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Abstract

The main goal of this project is to predict the influence of non-uniform basin depths on
the stability of single inlet systems. This is achieved by making use of Escoffier’s principle,
which poses a relationship between the relative water flow velocity in an inlet and the rate
of change of its cross-sectional area. To this end, a thorough analysis is performed on the
equations that govern water motions, principially the linearised shallow water equations. An
analytic solution is obtained, and some results are simulated in MATLAB.
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1 Introduction

Chains of barrier islands are a common occurence along coastlines around the world. In
general, a barrier island chain consists of a basin, usually relatively shallow, which is separated
from the rest of the sea or ocean to which it is attached. This separation comprises one or
more inlet channels, linking the basin to the outer sea. When multiple inlet channels are
involved, barrier islands will be existing inbetween the channels.
In the Netherlands, the Waddeneilanden along with the inlets that separate them form
such a barrier coast. The chain of islands stretches up to a length of 500 km between the
Netherlands and Denmark [8].

Figure 1: Satellite image of the Waddeneilanden. Google Maps (2016)

Although the islands themselves are quite small, approximately 1000 km2, they enclose a
rather sizable area of inland sea called the Wadden Sea. This marginal sea spans a maximal
area of about 10 000 km2 during high tide, of which approximately 75% runs dry partially
or entirely during low tide [7].
As one might imagine, this kind of environment has the ability to house flora and fauna that
is unique to the Wadden region. In fact, a large portion of the islands and the Wadden Sea
have been declared as a UNESCO World Heritage in 2009 [9].
Not only is nature a significant aspect of this region, but these islands also possess cultural
importance. Although the shapes of the islands were quite different in the past, records
show that this region has been inhabited for over 2000 years. Nowadays, a population of
approximately 80 000 people reside permanently on the islands, whereas a lot more people
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stay on the islands during summer when the islands form a tourist hotspot [8].
Arising from its ecological and economic importance, it is desirable to know how the island
chain changes its shape over long periods of time. The islands are subject to continuous
changes due to sediment transport by sea currents. As a result, numerous villages have
disappeared in the past as they were engulfed by the sea.
To know how water flow changes island shapes is important to our understanding of geolog-
ical phenomena. In what fashion and shape do tidal flats, similar to the ones in the Wadden
Sea, as can be seen in Figure 1, come to be? A similar formulation of this question would
be: how does water flow through inlet channels affect them over time?

In this thesis, all physical quantities and equations that relate to each other which are
deemed to be important, will be analysed. In addition to physical parameters, the geome-
tries in which these phenomena take place will be considered and discussed. This is mainly
done in chapter 2, where the single-inlet system is introduced as the main geometry of in-
terest; chapter 3 is devoted to analysing the equations and introducing techniques that solve
the equations, and chapter 4 contains some basic results of the findings. During the final
chapter, some further research potentials will be highlighted that are beyond the scope of
this thesis.
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2 Parameters and Models

2.1 Geometries

In this chapter, one will see the definitions of some physical quantities and measures 1.
These are related to the geometry that will be introduced to analyse the inlet stability: the
single-inlet system, depicted in Figure 2.

↑
v(x, y, t)

→ u(x, y, t)

Basin

Inlet

Ocean

y = D1

y = D

y = 0

x = 0 x = L1l x = L1r x = L

Figure 2: Top view of a single-inlet system.

From the figure, all coordinates of this two-dimensional system can be seen. The inlet system
consists of three different bodies of water that are connected to each other. The basin is
attached to the inlet channel at one side, and the other end of the inlet is attached to
the ocean. The basin and inlet are both considered to have a rectangular top view, with
dimensions L×D and ∆L1×∆D respectively, where ∆L1 := L1r−L1l and ∆D := D1−D.
The relative dimensions of the ocean are considered large enough to be modeled as semi-
infinite. Two water flow velocities are defined, that depend on the spatial variables x and y,
but also on time t. One defines u(x, y, t) to be the velocity in the x-direction, while v(x, y, t)
is the velocity in the y-direction.

1A list containing the numerical values of physical quantities used throughout this thesis can be found in
the Appendix.
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In addition to the top view of the single-inlet system, a cross-section of the basin will be
taken to define the water depth H(x, y) and the sea level perturbation ζ(x, y, t).

Water surface

Seafloor

ζ(x, y, t)

H(x, y)

Figure 3: Part of the basin’s cross-sectional area.

The dashed line segment in Figure 2.1 indicates the mean sea level, which can be chosen to
be 0. Note that ζ is measured postively upwards, while H is measured positively downwards.
These quantities are defined in a similar way when the inlet channel is concerned.

During previous researches (see e.g. [1], [2]), the basin water depth H is assumed to be
constant. In this thesis, one will carry out the analyses while assuming that the basin water
depth exhibits space-dependent variations.

2.2 Escoffier’s Principle and the Shallow Water Equations

In order to formulate a general idea of the main problem that will be of concern in this
thesis, Escoffier’s principle will now be introduced:

dA

dt
=

µ

∆D

[(
U

Ueq

)κ
− 1

]
. (2.2.1)

Given an inlet that connects the basin to the ocean, this equation gives the relation between
an inlet’s cross-sectional area A and the cross-sectionally averaged flow speed U throughout
the inlet, relative to Ueq, which is defined as an equilibrium flow speed. Indeed, if U = Ueq,
then dA

dt
= 0, which means that the cross-sectional area of the inlet does not change over

time: it has reached an equilibrium. On the other hand, if U < Ueq or U > Ueq, then A will
respectively decrease and increase.
In Escoffier’s equation, the sedimental composition related parameters µ and κ also play a
role; µ is the sediment import by the process of ebb and flow, and κ is the power that is
related to the power law of sediment transport.
The quantity U is defined as

U =
1

∆L1 ·∆D

¨
R

|u| d(x, y) (2.2.2)
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where R is the inlet region with dimensions ∆L1 × (D1 −D). Note that if one defines the
width of the inlet channel as

∆L1 =
A

H I
(2.2.3)

where H I is the water depth in the inlet, then U depends on A according to (2.2.2). Subse-
quentially, if u has been solved for, then A can be calculated for future time by e.g. using a
numerical integration scheme [1].

In order to use (2.2.1) and (2.2.2), it is important to calculate the water flow velocity
in the single inlet system. Water motions are governed by the conservation of mass and
momentum. Mathematically, this is described by the Navier-Stokes equation. Given the
numerical parameters in the Appendix, it is reasonable to assume that all concerned water
depths in the specified geometry of Figure 2.1 (∼10m) are small with respect to the hori-
zontal length scales (∼10km). Then, by depth-integrating the Navier-Stokes equation, the
linearized shallow water equations can be derived. For more details on the analysis, refer to
[4].

∂u

∂t
− fv(x, y) +

r

H(x, y)
u(x, y) = −g ∂ζ

∂x
, (2.2.4)

∂v

∂t
+ fu(x, y) +

r

H(x, y)
v(x, y) = −g∂ζ

∂y
, (2.2.5)

∂ζ

∂t
+

∂

∂x
[H(x, y)u(x, y)] +

∂

∂y
[H(x, y)v(x, y)] = 0. (2.2.6)

These equations in two spatial parameters x and y and time t pose a relationship between
the depth-averaged x- and y-directional water flow, u(x, y) and v(x, y) respectively, as well
as the sea level perturbation ζ(x, y) for every position (x, y) in the concerned region.
f is the Coriolis parameter, and is defined as

f = 2Ω sin(θ), (2.2.7)

where Ω = 7.292 · 10−5 rad s−1 is the angular frequency of Earth’s rotation and θ is the
central latitude of the basin-inlet system. r is the bottom friction coefficient throughout the
system, and g is the local gravitational acceleration.
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3 Equation Analyses

3.1 Isolated Basin with Constant Basin Depth

As for a first analysis on how the shallow water equations are solved, one will consider a
rectangular basin with dimensions L×D that is subject to no external boundary forces.

y = D

y = 0

x = 0 x = L

Figure 4: An isolated rectangular basin.

The basin depth H(x, y) = H is assumed constant. Equation (2.2.6) now reduces to a
simpler form:

∂ζ

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0. (3.1.1)

Next, define the operator

L :=
∂

∂t
+

r

H
. (3.1.2)

Equations (2.2.4) and (2.2.5) can then be rewritten as

Lu− fv = −g ∂ζ
∂x
, (3.1.3)

Lv + fu = −g∂ζ
∂y
. (3.1.4)

Let L act on (3.1.3) and multiply f with (3.1.4). By adding the results, one will find a direct
relation between the flow velocity u and sea level ζ.

(L2 + f 2)u = −g
(
L∂ζ
∂x

+ f
∂ζ

∂y

)
(3.1.5)

By letting L act on (3.1.4) and multiplying f with (3.1.3), and subsequentially taking the
difference between the results, v and ζ are related by

(L2 + f 2)v = −g
(
L∂ζ
∂y
− f ∂ζ

∂x

)
(3.1.6)

6
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Next, by letting L2 + f 2 act on (3.1.1), one will find

(L2 + f 2)
∂ζ

∂t
+H

(
∂

∂x
(L2 + f 2)u+

∂

∂y
(L2 + f 2)v

)
= 0. (3.1.7)

Using equations (3.1.5) and (3.1.6), it follows that

∂

∂x
(L2 + f 2)u = −g

(
L∂

2ζ

∂x2
+ f

∂2ζ

∂x∂y

)
;

∂

∂y
(L2 + f 2)v = −g

(
L∂

2ζ

∂y2
− f ∂2ζ

∂x∂y

)
.

With this information, equation (3.1.7) can be written as

(L2 + f 2)
∂ζ

∂t
+H

[
−g
(
L∂

2ζ

∂x2
+ f

∂2ζ

∂x∂y

)
− g

(
L∂

2ζ

∂y2
− f ∂2ζ

∂x∂y

)]
= 0,

which is equivalent to

(L2 + f 2)
∂ζ

∂t
− gHL

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
= 0. (3.1.8)

Hence, to solve the system of shallow water equations, one can first solve for ζ by using
(3.1.8), and once the solution is known, u and v can be determined by solving (3.1.5) and
(3.1.6) respectively. In order to solve for non-trivial ζ, the standard procedure of separation
of variables can be used by noting that L is a linear differential operator and by assuming
ζ(x, y, t) = X(x)Y (y)T (t) [3]. The following ODEs arise:

(L2 + f 2)
dT

dt
= −λL(T ), (3.1.9)

d2X

dx2
= −µX, (3.1.10)

d2Y

dy2
= −

(
λ

gH
− µ

)
Y. (3.1.11)

Boundary conditions will be needed to solve for X and Y . At the boundaries, the flow
velocities should vanish.

u(0, y, t) = u(L, y, t) = v(x, 0, t) = v(x,D, t) = 0 (3.1.12)

According to (3.1.5) and (3.1.6), these conditions are equivalent to

L(T )Y
dX

dx
+ fXT

dY

dy
= 0, L(T )X

dY

dy
− fY T dX

dx
= 0. (3.1.13)

To simplify these mixed boundary conditions somewhat, the Coriolis parameter will be
henceforth considered negligible (f ≈ 0) for this case, i.e.: force terms due to the rotation of
the Earth are neglected. Since X, Y 6= 0 as only non-trivial solutions are relevant as well as
L(T ) 6= 0 2, all boundary conditions for X and Y reduce to the Neumann type.

dX

dx
(0) =

dX

dx
(L) =

dY

dy
(0) =

dY

dy
(D) = 0. (3.1.14)

2If this were the case, dT
dt = 0, which means that the solution is stationary, hence trivial by choice.
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The corresponding boundary conditions for ζ are indicated in Figure 5.

∂ζ
∂x

= 0 ∂ζ
∂x

= 0

∂ζ
∂y

= 0

∂ζ
∂y

= 0

Figure 5: Isolated basin with indicated boundary conditions for ζ.

Standard techniques show that the labeled eigenfunctions satisfying (3.1.10) and (3.1.11) are

Xn(x) = cos
(nπx
L

)
, Ym(y) = cos

(mπy
D

)
(3.1.15)

with the usual eigenvalues

λnm = gH

[(nπ
L

)2
+
(mπ
D

)2]
. (3.1.16)

By the principle of superposition of solutions, the general ζ is thus given by

ζ(x, y, t) =
∞∑
n=0

∞∑
m=0

anm cos
(nπx
L

)
cos
(mπy
D

)
Tnm(t). (3.1.17)

Now (3.1.10) and (3.1.11) have been solved for, it remains to solve (3.1.9), which is a third
order linear ordinary differential equation. Note that

L2 =
d2

dt2
+ 2

r

H

d

dt
+
( r
H

)2
,

such that the characteristic equation for (3.1.9) generated by the trial function T (t) = eαnmt

becomes

α3
nm + 2

r

H
α2
nm +

[( r
H

)2
+ λnm

]
αnm +

r

H
λmn = 0. (3.1.18)

The three complex αnm that are able to solve this third order equation can be written in a
closed-form expression, but a quick numerical simulation shows that for every m,n 6= 0,
the real part of αnm is negative. This means that lim

t→∞
Tnm(t) = 0, and by extension,

8
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lim
t→∞

ζ(x, y, t) = 0 by contribution from every of its nonzero modes.

When m = n = 0, it can be easily seen that α = 0 is a solution to (3.1.18). This cor-
responds to the constant mode in (3.1.17), which means that it is the unique mode that
does not dissipate over time. It turns out that one can choose the amplitude of this mode
to equal zero, as all boundary conditions are of the Neumann type. That is: in all cases,
not ζ itself is prescribed, but one of its partial derivatives. This leaves one order of freedom
in choice for the constant term: one is essentially free to choose its level of zero potential
gravitational energy on any height. This holds regardless of whether the basin bathymetry
is constant, as H can be defined as the mean water depth in the basin. For all the other
modes, it is rather obvious that disturbances in the water level disappear over time, as it is
stipulated that r > 0; there is nonzero friction, which dissipates the kinetic energy of the
water in the isolated basin.

3.2 Basin Attached to the Ocean

Now that solutions for ζ have been established to damp out in isolated basins, it is reasonable
to assume that the water in the basin adopts any long-term behaviour of external water
forces. To this end, another basin geometry will be introduced on which the shallow water
equations will be analysed.

Basin

Ocean

y = D

y = 0

x = 0 x = L

Figure 6: A non-isolated rectangular basin.

Figure 6 shows that the geometry is relatively similar to the one discussed in the previous
paragraph. At y = D, the basin is connected to the ocean, which will be able to exert periodic
forcing of the basin water by means of ebb and flow. This gives rise to the following:

{u, v, ζ} = Re
[
{ũ, ṽ, ζ̃}e−iωt

]
. (3.2.1)

9
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As it turns out, by introducing this periodic time dependency of the flow velocities and sea
level in the basin, ũ(x, y), ṽ(x, y) and ζ̃(x, y) can be analysed in detail.
By substituting the proposed solution forms in (3.2.1) into the shallow water equations
(2.2.4) through (2.2.6), all time dependencies can be canceled out because the equations are
linear. By yet ignoring the Coriolis forces in favor of nicer boundary conditions, the new
system of time-independent shallow water equations reads:

−iωũ+
r

H
ũ = −g ∂ζ̃

∂x
, (3.2.2)

−iωṽ +
r

H
ṽ = −g∂ζ̃

∂y
, (3.2.3)

−iωζ̃ +
∂

∂x
(Hũ) +

∂

∂y
(Hṽ) = 0. (3.2.4)

This system involves only two independent variables, as opposed to three in the original
shallow water equations. These equations will now be analysed with topographic variations
in consideration, i.e. H(x, y) is non-constant.
As with the time-dependent shallow water system, where the operator L was defined, one
can analogously define the scalar quantity

M(x, y) = −iω +
r

H(x, y)
(3.2.5)

which fulfills the same role in the time-independent system, equations (3.2.2) through (3.2.4).
Equations (3.2.2) and (3.2.3) can be rewritten to obtain direct relations between ũ, ṽ and ζ̃.

ũ = − g

M

∂ζ̃

∂x
, (3.2.6)

ṽ = − g

M

∂ζ̃

∂y
. (3.2.7)

These expressions can be directly substituted into (3.2.4) to find

ζ̃ − ∂

∂x

(
gHi

ωM

∂ζ̃

∂x

)
− ∂

∂y

(
gHi

ωM

∂ζ̃

∂y

)
= 0. (3.2.8)

There are different methods that can be used to solve (3.2.8). This can be done by applying
an iterative numerical scheme [5], but the rest of this paragraph will be devoted to deriving
and analysing an analytical approach.
To this end, perturbation theory will be applied to investigate the influence of small bathymetry
perturbations on the water motion in the basin. H(x, y) will be written as

H(x, y) = H0 + δh(x, y) (3.2.9)

for some constant H0 and a continuous function h(x, y), and δ being a small parameter.
Using this, one can expand 1/H geometrically.

1

H
=

1

H0(1 + h
H0
δ)

=
1

H0

∞∑
k=0

(−1)k
(
h

H0

)k
δk. (3.2.10)

10
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Then, 1/M is also expanded geometrically:

1

M
=

1
r
H
− iω

=
i

ω

∞∑
n=0

[
r

iωH0

∞∑
k=0

(−1)k
(
h

H0

)k
δk

]n
. (3.2.11)

Next, the sea level ζ is expanded in the small paramater δ as well,

ζ(x, y) =
∞∑
n=0

ζn(x, y)δn. (3.2.12)

By substituting all expansions into (3.2.8), one finds

∞∑
n=0

ζ̃n(x, y)δn − ∂

∂x

(
− g

ω2
(H0 + δh)

∞∑
n=0

[
r

iωH0

∞∑
k=0

(−1)k
(
h

H0

)k
δk

]n ∞∑
n=0

∂ζ̃n
∂x

δn

)

− ∂

∂y

(
− g

ω2
(H0 + δh)

∞∑
n=0

[
r

iωH0

∞∑
k=0

(−1)k
(
h

H0

)k
δk

]n ∞∑
n=0

∂ζ̃n
∂y

δn

)
= 0.

(3.2.13)

This equation shows that for every order in δ, the terms with the same order in δ must
balance. With this in mind, gathering the 0th order (constant) δ terms yields the following
equation:

ζ̃0 −
gH0i

ωM0

(
∂2ζ̃0
∂x2

+
∂2ζ̃0
∂y2

)
= 0. (3.2.14)

One may recognise (3.2.14) as a homogeneous Helmholtz equation. Define

k̃2 =
ωM0i

gH0

(3.2.15)

such that
∇2ζ̃0 + k̃2ζ̃0 = 0. (3.2.16)

This PDE can be solved in a relatively straightforward fashion on the given geometry by
considering its boundary conditions. In this case, the problem concerns the rectangular
region shown in Figure 6, which has three sides with Neumann boundaries. The remaining
side is connected with the ocean, which will now be simulated by a prescribed flow velocity

boundary, namely ∂ ζ̃0
∂y

(x,D) = z(x).

11
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∂ ζ̃0
∂x

= 0 ∂ ζ̃0
∂x

= 0

∂ ζ̃0
∂y

= 0

z(x)

Figure 7: The same basin as in Figure 6, with indicated boundary conditions.

Given these boundary conditions, the general solution for ζ̃0 can be obtained through stan-
dard techniques. Define

λn =

√(nπ
L

)2
− k̃2, (3.2.17)

then

ζ̃0(x, y) =
∞∑
n=0

an cos
(nπx
L

)
cosh (λny) . (3.2.18)

with coefficients an (n > 0) such that

an =
2

Lλn sinh (λnD)

ˆ L

0

z(x) cos
(nπx
L

)
dx (3.2.19)

and

a0 =
1

Lλ0 sinh (λ0D)

ˆ L

0

z(x) dx. (3.2.20)

It is convenient to ignore the pathological case in which k̃2 =
(
nπ
L

)2
for some n, so their

inequality will be assumed herewith.

Since the 0th order term in the asymptotic expansion for ζ̃ has now been solved for, the
1st order term can be analysed. Gathering all relevant terms in (3.2.13) yields

ζ̃1 −
∂

∂x

(
ghi

ωM0

∂ζ̃0
∂x
− gH0i

ω( rh
H2

0
+ iω)

∂ζ̃0
∂x

+
gH0i

ωM0

∂ζ̃1
∂x

)
− ∂

∂y
(...) = 0. (3.2.21)

As with (3.2.14), this is a Helmholtz equation, albeit an inhomogeneous one:

∇2ζ̃1 + k̃2ζ̃1 = −Aζ̃0(x, y). (3.2.22)

12
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The forcing function Aζ̃0 depends only on ζ̃0, and is given by

Aζ̃0(x, y) =
∂

∂x

[(
h

H0

− M0

rh
H2

0
+ iω

)
∂ζ̃0
∂x

]
+

∂

∂y

[(
h

H0

− M0

rh
H2

0
+ iω

)
∂ζ̃0
∂y

]
. (3.2.23)

This forced Helmholtz equation with the inhomogeneous boundary at y = D can be split up
in two problems: one with inhomogeneous boundaries and homogeneous Helmholtz equation
(ζ̃a1 ) and one with homogeneous boundaries and inhomogeneous Helmholtz equation (ζ̃b1).
Because the procedure of solving for ζ̃a1 is equivalent to the procedure to solve for ζ̃0, only
the method to solve ζ̃b1 will be discussed here. The related eigenvalue problem for ζ̃1 in terms
of eigenfunctions φ is

(∇2 + k̃2)φ = −λφ. (3.2.24)

The standard solutions with the given Neumann boundaries are

φnm(x, y) = cos
(nπx
L

)
cos
(mπy
D

)
(3.2.25)

with eigenvalues λnm = (nπ
L

)2 + (mπ
D

)2 − k̃2. Then, by eigenfunction expansion,

ζ̃b1(x, y) =
∞∑
n=0

∞∑
m=0

bnmφnm(x, y) (3.2.26)

where the coefficients bnm can be calculated as follows:

bnm =
4

λnmLD

¨
R

Aζ̃0(x, y)φnm(x, y) d(x, y). (3.2.27)

R is the concerned rectangular basin region. As with a previous paragraph, the assertion
can be made that b00 = 0; to recap, this degree of freedom is created since only partial
derivatives of ζ̃ are prescribed on the boundaries of the systems that are concerned.

Second and higher orders of ζ̃n = ζ̃an + ζ̃bn can be calculated in a similar manner. By in-
duction, each one of the equations will obey an inhomogeneous with similar inhomogeneous
boundary conditions and inhomogeneous Helmholtz equations.

∇2ζ̃n + k̃2ζ̃n = −Aζ̃n−1
(x, y) (3.2.28)

According to (3.2.13), each Aζ̃p contains 2p terms.

Having obtained ζ̃ up to a desired degree by using this iterative process of solving for forced
Helmholtz equations, the depth-averaged flows are calculated with equations (3.2.6) and
(3.2.7):

ũ = − g

M

∂ζ̃

∂x
, ṽ = − g

M

∂ζ̃

∂y
.
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3.3 Collocation Method

There are two suitable candidates to simulate the solutions for ζ̃, ũ and ṽ. The main objec-
tive is to solve for the coefficients an and bnm.
The first method has already been described by equations (3.2.19) and (3.2.27): this involves
(numerical) integration to solve for an arbitrary amount of generalized Fourier coefficients.

As an alternative method, the collocation technique may be used, based on [1].
By differentiating ζ̃0 in the y-direction, the result is

∂ζ̃0
∂y

(x, y) =
∞∑
n=0

anλn cos
(nπx
L

)
sinh(λny). (3.3.1)

The collocation method relies on selecting N + 1 points x0, . . . , xN along the basin-sea in-
terface, i.e. y = D, that avoid any boundary discontinuities, x0 6= 0, xN 6= L. One then
subsequently asserts that

∂ζ̃0
∂y

(xk, D) =
N∑
n=0

anλn sinh(λnD) cos
(nπxk

L

)
(3.3.2)

holds for all k = 0, . . . , N . See Figure 8.

× × × × × × × × × × × ×× × ×y = D

x0 x1 . . . . . . xN

Figure 8: The collocation method.

Equation (3.3.2) defines a system of N + 1 linear equations with the coefficients a0, . . . , aN
as unknowns. Define

φn(x) = cos
(nπx
L

)
(3.3.3)

and
bn = λn sinh (λnD) (3.3.4)

such that

z(xk) =
∂ζ̃0
∂y

(xk, D) =
∞∑
n=0

anbnφn(xk). (3.3.5)

14
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In matrix-vector notation, this can be written as b0φ0(x0) . . . bNφN(x0)
...

. . .
...

b0φ0(xN) . . . bNφN(xN)


a0...
aN

 =

 z(x0)
...

z(xN)

 (3.3.6)

written as Ba = z. The first N + 1 coefficients can then be (uniquely) determined through
a = B−1z.
The collocation technique is a very convenient way to solve for coefficients, as will be shown
in the next section, where the process of coupling multiple rectangular areas will be described
in the context of a single inlet system.

3.4 Coupling of Multiple Basins

Now that the problem with a single rectangular basin has been discussed, it is time to extend
the problem to the next stage. In this section, the influence of a rectangular inlet channel,
attached to the earlier discussed rectangular basin, will be analysed. To address the problem
of coupling rectangular modules together, a linear system of equations needs to be solved
that determines the coefficients of the eigenfunction expanded solutions for ζ̃ in adjacent
basins. Suppose that a rectangular channel of width ∆L1 = L1r − L1l with L1r, L1l ∈ [0, L]
and L1r > L1l, and length ∆D = D1−D with D1 > D is attached to the previously inspected
rectangular basin, where the boundary y = D1 forms the threshold between the ocean and
the basin-inlet module couple. Note that the total system now is the one depicted in Figure
2. Define ũI, ṽI to be the time-independent flow velocities in the channel, and ζ̃I as the
time-independent sea level disturbance in the channel.

y = D1

y = D

x = L1l x = L1r

Basin

Ocean

∂ ζ̃I0
∂x

= 0
∂ ζ̃I0
∂x

= 0

∂ ζ̃I0
∂y

= ∂ ζ̃0
∂y

ζ̃I0 = ζ̃0

ζ̃I0 = Z

Figure 9: A rectangular channel that connects the basin to the ocean. The channel’s coor-
dinates and the boundary conditions for ζ̃I0 are indicated.
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At this point, let ζ̃I0(x, y) be the 0th order solution to equation (3.2.8) in the channel. Vari-
ations in bathymetry is a feature that will only be discussed in the main basin, so the water
depth in the inlet channel, H I, is considered to be constant. The solution of ζ̃I0 satisfies the
following boundary conditions 3:

ζ̃I0(x,D) = ζ̃0(x,D),
∂ ζ̃I0
∂y

(x,D) =
∂ζ̃0
∂y

(x,D),

∂ ζ̃I0
∂x

(L1l, y) = 0 =
∂ζ̃I0
∂x

(L1r, y), ζ̃I0(x,D1) = Z.

(3.4.1)

with some constant Z > 0. The last prescribed boundary condition simulates a single tidal
consistuent of the ocean, which corresponds to a space-independent harmonic wave in the
time-dependent problem:

ζI0(x,D1) = Ze−iωt. (3.4.2)

The equation that governs ζ̃I0 is related to a Helmholtz equation similar to (3.2.14) and can
be directly derived by rewriting (3.2.8).

ζ̃I0 −
gH Ii

ωM I

(
∂2ζ̃I0
∂x2

+
∂2ζ̃I0
∂y2

)
= 0. (3.4.3)

For convenience, define

(k̃I)2 =
ωM Ii

gH I
(3.4.4)

and

λIn =

√(
nπ

∆L1

)2

− (k̃I)2 (3.4.5)

analogous to how k̃2 and λn have been defined. The one-dimensional eigenfunctions for
(3.4.3) can be determined through standard methods as usual,

Xn(x) = cos

(
nπ(x− L1l)

∆L1

)
, Yn(x) = sinh

(
λIn(y −D1)

)
. (3.4.6)

so that

ζ̃I0(x, y) = Z +
∞∑
n=0

aIn cos

(
nπ(x− L1l)

∆L1

)
sinh

(
λIn(y −D1)

)
. (3.4.7)

The coefficients aIn are to be determined by relating them to an, the coefficients from the
basin solution. For that purpose, one will consider the boundary conditions that ζ̃0(x,D) =

3Formally,
∂ ζ̃I0
∂y (x,D) = ∂ ζ̃0

∂y (x,D) does not necessarily hold, but HIuI(x,D) = H(x,D)u(x,D), due to

conservation of momentum. However, one will assume that H(x,D) = HI; this results in both conditions
becoming equivalent.
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ζ̃I0(x,D) and ∂ ζ̃0
∂y

(x,D) =
∂ ζ̃I0
∂y

(x,D) for every x on the channel-basin boundary:

ζ̃0(x,D) =
∞∑
n=0

an cos
(nπx
L

)
cosh (λnD)

= Z +
∞∑
n=0

aIn cos

(
nπ(x− L1l)

∆L1

)
sinh

(
λIn(D −D1)

)
= ζ̃I0(x,D)

(3.4.8)

and

∂ζ̃0
∂y

(x,D) =
∞∑
n=0

anλn sinh (λnD) cos
(nπx
L

)
=
∞∑
n=0

aInλ
I
n cosh

(
λIn(D −D1)

)
cos

(
nπ(x− L1l)

∆L1

)
=
∂ζ̃I0
∂y

(x,D).

(3.4.9)

In addition, a no-flow boundary condition holds for every x on the line y = D that is not
situated on the basin-inlet boundary.

∂ζ̃0
∂y

(x,D) =
N∑
n=0

anλn sinh(λnD) cos
(nπx
L

)
= 0 (3.4.10)

As before, by truncating the infinite series for the sea level perturbation, a linear system is
found from which a finite number of coefficients are solved. Suppose there are N + 1 points
to be taken from the concerned region along the line y = D, labeled x0, . . . , xN , of which
M + 1 points coincide with the channel border. For convenience’s sake, let the ith through
the jth points be these described points (0 ≤ i ≤ j ≤ N , M = j − i). See Figure 10.

y = D ×××××××××××××××
x0 . . .

xi . . . xj

. . . xN

Figure 10: The collocation method applied to the basin-inlet boundary.

In addition, let

bn := cosh (λnD)

bIn := sinh
(
λIn(D −D1)

)
b′n := λn sinh (λnD)

bI
′

n := λIn cosh
(
λIn(D −D1)

) (3.4.11)
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and

φn(x) := cos
(nπx
L

)
, φI

n(x) := cos

(
nπ(x− L1l)

∆L1

)
. (3.4.12)

The expressions in (3.4.11) and (3.4.12) can now be used to rewrite the truncated series
based on the series for ζ̃0 and ζ̃I0 in (3.4.8), (3.4.9) and (3.4.10). By collocation, one asserts
that, for all p = i, . . . , j and k = 0, . . . i− 1, j + 1, . . . , N ,

N∑
n=0

anbnφn(xk) = 0

N∑
n=0

anbnφn(xp)−
M∑
m=0

aImb
I
mφ

I
m(xp) = Z

N∑
n=0

anb
′
nφn(xp)−

M∑
m=0

aImb
I′

mφ
I
m(xp) = 0

(3.4.13)

With the given definitions and assertions, the following N +M + 2 matrix equation can be
derived.

b′0φ0(x0) . . . b′NφN(x0) 0 . . . 0
...

. . .
...

...
. . .

...
b′0φ0(xi) . . . b′NφN(xi) −bI′0φI

0(xi) . . . −bI′MφI
M(xi)

...
. . .

...
...

. . .
...

b′0φ0(xj) . . . b′NφN(xj) −bI′0φI
0(xj) . . . −bI′MφI

M(xj)
...

. . .
...

...
. . .

...
b′0φ0(xN) . . . b′NφN(xN) 0 . . . 0
b0φ0(xi) . . . bNφN(xi) −bI0φI

0(xi) . . . −bIMφI
M(xi)

...
. . .

...
...

. . .
...

b0φ0(xj) . . . bNφN(xj) −bI0φI
0(xj) . . . −bIMφI

M(xj)





a0
...
aN
aI0
...
aIM


=



0
...
0
...
0
...
0
Z
...
Z



(3.4.14)

Compare the expressions in (3.4.13) and (3.4.14) with the earlier results in (3.3.5) and (3.3.6).
The solution to the first N + 1 coefficients in the basin as well as the first M + 1 coefficients
in the channel can be determined by inverting the equation.

3.5 Computational Approach

The coefficients as defined in (3.4.11) are generally not efficient to use in a matrix in order
to solve for the modal coefficients, since D is usually quite large (tens of kilometers). This in
turn will lead to extremely large matrix coefficients, which results in a matrix that is singular
from a computational point of view. This can be remedied by choosing the composing
eigenfunctions more carefully, so that the coefficients from (3.4.11) can be replaced by similar
numbers that are bounded in magnitude.
Instead of opting for the hyperbolic cosine in (3.2.18), two exponentials may be used to
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express it. Note that

an cosh (λny) =
an
2

(
eλny + e−λny

)
= a1ne

λn(y−D) + a2ne
−λny, (3.5.1)

where
a1n =

an
2
eλnD, a2n =

an
2
. (3.5.2)

Similar alternations can be made regarding ∂ ζ̃0
∂y

, ζ̃I0 and
∂ ζ̃I0
∂y

. At the basin-channel boundary
x = D, one will have:

ζ̃0(x,D) =
∞∑
n=0

(
a1n + a2ne

−λnD
)

cos
(nπx
L

)
= Z +

∞∑
n=0

(
aI1ne

λIn(D−D1) − aI2n
)

cos

(
nπ(x− L1l)

∆L1

)
= ζ̃I0(x,D),

(3.5.3)

∂ζ̃0
∂y

(x,D) =
∞∑
n=0

λn
(
a1n − a2ne−λnD

)
cos
(nπx
L

)
=
∞∑
n=0

λIn

(
aI1ne

λIn(D−D1) + aI2n

)
cos

(
nπ(x− L1l)

∆L1

)
=
∂ζ̃I0
∂y

(x,D).

(3.5.4)

The amount of Fourier coefficients one has to solve for has now seemingly doubled, but some
rewriting will demonstrate that this number of unknowns remains the same. Remember the
assertion that

∂ζ̃0
∂y

(x, 0) =
∞∑
n=0

λn
(
a1ne

−λnD − a2n
)

cos
(nπx
L

)
= 0 (3.5.5)

so
a1ne

−λnD = a2n (3.5.6)

which exactly aligns with equation (3.5.2). Also,

ζ̃I0(x,D1) = Z +
∞∑
n=0

(
aI1n − aI2ne−λ

I
n(D1−D)

)
cos

(
nπ(x− L1l)

∆L1

)
= Z.

(3.5.7)

meaning that
aI1n = aI2ne

−λIn(D1−D). (3.5.8)

Taking all this together, it is found that

ζ̃0(x, y) =
∞∑
n=0

(
a1ne

λn(y−D) + a2ne
−λny

)
cos
(nπx
L

)
(3.5.9)

ζ̃I0(x, y) = Z +
∞∑
n=0

(
aI1ne

λIn(y−D1) − aI2ne−λ
I
n(y−D)

)
cos

(
nπ(x− L1l)

∆L1

)
. (3.5.10)
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Using conditions (3.5.6) and (3.5.8) for the coefficients, ζ̃0 and ζ̃I0 can be rewritten.

ζ̃0(x, y) =
∞∑
n=0

an
(
eλn(y−D) + e−λn(y+D)

)
cos
(nπx
L

)
, (3.5.11)

ζ̃I0(x, y) = Z +
∞∑
n=0

aIn

(
eλ

I
n(y−2D1+D) − e−λIn(y−D)

)
cos

(
nπ(x− L1l)

∆L1

)
. (3.5.12)

These alternate expressions for ζ̃0 and ζ̃I0 now contain coefficient parts that remain bounded.
To construct a collocation matrix equation, the boundaries are examined:

ζ̃0(x,D) =
∞∑
n=0

an
(
1 + e−2λnD

)
cos
(nπx
L

)
(3.5.13)

ζ̃I0(x,D) = Z +
∞∑
n=0

aIn

(
e2λ

I
n(D−D1) − 1

)
cos

(
nπ(x− L1l)

∆L1

)
(3.5.14)

∂ζ̃0
∂y

(x,D) =
∞∑
n=0

anλn
(
1− e−2λnD

)
cos
(nπx
L

)
(3.5.15)

∂ζ̃I0
∂y

(x,D) =
∞∑
n=0

aInλ
I
n

(
e2λ

I
n(D−D1) + 1

)
cos

(
nπ(x− L1l)

∆L1

)
(3.5.16)

Define, analogous to (3.4.11),

βn := 1 + e−2λnD

βI
n := e2λ

I
n(D−D1) − 1

β′n := λn
(
1− e−2λnD

)
βI′

n := λIn

(
e2λ

I
n(D−D1) + 1

) (3.5.17)

This creates a matrix equation similar to the one in (3.4.14), however computationally much
more tractable.

3.6 First and Higher Order Channel Solutions

Now that the 0th order solution ζ̃I0 has been accounted for, it is time to solve for the first
order solution in the inlet channel. If one assumes that the ocean is sufficiently unaffected by
any changes in the basin-channel system, the only first order perturbation that the channel
will receive originates from the basin. In the channel, one therefore has

• One homogeneous Dirichlet boundary at y = D1.

• Two homogeneous Neumann boundary at x = L1l and x = L1r.

• One prescribed Dirichlet boundary at x = D, namely
∂ ζ̃I1
∂y

(x,D) = ∂ ζ̃1
∂y

(x,D)
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• One prescribed Neumann boundary at x = D, namely ζ̃I1(x,D) = ζ̃1(x,D)

y = D1

y = D

x = L1l x = L1r

Basin

Ocean

∂ ζ̃I1
∂x

= 0
∂ ζ̃I1
∂x

= 0

∂ ζ̃I1
∂y

= ∂ ζ̃1
∂y

ζ̃I1 = ζ̃1

ζ̃I1 = 0

Figure 11: The inlet channel with coordinates and boundary conditions for ζ̃I1.

ζ̃I1 obeys the equation (3.4.3) in the channel, thus one can write down the general solution
as usual.

ζ̃I1(x, y) =
∞∑
n=0

aI1,n cos

(
nπ(x− L1l)

∆L1

)(
eλ

I
n(y−2D1+D) − e−λIn(y−D)

)
. (3.6.1)

To find these coefficients, the standard method of integration can be used.

aI1,n =
2

∆L1βI′
n

ˆ L1r

L1l

∂ζ̃1
∂y

(x,D) cos

(
nπ(x− L1l)

∆L1

)
dx. (3.6.2)

It should be noted that a collocation technique is not directly a viable choice to solve for
aI1,n, as these involve only one degree of separation, whereas the coefficients bnm associated

with ζ̃1 involve two. Because of the discrepancy between how the modes that construct ζ̃I1
and ζ̃1 are numbered, the collocation method as described in section 3.4 can not be readily
used to solve for a finite amount of coefficients.
Having solved for a sufficient amount of aI1,n through (3.6.2), the x and y-directional partial

derivatives of ζ̃I1 can be calculated by simply differentiating the structural parts of the ex-
pression as indicated in (3.6.1). This needs to be done in order to calculate the flow velocities
in the channel, by using (3.2.6) and (3.2.7) as per usual:

ũI = − g

M

∂ζ̃I

∂x
,

ṽI = − g

M

∂ζ̃I

∂y
.
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Generally speaking, for every order of ζ̃m one solves in the basin, one is able to solve the
corresponding order of ζ̃Im in the channel, in a form similar to (3.6.1);

ζ̃Im(x, y) =
∞∑
n=0

aIm,n cos

(
nπ(x− L1l)

∆L1

)(
eλ

I
n(y−2D1+D) − e−λIn(y−D)

)
, (3.6.3)

where

aIm,n =
2

∆L1βI′
n

ˆ L1r

L1l

∂ζ̃m
∂y

(x,D) cos

(
nπ(x− L1l)

∆L1

)
dx. (3.6.4)

With all of the analysed matter taken into consideration, one has fully solved the shallow
water equations in a single-inlet system, given specific types of basin bathymetry that exhibit
small variations.
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4 Results

In this chapter, some applications of the theory described in the previous section will be
shown. All simulations are implemented and performed in MATLAB version 2015b [6], and
the numerical values that have been used are found in the Appendix.

4.1 Integration-Collocation comparison

The first result that will be shown is the effectiveness of calculating modal coefficients by
means of the collocation technique. This will be compared with another conventional method,
which is the method of obtaining coefficients through integration, explained in section 3.3.
The geometry for which this comparison will be shown is the basin that is directly coupled to
the ocean, as shown in section 3.3. Here, 50 modes will be used to reconstruct ζ̃0. However,
unlike the initially proposed collocation method in section 3.4, the computational variant as
described in section 3.6 will be adopted to provide the simulation. For this purpose, matrix
equation (3.3.6) remains unchanged, but the accompanying matrix coefficients are defined
as

bn = λn(1− e−2λnD), (4.1.1)

in accordance with the coefficients defined in (3.5.17).

Figure 12: Integration method applied to solve 50 modes of the 0th order basin solution.
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Figure 13: Collocation method applied to solve the same problem.

From the lack of distinction between these figures, it can be concluded that both methods
work approximately equally well as to solve for the coefficients. The average difference
between both methods is 4.909 · 10−6, which is about 6% of of the average magnitude of ζ̃0.

4.2 Basin Water Depths and Flow Simulations

The core of this project is to analyse how variations in basin water depth H(x, y) lead to
differences in flow velocities through inlet channels. Therefore, it is necessary to consider
different types of h(x, y) and discuss their effects accordingly.
Three bathymetries will be discussed here.

• A flat seabed;

• Accumulation of sediment near the line x = 0 and x = L;

• Accumulation of sediment further away from the basin-inlet interface.

These shapes are respectively defined as:

h(x, y) = 0;
H0

(x− L
2
)2 + (y −D)2

; H0 cos2
(

3x

L

)
, (4.2.1)

and can be viewed in Figure 14.
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Figure 14: Various possible basin depth variations.

Taking δ = 1 and noting that H0 and h(x, y) are both in the order of 10 m, one can see
that δ h

H0
< 1, which makes the geometric expansions in e.g. (3.2.10) valid. These bottom

variations lead to the following first order flow velocity patterns in the inlet channel (Figure
15). During this calculation, a central difference method is applied to solve for the Helmholtz
forcing term Aζ̃0 , (3.2.23).
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Figure 15: Velocity vector fields in the inlet channel due to the type of forcing indicated in
the titles.

From this figure, it is not immediately obvious that different basin bathymetries influence
water flow patterns in the adjacent inlet channel. This is due to the fact that the pertubations
in the bathymetries are limited in size compared to the constant order term. However,
on careful inspection, the flow velocities do differ from each other. The velocities U are
numerically calculated to be 0.13645, 0.13652 and 0.13649 respectively (in m s−1). These
results indicate that all three inlet channels will have a decreasing cross-sectional area as
time progresses. It also shows that the system with radial shoals are the most stable, since
this number is the closest to Ueq = 1 m s−1.
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5 Discussion and Conclusion

In this thesis, a prediction has been made concerning how the cross-sectional area of the
tidal channel behaves over time. For this purpose, the shallow water equations have been
introduced and analysed, and some results have been deduced from Escoffier’s principle.
A number of simplifications have been made to carry out the analyses of the shallow wa-
ter equations. However, by taking some factors into account that have been ignored, this
model - along with Escoffier’s principle - might lead to more accurate predictions of the
cross-sectional size of inlets.
First of all, the friction coefficient is assumed to be constant throughout the single-inlet sys-
tem, while this of course is not the case in a physically accurate system. As bottom friction
generally is related to the water flow velocities, these coefficients are to be calculated by
means of an iterative process, see e.g. [1].
The Coriolis parameter f has been assumed to be negligible throughout most of the re-
search. Though this is physically accurate for any system located on the equator (θ = 0),
this assumption becomes increasingly invalid further away from the equator. For instance,
the Waddeneilanden barrier islands are located at approximately θ = 54◦, which means that
f = 1.18 · 10−4 rad s−1. In that case, f is in the same order of the friction coefficient r.
However, allowing f to take on non-zero values leads to boundary conditions that are not
easily analysed, as mentioned in section 3.1, (3.1.13), and fall outside the scope of this thesis.
Another consideration that falls outside of the scope of this thesis is the analysis of multiple
inlet systems, see for instance [1] for the double inlet system or [2] for the analysis of a
system with many inlets. In principle, any number of inlet channels may be used to attach
the basin to the ocean, and be solved and simulated in a very similar manner as described
in sections 3.4 and 3.6.
This research was mainly devoted to obtain analytical expressions of sea level perturbations
and flow velocities. The method hinges on perturbation theory, which demands that the
variations in basin bathymetry δh(x, y) is small with respect to its constant term H0. How-
ever, as one might suggest, this is not the case for any general basin bathymetry H(x, y).
In that case, a numerical approach of the linearised shallow water equations become practi-
cally inevitable. For a closer research on numerical schemes involving this equation system,
further knowledge in advanced numerical methods is required. Some results can be found in
[5]. Other similar aspects that have not been accounted for during this thesis is the discus-
sion on which numerical methods are used to fully integrate Escoffier’s equation (2.2.1), as
well as any numerical truncation and rounding errors when applying the numerical partial
derivative scheme.

Taking this all together, it can be concluded that this thesis has resulted in an analyti-
cal solution to the shallow water equations. The solution is subsequentially used to predict
any changes in the cross-sectional area of the inlet channel in the single-inlet system. This
thesis forms a solid basis for future researches on inlet system stability, especially those
involving the numerical aspects.
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Appendix A: Numerical values

To address the problems that are discussed in this thesis, a number of relevant physical
quantities concerning the basin-inlet-ocean problem are introduced in order to establish
relationships between one another. As reference for these quantities, their numerical values
and their concise definitions, this lookup table is composed. These are largely based on the
values used in [1].

D : y-dimension of basin 20 · 103 m
f : Coriolis parameter 0 rad s−1

g : Gravitational acceleration 9.81 m s−2

H0 : 0th order basin water depth 10 m
H I : Inlet channel water depth 10 m
L : x-dimension of basin 200 · 103 m
r : Seafloor friction coefficient 10−4

Ueq : Equilibrium speed of inlet flow 1 m s−1

δ : Small parameter 0.1
∆D : y-dimension of inlet channel 5 · 103 m
∆L1 : x-dimension of inlet channel 3.6 · 103 m

κ : Transport power law coefficient 3
µ : Sediment import 1.6 · 10−2 m3 s−1

ω : Tidal frequency 1.4 · 10−4 rad s−1
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Appendix B: MATLAB source code

The MATLAB code for generating the plots in Chapter 4 (Results), as well as any numerical
calculations that have been mentioned, can be found below.

clear; clc; close all;

format longG; format compact;

%% 0 order zeta

L = 60E3; D = 30E3;

Nmeshx = 250; Nmeshy = 200;

x = linspace(0,L,Nmeshx);

y = linspace(0,D,Nmeshy);

[X,Y] = meshgrid(x,y);

H0 = 5;

omega = 1.4E-4;

g = 9.81;

r = 1E-4;

M0 = r/H0 - 1i*omega;

K = omega*M0*1i./(g*H0);

z = @(x) 1E-7.*( heaviside(x - 0.4.*L) - heaviside(x - 0.6.*L));

lambda = @(n) sqrt((n*pi/L)^2 - K);

Phi = @(n) cos(n.*pi.*X./L).*(exp(lambda(n).*(Y - D)) + exp(-lambda(n).*(Y

+ D)));

Phix = @(n) -n.*pi./L.*sin(n.*pi.*X./L).*( exp(lambda(n).*(Y - D)) + exp(-

lambda(n).*(Y + D)));

Phiy = @(n) lambda(n).*cos(n.*pi.*X./L).*( exp(lambda(n).*(Y - D)) - exp(-

lambda(n).*(Y + D)));

% Number of 0th order modes

N = 50;

x1 = L/(N + 1) .*(0.5 + 0:(N + 1))’;

psi = @(n) cos(n.*pi.*x1./L);

bd = @(n) lambda(n).*(1 - exp(-2.* lambda(n).*D));

%% Coefficients by collocation

B = zeros(N + 1);

for i = 0:N

B(:,i + 1) = bd(i).*psi(i);

end

Z = z(x1);

A = B\Z;

Zeta0m = zeros(Nmeshx ,Nmeshy)’;

for i = 2:N + 1

Zeta0m = Zeta0m + A(i).*Phi(i - 1);

end
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figure;

mesh(X,Y,real(Zeta0m));

xlabel x

ylabel y

zlabel \zeta_0; title(’Collocation coefficients ’)

%% Coefficients by integrating

a = @(n) (n ~= 0) .*2./(L.* lambda(n).*(1 - exp(-2.* lambda(n).*D)))*trapz(x,

z(x).*cos(n.*pi.*x./L));

Zeta0 = zeros(Nmeshx ,Nmeshy) ’;

Zeta0x = zeros(Nmeshx ,Nmeshy)’;

Zeta0y = zeros(Nmeshx ,Nmeshy)’;

for i = 0:N - 1

Zeta0 = Zeta0 + a(i).*Phi(i);

Zeta0x = Zeta0x + a(i).*Phix(i);

Zeta0y = Zeta0y + a(i).*Phiy(i);

end

figure; mesh(X,Y,real(Zeta0)); xlabel x; ylabel y; zlabel \zeta_ {0};

title(’Integration coefficients ’)

% Average difference between both methods

avgdiff = mean2(abs(Zeta0m - Zeta0));

clear; clc; close all;

format longG; format compact;

%% Parameters and geometries

% Basin dimensions

L = 60E3; D = 30E3; H0 = 10;

% Inlet channel dimensions

D1 = 35E3; L1l = 0.47*L; L1r = 0.53*L; deltaL1 = L1r - L1l;

HI = 10;

% Prescribed sea level perturbation at inlet -ocean interface

Z = 0.1;

% Global quantities

omega = 1.4E-4; % Tidal frequency

g = 9.81; % Gravitational acceleration

r = 1E-4; % Bottom friction coefficient

M0 = r/H0 - 1i*omega; MI = r/HI - 1i*omega; % M-term

K = omega*M0*1i./(g*H0); K1 = omega*MI*1i./(g*HI); % Wave number

% Number of mesh points (basin and inlet channel)

Nmeshx = 250; Nmeshy = 200;

% Basin

x = linspace(0,L,Nmeshx);
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y = linspace(0,D,Nmeshy);

[X,Y] = meshgrid(x,y);

% Channel

xI = linspace(L1l ,L1r ,Nmeshx);

yI = linspace(D,D1 ,Nmeshy);

[XI,YI] = meshgrid(xI,yI);

% Eigenvalues (basin; inlet channel)

lambda = @(n) sqrt((n*pi/L)^2 - K);

lambdaI = @(n) sqrt((n*pi/deltaL1)^2 - K1);

% Collocation matrix coefficient parts

beta = @(n) 1 + exp(-2.* lambda(n).*D);

betaI = @(n) exp (2.* lambdaI(n).*(D - D1)) - 1;

betad = @(n) lambda(n).*(1 - exp(-2.* lambda(n).*D));

betaId = @(n) lambdaI(n).*( exp (2.* lambdaI(n).*(D - D1)) + 1);

% Collocation matrix eigenfunction parts

phi1 = @(n,x) cos(n.*pi.*x./L);

phiI = @(n,x) cos(n.*pi.*(x - L1l)./ deltaL1);

% Number of 0th order basin modes

N = 99;

% Collocation points

xB = L/(N + 1) .*(0.5 + 0:(N + 1))’;

xC = xB(xB > L1l & xB < L1r)’;

% Number of 0th order channel modes

M = numel(xC) - 1;

% (Sub)matrix construction

B1 = zeros(N + 1);

for i = 1:N + 1

B1(:,i) = betad(i - 1).*phi1(i - 1,xB);

end

B2 = zeros(N + 1,M + 1);

for i = 1:M + 1

B2(:,i) = -betaId(i - 1).*phiI(i - 1,xB).*(xB >= L1l & xB <= L1r);

end

B3 = zeros(M + 1,N + 1);

for i = 1:N + 1

B3(:,i) = beta(i - 1).*phi1(i - 1,xC);

end

B4 = zeros(M + 1);

for i = 1:M + 1

B4(:,i) = -betaI(i - 1).*phi1(i - 1,xC);

end

% Assembling matrix and solving the coefficients
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Btot = [B1 B2; B3 B4];

Ztot = [zeros(N + 1,1); Z*ones(M + 1,1)];

Atot = Btot\Ztot;

% Split the basin from channel coefficients

a = Atot (1:N + 1);

aI = Atot(N + 2:end);

% Simulate system

% Basin eigenfunction

Phi = @(n) cos(n.*pi.*X./L).*(exp(lambda(n).*(Y - D)) + exp(-lambda(n).*(Y

+ D)));

Phix = @(n) -n.*pi./L.*sin(n.*pi.*X./L).*( exp(lambda(n).*(Y - D)) + exp(-

lambda(n).*(Y + D)));

Phiy = @(n) lambda(n).*cos(n.*pi.*X./L).*( exp(lambda(n).*(Y - D)) - exp(-

lambda(n).*(Y + D)));

% Basin 0th order construction

Zeta0 = zeros(Nmeshy ,Nmeshx);

Zeta0x = zeros(Nmeshy ,Nmeshx);

Zeta0y = zeros(Nmeshy ,Nmeshx);

for i = 1:N + 1

Zeta0 = Zeta0 + a(i).*Phi(i - 1);

Zeta0x = Zeta0x + a(i).*Phix(i - 1);

Zeta0y = Zeta0y + a(i).*Phiy(i - 1);

end

% Channel eigenfunction

PhiI = @(n) cos(n.*pi.*(XI - L1l)./ deltaL1).*( exp(lambdaI(n).*(YI - 2*D1 +

D)) - exp(-lambdaI(n).*(YI - D)));

PhiIx = @(n) -n.*pi./ deltaL1 .*sin(n.*pi.*(XI - L1l)./ deltaL1).*(exp(

lambdaI(n).*(YI - 2*D1 + D)) - exp(-lambdaI(n).*(YI - D)));

PhiIy = @(n) lambdaI(n).*cos(n.*pi.*(XI - L1l)./ deltaL1).*(exp(lambdaI(n)

.*(YI - 2*D1 + D)) + exp(-lambdaI(n).*(YI - D)));

% Channel 0th order construction

ZetaI0 = Z*ones(Nmeshy ,Nmeshx);

ZetaI0x = zeros(Nmeshy ,Nmeshx);

ZetaI0y = zeros(Nmeshy ,Nmeshx);

for i = 1:M + 1

ZetaI0 = ZetaI0 + aI(i).*PhiI(i - 1);

ZetaI0x = ZetaI0x + aI(i).* PhiIx(i - 1);

ZetaI0y = ZetaI0y + aI(i).* PhiIy(i - 1);

end

% figure; mesh(X,Y,real(Zeta0)); xlabel x; ylabel y;

% figure; mesh(XI,YI,real(ZetaI0)); xlabel x; ylabel y;

%% 1 order zeta

% Bathymetries

H = {0 + 0.*( cos (3.*Y./D).^2) ,...

10.*(1 -1./((X - L/2) .^2./(2000*L) + (Y - D).^2./(5000*D) + 1)) ,...

10.*( cos (3.*X./L).^2)};
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% Small parameter

delta = 0.1;

% 2D eigenvalues

lambda1 = @(n,m) (n*pi/L)^2 + (m*pi/D)^2 - K;

% Basin eigenfunction

phi1 = @(n,m) cos(n*pi/L.*X).*cos(m*pi/D.*Y);

phi1x = @(n,m) -n*pi/L.*sin(n*pi/L.*X).*cos(m*pi/D.*Y);

phi1y = @(n,m) -m*pi/D.*cos(n*pi/L.*X).*sin(m*pi/D.*Y);

% Number of 1st order basin modes

N1 = 40; M1 = 40;

% Number of 1st order channel modes

NI1 = 50;

b1 = {}; b2 = {}; c1 = {}; c2 = {}; U = zeros(numel(H) ,1);

c = 10;

figure; hold on

for k = 1: numel(H)

h = H{k};

subplot(2,numel(H),k); mesh(X,Y,h); xlabel x; ylabel y; zlabel h(x,y);

% Calculating the Helmholtz forcing term

intermedx = (h./M0 - H0./(r.*h./H0^2 + 1i.*omega)).* Zeta0x;

intermedy = (h./M0 - H0./(r.*h./H0^2 + 1i.*omega)).* Zeta0y;

diffXintermedx = zeros(Nmeshy ,Nmeshx);

diffYintermedy = zeros(Nmeshy ,Nmeshx);

for j = 2: Nmeshx - 1

for i = 2: Nmeshy - 1

diffXintermedx(i,j) = (intermedx(i,j + 1) - intermedx(i,j - 1)

)/(2*L/Nmeshx);

diffYintermedy(i,j) = (intermedy(i + 1,j) - intermedy(i - 1,j)

)/(2*D/Nmeshy);

end

end

A = M0/H0.*( diffXintermedx + diffYintermedy);

% Coefficients through integration

b = @(n,m) (m ~= 0 || n ~= 0) .*4./( lambda1(n,m).*L.*D).*trapz(x,trapz(

y,A.*phi1(n,m)));

% Basin 1st order construction

Zeta1 = zeros(Nmeshy ,Nmeshx);

Zeta1x = zeros(Nmeshy ,Nmeshx);

Zeta1y = zeros(Nmeshy ,Nmeshx);

for i = 0:N1 - 1

for j = 0:M1 - 1

Zeta1 = Zeta1 + b(i,j).*phi1(i,j);
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Zeta1x = Zeta1x + b(i,j).* phi1x(i,j);

Zeta1y = Zeta1y + b(i,j).* phi1y(i,j);

end

end

% M-term

M = r./(H0 + delta .*h) - 1i.*omega;

% First order basin flow velocities

u = -g./M.*( Zeta0x + delta .* Zeta1x);

v = -g./M.*( Zeta0y + delta .* Zeta1y);

c1{k} = u;

c2{k} = v;

% subplot(2,numel(H),k); quiver(X(1:c:end ,1:c:end),Y(1:c:end ,1:c:end),

real(u(1:c:end ,1:c:end)),real(v(1:c:end ,1:c:end)),’AutoScaleFactor ’,1);

axis tight;

% Coefficients through integration

Zeta1yatD = Zeta1y(end - 1,:);

xIint = linspace(min(xC),max(xC),Nmeshx);

aI1 = @(n) (n ~= 0) .*2/( deltaL1 .* betaId(n))*trapz(xIint ,Zeta1yatD .*cos

(n.*pi.*( xIint - L1l)./ deltaL1));

% Channel 1st order construction

ZetaI1 = zeros(Nmeshy ,Nmeshx);

ZetaI1x = zeros(Nmeshy ,Nmeshx);

ZetaI1y = zeros(Nmeshy ,Nmeshx);

for i = 0:NI1 - 1

ZetaI1 = ZetaI1 + aI1(i).*PhiI(i);

ZetaI1x = ZetaI1x + aI1(i).* PhiIx(i);

ZetaI1y = ZetaI1y + aI1(i).* PhiIy(i);

end

% First order channel flow velocities

uI = -g./M.*( ZetaI0x + delta.* ZetaI1x);

vI = -g./M.*( ZetaI0y + delta.* ZetaI1y);

b1{k} = uI;

b2{k} = vI;

subplot(2,numel(H),k + numel(H)); quiver(XI(1:c:end ,1:c:end),YI(1:c:

end ,1:c:end),real(b1{k}(1:c:end ,1:c:end)),real(b2{k}(1:c:end ,1:c:

end)),’AutoScaleFactor ’ ,1); axis tight;

xlabel x; ylabel y;

% Calculate mean flow speed in channel

U(k) = mean2(abs(uI));

end
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