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Online change detection using sensor groups for high-dimensional,
short-run manufacturing processes

Thijs BEENE

Abstract
Detecting change in sensor measurements is essential for maintaining product quality and ensuring efficiency in man-

ufacturing processes. Traditionally, statistical methods such as control charts are used to detect changes by comparing
new sensor measurements with historical data. However, in high-dimensional, short-run (HDSR) settings, where there are
many sensors and only limited or no historical observations, change detection becomes challenging and sometimes even
impossible. HDSR processes are mostly present in specialized industries where errors can be costly, such as: semicon-
ductors, aerospace or shipping. Previous research highlights several control charts to address HDSR processes and also
demonstrated that grouping sensors can improve change detection. Finding groups of sensors was done by incorporating
expert knowledge or by combining similar sensor data to increase sample size. In this research, a novel procedure for
finding groups of sensors is proposed, by using an algorithm that automatically groups sensors based on the maximization
of the probability of detection. The procedure and three state-of-the-art alternatives are applied to a case study involving
a semiconductor manufacturing process of a new electron optical module. The results reveal that the proposed procedure
finds groups of sensors that reflect sensor covariance and process knowledge. Furthermore, it is shown that the probability
of detecting persistent mean shifts is improved compared to the three alternative control charts. Specifically, the proposed
procedure had faster detection of shifts and also a higher POD for small magnitude shifts. Areas for future research could
be the extension of the proposed procedure to a Bayesian framework.

keywords and phrases: Statistical process monitoring, Self-starting control charts, Multivariate statistics, Bayesian
statistics, Change detection.

NOMENCLATURE

Symbol Description
p Number of sensors in a group
ARLIC In control average run length
PODr Probability of detection after r observations
Σ̂ Estimated covariance matrix
Σ Known covariance matrix
λ Smoothing constant for SSMEWMA
n Number of observations
m Number of charts
h̄ Limit for HC chart
h Limit for SSMEWMA chart
k Limit for Q-chart
δ Shift magnitude
N Number of runs
τ Start of OOC
α False alarm rate

1. INTRODUCTION
Statistical process monitoring (SPM) is a method that

makes use of statistical tools and techniques for the man-
agement and improvement of processes [1]. SPM considers

that all processes display a combination of random and non-
random behavior. When a process only has random varia-
tion, it is behaving normal and in-control (IC) [2]. A process
is out-of-control (OOC) when external factors cause non-
random variation [2]. In SPM, control charts are used to
detect non-random variation or signal process deterioration
and label them as an OOC event [3]. Usually control charts
are designed based on parameter estimates of the mean and
variance, which adds a random element to the control chart
and can affect control chart performance [4].

‘Traditional’ SPM control charts are normally imple-
mented for applications when it is possible to obtain at least
20 to 50 observations of process quality parameters in a
short time for parameter estimation, otherwise self-starting
charts based on an unknown parameter estimate are used
[5][6]. Quality parameters are considered in a broad con-
text, and can for instance be part diameter, temperature
or pressure measurement. Sensors measure these quality pa-
rameters Self-starting control charts transform the stream
of unknown-parameter data into a corresponding stream of
standard normal process readings, removing the problem of
unkown parameters [7].

In practice, process data is often not univariate. Real-
time process data is likely to be correlated. Multivariate
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control charts should be used for maximum effectiveness
when multiple correlated time-series are monitored [7]. For
producing high-quality products, continuous monitoring of
many critical-to-quality (CTQ) parameters is vital [8]. Sev-
eral multivariate control charts exist, such as the Hotelling
T 2 and the multivariate exponentially weighted moving av-
erage (MEWMA).

For high-dimensional, short-run (HDSR) processes, which
are often prevalent in industries such as aerospace, shipping
and semiconductors, it is difficult to implement SPM. An
example of such a process could be the manufacturing of a
new type of aircraft. These processes are often characterized
by complex, expensive and customized parts, for which SPM
is usually considered to not even be applicable [9]. Mainly
because the sample size is small and many parameters could
be relevant to product quality.

To overcome these issues and enable the application of
SPM to low volume processes, groups of data can be defined
[10]. Not many standards regarding the grouping of process
data exist and the ones that do exist are vague in describing
the application of a grouping strategy. For instance, the ISO
7870-8 [6] and BS 5702-3 [11] standards suggest that the
grouping of data can be beneficial for short run processes.
Yet both standards do not provide exact methods of doing
so.

Grouping of similar process data was shown to allow for
the assessment of the significance of process influences us-
ing a cost-efficient procedure based on expert knowledge
[9]. However, this procedure alone did not reveal a signif-
icant factor that was identified by the analysis of historical
data and its informative value is low [9]. Furthermore, this
method requires a lot of knowledge, work force and data
preprocessing [10]. While for some processes, expert knowl-
edge might not even be present, or be flawed, leading to
a sub optimal clustering of sensors. Complementing expert
knowledge with an algorithm that extracts significant influ-
ences could be beneficial [9].

Work by Greipel et al. [10] builds on the idea of increas-
ing sample size by grouping data (ISO 7870-8 [6]) without
expert knowledge. They compared four different clustering
algorithms for application to small sample sizes. However,
their approach viewed clustering only as a means to increase
sample size, by for instance grouping measurements of diam-
eters (features) with similar statistical metrics (means and
variances) and monitoring this data in the same univariate
moving range or individuals control charts. This approach
still requires historical measurement data of features and
feature categories and is incapable of considering relations
between sensors that measure different quantities.

The objective of this research is designing a sensor group-
ing algorithm to be used for online monitoring of HDSR
processes. The procedure is applied to a case study of the
high-tech workcenter for electron optical module assembly,
where currently a manufacturing process for a new electron
optical module is being designed and implemented. An SPM

system for this new manufacturing process is to be designed
as well, which has the potential to significantly reduce costs,
increase module quality and contribute to sustainable re-
source management.

The process is monitored by many potentially correlated
sensors and is considered to produce modules at a low
throughput. Historical data that can provide exact param-
eter estimates is not available due to a change in specifica-
tions. Emphasis is placed on fast detection of OOC events,
since preventing expensive and time consuming errors out-
weighs the cost incurred by investigating false positives.

Specifically, we attempt to improve performance by com-
bining the SSMEWMA chart [7] with a sensor grouping al-
gorithm that attempts to find the optimal partition of pro-
cess data. This algorithm can be used for real-time group
determination. In total, we apply four control charts to the
historical data of the previous high-tech workcenter for elec-
tron optical module assembly process. The following charts
will be used: Q-chart [12], HC chart [8], SSMEWMA with
random cluster assignments (R-SSMEWMA) [7] and the SS-
MEWMA with our partitioning algorithm (P-SSMEWMA).
A Monte Carlo simulation is performed to determine the
performance of the charts. This research only considers the
performance with respect to a persistent mean shift in a
single sensor.

This article is structured as follows: first we give back-
ground about the case study and describe the data used.
Next in the theory, we explain general metrics and give def-
initions used throughout the article. This is followed up by
the mathematical descriptions of the control charts and the
proposed procedure for partitioning the sensors. Next the
methodology is divided into two parts, part 1 explains the
steps taken to verify the new partitioning algorithm and the
implementation of the control charts. Part 2 highlights the
application of the methods to a specific case study. In the
results and discussion section, we first show results from the
verification of the partitioning algorithm. Next, the main re-
sults of the control chart applied to the case study are shown
and we finish with the results from a sensitivity analysis. Fi-
nally, the conclusions and recommendations for future work
are given.

1.1 Case study: High-tech workcenter for
electron optical module assembly

A new generation wafer scanning electron microscope
(SEM) is planned that follows up on the HMI eScan 1100,
see Figure 1. Part of this new scanner is the electron optical
module 2. The assembly line for this module is currently
being designed and build in the cleanroom of the high-tech
workcenter. During the manufacturing process, sensor read-
ings provide insights about process state and product qual-
ity. Monitoring these sensors and signaling on OOC events
is therefore important for ensuring proper machine quality.
An example of an OOC event could be a persistent shift in
the mean of the diameter of a module part. This could for
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instance be caused by a calibration error. Another example
could be a shift in part cleanliness caused by the introduc-
tion of a new manufacturing procedure. Detection speed is
also relevant for module quality. If detection speed is low, it
could take multiple extra observations before an OOC event
is detected. During this time, several low-quality modules
could be produced.

Figure 1: HMI eScan 1100 multibeam inspection tool [13].

1.1.1 Data description

Data from the optical module of the eScan 1100 is avail-
able and resembles optical module 2 data. In total process
data of 32 electro-optical modules 1 was recorded in the
data set. This means that a total of 32 observations are
available. Multiple sensor measurements of quality parame-
ters were registered, however not all were taken into account
for these simulations. First of all, some quality data was
simply reported as an OK/NOK, which is not feasible for
numerical simulations. Furthermore, some parameters were
constant across all observations, these were also not taken
into account. After data preprocessing a list with a total of
96 quality parameters (p) and 32 observations (n) remained.
Dimensionality reduction methods were not applied to the
data set, as this would leave out sensors that could poten-
tially give an OOC signal.

The process data contains correlated sensors due to re-
lations and/or dependencies between different sensors. For
instance, groups of sensors are related to steps in the pro-
cess. When a process shift occurs during one of these steps,
it is likely that multiple sensors related to the step register
the shift. Furthermore, shifts could also be caused by com-
mon influences such as temperature or particle count, a shift
caused by a common influence could be reflected in multiple
sensors.

2. THEORY
In this section we explain the relevant theory. First, we

discuss metrics used to measure control chart performance
and compare different control charts. Next, we give the

derivations of the statistics of three control charts. Lastly,
we propose a new algorithm combining the SSMEWMA and
Q-chart based on an optimized data partitioning, referred to
as the P-SSMEWMA.

2.1 Metrics and definitions
In order to compare the four control charts, appropriate

performance metrics should be defined. First we define our
sequence of data. Let Xi,j for i = 1, 2, ..., n and j = 1, 2, ..., p
be a multivariate sequence of observations from a process
with p sensors and covariance Σ and mean vector µ. A per-
sistent mean shift occurring at observation n = τ is defined
as:

xi =

{
N (µ,Σ) for n < τ

N (µ+ δ,Σ) for n ≥ τ
(2.1)

Here, the process before τ is IC and the process after is
OOC. See Figure 2 for an IC and OOC process. The goal
of control charts is to detect this process shift from IC to
OOC. A control chart gives a signal when the monitored
observations or statistic exceed either the upper or lower
control limits (UCL and LCL). Multiple other process shifts
can be identified, such as outliers, trends, variance shifts and
cyclic patterns. However, in this research we only consider
a persistent mean shift.

The average run length (ARL) is often used to obtain
an overview of the control charts performance. This is
the expected value of the run length before signaling an
OOC across multiple runs. A distinction can be made be-
tween the in-control ARL (ARLIC) and out-of-control ARL
(ARLOOC). The ARL depends on the shift magnitude (δ)
and the observation at which the shift occurred (τ). The
ARLIC and ARLOOC are related to the type 1 and type 2
errors in hypothesis testing respectively. See Figure 2 for an
example of an in-control and out-of-control process and the
related metrics.

However, as discussed by Quessenberry and Laurijsse
[14][15], the ARL is often not sufficient for determining con-
trol chart’s responsiveness to OOC shifts. The main issue
lies in the detection of small shifts. When the ARL is used,
enough observations after the shift must be generated un-
til the chart signals an OOC. This increases computational
times significantly and also increases the likelihood of a false
signal. To mitigate these issues, the probability of detection
(POD) can be used, see Figure 3.

For calculating the POD, we need the expected delay (E)
and run length (RL). Where RL is the number of observa-
tions until some event occurs. E is the expected number of
observations after a shift at observation τ starting from a
value of 1, E can be seen as the out-of-control run length.
We adopt the same definition for E as used by Li et al [17]:

Eδ = RL− τ + 1|RL ≥ τ (2.2)
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Figure 2: In-control and out-of-control charts with metrics indicated. Fixed control limits are used. A persistent mean
shift is shown.

Figure 3: Visual illustration of probability of detection
(POD), probability of false alarm (PFA) (also written as
α) and the probability of an observation X given that the
process is IC (P(X|no defect)) and the probability of an ob-
servation X given that the process is OOC (P(X|defect)).
The threshold indicates a control limit for our application.
Figure taken from [16].

Where 1 is added to account for RL = τ , i.e. an immedi-
ate detection of a shift. This is conventional, since we would
otherwise be able to detect a shift after 0 observations. We
can view the ARLOOC as the expected value of E over many
runs: ARLOOC(δ) = E(Eδ) =

Eδ

N , with N the total number

of runs performed. When performing N runs, we count how
many times Eδ is lower than a given number of observations
r, for example, 2,5 and 10. We define the POD of a shift δ
at observation τ before r extra observations for a statistic x
(could be the observations) with limit L as:

PODr = P (|x| > L|δ, τ, n ≤ r) =
1

N

N∑
i=1

g(i)(0<Eδ,i≤r)

(2.3)
Where i denotes a single run and:

g(i)(0<Eδ,i≤r) =

{
1 if 0 < Eδ,i ≤ r

0 else
∀i ∈ N

The PODr is a proportion with following corresponding
standard error (SE):

SE =

√
pr(pr − 1)

N
(2.4)

where pr represents the subset for a given r of the count
of values in a set N (pr =

∑N
i=1 g(i)(0<Eδ,i≤r)). Using the

SE, the 95% confidence interval (CI) can be defined:

CI95 = X̄ ± SE (2.5)

Equation 2.5 is used to define the errors in the values
found for the PODr.
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2.2 Q-chart
Self-starting control charts were first proposed by

Hawkins [18]. The univariate Q-chart, was later developed
and named by Quessenberry [12]. The main idea of the Q-
chart is to standardize the newest measurement at observa-
tion xn with the estimated mean and sample variance X̄n−1

and S2
n−1 of the assumed to be IC previous observations.

This is done with the t-statistic. The t-statistic gives the
difference between a samples estimated mean and measured
observation, relative to the standard error. Note that these
are calculated for each sensor separately. The standardized
Tn statistic for the Q-chart is defined as:

Tn =
xn − X̄n−1

Sn−1
(2.6)

It is evident from equation 2.6 that the Q-chart can only
start monitoring when n ≥ 3, since at least 2 previous
observations are required to estimate Sn−1. Quessenberry
[12] shows that

√
n−1
n Tn follows a t-distribution, specifically

tn−2. The uniform distribution Un ∈ N(0,1) can be obtained
by taking the cumulative distribution function (cdf)(Fn−2)
of
√

n−1
n Tn:

Un = Fn−2

(√
n− 1

n
Tn

)
(2.7)

Taking the inverse cumulative distribution function
(CDF) (φ−1) of the normal distribution N(0, 1) yields a
standard normal random variable Zn:

Zn = φ−1(Fn−2(

√
n− 1

n
Tn)) (2.8)

The Zn statistic is used in the Q-chart for signaling on
OOC events, a signal is given if Zn > UCL or Zn < LCL.
However, the control limits have to be specified in terms
of standard deviations by the user of the chart and the Zn

statistic is not intuitive to analyze. For this reason, the UCL
and LCL for Zn are often transformed back to provide up-
dating limits on the original measurement Xn [15]. The re-
sulting upper and lower control limits can be calculated as
follows:

un = X̄ + F−1
n−1(Φ(UCL))

√
n+ 1

n
Sn−1 (2.9)

and the lower control limit (LCL):

ln = X̄ − F−1
n−1(Φ(LCL))

√
n+ 1

n
Sn−1 (2.10)

The full derivation is given by Laurijsse [15] and starts
with the relation Zn > UCL. Where UCL and LCL are the

control limits on Zn. Since Zn is independent and indenti-
cally distributed (i.i.d), UCL and LCL are given in number
of standard deviations from the mean. The values for UCL
and LCL are often replaced by k, which is similar to the
p value in the t-test. This k value can be found with the
desired false positive rate or ARLIC of the chart. By taking
the inverse cdf of the normal distribution of the false pos-
itive rate for both UCL and LCL, we obtain k. This holds
because all Zn statistics are normally distributed and inde-
pendent when the process is in-control. The probability (α)
of a signal being given when the process is IC can be found
with:

α = Φ(LCL) + 1− Φ(UCL) = 2(1− Φ(k)) (2.11)

Where LCL = -k and UCL = k and α is related to the
ARLIC as ARLIC = 1

α .
As the number of observations increases, the Q-chart con-

trol limits converge to the standard Shewhart limits. For this
reason, when 30 observations are reached, it is recommended
by Laurijsse [15] to switch to the Shewhart X̄-chart. An ex-
ample of the Q-chart for a run with 30 observations and no
shift is shown in Figure 4.

Figure 4: Q control chart [15] example for a run length of
30 observations and no shift.

2.3 HC-chart

The multivariate change point detection chart (HC) was
proposed by Li et al [17]. Chen and Qin [8] defined a statistic
for testing the difference between the mean vectors of the
pre-shift and post-shift data with n total observations at
time k:
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Wn,k =

∑k
i,j=1;i 6=j X

′

iXj

k(k − 1)
+∑n

i,j=k+1;i6=j X
′

iXj

(n− k)(n− k − 1)
−

2

∑k
i=1

∑n
j=k+1 X

′

iXj

k(n− k)
(2.12)

Wn,k can be seen as an extension of the standard likeli-
hood ratio test using the Hotelling T 2 statistic to smaller
sample sizes, as T 2 is not defined when n < p. A larger
value for Wn,k indicates that the time series until k is more
different in mean from the time series after k. The main ad-
vantage of using the Wn,k statistic is that we can monitor
processes with many sensors right away. In this research, we
use the variance estimate (σ2∗

W ) developed by Chen and Qin
[8]:

σ2∗
W =

2tr(Σ2
0)

k(k − 1)
+

2tr(Σ2
1)

(n− k)(n− k − 1)
+

4tr(Σ0Σ1)

k(n− k)
s∗3

(2.13)
σ2∗
W is much less computationally intensive compared to

the estimator S2∗
W [17]. However, σ2∗

W is not transformation
invariant. The test statistic Z for finding the change point
can be calculated by determining the maximum value over
all possible splits:

Zmax,n = max
2≤k≤n−1

(
Wn,k√
Σ2∗

W

)
(2.14)

Wn,k√
Σ2∗

W

can be seen as a sort of signal-to-noise ratio. It is

unknown when the true change-point k occurred, therefore
by calculating Zn,k for all possible splits, we assume that
every split could have been a possible change-point. Mon-
itoring the maximum value of Zn,k is equivalent to moni-
toring the difference between the means of the data for the
most likely change-point k.

Here we slightly altered the implementation from the pa-
per by Li et al [17]. The maximum over all possible splits
ranging from 2 ≤ k ≤ n−1 was calculated. This was done to
avoid a division by 0 error when k = 1. The Zmax,n statistic
signals if the control limit hn,p is exceeded. This alteration
was confirmed to be correct by the authors of the original
paper. The control limit is an asymptotic function of both
p and n. It is calculated numerically by generating several
Zmax,n values for a specific combination of n and p and de-
termining the percentile resulting in a desired false positive
rate. The implemented HC control chart is shown in Figure
5 for N = 30 and no shift.

Figure 5: HC control chart [17] example for a run length of
30 observations and no shift.

2.4 SSMEWMA-chart
The self-starting multivariate exponentially weighted

moving average (SSMEWMA) chart is suitable for moni-
toring many correlated sensors. This indicates that for a
process with many sensors we could define groups of sensors
monitored by SSMEWMA charts, where each group is mon-
itored by a single SSMEWMA chart. The general multivari-
ate method was proposed by Hawkins and Maboudou-Tchoa
and can be used as a front-end for any multivariate chart
[7]. We follow the implementation of their method with the
MEWMA chart, as the implementation of Hotelling T 2 was
found to be ineffective [7].

The transformation from unknown parameters to stan-
dard normal is similar to the univariate case used for the
Q-chart. The first step is again standardizing the data. Mul-
tivariate standardization involves the transformation of Xn

to a standard normal vector Zn = A(Xn − µ). Where the
matrix A satisfies AΣA′ = I. A can be found by decompos-
ing Σ using the triangular Cholesky inverse root. By doing
so, the components of Zn are the regression residuals nor-
malized by variance.

However, Σ and µ are generally not know for self-starting
charts. Therefore, the recursive residuals are used to ob-
tain estimates. The recursive residuals are defined as ri,j for
i ∈ [1, ..., n] and j ∈ [1, ..., p], with p the number of sen-
sors in the regression model and n the current number of
observations. The ri,j are determined by the regression of
each xi,j on x1, ..., xn−1 for j ∈ p. The following multiple
regression model is solved for βj :

yi,j = Xi−1,j−1βj + εi,j (2.15)
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The value for βj that minimizes εi,j is the maximum like-
lihood estimator (MLE) for the model, referred to as β̂j .
The remaining value for εi,j evaluated at the MLE, is the
residual or unexplained variance in the model. Once β̂j has
been determined, we can predict the next x̂i,j , using:

x̂i,j = xi,j−1β̂i−1,j (2.16)

see Figure 6 for a visual overview of the multiple regres-
sion procedure. Ones are prepend to the X matrix to handle
the intercept. The nth recursive residual is defined as:

ri,j =
xi,j − x̂i,j√

1 + hi,j

(2.17)

With hi,j being the leverage:

hi,j = xi,j−1[X
′
i−1,j−1Xi−1,j−1]

−1x′
i,j−1 (2.18)

A clear appeal of using the recursive residuals for diag-
nostics is that if there are any departures from the model
assumptions, all of the residuals are affected by it [19], be-
cause all sensors are used in the model.

1 x1,2 x1,3 x1,4

1 x2,2 x2,3 x2,4

1 x3,2 x3,3 x3,4

1 x4,2 x4,3 x4,4

1 x5,2 x5,3 x5,4

1 x6,2 x6,3 x6,4





p(sensors)

n

Xi−1,j−1

yi−1,j

xi,j−1

xi,j

Figure 6: Example matrix of recursive residuals determina-
tion with least squares regression model.

Writing the recursive residuals from Equation 2.17 in a
p by n matrix gives the first transformation step and the
Rn×p matrix. Where the ri,j in R are N(0, σ2

i,j), with σ2

the conditional variance of xi,j given xi,0, ..., xi,j−1. Consider
the following example: we want to predict x3,3, see Figure
6. Then we first have to solve the following linear regression
(via Cholesky decomposition):

y1:2,3 = X1:2,1:2β2,3 + ε3,3 (2.19)

And find x̂ using the obtained β2,3:

x̂3,3 = x3,1:2β2,3 (2.20)

In general, for finding x̂n,3, we would have two indepen-
dent variables in column 1 and 2. Note that if we solve for
x3,2 we would get x̂3,2 = E(y1:2,2), which is simply the mean
of the dependent variable column. This example highlights
the importance of the order of sensors in the design matrix
X. Hawkins notes that there is potential value in changing
sensor order by putting alumina measurements first [7]. Sen-
sors near the end columns of X are assumed to have more
independent sensors, while the sensor at the first column is
assumed to have no independent sensors. If the covariance
matrix were known exactly, our prediction of x̂ could be im-
proved by ordering the sensors based on covariance, putting
sensors with high summed covariance with the other sensors
at the end columns of X for example.

Next the transformation to a multivariate standard nor-
mal distribution U in N(0, I) can be made by studentizing
the recursive residuals:

ti,j =
ri,j√∑i−1

k=j+1

r2k,j

i−j−1

(2.21)

Based on ti,j , ui,j can be defined according to:

ui,j = φ−1[Fi−j−1(ti,j)] (2.22)

Where φ−1 denotes the inverse normal distribution and
Fi−j−1 the cumulative distribution function of t. The vector
Ui = [u1,p, ..., ui,p] can be obtained by determining ui,j for
all observations. Ui can now be monitored by any multivari-
ate scheme. Hawkins used the MEWMA chart:

Mi = λUi + (1− λ)Mi−1 (2.23)

Where 0 < λ ≤ 1 is a smoothing constant, Mi is defined
for the ith observation and M0 is 0. The MEWMA chart
signals if the ||M ||2 statistic exceeds the asymptotic control
limit:

LIMi,j =
λ[1− (1− λ)2(i−j−1)]

2− λ
h (2.24)

Where h should be calculated numerically to specify the
ARLIC . Hawkins points out that the asymptote of Equa-
tion2.24 could also be used as the control limit, however
this diminishes the chance of early detection of shifts. An
example of the SSMEWMA for a run length of 30 observa-
tions and no shift is shown in Figure 7.
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Figure 7: SSMEWMA control chart [7] example for a run
length of 30 observations and no shift.

One downside of the SSMEWMA is that R is undefined
for i < j, as the design matrix (Xi−1,j−1) used in the leverage
calculation is not of full rank. The higher the covariance
between sensors monitored by an SSMEWMA chart, the
smaller the residual variance (εi,j) of the model and the
larger the shift in ||M ||2. In general, the SSMEWMA chart
is especially sensitive to small process shifts [7].

Process data could be correlated and contain many dif-
ferent sensors. However, direct monitoring with a single SS-
MEWMA chart is often impossible due to the large num-
ber of sensors exceeding the small number of observations.
Therefore, we propose to use multiple groups of sensors mon-
itored by SSMEWMA-charts simultaneously. The groups
can be defined before starting the process or in real-time,
where new groups are found after each new observation.
In Section 2.5 we propose a procedure (P-SSMEWMA) for
finding groups in real-time to be monitored by multiple
SSMEWMA-charts.

2.5 P-SSMEWMA: group finding procedure
In order to apply the P-SSMEWMA procedure, a method

for finding similar groups should be defined. In this section,
we propose a new procedure for determining groups of sen-
sors to be monitored by SSMEWMA charts. It is assumed
that the number of groups in the data is unknown. We turn
to step 2 of the procedure in Figure 8 and define a parti-
tioning algorithm for finding similar groups. The proposed
partitioning algorithm extends the use of the SSMEWMA
chart to applications with many sensors and few observa-
tions. A Bayesian approach seems well-suited due to the
small number of observations. In Section 2.5.1, an objective
function is derived from a Bayesian perspective that scores
the groups of sensors and is related to the POD. In Section

2.5.3 the procedure for finding groups is formulated as an
optimization problem.

2.5.1 Bayesian perspective of recursive linear regression

Let {M(j)
i } for each j = 1, ...,M and i = 1, ..., k denote

multiple sets of different recursive linear regression models,
with M all possible sets of models and k the number of
models in set j. Each set j corresponds to a different assign-
ment of sensors over models. {M(j)

i } describes the full data
set Dn at observation n. The exact model used is shown in
Equations 2.15 and 2.16.

We define yn as a scalar value for the state of sensor p at
observation n. Note that x̂n in Equation 2.16 is equal to ŷn
and is the estimation of the state by the model Mi using
Xn−1 as the design matrix containing all observations up
until n-1 for all sensors 1 to p-1. For simplicity in notation,
the subscript indicating the sensors is dropped. We use xn

to denote the nth row of observations. We now follow a
derivation given by Chen [20] and assume that yn follows a
first-order Markov process:

p(yn | y0:n−1) = p(yn | yn−1),

In a review article about the recursive residuals [21] and
earlier work by Hawkins [22], a real-time updating scheme
for the regression coefficients (β) is stated as an alternative
to batch updating for more efficient computations, here the
assumption of a first-order Markov process is also made.
Furthermore, we also assume that the observations xn are
independent of the states yn, which is shown by Hawkins [7].
With these assumptions, the conditional probability density
function (posterior probability) of yn at observation n, given
Xn−1, can be written as:

p(yn|Xn−1) =
p(xn|yn)p(yn−1|Xn−2)

p(xn|Xn−1)
(2.25)

Where p(xn|yn) is the likelihood or the probability of the
observation xn given yn. p(yn−1|Xn−2) is the prior distri-
bution or the posterior of the previous observation at n-1,
since our model is recursive. p(xn|Xn−1) is a normalization
constant where the predictions yn have been integrated out
and is referred to as the marginal likelihood or evidence. The
evidence does not depend on yn, thus we can approximate
the posterior as:

p(yn|Xn−1) ∝ p(xn|yn)p(yn−1|Xn−2) (2.26)

Now, p(yn|Xn−1) gives the probability density function
of the state yn. See Figure 3, P (X|nodefect) can be seen
as the IC distribution for sensor p, which is equivalent to
p(yn|Xn−1). Evaluating p(yn|Xn−1) at its maximum a pos-
teriori (MAP) estimate (mode) gives the maximum value for
the probability of the prediction. Increasing the probability
at the MAP estimate leads to a sharper peak, decreasing the
uncertainty in the prediction. Ultimately, this leads to less
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Figure 8: High level overview of P-SSMEWMA procedure for example grouping process data and monitoring with control
charts.

overlap between the IC and OOC distributions (Figure 3)
and consequently a higher POD. With this in mind we can
formulate our objective for finding sensor groups as follows:

For n observations, find the set j that maximizes p(yn =
yMAP |Xn) across all models in the set:

M̂(j)
i = argmax

M(j)
i

k∑
i=1

pi(yn = ŷMAP | Xn−1) (2.27)

In the next section we will show how we define p(yn =
ŷMAP | Xn−1).

2.5.2 Posterior distribution

From Equation 2.26, we see that the posterior distribu-
tion is a function of the product between the likelihood
and the prior. We assume that the likelihood and prior are
conjugate-Gaussian (see chapter 2.3 of Bishop for more de-
tails [23]). The posterior distribution for a group of p sensors
will then be a multivariate Gaussian and can be written as:

p(yn | Xn−1) =

exp
(
− 1

2 (yn − βn−1Xn−1)
TΣ−1

n−1(yn − βn−1Xn−1)
)

(2π)
p
2 |Σn−1|

1
2

(2.28)

With β and Σn−1 now being given by the posterior up-
dates for conjugate Gaussians, see [23] and [24] for more de-

tails. Evaluating Equation 2.28 at the maximum likelihood
(MLE) estimate gives:

pMLE(yn = ŷMLE | Xn) = (2π)−
p
2 |Σ̂MLE |−

1
2 (2.29)

Where |ΣMLE | denotes the determinant of the MLE es-
timated covariance matrix based on the data Xn−1. The
maximum a posteriori estimate (MAP) could also be used,
for multivariate Gaussians the MLE and MAP obtain the
same values [23]. Using the MLE for covariance estimation
is an approximation of the Bayesian approach to recursive
parameter estimation.

For instance, ΣMAP could be used in Equation 2.29 and
calculated using the regularized MAP estimator from Mur-
phy [24]:

Σ̂MAP = λ× Σ0 + (1− λ)× Σ̂MLE (2.30)

Where Σ0 is the prior for the covariance matrix and
Σ̂MLE the MLE covariance estimate. The regularization pa-
rameter λ is defined as: λ = N0

N0+N , where N0 controls how
much weight is put on the prior. This regularization esti-
mator resembles Ledoit-Wolf shrinkage [25]. However, for a
full Bayesian treatment based on model evidence we refer
to Appendix A.1. Here, we show how Equation 2.29 can be
derived with the model evidence.
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For small samples, the Bayesian approach can prevent
over fitting and improve numerical stability by using a prior.
This is necessary, as the estimated covariance matrix in
Equation 2.29 is unstable for small sample sizes. The prior
Σ0 could be specified in any desired way. For instance, a
conservative prior could be set such that: Σ0 = I

N0
, with I

the identity matrix. If process knowledge is available, it is
also possible to set the prior to reflect this knowledge.

2.5.3 Final objective and constraints
Using Equations 2.27 and 2.29 we can define a score func-

tion that can be used to compare different sets of models.
The natural log of Equation 2.29 is taken for easier calcula-
tions and to remove extremely large and small values in the
objective function. Lastly, we define the objective in terms
of a loss function to minimize, similar to the BIC-cost [24].
We define the loss for a set j consisting of k models as:

Lj =

k∑
i=1

pi
2
ln(2π) +

1

2
ln|Σ̂MLE,i| (2.31)

Our goal then becomes to find different configurations of
sensors in models that minimize Equation 2.31. The number
of possible ways to partition p sensors into k disjoint non-
empty groups is extremely large and can be calculated using
Stirling numbers of the second kind [26]. Furthermore, this
score function is non-linear and many local solutions might
exist. Therefore, an exact solution is unfeasible and we will
need to use heuristic based methods for generating solutions.
The generated solutions are subject to one constraint; each
sensor group should consist of at least 2 sensors.

To conclude, finding the set j that minimizes Equation
2.31 ensures that the POD of detecting a change in the
found set is maximized. Meaning that by minimizing Equa-
tion 2.31, we can improve the POD of all models in the
set. This procedure is an approximation of a full Bayesian
treatment for parameter estimation and allows for fast com-
putations.

2.6 Control charts summary
The Q-chart, SSMEWMA-chart and HC-chart were ex-

plained in the previous section. Here a quick overview is
given of each chart:

• Q-chart: The Q-chart is a self-starting univariate chart
that does not consider correlations between sensors. It
is an intuitive chart as it monitors the original data
with updating control limits.

• SSMEWMA: The SSMEWMA-chart is a self-starting
multivariate chart that considers correlations between
sensors. The SSMEWMA cannot monitor processes
where the number of observations is less then the num-
ber of sensors. Therefore, for processes with many sen-
sors it is necessary to create groups.

– R-SSMEWMA: The R-SSMEWMA monitors
groups of sensors that are assigned randomly.

– P-SSMEWMA: The P-SSMEWMA monitors
groups of sensors that are assigned based on the
minimization of Equation 2.31.

• HC-chart: The HC-chart is a self-starting multivariate
chart that can monitor processes even when the number
of observations is less then the number of sensors in the
chart.

3. METHODOLOGY
In this section, we describe the research design in three

parts. First, in Section 3.1, we demonstrate how the control
charts are implemented with a specific focus on the imple-
mentation of our proposed procedure. At the end of the
section we show how the control limits are set. Second, in
Section 3.2, we explain the experimental set-up used for the
simulations based on the case study of the electron optical
module 1. Third, in Section 3.3, several parameters to be
varied for sensitivity analysis and tests to verify the pro-
posed grouping procedure are discussed.

3.1 Implementation and control limits
The implementation of all control charts as well as

the simulations are performed in Python. The code used
for implementation, simulations and values for control
limit settings can be found on Github. The simulation
results are also shared. However, the data of the case
study for optical module 1 is not shared. See Github
page (https://github.com/ThijsBeene/Simulations). To en-
sure that the control charts are correctly implemented we
performed verification simulations. These were performed
for the SSMEWMA and the HC chart, as the implementa-
tion proved complex. The verification procedure consisted of
reproducing results from the respective papers [7][17]. The
results can be found in the Appendix.
3.1.1 Q-chart implementation

The Q-chart is implemented according to the theory in
Section 2.2. Each Q-chart monitors a separate sensor, there-
fore we can directly apply the Q-chart to generated data
without specifying groups.
3.1.2 R-SSMEWMA implementation

The R-SSMEWMA is implemented according to the the-
ory in Section 2.4. However, it is assumed that we have no
knowledge about what groups should be monitored. There-
fore, for the R-SSMEWMA, sensors are randomly assigned
to groups containing p sensors and these groups are moni-
tored by SSMEWMA charts.

The group size p, is set to 2 sensors. This is done to have
the maximum POD with respect to group size, see Equation
2.29. For random assignments, we can assume that |ΣMAP |
is approximately constant across different value for p. Thus
Equation 2.29 can be approximated by pMAP = (2π)−

p
2 .

pMAP is maximized when p is small, or in our case p = 2.
Different values for p are tested in the sensitivity analysis
to verify this hypothesis.
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3.1.3 HC-chart implementation

The HC-chart is implemented according to the theory in
Section 2.3. One HC-chart can monitor all sensors with a
derived statistic, therefore we can directly apply it to the
generated data without defining groups.

3.1.4 P-SSMEWMA implementation

The P-SSMEWMA is implemented according to the the-
ory in Sections 2.4 and 2.5. Equation 2.31 is minimized with
ΣMAP = ΣMLE . The problem of finding groups of sensors
by minimizing Equation 2.31 will be considered in the con-
text of graph theory. Where we have a graph G(E, V), with E
the edges and V the vertices. The vertices represent sensors,
while the edges represent the covariance between vertices.

A maximum spanning tree (MST) is constructed using
Kruskals algorithm. Starting from the MST, groups can be
found by changing edges and evaluating the score function
(Equation 2.31). This procedure is similar to the classic
single linkage scheme [27]. Contrary to the single linkage
scheme, where edges are only removed, we swap edges for
edges not in the current solution.

The procedure starts by randomly choosing an edge from
the current solution, with the initial solution being the MST.
Next, an edge is selected from the full set of possible edges
that is not in the current solution and has a weight higher
then the edge to be replaced. The new solution that now in-
cludes the swapped edge is checked for viability by verifying
that every node is connected to at least one other node.

If the check succeeds, the value of the objective function
of the new solution is computed using Equation 2.31. The
new solution is accepted as the current solution if the score
is lower then the previous solutions score. These steps are
repeated until the current solution does not change much.
Finally, group labels can be found by assigning the same
label to nodes that are connected. See Algorithm 1 for the
pseudo-code of a greedy implementation of the random edge
swapping procedure.

Algorithm 1 is a greedy algorithm that finds groups of
sensors by iteratively removing the lowest covariance edge
and adding the highest covariance edge that is not in the
current solution. If the current score is improved the solu-
tion is always accepted. However, the algorithm can eas-
ily get stuck in local optimal solutions, due to the inability
to explore solutions that initially lead to a worse configu-
ration. Therefore, we supplement the algorithm with two
other heuristic based algorithms: simulated annealing (SA)
and Tabu search.

3.1.5 Heuristic algorithms

The SA algorithm decreases a parameter T, related to the
temperature in an actual annealing process. This parame-
ter influences the probability of accepting a worse solution
as the current solution, with P (accept) = e

∆
T , where ∆ is

the difference between the current and proposed solution.

Algorithm 1 Greedy random edge swapping algorithm for
finding P-SSMEWMA labels
Require: MST edges (G(V,E)), all edges
Ensure: Sets: ssmewma_labels, q_labels
1: Set current edges <- MST
2: Set best cost <- Cost(current edges)
3: for each iteration do
4: for each attempt do
5: Edge to remove <- select lowest(current edges)
6: Edge to add <- select highest(all edges > weight(edge

to remove))
7: Proposed neighbor <- current edges | Edge to remove

and edge to add
8: if Proposed neighbor maintains connectivity (all d >

0) then
9: break

10: end if
11: end for
12: Compute cost of proposed neighbor
13: if cost < best cost then
14: Update best solution
15: Best cost = cost
16: current edges = proposed neighbor
17: end if
18: end for
19: Final labels <- Labels(current edges)

By adding this probability of accepting to Algorithm 1, we
obtain a broader exploration of the solution space.

The Tabu search algorithm is similar to the SA algo-
rithm in that it allows for the exploration of local worse
solutions. The algorithm always selects the best neighbor
solution, even if it has a worse score then the current solu-
tion. Each new best neighbor solution is added to a list of
solutions that the algorithm can not revisit.

The three algorithms (greedy, SA and Tabu) are tested
on the optical module 1 data set. All three algorithms are
set to run for an amount of iterations to find the best solu-
tion. The found solution for all algorithms is evaluated after
5 seconds. This is a short, yet necessary time frame, as the
application of the algorithms in real-time SPM requires fast
computations. For the simulations in this research, we con-
sider a time of 1 second to find the best solution, as overall
simulation times can drastically increase due to the grouping
algorithm. In total, 50 runs are performed to account for the
randomness in the SA and Tabu algorithms, the 95% CI is
shown. Based on the objective function score after 1 second
of run time, we select the algorithm for our simulations.

3.1.6 Control limit setting

For a fair comparison between charts, the ARLIC was set
to 25 observations. The high-tech workcenter is expected to
produce approximately 25 modules per year. Having one
expected false signal per year is considered appropriate for
this application.
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All limits were determined numerically, to circumvent
making assumptions about the underlying data. We start
by generating random IC data based on the MLE estimates
of the optical module 1 data. 100 runs are generated with
a run length of 200 observations. Next, the value for the
control limit that results in an ARLIC of 25 observations is
determined using the Brent algorithm [28].

For the Q, R-SSMEWMA and HC-charts, calculating the
limits is straightforward. However, for the P-SSMEWMA
the calculation is more involved. This is because in a single
run we have several charts monitoring a varying number of
sensors. Each control chart has a different limit depending
on the number of sensors monitored and the total number of
charts. Therefore, we determine the value for h similar to the
approach by Hawkins et al [7]. However, we now need to find
h for all combinations of group size and number of groups.
This provides us with a matrix of h values that result in
the correct ARLIC,O. The numerically found values for the
control limits for the four charts are shown in the Appendix
A. The control limits for the P-SSMEWMA can be found in
the Python code.

3.2 Case study: electron optical module 1
The control charts are applied to the case study of the

electron optical module 1. The MLE estimates are obtained
from the dataset, see Section 1.1.1. 200 simulated process
runs are generated based on these MLE estimates. The gen-
erated runs are then processed for use by the different con-
trol charts. For the Q and HC charts, the data can imme-
diately be given as input and we do not have to determine
groups. For the P and R-SSMEWMA it is necessary to find
groups of sensors in the data. This is done as described in
Section 3.1. The following data formats are given as input
to the different control charts:

1. Q-chart
(a) Data input: full data set without groups. Each Q-

chart monitors a separate sensor.
2. R-SSMEWMA

(a) Data input: 48 random groups each of 2 sensors.
3. P-SSMEWMA

(a) Data input: groups of varying size determined with
partitioning procedure

4. HC chart
(a) Data input: full data set without groups. One HC-

chart monitors all sensors.

In total, four simulations will be performed. These four
simulations correspond to different settings of the parame-
ters n and τ : n ∈ [15, 20, 30, 40] and τ ∈ [5, 10, 20, 30]. For
each simulation, a persistent mean shift is induced at obser-
vation τ of magnitude δ ∈ [1, 2, 3, 4, 5] standard deviations
for a randomly selected sensor (p). We use Equation 2.2

to calculate the delay in detecting the OOC event for each
chart.

Start simulation

Generate n by
p matrix X

based on ~µ and S

Apply shift of aσ at
τ to one sensor in X

Apply Q chart Apply HC chart Generate random par-
titioning of 48 groups

Apply R-
SSMEWMA chart

Find sensor groups
Y based on X at
τ + n with SA

algorithm, n0 = 0

Apply P-SSMEWMA
chart on Y

OOC event
detected or n

= τ + 10?

Calculate expected
delay for all charts

and store values

N runs
performed?

Calculate statis-
tics (POD, SE)

End simulation

n+ 1

Yes

No

Yes

No

Figure 9: Experimental set-up for case study simulations in
flowchart

For all charts, we iterate over the observations, at obser-
vation τ , we start checking if the chart monitoring p signals
an OOC event. If no signal is given we keep iterating until we
reach the final observation n, which is always set to be τ+10.
If no signal is given, the expected delay for that run is set to
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zero. This procedure is repeated for 200 randomly generated
runs, all charts are applied to the same generated random
data. The POD is calculated of early detection (2 observa-
tions), medium detection (5 observations) and late detection
(10) observations. See Figure 9 for a schematic overview of
the simulation. An overview of the parameter settings dur-
ing the simulation is shown in Table 1. Some simulation pa-
rameters remain constant throughout the whole simulation,
these are shown in Table 1.

Table 1. General simulation settings

N 100
Max r 10
λ (SSMEWMA) 0.25
ARLIC,O all charts 25
SSEWMA cluster size 2
Total sensors 96
Actual number of observations 30
Initial temperature SA 1
Cooling rate SA 0.99
Maximum iterations SA 1000
Minimum temperature SA 1e−5

Neighbor solution attempts SA 20
Neighbor solution attempts Tabu 20
Maximum iterations Tabu 100
List size Tabu 50
Max iterations Greedy 50
Top candidates considered for adding Greedy 20

3.3 Sensitivity analysis
3.3.1 Group size and POD

The R-SSMEWMA is defined as multiple SSMEWMA
charts monitoring groups of randomly assigned sensors,
where each group has an equal number (p) of sensors. This
forces p to take on values that can exactly divide the total
number of sensors (P), otherwise we would have remaining
sensors. Here, p is considered a parameter that can be varied
to obtain a desired POD.

The POD for a fixed value for p is calculated similar
to the procedure outlined in 9. A shift of δ = 4 is in-
duced at observation 20 and the POD is calculated af-
ter 10 observations. We iterate over various values for p:
p ∈ [2, 3, 4, 6, 8, 12, 16, 24] and determine the POD for each
value of p. In total, 1000 runs per p value are performed.

3.3.2 Objective function verification

To show the relation between the POD and the de-
rived loss function (Equation 2.31), we set-up an experi-
ment where we generate multiple runs for p sensors mon-
itored by a single SSMEWMA chart and varying p for:
p ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. At observation 20 we induce a
shift of δ = 10 σ. At observation 20 we calculate the value
of the loss function Equation (2.31) and the corresponding
relative shift in the SSMEWMA chart (||Mn||2rel), which is

defined as: ||Mn||2
LIM . ||Mn||2rel is proportional to the POD. It

is expected to see a relation between these quantities, as
shown in Equation 2.29.

Furthermore, δ is varied from 2 to 16 σ to investigate
how well the relation holds up for different shifts. Lastly, τ
is also varied from 10 to 45 to see what the effect of an early
or late process shift is. Due to the regularized covariance,
it is expected that the relation will be more pronounced for
larger τ .

4. RESULTS AND DISCUSSION
In this section we show the results. First, the perfor-

mance of the grouping algorithm is investigated. Next, the
results for the four control charts (Q, R-SSMEWMA, P-
SSMEWMA and HC) applied to the case study are shown.
Lastly, a sensitivity analysis is performed to look into the
relation between the POD and loss function.

4.1 Partitioning algorithm performance
In Section 3.1.4 we defined a loss function (Equation 2.31)

to determine groups of sensors. The SA, Tabu and greedy
algorithms are all used to minimize Equation 2.31.

4.1.1 Fixed observations

First, we apply the three algorithms to a fixed number
(30) of observation. The maximum spanning tree (MST) is
found using Kruskal’s algorithm, this is shown in Figure 10.
All MST nodes are connected and there exists no cycles in
the graph. This MST is the initial solution for the mini-
mization problem and used as input for the SA, Tabu and
Greedy algorithms, see Algorithm 1.

Figure 10: Maximum spanning tree of electro-optical module
1 data. Nodes represent sensors and edges represent covari-
ance between sensors.
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Next, the SA, Tabu and greedy algorithms are applied to
the MST in Figure 10. The lowest found score of the loss
function for the three algorithms is shown for the first 5
seconds. The run time is limited to 5 seconds, as this is con-
sidered to still be manageable for real-time SPM. Increasing
the run time could still improve the solution, however com-
putational times should also be considered.

Figure 11: Value of Equation 2.31 over 5 seconds for the
Greedy, Tabu and SA algorithms. The Tabu and SA algo-
rithms are not deterministic, therefore the mean with 95%
CI is shown over 10 runs of the algorithms. In total 30 obser-
vations were used. Nodes represent sensors and edges repre-
sent covariance between sensors.

From Figure 11 it can be seen that the SA algorithm
managed to find solutions with the lowest score for the loss
function after 1 second and after 5 seconds. The found score
after 5 seconds was on average -37.80. The Tabu algorithm
performs slightly worse compared to the SA algorithm, how-
ever it finds a slightly better solution after 5 seconds with
an average score of -38.52. The Greedy algorithm performed
the worst out of the three algorithms and found a solution
with a score of -29.3924 after 5 seconds. The Greedy algo-
rithm is relatively slow, since it can take many iterations
before a new solution with a lower score is found. Allow-
ing for a longer run time would likely improve the solution
found by the algorithms.

For the simulations performed in this research, short run
times are vital. This is mainly due to the application of the
algorithm at each time step. A slight increase in run time
can prolong the full experiment drastically. For this reason
it was decided to use the SA algorithm, since it finds the
lowest score solution after 1 second. Figure 12 shows the
solution found by the SA algorithm after 1 second.

Figure 12: Graph of minimized L partition found with the
SA algorithm after 5 seconds. Based on data for 30 obser-
vations of optical module 1.

The solution in Figure 12 is based on the original optical
module 1 data with 32 observations and 96 sensors. It is no-
ticeable that there do not seem to be many groups of average
size. For example, we see quite a few groups with small sizes
(2) and a few large groups (> 6), but not many averaged
sized groups. This could reflect underlying relations between
sensors or be attributed to the SA algorithm.

The SA algorithm swaps edges at each iteration of the
algorithm. The main driver behind finding solutions is the
removal of edges, since this process is ultimately what cre-
ates the groups of sensors. Forcing the adding of an edge
as well creates a tendency to add edges to groups that are
already large, because the influence on the loss is smaller
when adding to an already large group.

Furthermore, the node and edge structure could poten-
tially also reveal information about the process. For in-
stance, in Figure 12 sensors 32, 34, 36, 37 and 38 belong
to the same group, yet are all connected via sensor 34.

Visually, the found groups seem to reflect covariance be-
tween sensors. Since the sensors occupying the same group
share high covariance among each other. To highlight this
result, Figure 13 shows the correlations between sensors in a
heat map for the first 21 sensors. Colors denoting the groups
to which the sensors were assigned are shown on the sides
of the heatmap.
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Figure 13: Subset of sample correlation matrix visualized
with heatmap for 21 sensors. Colours along the axis denote
the group to which the sensor is assigned. 30 observations
were used to estimate correlation.

From Figure 13 we can see that the groups are based on
the covariance between sensors. For instance, the dark blue
group contains the sensors 1,2,3,4,5 and 6. These sensors
are all related to a crucial step in the work center, namely
alignment during the stacking of MEMS layers. Therefore,
from a process perspective, it is logical that they occupy the
same cluster. Furthermore, sensors 7 and 8 also share high
correlation with the dark blue group. However, they are also
strongly correlated with each other, making the summed
score lower by placing them in a separate group.

4.1.2 Varying observations

The estimated correlation matrix in Figure 13 is based
on a fixed 30 observations. However, for a start-up process,
the groups are found at each time step. To see what the con-
figuration of groups is for a varying number of observations,
see Figure 14.

The vertical bar denotes the average number of sensors in
a group of size p. The red line shows where p is equal to n.
The SSMEWMA cannot detect change if p exceeds n. Thus
changes in groups above the red line will never be detected.
Interestingly, the partitioning algorithm finds groups with
sizes less then n (below the p = n line) most of the time.
Starting from only 2 observations, most groups fall under the
p = n line. We emphasize that no constraint was placed on
the maximum group size. The tendency to find groups below
the p = n line is likely coincidental and can be attributed to
the fact that early MLE estimates of covariance are not well-
defined. For example, when few observations are present, the
MLE estimated covariance tends to by too high.

Figure 14: Average number of sensors per group of size p
for 50 observations. In total 30 runs were performed, the
average counts across these runs was taken.

Since the algorithm automatically finds groups below the
threshold, it is not necessary to place a constraint on the
maximum group size. A few groups are above the thresh-
old (see Figure 14), meaning that a change in any of these
groups will never be detected. This slightly lowers the final
POD. Instead of a constraint, an uninformative prior could
also be used to force smaller group sizes. For instance, if an
identity prior is used, Equation 2.29 only depends on the
minimization of p, and would therefore assign all sensors to
groups of 2 initially. As more observations come in the co-
variance estimate depends more and more on the data, and
the groups sizes are allowed to increase.

Figure 15: Average final value of L over 30 runs with 50
observations after applying the SA algorithm.

After a number of observations the found groups do
not change much anymore. This already seems to be the
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case after 20-30 observations. For practical implementa-
tion, it could therefore be advised to stop applying the P-
SSMEWMA procedure and use the last partition of groups.
Finally, see Figures 15 for the value of L for n observations
and Figure 16 for a cross section of the counts from Figure
14

In Figure 15, the final value for L found by the SA al-
gorithm decreases as n increases. This indicates that the
found groups obtain a higher score for a more certain MLE
estimate of covariance. This also corresponds to what is ob-
served in Figure 14. When the final value for the loss func-
tion is high, the algorithm tends to find small groups of
sensors. Small groups of sensors make the least assumptions
about covariance between sensors (because we predict with
neigbour sensors, see Section 2.4).

For the first 2 observations, the score appears to be lower.
However, this is due to the MLE estimate of covariance not
being well-defined. For 1 observations, an estimate cannot
be made and all sensors are kept in 1 group. For two ob-
servations, the covariance among sensors is extremely large,
which also leads to large groups and a low score.

Figure 16: Cross section of average number of sensors in
group of size p at n is 50 observations from Figure 14. Av-
eraged over 30 runs.

Figure 16 shows the average number of sensors in a group
of size p calculated at 50 observations. For instance, on av-
erage there are 12 sensors being monitored in groups of 2.
Minimizing Equation 2.31 leads to most sensors being mon-
itored in small groups. This is desirable, as small groups in
general have a higher POD comapred to larger groups. How-
ever, sometimes large groups do form. This highlights that
the POD is also improved when covariance between sensors
is high. For large groups with high generalized variance, the
prediction of the next observation for sensor i is more accu-
rate due to the sensors sharing information. The probability
of finding sensor i in a certain state given the states of all
other sensors is higher when generalized variance is high.

4.2 Case study: optical module 1
In this section, the four control charts are applied to data

generated based on the optical module 1. First, we verify
that the ARLIC of all charts is set to 25 observations. Next,
we show the POD for a variety of situations of all charts
applied to the optical module 1 data.

4.2.1 ARLIC verification

Before a fair comparison between the four procedures
monitoring the optical module 1 data can be made, we need
to verify that the ARLIC of all charts is equal. An ARLIC

of 25 observations was selected. Numerical simulations were
performed to find the control limits corresponding to this
ARL. The found limits are shown in Table 5 in the Ap-
pendix.

To verify that the found limits actually correspond to
the desired ARLIC , we performed a simulation with the
found limits. See Figure 17 for the ARLIC of the charts in
a box plot showing the mean, 95 % confidence interval and
minimum and maximum values.

Figure 17: ARLIC in a box plot for all four control chart
procedures with numerically simulated control limits. Target
ARLIC was set to 25 observations. In total 25 runs were
performed with a run length of 200 observations. The run
length for the HC chart was set to 50 observations due to
extremely long computational times.

Simulating more runs with a higher number of observa-
tions would improve our estimate of the limits, however Fig-
ure 17 shows that the target ARLIC is within the 95 % con-
fidence interval for all charts. Therefore, we conclude that
our control limits are set correctly for comparison between
charts. The run length for the HC-chart was shortened to
only 50 observations due to computational times increasing
drastically. This explains why the 95 % confidence interval
is shorter and the maximum value lower.
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4.3 Simulation results

The POD of all four control charts applied to the gener-
ated optical module 1 data for a shift δ at observation τ is
shown in Table 2. From Table 2 we can see that the POD of
the P-SSMEWMA is higher compared to the other charts
for most combinations of τ and δ. Except for extremely early
shifts, here the Hc-chart seems to have the best performance.

The performance of all charts deteriorates quickly for
early shifts. For instance, shift at τ = 5 are almost al-
ways missed, regardless of δ. This is to be expected, as the
charts do not yet have a good estimation of the IC process.
The POD for the HC-chart appears relatively high for early
shifts. This could be due to a wrong setting of the ARLIC ,
which was later solved and implemented in Figure 18. The
POD of the HC-chart therefore likely contains a small con-
stant positive bias in Table 2.

The Q-chart appears to have the worst performance for
detecting early shifts out of all charts (τ = 5). For fast detec-
tion of shifts, see the POD2 column in Table 2, the Q-chart
is well suited. There does not seem to be much difference be-
tween the POD2, POD5 and POD10 of the Q-chart. This
means that the Q-chart detects process shifts fast or does
not detect shifts at all. The reason for this is that the Q-chart
updates the control limits with the new OOC observations.
If the shift is not detected fast, the control limits will have
shifted towards the OOC distribution, making detection of
the persistent mean shift more difficult.

The P-SSMEWMA manages to have a higher POD for
smaller values of δ compared to the other charts. This is
likely due to the SSMEWMA charts monitoring groups of
sensors that were found by maximizing the probability at
the MLE estimate. Any deviations, however small will be
more pronounced if due to this maximization. It was ex-
pected that the chart could possibly become too sensitive
to shifts due to the maximization, resulting in an increased
false alarm rate that offsets the improvement sensitivity.
However, this does not appear to be the case. For an easy
visual comparison between control charts, we plotted the
results for N = 30, τ = 20 in Figure 18.

Figure 18: POD for all four control charts over a range of
process shifts δ. τ was set to 20 observations and the total
run length was 30. Error bars represent the 95% confidence
interval. In total, 200 runs were performed and the shift was
changed to include 0 and increment with steps of 0.5. The
implementation of the HC-chart was slightly altered in this
figure to ensure a 0 POD for a 0 shift.

In Figure 18 it can be seen that the POD is approximately
equal to zero for the charts when the shift is equal to 0 σ.
This is a result of the ARLIC being set to 25 observations.
The P-SSMEWMA yields a better POD2 for all values of
δ compared to the R-SSMEWMA. For instance, the POD2

of the R-SSMEWMA already has a 20% chance of detecting
a 1 σ shift, while the R-SSMEWMA is approximately at
0%. The P-SSMEWMA charts are more sensitive to initial
shifts, due to the maximization of the posterior peak. This
makes deviations from the estimated distribution stand out
more, which increases the POD2.

If the shift is not detected immediately, the shifted sen-
sor observations are used in the covariance estimates. This
slightly decreases the long run POD (POD5 and POD10),
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Table 2. Results from simulation based on the case study for optical module 1. Various shifts δ were simulated for different τ .
The best POD values are indicated in boldface. In total 100 runs were performed for each combination of δ and τ .

Q-chart R-SSMEWMA HC-chart P-SSMEWMA
N τ δ POD2 POD5 POD10 POD2 POD5 POD10 POD2 POD5 POD10 POD2 POD5 POD10

15 5

1 0 0 0.01 0 0 0 0.01 0.07 0.19 0.01 0.07 0.1
2 0 0 0 0 0.01 0.03 0.01 0.03 0.09 0.02 0.05 0.1
3 0 0 0 0 0 0.01 0.01 0.04 0.21 0.06 0.07 0.11
4 0 0 0 0.01 0.01 0.01 0 0.07 0.19 0.06 0.09 0.12
5 0 0 0 0 0.01 0.01 0.01 0.12 0.36 0.06 0.09 0.12

20 10

1 0 0 0 0 0 0.02 0.11 0.19 0.34 0.07 0.17 0.22
2 0 0 0 0 0.03 0.06 0.05 0.12 0.27 0.12 0.29 0.4
3 0.03 0.04 0.04 0.01 0.08 0.09 0.01 0.04 0.21 0.25 0.42 0.51
4 0.06 0.06 0.06 0.07 0.19 0.31 0.04 0.19 0.51 0.26 0.49 0.62
5 0.21 0.21 0.21 0.08 0.27 0.34 0.09 0.42 0.75 0.4 0.63 0.73

30 20

1 0 0.02 0.03 0 0.03 0.03 0.17 0.22 0.3 0.15 0.37 0.53
2 0.01 0.02 0.02 0.01 0.15 0.27 0.15 0.25 0.33 0.24 0.68 0.87
3 0.11 0.11 0.11 0.09 0.59 0.77 0.14 0.25 0.55 0.51 0.9 0.94
4 0.39 0.39 0.39 0.3 0.91 0.98 0.15 0.39 0.72 0.66 0.97 0.99
5 0.75 0.76 0.76 0.46 0.99 1.0 0.09 0.49 0.88 0.73 0.94 0.98

40 30

1 0 0 0.01 0.01 0.06 0.13 0.29 0.35 0.49 0.22 0.49 0.67
2 0.03 0.05 0.07 0.03 0.2 0.61 0.2 0.27 0.49 0.4 0.84 0.96
3 0.2 0.23 0.25 0.09 0.83 0.98 0.32 0.44 0.71 0.69 0.98 1
4 0.57 0.63 0.64 0.4 0.99 1 0.22 0.44 0.85 0.87 1 1
5 0.92 0.9 0.92 0.71 1 1 0.18 0.55 0.94 0.91 1 1

as groups are no longer based on the IC covariance esti-
mate. To avoid this issue, a covariance estimator that is
more robust to outliers could potentially be used. We can see
in Figure 18 that the POD of the R-SSMEWMA improves
drastically in the long run and is even higher compared to
the P-SSMEWMA for δ > 3. For smaller values of δ, the
P-SSMEWMA still has a significantly higher POD then the
R-SSMEWMA.

4.4 Sensitivity analysis

In this Section we perform a sensitivity analysis to de-
termine the influence of different parameter settings. First,
the group size (p) is varied to see how the POD changes for
the generated optical module 1 data. Next, the value of the
loss function Equation 2.31 is varied to see how the POD
changes. Instead of directly using the POD, the relative shift
is used, which is directly proportional to the POD.

4.4.1 R-SSMEWMA partition

To determine the maximum POD group size setting for
the R-SSMEWMA we iterated over a range of group sizes.
See figure 19 for the POD of various values of p with ran-
domly assigned sensors.

Figure 19: POD for various values of p. 2000 runs with 30
observations each were performed.

From Figure 19 it becomes clear that the POD is a func-
tion of p. As expected, a decrease in cluster size results in
an increase in POD. This can also be seen in Equation 2.29.
The maximum value for all POD is found for the smallest
group size of p = 2.
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4.4.2 Relation POD and L

Investigating the relation between the POD and L is im-
portant because groups are determined based on the mini-
mization of L. We expect the POD (we will use POD and
||Mn||2rel interchangeably) to increase when L is minimized,
see Section 2.5. To test if this relation is valid, several ran-
dom covariance matrices of dimension p by p and corre-
sponding data were generated. At observation 20, a shift
was induced and L and ||Mn||2rel were calculated. Note that
this is the initial shift at observation 20. The results are
shown in Figure 20,

Figure 20: Relation between L and ||Mn||2rel. For a shift of 10
σ at observation 20. Coloured squares represent the mean.
In total 10000 runs were performed. Each scatter point rep-
resends a run based on data from a randomly generated
covariance matrix.

From Figure 20 it can be seen that decreasing L results
in an increase in POD. Furthermore, the relation seems to
be independent of p, since the scatter points overlap. This
is as expected and verifies the effectiveness of the used loss
function. Figure 21 shows only the mean values of L and
||Mn||2rel, which are denoted with a bar.

Figure 21: Relation between L and ||Mn||2rel with only the
mean shown. For a shift of 10 σ at observation 20. Error
bars represend the 95% CI.

The mean values in Figure 21 appear to follow an ex-
ponential relation. Now we investigate how the results in
Figure 21 hold up for different values of τ and δ. We use dif-
ferent markers to distinguish between different sensor sizes,
but do not explicitly state this in the graph. First, we look
at the effect of changing δ. This is done by repeating the
simulations for Figure 21, but for δ ranging from 0 to 16.
The results are shown in Figure 22.

Figure 22: Relative shift for several shifts in the acutal data
of different magnitudes. τ was kept constant at 20 observa-
tions. Markers denote groups of similar size. Mean values are
plotted. In total 3000 runs were performed. The left most
marker is for p = 2, while the right most marker is p = 10.
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From Figure 22 it can be seen that the relation between
POD and L holds up relatively well for different values of δ.
For δ = 0, the relation is approximately constant, which is as
expected, since it would be undesirable to have an increase
in false positives due to the grouping procedure. For small
shifts, the relation is less pronounced, but still existent. τ
was kept fixed at 20 observations.

Now we look into the effect of a change in τ on the POD.
δ is fixed at a value of 10 σ and τ is varied from 10 to 45
observations. The results are shown in Figure 23.

Figure 23: In total 3000 runs were performed, markers rep-
resent group sizes. Shift magnitude was kept constant at 10
σ. The left most marker is for p = 2, while the right most
marker is p = 10.

We can see that for an early process shift at 10 obser-
vations, the relation seems to break down for larger group
sizes. The POD is actually higher for a high value of L. It
should also be noted that in this case the group size is very
close to the number of observations (9 sensors and 10 obser-
vations) which could also cause this to happen. In general,
the relation between L and POD seems to hold up well for
different values of τ . For large values of τ , the relation is
more pronounced.

5. CONCLUSIONS
This research proposed an online algorithm for find-

ing similar groups of sensors without expert and histori-
cal knowledge. An optimization problem was set up using a
loss function based on the peak of the posterior prediction
distribution. We showed that a relation exists between this
loss function and the probability of detection (POD). The
simulated annealing (SA) algorithm was used to minimize
the loss function, as it found the lowest loss solutions af-
ter 1 second of run time. We used the proposed procedure
for finding groups of sensors together with the SSMEWMA
control chart and therefore termed our procedure the P-
SSMEWMA.

The P-SSMEWMA procedure can be applied to special-
ized industrial processes; such as aerospace, shipping and
semiconductors. For verification and comparison, we applied
four control charts including the P-SSMEWMA to a case
study of a previous generation multibeam wafer scanner.
The found groups with the SA algorithm resemble process
knowledge and estimated covariance. The simulation experi-
ment based on the case study found that the P-SSMEWMA
POD was higher for most combinations of δ and τ . Specif-
ically, the P-SSMEWMA was faster in detecting shifts and
almost always outperformed the other control charts when
δ was small. Overall, the procedure showed improvements
in the POD2, POD5 and POD10. A sensitivity analysis re-
vealed that the used loss function is related to the POD of
SSMEWMA charts and can be used for a variety of values
for δ and τ .

These findings highlight the usefulness of implementing
the P-SSMEWMA procedure for high-dimensional, short-
run manufacturing processes. A significant increase in the
probability of detecting process shifts can easily be obtained
by monitoring groups of sensors found by maximizing the
posterior peak of the predicted observations. The procedure
does not require an extensive investigation of the process.
Implementing the P-SSMEWMA has the potential to im-
prove quality control, decreased costs and improved process
knowledge.

6. RECOMMENDATIONS
In this section, recommendations are given based on the

results of this research. The section is divided into two sub-
sections due to the results being of interest for both indus-
trial applications and future research.

6.1 For industrial implementation
Implementing SPM methods in an industrial setting

comes with various trade-offs. One downside of the use of
the MLE estimate is that it is not regularized. For practical
implementation we would recommend to use a regularized
estimate of the covariance, or use a Bayesian approach with
priors. If a Bayesian approach is chosen, we recommend to
set a prior such that process knowledge is also incorporated.

If a Bayesian approach is not used, we recommend to use
the minimum covariance determinant (MCD) as it is less
sensitive to outliers, avoiding an estimate of the covariance
matrix that is contaminated by outliers. As an alternative,
an extra check could be added that removes outliers from
the data used for estimation, if for instance the control limit
was exceeded.

Finally, we recommend to use the P-SSMEWMA chart
in combination with single Q-charts monitoring all sensors.
The P-SSMEWMA procedure is relatively complex to im-
plement and does not directly show the sensor measure-
ments. In practice, being able to see the actual measured
values in a control chart is beneficial. For example, opera-
tors could immediately see which sensors was responsible for
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an OOC event. By implementing both charts, OOC events
would be detected quickly, and the Q-charts could provide
insights about the individual measurements.

6.2 For future research
Future research could look into the viability of combining

the partitioning algorithm with other multivariate control
charts, such as the HC chart. The SSMEWMA cannot detect
changes when p is greater then n, if for instance the HC chart
is used, this dependence would not exist and performance
could be improved. As an alternative, a constraint could be
added to force the group size to be less then n at each time
step. This is done mainly to avoid the missed detection of
shifts due to too large group sizes.

The HC-chart used in the simulation was applied to the
full data set of 96 sensors, reducing the number of sensors
could significantly improve the performance of the HC-chart
as well. Furthermore, the initial implementation of the HC
chart suffered from a slight error in the ARLIC setting. It
is recommended for future researcher to carefully review the
HC chart implementation.

If a simulation study is performed, it is recommended
to perform Monte Carlo simulations with high-performance
hardware. This could drastically reduce computational
times, consequently improving accuracy of the simulations
and control limit settings. Another topic to investigate is
how well the partitioning algorithm functions when the nor-
mality assumption does not hold. A multivariate Gaussian
distribution was assumed for the case study. In practice this
assumption might not hold and have an effect on the per-
formance of the control chart.

The loss function used in this research is not normalized
by the number of sensors. By taking the natural log of the
loss function, we obtain a term that only depends on p.
This term always results in a constant when summing over
all models, because we have a fixed number of sensors (96
for the case study). Therefore, for future research it is rec-
ommended to normalize the loss function by dividing by the
number of sensors. Which gives a sort of per-sensor proba-
bility at the MAP estimate.

The recursive residuals are produced based on the re-
gression of a sensors left neighbors and upper predecessors.
Meaning that ordering matters in the calculation. The effect
of different orderings could potentially impact the POD. It
would be interesting to closely investigate this effect. Re-
lated to this, is the possible extension to a full Bayesian
framework for the grouping procedure. Potentially includ-
ing a proper implementation using the model evidence, pri-
ors and sequential updates of all model parameters. The
current implementation provides an approximation.

In general, a more extensive sensitivity analysis could be
performed. For instance, varying λ and investigating the re-
sults could be valuable. Other loss function could also be
further investigated, for instance the small sample model
selection criteria or evidence based functions. Furthermore,

looking into the performance of the P-SSMEWMA for dif-
ferent types of shifts, such as: trends, outliers and variance
change, could add to the robustness of the procedure. Lastly,
the algorithm for generating groups could be investigated for
further improvements. For instance, instead of swapping one
edge, multiple edges could be swapped simultaneously.
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APPENDIX A. APPENDIX SECTION
A.1 Bayesian model evidence based groups

For a model M for data Xp for p sensors with a set of
parameters βp (regression coefficients) the evidence is given
by:

p(Xp|M) =

∫
p(Xp|βp,M)p(βp|M)dβp (A.1)

Here p(Xp|βp,M) is the likelihood of the data given the
parameters and p(βp|M is the prior, which in our case can
be defined as the posterior of the previous time step since we
are doing sequential updates. This first prior can be specified
in any way.

Often, Equation A.1 is difficult to calculate since it in-
volves the integral over the parameters. A closed-form solu-
tion does not often exists and numerical approximations are
normally used [29]. However, closed-form solutions do ex-
ist for special cases, specifically when we are dealing with a
conjugate-Gaussian prior and Gaussian likelihood (see chap-
ter 2.3 of Bishop for more details [23]). First we need to
consider what the likelihood and prior mean in our case.
Equation A.1 gives the model evidence at observation n. The
model evidence (p(Xp|M)) can be written as a product of
normalization constants, where the normalization constant
for the likelihood is given as: Zl = (2π)

nd
s [24]:

p(Xp|M) =
Zn

Zn−1Zl
(A.2)

Where Zn and Zn−1 are the normalization constants of
the posterior and prior respectively. In order to calculate
a closed-form solution for p(Xp|M) we should select the
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prior to be a conjugate to the likelihood [24]. This prior has
the form of a Normal-inverse-wishart or NIW distribution,
which is the multivariate expansion of the gamma distribu-
tion. It is defined as follows [24]:

p(βp|M) = NIW (βp,Σ|m0, κ0, ν0, S0)

∈ N(βp|m0,
1

κ0
Σ)× IW (Σ|S0, ν0)

(A.3)

Where N(βp|m0,
1
κ0

is a to be specified Gaussian scaling
function with selected prior mean m0 and covariance Σ (Σ is
often selected to be I as a conservative prior) multiplied by
a scaling constant κ0 that represents how strongly we belief
our prior on m0. S0 is our prior mean for Σ and ν0 how
strongly we believe this prior. Using the NIW distribution
as our prior and using Equation A.2, following a derivation
by [24], the evidence of the model at observation n is given
by:

p(Xp|M) =
1

(2π)
d
2

(
κn−1

κn
)

d
2
|Sn−1|

νn−1
2

|Sn|
νn
2

Γd(
νn

2 )

Γd(
νn−1

2 )
(A.4)

Where: κn = κ0 + n, νn = ν0 + n and Sn = S0 +
S + κ0m0m

T
0 − κnmnm

T
n with S as the uncentered sum-

of-squares matrix (estimate of covariance).
Equation A.4 can be seen as the evidence of model Mi for

a subset Xp of the data Dn at observation n. Interestingly,
the equation is a trade-off between the prior and estimate
obtained using the data. Taking the natural log of the model
evidence (Equation A.4) gives a similar expression to Equa-
tion 2.29 but now with a prior term from the previous time
step and weight constants κ and ν:

p(Xp|M) = −d

2
ln(2π)− νn

2
ln|Sn| −

d

2
ln(κn) + ln(Γd(

νn
2
))

+
d

2
ln(κn−1) +

νn−1

2
ln|Sn−1| − ln(Γ(

νn−1

2
))

(A.5)
Maximizing Equation A.5 gives the model with the high-

est evidence. The term −d
2 ln(2π)−

νn

2 ln|Sn| resembles Equa-
tion 2.29. If we perform a batch update to find the model
evidence, ln|Sn−1| = ln|S0| = I results in Equation A.5
mainly being a function of −d

2 ln(2π)−
νn

2 ln|Sn| and weights
that determine how much we trust the data or the prior.

A.2 Control chart verification
The implemented control charts from literature were ver-

ified to ensure correct implementation. The results of this
verification step are shown below.

A.2.1 SSMEWMA verification

To verify the implementation of the SSMEWMA chart,
table 1 was used for reference. The values for ARL were
taken from the paper [7] and the corresponding h was cal-
culated with the implemented code. The values found with

Table 3. Simulation verification results rounded to two
decimals with SD of statistic as error. 100 runs were

performed. For group size 2.
λ Paper h Simulation code h
0.05 6.242 6.26 ± 0.051
0.10 7.262 7.30 ± 0.11
0.15 7.832 7.64 ± 0.16
0.20 8.211 8.19 ± 0.22
0.25 8.458 8.38 ± 0.29

Table 4. Simulation verification results rounded to two
decimals with SE as error for HC chart from Li et al. In total,

50 runs were performed per ARL for a run length of 40
observations.

δ Paper ARL Simulation code ARL
0.5 9.6 13.0 ± 6.04
1.0 6.6 6.55 ± 3.03
1.5 3.7 3.12 ± 0.31
2.0 3 2.96 ± 0.16
2.5 3 3.0 ± 0.0
3.0 3 3.0 ± 0.0

the simulation code closely match the values found in the
paper, see table A.2.2

Furthermore, table 3 in [7] gives an example with process
values and the corresponding R, U and M matrices. The
values found for this example were also compared with the
results from the table and were found to match.

A.2.2 HC verification

For small shifts the ARLOOC is large. To accurately asses
the ARLOOC , the process should run indefinitely until the
limit is exceeded. However, in practice this was unfeasible
due to long computation times. The cut-off was placed at 15
observations after the shift. For this reason, the ARLOOC

for small shifts is lower then expected, due to the very long
ARLOOC not being counted. The standard error is conse-
quently also larger, as fewer samples could be taken. There-
fore, verification was only done for the top right results of
table 1, as the ARL is relatively low and the total RL after
the shift relatively high.

From Table A.2.2 it can be seen that the simulated val-
ues match closely with the original papers results, within
standard error bounds.
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A.3 Control limit setting

Table 5. Numerically found control limits. For the HC chart,
we assume a constant limit.

Limit Value
α(Q-chart) 0.0006446
h (R-SSMEWMA) 12.576804
correction (P-SSMEWMA) 0.952502
h̄(HC − chart) 2.20

For the full table of values found for the P-SSMEWMA
we refer to the Git hub code used for performing the simu-
lations.
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