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ARTICLE INFO ABSTRACT

Keywords: Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an
Catastrophic forgetting integral part of our daily life. When tackling the evolving learning tasks in real world, such as classifying
Continual learning different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on

Edge computing

Federated learning
Knowledge transfer negative
Vision transformer

different edge devices. Federated continual learning (FCL) is a promising technique that offers partial solutions
but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device
processing, the negative knowledge transfer caused by the limited communication of non-IID (non-Independent
and Identically Distributed) data, and the limited scalability on the tasks and edge devices. Moreover, existing
FCL techniques are designed for convolutional neural networks (CNNs), which have not utilized the full
potential of newly emerged powerful vision transformers (ViTs). Considering ViTs depend heavily on training
data diversity and volume, we hypothesize ViTs are well-suited for FCL where data arrives continually. In
this paper, we propose FedViT, an accurate and scalable federated continual learning framework for ViT
models, via a novel concept of signature task knowledge. FedViT is a client-side solution that continuously
extracts and integrates the knowledge of signature tasks which are highly influenced by the current task.
Each client of FedViT is composed of a knowledge extractor, a gradient restorer and, most importantly, a
gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic
forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified
from the past local tasks and other clients’ current tasks through the global model. We implement FedViT
in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual
learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedViT improves
model accuracy by 88.61% without increasing model training time, reduces communication cost by 61.55%,
and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and
training different complex ViT models.

1. Introduction over time. Typically, a task is composed of multiple classes/objects
(e.g. different animals or musical instruments) and different features
Today, billions of mobile and Internet of Things (IoT) [1] devices for each class [5].

generate zillions bytes of data at the network edge, offering opportuni- Federated continual learning (FCL). Continual learning is a preva-
ties to deploy artificial intelligence (AI) locally on edge devices' Such lent technique that incrementally learns deep models from such a
on-device Al applications, e.g. deep neural networks (DNNs), have the  non-stationary data consisting of different tasks. Traditional continual
advantage of avoiding transmitting raw data and hence preserving data learning only learns its models from the training samples on their

privacy [2]. At the same time, the arising new challenge is that the
environment continuously evolves, requiring the DNN models to retrain
and adapt to those changes [3]. For example, Fig. 1 illustrates a preva-
lent DNN model - vision transformer (ViT) [4] - in client 1 needs to
handle a sequence of tasks (e.g. image classification or object detection)

hosted devices. In contrast, humans can learn from their own and
others’ past experiences through conversations, lectures, books and
other means. Motivated by the intuition of learning from other clients’
(indirect) experience, FCL combines continual learning in the federated
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Fig. 1. An example scenario of federated continual learning with n clients.

learning framework such that the model in a client can continuously
learn from its local data and the knowledge of the tasks in other
clients [6,7]. As shown in the exemplary scenario of Fig. 1, a cen-
tral server obtains the model weights/parameters locally trained in
n clients, aggregates them into a global model, and sends it back to
all clients. This allows each client to perform continual learning of
its task sequence based on its local data, while learning from other
clients by communicating their task-specific weights via the server.
One major problem of performing continual learning in a client is
catastrophic forgetting: when its model learns new tasks over time, it
may forget previously learned task information and the model accuracy
in these tasks degrades [8-10]. Taking the local learning process of
client 1 in Fig. 1 as an illustration, once the model within client 1
completes the training for its initial task (i.e. task (1), its parameters
converge to the optimal point of the task’s loss area, producing an
accuracy of 86%. However, when subsequently adapting to the second
task (i.e. task (2) using the same model, the parameters gradually shift
away from the task 1’s optimal point and progressively approach the
optimal state of task 2, due to the limited correlation between the two
tasks. Consequently, despite achieving 83% accuracy on task 2, the
model’s classification accuracy for task 1 experiences a significant drop
to 54%, exemplifying the phenomenon of catastrophic forgetting for
the previous task. The challenge of coping with evolving task is further
exacerbated when training DNN models according to evolving tasks on
a large number of clients. In FCL, each client has its private sequence
of tasks. When learning tasks are unrelated, their datasets are severely
non-IID. Even for the same task, different clients also host non-IID
datasets whose distributions of classes, input data features, and numbers
of samples may vary [11]. This means that although starting from the
same initialized global model, the local models on different clients
diverge after separate local training on their distinct data distributions.
This divergence presents a significant challenge when a client’s model
is aggregated with models from other clients in federated learning.
The dissimilar knowledge in other clients’ models may degrade the
performance of the model on its specialized local data. This detrimental
transfer of irrelevant knowledge from the global model is termed
negative knowledge transfer [11-15], as shown in Fig. 1. Besides
the two challenges, existing FCL works neglect the potential of using
newly emerged powerful vision transformers (ViTs) [4] in this scenario.
ViT is a transformer [16] model applied to the Computer Vision (CV)
area, it exhibits strong robustness to data distribution drift [17] which
is the key issue faced by continual leaning and federated learning.
Moreover, the performance of ViT is highly dependent on the quality of
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training data [18], such as data volume and data diversity. In FCL, as
the number of tasks increases, it naturally provides such data resource
to ViT. Therefore, we focus on and investigate the performance of ViT
models in FCL.

Challenges of ViT in FCL at edge. Edge computing is developed to
reduce communication costs to cloud servers and enhance data privacy
via on-device data processing [19-21]. Performing FCL at the edge
brings new problems such that the computation and communication
costs in model training increase with the number of tasks and clients,
and conducting such expensive training on resource-constrained edge
devices gives rise to two technical challenges.

Limited computational resources lead to significant accuracy losses.
Existing continual learning and FCL techniques are server-side so-
lutions, which are designed for powerful cloud servers and retain
training samples or model weights of previous tasks from all clients
to avoid catastrophic forgetting [7,22-29]. This means the learning
process becomes longer when the number of tasks increases. For ex-
ample, the training time of a ResNet-18 [30] increases by 50 times
when the number of tasks increases from 1 to 80. When encountering
resource constraints, these techniques can only retain a portion of
samples and may incur large accuracy losses (20% to 50% losses)
because most of the important information in previous tasks is dropped.
This phenomenon is more severe when using ViT, because ViT is a
computation-intensive and data-hungry model [4,31]. Training ViT
without sufficient iterations and data samples leads to quite low ac-
curacy, making it unreliable to act as the task’s knowledge. Moreover,
storing a large number of samples or model weights significantly in-
creases the training cost of ViT model on the client side. Therefore, the
first challenge, is to design a lightweight learning method that can
keep extensive historical knowledge and take short model training time
directly on resource-constrained edge devices.

Preventing negative knowledge transfer causes high communication costs
and privacy leakage. Existing techniques rely on the central server which
collects and keeps all clients’ task models to prevent negative knowl-
edge transfer [7,29]. This mechanism causes high communication costs
because: (i) the knowledge’s size increases linearly with the number
of clients; and (ii) all clients need to synchronize other clients’ latest
knowledge once any new task arrives. For instance, the communication
traffic of FedWEIT [7] is eight times larger than that of the basic
federated learning method when the client number is just 20. ViT’s
performance depends on the quality of training data and the number
of model weights, therefore, frequent transmission with the central
server leads to significant communication cost. Maintaining the global
knowledge among multiple clients also violates scalability and privacy
enforcement of edge computing. The second challenge is how to
develop a distributed method that can prevent negative knowledge
transfer without increasing extra communications among clients.

In this paper, we depart from computationally and communication-
intensive FCL server-side approaches and propose FedViT, a lightweight
client-side solution that integrates knowledge of signature tasks which
encompass the relevant past and peer tasks. FedViT acts in each client
and extracts compact and transferable knowledge — the important
data samples. When learning a new task, FedViT integrates it with
the knowledge of its signature tasks, which are the new task’s most
dissimilar tasks identified from local past tasks to prevent catastrophic
forgetting, and the updated global model representing other clients’
current tasks in preventing negative knowledge transfer. By complet-
ing knowledge integration with polynomial time complexity, FedViT
addresses the limitations of existing techniques by providing both
high model accuracy and low communication overhead at edge. In
particular, the contributions of this paper are as follows:

+ Scalable client-side solution through the knowledge of sig-
nature tasks. In contrast to the prior art, FedViT is a client side
method that acts on the knowledge of signature tasks, resulting
into light-weight computation and communication for clients.
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+ High-accuracy model training via gradient integration. When
learning a new task in a client, FedViT designs an optimization
approach that integrates its gradient with gradients of previously
experienced tasks, and integrates its gradients before and after
global aggregation. Both integrations guarantee the acute angle
between the integrated gradient and all other gradients. This
gradient is then used in model updating to prevent catastrophic
forgetting and negative knowledge transfer.

Convergence proof and evaluation. We prove the convergence
of FedViT under the constraints of learning rates. We also fully
implement FedViT on top of PyTorch to support deep learning
applications on edge devices, and conduct extensive evaluation
against the state-of-the-art techniques, i.e. continual learning, fed-
erated learning and federated continual learning, using popular
continual learning benchmarks.

Summary of experimental results. (i) Extensible in terms of architecture.
We test FedViT on 5 types of heterogeneous edge devices (Jetson
TX2, Nano, Xavier NX, AGX, and Raspberry Pi). (ii) High accuracy
under resource-constrained continual learning. We compared FedViT to
11 state-of-the-art techniques, and find that FedViT presents signif-
icant accuracy gaps among them, demonstrating its effectiveness to
prevent negative knowledge transfer and catastrophic forgetting. (iii)
Communication-efficient federated model training. To complete the same
model training jobs, FedViT reduces communication time and volume
compared to the latest FCL technique, especially FedWEIT. (iv) Scalabil-
ity. We ensure that our approach works well when the numbers of tasks
and clients increase, and the condition of communication changes. We
also demonstrate the applicability of FedViT on 8 prevalent ViTs [32].

The remainder of this paper is organized as follows: Section 2
introduces the background and related work of this work, Section 3
explains our approach, Section 4 provides a convergence proof of our
method, Section 5 evaluates it, and finally, Section 6 summarizes the
work. Portions of this work appear in a previous conference paper [33]
and we have largely extended the article, by discussing the advantages
and key challenges when using ViT in FCL (see Section 1), giving a
brief introduction to vision transformer (see Section 2.1), formulating
the federated continual learning problem (see Section 2.2), expand-
ing the related work with vision transformer and its applications in
federated or continual learning (Section 2.3), developing new sample-
based knowledge extraction (Section 3.2) method and gradient restore
(Section 3.3) method to design a lightweight FCL approach for ViT,
expanding the baselines and re-evaluating FedViT on all of the datasets
and new ViT models (Section 5).

2. Background and related work
2.1. Vision transformer

Transformer [4,16,34] is an emerging neural network architecture
based on self-attention mechanisms [16,35] to model global dependen-
cies in sequential data. It captures long-range context by computing
correlations between all input elements. The standard Transformer [16]
consists of an encoder—decoder structure. The encoder maps an in-
put sequence to a continuous representation through multi-head self-
attention layers. The decoder generates the target sequence recursively
from the encoder outputs. Transformer has shown powerful perfor-
mance in Natural Language Processing (NLP) and Computer Vision (CV)
areas. Vision transformer [4] is such a model applied in CV field.
It splits an image into a sequence of tokens and captures the long-
range dependencies among these tokens via self-attention mechanism.
Besides, ViT is less constrained by "induction bias" [36], making it
a flexible and powerful model with strong representation capabil-
ities. Currently, ViTs have shown advantages in various computer
vision tasks, such as image classification, object detection, and semantic
segmentation.
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Standard ViT consists of three components: patch tokenizer, trans-
former encoder, and classifier (as is shown in Fig. 1). When an image
x € RCXWxH) jg arrived, where W, H and C are width, height, and
channel number, the patch tokenizer splits the image into N patches
and maps them into a sequence of d dimension patch embeddings
x € RN*4 by a trainable linear projection.

T
oK 4 @
d

Attention(Q, K, V') = softmax(

Then, the transformer encoder (composed of a stack of transformer
blocks) transforms the embeddings x into three parts (matrixes): Q,
K, and V, and then calculates their attention scores (correlations) via
the formula (1) (according to [4]) to generate new embeddings that
contain global information of x. Finally, the classifier predicts the input
image’s class according to the encoder’s output vector (only the first
element, i.e. CLS token [4]) via a commonly used linear projection
and softmax operation. For simplicity, we omitted the introduction of
other details of ViT, such as the CLS token, position embedding, layer
normalization, etc.

2.2. Federated continual learning

Conventional federated learning (FL) is cast as an empirical risk
minimization problem of the form:
N pm
min Loss(W) = Z{ %IOSS(M(W) 2
where W is the global model and loss"™ (W) is the nth device’s local
loss function, commonly defined by:

1D}
2 losscp (W5 x;, y) 3
i=1

D@

where D™ = {(x;,»,)|0 < i < |D"W]|} is the data samples on nth device.
In this setting, all data samples D = {D", D® ... DM} distributed
among clients belong to a single and the same classification task.

While, federated continual learning (FCL) assumes that multiple
clients are trained on a sequence of tasks from private data streams. In
this setting, overall data samples D consists of a sequence of individual
tasks. That is D = {D;, D,,..., Dy}, where T is the total number of
tasks. As for a specific client n, its data samples D" may continuously
come from different tasks, namely, D" = {D(l”),D;"), ,DE{")}, where
k is the identification of task. Then, the goal of FCL is to maximize
each client’s test accuracy on all of the past tasks’ samples under the
paradigm of federated learning.

2.3. Related work

The major problem faced by federated continual learning is the
catastrophic forgetting in neural networks when learning new tasks [8].
This problem is further complicated by the negative transfer in feder-
ated learning due to the Non-IID datasets in different clients [15]. Here
are existing techniques designed to address these problems.

Continual learning. Mainstream techniques designed to address
catastrophic forgetting can be divided into three categories: (1) memory
rehearsal uses a memory cache to store the samples of previous tasks
and use them in learning the new task to avoid forgetting. Hence their
computational costs increase with the number of tasks [22-24]. (2)
Regularization-based techniques estimate different parameters/weights’
contributions to a model and maintain part of information in important
weights when learning new tasks [25-28]. (3) Dynamic architectural
techniques design different models for different tasks and solve catas-
trophic forgetting by isolating part of the model parameters [37-39].
However, it is difficult to apply these techniques in federated learning,
because they require massive retained samples or weights to increase
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model generalization, while restricting to learn tasks from the local data
without benefiting from other clients’ knowledge.

Federated learning trains a global model using private data from
multiple clients [40,41]. This training paradigm utilizes distributed
datasets to help DNN models, which are easily trapped in local optima
due to limited training conditions [42] like insufficient samples, find
the global optima parameters with stronger generalization. In a client’s
model training, negative transfer from other clients (due to their Non-
IID datasets) is a crucial problem that delays training convergency
and degrades model accuracy [15]. Personalized federated learning is a
major technique used to mitigate such negative transfer and it can be
divided into four types: (1) Mixture model techniques such as adaptive
personalized federated learning (APFL) [13] dynamically change the
ratio of global and local models in training. (2) In local fine-tuning
techniques, each client first accepts a global model, and then updates
it using local data. Meta-learning [43-45] is increasingly employed
to complete the update within a few iterations. (3) Contextualization
aims to provide a different model for each context, e.g., character’s
context [46]. (4) Multi-task learning lets each client train a separate
task [47] and further classifies clients into different groups according
to their tasks [48]. Note that the last two types of techniques cannot be
directly applied in continual learning, because they compound learning
new tasks with contexts and multi-task learning.

Federated Continual Learning. Some initial technique proposes
server-side solution that maintains some training samples in the server
and uses them in global model updating to avoid catastrophic forget-
ting [29]. The effectiveness of this work depends on the amounts of
maintained samples and it is impractical to share clients’ local data
in the server due to data privacy [49]. The latest FCL technique,
FedWEIT [7] uses adaptive model weights to maintain previous tasks’
knowledge in a client and retains all clients’ adaptive weights in the
central server. Whenever a client needs to learn a new task, it first
obtains the server’s adaptive weights and then uses them in model
training to prevent both catastrophic forgetting and negative transfer.
The main limitation of FedWEIT is the scalability with respect to the
number of clients and tasks due to their communication overhead.

Vision Transformer. The standard ViT [4] is the first transformer
architecture in computer vision, but its performance depends on large
scale training data and it has a heavy computational complexity due to
the self-attention mechanism. Hence, the following directions of ViT are
respectively data efficient ViTs [18,50-52] and computational efficient
ViTs [53-58]. Data efficient ViTs either incorporate with convolutional
operations to make ViTs training on small scale dataset [52] or distill

knowledge from a pretrained CNN teacher [18]. Computational effi-
cient ViTs adopt different space reduction methods to progressively
shrink the dimension of features [54,55]. Besides the architecture
design, ViT has attracted the attention of researchers in both the FL and
continual learning fields. For example, ViT-FL [17] conducts a series of
experiments and demonstrates that ViT is well-suited for non-iid FL set-
ting. FESTA [59] splits the model into a head and a body, deploying the
body on server to learn task-shared feature while deploying the head
on each client to perform task-specific prediction tasks. In continual
learning, Dytox [60] makes the body to capture task-agnostic common
knowledge, while providing a unique task token for each newly added
task. Similar to existing classifier ensemble strategies [61,62], Dytox
concatenates all the task-specific classifiers to form a unified classifier
capable of classifying multiple past tasks. LVT [31] and META [63]
also explore the usage of ViT in different learning scenarios. However,
these works either do not consider the catastrophic forgetting issue
when learning stream of tasks on client or failed to leverage federated
learning technology to transfer knowledge learned from other clients
to improve the ViT’s generalization capability.

3. Method
3.1. Overview

We design FedViT to continually train sequences of different learn-
ing tasks on federated clients. FedViT features on a novel concept of
signature task knowledge which further enables lightweight compu-
tation and communication on resource-constrained edge devices. As
shown in Fig. 2, FedViT acts in each federated client and is composed of
three components: knowledge extractor, gradient restorer and gradient
integrator. In FedViT, each client has its private sequence of tasks.
Upon receiving a new task ¢, in client j, the client needs to train
for multiple iterations locally and then send back the trained model to
the central server for global model aggregation. Suppose the knowledge
of m previously learned tasks are retained (m > 1), FedViT trains ViT
models using r aggregation rounds. Each round consists of two parts:
local training with v training iterations and global aggregation with
the central server. The v iterations contain two stages: (1) fine-tuning
the ViT’s head (classifier) weights by freezing the body (composed
of tokenizer and transformer encoder), (2) training the body weights
combined with m old tasks’ knowledge. When aggregating global model
on server and updating local model on client, only the ViT’s body
participates (as is shown in Fig. 1 where the classifier is not displayed
in central server).
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This training paradigm utilizes the properties of decomposabil-
ity [59,60] of ViT and robustness [17] to distribution shift of its trans-
former encoder, making the body always learn cross-task information
while the head only serves for task-specific information extraction.

In summary, FedViT is designed with three objectives.

Lightweight and scalable method. In order to effectively train
tasks on federated clients with a large number of tasks and clients,
FedViT is a client-side method that exploits the limited resources of
edge devices by extracting critical knowledge and integrating those
of signature tasks. The knowledge extractor stores the knowledge of
each task, i.e., a subset of training samples for that task. The gradient
restorer converts the knowledge of each task into a gradient g, which
can help the ViT model quickly recover the knowledge retained from
the previous task when learning new task. More specifically, We use a
very small amount of locally trained samples as the knowledge learned
by ViT. This is because ViT has a distinct “data hungry” characteristic,
making its performance in resource-constrained edge computing envi-
ronments more sensitive to the quality of training samples, especially
when the amount of data for a single task is limited. Moreover, there
are usually redundant samples in the original training set that may
have a negative impact on recovering knowledge for a given task.
For example, samples that cause a large inference loss for the ViT
model after training. Given the limited storage space and computational
overhead of edge devices, it is necessary to extract only a small amount
(e.g. 10%) of samples for each task.

Catastrophic forgetting prevention. At each training iteration, the
gradient integrator takes task ¢, ,’s original gradient g,,,, and the k
gradients (k < m) of 7,,,,’s most dissimilar previous tasks as inputs, and
outputs an integrated gradient g’ that has an acute angle with all input
gradients. In a geometric term, this means updating the model using
gradient g’ does not increase the loss (i.e. decreasing the accuracy) of
the task represented by any input gradient [22]. Among all previous
tasks, the k tasks that are most dissimilar with task 7,,,; are considered
because the included angles between their gradients and g, are the
largest. The integration process is solved as an optimization problem
that minimizes the rotated angle between g’ and g,,,; and completes in
polynomial time.

Negative knowledge transfer prevention. Following the standard
federated learning setting [15], the global model in the central server
starts from a random client’s model. At aggregation round i, client
j first uploads its local model weights to the server and obtains the
updated global model after aggregation. After each global communica-
tion, FedViT fine tunes the model using one epoch of local samples. At
each iteration, the gradient integrator takes the gradient gf; "y before
aggregation and g¢ L after aggregation as inputs and outputs the
integrated gradient g:n Ly that has acute angles to both input gradients.
Hence using g/ . to update model can incorporate global information
from other clients, while avoiding decreasing model accuracy in local
data.

3.2. Knowledge extractor

Knowledge extractor has two design purposes: to preserve knowl-
edge that retains most of the information about the task and to make
it easy to use this knowledge when learning new tasks. Since ViT is a
highly data-dependent model, we aim to fully exploit the relationship
between current task’s training samples and the knowledge learned
on it, making the ViT able to quickly and exactly recall the task’s
knowledge using only a small amount of the task’s samples (e.g. 10%).

Specifically, we consider such task-related samples from two as-
pects: (1) The samples are well adapted (e.g. have lower loss values) to
the trained ViT model on this task; (2) The class (category) distribution
of these samples is consistent with that of the task’s complete samples.
We believe the samples extracted by this method are important and
impressive for the model to recover the task’s knowledge. Just like
the way humans review old knowledge, using more important and
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Fig. 3. Process of sample extraction: Upon completing a task, the knowledge extractor
sorts samples within each class C; in ascending order based on the loss values generated
by the current model (Step 1), and then selects the lowest 10% (according to p) of loss
values samples in each class to retain (Step 2). The ultimately extracted knowledge
(data samples) maintains the same class distribution as the complete set of samples.

impressive learning materials makes it easier to recall the memories
about that knowledge. Similarly, using these samples will guide the
optimization direction of ViT model to adapt to old tasks when learning
new tasks.

Formally, let D; = (X;,Y;) represent the complete training samples
of task 7; on a client. After training the task #;, the knowledge on task
t; can be denoted by M; = {M, ;|1 < j < |c|}, where |c| is the total
number of classes in D;; M, ; is the extracted samples belonging to the
t; task’s jth class and it should satisfies the following conditions:

! !
M;; =X Y)

4
= {(x] ;s Y I o)) € Dy loss(f (Wi x[ ). ¥i ) < py)

where W, represents the model weights trained after the task 7;, loss is
the cross-entropy function, and p; represents the loss value at a certain
percentile (e.g. 10%) in the jth class.

Fig. 3 illustrates the process of knowledge extraction by a client
after completing the task 7;: (1) the current trained model for task
t; is used to infer the loss values of all training samples; (2) all loss
values are sorted in ascending order; (3) for each class C, the top 10%
(according to the value of p) of samples based on their loss values are
retained. This method constructs a sample subset (knowledge) whose
class distribution is consistent with the original dataset (preserving
the samples diversity of this task), while ensuring that each class
contains samples that are best adapted to this task’s model (ensuring
the importance of the samples to this task).

3.3. Gradient restorer

The knowledge restorer is designed to utilize the extracted knowl-
edge to maintain the model’s accuracy on old tasks when learning
new tasks. This component converts the saved samples (knowledge)
{M,,M,...M,,} into gradients that are relevant to the m old tasks,
ie. {g1.82,..-,8n}- As these samples are most adapted to the old task
models and maintain the class distribution of old tasks, the gradients
computed on them can contain the hidden knowledge of these tasks.
Therefore, combining these gradients to update new task’s model can
make it also adapt to the old task’s samples.

Formally, we use cross-entropy as the loss function, and compute
the gradients of current task’s model W on the knowledge(samples)
preserved from all the old task #;:

g = Vioss(f(W, X, Y)),(1 <i <m) ®)

where V is the gradient operator applied to the prediction f(W, X))
and the ground truth label Y/ for each old task. We then compute the
gradient on the new task 7,,,;:

Zme1 = VIoss(f (W, Xy 11), Vi) (6)

With the increased number of tasks (that is, m is large), FedViT
only selects the k gradients that are most dissimilar with task 7,,,’s
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Fig. 4. Example model learning process with FedViT.

gradient. That is, the distances (e.g. Wasserstein distance) between
these gradients and g,,, are the largest, hence these k gradients’
corresponding tasks are mostly influenced by the model updating using
gradient g, .. In training, only the selected k gradients are calculated
to save computational costs. Note that in FedViT, parameters p and k
are set according to hyperparameter search: a value is selected that it
produces the highest model accuracy within certain memory or time
constraint on edge devices. For the ratio p of retained samples, the
constraint is the memory footprint of these samples. For the number
k of gradients, the constraint is each task’s computational time.

3.4. Gradient integrator

The gradient integrator is developed to find a rotated gradient g’ that
decreases the loss of the current task 7,,,; without increasing the losses
of its signature tasks. These tasks are 7, ,’s k most dissimilar tasks in
preventing catastrophic forgetting, and they are tasks from other clients
in preventing negative knowledge transfer. This requires the included
angle between g’ and any gradient g; of these tasks being an acute
angle [22], because these gradients decide the updating directions
of model weights. If 7, ,’s original gradient g, ,; does not meet the
above requirement, the integrator aims to minimize the rotation angle
between g’ and g,,,, so as to maximize the learned knowledge of task
tq41- Formally, let G = {g; to g, } be the set of previous gradients,
the integrator employs the quadratic programming [22] to solve this
optimization problem with polynomial time complexity:

1 12
n§||gm+1,g||2 %)

s.t. Gg' >0
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where Gg’ |G||g|cos® > 0 means the included angle 6 between
any gradient in G and g’ is an acute angle. In Eq. (7), %Ilgmﬂ,g’ ||§ =
1 1 1 .

5878 ~gmi18' + 3(Eme1) &1, Where 3(g,41)7 g,y is @ constant and

can be removed. Hence the gradient integrator solves the dual problem

of Eq. (7) as:

min lUTGGTU + gTGTv
v 2 (€)]

st.v>0

That is, the gradient integrator solves the dual optimization pro-
gramming in Eq. (8) to find v and calculates the integrated gradient
according to the following equation [22]:

¢=GTv+g,, ©
3.5. Running example

Fig. 4 shows FedViT’s model training process when a new task 7,
arrives, and the whole process has three global aggregation rounds
and each round has three local training iterations. After learning each
task, the knowledge extractor is applied to retain 10% of model weights
as this task’s knowledge. This example selects one iteration and one
aggregation round to illustrate how FedViT works.

At iteration 2 of round 2, FedViT prevents catastrophic forgetting
based on the retained knowledge (M, to Mj;) of the three previously
learned tasks (¢, to r3). The gradient restorer computes gradients g,
to gz using samples from every retained knowledge respectively. It
then calculates the Wasserstein distance between the gradient g; (1 <
i < 3) and g4, and selects the two most dissimilar gradients g, and
g,. Subsequently, the gradient integrator computes the included angles
between g, and two selected gradients (g, g,), and finds that angle
between g, and g, is obtuse. This means directly updating the model
weights according to gradient g, will increase the loss function of task
¢, and degrade the accuracy of this task. The integrator thus solves the
quadratic programming problem to find the minimal rotation angle to
adjust g,. Finally, the adjusted gradient g’ is used in training.

After completing three training iterations of round 2, the local
mode is uploaded to the central server for global aggregation. FedViT
then performs a fine tuning of the updated global model. At each
tuning iteration, the gradient integrator rotates each gradient before
aggregation (e.g. g§2) such that it has an acute angle with the gradient
after aggregation (e.g. g42) and produces g42 that is used to update
the model. This updating direction incorporates the global information
from other clients, while avoiding their negative knowledge transfer
to the local model before aggregation.

4. Proof of convergence in FedViT

In this section, we prove the convergency of FedViT in the frame-
work of federated continual learning(FCL). Conceptually, the conver-
gence means the model weights can achieve the global optimum ones over
the training process. This work focuses on proving FedViT’s convergence
of model training in a client. For simplicity, we omit the index of the
client in the following proof.

Definition of convergence. Let W be the set of the model weights
in a client, W* be the optimal weights, and W, be weights at iteration
r (r > 1), and f(-) be the label prediction function of the model. During
the iterative training process, the gap H(r) between these W, and W*
is defined as:

H(r)= Y fW)=min 3" f(W) (10)
i=1 i=1

Given that r is usually a large number and the training can converge
if @ approaches 0. We convert Eq. (10) to:

lim @ lim E[f(W)] = f(W*) =0 1)

r—oo
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where E is the mathematical expectation. In convergence proof, we
compute the upper bound of lim,_, & ) and show that it approaches
0 under some constraints. The proof is 'based on the three assumptions
in existing work [64,65]

Assumption 1. The expected squared norm of stochastic gradients
is uniformly bounded, i.e. IEI||Vf(W,,§,)||2 < A, where ¢, is batch of
training samples and A is a constant

Assumption 2.
constant D: ||W, —

The update of model parameters is bounded by a
Wiiilla < D.

In federated learning, suppose gradients follow Assumptions 1 and
2, the upper bound of FedAvg [66] is given in Assumption 3 [15].

Assumption 3. In FedAvg, the training is bounded by:

E[f(W)l - fW™) < (—+—]E||W W) (12)

y+r—

where B = Zi]ill’izo'iz + 6LQ + 8(r — 1)24%, L, u are constant, o; is

the upper bound of gradient g,’s variance, A is the upper bound of
(g) © = %, y = max{8z,r}, p; denotes the weights of client i, and
Q= f*W)- Zl’.'zl p; [i(W*) denotes training data’s degree of severity
in terms of Non-IID.

Proof steps. In FedViT, suppose W, = WS u WL consists of
global ViT weights W and local ViT weights WL, At iteration r, let
n% and n’ be the learning rates used in training weights W6 and
WL, respectively. The proof of FedViT’s convergence has three steps:
Lemma 1 proves the upper bound of training W¢; Lemma 2 proves
the upper bound of training W’; and finally Theorem 1 proves the
convergence of training the whole model W under the constraints of
two learning rates an and an.

4.1. Upper bound of training local weights W'

Lemma 1. Let W, be the client’s local weights at iteration r and W" be
the optimal local weights, the training of WL is bounded by:
D2 Azl’[L

E[f WOl = fWE) < = (13)

2

Proof. . Let g, = Vf (W,L,Sr) be the gradient at iteration r. According
to Eq. (10), the gap H(r) between local weights W,* and W™ is:

HY= Y 1w —min 3 rwh)
i:r] i=1 (14)
= YW - fwt]
i=1
Suppose that f(-) is convex, we have:

FWEY > fWE) + (g W -wt) (15)

In model updating, WL satisfies:
L L_ L
W =W--ns

N WL _WL _WL

L* L
r+l w - rlr 8r

L L2 L L L_ 2
— W -WEIl =W =-W" —ngll; 16)
Loy _ 1 L L*|2
— (g WE-Ww )= g AW =W
nL
L L* r 2
Wi -w ||)+7||gr||2
By combining Egs. (14), (15), and (16) we have:
H<r><2 <||WL WL - Iwh, - whiD)
an

j 2
+j; > gl
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We further lower the upper bound H (r) of local weights W’ based
on Assumptions 1 and 2 and scale H(r) as:

,
2 1 2 L

H(r) <D 2:1_-L+7~2r”
/ 18)

fWwty < — -+

N L
ELf(W, )] - 2 7

4.2. Upper bound of training global weights W

Lemma 2. Let WC be the client’s global weights at iteration r and W'
be the optimal global weights, the training of W,C is bounded by:

E[fW] - fwe) <

19

2B *
T SR -

y+r—1

where B = Y| p2o? + 6L +8(r — 12(g")’.

Proof. FedViT employs FedAvg [15] and FedKNOW [33] as the global
parameter aggregation algorithm. Hence if its gradient g’ follows As-
sumptions 1 and 2, its training of global weights can be bounded
by Eq. (19) according to Assumption 3. We now proves the bounded-
ness of g’.

In FedViT, we select k past tasks from the stored samples { M, M,,
., M,,}, and use the ViT model W¢ to compute the past gradients g,
to g,. Then we use Gradient Integrator and the current task’s training
samples to get g’. That is, g = GTv + g, (v > 0) according to Eq. (9).
According to Assumption 1, all gradients in G are bounded and g, is a
constant, we have ||g’||? in Eq. (19) is bounded:
I1g'I1? = max([IGTv + &%)

T T (20)
= max(g, g, +2v Gg, +1)

4.3. Convergence of overall model

Theorem 1. In a client, FedViT can converge under two constraints: (1)

its local weights’s learning rate nL decreases at the rate of O(r™2); and (2)
its global weights’ learning rate n¢ < and it decreases at the rate of
oGy

(
lim ELfWFu W] = fW*) =0 @1

Proof. Let W* = WL uW?", we convert Eq. (21) as:

lim E[f (W uwW o) - fovE uw®) =0

— lim E[f W] = fOV Y UE WO - fW ) =0 @

According to Lemma 1, lim,_, E[f(W5)] — f(WL") is bounded
(Eq. (13)) and this bound approaches to O if the learning rate n*
decreases at the rate of (D(r’%) [67,68]. Similarity, Lemma 2 states
that lim,_ ., E[f(W9)] - f(W ") is bounded (Eq. (19)) and this bound
approaches to O if learning rate nG < and decreases at the rate of
orH[15. w

H(y+r)

5. Evaluation

In this section, we evaluate the full implementation of FedViT on top
of PyTorch [69] in exhaustive experimental scenarios against a wide set
of data benchmarks and ViTs.

5.1. Experimental settings

Testbed. We choose four types of heterogeneous edge platforms
imposing different architectures to showcase FedVIT’s cross-platform
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nature when it comes to hardware: Jetson TX2 has 256-core NVIDIA
Pascal GPU and 8 GB memory; Jetson Nano has NVIDIA Maxwell
architecture with 128 NVIDIA CUDA cores and 4 GB memory; Jetson
Xavier NX has 384-core NVIDIA Volta GPU with 48 Tensor Cores and
16 GB memory; and Jetson AGX has 512-core Volta GPU with Tensor
Cores and 32 GB memory. All Jetson platforms run Ubuntu 18.04.5 LTS
and support ViTs in PyTorch 1.9.0 (Python 3.6.9).

Datasets. We select five representative federated and continual
datasets to evaluate FedViT. In these datasets, a task refers to an image
classification task for a given set of objects. Following the setting
of classic continual learning methods [70], we divided the dataset
(training/test sets) into tasks by classes.

» CIFAR100 [71] and FC100 [72]: They both have 50k data points
(training samples) from 100 classes and 10k testing points (100
ones per class). In continual learning, these data points belong to
10 tasks and each task has 10 classes.

CORS50 [73]: This dataset has 165k data points from 550 classes
and 55k testing points (100 ones per class). These data points
belong to 11 tasks and each task has 50 classes.

MinilmageNet [74]: This dataset has 50k data points from 100
classes and 10k testing points (100 ones per class). These data
points belong to 10 tasks and each task has 10 classes.
TinilmageNet [75]: This dataset has 100k data points from 200
classes and 10k testing points (50 ones per class). We divided this
dataset into 50 tasks (4 classes per task) to evaluate the impact
of task number to FedViT’s performance.

These datasets were trained on a 6-layer ViT model, which has the
same architecture design as the standard ViT model [4]. Furthermore,
to evaluate the FedViT’s generalization capability on different model
architectures, we also tested it on 8 state-of-the-art ViTs [32]. Consider-
ing evaluation budget, we use the tiny version of the 8 ViT models and
modify their configurations to adapt to the benchmarks. For example,
to train DeiT [18] model on CIFAR-100, we modified the model’s image
size parameter from 224 to 32 and the patch size parameter from 16 to
4. With these changes, DeiT can split a CIFAR-100 image into the same
number of tokens (i.e. 64) as that of origin DeiT, enabling it to capture
the global inter-dependencies among them.

Task and dataset assignment in federated setting. We followed
the setup of FedRep [76] to implement the federated continual learning
dataset distribution. Each client has the complete dataset and a distinct
task sequence. To build non-IID federated learning scenarios with
varying degrees of heterogeneity, we randomly assign 2 to 5 classes
of data in a task to different clients. For each class, we randomly select
5% to 10% of the training samples to assign.

Compared Baselines. We implemented and compared the per-
formance of our method FedViT with 11 state-of-the-art baselines,
including 6 continual learning methods, 3 federated learning methods,
and 2 federated continual learning methods.

* Continual learning methods: (1) gradient episodic memory (GEM)
for continual learning [22,23] calculates previous gradients and
uses the included angle between them and the current gradient in
model training; (2) Balanced Continual Learning (BCN) [24] re-
tains the previous training samples and uses them to maximize the
data distribution among different tasks and minimize the model
training errors; (3) Elastic Weight Consolidation(EWC) [26] ini-
tially proposes the idea of regularization. It uses the Fisher in-
formation matrix to calculate the changes of model weights in
different tasks and avoid drastic changes in weights; (4) Memory
aware synapses(MAS) [27] improves this approach by estimating
each weight’s importance according to the output’s sensitivity
to this weight. (5) Dytox [60] is a recent continual learning
method specifically designed for ViT. It utilizes the robustness to
distribution drift of ViT’s transformer encoder to obtain common
features among tasks, and then learns an extended token for
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each incoming task, thereby preventing catastrophic forgetting.
6) LVT [31] is also designed for ViT. It replaces the K matrix
generated by ViT with learnable weights, when learning a new
task, it constrains the distance between old task’s K weights and
new task’s K weights to prevent forgetting old knowledge.
Federated learning methods: (1) FedAvg [66] is a typical approach
that calculates each client’s weight factor according to its number
of training samples and uses these factors to aggregate the models
of all clients; (2) APFL [13] dynamically changes the ratio of
global and local models in training. (3) FedRep [76] divides a
model into presentation layers and head layers, and only commu-
nicates presentation layers in federated learning, while adaptively
training model weights in each client.

Federated continual learning methods: (1)FedWEIT [7] uses masks
to divide model weights into base ones and adaptive ones, and
maintains the adaptive weights of all clients and tasks as the
previous knowledge. In each client, it obtains all clients’ adaptive
parameters and trains them together with the new task’s weights
based on the regularization method; (2)FedKNOW [33] is the
latest FCL method that retains task-specific model weights for
each old task. When learning a new task, it updates the model
by integrating all gradients restored from old tasks’ weights, thus
preserving old knowledge. Although both FedKNOW and Fed-
WEIT transfer knowledge through model weights, FedKNOW only
constructs the knowledge base on client site, hence significantly
reducing communication cost.

Evaluation Metrics. We consider both model accuracy and training
time (hour) in evaluation. The accuracy refers to the top-1 accuracy of
the model on test data points: the top predicted class (the one with the
largest probability) is the same as actual class label. In the continual
learning scenario, the accuracy of task ¢,, refers to the average accuracy
of the model on all m learned tasks, namely 4,, = iz:"z | dmi> Where
a,,; represents the accuracy of task 7,,’s model on task 1,’s test dataset.

5.2. Comparative evaluations under different FCL scenarios

This section’s evaluation compares model accuracy and training
time between FedViT and 11 baseline techniques. In comparison, the
model is trained using the same initial weights, training samples, hyper-
parameters, and a cluster of 20 heterogeneous edge clients, including
2 Jetson AGX, 2 Jetson TX2, 8 Jetson Xavier NX, and 8 Jetson Nano
platforms.

Hyperparameters Settings. We train all ViT models using the
AdamW optimizer [77], where the learning rate and weight decay
are set to 0.0005 and 0.05, respectively. These values are chosen
from the hyperparameter search space of DeiT [18] and provide a
relatively high training accuracy. We perform grid search to optimize
federated learning hyperparameters using the FedAvg algorithm [15],
with the following parameter spaces: client sampling rate {0.1, 0.2,
0.4, 0.6}, communication rounds per task {5, 10, 15}, and local it-
erations (epochs) {2, 6, 10, 15}. To fairly compare all techniques
under edge constrains, we set 10 communication rounds per task,
0.4 client sampling rate, and 6 local iterations. This configuration
balances the accuracy and evaluation overhead across all baselines.
For hyperparameters brought by some specific baselines, we set search
space bounds to 1/2 and 2 times their original values. Particularly,
memory rate is set to 10% for memory-based methods (GEM, BCN);
regularization weights are respectively set to 40000 and 100 for EWC
and MAS, which are regularization-based methods; knowledge storage
rate p is set to 10% and the selected gradient number & is set to 10
for the gradient integration methods (FedKNOW, FedViT). The 10%
memory rate enables fair comparison with memory-based methods, and
10 selected gradient number achieves the highest accuracy under time
constraints.

Comparison Results. Figure 5 displays the comparison results of
the 12 techniques and we have three key observations:
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Fig. 5. Comparison of model accuracy and training time between FedViT and 11 baseline methods.

Impact of catastrophic forgetting. In the federated learning methods,
both FedAvg and APFL incur more catastrophic forgetting than most
of other baselines (especially in Fig. 5(d)) because they do not retain
any old tasks’ knowledge. On the other hand, the FL method FedRep
produces higher accuracies than most of the other FL methods. This is
because FedRep only aggregates the encoder, which is robust to distri-
bution shift, of ViT to obtain cross-task knowledge for each client, thus
maintaining the accuracies as the tasks evolve. However, in more chal-
lenging scenarios (e.g., CORe50), FedRep also causes obvious decrease
of accuracy (Fig. 5(d)). Instead, our method FedViT not only leverages
the robustness of ViT’s encoder but also injects the most important
old tasks’ knowledge into the new task’s learning via the gradient
integration, thereby suffering from the least catastrophic forgetting
over all the evaluated baselines. In the continual learning methods,
GEM produces the highest accuracies by replaying old tasks’ training
samples, while the regularization based methods such as MAS and EWC
show sharp declines. This suggests that ViT can benefit more from data
samples in FCL, in contrast, preventing catastrophic forgetting by only
constraining the model’s parameter space on each client may lead to a
decreased performance of global model after aggregation. In federated
continual learning methods, FedKNOW and FedWEIT effectively avoid
catastrophic forgetting but still produce lower accuracies than FedViT
by an average of 13.5 percent. This is because they take model weights
as knowledge to prevent forgetting, but ViT is difficult to achieve a de-
sired accuracy in resource-constrained FCL, decreasing the knowledge’s
reliability.

Impact of negative knowledge transfer. In a federated learning en-
vironment, the non-IID datasets in different clients also considerably
influence model accuracy. The six continual learning baselines well
address catastrophic forgetting, but suffer from negative knowledge
transfer from other clients. For example, DyTox extends task-specific
tokens for each client, however, due to the client sampling in FL,
newly participated clients directly initialize their tokens through the
global model that injects unrelated task tokens from other clients, thus
incurring the most negative knowledge transfer as shown in Fig. 5. In
addition, FedWEIT and FedKNOW have higher accuracies than other
baselines. However, their parameter decomposition/pruning strategies
are only designed for CNN and may harm the functionalities of some
particular layers (e.g., the structure of multi-head self-attention) of ViT,
resulting in lower accuracies than FedViT.

Impact of heterogeneous edge devices. We extend the above evaluation
by adding 10 CPU-based devices (Raspberry Pi 4B) to the cluster with
20 Jetson devices. The Raspberry Pi devices consist of one with 2 GB
memory, five ones with 4 GB memory, and four ones with 8 GB mem-
ory. In this section, We chose CIFAR100 and CORe50 as the datasets,
because they have different numbers of training samples. In addition,

Table 1
A summary of average percentage accuracy improvement. Note that only CORe50
dataset consists of 11 learning tasks, so there are blank entries in the last row.

Cifar100 FC100 MinilmageNet CORe50
Task 1 64.6% 35.95% 22.19% 14.43%
Task 2 74.22% 47.3% 60.95% 40.35%
Task 3 88.3% 75.37% 76.53% 66.74%
Task 4 87.5% 77.51% 80.1% 76.54%
Task 5 95.0% 92.66% 93.93% 87.33%
Task 6 103.03% 98.37% 97.92% 92.02%
Task 7 107.69% 99.47% 101.17% 111.57%
Task 8 106.81% 103.38% 101.18% 115.13%
Task 9 113.74% 114.13% 109.92% 127.49%
Task 10 110.66% 110.33% 106.97% 125.14%
Task 11 119.67%

the evaluation only compares the five representative algorithms: Fed-
ViT, FedKNOW, FedWEIT, GEM, and FedRep. This is because these
algorithms show superior performance compared to other techniques,
and represent the three categories of evaluated method in this paper.
Figs. 5(e) and (f) show that training in resource-limited Raspberry
Pi devices considerably delays the training time of all techniques by
an average of 6.5 times, and there are not obvious accuracies among
all the methods thanks to the ViT’s robustness property. Overall, The
results show FedViT always achieves the highest accuracies because it
is lightweight and integrates task knowledge locally.

Table 1 summarizes the percentages of increase in the average
accuracy, when comparing the accuracy of FedViT against the average
accuracy of all 11 baselines techniques across 4 different datasets.
For each dataset, the increased accuracy of each task is reported. We
can see that when the task number increases, the percentage accuracy
improvement increases from 14.43% to 127.49%.

5.3. Evaluation of communication cost

Following the evaluation settings of the previous section, this sec-
tion’s evaluation focuses on communication cost in model training.
We compare our approach with FedWEIT because in this method,
each client needs to obtain the retained adaptive weights of all other
clients before learning a new task. Although these weights bring higher
accuracies, they also incur large communication traffic that increases
with the number of clients. In contrast, both our approach and other
baseline methods employs the standard FedAvg method in federated
learning and have the same communication cost.

Evaluation of different workloads. In federated learning, the
communication cost among clients and the central server considerably
impacts the model training performance (communication time takes
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about 10% to 30% of model training time). As shown in Fig. 6, FedViT
takes much less communication cost when performing the same model
training task. This is because our approach employs a distributed
knowledge retaining mechanism that each client only uses its own
knowledge to retain previous tasks. By contrast, FedWEIT applies a
centralized mechanism that aggregates all clients’ adaptive weights in
the server and uses these as the knowledge. This means each time
a client learns a new task, it needs to send its latest model weights
to the server and all other clients need to obtain these weights from
the server. We note that in FedWEIT, a client’s own adaptive weights
cannot represent its previous tasks. This is because these parameters
are generated using regularization techniques and in a client, different
tasks’ adaptive weights have small differences. Hence FedWEIT needs to
use other clients’ adaptive weights to increase the model generalization
in continual learning. Overall, our approach reduces communication
cost by 61.55%.

Evaluation under different network bandwidths. In a distributed
edge computing environment, network bandwidth is a key factor that
influences communication time. In the previous evaluation, the net-
work bandwidth limitation is 1 MB/second. We extended this eval-
uation to test 6 different network bandwidths, ranging from 100 KB
per second to 10 MB per second, in each client. Fig. 7 shows the
communication time of two ViT models under different bandwidths.
We can see that our approach consistently takes less communication
time than FedWEIT. As expected, the communication time becomes
longer when the network bandwidth decreases and our approach can
save more communication time under tenser network conditions (up to
9.5 h when the network bandwidth is 100 KB per second).

5.4. Discussion of task and client numbers

In this section, we extend our experiments to further discuss two key
factors that affect the performance of FCL: the number of clients and the
number of tasks. In evaluations, we report average accuracy and average
forgetting rate as metrics. Suppose m tasks are learned, the definition of
average accuracy is identical to Section 5.1, and the forgetting rate is
defined by F,, = ﬁ >t maxpe(1,  m-1y(ax; — a,,;) [23,31,78], where
a,,; is the test accuracy on task #; when the model learned the task ¢,,.
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Number of Tasks. In this section, we use TinylmageNet dataset that
consists of 200 classes data samples to construct a multi-task dataset. In
particular, we split the dataset into 50 tasks, where each task contains
4 classes of data samples. To ensure the data heterogeneity for each
task, we partition the dataset into 10 clients and each client contains
at most 2 classes of data samples. In addition, we still use 6-layer ViT
to evaluate. Fig. 8 shows the fluctuations of accuracies and forgetting
rates when the number of tasks increases from 1 to 50. We can see
that FedViT provides the highest accuracy not only at the final task but
also the most training stages, meanwhile, the forgetting rate of FedViT
is just higher than the lowest (GEM) within 3 percent, verifying its
effectiveness of retaining old tasks’ knowledge among the four methods.
Although GEM produces the lowest forgetting rete, it still results in
the lowest accuracies at all the training stages due to the lack of a
mechanism to mitigate negative knowledge transfer caused by model
aggregation, especially when facing massive tasks.

Number of Clients. Two cluster scales are considered in this evalu-
ations: 50 and 100 clients. This is because when the number of clients
is 100, each client can only be assigned a very small amount (50
training samples per task) of CIFAR100 data samples, making it a highly
heterogeneous federated learning scenario.

Table 2 lists the accuracies and forgetting rates of the five methods
with 50 and 100 clients. We can see that most of the methods result
in accuracies decrease as the client number increase. However, our
approach FedViT still produces the highest final accuracies in both
50 and 100 scenarios, meanwhile, the forgetting rates are close to
that of GEM which produces the lowest. This is because FedViT only
stores the most important data samples of learned tasks and their
contribution becomes larger when training samples are insufficient.
Meanwhile, FedViT optimizes the gradient integration process to han-
dle the influence of negative transfer caused by client number increase.
In contrast, FedRep forgets the most for it does not consider exploit-
ing the information of previous tasks. However, its training strategy
facilitate the learning of new tasks even under the severe negative
knowledge transfer scenario, thus achieving higher accuracies than
GEM. On the other hand, FedKNOW and FedWEIT also achieve higher
accuracies than GEM thanks to their mechanisms to address negative
knowledge transfer. However, they still produce lower accuracies and
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Table 2
Comparisons of accuracy and forgetting rate under different numbers of clients.

Method 50 clients 100 clients

Acc. Forgetting rate Acc. Forgetting rate
FedRep 50.33 18.50 50.40 15.69
GEM 46.30 1.23 45.54 0.24
FedWEIT 53.02 6.51 50.20 5.22
FedKNOW 59.26 11.30 53.18 7.30
FedViT(ours) 62.08 1.70 54.25 4.23

higher forgetting rats than that of FedViT, indicating that storing small
amount of samples rather than model weights may still be the best
choice when training on limited number of samples.

In summary, FedViT leverages a small amount of high-quality sam-
ples as old task knowledge, enabling it to accurately recover the old
task knowledge even in the scenarios with extremely limited training
samples. Additionally, the knowledge restorer based on gradient inte-
gration effectively addresses the severe negative knowledge transfer
problem caused by the increasing number of clients or tasks, making
it a potential candidate for practical federated learning applications.

5.5. Applicability in different ViTs and settings

Applicability of FedViT to ViTs. FedViT represents the first
framework that supports knowledge-level federated continual learning
of ViTs for edge-based environment. FedViT can be generalized to
support most of state-of-the-art ViT models. To support this claim, we
implemented and tested 8 ViTs belonging to 5 categories: (1) pure
transformer architecture design (DeiT [18] or standard ViT [4]); (2)
deep-layer ViT (Cait [79]); (3) introducing convolutional operation
(CvT [52] and LeViT [58]); (4) reducing feature scale (PvT [54] and
PiT [171]); (5) fusing local and global features (Swin [56] and T2T [57]).
In the evaluation, we set each task to 5 rounds, with 4 epochs per
round, and keep the other settings the same as Section 5.1. The reduc-
tion of training budget is because we only focus on the accuracy gaps
among these FCL techniques.

Figure 9 shows a comparison of training different ViT models on
the 10-task MinilmageNet dataset using FedViT, FedKNOW, FedWEIT
and GEM. It can be observed that FedViT displays obvious superiority
over all the other three baselines by producing much higher accuracies.
This is because all the ViT variants need rich training data samples to
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better understand the global information of the dataset, thus making
the sample-based method FedViT architecture-agnostic in training ViT
in FCL. In the other methods, GEM still achieves the lowest accuracy
(under 35%) among all ViTs due to the negative knowledge trans-
fer caused by non-IID. FedKNOW and FedWEIT, on the other hand,
suffer from obvious knowledge forgetting problems for different ViTs.
This is because they apply the simplest model decomposing methods
(e.g., the L1 pruning method in FedKNOW) designed for CNNs to ViT
models, while the importance of weights in different ViTs varies, thus
decreasing the accuracy of ViT.

Comparisons under different Client Sampling Rates. In this sec-
tion, we investigate the impact of client sampling rate on FedViT,
FedKNOW, and GEM. Figure 10 shows average accuracies and for-
getting rates under different client sampling rates. Our experimental
results reveal that, despite performing well when sampling rate is 10%
(Fig. 10(a)), FedWEIT’s overall accuracy shows a decreasing trend as
the number of tasks increases, making it unsuitable for edge FCL scenar-
ios with large number of tasks and participated clients. Moreover, as the
sampling rate increases, the accuracy of all the four methods improves
(Fig. 10(b) and (c)) while forgetting rate decreases Fig. 10(e) and (f).
This is because the global ViT model sees more data samples from
different clients, thus improving the model’s generalization. Besides, as
the sampling rate increases, FedViT always achieves the highest final
accuracies than others and results in considerably lower forgetting rates
in all the scenarios.

Comparisons under different Knowledge Storage Rates. In this
section, we investigate the impact of knowledge storage rate on FedViT,
FedKNOW, and GEM in terms of average accuracy and task-specific
time cost. Fig. 11 shows the comparison results, and we make the
following observations: First, FedViT achieves the best results in both
accuracy and time overhead in all the different settings. Specifically,
FedViT’s performance is less sensitive to the variation of knowledge
storage rates than the other two methods. Second, as the knowledge
storage rate increases, all the methods improve their accuracies and
FedViT shows the highest accuracies over others. Moreover, FedViT
outperforms the other two methods in terms of the extent of im-
provement, with a larger accuracy improvement rate (7%) than GEM
(improvement rate 6.5%). Second, FedKNOW exhibits a more complex
pattern in terms of its accuracy variation with knowledge storage
rates. The minimum accuracy occurs at a 20% storage ratio, while the
highest accuracy occurs at 50%. This indicates that the pruning strategy
in FedKNOW for ViT models might disrupt the model structure. For
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example, the pruning method may remove the important weights of
a attention head that is critical to a specific task. Hence, FedKNOW is
more sensitive to the choice of knowledge storage ratios when using ViT
models. Last, the training time cost increases as the knowledge storage
rate increases and FedViT still shows the lowest training time cost for
it freezes a portion of the model parameters during training.

Impact of Image Resolution. Considering the budget constraints
of our experimental evaluations, we uniformly resized the input im-
ages to 32 x 32 pixels in previous evaluations to obtain results more
quickly. However, reducing the size of the images may result in loss
of other information contained in original images, thereby affecting
the accuracy of model’s training. We claim that FedViT’s advantage
will not be affected by the resize operation. To illustrate this, we
evaluate the impact of input image size to the model’s accuracy and
forgetting rate using both 32 x 32 resolution and 224 x 224 resolution
input images. Fig. 12 shows the evaluation results of Tiny DeiT model
trained on MinilmageNet dataset with the both two resolutions. We can
see that FedViT still shows obvious superiority by causing the highest
accuracies and lowest forgetting rates under both of the resolution of
32 and 224. Moreover, in all tests, the accuracies and forgetting rates
during training have no obvious gaps between different resolutions.
This is because although with different input sizes, ViT projects each
token into a embedding with the same dimension (e.g., 192 dimension),
and extracts global features on this embedding rather than the actual
values of input image, hence when the number of tokens are close, the

classification performance will not significant decrease by the change
of input size.
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Table 3
Performance of FedViT under different rates of knowledge storage.
Items k=10
p=0.1 p=02 p=04 p=0.6 p=0.8
Acc. 68.44 70.54 73.25 73.95 75.26
Forgettting Rate 2.22 1.08 0.39 0.19 -0.57
Table 4
Performance of FedViT under different numbers of selected gradients.
Items p=04
k=1 k=2 k=4 k=6 k=28
Acc. 68.51 71.68 72.78 73.04 73.18
Forgetting Rate 2.65 0.76 0.44 0.21 —-0.12

5.6. Effect of hyperparameters

In this section, we explore the impact of FedViT’s hyperparameters
on its performance. Except for the knowledge retention rate p and the
selected gradient number k, most evaluation settings follow Section 5.2.

Effect of Knowledge Storage Rate p. To evaluate how the knowl-
edge storage rate p affects FedViT’s performance, we fixed the number
of selected gradients k to 10 by default. As shown in Table 3, when p
increases from 0.1 to 0.8, the accuracy improvement diminishes while
the forgetting rate approaches 0. This suggests that only extracting and
retaining a small subset of key samples as knowledge for each task is
effective. These samples contain rich information about the task and
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can help FedViT achieve good performance even with limited storage
overhead. Storing excessive samples provides diminishing benefits but
higher overhead.

Effect of Number of Selected Gradients k. To evaluate how the
number of selected gradients k affects FedViT’s performance, we fixed
the knowledge storage rate p to 0.4. We choose p = 0.4 because
it achieves a good balance between accuracy and storage overhead
as shown in the analysis above. As shown in Table 4, the accuracy
and forgetting rate improve quickly when k increases from 1 to 4,
and then stabilize with larger k. This suggests integrating gradients
from a small number of key previous tasks is sufficient to prevent
catastrophic forgetting. Increasing k provides diminishing benefits but
higher overhead.

6. Conclusion

This paper presents the design, implementation and evaluation of
FedViT, a framework designed for transformer-based computer vision
models on distributed edge devices. FedViT innovates in three as-
pects to tackle key challenges in federated continual learning at edge.
First, lightweight sample-based knowledge extraction reduces device
overhead while retaining crucial past task information, enhancing the
continual learning accuracy under constraints. Second, gradient inte-
gration eliminates negative transfer and facilitates assimilation of old
and new knowledge, improving model generalization. Finally, localized
integration of signature task knowledge achieves scalability as tasks
and clients grow without extra communication costs. Extensive experi-
ments demonstrate FedViT markedly reduces communication overhead
while ensuring accuracy, and exhibits strong scalability.

While this paper focuses on applying FedViT to vision transformers
in computer vision, we believe its core concepts could generalize to
other areas. First, for NLP applications, the core ideas like compact
sample-based knowledge extraction and gradient integration can be
adapted by extracting representative text segments as knowledge and
performing optimization on text embeddings to mitigate negative trans-
fer. Second, for Graph Neural Network (GNN) applications [80], we
consider the unique connectivity of graphs. Due to the correlation
between different nodes in the graph structure, FedViT preserves some
subgraphs while preserving historical nodes to ensure the restora-
tion of most of the features of historical tasks. We hope FedViT pro-
vides a framework to inspire federated continual learning research for
transformers across areas.
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