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The aim of coal quality control in coal mines is to supply power plants daily with extracted raw material within certain
coal quality constraints. On the example of a selected part of a lignite deposit, the problem of quality control for the run-
of-mine lignite stream is discussed. The main goal is to understand potential fluctuations and deviations from production
targets dependent on design options before an investment is done. A single quality parameter of the deposit is selected for
this analysis—the calorific value of raw lignite. The approach requires an integrated analysis of deposit inherent variability,
the extraction sequence, and the blending option during material transportation. Based on drill-hole data models capturing of
spatial variability of the attribute of consideration are generated. An analysis based on two modelling approaches, Kriging and
sequential Gaussian simulation, reveals advantages and disadvantages lead to conclusions about their suitability for the control
of raw material quality. In a second step, based on a production schedule, the variability of the calorific value in the lignite
stream has been analysed. In a third step the effect of different design options, multiple excavators and a blending bed, was
investigated.

1. Introduction

Environmental and economic considerations in the electrical
energy industry rise the necessity to constantly improve the
efficiency of power units. One way to increase the efficiency
of energy production in the power plants based on fossil fuels
is to supply the rawmaterial with specific and relatively stable
quality parameters.

In the case of lignite, the spatial variability of parameters
is quite large. Given the variability criterion, lignite belongs
to the second group of deposits in the Polish classification.
The coefficient of variation v [%] is defined as the ratio of the
standard deviation to the mean value of the basic parameters
and is usually in the range of 30% to 60%. The exception is
the calorific value which has a relatively low volatility in the
range of 9 to 16% [1].

To meet customer’s requirements, the planning and
design of a mining operation have to focus on technical
and operational measures to reduce the in situ variabil-
ity of critical coal attributes during mining and material
handling. The aim of different design options, such as the
use of blending beds or multiple excavators simultaneously,
is to transform the in situ variability in the deposit to a
level which meets customers’ requirements. For investigating
the effect of a coal blending beds the theory of variance
reduction in bed blending is well established (e.g., [2]). It
is based on the variogram transformation of the incoming
to the outgoing stream. Several documented applications
(e.g., [3, 4]) use techniques of stochastic simulation based on
variograms of critical elements to simulate the variability of
incoming material flows and to optimise the transformation
process. Considering geologicallymore complex deposits this
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approachmay be too simplified. To investigate the homogeni-
sation effects in a continuous mining system, the deposit
characteristics, in particular the local variability has to be
linked with the extractionmethod, the mining sequence, and
blending options throughout the operation [5].

In order to maintain stable raw material parameters,
certain measures are undertaken referred to as the lignite
stream quality management (e.g., [5–9]). This process begins
with the exploration and documentation of the deposit and is
conducted until the end of themine’s life. Coal quality control
can be divided into several stages:

(1) identification of critical parameters and modelling of
the deposit:

(i) identification and analysis of critical coal quality
parameter,

(ii) spatial modelling of the variability of quality
parameters,

(2) mine planning (long-term planning):

(i) determination of the location ultimate pit limit
and of the opening box cut,

(ii) design of blending options and facilities, such as
stock and blending yards,

(iii) establishment of a long-term mining sequence
and advances of the mining faces in time,

(3) exploitation and production control (operational
planning):

(i) short-term production scheduling for the ex-
traction equipment,

(ii) prediction and online analysis of the quality of
the extracted coal,

(iii) logistics and transportation,
(iv) storage and homogenisation of the rawmaterial.

The analysis presented here relates to the second and
third stage of the control process—the design of blending
options and operational planning.The following sections will
first investigate different geostatistical modelling approaches
for their suitability to map realistically spatial variability of
lignite attribute considered. In the second part the variability
of the extracted material flow is evaluated, including bed-
blending and multiple excavators, leading to design options
for improved coal quality management and a reliable supply
of the power plant.

This paper is a continuation of the aspects related to
coal quality management in lignite mines discussed by the
authors in previous publications. In particular, methods of
conditional simulation in geostatistics investigated in [10, 11]
are applied to full scale reserve modelling of a large lignite
field in Poland aiming to understand variability of coal quality
attributes at a short-term scale. Using these models the
second part focuses on design issues of a stock and blending
bed to understand its ability to control short-term variation.
Contrary to the work described in [5, 12], which focuses

on operational optimization of a coal stock and blending
bed, here the aim is to understand the effect of the bed size
to control coal quality fluctuations of final products to be
sold. The combined approach discussed in this paper allows
decisions on the optimal stock and blending bed design to be
evaluated in the design phase, before short-term operation is
actually executed and real fluctuations experienced.

2. The Objective of This Case Study

For the process of lignite quality control at the stage of
operational planning it is necessary to have sufficient explo-
ration information about the deposit. In themines this task is
accomplished in different ways. One of them is to explore the
deposit with drill-holes drilled from the roof of the exposed
lignite—the so called operational exploration. The holes in
the deposit analysed in this paper were drilled in a dense
grid of 50 by 50 meters. Although, in comparison to the
geological documentation stage, the operational exploration
has a higher information content, the actual parameters of the
mined lignite still often differ from values identified during
this drilling period.

Themain objective of this study is to understand possible
deviations with respect to the expected calorific of coal
produced based on operational exploration data, that is, to
assess to what extent these data provide accurate information
for the tasks related to the quality control of the mined min-
eral. To achieve this goal and test the suitability of different
approaches, twomethods of geostatisticalmodelling are com-
pared, ordinary Kriging and conditional simulation (e.g., [1]).

In a second step two different design options are inves-
tigated focusing on the effect of variability of run-of-mine
lignite, which are as follows:

(i) the availability of a coal stock and blending yard for
bed blending: different sizes are investigated,

(ii) the availability of a second excavator and the possibil-
ity to blend two lignite streams on the belt conveyor.

For run-of-mine lignite quality control in the context
of power plant supply multiple parameters such as calorific
value, sulphur content, and silica content have to be taken into
account. Without loss of generality, this paper focused on the
analysis of the calorific value of the raw lignite 𝑄𝑟

𝑖
.

3. The Method

On the basis of the operational exploration within the area
limits of six-month progress of extraction, variability models
of the calorific value in particularmining blocks were created.
This analysis was performed for the part of the deposit
where the operational exploration is characterized by high
regularity. Figure 1 shows the selected part of the deposit with
respect to the entire deposit and the assumedmining progress
in relation to all exploratory holes.

On the basis of the calorific value variability models with
a givenmining direction, the variations of calorific valuewere
calculated for a six-month period. Figure 2 shows a sequence
of mining 195 consecutive exploitation blocks. Each mining
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Figure 1: Location of the drill holes of the operational exploration
and the limits of monthly mining progress. The rectangle marks the
area selected for analysis.
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Figure 2:The order of exploitation within a six-month period. Each
exploitation block has been marked with the number.

block with dimensions of 30 × 30 meters corresponds to an
actual average daily production of lignite from the analyzed
deposit. With the average lignite seam thickness of approxi-
mately 6 meters and a density of 1.15 t/m3, a single exploita-
tion block contains about 6,5 thousand tonnes of lignite.

Based on the data the models of spatial variability of the
calorific value in the deposit were created using the ordinary
Krigingmethod and the direct sequential simulationmethod,
which are implemented in the software S-GeMS [13].The geo-
statistical simulation procedure is based on the idea ofMonte-
Carlo simulation. Based on available observations of the
deposit and on randomnumbers, the simulation can generate
any number ofmodels (herein referred to as realizations).The
realizations are unique and at the same time characterized
by identical probability to represent the actual deposit. All
realizations accurately reflect the values at the observation
points. Unlike ordinary Kriging, realizations resulting from
simulation accurately reflect the statistical and structural
features of the modelled parameters such as the density
distribution and spatial variability. Local differences between
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Figure 3: Experimental variogram with variogram model.

Table 1: Basic features of variogram model of calorific value.

Variogram model Dimension and unit
Nugget effect 160 000 (kJ/kg)2

Spherical model 235 000 (kJ/kg)2

Autocorrelation range 900m

particular realizations present the measure of uncertainty of
the prediction conducted by the simulation on the basis of the
available observations. In the paper 50 independent realiza-
tions of the calorific value for the selected part of the deposit
are presented. Figure 4 shows two exemplifying realizations.

Both of the used methods require a variogram model
capturing the spatial variability as input. First an empirical
variogram is calculated and secondly a model is fitted. In the
presented case the spherical basic structure resulted in the
best fit (Figure 3, Table 1). Due to the lack of a clear direc-
tional variability in the modelled deposit, an omnidirectional
variogram model was used.

4. The Data Base Used for the Analysis

The variability models of calorific value were created based
on 68 operational exploration drill holes located within the
borders of mining and on the basis of the adjacent holes.
Table 2 summarizes the basic statistical characteristics of the
measurement data from68holes. As can be seen, bothmodels
performwell in reproducing themean value of the drill holes.
The variance ofmodelled blocks cannot directly be compared
to the variance of exploration data, since both are based on a
different support. However, it can be noticed that simulated
block values appearmore variable asKriged block values.This
effect results from the smoothing effect of Kriging.
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Figure 4: Models of calorific value 𝑄𝑟
𝑖
—exemplifying realizations of geostatistical simulation.

Table 2: Basic statistics of calorific value based on 68 boreholes of the operational exploration and of the both models.

Data from the exploratory holes Model ordinary Kriging Model-exemplifying simulation
Number of holes/number of blocks 68 195 (30 × 30m) 195 (30 × 30m)
The mean value 8267 kJ/kg 8274 kJ/kg 8260 kJ/kg
The standard deviation 521 kJ/kg 316 kJ/kg 485 kJ/kg
Coefficient of variation 6,30% 3,80% 5,9%
The minimum value 6137 kJ/kg 7517 kJ/kg 6225 kJ/kg
The maximum value 9259 kJ/kg 8759 kJ/kg 9006 kJ/kg

5. Results and Discussion

Figures 4 and 5 show the calorific value volatility models in
the selected part of the deposit. To facilitate the assessment of
the validity of themodels, the figures also present the location
of the operational exploration holes with their identified
calorific value. Figure 4 shows two examples out of the total
50 conducted realizations of the simulation.Themodels differ
from each other, and the differences are primarily in the
blocks where there are no exploratory drill holes.

Figure 5 summarizes the two models representing the
expected spatial distribution of the calorific value—the aver-
age of the 50 realizations (a) and using the ordinary Kriging
method (b). In the model created using the Kriging the
calorific value changes gradually. The contour lines shown
in Figure 5(b) show the effect of smoothing that occurred
when using ordinary Kriging. Contrarily the variability is
conserved in the single realization (Figure 4). When averag-
ing all realizations, resulting in the so-called E-type estimator

(Figure 5(a)), a very similar model to the one of Kriging is
obtained.

Figure 6 presents the histograms of the calorific value
models variability in the selected part of the deposit. There
is an apparent narrowing of values in the ordinary Kriging
model. Note that the Kriging smoothing effect can be com-
pensated by implementing the Yamamoto correction.

Figure 7(a) shows the standard deviation of ordinary
Kriging, which expresses the magnitude of the expected
interpolation error. Its size in any given block depends
primarily on the distance to the nearest observation, on the
basis of which the interpolation was conducted. This relation
resultsmainly from the variogramand the data configuration.

Kriging’s standard deviation is independent of local
variation of observations used for modelling. Figure 7(b)
presents the map of the conditional simulation’s standard
deviation. The map is a result of a statistical analysis of 50
realizations. In each node of the grid standard deviation
was calculated, reflecting the uncertainty of a local forecast.
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Figure 5: Variation of the calorific value 𝑄𝑟
𝑖
—average of 50 realizations of the simulation (l) and ordinary Kriging (r).
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based on ordinary Kriging model (l), average of 50 realizations of a geostatistical simulation (m),

and one realization of a geostatistical simulation (r).

There are some clear differences between the two figures.
These differences appear not only in the nominal value of the
standard deviation, but also in their spatial distribution in the
modelled deposit. The standard deviation of the simulation
shows particularly high values in the south-eastern part of the
deposit. This is the influence of high calorific value variation
of the adjacent observations.

Based on the assumed extraction schedule (Figure 2),
graphs of the calorific value in the subsequentlymined blocks
(corresponding to the average daily production volumes)
were prepared. Figures 8 and 9 depict the variations of the
calorific value in the lignite stream during sixmonths of min-
ing. The graph in Figure 8 was created using the variability
model prepared with the use of the ordinary Krigingmethod.
Besides the mean value, the dotted lines constitute for

the Kriging’s standard deviation of the respective exploitation
blocks. The graph in Figure 9 shows the variation of the
calorific value based on the model created by conditional
simulation method. Three exemplifying realizations of the
simulation are shown together with the mean of all 50
realizations. Graphs (Figures 8 and 9) are supplemented with
horizontal lines corresponding to the average value calculated
from 68 observations (𝑄

́𝑠𝑟
= 8267 kJ/kg) and the lines

corresponding to the average increased (𝑄
𝑔
= 8788 kJ/kg)

and the average decreased by the value of the standard
deviation of the observation (𝑄

𝑑
= 7746 kJ/kg).

In the first graph (Figure 8), the average calorific value
determined using Kriging changes cyclically within the range
of the standard deviation of observation, extending only
slightly beyond those lines. In the second graph (Figure 9)
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Figure 7: Standard deviation of Kriging (l) and standard deviation of simulation based on 50 realizations (r).
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Figure 9: The fluctuation of calorific value 𝑄𝑟
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within 195 days of

exploitation—based on conditional simulation.

limits (thresholds), which is rounded, respectively, to 𝑄
𝑔
=

8790 kJ/kg and 𝑄
𝑑
= 7750 kJ/kg. Figure 10 shows the map of

the probability of exceeding the adopted thresholds.

6. Investigation of Design Options

Option 1 (bed blending using a coal-stock-and-blending
yard). Bed blending has three objectives: namely, buffering,
composing, and homogenising. Thereby it transforms the
characteristics of the incoming material flow in an outgoing
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Figure 10:The occurrence probability of calorific value lower than𝑄
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Figure 11: Schematic illustration of a strata-type blending yard.

material flow, whose characteristics are defined by costumer
specifications and may be of contractual relevance. The
characteristics of the incomingmaterial flow are a function of
the geological conditions, the applied selectivity in extracting
the deposit, the mining sequence, and the operation mode
in the pit as discussed in the previous section. The following
considerations concern the homogenisation effect of using
bed blending.The efficiency of blending and smoothing vari-
ability is significantly dependent on constructive parameters
as well as the operation of the blending yard. Constructive
factors are the type of the yard, its length and width, the angle
of repose, the number of layers, and speed of the stacker. The
following constructive parameters are given in the case study:
the blending yard is of type “strata” (Figure 11).

The coal coming from the pit (incoming material flow) is
stacked into layers, which are spread along the total length
of a bed by a continuously up and down moving stacker. The
number and thickness of the several layers are variable and
can be influenced by themoving rate of the stacker dependent
on the total production rate of the mine. At maximum about
61 layers can be placed in a pocket. The yard is reclaimed in
a fan-shaped manner orthogonally to the alignment of the
stacked layers by a scraper. In this way the coal quality of the
outgoing material flow is formed as an average over the total
number of stacked layers.

Investigations have shown that operating with >15 lay-
ers the incoming flow can be completely homogenized [5,
12]. Therefore in this investigation it is assumed that the
homogenisation effect is solely dependent on the stockpile
size. Figure 12 shows the variability of the outgoing material
flow for the different blending yard sizes: 0 kt, 60 kt, 180 kt,
and 300 kt. Clearly already a considerable small blending bed
size leads to a significant homogenization. Considering the
already previously introduced lower and upper limit of 𝑄

𝑔
=

8790 kJ/kg and 𝑄
𝑑
= 7750 kJ/kg it would need a stockpile

size of >300 kt to ensure continuously in-spec delivery of the
power plant.

Figure 13 shows a summary of the frequencies of expected
deviations from production targets for different blending
bed sizes. For example a size of 180 kt would still lead to
approximately 5% of daily deliveries deviating from poten-
tially contractually fixed limits. A size of 330 kt would ensure
that the in situ variability of the deposit can be transformed
into a product exhibiting a maximum variability as requested
from the customer. In addition this size of a stock pile would
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form a buffer bridging about 11 days of production and can
ensure continuous supply of the power plant during small and
medium termed maintenance or breakdown events.

Option 2 (availability of two excavators). This design option
considers the availability of two excavators, which are oper-
ated simultaneously. For example excavator onemay excavate
the first part of the bench to the middle and excavator
two extracts the remaining blocks. To avoid installed over-
capacity the capacity of each of the two excavators can
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Figure 14: The fluctuation of calorific value 𝑄𝑟
𝑖
within 195 days of

exploitation—using two excavators simultaneously.

be designed as low as half of the capacity of on single
excavator achieving the same daily production target of 30 kt.
For this investigation it was assumed that both excavators
operate at an extraction rate of 15 kt per day. Assuming no
targeted quality optimized scheduling, which means both
excavators are always operating at one half of the bench
without pinpointed schedule, Figure 14 shows the result of
the blended stream of lignite. As can be seen, a simultaneous
extraction of blocks with a subsequent blending on the belt
conveyor significantly reduces the variability. Considering
the coal quality production limits it becomes obvious that
there may still occur sporadic deviations from production
targets.These can be avoided by quality optimized scheduling
or using an additional blending yard with a small capacity, for
example, 60 kt.

7. Conclusions

The calorific value of the analysed part of the deposit has
a relatively low volatility (6,3%), yet due to the elongated
shape of the deposit (Figure 1), which implies the direction
of mining and distribution of the calorific value, the average
daily calorific values are in the range of 7750–8790 kJ/kg.

With the accepted method of mining, changes occur in
almost regular monthly cycles. In two parts of the deposit
the lignite has wider-than-threshold values (Figure 10). This
applies mainly to the values lower than 7750 kJ/kg in the
south-eastern area, as well as more than 8790 kJ/kg in the
northern part of the deposit. For purposes of coal quality con-
trol in order tomaintain the calorific value at the desired level,
it is useful to apply modern spatial interpolation tools. The
study shows that for this purpose geostatistical simulation is
particularly useful as it—in addition to the mean values—
allows determining the level of the probability of exceeding
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the adopted thresholds in the particular blocks (risk level).
In contrast to the simulation, using the ordinary Kriging
interpolation may lead to erroneous operating decisions
because of the effect of smoothing of the extreme values
demonstrated in the paper.

The property of geostatistical simulation to reproduce
in situ variability can be used to investigate the variability
in dependence of certain design options in the subsequent
material handling system. In the present case the availability
and size of blending beds were investigated as well as the
availability of an additional excavator. It has been shown that
both options can contribute significantly to the reduction of
variability in CV. In addition a required stock-pile size could
be defined that ensures a continuous in-spec delivery of coal
to the customer.
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mining—Kohlenqualitätsmanagement (germ.),” inDer Braunk-
ohlentagebau, pp. 409–426, Springer, Berlin, Germany, 2009.

[9] B. Zimmer, “Development of a new on-line coal quality
management system in a lignite mine in Serbia,” in Con-
tinuous Surface Mining, Latest Development in Mine Plan-
ning, Equipment and Environmental Protection: Proceedings
of 10th International Symposium Continuous Surface Mining,

13–15 September 2010, C. Drebenstedt, Ed., pp. 290–302, Tech-
nische Universitat Bergakademie Freiberg, Freiberg, Germany,
2010.

[10] W. Naworyta, “Variability analysis of lignite deposit parameters
for output quality control,”Mineral Resources Management, vol.
24, no. 2–4, pp. 97–110, 2008 (Polish).

[11] W. Naworyta and J. Benndorf, “Accuracy assessment of geosta-
tisticalmodelling methods of mineral deposits for the purpose
of their future exploitation—based on one lignite deposit,”
Mineral Resources Management, vol. 28, no. 1, pp. 77–101, 2012
(Polish).

[12] J. Benndorf, “Application of efficient methods of conditional
simulation for optimising coal blending strategies in large
continuous open pit mining operations,” International Journal
of Coal Geology, vol. 112, pp. 141–153, 2013.

[13] N. Remy, A. Boucher, and J. Wu, Applied Geostatistics with S-
GeMS, Cambridge University Press, Cambridge, UK, 2009.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


