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A B S T R A C T

Transmission network topology control offers cheap flexibility to system operators for mitigating grid
congestion. However, finding the optimal sequence of topology actions remains a challenge due to the
large number of possible actions. Although reinforcement learning (RL) approaches have attracted interest
for long-term planning in large combinatorial action spaces, they encounter challenges such as training
stability, sample efficiency, and unforeseen consequences of RL actions. Addressing these challenges, this
paper proposes a hybrid curriculum-trained RL and Monte Carlo tree search (MCTS) approach to determine
sequential topological actions for mitigating grid congestion. The curriculum-based approach stabilizes training
by first pre-training a policy network through supervised imitation learning, followed by RL training. The policy
network guides the MCTS to simulate promising future trajectories, mitigating unforeseen consequences and
identifying long-term strategies to improve grid security. Moreover, the MCTS-verified actions are used for
RL training, enhancing sample efficiency and training time. A distance factor is added to the MCTS, which
improves convergence by prioritizing actions closer to congestion. Numerical results on the IEEE 118-bus
system show that the proposed hybrid approach improves the timesteps survived by 30% compared to a
standard RL approach, and by 5% compared to a brute-force baseline. Additionally, the inclusion of the distance
factor increases the timesteps survived by 15%. These results highlight the potential of the proposed method
for real-world applications of using sequential topological actions to effectively relieve grid congestion.
1. Introduction

Transmission grid congestion is a growing challenge, driven by
rising electricity demand, aging infrastructure, and the integration
of renewable energy sources (RES). Transmission network topology
control has been highlighted as an under-exploited flexibility that can
alleviate congestion by redirecting power flows by either line switching
or substation reconfiguration. As an alternative to costly re-dispatch
actions, topology control offers a more efficient way to relieve conges-
tion, improve grid security, and reduce overall operational costs [1–3].
However, the combinatorial nature of the topology control problem
poses significant challenges to identifying optimal topology control
sequences in real time. As a result, system operators rely on their
experience or predefined manuals, which can result in suboptimal grid
performance or, in extreme cases, lead to system failures and black-
outs [4]. Recent efforts, such as the ‘‘learning to run a power network’’
(L2RPN) competitions hosted by RTE, the French transmission system
operator, have explored the use of artificial intelligence (AI), partic-
ularly reinforcement learning (RL), to determine sequential topology
control actions [4–7]. These approaches can potentially identify action
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E-mail addresses: g.j.meppelink@student.tudelft.nl (G.J. Meppelink), a.rajaei@tudelft.nl (A. Rajaei), j.l.cremer@tudelft.nl (J.L. Cremer).

sequences that were not previously known by expert knowledge, offer-
ing new strategies for topology control. However, RL-based approaches
face challenges in training stability, sample efficiency, and unforeseen
consequences of RL actions. This paper addresses these challenges by
proposing a novel approach based on curriculum learning (CL) and
Monte Carlo tree search (MCTS) for sequential topology control.

Optimal transmission line switching (OTS) has been heavily inves-
tigated in the literature to reduce operational costs [8,9], reduce line
flow and voltage violations [10,11], improve system reliability [12],
and address the uncertainties of renewable energy sources [13]. Sub-
station reconfiguration including busbar splitting/merging can also
provide operational flexibility by rerouting the flows in the network [1,
14]. Fig. 1 depicts an example of congestion management by busbar
splitting [4]. While optimal transmission line switching problem is com-
putationally challenging for industrial power grids [9], the substation
reconfiguration problem poses even more computational challenges
due to the complex node-breaker modelling [15]. Authors in [15–
18] propose mixed integer programming (MIP) formulations for the
topology control problem. However, the approach in [15–18] does
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Fig. 1. Example of congestion management by substation reconfiguration. (a) busbar
coupler is closed. (b) busbar splitting is applied by opening the busbar coupler.

not scale to industry-scale systems. [1] develops a heuristic approach
ased on sensitivity of line currents to the breaker position to find

switching actions reducing congestion in the grid. [19] uses expert
nowledge and heuristics to identify topological remedial actions to
lleviate congestion. However, the developed approaches in [1,14–

17,19] fail provide a sequence of control actions over a time horizon,
limiting their effectiveness in dynamic grid environments [4].

Recent research has investigated AI-based approaches to overcome
his limitation. In particular, RL algorithms are suited for problems

involving a sequential decision making process, similar to the topology
control problem [20]. Authors in [21] propose a deep duelling Q-
etwork (DDQN) that is initialized with imitation learning. In [22], a
emi-Markov actor-critic algorithm is developed, which uses a graph
eural network to extract graph-based information. [23] develops a
laning algorithm that searches through the action set decided by
 policy network. In [24], an RL agent based on proximal policy

optimization (PPO) [25] and expert rules is proposed. Furthermore,
similar expert heuristics, e.g. a reduced action space (RAS), are used by
L2RPN competitors that underscore their practical importance [5,26].
However, these RL-based approaches [21–26] encounter challenges,
including training instability, sample inefficiency, and unforeseen con-
sequences of RL-proposed actions.

Curriculum-based RL for topology control, as proposed in [26,27],
addresses the challenges of training stability and sample inefficiency
by progressively exposing the RL agent to increasingly complex tasks,
thereby improving learning efficiency and ensuring stable performance.
However, CL does not account for the unforeseen consequences of
actions, which can be drastic in practical grid operations. On the other
hand, MCTS in [28,29] addresses unforeseen consequences by simulat-
ing future outcomes, guiding the agent towards long-term strategies.

owever, optimally training the policy and value networks requires a
reat amount of simulation trajectories. The proposed hybrid approach
n this paper combines the strengths of CL and MCTS, offering advan-
ages such as improved training stability, enhanced sample efficiency,
dentification of long-term strategies, and mitigation of unforeseen
onsequences.

This paper proposes a hybrid approach of curriculum-trained RL
nd MCTS to determine sequential topological actions for congestion
anagement. The approach uses CL to stabilize the RL training process

nd improve its efficiency. Meanwhile, MCTS ensures that the agent’s
actions are guided by long-term strategies by simulating potential
future outcomes. Initially, a policy network is pre-trained using super-
vised imitation learning on an offline dataset of expert optimal actions,
roviding a strong foundation for the agent. This policy network is
hen further refined through proximal policy optimization (PPO) RL
raining, allowing the agent to explore and learn from new actions.
his stepwise CL training process addresses the common instability
hallenges of traditional RL methods. Furthermore, the policy network
s integrated into an upper confidence bound (UCB) to guide the MCTS
n identifying long-term strategies. By using MCTS-verified promising
rajectories for RL training, the approach improves sample efficiency

and accelerates the learning process. Additionally, a distance factor is
2 
added to the UCB to prioritize actions that are closer to congestion, ac-
celerating MCTS convergence and facilitating scalability to large-scale
power grids. Therefore, this hybrid approach identifies reliable long-
erm switching strategies to relieve congestion, improving grid security
hile reducing the reliance on costly redispatch actions, ultimately

eading to lower operational costs.
The rest of the paper is organized as follows. Section 2 presents the

proposed approach, outlined by the expert heuristics, the CL approach,
he MCTS, and the distance factor. Section 3 presents the case studies

on the IEEE 118-bus system. Section 4 concludes the paper.

2. Proposed hybrid curriculum learning and MCTS approach

This paper focuses on congestion management in transmission net-
works using sequential topological actions to prevent cascading failures
that can lead to blackouts. The Grid2Op package [30], developed by
RTE, formulates this problem as a Markov decision process (MDP),
enabling realistic evaluations of sequential network operations [4–7].
Grid2Op uses Chronix2Grid [31] to generate synthetic but realistic con-
sumption, renewable production, and economic dispatched productions
chronics. The state includes a subset of the observation space, including
nodal consumption and production, power line flows, and current
topology. The action space includes continuous re-dispatching actions
and discrete topological actions, with the latter offering a non-costly
alternative to expensive re-dispatching.1 However, the combinatorial
nature of topological actions introduces significant computational chal-
lenges, which this paper addresses by focusing on optimal topological
action selection.

2.1. Method overview

Fig. 2 depicts the proposed hybrid CL and MCTS approach during
he testing phase. At each state 𝑠𝑡, first, a set of expert rules based
n domain-knowledge and heuristics are checked to improve the per-
ormance and safety of the approach. Only unsafe states that are not
esolved with the expert heuristics are passed to the proposed approach.
hen, a MCTS process searches for the best possible sequence of actions
∈  that can lead to a safe state. The MCTS is guided by a CL-trained
olicy 𝜋𝜃(𝑎|𝑠) ∶  → . Finally, the action leading to the safest state
s applied to the grid, proceeding to the next environment state. The
roposed approach leverages the sample-efficient training approach of
L, while introducing an improved level of security by considering the
imulation of promising actions through a guided MCTS that enhances
he performance during training and testing. The search process is
xtended by including a distance factor to improve the convergence
f MCTS.

2.2. Expert heuristics

Various expert heuristics are used throughout most approaches of
the L2RPN competition, indicating their value. The similarities com-
prise of using a RAS, utilizing base-level rules, and a safety check [5,
22–24,26–28]. These expert rules are based on domain knowledge and
heuristics to limit negative effects of possible sub-optimal topology
actions, and improve the performance of the approach.

2.2.1. Reduced action space
An RAS of the most useful actions is created using an offline study,

llowing for vastly reduced computational time during training, while
till enabling sufficient flexibility of topological actions for mitigating
ongestion. Extensive simulations are performed offline throughout
arying scenarios, assessing actions that can be used for overflow

reduction. From the original set of possible actions 𝑎 ∈ , the RAS
∈ 𝑅 includes the top-N actions most used for flow reduction.

1 We refer to [4–7,30] for complete description of the environment,
including observation space, action space, data objects, and rewards.
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Fig. 2. The proposed hybrid approach during testing. The policy network 𝜋𝜃 , that is
trained with curriculum learning, guides the MCTS to identify a long-term strategy to
a safe state.

2.2.2. Base-level rules
A set of base-level rules are used to increase the resilience of the grid

during normal (base) states. The first base-level rule ensures that all
power lines are reconnected when possible. Secure grid performance is
often contingent on keeping all power lines operational, as it increases
the chances to offer flexibility by topological actions that can prevent
congestion. The second base-level rule automates grid recovery to a
default safe state after the congestion is alleviated. Multiple competitors
in the L2RPN competition observed optimal grid resilience when all
elements at the substations were connected to the same bus [5]. This
default, fully-connected configuration maximizes connectivity and flow
distribution, and provides maximum flexibility for the usage of topol-
ogy control in future critical states. The third base-level rule subjects
the agent to propose topology actions only when a set of system limits
are violated. In particular, consider 𝜌 as the maximum line loading of
the grid for a given state. The agent only acts when the grid enters a
state with 𝜌 > 𝜌𝑚𝑎𝑥. The action threshold of 𝜌𝑚𝑎𝑥 prevents agents from
deteriorating grid security during safe states.

2.2.3. Safety check
Rather than executing the highest-ranking action suggested by the

approach, a safety check step is introduced by simulating potential
actions. This safety check ensures the selection of the safest sequence
of actions. However, this approach selects actions based on predicted
direct performance, which might not be the most optimal action in
the long term. Note that the approach in this paper overcomes this
limitation using the MCTS, which simulates possible future actions and
thus takes the future outcomes into account.

2.3. Curriculum learning approach

In a CL approach, tasks are organized and presented in order of
complexity to a learning algorithm. Neural networks (NNs) that have
undergone CL can exhibit advanced responses, achieving improved
generalization and quality of local minima [32] with fewer training
samples. These advantages are essential in the context of transmission
network topology control, where training convergence requires high
computational complexity [27].

Fig. 3 presents the proposed CL approach. As Fig. 3-(a) shows,
first, an offline dataset of state–action (𝑠𝑡, 𝑎𝑡) pairs is generated, which
indicates what action 𝑎𝑡 ∈ 𝑅 would an expert agent take in state
𝑠 ∈ . To this end, in a overflowing state 𝑠 , a brute-force approach
𝑡 𝑡

3 
simulates and assess all possible actions of the RAS to find the best ac-
tion 𝑎∗𝑡 . This state–action pair (𝑠𝑡, 𝑎∗𝑡 ) is then saved in the offline dataset
𝛺𝑥 = {(𝑠𝑡, 𝑎∗𝑡 )}, indicating an expert policy that reduces overflows with
topological actions.

In Fig. 3-(b), the Junior policy NN 𝜋𝐽
𝜃 is defined as below:

𝜋𝐽
𝜃 (𝑎|𝑠) ∶  → 𝑅 (1)

where, 𝜃 is the weights of a standard feed forward NN. The Junior
policy seeks to mimic the behaviour of the brute-force determined best
actions in step (a). To this end, the Junior policy NN 𝜋𝐽

𝜃 is trained using
supervised imitation learning on the offline dataset generated in step
(a):

𝜃 = ar gmin
𝜃

𝑆 𝑃
𝜃 (𝜋𝐽

𝜃 (.|𝑠), 𝑎∗) (2)

where (𝑠, 𝑎∗) ∼ 𝛺𝑥 and 𝑆 𝑃 is a supervised learning loss function, such
as the cross entropy loss. Notably, the brute-force offline dataset only
includes one-step actions, and not sequential actions. Therefore, the
Junior policy may struggle to find optimal sequence of actions.

In Fig. 3-(c), the pre-trained Junior policy NN is improved upon
through RL, resulting in the Senior policy NN 𝜋𝑆

𝜃 . It is noteworthy that
the policy network is used to guide the MCTS, which is discussed in the
next section. The Senior NN is identical to the Junior NN, sharing its
layer and neuron structure. The weights of the imitation learned Junior
NN are used as starting point for the Senior NN. The Proximal policy
optimization (PPO) [25] is used in this paper to train the Senior policy
NN.

PPO is a policy gradient method that balances exploration and
exploitation by optimizing a clipped surrogate loss function. Specif-
ically, PPO minimizes a surrogate loss while preventing excessively
large updates that could destabilize the policy. The surrogate loss is
given by:

𝐿𝑃 𝑃 𝑂
𝜃 = −E𝑡

[

min
(

𝑟𝑡(𝜃)𝐴𝑡, clip(𝑟𝑡(𝜃), 1 − 𝜖 , 1 + 𝜖)𝐴𝑡
)]

(3)

where 𝑟𝑡(𝜃) = 𝜋𝜃 (𝑎𝑡|𝑠𝑡)
𝜋𝜃old (𝑎𝑡|𝑠𝑡)

is the probability ratio between the current

policy and the old policy. 𝐴̂𝑡 is the estimated advantage function at time
step 𝑡, i.e., 𝐴̂𝑡 = 𝑄̂(𝑠𝑡, 𝑎𝑡) −𝑉 (𝑠𝑡). 𝜖 is a hyperparameter that controls the
extent of clipping.

The clipping operation ensures that the policy update does not lead
to large changes in the probability ratio 𝑟𝑡(𝜃). This helps stabilize the
training process by preventing significant deviations that could result
in performance degradation. The PPO algorithm alternates between
sampling data from the environment and performing multiple epochs
of stochastic gradient descent on the clipped surrogate loss 𝑃 𝑃 𝑂

𝜃 . We
refer to [25] for further information about PPO training.

In this way, the Senior policy NN 𝜋𝑆
𝜃 refines the Junior policy,

balancing between maintaining the quality of learned behaviour in step
(b) and improving them further through RL training.

2.4. Monte Carlo tree search

The MCTS enhances the CL approach to overcome the limitations
of brute-force and to enhance the reliability of topological actions,
by considering potential future outcomes. Notably, MCTS-based agents
such as [28,29] demonstrate exceptional success in environments with
expansive action spaces. This success is due to the systematic explo-
ration of different possible action paths, balancing the exploitation
of promising actions with the exploration of gathering more informa-
tion about uncertain ones. The MCTS search and simulate different
sequences of actions depending on the expected value, which is based
on a prior probability, as predicted by the policy network, and the
visit count. This improves the probability of finding the (near) optimal
sequence of actions, without having to exhaustively search all action
trajectories.
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Fig. 3. The proposed training approach with curriculum learning. (a) Offline dataset of state–action pairs is generated using a brute-force method. (b) The junior network is
trained with imitation learning on the offline dataset. (c) The senior network guides the MCTS and is trained by PPO-based reinforcement learning.
Each MCTS simulation includes a defined amount of iterations,
traversing the search tree. The upper confidence bound (UCB) guides
the action selection at each branching of the tree:

𝑈 (𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠)

√

∑

𝑎′ 𝑁(𝑠, 𝑎′)
1 +𝑁(𝑠, 𝑎) (4)

where 𝑈 (𝑎|𝑠) is the UCB of action 𝑎 from state 𝑠, 𝜋𝜃(𝑎|𝑠) is the prior
probability of action 𝑎 from state 𝑠, 𝑁(𝑠, 𝑎) is the visit count of action 𝑎
from state 𝑠, and ∑

𝑎′ 𝑁(𝑠, 𝑎′) is the total visit count for all actions 𝑎′ ∈
𝑅 from state 𝑠. The UCB in (4) initially prioritize action selection with
the highest probabilities based on the policy network. Subsequently,
the UCB balances exploiting promising actions based on 𝜋𝜃(𝑎|𝑠) with
exploring less frequently tried actions based on visiting counts 𝑁(𝑠, 𝑎).

The MCTS simulation terminates after a defined number of itera-
tions, or when the early stopping rule is triggered, e.g. if enough safe
states have been found. The objective of the agent is to operate the
grid for as long as possible. Therefore, after MCTS iterations, the state
with maximum number of time steps (survived) and low value of 𝜌𝑚𝑎𝑥
(maximum line loading) is selected, and the action leading there in the
MCTS is applied. Fig. 4 shows an example of MCTS action selection.
At the end of simulation, the visit counts of all traversed tree edges
(i.e., 𝑁(𝑠, 𝑎)) and the policy network weights are updated.

The MCTS-simulated sequences of actions leading to a safe state
are further used to refine the policy network. In other words, the
Junior policy network 𝜋𝐽

𝜃 , which initially guides the MCTS, is refined
through PPO training on the MCTS-generated trajectories, resulting in
the Senior policy network 𝜋𝑆

𝜃 . To this end, the wights 𝜃 are updated by
multiple epochs of stochastic gradient descent on the PPO loss function
𝑃 𝑃 𝑂
𝜃 in (3) is applied.

Training with MCTS in the loop improves sample efficiency through
MCTS simulations and considering only promising trajectories, instead
of time consuming standard RL exploration methods. Moreover, the
MCTS simulations provide an immediate feedback on actions without
waiting for RL episode completion. This immediate feedback allows
for the direct identification of better actions, significantly reducing
the variance associated with standard RL approaches. As a result, the
MCTS enhances the convergence to an effective policy and mitigates
the risk of reaching a local optima. To maximize the efficiency of
training, sample episodes are processed in parallel, with model pa-
rameters averaged after each iteration. The sample-efficient training
approach efficiently uses computational resources for an accelerated
overall learning process.

2.5. Distance guided search

The MCTS in the previous section adds a significant layer of security
to the action selection process. However, if the initial training of the
policy network is not optimal, the MCTS might struggle to rapidly
4 
Fig. 4. MCTS action selection example. Nodes represent grid states, and root is the
current state. Grey nodes are violating states, red nodes are black-out states and blue
nodes are safe states. The safe grid state able to reach the maximum number of time
steps (905) is selected, and the action leading there from the root is applied (action
24).

identify viable solutions, hindering quick training. To address this issue,
we propose a distance factor to guide the search tree. This modification
streamlines the action selection process within the tree, enhancing the
convergence rate of the training approach and ensuring more efficient
learning.

Topological interventions located closer to overflows tend to have a
higher impact in reducing congestion [11,15,16]. As changing topolo-
gies in the MCTS would require exhaustive re-computation of metrics
such as PTDFs, we use hops as an estimation of electrical distance,
measured as the shortest path between an overflowing line and the
location of an action. A fast breadth-first-search algorithm is used to
determine the shortest path in hops. The distance factor is defined as:

𝐷 𝐹 (𝑑) = 1
1 + 𝑒(𝑑−𝑑𝑇 ℎ) (5)

where 𝐷 𝐹 (𝑑) is the distance factor, 𝑑 is the distance measured in hops,
and 𝑑𝑇 ℎ is a hyper-parameter. The distance factor prioritize the actions
with lower hop counts than 𝑑𝑇 ℎ. While this metric does not provide
an accurate measure of the impact of an action on a congested line, it
can offer a valuable insight on the probability of an action having an
impact on the congested line.

In the context of the MCTS, the distance factor can tune the tree
selection process by adjusting the UCB values at each state of the tree.
This additive integration respects the prior action probabilities, while
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guiding the decision-making process in favour of actions that are closer
and, presumably, more impactful. The UCB with distance factor is:

𝑈 (𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠) ⋅

√

∑

𝑎 𝑁(𝑠, 𝑎)
1 +𝑁(𝑠, 𝑎) × (1 +𝐷 𝐹 (𝑑)) (6)

The distance factor serves as a guiding heuristic, initially steering
he policy search, but gradually decreasing in influence as the training

progresses. The scaling by the distance factor ensures that as the agent’s
policy improves and stabilizes, and the artificial bias from the distance
factor diminishes, allowing the agent to rely on its learned strategy
instead of the heuristic.

3. Case studies

3.1. Settings and test networks

All case studies are performed on the IEEE 118-bus system in the
Grid2Op ‘WCCI_L2RPN_2022’ environment [30]. 32 years of training
data chronics with 5 min resolution is generated using Chronix2Grid
package [31]. A test dataset consisting of 52 weekly scenarios with
rom the L2RPN 2022 competition is used, offering realistic variance
n load, renewable generation and line outages [33]. The test episodes

include an adversarial agent that removes lines to investigate the
robustness of the proposed approach [6]. A separate validation dataset
omposed of 52 weekly episodes is used to determine the hyper-
arameters of the models. For the test and the validation dataset, the
dversarial agents are seeded randomly 5 different times, changing
heir attack locations and times, to reduce the outcome variance. While
he adversarial agent simulates N-1 contingency cases, different grid
tructures are not considered. The imitation learning of the CL approach
s done on 63,308 state-action pairs based on Section 2.3. The policy
N is trained in a custom Ray [34] environment, allowing the base-

evel rules to be integrated into the decision making process, while also
ssigning a positive reward over steps where no agent action was re-
uired. The gathered basic Grid2Op reward trains the RL agent [35]. All

case studies are performed using DelftBlue’s supercomputer Intel XEON
E5-6248R 24C 3.0 GHz CPU cores [36]. Grid2Op 1.9.3, LightSim2Grid
0.7.3, and pandapower 2.11.1 package are used.

The performance of the proposed hybrid approach is compared with
he following baselines:

• Do-Nothing: does not take any topological actions, but uses only
the base-level rules of line re-connection and grid recovery.

• Brute-force: simulates through all actions in the RAS, and selects
the action with the best predicted immediate flow reduction.

• Junior: the Junior policy network of the CL approach, that is
trained with imitation learning. The top 25 predicted actions are
simulated.

• Senior: the Senior policy network of the CL approach, that is
initialized with the weights of the Junior NN and then trained
with PPO. The top 25 predicted actions are simulated.

• The proposed hybrid MCTS and CL: uses the policy NN from
the Junior and Senior for the prior predictions, to determine
the MCTS trajectories. The iteration limit is set to 150. The
MCTS-trained model takes the Junior NN for the priors, and has
completed 3 full iterations of 1663 scenarios.

• The proposed MCTS-distance: utilizes the Junior NN for the prior
predictions, including the distance bonus. The MCTS-distance
trained model is trained for 3 full iterations of 1663 scenarios.

The Junior policy NN is based on the Binbinchen agent [37], where
yperparameter tuning is used to obtain layer and training parameters.
n overview of these parameters can be seen in Table 1. The MCTS and
CTS-distance training use the Adam optimizer with the sparse cate-

gorical cross-entropy loss. Maximum timesteps survived is considered
as a performance metric of the approach.
 e

5 
Table 1
Junior/Senior neural network parameters and values.

Parameter Value

Input layer 1221 Variables
Hidden layer 1 400 Neurons
Dropout layer 1 0.25
Hidden layer 2 773 Neurons
Dropout layer 2 0.40
Hidden layer 3 1044 Neurons
Hidden layer 4 344 Neurons
Output layer linear 100 Actions

Activation Relu activation
Batchsize 256
Initializer Orthogonal
Learning rate 5e−5
Epochs 1000
Early stopping 100 steps

Fig. 5. Effect of the action space size, used by the brute-force algorithm, on the
performance and computational time per scenario. Average values and standard
deviations are indicated using markers and error bars, respectively.

The RAS only considers substation topological actions. Continuous,
on-topological actions such as re-dispatching conventional generators,
dis-)charging of battery storage systems, and renewable curtailment
re excluded to allow the evaluation of the proposed approach to deter-
ine substation topological actions. The size of the RAS is determined

based on the performance of the brute-force agent considering various
RAS sizes on the validation dataset. Fig. 5 show a clear trend between
ncreased computational complexity and the usage of a larger RAS,
hile increase in performance stagnates after utilizing an RAS larger

han 100. Due to computational power constraints, we use an RAS
f 100 actions in this paper. Additionally, the maximum line loading
hreshold of 𝜌𝑚𝑎𝑥 = 98% is assumed, i.e. the agent only acts when
he grid has a maximum line loading above 98%. This threshold is
etermined by an offline study on various thresholds on the validation
ataset.

3.2. CL and MCTS: Security and sample efficiency

Fig. 6 shows the timesteps survived per scenario of the test data set
for the proposed hybrid CL and MCTS approach compared against the
Do-Nothing, CL Junior and Senior, and Brute-force baselines. The Ju-
ior model shows marginal improvement compared to the Do-nothing
gent, demonstrating the limitation of using supervised imitation learn-
ng alone. The Senior model shows a 35% improvement over the
unior model. This improvement is due to the further RL on MCTS
rajectories that leads to longer-time strategies. Considering MCTS with
he Junior and Senior models results in performance increases of 76%
nd 6%, respectively, with the Junior MCTS surpassing the Brute-force
aseline by 5%. These results confirm the effectiveness of the MCTS in
dentifying action sequences that are more suitable for long-term op-

rations, rather than focusing solely on immediate rewards. However,
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Fig. 6. Timesteps survived for the proposed hybrid MCTS and CL Junior and Senior
odels.

Fig. 7. Timesteps survived per iteration of the MCTS-training approach, split into
onthly segments and parallel trained.

the lower performance of the Senior MCTS compared to the Junior
CTS is due to the high confidence of the Junior NN in its prediction,

ompared to more diverse with lower confidence predictions of the
enior NN. This results in a shallower search by the Senior MCTS within
he tree over 150 simulations. In other words, for a fixed number of
imulations, the Junior MCTS searches deeper within the tree due to
he less diverse predictions. While the consideration of CL and MCTS
nhances performance, it does not inherently produce additive benefits,
nderscoring the importance of well-coordinated training strategies to
aximize performance outcomes. This observation is further discussed

n Section 3.4.
Fig. 7 shows the performance in timesteps survived per scenario of

the training data set for 3 iterations of the MCTS-training approach. The
esults demonstrate the sample efficiency and stability of this training

method, showing an overall improvement of more than 25% across
the 3 iterations with only minor monthly dips throughout steadily
mproving performance. However, the stagnating performance increase
howcases the effect of the adversarial agent, indicating a limit of
hat can be achieved using solely topological actions, especially when

dealing with violations caused by unexpected outages of highly loaded
lines.

3.3. Distance factor analysis

Fig. 8 shows the percentage of actions that achieve maximum flow
eduction, along with their distance from the overflow, measured in
ops. The top actions are identified using the brute-force baseline,
.e., simulating all 𝑅 actions. As can be traced, most of the impactful
ctions are within 4 hops of the overflow. This supports our hypothesis
6 
Fig. 8. Percentage of actions found that offer maximum flow reduction, and their
distance to the overflow measured in hops.

Fig. 9. Timesteps survived of the Junior MCTS, MCTS-trained, and the proposed
istanced-guided MCTS for the test dataset.

that prioritizing lines closer to the congestion can achieve computa-
ional speed-up without compromising security gains. For the rest of
he case studies, the 𝑑𝑇 ℎ = 4 in Eq. (5) is considered.

Fig. 9 shows the timesteps survived per scenario and Fig. 10 shows
he MCTS iterations needed per step for the test data set, comparing
he Junior MCTS, MCTS-trained and proposed distance-guided MCTS

approach. The MCTS-trained model takes the Junior NN for the prior
robabilities, and has completed 3 MCTS iterations of 1663 scenar-
os. The results indicate that the distance-guided approach achieves a
imilar performance increase to the MCTS-trained approach within 3
raining iterations. Notably, this similar performance is achieved with
pproximately 15% fewer iterations per timestep.

Fig. 11 present the timesteps survived per scenario and Fig. 12
present the MCTS iterations needed per step for the training data set,
over 3 iterations of the MCTS-trained and the proposed distance-guided
MCTS-trained approach. The proposed distance-guided approach
achieves improvements of 10% in iteration count and 15% in perfor-
mance over the 3 iterations. This demonstrates the effectiveness of in-
orporating the distance factor, which helps in more rapidly identifying
ppropriate actions by prioritizing those closer to the congestion.

3.4. Discussion

The case studies present several advantages regarding the appli-
cation of the CL, MCTS approach, and the proposed distance factor.
The CL training stabilizes the RL training and lead to performance
improvement of the Senior model compared to the Junior model.
MCTS enhances performance by focusing on longer-time strategies and
mitigating unforeseen consequences by simulations. By considering the
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Fig. 10. Required MCTS iterations per timestep of the Junior MCTS, MCTS-trained and
he proposed distanced-guided MCTS for the test dataset.

Fig. 11. Timesteps survived through 3 training iterations, for MCTS-trained and the
roposed distance-trained approach.

Fig. 12. Required MCTS iterations per timestep through 3 training iterations, for MCTS-
trained and the proposed distance-trained approach.

MCTS into the training phase, the approach improves sample efficiency
nd performance, as simulation-tested actions are used during the
olicy training. The addition of a distance factor further accelerates
onvergence during MCTS simulations and training.

However, some limitation of the approach can be noted. Despite
he inclusion of the distance factor, the MCTS remains computationally

expensive. Although system operators can stop MCTS at any point
and act on the best available solution, there is a trade-off between
7 
computation time and solution quality, which becomes critical in real-
time applications. Additionally, the Senior MCTS did not outperform
the Junior MCTS in the same amount of training iterations. The Ju-
nior model predicts fewer, more confident actions, whereas the Senior
model predicts more diverse actions with less confidence due to the
additional RL exploration. Therefore, the Senior model outperforms
the Junior model when simulating top 25 predicted actions. However,
when combined with MCTS, the Junior-MCTS model searches deeper
within the tree due to its more focused predictions, while the Senior-
MCTS explores more actions at each level, resulting in shallower tree
xploration. That being said, the more diverse predictions of the Senior
odel can identify action sequences that were not previously known by

n expert policy, enriching the experience of system operators.
In this study, the RAS of only substation topological actions were

onsidered to evaluate how effectively our approach can identify these
actions. However, this assumption creates a performance ceiling. Con-
sidering continuous, non-topological actions, such as re-dispatching
onventional generators, charging battery storage systems, and re-
ewable curtailment, can further enhance grid security. To this end,
ontinuous actions can be considered through (1) new prediction heads
n the policy network or (2) by optimizing continuous actions along
romising topological trajectories using an optimal power flow (OPF)
odel within the MCTS approach.

While the primary objective in this work was maximizing the
imesteps survived, real-world grid operations involve multiple objec-

tives, including operational costs, long-term asset wear, and environ-
mental impact [38]. Multi-objective RL approaches could be investi-
ated to consider these factors and provide a set of Pareto optimal

solutions for system operators to select from. Additionally, although the
dversarial agent simulates N-1 contingencies to assess robustness, the
roposed approach still requires retraining if the grid’s base topology

changes significantly.

4. Conclusion

This paper proposes a hybrid curriculum RL and MCTS approach for
sequential topology control, aimed at mitigating grid congestion. The
proposed approach uses CL to first pre-train a policy network through
supervised imitation learning, followed by PPO. The policy network
guides the MCTS to simulate potential action sequences, considering
future outcomes for improved long-term performance. The MCTS is
integrated into the policy training to increase training stability and
sample efficiency. Additionally, a distance factor is introduced into the
UCB to prioritize actions closer to congestion, improving convergence
during MCTS simulation and training. Numerical case studies on the
IEEE 118-bus system shows that the CL and MCTS stabilize learning and
improve performance, with the proposed approach outperforming a
brute-force baseline. Moreover, the proposed distance factor accelerates
MCTS convergence, indicating potential improvements in scalability
to larger grids by focusing on actions closer to congestion. However,
MCTS remains computationally expensive, and there is a trade-off
between computation time and solution quality, which is critical for
real-time applications. Operators can stop MCTS at any point to act
on the best available solution, providing flexibility in decision-making.
Future work will focus on scalability to large-scale grids, considering
continuous actions (e.g. re-dispatching) through the policy network or
OPF in the MCTS, advanced electrical distance methods with the bus
plit distribution factors [39], adaptability to different grids, and multi-
bjective RL approaches to consider different operational objectives,
uch as security, cost, and asset wear.
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