SO
SO
SO
SO
SO
SO

6 2(0.
6 2(0.
6 2(0.
6 2(0.
6 2(0.
6 2(0.
0 _2(0.

1899)
1899)
1899)
1899)
1899)
1899)
1899)

= —0.7132) **
6 3(-0.
6 3(-0.
0 _3(-0.
0 _3(-0.
0 _3(-0.
0 3(-0.
0 3(-0.

7132)
7132)
7132)
7132)
7132)
7132)
7132)

0. 3866) xx

SO
SO
SO
SO
SO
SO
SO

0 4(0.
0 4(0.
0 4(0.
0 4(0.
0 4(0.
0 4(0.
0 4(0.

3866)
3866)
3866)
3866)
3866)
3866)
3866)

-0. 0420 Compare with 0 4=0.3866

J 1:

[ S P P P
1
OO-\lch»th

included in S.

6984,
6472,
5796,
4482,
8694,

0392,
2293,

0.1838) =

SO
SO
SO
SO
SO
SO
SO

0 _5(0.
0 _5(0.
0 _5(0.
0 _5(0.
0 _5(0.
0 _5(0.
0 _5(0.

1838)
1838)
1838)
1838)
1838)
1838)
1838)

-0. 0392 Compare with 0 5=0.1838

Checking candidate i = 6

— Compare
— Compare
— Compare
— Compare
— Compare
— Compare

VS
VS
VS
VS
VS
VS

J 1:

[ ST ST S S S
Il
=~ O =~ W N

LB_j=-0.
: LB_j=-0.
LB_j=-1.
LB_j=-0.
LB j=-0.
: LB j=-0.

included in S.

(0_6
7325,
6797,
5305,
5020,
6960,
1390,

SO
SO
SO
SO
SO
SO

= —0.9896)
0 _6(-0.
0 _6(-0.
0 6(-0.
0 6(-0.
0 6(-0.
0 6(-0.

9896)
9896)
9896)
9896)
9896)
9896)

multi—-comparison z=2.4500

>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j

>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>=LB_j

>= LB_j
CLB_j
< LB_j
< LB_j
>= LB_j
CLB_j
>= LB_j

>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j

>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB_j
>= LB j

< LB_j
< LB_j
>= LB j
< LB_j
< LB j
< LB j



— Compare vs j=8: LB j=-1.3192,

=> max LB =
=> i=6 fails.

#% Checking candidate i = 7 (6 7 =
J 1:

— Compare
— Compare
— Compare
— Compare
— Compare
— Compare
— Compare

Vs
VS
VS
VS
VS
VS
VS

so 0 6(-0.9896) >= LB j

-0.1390. Compare with 0 6=-0.9896

1l

[P P S ST S
Il
[opIN) ISV W}

j=8:

=> i=7 passes, 1

%% Checking candidate i = 8 (0 8 =
j=1:
2:
3:
4:
5

— Compare
— Compare
- Compare
— Compare
— Compare
— Compare
— Compare
> max LB =

VS
VS
VS
VS
Vs
Vs
VS

J
J
J
J
J
Jj=T:
-0.

=> i1=8 passes, i

Final subset

S:

Interpretation:

6:

[1)
S contains the truly best pair with probability

LB_j=-0.7121,
: LB_j=-0.6501,
: LB_j=-1.6172,
LB_j=-0. 4460,
LB_j=-0. 6460,
: LB_j=-1.9192,
LB_j=-1.1955,

ncluded in S.

LB_j=-1.1017,
LB_j=-1. 0516,
LB j=-2.0093,
LB j=-0.8303,
: LB_j=-1. 0454,
LB_j=-2. 3088,
LB_j=-0. 4049,

0.7906)

SO
SO
SO
SO
SO
SO
SO

0 7(0.
0 7(0.
6 7(0.
6 7(0.
6 _7(0.
0 7(0.
0 7(0.
=> max_LB = -0.4460. Compare with 0 7=0.7906

7906)
7906)
7906)
7906)
7906)
7906)
7906)

0.0000) s

SO
SO
SO
SO
SO
SO
SO

6 8(0.
6 8(0.
6 8(0.
6 8(0.
0 _8(0.
0 _8(0.
6 _8(0.

0000)
0000)
0000)
0000)
0000)
0000)
0000)

049. Compare with 6 8=0.0000

ncluded in S.

2, 4, 5, 7, 8]

LB_j
LB_j

= LB j

LB_j
LB_j

= LB j

LB_j

LB j

=1LB j
= LB j

LB j

= LB j

LB j
LB j

>

=

0. 95.



D PYTHON CODE FOR SELECTING THE BEST PAIR

D.4 For weighted-correction selection method

def compute_hessian(x, boards_data, n, T, epsilon=1e-6):

1

2 def £(xx):

3 val, _ = negative_log_likelihood_and_grad(xx, boards_data, n, T)
4 return val

5 d = len(x)

6 hess = np.zeros((d, d))

7 for i in range(d):

8 def grad_i(xx):

9 g = approx_fprime(xx, f, epsilon)

10 return g[i]

11 hess[i, :] = approx_fprime(x, grad_i, epsilon)
12 return hess

14 hessian = compute_hessian(res.x, boards_data, n, T)
15 cov_matrix = inv(hessian)

17 W = np.zeros((n, n))
18 for i in range(n):

19 for j in range(n):

20 W[i, jl = cov_matrix[i, i] + cov_matrix[j, j] - 2 * cov_matrix[i, j]
21

22 print("\n--- Constructing subset S with Weighted Bound ---")

24 alpha = 0.05
25 z_val = norm.ppf(l - alpha / (n - 1))
26 print(f"Significance level alpha={alpha}, z={z_val:.4f}\n")

28 omega = [1 / (1 + absChat_theta[j])) for j in range(n)]

30 S = []

3t for i in range(n):

32 print (£"** Checking candidate i={i+1}, theta_{i+1}={hat_theta[i]:.4f} **")
33 LB_values = []

34 for j in range(n):

35 if j == 1i:

36 continue

37 LB_j = hat_theta[j] - omegal[j] * z_val * np.sqrt(W[j, i]l)

38 LB_values.append(LB_j)

39 relation = ">=" if hat_theta[i] >= LB_j else "<"

40 print (f" Compare vs j={j+1}: LB_j={LB_j:.4f}, => theta_{i+1}({hat_theta

[i]:.4£f3}) {relation} LB_j({LB_j:.4£f})")
41

42 max_LB = max(LB_values)

43 print(f" => max_LB among j != i is {max_LB:.4f}, theta_{i+1}={hat_thetali
1:.4£3}")

44

45 if hat_theta[i] >= max_LB:

46 S.append(i + 1)

47 print (£f" => i={i+1} PASSES. Included in S.\n")

48 else:

49 print(£f" => i={i+1} FAILS.\n")

50

5t print("Final subset S with weight factors =", S)

s2 print (f"Interpretation: with probability > {1 - alpha:.2f}, the true best is in
S.")
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———= Constructing subset S with Weighted Bound ———
Significance level alpha=0. 05,

*% Checking candidate i=1,

Compare
Compare
Compare
Compare
Compare
Compare

VS j
VS j
VS j
vs J
VS j
VS j

Compare vs

=> max_ LB among j

j=2: LB_j=-0.4972,

=8: LB_j=-1.2353
!= 1 is 0.3183

=> i=1 FAILS.

%% Checking candidate i=2,
=1: LB j=-0.5877
LB j=-1.2106,
LB j=-0. 2204,
LB j=-0.5233,
LB j=-1.4267,

Compare
Compare
Compare

Vs
Vs
Vs
Compare
Compare
Compare
Compare

J
J
vs J
VS j
J

Vs
Vs

=> max_LB among j

=8: LB_j=-1.2415
'= 1 is 0.3215

=> i=2 FAILS.

*% Checking candidate i=3
=1: LB j=-0.6155
2: LB_j=-0.5263
LB_j=-0. 2385,
LB j=-0. 5481,

Compare
Compare
Compare
Compare
Compare
Compare
Compare

Vs
Vs j
Vs
Vs
Vs
Vs
Vs

=> max LB among j

=> i1=3 FAILS.

%% Checking candidate i=4,
: LB j=-0.6119,
LB_j=-0.5175,
LB j=-1.2191,
LB j=-0.5214,
LB j=-1.4362,

Compare vs
Compare
Compare
Compare

Compare

Vs j
Vs j
vs j
vs j
Compare j
Compare

VS
VS

=> max_LB among j

=> i1=4 PASSE

*% Checking candidate i=5,

Compare vs
Compare
Compare
Compare
Compare

Compare

vs
Vs j
vs j
Vs j
Vs j

Compare vs

=> max_LB among j

=8: LB_j=-1. 2169,
!= 1 is 0. 3256,

S

LB_j=-1. 2088,
LB_j=-0. 2228,
LB_j=-0. 5189,
LB_j=-1.4249,

LB_j=0. 3183,

LB_j=0. 3215,

LB_j=-1. 4004,
LB_j=0. 2857,

¢ LB_j=-1.2961,
'= 1 is 0.2857

LB_j=0. 3256,

Included in S.

j=1: LB_j=-0.6004,

=8: LB_j=-1.2293
=1 is 0.3272,

=> i=b FAILS.

%% Checking candidate 1-=6,
LB_j=-0. 6305,
LB j=-0. 5409,
LB j=-1.1902,
LB j=-0. 2542,
LB j=-0.5594,

Compare vs
Compare

Compare

Vs
Vs
Compare
Compare

J
J
vs j
J

VS

j=1:

O1 = W D

LB_j=-0. 5137,
LB_j=-1. 2189,
LB_j=-0. 2154,
LB_j=-1. 4318,

LB j=0.3272,

7=2.

=>
=>
=>
=>
=>

4500

theta 1=0. 1336 **

theta 1 (0.
theta 1 (0.
theta_1 (0.
theta_1(0.
theta_1 (0.

1336)
1336)
1336)
1336)
1336)

>= LB_j(-0.4972)
>= LB _j(-~1.2088)
>= LB_j(-0.2228)
>= LB_j(-0.5189)
>= LB_j(-1.4249)

=> theta_1(0.1336) < LB_j(0.3183)
=> theta_1(0.1336) >= LB_j(-1.2353)

=>

theta 1=0.

theta 2=0. 1899 *x

theta 2 (0.
theta 2 (0.
theta 2 (0.
theta 2(0.
theta 2(0.

1336

1899)
1899)
1899)
1899)
1899)

>= LB j(-0.5877)
>= LB j(-1.2106)
>= LB j(-0.2204)
>= LB j(-0.5233)
>= LB j(-1.4267)

=> theta_2(0.1899) < LB_j(0.3215)
=> theta 2(0.1899) >= LB j(-1.2415)

=>

=> theta 3(-0.7132) <

theta_ 2=0.

theta 3=-0. 7132 3%
theta_ 3 (-0.
theta 3(-0.
theta 3 (-0.

theta 3(-0.
theta 3(-0.

1899

7132) <
7132) <

LB j(-0.6155)
LB j(-0.5263)
7132) < LB_j(-0.2385)
7132) < LB_j(-0.5481)
7132) >= LB j(-1.4004)
LB_j(0.2857)

=> theta_3(-0.7132) >= LB_j(-1.2961)

=>
=>
=>
=>
=>

theta 3=—

theta 4=0. 3866 s

theta 4(0.
theta_4 (0.
theta_4 (0.
theta_4 (0.
theta_4 (0.

0.7132

3866)
3866)
3866)
3866)
3866)

>= LB j(-0.6119)
>= LB_j(-0.5175)
>= LB_j(-1.2191)
>= LB_j(-0.5214)
>= LB_j(-1.4362)

=> theta_4(0.3866) >= LB_j(0.3256)
=> theta 4(0.3866) »= LB j(-1.2169)

=>
=>
=>
=>
=>

theta 4=0.

theta 5=0. 1838

theta 5 (0.
theta 5 (0.
theta_ 5 (0.
theta_ 5 (0.
theta_ 5 (0.

3866

1838)
1838)
1838)
1838)
1838)

>= LB_j(-0.6004)
>= LB_j(-0.5137)
>= LB_j(-1.2189)
>= LB_j(-0.2154)
>= LB_j(-1.4318)

=> theta 5(0.1838) < LB j(0.3272)
=> theta 5(0.1838) >= LB_j(-1.2293)

=>

theta 5=0.

theta 6=—0. 9896 =*xx*
theta_6(-0.
theta_ 6 (-0.
theta_ 6 (-0.
theta 6(-0.
theta 6(-0.

1838

9896) < LB_j(-0.6305)
9896) < LB j(-0.5409)
9896) >= LB j(-1.1902)
9896) < LB j(-0.2542)
9896) < LB j(-0.5594)



Compare vs j=7: LB _j=0.2715, => theta 6(-0.9896) < LB_j(0.2715)
Compare vs j=8: LB_j=-1.3192, => theta 6(-0.9896) >= LB j(-1.3192)
=> max_LB among j != i is 0.2715, theta 6=-0.9896

=> i=6 FAILS.

*% Checking candidate i=7, theta 7=0.7906 sk
Compare vs j=1: LB j=-0.6125, => theta 7(0.7906) >= LB j(-0.6125)
Compare vs j=2: LB_j=-0.5161, => theta_7(0.7906) >= LB_j(-0.5161)

Compare vs j=3: LB j=-1.2409, => theta 7(0.7906) >= LB j(-1.2409)
Compare vs j=4: LB j=-0.2138, => theta 7(0.7906) >= LB j(-0.2138)
Compare vs j=b: LB j=-0.5171, => theta 7(0.7906) >= LB j(-0.5171)
Compare vs j=6: LB_j=-1.4568, => theta 7(0.7906) >= LB_j(-1.4568)

Compare vs j=8: LB j=-1.1955, => theta 7(0.7906) >= LB j(-1.1955)
=> max_LB among j != 1 is —0.2138, theta 7=0.7906
=> i=7 PASSES. Included in S.

%% Checking candidate i=8, theta 8=0.0000 sx*
Compare vs j=1: LB j=-0.9562, => theta 8(0.0000) >= LB _j(-0.9562)
j LB j=-0.8535, => theta 8(0.0000) >= LB j(-0.8535)

[ ST SV P R
Il
S Ol = W N

Compare vs

Compare vs j=3: LB j=-1.4697, => theta 8(0.0000) >= LB j(-1.4697)
Compare vs LB _j=-0.4909, => theta_8(0.0000) >= LB_j(-0.4909)
Compare vs j= LB_j=-0.8545, => theta 8(0.0000) >= LB_j(-0.8545)

Compare vs LB_j=-1.6526, => theta 8(0.0000) >= LB_j(-1.6526)
Compare vs j=7: LB_j=0.1230, => theta 8(0.0000) < LB_j(0.1230)
=> max_LB among j != i is 0.1230, theta 8=0.0000

=> 1=8 FAILS.

Final subset S with weight factors = [4, 7]
Interpretation: with probability > 0.95, the true best is in S.
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49
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52
53
54
55

E PYTHON CODE FOR FUZZY LOGIC BY YU-LAM DATA)

E Python code for Fuzzy Logic by Yu-Lam data)

def classify_percentage(p):
if p > 65:
return A’
elif p > 55:
return ’'B’
elif p > 48:
return ’'C’
elif p >= 40:
return ’'D’
else:
return 'F’

cat_list = [’A’, 'B’, ’C’, 'D’, 'F’]
countABCDF = np.zeros((num_pairs, 5), dtype=int)

for i in range(num_boards):
for j in range(num_pairs):
mp_val = mp_scores[i, jl
p_ij = mp_val / 10.0 * 100.0
cat = classify_percentage(p_ij)
idx = cat_list.index(cat)
countABCDF[j, idx] += 1

m_fuzzy = countABCDF / float(num_boards)

def calc_xc_yc_for_one(mA, mB, mC, mD, mF):
x_c = 0.5 * (1*mF + 3*mD + 5*mC + 7*mB + 9%mA)
y_c = 0.5 * (mF**2 + mD**2 + mC**2 + mB**2 + mA**2)
return x_c, y_cC

Xc_yc_array = np.zeros((num_pairs, 2))

for j in range(num_pairs):
mA = m_fuzzy[j, 0]

mB = m_fuzzy[j, 1]

mC = m_fuzzy[j, 2]

mD = m_fuzzy[j, 3]

mF = m_fuzzy[j, 4]

Xx_c, y_c = calc_xc_yc_for_one(mA, mB, mC, mD, mF)
xc_yc_array[j, 0] = x_c

xc_yc_array[j, 1] = y_c
print ("=== Fuzzy Classification Results Per Board ==="
for j in range(num_pairs):
print (£f"Pair {j+1:2d}: "
f'm(A)={m_fuzzy[j,0]:.3f}, m(B)={m_fuzzy[j,1]:.3f}, "
f'm(C)={m_fuzzy[j,2]:.3f}, m(D)={m_fuzzy[j,3]:.3f}, m(F)={m_fuzzy[j
,41:.3£} "
f" => x_c={xc_yc_array[j,0]:.3f}, y_c={xc_yc_array[j,1]:.3f}")

ranking = sorted(range(num_pairs), key=lambda idx: xc_yc_array[idx, 0], reverse=
True)
print ("\n=== Ranking Based on x_c (Descending Order) ==="

for rank_i, pair_idx in enumerate(ranking, start=1):
X_C = Xc_yc_array[pair_idx, 0]
y_C = Xc_yc_array[pair_idx, 1]
print (f"Rank {rank_i}: Pair {pair_idx+1}, x_c={x_c:.3f}, y_c={y_c:.3£f}")
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F DATA FROM THE CHINESE CONTRACT BRIDGE ASSOCIATION

F Data from the Chinese Contract Bridge Association

F.1 Total Scores by Round and Board

This table contains data on total scores from the 2024 National Bridge Championships Open Pairs
Final [16].

Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
1 1 B2 990 | -990 | 11# o#
1 1 B3 920 | -920 3# 10#
1 1 B 480 | 480 | 12# 1#
1 1 B4 450 | -450 o# 4#
1 1 B5 300 | -300 8# 5#
1 1 B6 ‘50 50 7H# 6#
1 2 B5 -140 140 8# 5#
1 2 B6 -140 140 7H# 6#
1 2 B2 170 170 | 11# o#
1 2 B3 170 170 3# 10#
1 2 B4 ~180 180 o# 4#
1 2 B ~420 420 | 12# 1#
1 3 Bi 420 | 420 | 12# 1#
1 3 B2 420 | 420 | 11# o#
1 3 B6 420 | -420 7H# 6#
1 3 B4 170 | -170 o# 4#
1 3 B5 170 | -170 8# 5#
1 3 B3 140 | -140 3# 10#
1 4 Bi 660 | -660 | 12# 1#
1 4 B3 660 | -660 3# 10#
1 4 B5 660 | -660 8# 5#
1 ] B2 630 | -630 | 11# o#
1 4 B6 630 | -630 7H# 6#
1 4 B4 ~100 100 o# 4#
2 5 B4 170 | 170 | 10# 5#
2 5 B 100 | -100 | 12# of
2 5 B5 100 | -100 o# 6#
2 5 B3 100 | -100 4# 11#
2 5 B6 50 ‘50 8# 7#
2 5 B2 -130 130 1# 3#
2 6 B2 490 | -490 1# 3#
2 6 B3 490 | -490 4# 11#
2 6 B5 490 | -490 o# 6#
2 6 B4 460 | -460 | 10# 5#
2 6 B6 460 | -460 8# 7#
2 6 Bi 400 | -400 | 12# of
2 7 B 1430 | -1430 | 12# o#
2 7 B3 1430 | -1430 4# 11#
2 7 B2 680 | -680 1# 3#
2 7 B4 680 | -680 | 10# 5#
2 7 B6 680 | -680 8# 7#
2 7 B5 650 | -650 o# 6#
2 8 B6 150 | -150 8# 7#
2 8 B 140 | -140 | 12# o#
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F DATA FROM THE CHINESE CONTRACT BRIDGE ASSOCIATION

Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
2 8 B4 140 | 140 | 10# 54
2 8 B5 140 | -140 o# 6#
2 8 B3 130 | -130 4% 11#
2 8 B2 -50 50 1# 3%
3 9 B6 180 | -180 of 8#
3 9 B2 170 | -170 o# 4#
3 9 B3 120 | -120 5% 1#
3 9 B5 120 | -120 | 10# 7#
3 9 B1 120 | 120 | 12# 3%
3 9 B4 120 | 120 | 11# 6#
3 10 B5 300 | -300 | 1o# 7#
3 10 B1 200 | -200 | 12# 3%
3 10 B2 100 | -100 o# 4%
3 10 B4 100 | -100 | 11# 6#
3 10 B6 100 | -100 of 8#
3 10 B3 -620 620 54 1#
3 11 B4 100 | -100 | 11# 6#
3 11 B5 -50 50 | 10# 7#
3 11 B3 -100 100 54 1#
3 11 B1 140 140 | 12# 3%
3 11 B2 140 140 of 4#
3 11 B6 -140 140 of 8#
3 12 B4 1430 | -1430 | 11# 6#
3 12 B1 710 | -710 | 12# 3#
3 12 B6 710 | -710 of 8#
3 12 B5 680 | 680 | 10# 7#
3 12 B3 650 | -650 54 1#
3 12 B2 0 0 o# 4%
4 13 B4 200 | -200 1# 7#
4 13 B6 200 | -200 | 1o# of
4 13 B3 100 | -100 6# 2
4 13 B5 -90 90 | 11# 8#
4 13 B2 -120 120 3# 5%
4 13 B1 -200 200 | 12# 4%
] 14 B1 430 | -430 | 12# 4#
] 14 B2 430 | -430 3% 5%
4 14 B4 430 | -430 1# 7#
4 14 B5 430 | -430 | 11# 8#
4 14 B3 150 | -150 6# 2o#
4 14 B6 150 | -150 | 10# of
4 15 B6 200 | -200 | 10# of
4 15 B4 170 | -170 1# 7#
4 15 B5 140 | 140 | 11# 8#
4 15 B3 110 | -110 6# of
4 15 B1 100 | -100 | 12# 4%
4 15 B2 100 | -100 3% 5%
4 16 B5 500 | -500 | 11# 8#
4 16 B1 400 | -400 | 12# 4%
4 16 B6 ‘50 50 | 10# of
4 16 B3 -100 100 6# 2
4 16 B4 ~100 100 1# 7#
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F DATA FROM THE CHINESE CONTRACT BRIDGE ASSOCIATION

Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
] 16 B2 -150 150 3% 54
5 17 B2 510 510 4% 6#
5 17 B4 | -1010 | 1010 o# 8#
5 17 Bi | -1510 | 1510 | 12# 5%
5 17 B3 | -1510 | 1510 7# 3%
5 17 B5 | -1510 | 1510 1# of
5 17 B6 | -1510 | 1510 | 11# 10#
5 18 B1 -450 450 | 12# 5%
5 18 B2 -450 450 4# 6#
5 18 B4 -450 450 2% 8#
5 18 B5 -480 480 1# of
5 18 B6 -480 480 | 11# 10#
5 18 B3 -980 980 7# 3#
5 19 B3 170 | -170 7# 3%
5 19 B4 170 | -170 2 8#
5 19 B6 140 | 140 | 11# 10#
5 19 B2 -50 50 4% 6#
5 19 B5 110 110 1# of
5 19 B1 -670 670 | 12# 5%
5 20 B3 620 | -620 7# 3%
5 20 B5 620 | -620 1# of
5 20 B6 140 | 140 | 11# 10#
5 20 B1 -100 100 | 12# 54
5 20 B2 -100 100 4% 6#
5 20 B4 -100 100 o# 8#
6 21 B2 150 | -150 5% 7#
6 21 B4 110 | -110 3# o#
6 21 B1 100 | -100 | 12# 6#
6 21 B3 50 ‘50 8# 4%
6 21 B6 50 ‘50 1# 11#
6 21 B5 -100 100 2# 10#
6 22 B4 -630 630 3% of
6 22 B6 -630 630 1# 11#
6 22 B1 -660 660 | 12# 6#
6 22 B2 -660 660 5% 7#
6 22 B5 -660 660 2% 10#
6 22 B3 -660 660 8# 4%
6 23 B4 660 | -660 3% of
6 23 B6 660 | -660 1# 11#
6 23 B1 630 | 630 | 12# 6#
6 23 B3 600 | -600 8# 4%
6 23 B2 -100 100 54 7#
6 23 B5 ~100 100 of 10#
6 24 B1 50 50 | 12# 6#
6 24 B2 50 -50 54 7#
6 24 B3 50 ‘50 8# 4%
6 24 B4 50 -50 3% of
6 24 B5 50 ‘50 2# 10#
6 24 B6 50 ‘50 1# 11#
7 25 B4 -100 100 4% 10#
7 25 B6 -130 130 o# 1#
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F DATA FROM THE CHINESE CONTRACT BRIDGE ASSOCIATION

Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
7 25 B1 -130 130 | 12# 7#
7 25 B2 -130 130 6# 8#
7 25 B3 -130 130 of 5%
7 25 B5 800 | -800 3% 11#
7 26 B4 -150 150 4% 10#
7 26 B1 -620 620 | 12# 7#
7 26 B2 2620 620 6# 8#
7 26 B3 -620 620 of 5%
7 26 B5 -620 620 3# 11#
7 26 B6 -620 620 2% 1#
7 27 B5 790 | -790 3% 11#
7 27 B1 690 | 690 | 12# 7#
7 27 B4 480 | -480 4% 10#
7 27 B2 450 | -450 6# 8#
7 27 B6 450 | -450 2 1#
7 27 B3 -50 50 of 5%
7 28 B4 50 50 4% 10#
7 28 B5 50 ‘50 3# 11#
7 28 B1 -100 100 | 12# 7#
7 28 B2 -100 100 6# 8#
7 28 B3 -100 100 of 5%
7 28 B6 -100 100 2# 1#
8 29 B6 100 | -100 3% 2o
8 29 B3 2690 690 | 10# 6#
8 29 B4 -690 690 5% 11#
8 29 B1 ~720 720 | 12# 8#
8 29 B2 -720 720 7H# of
8 29 B5 -720 720 4# 1#
8 30 B3 550 | -550 | 10# 6#
8 30 B1 450 | -450 | 12# 8#
8 30 B2 420 | -420 7# of
8 30 B4 420 | -420 5# 11#
8 30 B5 420 | -420 4# 1#
8 30 B6 400 | -400 3# o#
8 31 B1 -450 450 | 12# 8#
8 31 B4 -450 450 54 11#
8 31 B5 -450 450 4% 1#
8 31 B2 -480 480 7# of
8 31 B3 -480 480 | 10# 6#
8 31 B6 -480 480 3% o
8 32 B4 200 | -200 54 11#
8 32 B3 200 | -200 | 10# 6#
8 32 B1 170 | 170 | 12# 8#
8 32 B5 110 | -110 4% 1#
8 32 B6 110 | -110 3% o#
8 32 B2 150 150 7# of
9 33 B1 50 50 | 12# of
9 33 B4 50 ‘50 6# 1#
9 33 B3 -430 430 | 11# 7#
9 33 B2 -460 460 8# 10#
9 33 B5 -460 460 5% o#
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F DATA FROM THE CHINESE CONTRACT BRIDGE ASSOCIATION

Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
9 33 B6 -460 460 4# 3#
9 34 B2 750 | -750 8# 10#
9 34 B1 660 | 660 | 12# of
9 34 B5 660 | -660 54 o
9 34 B4 630 | -630 6# 1#
9 34 B6 630 | -630 4% 3#
9 34 B3 -100 100 | 11# 7#
9 35 B4 400 | -400 6# 1#
9 35 B3 200 | -200 | 11# 7#
9 35 B5 150 | -150 54 o#
9 35 B6 -50 50 4% 3%
9 35 B2 -100 100 8# 10#
9 35 B1 -100 100 | 12# of
9 36 B1 870 | -870 | 12# of
9 36 B3 140 | 140 | 11# 7#
9 36 B4 140 | -140 6# 1#
9 36 B6 140 | -140 4% 3%
9 36 B5 -100 100 5# of
9 36 B2 -300 300 8# 10#
10 37 B6 150 | -150 54 4%
10 37 B2 120 | -120 o# 11#
10 37 B1 ~100 100 | 12# 10#
10 37 B3 -200 200 1# 8#
10 37 B4 -200 200 7# 2
10 37 B5 -300 300 6# 3#
10 38 B4 -130 130 7# of
10 38 B5 -130 130 6# 3%
10 38 B1 -180 180 | 12# 10#
10 38 B6 2300 300 54 4%
10 38 B2 2630 630 of 11#
10 38 B3 -630 630 1# 8#
10 39 B4 690 | -690 7# o
10 39 B5 690 | -690 6# 3#
10 39 B6 630 | -630 54 4%
10 39 B1 620 | -620 | 12# 10#
10 39 B2 170 | -170 o# 11#
10 39 B3 -100 100 1# 8#
10 40 B6 -400 400 54 4%
10 40 B3 ~420 420 1# 8#
10 40 B1 ~450 450 | 12# 10#
10 40 B2 -450 450 of 11#
10 40 B4 -450 450 7# 2#
10 40 B5 ~450 450 6# 3#
11 41 B5 200 | -200 7H# 4#
11 41 B3 100 | -100 o# of
11 A1 B4 -660 660 8# 3#
11 41 B2 | -1370 | 1370 | 10# 1#
11 41 B6 | -1370 | 1370 6# 5%
11 41 B1 1440 | -1440 | 12# 11#
11 42 B1 180 | -180 | 12# 11#
11 42 B6 120 | -120 6# 5#
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Round | Board | Table | TP-NS | TP-EW | Pair (NS) | Pair (EW)
11 42 B3 90 -90 o# of
11 42 B4 90 -90 8# 3%
11 42 B2 -100 100 | 10# 1#
11 42 B5 -100 100 7# 4%
11 43 B4 300 | -300 8# 3%
11 43 B1 ‘50 50 | 12# 11#
11 43 B6 ‘50 50 6# 5%
11 43 B3 -50 50 o# of
11 43 B5 -100 100 7H# 4#
11 43 B2 140 140 | 10# 1#
11 44 B2 300 | -300 | 1o# 1#
11 44 B4 300 | -300 8# 3#
11 44 B5 160 | -160 7# 4%
11 44 B1 150 | -150 | 12# 11#
11 44 B3 110 110 2 of
11 44 B6 -200 200 6# 5%
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