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Abstract

Deep, model based reinforcement learning has shown state of the art, human-exceeding performance
in many challenging domains. Low sample efficiency and limited exploration remain however as
leading obstacles in the field. In this work, we incorporate epistemic uncertainty into planning for
better exploration. We develop a low-cost framework for estimating and computing the uncertainty
as it propagates in planning with a learned model. We propose a new method, planning for ex-
ploration, that utilizes the propagated uncertainty for inference of the best action for exploration
in real time, to achieve exploration that is informed, sequential over multiple time steps and acts
with respect to uncertainty in decisions that are multiple steps into the future (deep exploration).
To evaluate our method with the state of the art algorithm MuZero, we incorporate different un-
certainty estimation mechanisms, modify the Monte-Carlo tree search planning used by MuZero
to incorporate our developed framework, and overcome challenges associated with learning from
off-policy, exploratory trajectories with an algorithm that learns from on-policy targets. Our re-
sults demonstrate that planning for exploration is able to achieve effective deep exploration even
when deployed with an algorithm that learns from on-policy targets, and using standard, scalable
uncertainty estimation mechanisms. We further provide an ablation study that illustrates that the
methodology we propose for on-policy target generation from exploratory trajectories is effective
at alleviating averse effects of training with trajectories that have not been sampled from an ex-
plotiatory policy. We provide full access to our implementation and our algorithmic contributions
through GitHub.
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Chapter 1

Introduction

In February this year (2022), one of the first successful deployments of a reinforcement learning
(RL) algorithm has been achieved by MuZero [1], [2], reaching state of the art video compression
on YouTube videos [3] and signifying a momentous milestone in RL. MuZero is the latest in a
line of deep model-based RL (DMBRL) algorithms developed by DeepMind, utilizing a model for
planning and accomplishing a series of breakthroughs in the field. Starting with an approach that
was tailored specifically for the game of Go [4], [5] this line of work has been able to generalize
and achieve superhuman performance in other games such as Chess and Atari, while retaining the
same performance as the specifically-tailored algorithm in Go [6], with MuZero. These milestones
illustrated RL’s monumental capacity for learning effective behavior policies in complex domains,
exceeding the performance of the best human experts in those fields. One of the main leaps
introduced with MuZero to this line of work is that it is not only a general algorithm in the sense
that it is not tailored to any specific domain, but it is also model-learning - rather than requiring a
model of the environment (the rules of the game of Go, for example) in order to be able to conduct
planning, MuZero learns an abstraction of the environment’s dynamics by itself. Even with this
additional challenge of learning a useful representation of the environment’s dynamics, MuZero is
able to achieve state of the art performance in all previously mentioned domains and many others.
While able to achieve state of the art performance in extremely challenging domains, the exploration
approach that is used by this family of algorithms is rudimentary, uninformed random exploration.

Effective, informed exploration is crucial in many problem settings [7]–[9]. Specifically, in any
task where state-action pairs that are part of the optimal policy lie far from the agent’s starting
state, and are not lead to with a path of "breadcrumb" rewards, the agent cannot be expected
to learn the optimal policy from the execution of random exploration, without executing a large
number of interactions with the environment. The number of interactions with the environment
required to randomly find a far reward can grow as fast as exponentially with the length of the path
to the reward [7], which is extremely sample inefficient. The current state of the art in exploration
that is informed both locally as well as over multiple time steps (so-called deep exploration) revolves
around utilizing epistemic uncertainty to drive exploration into previously-unexplored areas of the
environment’s state-action space or the learner’s parameters’ space [8], [10]. Epistemic uncertainty
refers to uncertainty that is sourced in lack of information [11]. It is usually considered side by
side with aleatoric uncertainty, which refers to uncertainty sourced in stochasticity inherent to the
system. A standard example is the toss of a die - if we have tossed a die a large number of times and
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we observe it to be fair (rather-evenly-divided number of occurrences of each outcome), it is standard
to model the die toss using probability theory as a random variable from a uniform distribution.
This modelled stochasticity (or predictive-uncertainty about the die’s outcome), inherent to the
toss of a die, is referred to as aleatoric uncertainty. If we have never tossed this die before however,
we do not know - is the die fair? Is it biased? This uncertainty, that can be considered as
separate from the stochasticity inherent to the toss of the die, and is sourced specifically from
our lack of experiences tossing the die, is referred to as epistemic uncertainty. MuZero possesses
a wide range of function approximators in which epistemic uncertainty can be estimated. First,
due to the abstracted nature of the model learned by MuZero, when planning with the model
MuZero can simulate states that are not grounded in the actual reality of the environment, thus
leading to unreliable estimates in the planning. These estimates can further be expected to grow
increasingly unreliable with the depth of a planning trajectory as the uncertainty propagates through
the planning tree. Additionally, this source of uncertainty can be expected to propagate directly
into the other predictors used by MuZero, namely the reward and value functions, predicting the
rewards expected from the environment in transitioning between the abstracted states and the
values of those states. This rich bed of epistemic uncertainty sources in planning provides a unique
opportunity for demonstrating the potential of harnessing epistemic uncertainty in planning to
achieve advanced, informed exploration, as well as more informed planning in general. We explore
additional possibilities for harnessing epistemic uncertainty in planning in the future work section.

In order to harness the different sources of epistemic uncertainty taking part in planning, the
first contribution of this work is a framework to efficiently compute approximations of the prop-
agated uncertainty, first forward as uncertainty in state influences uncertainty in reward, value
and future state predictions, and then back as later planning predictions improve earlier planning
predictions. In order to achieve that, a method for quantifying local uncertainty estimates must
first be chosen. Methods for quantifying uncertainty, and specifically epistemic uncertainty, have
been an active field of research in machine learning (ML) in general and RL specifically for some
time [11], aiming to develop reliable, effective, theoretically supported and computationally efficient
uncertainty measures [12]–[15], for the purposes of safety [16], [17], reliability [18], [19], as well as
effective exploration [7], [8]. While there is yet to exist one standard framework for formulating un-
certainty from different sources, the classic approach remains probabilistic modelling and Bayesian
inference, and quantifying the uncertainty as either the variance or the entropy in a probability
distribution. In this work we choose the classic probabilistic approach to demonstrate that even
with straightforward modelling choices, that are associated with very low additional computational
cost, the uncertainty can be incorporated sufficiently to achieve efficient informed exploration. In
addition, the framework that we propose for incorporating the uncertainty is not limited to en-
abling informed exploration, and presents an opportunity for harnessing uncertainty in planning
for additional purposes, such as pessimistic exploitation in offline RL [20]. We discuss additional
possible uses for the incorporated uncertainty in the future work chapter.

Attempting to achieve advanced exploration with MuZero poses a set of additional challenges,
due to MuZero’s training with on-policy targets. On-policy learning generally prevents an algorithm
from being able to learn from decisions that have not been taken by its exploitation policy. Following
an advanced exploration policy is prone to inducing such decisions. This effect may cause instability,
hinder learning and have other detrimental effects. With this motivation in mind, in this work we
aim to answer the following research questions:

1. Given classic probabilistic modelling of epistemic uncertainty in an otherwise deterministic
model-learning DMBRL algorithm, how does the epistemic uncertainty propagate in
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a planning tree?

2. Using this framework, how can the propagated uncertainty be utilized in planning
to achieve effective exploration in DMBRL?

3. As an additional challenge, how can the proposed methodology for exploration be
extended to on-policy training approaches as well as off-policy training?

1.1 Contributions

In order to answer the research questions listed above, as well as provide algorithmic improvements
resulting from the use of epistemic uncertainty over the chosen baseline of MuZero, our contributions
consist of the following: First, we propose a probabilistic formulation of the otherwise deterministic
planning phase. This formulation allows for quantifying of epistemic uncertainty, as well as devel-
opment of update rules to approximate the propagation of the uncertainty from different sources
in planning in deterministic model-learning DMBRL. We proceed to introduce modifications to the
classic Monte-Carlo tree search (MCTS) approach to allow for propagation of the epistemic uncer-
tainty in MCTS according to the developed uncertainty propagation update rules. Next, we develop
a new approach for utilizing the propagated epistemic uncertainty in planning, coined planning to
explore. Our method aims to achieve exploration that is directed (making informed decisions to-
wards action that are associated with higher relevant-information gain), consistent (directed over
multiple time steps) and farsighted (informed with uncertainty associated with future decisions
as well as local decisions). In this work, we refer to exploration that achieves all three as deep
exploration. Our method is tailored around our use case of MuZero, but is extendable to other
planning algorithms. To enable MuZero, which learns from on-policy targets, to learn from the
off-policy exploratory decisions executed by our method, we propose approaches for generating on-
policy targets from off-policy exploratory trajectories. Lastly, we provide an empirical evaluation
of our method. We evaluate our method against two different tasks that were chosen explicitly as
hard-exploration tasks - the classic Mountain Car [21] exploration benchmark, as well as a toy en-
vironment developed specifically to evaluate the agent’s capacity for farsighted directed exploration
over time. In these tasks we evaluate the agent against two different reward schemes, to illustrate
the challenges that can arise from learning from exploratory decisions in different settings, and
with two different epistemic uncertainty estimation mechanisms, to evaluate the soundness of the
method as well as its resilience to less reliable uncertainty estimates. In addition, we conduct an
ablation study to evaluate the effect of the different approaches we propose for generating on-policy
targets from exploratory trajectories.

The results of the evaluation demonstrate that efficient exploration that achieves all three targets
can be achieved by harnessing epistemic uncertainty in planning with our method. The ablation
study we conduct illustrates the beneficial effects of the different approaches developed for learning
from off-policy exploratory trajectories in an algorithm that is trained with on-policy targets. An
open source, documented implementation of our method - incorporated into MuZero - is provided
at [22], based on the MuZero implementation by [23].

1.2 Outline

The rest of the thesis paper is organized as follows:
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1. Chapter 2 provides background to RL, deep RL, model-based RL and exploration in RL
(section 2.2), MCTS (section 2.3), and MuZero (section 2.4). Last, a brief survey of approaches
for modelling and quantifying uncertainty in deep learning is provided, along with an overview
of the specific uncertainty estimation methods used in this work (section 2.5).

2. Chapter 3 details the contributions of this work. First, a probabilistic formulation of the
algorithm’s deterministic planning phase is described, to enable modelling the uncertainty
according to standard approaches (section 3.1). The probabilistic formulation is followed
by our proposed methodology for efficiently propagating uncertainty inside planning trees
(section 3.2). The propagation methodology is followed by proposed adaptations to MCTS
to incorporate the propagation of the uncertainty (section 3.3). Next, we present our method
for harnessing the propagated uncertainty for informed exploration, planning for exploration
(section 3.4). Finally, we propose different approaches for generating on-policy targets that
are used to train MuZero, from the off-policy exploratory trajectories executed by the planning
for exploration method (section 3.5).

3. Chapter 4 describes the experimental setup used in the evaluation. The chapter opens with
a with a description of how the uncertainty estimation mechanisms were incorporated into
MuZero’s infrastructure 4.1). We follow with a description of the agents used to evaluate
the method, as well as the ablation study conducted to evaluate the effect of learning from
different targets (section 4.2). Next, we describe the tasks used to evaluate our approach, as
well as the specifics of the reward schemes chosen (section 4.3). Last, we discuss the evaluation
metrics, statistical significance and hyper-parameter optimization used (sections 4.4 and 4.5).

4. Chapter 5 presents the results achieved by our method employed with MuZero, demonstrating
the capacity of the agent for deep exploration (section 5.1). Next, results evaluating the
agent against the same tasks with a different reward scheme are provided, illustrating the
challenges of learning stably from off-policy, exploratory trajectories, as well as the agent’s
retained-capacity to solve even such tasks (section 5.2). Last, we present the results of the
ablation study, demonstrating the gain from incorporating the modified targets proposed in
our work (section 5.3).

5. Chapter 6 summarizes and compares to related work in the field of utilizing uncertainty in
MBRL (section 6.1), as well as a discussion of the strengths and limitations expected from our
method (section 6.2). The related work section describes other approaches for model-based
reinforcement learning under uncertainty (section 6.1.1), including an approach that explicitly
plans to explore (section 6.1.2). Work on planning with uncertainty in MCTS (section 6.1.3),
and work utilizing epistemic uncertainty for exploration (section 6.1.4). Finally, work on
on-policy training with experiences from off-policy trajectories (section 6.1.5) is summarized.

6. Chapter 7 concludes the paper, and discusses future work.



Chapter 2

Background

In this chapter we describe background that is relevant for our work in incorporating epistemic
uncertainty into planning, to drive decision making that optimizes for efficient deep exploration.
This chapter starts by describing relevant notation for decision making problems and planning. It
follows by introducing RL, including specific concepts in RL that are relevant to our work, such as
value functions, deep RL, MBRL and exploration in RL. A description of MCTS follows, focusing on
the variation of MCTS used by MuZero as well as trajectory selection heuristics. Next, the MuZero
algorithm is described in detail. Finally, a discussion of uncertainty definition, quantification and
estimation is provided, including a description of the two uncertainty estimation approaches used
in our work: ensembles and visitation counting.

2.1 Formulating decision making and planning problems

It is standard to formulate decision making and planning problems using a Markov Decision Process
(MDP) [24]. An MDP M is defined as a tuple (S,A, ρ, T,R). S denotes a state space, A an
action space and ρ a probability distribution over starting states. T : S × A → P (S) denotes a
possibly-stochastic transition function, where P (S) denotes a probability distribution over states
S. R : S × A × S → P (R) a possibly-stochastic reward function. At each (discrete) time-step t,
an agent operating in M observes a state st ∈ S, executes an action at ∈ A and receives reward
rt ∼ R(st, at, s

′
t) ∈ R. The agent than transitions according to the transition function T to a new

state st+1 ∼ T (st, at).
In the setting of decision problems, solving an MDP, whether by planning with a model of

the transition and reward functions or by learning from interactions, refers to finding a policy
π : S → P (A) for choosing actions at in states st, that optimizes with respect to some objective
J [π]. The standard objective to optimize for is the expected cumulative reward over time or expected
episodic return, with respect to an horizon H:

J [π] = Eπ

[ H∑
t=0

γtrt

]
:= E

[ H∑
t=0

γtrt|rt ∼ R(st, at), at ∼ π(st), st ∼ T (st−1, at−1), s0 ∼ ρ

]
Where we the use notation Eπ[·] to denote the expectation with respect to a policy and the dynamics
of the environment: rt ∼ R(st, at), st ∼ T (st−1, at−1), at−1 ∼ π(st−1), s0 ∼ ρ. An important
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component of objective definition is the discount factor γ ∈ (0, 1]. When γ → 0, the induced
optimization is completely short-sighted, and only takes into account immediate rewards. When
γ = 1, the optimization is completely far-sighted, which in infinite horizon problems can prevent
convergence. As a result, it is standard to solve the optimization problem under choices of γ in the
range: 0.95 ≤ γ < 1.

In some instances, it is useful to consider an extended formulation of this setting, using partially-
observable MDPs (POMDPs) [25]. In a POMDP M = (S,A, ρ, T,R,Ω, O), the agent does not
directly receive the state information st ∈ S when transitioning to step t, but instead receives an
observation ot ∈ Ω. O : S → P (Ω) specifies the probability of receiving the observation ot ∈ Ω at
state st.

2.2 Reinforcement Learning

Reinforcement learning (RL) we consider an agent g that operates in an environment M formulated
as an MDP. In RL, the agent generally aims to learn a policy π that optimizes the objective J [π]
from interactions. There are different RL approaches to learning such a policy. Some rely on
searching the policy space directly [26], while others rely on learning value functions that induce
an implicit optimal policy. In the following sections we will describe value functions in more detail.

2.2.1 The Value function and Q-value function
The value function V π : S → R, evaluates the expected value V π(st) of being in state st and
following policy π from time step t onward:

V π(st) = Eπ

[ H∑
k=t

γk−trk

]
= Eπ

[
rt + γV π(st+1)

]
Another value function that is often used in RL is the Q-function Q : S × A → R. The Q

function describes the value of executing each possible action in each state, following the policy π
from that point forward:

Qπ(st, at) = Eπ

[
rt + γQπ(st+1, at+1)

]
Where sπt+1 denotes the state arrived at from executing action at at state st, and aπt+1 the action
to execute following policy π at state st+1. The optimal Q function Qπ∗

= Q∗ provides an implicit
policy as well, and is defined as:

Q∗(st, at) = max
at

Q(st, at) = Eπ

[
rt + γmax

at∈A
Q∗(st+1, at+1)

]
The optimal policy π∗ can be immediately extracted from Q∗ as follows:

π∗(st) = argmax
π

Eπ

[
rt + γQ∗(st+1, at+1)

]
Many approaches to RL focus on learning an optimal-value function approximation, or an optimal-Q
function approximation, in an attempt to directly improve the implicitly induced policy. Learning
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these functions in environments with large or continuous state spaces require advanced function
approximation techniques, the most standard of which has become artificial neural networks (ANNs,
or NNs for short).

2.2.2 Deep learning and deep reinforcement learning
Deep learning is the term used in ML for learning with deep NNs (DNNs) [27]. In deep reinforcement
learning (DRL), the agent employs DNNs as function approximators. One of the first successful
incorporations of DNNs into RL was the deep Q-networks (DQN) algorithm [28], using a DNN to
learn the Q values of an optimal policy. Other approaches have been proposed since, learning a range
of functions, from the value and policy functions [29] to a dynamics model of the environment [30].

2.2.3 Model based reinforcement learning
Model based RL (MBRL) and deep MBRL (DMBRL) assume the agent has access to a model
of the dynamics of the environment: the transition function with or without the reward function.
The model is either directly provided to the agent or learned by the agent, and is not generally
guaranteed to model the environment exactly. Once the agent has access to a model, it can utilize
planning. The term planning is used to describe the process of a series of simulations of state
transitions and received rewards. The planning phase is often represented as a tree, rooted at
the state the agent is in st, where each node k represents an action at+k and the transition (or
estimated transition, or distribution over transitions) associated with this action trajectory at:t+k

and starting state st, or starting observation ot. The purpose of the planning phase is often to
identify the best action or sequence of actions to execute at the state the agent is currently in, as
well as improve the agent’s local estimates of the state’s value, or Q-value. In settings where the
problem’s planning tree is finite and not too large, the optimization problem of finding the optimal
action can be solved using exhaustive search of the planning tree. In general however, the complete
planning tree is exponential in the planning horizon H and thus even for finite horizons H < ∞,
exhaustive search is hardly ever tractable. In such cases other search methods are used for planning.
A dominant tree-search method used in DMBRL is the Monte-Carlo tree search (MCTS) family of
algorithms [31].

2.2.4 Exploration in reinforcement learning
In order to find the rewards that are part of the optimal policy, the agent must explore the envi-
ronment. The faster those rewards are found, the faster the agent can be expected to learn the
optimal policy. The most basic of exploration approaches is epsilon-greedy. In epsilon-greedy, with
probability 1 − ϵ, the agent follows its exploitation policy greedily. The exploitation policy is the
best policy currently learned by the agent, expected to lead to the highest expected discounted
episodic return. With probability ϵ the agent explores the environment by sampling an action with
uniform probability over the action space. This form of exploration, while very stable around the
exploitation policy, is obviously very inefficient in terms of exploring the environment, and in many
environments is insufficient to reliably learn effective policies in reasonable time [7].

The current standard for state of the art exploration attempts to achieve three main targets:
first, that the exploration is locally directed towards regions of the state-action space that appear
attractive to explore. Second, that it is directed over multiple sequential time steps, or consistent,
enabling the agent to direct itself towards regions that are more than one action away. Last, that
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the exploration is farsighted, in the sense that the local directed decisions take into account infor-
mation from future transitions. Following terminology in other literature, we call such exploration
deep exploration. The current standard in methods that aim to achieve such exploration rely on
quantifying local estimates of epistemic uncertainty, and propagating them in time. One approach
to achieve uncertainty propagation in time propagates the uncertainty through the value function
with intrinsic reward [32]. Another approach estimates an upper bound on the propagated uncer-
tainty from local uncertainty estimates, with the uncertainty-Bellman-equation (UBE) exploration
method [8]. Both of those methods essentially aim to learn the uncertainty associated with a certain
state or value.

2.3 Monte-Carlo Tree Search

The general MCTS algorithm is a tree-search algorithm, designed to estimate the best local action
to execute in a certain state, using planning [31]. Due to the properties of the algorithm, it can be
extended to provide a trajectory of actions towards a goal, as well as better value estimates, both
of which may be relevant in RL. In the setting of MuZero, MCTS is used to estimate a distribution
over actions to execute at every time step, as well as a Q-value prediction for every action. The
quality or reliability of the Q-value estimates is expected to be highest for the Q-value associated
with the best action: the action with respect to the MCTS has conducted the most planning. The
best action is the action that maximises the objective the algorithm is searching with respect to. In
our work we rely on the property that this objective does not have to be an exploitation policy, but
can optimise for different targets: for example, explicitly for an exploration objective. In standard
MCTS, when used in RL, the MCTS algorithm is provided access to a model of the transition
function and the reward function, as well as current state to plan from, which we denote as s0 ≡ st
for simplicity of notation. k denotes the index of a node in the MCTS planning tree, associated
with a action trajectory a0:k. sk denotes the state, or state estimate associated with node k. MCTS
approximates the values (or Q values) by iterating a four step process: 1. Trajectory-selection.
2. Leaf-node expansion. 3. Monte-Carlo (MC) simulations. 4. Backup. Each step may be
governed by a separate policy.

Selection
Each iteration of MCTS starts by searching for a not-fully-expanded node k, representing the
expected optimal trajectory of actions a0:k to execute from state s0. A not-fully-expanded node is
a node in the tree that does not have children associated with each one of the actions in the action
space a ∈ A. The trajectory-selection step starts at the root k = 0 node. It proceeds by evaluating
quantities associated with the children of the node (for example, approximated value and number
of times that node has been visited in the tree), and choosing the child with the optimal function
of the quantity, according to a trajectory-selection policy πselection. A common trajectory-selection
heuristic is UCT:

πselection(sk) = argmax
a

Q(sk, a) + 2Cp

√
2 log nk

nk+1

where nk is the number of times the current node has been visited, nk+1 is the number of times
each child node k + 1 has been visited, and Cp is a constant [31]. The selection step then repeats
from the child chosen on, until a not-fully-expanded node is selected.
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Expansion
Once a not-fully-expanded node k has been selected, MCTS expands the node by choosing an action
ak according to some expansion-policy πexpansion, and adding the node k+1 that is associated with
this transition according to the MCTS’ model to the tree. Once the node k + 1 has been added to
the tree MCTS requires a local approximation of the value of this node V (sk+1). In vanilla MCTS,
MC simulations are used to arrive at such an approximation.

Simulation
The MC-simulation step simulates the trajectory sk+1:k+τ from state sk+1 following some sampling-
policy πsampling, which is usually stochastic, up until a terminal state sτ , and saves the simu-
lated discounted return Rπ

k:τ =
∑i=k+τ

i=k+1 γ
i−k−1ri. This process repeats N times for a finite, pre-

specified hyper-parameter N . The expected return is approximated as the average of all returns
1
N

∑N
i Rπ

k:τ (i) ≡ Rt+k and is saved in the node’s statistics. In other variations of MCTS, other
approaches for approximating the value the newly-added node k+1 are used. For example, MuZero
uses a learned reward function r(sk, ak) and value function V (sk+1) to approximate the values of
nodes, instead of MC simulations.

Backup
Following the simulation step, the new approximation is back-propagated up along the trajectory
back to the root, in order to better estimate the value of the state represented by the root. In
MuZero, where a local reward function and value function are used, the backup process is done
as follows: At each node i in reverse along the action trajectory a0:k, two quantities are updated.
The first, is the sum ci of values of the children of node i that have been back-propagated in all
iterations so far. The second is the actual value vi estimate of node i, estimated as the sum of the
reward leading to this nodes and the discounted average value of the children:

ci ← ci + vi+1

vi ← ri + γ
ci
n

n denotes the number of times that node has been visited in the planning tree, and thus ci
n provides

an approximation of the value of following an optimal (or adaptively improving) policy from node
i.

Termination
After L nodes have been expanded, or some other pre-specified computation resource consumed, the
algorithm terminates. Usually this is followed by sampling an action to execute in the environment
from an action-selection policy at ∼ πact. Common heuristics used for action selection are the action
associated with the largest number of visitations, or the action associated with the largest value
estimate, or sampling approaches based on distributions built proportionally from these quantities.

2.3.1 Trajectory selection heuristics & Upper Confidence Bound
The heuristic used for trajectory selection is a crucial component in MCTS. The directions in
which the MCTS plans are the (only) directions in which the agent will be provided with improved



CHAPTER 2. BACKGROUND 14

(or even any) estimations for the value of actions (or states). Further, this trajectory selection
policy is the policy whose value the MCTS tree approximates: V MCTS(st) ≈ V πselection(st). If
the MCTS plans in directions that do not maximize the objective at hand, the resulting action-
selection at the root cannot be expected to lead to optimal actions with respect to this objective.
The most common objective for MCTS in RL is the standard exploitation objective: optimize for
the policy that is associated with the highest expected discounted episodic return. To plan robustly
with respect to this objective, many heuristics have been proposed for trajectory selection. These
heuristics generally aim to achieve two goals at the same time: first, exploration in the planning
tree, so that the estimates found by the tree are reliable. Second, the actual exploitatory objective
of maximized discounted episodic return. One of the dominant heuristics for trajectory selection is
Upper Confidence Bound (UCB) [33] from the realm of multi-armed bandits, or in MCTS Upper
Confidence Bound for Trees (UCT) [34]. This heuristic proposes to choose the next node in the
trajectory during trajectory-selection based on the sum of two quantities: the value vk of the child
node k, and a tree-exploration bonus, incentivizing the trajectory-selection policy to explore state-
actions that have not been chosen often in the tree, based on the number of visitations nk to each
child node k, as well as the number of visitations to the parent nk−1. It is important to note that
this exploration is not in the environment, but entirely in the planning tree, and its purpose is to
improve the approximations of the values of the nodes in the planning tree. The UCT score UCTk

of node k is computed as follows [31]:

UCTk = vk + cuct

√
2 lnnk−1

nk

cuct >= 0 is a constant which provides control over the relative weight of the tree-exploration bonus
in the expression.

2.4 MuZero

MuZero [2] is a state of the art model-learning DMBRL algorithm, using MCTS for planning with
the learned model. In this section we first describe the different approximators learned by MuZero,
followed by a description of the methodology with which they are used in action selection in the
environment, and finally we describe the training process of the algorithm, all three components
modified in our work, to achieve informed, deep & directed exploration.

2.4.1 Modeling
In MuZero, the agent learns five different functions over the POMDP M(S,A, ρ, T,R,Ω, O):

1. A representation function g : Ω→ Ŝ. The function takes an observation ot ∈ Ω, and produces
a latent state representation ŝt for the observation:

g(o) = ŝ0.

ŝ ∈ Ŝ represents not the real state st, but rather an internal abstraction learned by the
agent, based on the observation o. Ŝ represents the implicitly-abstracted state-space. It is
not generally assumed that the representation Ŝ learned by the agent exactly matches the
state space of the environment, or a complete abstraction. Instead, this latent representation
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is only trained to be useful for the algorithm in planning, with respect to maximizing the
expected episodic return.

2. A dynamics function f : Ŝ × A → Ŝ. The function is implemented using a recurrent NN
(RNN), such as an LSTM [35]. The RNN at planning step k takes as the recurrence input a
current-state representation ŝk ∈ Ŝ and as regular input an action chosen at this planning-
state ak ∈ A, and outputs the expected latent state ŝk+1:

f(ŝk, ak) = ŝk+1

3. An expected-reward function r : Ŝ×A→ R. The expected reward function learns the expected
reward for executing the action ak in abstracted-state ŝk:

r(ŝk, ak) ≈ E[R(sk, ak)]

Note that as ŝk does not necessarily represent well a real state sk, this function approximation
may become very unreliable, especially the deeper index k is in the planning phase.

4. A policy function π : Ŝ → P (A), learning to associate a probability with each legal action
ak ∈ A at internal state ŝk, to maximize the expected episodic return for acting according to
this policy in the environment.

5. A value function v : Ŝ → R. The value function learns the values of latent states ŝk ∈ Ŝ
following a policy π: v(ŝk) ≈ V π(ŝk) ≈ V π(sk), in planning steps k. The value function is
used in the planning with MCTS to replace the MC simulations step.

2.4.2 Acting
At each environment step t, the agent executes a planning phase. The planning phase uses a variant
of the MCTS algorithm to plan the next action to choose in the environment at, and to create a
new, improved target vtargetst to later use to train the value function v(st). The agent executes
the action at chosen based on the planning phase, receives a reward rt and transitions to a new
state st+1. The action at is chosen probabilistically with respect to visitation counts of the children
of the root of the planning tree executed at time step t. The agent stores the experience in an
experience replay-buffer memory, and repeats the process for the next environment step, t + 1.
Every N steps, the agent is trained on a batch of transitions-trajectories from its replay-buffer.
The MCTS variant used by MuZero uses the policy π as its expansion policy. The MC simulation
step for not-fully-expanded node k at the end of a planning trajectory a0:k is replaced with a
direct approximation from the value function v(ŝk). The selection step is done using a variant of
UCT . The action selection in the environment is done by sampling an action from a probability
distribution constructed from the number of visitations to each child of the root in the planning
tree. During evaluation, the action sampling can be replaced by deterministically choosing the
action associated with the highest visitation count.

2.4.3 Training
The replay buffer generates targets associated with each transition in the agent’s history. The
target value vtargett for the transition experienced at time t is the sum of the attained n discounted
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rewards from this transition t forward, and the discounted final approximated value at t+ n:

vtargett =

n−1∑
i=0

γirt+i + γnvmcts(ŝt+n)

The value approximation vmcts(ŝt+n) used in the target generation is the value approximated by
the root of the tree planned at step t + n, planning from the state representation ŝt+n = g(ot+n).
The targets for the reward function r(ŝt) are the observed rewards:

rtargett = rt

MuZero uses categorical representation of value and reward [2]. For this reason, the loss that is used
to train the value and reward function is a cross-entropy loss. The targets for the policy network
are the visitation counts of the children of the root of the tree planned at each step t. The polcy
network is trained using a softmax loss as well. During learning, a batch of h-length trajectories is
sampled randomly from the replay buffer based on priority. The priority is computed based on the
error between the prediction of the value function and the computed value-target.

2.5 Epistemic Predictive Uncertainty In Deep Learning

Uncertainty is at the very heart of many decision making processes. Specifically, predictive uncer-
tainty, the uncertainty associated with a model’s prediction, is a very useful quantity when using the
model’s predictions for decision making, for example to decide whether the prediction is sufficiently
reliable to act based on. Defining, representing and distinguishing sources of predictive uncertainty
is a live field of research, both in general, as well in ML and DL specifically. There is no general
consensus in the field as to how exactly uncertainty should be defined, how its sources should be cat-
egorized or distinguished, and how it should be modelled or quantified [11]. One standard approach
to categorizing sources of predictive uncertainty is the division into two sources, termed aleatoric
uncertainty and epistemic uncertainty. Aleatoric uncertainty refers to any uncertainty that
arrives from internal stochasticity of the system, while epistemic refers to uncertainty that is caused
by lack of knowledge. As an example, let us consider the toss of a die. Without using precise physics
including exact initial conditions and much computation, it is standard to model the outcome of a
toss of a fair die with a uniform probability distribution: P (Y = yi) =

1
N , for yi any number on

the die (the sample space Ω), Y the random variable representing the die, and N the number of
faces of the die. The uncertainty about the prediction of the outcome of a die toss is formulated
inside the distribution, and can be quantified using different measures: for example, it is standard
to use both variance V ar[Y ] as well as entropy H(Y ) = −

∑N
i=1 P (Y = yi)logP (Y = yi). However,

regardless of how we choose to quantify the uncertainty, this uncertainty does not represent lack
of evidence about the die - at least, not evidence that we expect to gain from additional die tosses.
Instead, this uncertainty exists simply due to inherent stochasticity of the system, or inherent to
how we model the system.

We can consider an additional example of attempting to encapsulate the uncertainty about the
predictions of a die toss however. In this setting, we are not sure that the die is fair. All we are sure
about is that we can model it as random: P (Y = y) = ρy, 0 < ρy < 1,∀y ∈ Ω,

∑
y∈Ω ρy = 1. The

exact distribution however is unknown. In this setting, we can speak about epistemic uncertainty:
while we will never be sure about the outcome of the die, we may be sure (or increasingly sure)
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about the exact distribution of the outcomes, with increased number of experiences of tossing the
die. This increase certainty is the motivation for the idea of epistemic (un)certainty. In general, both
sources of uncertainty are relevant for decision making. Aleatoric uncertainty helps us to estimate
the chance of possible outcomes, and epistemic uncertainty helps us to estimate confidence in our
prediction of those outcomes. In this work we use this categorization of sources of uncertainty, and
specifically we focus on epistemic uncertainty, in order to drive better decision making and better
planning with respect to reliability of predictions, as a function of amount of experiences.

2.5.1 Modelling & quantifying epistemic predictive uncertainty
Approaches to the modelling of epistemic uncertainty range from distributional representations,
the most common of which is perhaps Bayesian inference, to set based approaches [36], as well as
in-between approaches such as evidence theory [37]. Following previous work [38], [39], we choose
to quantify the epistemic predictive uncertainty as the variance in a distribution over predictive
means µ, with respect to a specific data point x, and learned from sampled data D:

V ar[µ|x,D]

To clarify which variables is viewed as random and which is viewed as deterministic we use bold µ
to denote random variables and regular font x,D to denote deterministic variables. We motivate
the choice to predict means with the argument that the mean averages the aleatoric uncertainty
out of the distribution. The remaining distribution over means is varied (uncertain) with respect
to the variation between the different predictive means that can be learned from the data, and the
probability associated with each by the distribution p(µ|x,D). The more interactions the learner
has with certain data points (x, y) ∈ D, the more reliable the prediction µ(x,D) becomes, and
thus the learned distribution p(µ|x,D) for the specific x is expected to become more concentrated
around the prediction of expected-mean E[µ|x,D], which in turn is expected to result shrinking
of the variance in the distribution p(µ|x,D). Because this approach is essentially modular from
how this distribution is learned (Bayesian approaches, frequentist approaches, and even possibly
others), we do not specify any specific dependence on parameters θ. We choose to take the variance
of the distribution p(µ|x,D), instead of possible alternatives such as entropy, for two reasons. First,
because the variance is already in the same units of the prediction (or more specifically, the standard
deviation

√
V ar[µ|x,D] is in the same units), which is useful for our purposes, as described in more

detail in chapter 3. Second, because propagating variance is a standard approach for propagating
uncertainty, which enables us to propagate the epistemic uncertainty in MuZero’s planning using
standard tools of probability theory.

This approach is by no means the only approach for quantifying epistemic uncertainty, both
in general, as well as specifically when using a distribution of predictive means p(µ|x,D). As an
example, an alternative would be to view D as a random variable, and to model µ(D, x) as a function
of each possible realization of the data D ∼D. Taking the variance in this distribution V ar[µ(D, x)]
will yield a slightly different quantity, that will relate to the confidence in the prediction of mean
with respect to the representability of the data D ∼ D. Such a quantity can also be said to be
quantifying uncertainty that is epistemic. However, estimating the variance in such a distribution
V ar[µ(D, x)] will likely require to have repeated samples of data D ∼D. Since in this setting our
main target is to improve sample-efficiency, we do not choose this approach.
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2.5.2 Estimating epistemic predictive uncertainty in deep learning
The variance in a distribution of means can be estimated in different ways [39]. One standard
approach is to learn an ensemble of mean estimators over different bootstraps of the same dataset [7],
and then compute the variance in a prediction as the variance between the different predictors. This
approach however is more in line with the formulation of epistemic uncertainty as µ(x,D). Another
approach is to train an ensemble of estimators over the same dataset, but drive that their predictions
are varied on untrained inputs [40], and compute the variance in the predictive distribution in the
same manner. These and similar approaches [13], [41] are categorized as ensembling methods.
Other approaches for epistemic uncertainty estimation range from standard Bayesian inference
or Bayesian variational inference [14], [15], [42]–[45], to more evidential approaches such as state-
visitation counting and pseudo counting [46],[47], exploiting properties of randomly initialized DNNs
with Random Network Distillation [48], and others [38], [49]–[51].

Ensembling methods have been shown to be scalable, simple to operate, and effective at iden-
tifying out-of-distribution samples, and are a natural choice for driving exploration in the face of
the unknown in RL [52]. Ensembles are not known for being reliable variance estimators however,
which is the quantity we are interested in in this work. A simple and reliable epistemic uncertainty
estimation method that is available in low dimensional settings is sample-counting (or state-action-
visitation counting in RL). To evaluate the soundness of our method, we employ visitation counting.
To further evaluate the resilience of our method to unreliable but scalable uncertainty estimation,
we employ ensembles as well. Ensembles and visitation-counting are covered in more detail in the
following sections.

Visitation count based epistemic uncertainty estimation

Counting visitations to state-action pairs can serve as a direct and reliable measure for epistemic
uncertainty in RL. We will motivate this estimate as a direct estimate of the variance in a prediction
of mean, using the example of variance in the prediction of mean reward for a transition s, a:

V ar[
1

n

n∑
i=1

ris,a]

Where ris,a ∼ R(s, a, ·) denotes rewards encountered in transitions from state action pair (s, a),
and n is the number of samples of ris,a in the training set, and 1

n

∑n
i=1 r

i
s,a is the empirical mean

which approximates the real mean. If the sampled rewards ris,a, i ∈ {1, ..., n} are assumed to be
i.i.d sampled according to a distribution rs,a ∼ R(s, a, ·) = Rs,a(µ, σ

2), with constant mean µ and
constant variance σ2, the variance in the prediction of mean can be approximated as proportional
to the number of visitations n to this state action pair s, a:

V ar[
1

n

n∑
i=1

rs,a] =
1

n2

n∑
i=1

V ar[rs,a] =
n

n2
V ar[rs,a] =

σ2

n
∝ 1

n

The first transformation is based on the fact that the variance of a sum of independent variables
is the sum of the variances, and the variance of a constant a times random variable X equal the
constant squared times the variance: V ar[aX] = a2V ar[X]. The second transformation is based
on the assumption of the i.i.d. sampling of rs,a. When R(s, a, s′) = R(s′),∀s ∈ S, ∀a ∈ A, which
is very common in reward functions in RL, the visitation count can be simplified to counting only
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state visitations. Thus, as long as the assumption that the distribution with respect to s, a has
a constant mean and variance, it is reasonable to estimate the variance in mean prediction with
respect to s, a as directly proportional to visitation counting.

Ensemble variance epistemic uncertainty estimation

Ensembling methods use a set of estimators to provide more reliable predictions. This set can consist
of similar estimators (for example, a set of randomly initialized DNNs with identical architectures),
or different estimators (for example, ensembling different ML models to predict the same quantity).
When the ensemble with members i ∈ {1, . . . , N} is trained to predict means µi(x), in addition to
taking the average prediction of the ensemble 1

N

∑N
i µi(x) as a more reliable prediction of the mean

µ(x), one can take the average-squared disagreement between the different ensemble members as a
direct estimate for the variance in the mean prediction:

V ar
[
µ|x,D

]
≈ 1

N

N∑
i

(
µi(x)−

1

N

N∑
i

µi(x)

)2

Due to properties inherent to DNNs, different ensemble members have a tendency to converge to
different function approximations (different network weights), that tend to agree in the trained area
of the input space, enforced by the loss function, and arbitrarily diverge in untrained areas. At
least, this behavior is expected under limited training. This property is very useful for detecting
not-previously seen areas of the input space. This property is by no means generally guaranteed
however, and can be hamstrung in different settings. For example, when the network is trained on
an input space with mostly-constant output, such as an RL environment with 0 rewards for every
transition except the transition to the goal-state. In situations such as these the different ensemble
members may learn to predict a constant output for all inputs, and thus lose all prediction diversity,
even in unknown areas of the state space [40].

To overcome such detrimental effects, ensembles with randomized prior networks were proposed
[40]. This method pairs an individually-randomly initialized untrained DNN to every ensemble
member. The different ensemble members’ loss is modified such that instead of the classic loss:
L
(
µi(x), y

)
for µi(x) the prediction of ensemble member i over input x, and some target y, the loss

is modified to: L
(
µi(x)−cpfi(x), y

)
. fi(x) represents the (arbitrary) prediction of the prior-network

fi, and cp is a constant deciding the weight of the prior in the computation. As a result of the
modified loss, the randomized prior networks drive prediction diversity in un-encountered areas of
the state space.



Chapter 3

Planning With Epistemic
Uncertainty

In this chapter we describe our main contributions: 1) Probabilistic formulation of the determinis-
tic estimators used by MuZero, to enable quantifying and utilizing epistemic uncertainty of differ-
ent quantities used by MuZero specifically, and a use case for those often used in model-learning
DMBRL in general (section 3.1). 2) Development of practical epistemic uncertainty propagation
methodology in planning trees (section 3.2). 3) Extensions to MCTS to allow MCTS to propa-
gate uncertainty (section 3.3). 4) Our proposed method, planning for exploration, harnessing the
propagated uncertainty for effective and efficient deep exploration (section 3.4). 5) Adaptations to
MuZero’s target generation, to enable stable learning from off-policy, exploratory trajectories with
MuZero’s on-policy-targets’ learning (section 3.5).

3.1 Probabilistic model formulation

In this chapter, we are interested in developing a computable approximation for the epistemic
uncertainty, as it propagates through planning. We denote planning k steps into the future from
step t with planning-trajectories: for example, at:t+k denotes a trajectory of planned actions from
real step t to k imaginary planning steps into the future. ot denotes the observation received at step
t, based on which the planning phase is initialized and the current-state is estimated. To reduce
clutter in notation we remove the index t from the notation of planning trajectories, and instead
denote the trajectory with a0:k. In order to utilize the uncertainty measure we opted for in section
2.5.1, the variance in a probability distribution over predictive means µ, conditional on input x and
training data D:

V ar[µ|x,D]

We choose to view MuZero’s deterministic point-estimators as estimators of mean, rather than arbi-
trary point estimators. This decision is natural for two of MuZero’s predictors: the expected-reward
function r(ŝt, at) ≈ E[R(st, at)], and the value function v(ŝt) ≈ V π(st), which already predict an
expected-reward and expected-return, respectively. This choice is less obvious for the dynamics

20



CHAPTER 3. PLANNING WITH EPISTEMIC UNCERTAINTY 21

predictions f(ŝt, at) = ŝt+1, which is implicitly deterministic because the function f is a (determin-
istic) DNN. Nonetheless, we choose to model f(ŝt, at) = ŝt+1 ≈ E[st+1|st, at], as approximating an
expected-transition in the true model of the environment. This choice will enable us to propagate
the epistemic uncertainty in state through the planning using the same mathematical machinery
used for reward and value.

The propagated uncertainty through a planning trajectory a0:k of length k starting at observation
o can be formulated as the variance in the distribution p(µk|o, a0:k, D), for the distribution over
predictions µk at planning step k. In the rest of this section, we develop computable approximations
for such variance, using the variance in the local transition prediction-distribution p(µk|ak, ŝk, D).
To further reduce clutter in notation, we remove the dependence on D in the notation, as well as
the ·̂ symbol for abstracted states: sk := ŝk. All distributions considered in this chapter are learned
from data and thus have dependence on D. All states sk considered in the rest of this section are
inside the agent’s planning, and thus are all abstracted states. In addition, in the next section we
will use both the regular variance V ar[Y |X = x], which is a number, as well as the conditional
variance V ar[Y |X] [53], which is a random variable. In order to clarify which instance is which,
we introduce the notation ; to introduce conditionality on deterministic quantities. For example:
the distribution p(µ;x,D) is the distribution of µ conditional on deterministic variables x,D. In
contrast, the distribution p(sk; ak|sk−1) is the distribution of the random variable sk; ak conditional
on the random variable sk−1. To propagate the uncertainty in reward, value and state-abstraction
prediction through the planning, we consider the following four distributions:

1. p(sk; a0:k−1, o) represents the probability distribution over predicted states sk ∈ Rm at plan-
ning step k, conditional on the action trajectory a0:k−1, as well as the initial observation o. As
these are mean states, the information in the variance of this distribution reflects epistemic
uncertainty.

2. p(vk; a0:k−1, o) represents the probability distribution over predicted values vk ∈ R at plan-
ning step k when k is the end of a planning trajectory, conditional on the action trajectory
ao:k−1, as well as the initial observation o.

3. p(rk; a1:k, o) represents the probability distribution over predicted expected rewards rk ∈ R
attained by executing action ak at planning step k, conditional on the action trajectory a0:k
as well as the initial observation o.

4. p(vk; a0:k+h, o) represents the probability distribution over predicted values vk ∈ R at plan-
ning step k, when k is a decision along the planning trajectory a0:k+h, and the end of the
planning trajectory is planning step k + h.

In the next section we develop approximations for the variance in each one of these distributions,
as it propagates through planning.

3.2 Uncertainty propagation in planning with a learned model

This section develops computable update rules for the propagation of predictive epistemic uncer-
tainty, modelled as variance, in planning with a learned model. We first develop approximations
for the the variance of p(sk; a0:k−1, o) (section 3.2.1). We then proceed to develop approximations
for the variances of p(vk; a0:k−1, o) (section 3.2.2) and p(rk; a0:k, o) (section 3.2.3), based on the
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approximation for the variance of p(sk; a0:k−1, o). Finally, we develop a computable backwards-
update for the variance of p(vk; a0:k+h, o) (section 3.2.4) based on the variances of the distributions
p(sk; a0:k−1, o), p(vk+h; a0:k+h−1, o) and p(rk; a0:k, o). The main tool used in this section is the
law of total variance [54]. As a result, while the target of this work is to propagate specifically
epistemic uncertainty as a variance, this framework can be used to approximate the propagation
of any uncertainty that can be formulated as a variance and represented in a sufficiently similar
manner.

3.2.1 State uncertainty
For the purpose of investigating explicitly how state uncertainty propagates in planning, we are
interested only in the (co-)variance of the distribution Cov(sk; a0:k−1, o). In order to clarify when
a certain formulation is a result of direct equality =, approximation ≈, definition :=, or modelling
choice ≡, all four notations will be used. In order to arrive at a computable approximation for the
covariance at planning step k, we split the co-variance into more directly-approximable quantities,
using the law of total variance:

Cov(y) = E
[
Cov(y|x)

]
+ Cov

(
E[y|x]

)
Note that as both x,y are random variables, E[y|x] is the conditional expectation [55], and Cov[y|x]
is the conditional co-variance. As a0:k−1, o are not considered random variables, the expectation
E[sk; a0:k−1, o] is the regular expectation with respect to the random variable sk; a0:k−1, o. We use
y = sk; a0:k−1, o and x = sk−1; a0:k−2, o, and formulate:

Σsk;a0:k−1,o := Cov(sk; a0:k−1, o)

= E[Cov(sk; a0:k−1, o|sk−1; a0:k−2, o)] + Cov(E[sk; a0:k−1, o|sk−1; a0:k−2, o])

= E[Cov(sk; ak−1|sk−1; a0:k−2, o)] + Cov(E[sk; ak−1|sk−1; a0:k−2, o]) (3.1)

Where we assume independence of sk from a0:k−2, o conditional on sk−1, ak−1. This assumption
is implicitly made by MuZero, which bases all of its predictions on the last state to be predicted
sk−1 and the action opted for at this state ak−1. We model the conditional expectation from the
second term E[sk; ak−1|sk−1; a0:k−2, o] as the distribution of the outputs of f on the random variable
sk−1; a0:k−2, o and the specific action along the trajectory ak−1:

E[sk; ak−1|sk−1; a0:k−2, o] ≡ f
(
(sk−1; a0:k−2, o), ak−1

)
In general the expectation E[sk; ak−1|sk−1; a0:k−2, o] would need to be approximated with the means
of many randomized outputs (for example by sampling with a dropout network [14]). However, since
MuZero’s state transitions are determinsitic, it is sufficient to use the output of the network.

We denote the conditional covariance Cov(sk; ak−1|sk−1; a0:k−2, o) := Σsk;ak−1|sk−1
to simplify

notation. Note the difference between Σsk;a0:k−1,o, the propagated co-variance, which is the quantity
for which we develop an approximation, and Σsk;ak−1|sk−1

, the local conditional covariance. We can
now proceed to formulate a first approximation to the complete expression for the propagated
covariance from equation 3.1:

E
[
Cov(sk; ak−1|sk−1; a0:k−2, o)

]
+ Cov

(
E[sk; ak−1|sk−1; a0:k−2, o]

)
≡
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E[Σsk;ak−1|sk−1
] + Cov

(
f
(
(sk−1; a0:k−2, o), ak−1

))
We will now formulate approximations for each of the two terms. We first motivate an approxima-
tion for the expectation over the conditional covariance:

E[Σsk;ak−1|sk−1
]

E[Σsk;ak−1|sk−1
] denotes the expected local uncertainty - the average uncertainty associated with sk

conditional on the distribution of different possible sk−1. This is a quantity we can approximate
using local uncertainty estimation mechanisms (for example, the covariance between ensemble mem-
bers predicting the state sk). In principle, our uncertainty mechanisms may be designed to approxi-
mate Σsk;ak−1,sk−1

, where sk−1 is not a random variable (see section 2.5.1). However, we assume that
the average-covariance can be approximated using this estimate: Σsk;ak−1,sk−1

≈ E[Σsk;ak−1|sk−1
].

We denote this estimate with: Σlocal
sk

≈ E[Σsk;ak−1|sk−1
], where Σlocal

sk
denotes any appropriate lo-

cal uncertainty-estimation mechanism. We approximate the second term, the covariance over the

modeled conditional-expectation Cov

(
f
(
(sk−1; a0:k−2, o), ak−1

))
using first-order Taylor approxi-

mation [56]:

Cov

(
f
(
(sk−1; a0:k−2, o), ak−1

))
≈ JsΣsk−1;a0:k−2,oJ

T
s

Js denotes the Jacobian matrix for f(sk−1, ak−1), and Σsk−1;a0:k−2,o the covariance approximation
computed at the previous step k− 1. For a more elaborate motivation for the approximation of the
propagation of the covariance of a random variable through a nonlinear function, see appendix A.
We arrive at a final computable approximation for the state-uncertainty propagated
in a planning trajectory a0:k−1:

Σsk;a0:k−1,o := Cov(sk; a0:k−1, o) ≈ Σlocal
sk

+ JsΣsk−1;a0:k−2,oJ
T
s (3.2)

The covariance Σs0|o at the root of the planning tree can be approximated by applying the same
principle of using a local uncertainty estimation mechanism on g(o).

3.2.2 Leaf-node value uncertainty
We proceed to use the approximated propagated covariance in the state Σsk;a0:k−1,o, to develop a
computable approximation to the variance of the state-estimate at the end of a planning trajectory
vk; a0:k−1, o, again using the law of total variance:

V ar
[
vk; a0:k−1, o

]
= E

[
V ar

[
vk|sk; a0:k−1, o

]]
+ V ar

[
E
[
vk|sk; a0:k−1, o

]]
And assuming independence of vk from a0:k−1, o conditional on sk, which is in line with MuZero’s
functional approximation v(sk), which only take sk as input to compute the value at the end of a
planning trajectory k. We approximate the expectation of the conditional variance:

E[V ar(vk|sk; a0:k−1, o)] ≈ (σlocal
vk

)2
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with the same motivation and process used in section 3.2.1, with a local uncertainty-estimation
mechanism. We model the conditional expectation E[vk|sk; a0:k−1, o] as the output of the value
network on the distribution of states sk, as follows: E[vk|sk; a0:k−1, o] ≈ v(sk; a0:k−1, o), again with
the same motivation used in section 3.2.1. We can now formulate the variance of the value of the
state approximated at planning step k in those terms:

V ar[vk; a0:k−1, o] ≈ (σlocal
vk

)2 + V ar[v(sk; a0:k−1, o)]

The term V ar[v(sk; a0:k−1, o)], approximating the propagation of the covariance in the state through
the value distribution, can again be approximated with first order Taylor expansion:

V ar[v(sk; a0:k−1, o)] ≈ JvΣsk;a0:k−1,oJ
T
v

Where Jv is the one-dimensional Jacobian matrix of v(sk), and an approximation for Σsk;a0:k−1,o has
been developed in equation 3.2. Finally, a complete computable expression for an approximation
of the forward update step for the propagation of the variance into the value function can be
formulated, which we denote by (σleaf

vk
)2:

(σleaf
vk

)2 := V ar[vk; a0:k−1, o] ≈ (σlocal
vk

)2 + JvΣsk;a0:k−1,oJ
T
v (3.3)

3.2.3 Reward uncertainty
We follow the same process again to build an approximation for the propagated variance in the
distribution over rewards rk; a0:k, o at planning step k:

(σrk
)2 := V ar[rk; a0:k, o] = E

[
V ar[rk; ak|sk; a0:k−1, o]

]
+ V ar

[
E[rk; ak|sk; a0:k−1, o]

]
≈ (σlocal

rk
)2 + V ar(r((sk; a0:k−1, o), ak)) ≈ (σlocal

rk
)2 + JrΣsk;a0:k−1,oJ

T
r (3.4)

Where similarly, (σlocal
rk

)2 is the uncertainty estimation applied to r(st, at), Jr is the one-dimensional
Jacobian matrix of r(st, at) and Σsk;a0:k−1,o has been approximated in equation 3.2.

3.2.4 Tree-node value distribution
Using the approximation for the forward-propagated variance of the reward value and state com-
puted in the previous sections, we will now construct a computable backward propagation update,
to approximate the effect of planned trajectories on the variance in the values of states sk along a
planning trajectory a0:k+h, where k + h is the current end of this planning trajectory. The value
of state sk following a policy π can be formulated as: V π(sk) = Eπ[rk + γV π(sk+1)], where Eπ[_]
denotes the expectation with respect to the Markov chain imposed by actions sampled from the
policy π, and γ is the discount factor. We now assume that the action trajectory a0:k+h follows
some policy π. We represent the resulting V π(sk) as a distribution vk; a0:k+h, o, representing the
uncertainty in the agents’ prediction of the value at planning step k, with policy choosing actions
a0:k+h. We model the distribution as follows:

vk; a0:k+h, o = (rk + γvk+1); a0:k+h, o = (rk; a0:k, o) + γ(vk+1; a0:k+h, o)
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First by definition of the value function, and second based on an assumption of conditional inde-
pendence of rk from vk+1 conditional on a0:k+h, o, as well as independence of rk from ak+1:k+h

conditional on a0:k, modelling the reward estimate as depending only on past actions, and not
future actions. The variance of the distribution V ar[vk; a0:k+h, o] can be expressed as follows:

(σnode
vk

)2 := V ar[vk; a0:k+h, o] = V ar
[
(rk; a0:k, o) + γ(vk+1; a0:k+h, o)

]
Using the property that the variance of a sum of independent random variables equals the sum
of the individual variances, as well as properties of the variance of a product of a constant and a
random variable:

(σnode
vk

)2 = V ar[rk; a0:k+h, o] + γ2V ar[vk+1; a0:k+h, o]

We proceed to approximate the variance in the reward with the expression developed in equation
3.4:

σnode
vk

≈ (σrk
)2 + γ2V ar[vk+1; a0:k+h, o] (3.5)

This term can be computed recursively backwards, starting from the state approximation at the
end of the planning trajectory sk+h+1, for which V ar[vk+h+1; a0:k+h, o] has been approximated at
equation 3.3. We now have a complete set of update rules for the propagation of uncertainty along
planning trajectories in a planning tree - first forwards, to approximate the effect of state-uncertainty
estimates on value and reward uncertainty estimates, and then backwards, to approximate the effect
of the uncertainty in future reward and values on value uncertainty estimates along a planning
trajectory. In the following sections we first propose modifications for MCTS to enable propagating
the uncertainty based on the approximations developed, and then describe our approach for using
the propagated uncertainty to achieve deep exploration.

3.3 Propagating uncertainty in Monte-Carlo Tree Search

While variations of MCTS sometimes consider aleatoric uncertainty, they do not generally consider
epistemic uncertainty: the model used for planning is usually considered to be exact. We extend
this perception with the assumption that the model or parts of it are not necessarily exact, and have
epistemic uncertainty associated with them. This assumption is naturally relevant in settings of
planning with learned models, but is applicable in general for any setting where non-zero epistemic
uncertainty can be quantified in the model. Building on this assumption, we propagate epistemic
uncertainty in the different components of the model (reward prediction and dynamics), as well as
the value prediction, based on the approximations developed in section 3.2. In order to incorporate
these approximations into MCTS, we modify the following steps in the MCTS algorithm:

1. In the expansion step, we compute the local uncertainties associated with the value, reward
and state estimates based on the uncertainty estimates chosen. We compute the complete
state, value and reward uncertainty estimates according to the equations developed in section
3.2. We save these quantities with the rest of the information stored with the node.

2. In the backup step, in addition to the value estimate, we back-propagate the value-uncertainty
estimate following the update rules developed in section 3.2.
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3. We introduce a new function that estimates the average epistemic uncertainty in a value
prediction of a node in a similar manner to the computation that estimates the average value
(see section 2.3).

A description of the algorithm can be found in algorithm 1.

Algorithm 1 Modified MCTS for uncertainty propagation

1: function EXPAND(vk, rk, σrk
local, σ

vk
local, Σ

local
sk

, Js, Jr, Jv )
2: Execute unmodified MuZero-MCTS expansion step
3: Σnode

sk
← Σlocal

sk
+ JsΣ

parent
sk−1

JT
s

4: σnode
vk

← σlocal
v + JvΣ

node
sk

JT
v

5: σnode
rk

← σlocal
rk

+ JrΣ
node
sk

JT
r

6: function BACKUP( σleaf
vk

, search_path, unmodified original parameters )
7: Execute unmodified MuZero-MCTS backpropagation step
8: σv ← σleaf

vk
9: for node in reverse(search_path) do

10: σnode
v ← σnode

v + σv

11: σv ← σnode
r + γ2σv

12: function GetValueUncertainty(node)
13: return σnode

v /nodec ▷ nodec denotes the visitation count of the node in the tree

3.4 Planning for deep exploration by harnessing epistemic un-
certainty

In this section we describe our methodology for incorporating uncertainty into the agent’s planning
to achieve deep exploration, which we term planning for exploration. During exploration episodes, in
the trajectory-selection step in the MCTS planning phase, we incorporate the total value uncertainty
σvk
≈ V ar[vk] associated with node k into the UCB computation to incentivize the tree to plan

in the direction of most promising exploration: high expected return as well as high associated
uncertainty. We incorporate uncertainty into the UCB computation as follows:

UCBσ(Nodek) = UCB(Nodek) + cσσ
node
vk

(3.6)

cσ is a hyperparameter, deciding how much standard deviation σnode
vk

is taken into account in the
UCBσ computation.

To achieve deep exploration in the environment, we do not modify MuZero’s action selection in
the environment directly, but execute the action selection process in accordance with the planning
for exploration MCTS tree, rather than a regular, planning-to-exploit MCTS planning tree. As
described in section 2.4.2, MuZero’s action selection is done probabilistically with respect to the
visit-counts of the children of the root. As our planning induces different visitation counts to
the children of the root that are expected to reflect the direction in the environment of most
promising exploration, we expect these visitation counts to be sufficient to achieve deep and directed
exploration.
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3.5 Dedicated exploration with on-policy training

The main caveat of on-policy algorithms is their inability to learn from trajectories in the envi-
ronment that were not sampled from their own policy. Whether MuZero is precisely an on-policy
algorithm or not is under debate [57]. However, a detailed look at the targets generated to train the
policy and value functions illustrates the problem of attempting to learn from off-policy, exploratory
trajectories. As described in section 2.4.3, the value targets used by MuZero vtarget are n-step tar-
gets. This induces that the algorithm is trained to learn to approximate the value vπ(s) of the
policy π that has been executed in the environment. If the policy executed in the environment was
not exploitatory (for example, because it was an exploratory policy aiming to find new information,
rather than optimize for maximum return), the approximation vπ(s) approximates the value of a
policy which is a mix of exploratory and exploitatory policies. This effect can be expected to slow
learning, cause instability, or even prevent the agent from converging to certain policies, depending
on the precise interactions that the agent samples from its reply buffer.

We illustrate this with the following example: an agent is standing in a hallway with two doors.
Opening the door to the right yields reward of 1, and terminates the episode. The agent has tried
this action sufficiently many times, and predicts the value and reward correctly. Opening the door
to the left yields reward of −1 and also terminates the episode. However, the left door has not been
opened before by the agent. A sufficiently-exploratory policy (for example, using sufficiently large
cσ) will prioritize opening the door on the left, due to the high epistemic uncertainty associated
with it. If the agent then utilizes n-step targets to learn the value of being in the state between the
two doors, and it samples both trajectories equally often, it can learn that the value of following its
policy in this position is 0, which is both correct as well as hindering learning. It is correct, because
if the agent indeed takes either door in this position with equal probability, the average value is
indeed 0. This learned value of 0 is not useful either for exploration or for exploitation, and the effect
it has on either policy is entirely detrimental. Learning this value is expected to be preventable: if
the agent can observe that the decision to open the door on the left is "worse", it should be able
to learn to open the door on the right, regardless of the actions taken in the trajectories existing
in the replay buffer. Such capacity to learn conclusions that potentially-conflict with the policy
executed in the environment is what we aim to achieve.

Just as this challenge exists with the on-policy value-targets used by MuZero, a similar challenge
exists with the on-policy policy-targets used by MuZero. As described in section 2.4.3, the policy
network π(st) is trained to predict the relative visitation-counts of the children of planning trees
executed at state st. Trees that have been planning for exploration cannot be expected to necessarily
coincide with trees that have been planning for exploitation (if they do, there would be no point
to plan for exploration). As a result, the policy-targets that are generated based on exploratory-
planning trees can have adverse effects on the agent’s learning: they teach the agent to execute an
exploratory policy. If the exploratory policy yielded worse returns than the exploitatory policy, this
effect can be expected to be detrimental. In the following sections we propose different solutions
to these problems. In chapter 5 we conduct a detailed ablation testing to evaluate the effects of
the different solutions proposed. Before proceeding to describe the proposed modifications, we
will define several terms that will be useful in the following sections: exploration episodes, regular
episodes, positive exploration trajectories, and negative exploration trajectories.
Exploration episode is any episode that followed an exploration policy throughout the episode,
or for extended periods.
Regular episode or exploitation episode, or later reevaluation episode is any episode that followed



CHAPTER 3. PLANNING WITH EPISTEMIC UNCERTAINTY 28

an exploitatory policy, either greedily, or with limitedly-stochastic action selection.
Positive exploration trajectory We term exploration trajectories any trajectories that followed
a dedicated-exploration policy, such as the one induced by executing actions based on planning-
trees induced by the planning for exploration method. We consider an exploration trajectory to be
positive if the n-step discounted-return vn−step

target (st) estimated from this trajectory starting at state
st is higher than the value vexploitmcts (st) the agent approximates for this state st with its exploitation
policy induced by the exploitatory planning tree:

vn−step
target (st) > vexploitmcts (st)

Negative exploration trajectory Similarly, we consider an exploration trajectory to be negative
if the value is smaller or equal. The idea is that exploration trajectories that found new useful
information should modify the agent’s exploitation policy, and exploration trajectories that did not
should not modify the agent’s exploitation policy. We will now proceed to describe the different
modification to the value and policy targets used to train MuZero, to enable MuZero to learn from
exploratory trajectories that can be either positive or negative.

3.5.1 Double-planning in exploration
The first modification proposed in this work to overcome adverse effects of off-policy targets gener-
ated from exploratory trajectories is to execute two separate planning trees at each planning
step in exploration episodes: a planning-for-exploration planning tree, and a regular, exploita-
tory planning tree. Exploration episodes can be executed for every episode that is not executed to
evaluate the agent’s current policy (evaluation episodes), or as specific episodes during the learning
of the agents, as will be discussed in section 3.5.3. The actions chosen during exploration follow the
policy generated by the planning-for-exploration tree. Two sets of statistics are saved from planning
with two trees, instead of one: the exploratory root’s statistics, and the regular-root’s statistics.
This allows us to decouple both the policy targets as well as the value targets generated from this
trajectory from the consequences of the policy generated this trajectory in the environment. The
policy targets can now be computed based on the visitations to the regular planning tree, instead
of an exploratory tree, and are thus now exploitation-policy targets. The bootstrapped-value used
to compute the value at the end of the trajectory of the n-step value target vmcts(st+n), can now
come from a regular, exploitatory planning trees:

vn−step
target (st) =

n−1∑
i=0

γirt+i + γnvexploitmcts (st+n)

The rewards rt+i used to compute the value target are still the rewards recieved from executing
the exploratory policy in the environment, however. While this is not expected to be sufficient
to overcome the challenges associated with the n-step value targets, we expect this to already
provide a stabilizing effect on the learning process, by generating policy targets that are in-line
with the exploitatory policy we ultimately intend to learn, as well as value targets that are at least
bootstrapped exploitatorily.

3.5.2 Zero-step targets and max targets
We remain with two main challenges: 1) Choosing the type of policy target: the policy targets
from double-planning can either follow exploratory planning or exploitatory planning. In negative
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exploration episodes, the exploitatory policy targets are expected to induce stability. However,
in positive exploration trajectories, the exploratory policy targets are expected to induce faster
learning. 2) The value targets generated from negative exploration trajectories are still n-step
targets and expected to have an adverse effect on the agent’s value approximation, as discussed
at the beginning of this chapter. We propose the same approach to overcoming both challenges,
starting from the value targets.

An alternative to n-step targets is zero-step targets. In zero-step targets, the value target vtarget
can be computed as follows:

v0−step
target (st) = vexploitmcts (st)

As long as the estimate vmcts(st) comes from an exploitatory planning tree, these targets are on-
policy, even when computed in exploration trajectories. If the estimate of the tree vmcts(st) is
sufficiently better than the prediction of the value network v(st), these zero-step targets can be
expected to useful targets. n-step targets are known however for inducing very rapid learning.
Therefor, simply replacing them by zero-step targets may have an insufficient beneficial effect to
justify their use, or even an overall detrimental effect. To enjoy the best of both worlds - swiftly-
learning, reliable n-step targets, and on-exploitatory-policy 0-step targets, we propose an additional
step: the max(0-step, n-step) target, or simply max value targets. For every trajectory following an
exploratory policy that exists in the replay buffer, we can compare the n-step value approximation
vn−step
target (st) with the exploitatory 0-step approximation of the agent, v0−step

target (st). For all exploration
trajectories where vn−step

target (st) > v0−step
target (st) (positive exploration trajectories), the n-step targets

can be used, to anchor the agent with the effects of choosing a better trajectory in the environment.
For all other exploration trajectories, the 0-step exploitatory-policy targets should be used, to not
confuse the agent with misleading, off-exploitatory-policy value targets.

The same idea can be employed for policy targets in a similar manner: in all positive exploration
trajectories, the agent can use as target the exploratory-tree policy targets, indicating that the
exploration-policy found something promising, and should be followed in exploitation. In negative
exploration trajectories, for stability, the exploitatory-tree policy targets can be used. We term this
target-generation method as max policy targets.

3.5.3 Decoupling reevaluation episodes from exploration episodes
In order to further reduce the adverse effect of zero-step value targets, we can introduce exploitatory
episodes into the agent’s training loop, to allow the agent to reevaluate the value estimates associ-
ated with its current exploitation policy. Without executing any reevaluation episodes, the agent
will not be able to develop reliable estimates for the values associated with its current exploitation
policy, because all the trajectories it can learn from will be exploratory. In turn, this can make
any exploratory trajectory resulting in an n-step value target that is lesser than some early, un-
reliable value estimates seem like negative exploration trajectory, despite the value estimate being
potentially completely unreliable. Consider for example an environment where the agent receives a
reward of −1 for every time step, and the goal is the only real terminal state. All values of all states
of all optimal policies for every possible goal in this environment that requires executing more than
one step, will be negative. If the agent’s original value estimates are non-negative, or simply larger
than the values of the optimal policy, the agent will struggle to learn from exploratory trajectories
that lead it to the goal. On the other hand, alternating reevaluation episodes every certain number
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of exploration episodes will enable the agent to explicitly gather data in order to improve the esti-
mates of the exploitatory policy. We expect alternating the types of learning episodes in this way to
induce better ability to contrast and identify actually-positive exploration trajectories, compared
to exploitation trajectories. There are many possibilities for alternating between reevaluation and
exploration episodes, such as alternating episode by episode, dynamically reducing the portion of
exploration episodes, and many others. For simplicity, in this work we chose to alternate between
episodes evenly, and switch learning-episode type every 10% of the training-steps’ budget, starting
from exploitation episodes.



Chapter 4

Experimental Setup

This section describes the methodology applied to evaluating the framework, method and adapta-
tions proposed in this work. We open with a description of engineering efforts that were required
to tailor the uncertainty mechanisms to MuZero. We follow with a description of the agents that
are used to evaluate the method. We proceed to describe and motivate the tasks the agents were
evaluated against. Last, we outline and motivate the evaluation metrics and statistical significance
evaluation approach opted for in our work, describe the hyper parameter optimization conducted,
and discuss seeding and reproducibility.

4.1 Estimating epistemic uncertainty in MuZero

Our method relies on estimating the epistemic uncertainty associated with different predictions
used by MuZero for planning: value, reward, state and representation. The reliability of the
estimates of the uncertainty in these predictions is expected to have a make-it-or-break-it effect on
the method, which makes evaluating even just the soundness of the approach not immediately trivial.
To simplify this problem, we identify the least reliable source of epistemic uncertainty to estimate,
and remove it from the approximation of the uncertainty propagation. We discuss this decision, as
well as motivation and expected consequences, in section 4.1.1. In order to evaluate the method’s
soundness, we employ a simple, reliable and badly-scalable uncertainty estimation method in the
form of a state-visitation count (see section 2.5.2). The approach used to adapt real-states-counting
into MuZero to estimate the uncertainty in two independent predictors, as well as extending it for
a continuous state-space environment, is described in section 4.1.2. In order to further evaluate
the capacity of our method under a more realistic and scalable uncertainty estimation method,
we employ ensembles with prior networks (see section 2.5.2). MuZero however uses a categorical
representation for the reward and value predictions [2], which introduces additional challenges
with estimating a variance in an ensemble of predictions of scalars. Further details regarding the
challenges induced as well as engineering efforts overcoming them are described in section 4.1.3.

4.1.1 Planning without explicit transition uncertainty
The method proposed in this work is composed of several moving parts. First, a series of assump-
tions and approximations to develop computable uncertainty propagation, that may or may not be

31
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sufficiently exact. Second, uncertainty estimation of local quantities, that may or may not be suffi-
ciently reliable. Last, a new approach for using the epistemic uncertainty in planning with MCTS,
the consequences of which are yet to be evaluated. A failure in any one of the parts may prevent
the methodology from achieving success altogether. In addition, much tuning and engineering is
required for every part. As a result, failure of the methodology may be caused by any one of many
possible causes. To overcome these challenges and arrive at a methodology that is simpler, and
more reliable even without access to a variety of reliable uncertainty estimates, we take two steps.
First, we identify the most challenging source of uncertainty, and second, we make the required
approximations in order to adapt the methodology to operating without it.

As discussed in section 4.1, in this work we make use of two standard methods to estimate
epistemic uncertainty. One relies on state visitations counting, and the other on variance within
the output of an ensemble. Both are not immediately trivial to employ to identify transition
uncertainty in Muzero. In the original MuZero, the dynamics model is trained only with second-
hand loss. Direct loss is only applied to the reward, value and policy functions. As a result, an
ensemble of dynamics models cannot be expected to converge to the same representation necessarily,
and thus a variance within an ensemble is not a directly usable uncertainty mechanism. Since
MuZero uses state-abstractions that do not aim to directly reflect states in the environment, utilizing
state-visitation uncertainty is also not immediately available. In addition, the state-abstraction-
representation used is a vector, and its approximated propagation through Jacobian matrices as
developed in section 3.1 is likely to require the largest tuning efforts. Following these considerations,
we believe the state-transition uncertainty Cov(sk; a1:k−1, o) = Σsk;a1:k−1,o (see section 3.2.1) is the
most challenging and least reliable source of uncertainty.

While none of these challenges are necessarily insurmountable, as will be discussed in sec-
tion 7.2, due to time and resources constraints we have decided to evaluate our approach under
the simplifying approximation that the state-transition uncertainty, the variance associated with
Σsk;a1:k−1,o = 0. This choice does not require any additional adaptation from the methodology or
the implementation, and can, in principle, directly be replaced back by a mechanism that estimates
a nonzero transition uncertainty. The choice to evaluate the method without transition-dynamics-
uncertainty has three specific consequences we would like to note explicitly: First, upon success,
this evaluation illustrates that even without access to more complex uncertainty mechanisms, that
are able to sufficiently-reliably estimate the co-variance between vectoral representations of state,
the method is effective, which we believe even further recommends its usability. Second, we believe
that this extends the results and the conclusions following from them, and thus the application of
the methodology, to DMBRL algorithms that are provided with access to a transition-dynamics
model, as well as those that learn it (for example, algorithms such as AlphaZero, that are trained
with access to the rules of a game but without access to a model of the reward dynamics neces-
sarily). Third, the methodology for propagating transition-uncertainty, as well is its effects on the
method, are not evaluated.

4.1.2 Estimating epistemic uncertainty with state visitation counting in
MuZero

As discussed in section 2.5.2, counting of state-action-pairs visitations’ can naturally be used as an
epistemic uncertainty estimate, that can even be viewed as directly proportional to the variance in
an estimator of the mean. We identify three challenges to incorporating this epistemic uncertainty
estimator into MuZero: 1) MuZero is planning with abstracted states, while the counter is designed
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to work against discrete real states of the system. 2) Our method requires two independent estimates
for the uncertainty: one in reward, and one in value, while state visitation counting provides
a single source for uncertainty estimation. 3) Estimating uncertainty in continuous state-space
environments. In this section, we will describe the approach used to overcome each one of those
challenges.

Estimating counting uncertainty in planning

In order to estimate the uncertainty associated with real states during planning, we allow MuZero
access to a real model of the environment. This of course violates the assumption that MuZero is
able to learn entirely from interactions with the environment without access to any prior knowledge.
This is only introduced in order to evaluate the soundness of our method, and the real model is
only used to estimate the uncertainty with planned actions. The second uncertainty estimation
method we use, ensembles, does not violate any such assumptions. The epistemic uncertainty in
reward-prediction is estimated as follows:

urk = β
1

nsk − ϵ

Where nsk denotes the count of visitations to real state sk, the state associated with action trajec-
tory a0:k and observation o in a deterministic environment. β is some constant used to scale the
uncertainty, and ϵ is a constant used to guarantee numerical stability when nsk = 0. During the
MCTS planning phase, in each expansion step, the agent used the real model to predict the transi-
tion associated with the chosen action from the chosen state, and uses this prediction to estimate
the reward uncertainty.

Creating separate estimates for reward uncertainty and value uncertainty

In order to use state visitation counting as an independent uncertainty estimate for both the value of
a leaf planning-tree-node k as well as the reward predicted for a transition k, we employ two ideas:
1) we assume that the future reward uncertainty urk+i

,∀i > 0, can be crudely estimated as equal
the local reward uncertainty urk without completely debilitating the value uncertainty estimation’s
reliability. 2) We utilize a similar approach to MC simulations to arrive at an approximation of the
value uncertainty uvk that is expected to be better than that provided by 1).

We combine both ideas to arrive at a final computation for the value-uncertainty estimate for
leaf-node k. First, the agent plans from real state sk forward, using the real model, with some
action-selection policy πσ one trajectory h steps into the future. At each step, the agent evaluates
the uncertainty of each transition with the state-counter. Second, upon arriving at step k + h, the
agent uses the geometric-series formula to approximate the uncertainty of following the same policy
to infinity, with the approximation that all uncertainties from state sk+h into the future, following
policy πσ, are constant and equal urk+h

:

uvk ≈
h−1∑
i=0

γ2iurk+i
+ γ2huvk+h

≈
h−1∑
i=0

γ2iurh+i
+

∞∑
i=h

γ2iurk+h
=

h−1∑
i=0

γ2iurk+i
+

γ2h

1− γ2
urk+h

The first step approximates uvk as the discounted sum of reward-uncertainties along the trajectory
k : k + h − 1, and then with an as yet unknown discounted end-of-trajectory value-uncertainty
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estimate uvk+h
. The second step approximates the end-of-trajectory value-uncertainty estimate

uvk+h
as the sum of a geometric series with the constant reward uncertainty attained at the end

of the trajectory, urk+h
. The policy πσ we chose to follow is "repeat action ak−1". For example, if

the action leading to planning node k was "accelerate to the right", πσ chooses "accelerate to the
right" for all actions along the trajectory k : k+h. This enables uvk to propagate information from
future decisions that (may) be taken by the algorithm, which should provide rather-independent
uncertainty estimation from the local reward uncertainty estimates urk .

Extending state- visitations counting to continuous state-space environments

As will be discussed in section 4.3, the state space of one of the two environments used to evaluate
our method is continuous. In order to employ visitations- counting in a continuous position-velocity
state-space environment, we use discretization of the state-space to a 50 by 50 space of possible
position-velocity combinations, which is made possible because the ranges of both the velocity as
well as the positions are finite.

4.1.3 Estimating epistemic value and reward uncertainty with an ensem-
ble

Estimating the same quantities with the ensemble is done in a much more straight forward man-
ner. The variance in the predictions of the different ensemble members is computed, and is used
as the direct measure of the uncertainty in each function - reward and value. As mentioned in
the introduction to this section, MuZero predicts the rewards and values using a categorical repre-
sentation, rather than a simple regression to scalar. The categorical representation can represent
numbers in the range (−support, support), for some hyperparameter support that specifies the size
of the output layer of the network. The vector-output of the network is passed through a SoftMax
function. The weights of the categorical distribution are multiplied by the values represented by
the (−support, support). Finally, the entries are summed to produce the final prediction. This ar-
chitecture introduces an additional challenge to the variance computation - rather than computing
the variance over a set of scalars, now one is presented with a set of distributions over which to
compute the variance.

As an additional effect of this architecture, we have observed that in under-trained areas of the
input space, the networks have tendency to converge to outputs close to 0. We explain this with the
claim that for inputs that for the network are arbitrary, the network is likely to produce outputs
that are arbitrary. Due to the central limit theorem, we expect arbitrary output for a categorical
representation to, on average, not be concentrated in one extreme side of the representation. If the
categorical predictions are arbitrary, they are likely to represent values that "sum" to around-0. This
suspected phenomenon has two noteworthy effects: 1) the variance in the scalar-representation of
the ensemble prediction reduces to zero in under-trained areas of the input space, which is exactly
adverse to the behavior we require. 2) This results in an implicit, if unreliable, optimistic or
pessimistic initialization of rewards and value predictions (depending on the reward scheme of the
environment). Specifically, in environments where the true values are all negative, this may induce
an inherent optimistic-initialization effect to the agent’s value and reward estimates, implicitly
encouraging the agent to explore the unknown.

In order to mitigate these unintended effects, we have taken two steps. First, we have modified
the reward schemes of the environments we have tested against, to only produce positive rewards,
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and only in the goal state, as detailed in section 4.3, to disable the effect of any unintended optimistic
initialization, which may conflict with the method of this work, and give the vanilla version an
unintended advantage. Second, rather than compute the straight-forward variance in an ensemble
as the variance over the translated-to-scalar predictions, we compute the variance as the variance
between the entries of the different categorical representation-entries, entry by entry, and sum them
as the final variance measure:

V ar[y] ≈
2support+1∑

i=0

V ar[yi]

for y ∈ [0, 1]2support+1 denoting the categorical-vector output of the NN. An additional variance
computation that was considered but had not shown advantage in our preliminary experiments
was computing the average categorical distribution of the ensemble, and then taking the average
Jensen-Shannon distance [58] between each ensemble-member’s categorical distribution, and the
mean categorical distribution. While both approaches cannot be expected to be in the correct
scale of the real variance of the scalar reward or value predictions, our experiments show that the
entry-by-entry variance, at least, is sufficient to achieve both directed as well as deep exploration
(section 5.1).

4.2 Agents

To evaluate the increased capacity of our agent to explore, we compare three variations of MuZero:
two exploring variations that follow our methodology, each with a different uncertainty-estimation
mechanism (exploratory MuZero(s)), to a vanilla version of MuZero. A detailed description of the
agents is provided in the following sections.

4.2.1 Exploratory MuZero
The exploratory MuZero agents employ planning for exploration to provide deep and directed
exploration. The two variations that are evaluated differ based on the uncertainty mechanism
used: to evaluate the soundness of the method, state-visitation counting is used. To evaluate it’s
resilience, reliability and scalability, ensemble-variance is used. The ensemble-based agent uses an
ensemble of size 5. The size of the ensemble was chosen as a middle ground between not-incurring a
significant computational cost increase as well as expected to be able to provide sufficiently reliable
variance estimation in un-explored areas of the state space. The visitation-count based agent
employs the mechanism that counts only state-visitations, as an approximation to the more general
mechanism that counts state-action visitations. The details describing how exactly the mechanisms
are Incorporated are described in the previous section. The agents evaluated employ all adaptations
proposed in section 3.5: max value and policy targets, double planning and alternating episodes.

4.2.2 Vanilla MuZero variations
We compare our modified agents to vanilla MuZero, as the baseline. In order to provide a fair
comparison to vanilla MuZero, we compare two hyperparameter configurations that induce two
random exploration behaviors, and report the agent that achieved the best results. The hyperpa-
rameter configurations differ in the temperatures - the first configuration uses high temperatures
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(high random action selection in exploration, see section 4.5.1 for more detail), to give MuZero
a chance to explore its environment while sacrificing convergence speed. The temperatures were
chosen based on a hyperparameter configuration used in the original implementation. The other
agent is evaluated with low temperatures, identical to the temperatures used by the exploratory
agents, to verify that the reduced temperature parameter does not provide an unexpected, unfair
advantage to the exploratory agent. Due to limited compute and a very large number of possible
hyperparameters that can be optimized, in this work we did not evaluate a larger set of temperature
parameters.

4.2.3 Ablation study
In section 3.5 we describe several adaptations that are expected to enable MuZero to more stably
learn from off-policy, exploratory trajectories. In order to evaluate the individual effects of the
adaptations proposed we conduct a detailed ablation study. Due to time and compute constraints,
we conduct this study only with the state-visitation counting uncertainty mechanism, which is
cheaper computationally and thus in cheaper in training time, as well. We believe the results can
be expected to extend to other uncertainty mechanisms that are reliable enough to allow the agent
to effectively explore.

4.3 Environments

To evaluate the modified agents’ capacity for directed deep exploration, we test them against two
environments. The first is a toy environment, specifically tailored to be adversarial to random
action-selection exploration, requiring exploration that is directed across multiple time steps, which
we dub the Slide environment. The second is a standard Gym [59] environment, which is commonly
used to evaluate advanced exploration methods in RL algorithms: the Mountain Car environment
[21].

4.3.1 The Slide environment
The Slide environment is designed to be an extension to the chain environment [7] that is even more
adversarial to agents that do not utilize deep exploration. Slide is inspired by the idea of attempting
to climb up a slide in a playground. The state space of the slide environment is a 1-dimensional
array of length N . The agent always starts at the bottom of the slide, first entry in the array. The
action space consists of 3 actions: down, stay, up. When climbing down, the agent slides back 10
positions (or the bottom of the slide if the agent can’t slide further). When attempting to stay
in place, the agent slides back one position. Upon climbing up, the agent advances one position
forward. The goal state is at the end of the slide, the N -th position of the slide. The goal state is
a terminal state. The different reward schemes used with this environment are described in section
4.3.3.

4.3.2 The Mountain Car environment
Mountain Car places the agent at the bottom of a valley. The action space consists of three actions,
allowing the agent to accelerate to the right, left, or not at all. The acceleration is constant. The
goal state, which is a terminal state, is placed at the top of the mountain to the right. The state



CHAPTER 4. EXPERIMENTAL SETUP 37

space is continuous, and is comprised of the agent’s position along the x axis, as well as the velocity
of the car. The environment is calibrated such that the agent cannot arrive at the goal by simply
accelerating to the right directly from the initial state. Rather, the agent must first accelerate in one
direction, build up momentum according to a simulation of Newtonian gravity, and then accelerate
in the other direction to build additional momentum, until it builds up sufficient momentum to drive
to the top of the valley, to the goal state. The Mountain Car environment is strongly adversarial to
random action selection - there is only one goal, and arriving at it requires executing a very specific
sequence of actions. Any "wrong" action can send the agent tumbling down and losing precious
momentum. As an additional challenge, the timeout parameter of the environment is tuned such
that the agent can try 200 timesteps each episode before timeout, while the fastest way possible to
the goal consists of around 90 timesteps, which leaves a very low margin for mistakes. The agent’s
starting location is chosen randomly inside a small area the bottom of the valley. Among other
effects, this induces that the optimal policy has a score that changes per starting position. Any
agent that successfully reaches the goal within the 200 timesteps is generally considered successful,
and scores that are under 150 timesteps are considered within the range of optimality. Due to the
properties described above, requiring execution of a specific and long sequence of actions in order to
arrive at the goal during exploration, Mountain Car is considered as an environment that requires
deep exploration in order to solve.

4.3.3 Reward schemes
The standard reward scheme of the Mountain Car environment produces a reward of −1 at each
time step. The only escape available to the agent is the goal state, which is terminal. The optimal
policy induced by this reward scheme is "arrive at the goal in the smallest number of timesteps
possible". As mentioned in section 4.1.3, reward schemes that induce negative values are likely to
cause unexpected and averse effects for the purpose of evaluating the modifications to the agent.
For this reason, we use an additional reward scheme: a non-Markovian reward scheme, that extends
a zero-one reward scheme.

The zero-one reward scheme is a standard scheme used in RL. Based on this scheme, the agent
receives a reward of 0 for every transition, with the exception of the transition into the goal state,
which is rewarded with 1 (or in a more general setting, some positive constant). As the discount
factor γ is smaller than 1, the agent is expected to learn to arrive at the goal state in the smallest
number of timesteps possible. The disadvantage of this scheme is that it makes it less easy to
distinguish between agents that achieved the optimal policy, and agents that just manage to arrive
at the goal state within the time limit, and any policy in between, when plotting cumulative
return. To make evaluating the optimality of the policy of the agent easier, we extend the zero-one
reward scheme to a non-Markovian reward scheme. The non-Markovian reward scheme is similar
to the zero-one reward scheme. The main difference is that rather than a constant reward at the
transition to the goal state, the agent receives as reward rgoal = Ttimeout−Telapsed. Ttimeout denotes
the maximum number of timesteps the environment allows for, before sending a timeout signal and
terminating the agent. Telapsed is the number of timesteps elapsed in the environment, up until
the agent transitioned into the terminal goal state. While this non-Markovian reward induces a
non-Markovian environment, the optimal policy remains the same, and so does the learning process
of the agent. In addition, this reward scheme allows us to conveniently plot not only whether the
agent’s policy is successful, but also its optimality. As a result, the reward scheme we chose to
use in the main experiments evaluating our methodology, as well as in the ablation testing, is the
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non-Markovian reward scheme.

4.4 Evaluation metrics, statistical significance, seeding and
reproducibility

We evaluate the agents based on standard RL metrics: learning stability, learning speed, and
expected return of final policy. To evaluate the statistical significance of our results, for convenience
of plotting, we use the standard error of the mean (SEM) [60]. While standard deviation is a stronger
significance metric, the results presented convey the same message with either metric and are, in
our opinion, clearer when presented with SEM. In the main results that evaluate our contribution
(section 5.1), as well as when evaluating the agents against the original reward scheme (section 5.2),
mean and SEM are presented for 10 seeds for each agent. In the ablation study, due to the large
number of experiments, we evaluate the agents with 5 seeds per agent. To ease reproducibility, all
experiments were seeded with logged random seeds, sampled between 0 and 100000. This range
was chosen arbitrarily, expected to be high enough to induce a sufficient variety of seeds within the
total number of experiments ran in the process of this work (low hundreds).

4.5 Hyperparameter optimization

The purpose of the main evaluation presented in this work is to illustrate the effect of planning
to explore compared to the vanilla version of the algorithm. Further, as the the two versions of
the algorithm are not too different from each other, we expect that the majority of hyperparamer
optimization will effect all versions similarly. For this reason, no dedicated tuning of hyperparamers
was conducted as part of the experiments conducted in this work. The hyperparameters used were
chosen based on existing implementations for other environments in the original code base [23]. The
network architecture used for mountaincar was based on another implementation of MuZero [61]
that was evaluated against the Mountain Car environment.

Two main hyperparameters are exempt from this statement, however. These are: the temper-
ature parameter T and the exploration coefficient cσ introduced with our proposed methodology
for planning for exploration. Motivation and description of the reasoning behind the optimization
process and the process itself are provided in the following sections.

4.5.1 Temperatures
The temperature parameter is used by MuZero to decide the weights with which the action selection
in the environment is done by weighted random sampling. Specifically, the temperature parameter
T is used as follows:

at ∼ p(·), p(ai) ∝ (cai)
1
T

at is the action to be sampled at time t, and A = {a1, a2, ..., an} is the action space of the environ-
ment. cai

denotes the count of the number of visitations to the child associated with action ai in
the planning tree planned at step t. p(ai) denotes the probability of sampling action ai according to
the temperature and the visitation counts. When the temperature T → 0, the probability distribu-
tion collapses to greedy action selection according the the maximum number of visitations. When
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the temperature T →∞, the distribution becomes uniform. The temperature induces exploration
in the environment through random action selection weighted towards "better" actions from an
exploitatory perspective, according to the estimates of the tree. As the modifications proposed in
this work are meant to provide much more informed exploration, the temperatures used were lower
than the original configuration used by other implementations. The original range was 1 → 0.25,
and the modified range was 0.25→ 0.1. Exact hyperparameters are specified in appendix B.2.1.

4.5.2 Tuning the exploration coefficient cσ

The exploration coefficient cσ (see section 3.4) was tuned independently for each uncertainty mech-
anism used, and again per environment. The tuning aimed to achieve preference by the UCB of
un-visited states over everything else, and the goal-reward over anything except un-visited states.
The tuning was stopped upon observation that deep exploration was achieved successfully in most
seeds. The range of cσ investigated for the state-visitation-counting method was between 0.1 and
100 and was done using rough and then fine grid-search. The range of cσ investigated for the
ensemble-variance method was between 101 and 108 and was search with a rough and then fine grid
search.



Chapter 5

Results

In this section we present the evaluation of our methodology with different uncertainty mech-
anisms, against two environments with different reward schemes. The two environments, the
toy-environment Slide and the more standard for evaluation advanced exploration methods, the
Mountain-Car environment, are described in more detail section 4.3: Last, we present an ablation
study for the different training targets modifications proposed in section 3.5.

5.1 Evaluation against non-Markovian reward scheme

Figure 5.1 presents the results of planning-to-explore MuZero with either uncertainty estimation
mechanism, compared with vanilla MuZero, against both environments, under the non-Markovian
reward scheme which only provides positive reward upon reaching the goal state, and zero rewards
otherwise. Both versions of planning-to-explore learn reliably, quickly and stably, which demon-
strates the agents’ capacity to achieve reliable deep and directed exploration. The vanilla MuZero
fails to learn to arrive at the goal state in both environments under the learning-steps budget used.

5.2 Evaluation against negative-rewards scheme

Figure 5.2 presents the results against the original Mountain Car reward scheme: rewards of −1 for
each time step, only the goal is a true terminal state. The results include planning-to-explore agents
with either reward scheme, as well as vanilla agent. We observe that while all agents struggle to
learn against the Slide environment (the optimal policy is a consistent score of -60), the planning-
to-explore agents are able to learn to arrive at the goal in the Mountain Car environment.

5.3 Ablations study

In this section we present the results of an ablations study conducted on the different modifications
proposed in section 3.5 to allow an agent designed to learn with on-policy targets to learn from
dedicated exploration trajectories. We present ablations to investigate the individual effects of each
target adaptation on the learning process of the algorithm. Specifically, we present the following
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Figure 5.1: Vanilla MuZero vs. planning-to-explore with ensemble-variance uncertainty (exploratory ensemble), vs.
planning-to-explore with state-visitation-counting uncertainty (exploratory state visits), against both environments,
with the non-Markovian reward scheme. Our method achieves deep and directed exploration with both uncertainty
mechanisms.

Figure 5.2: Vanilla MuZero vs. planning-to-explore with ensemble-variance uncertainty, vs. planning-to-explore with
state-counting uncertainty, against both environments with Mountain Car’s original reward scheme: negative reward
of -1 at every time step, and only true terminal at the goal. In the Slide environment, only the method using state
visitations learns reliably. In Mountain Car however, both versions of our method demonstrate capacity for deep
exploration, as well as reliable and stable learning.
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Figure 5.3: Ablations study consisting of different value targets. All agents use max policy targets, alternating
episodes and double planning. zero-step targets show significant detrimental effect, while max value targets appear
to overcome this effect and achieves the best performance in terms of optimality of final policy and overall stability.

sets of ablations: 1) Value targets ablations, section 5.3.1; Policy targets ablations, section 5.3.2;
Double-planning ablations, section 5.3.3; Alternating exploration / reevaluation episodes ablations,
section 5.3.4. We conduct each ablation study against both environments. Finally, we discuss the
conclusions from the ablation study, in section 5.3.5.

5.3.1 Value targets ablation study
In order to investigate the effect of the different value targets proposed and considered in this
work, we compare four ablations. To separate the effect of the value ablations from the effect of the
other modifications, we use the following configuration in all value-targets ablation experiments: all
agents use alternating episodes, double-planning and max policy targets. The value target ablations
investigated are as follows: 1) zero-step value targets in all types of episodes, to evaluate
the detrimental effect of zero-step targets. 2) n-step value targets for all types of episodes,
to evaluate the detrimental effect of on-policy learning from off-policy trajectories. 3) zero-step
value targets in exploration episodes, n-step value targets for exploitation episodes, to evaluate if
using zero-step targets only on exploration episodes is sufficient to overcome the general detrimental
effect of zero-step targets. 4) max value targets for exploration episodes, n-step value targets
for exploitation episodes. To evaluate whether choosing on or off policy targets based on their
optimality is a sufficient metric to improve the learning of the algorithm, and overcome adverse
effects from the presence of zero-step targets. The results are presented in figure 5.3.

In both environments, the zero-step targets in all episodes have a significant detrimental effect.
This effect is so severe in the Mountain Car environment, that even when zero-step targets are
only used in exploration episodes the agent is unable to learn to arrive at the goal. The effect
of using n-step targets from negative-exploratory trajectories (on policy learning from off-policy
targets) does not appear significant in the results attained, and appears to influence mostly the
stability of the learning. Max value targets appear to have a slight advantage over n-step targets,
and mostly in stability. The advantage of max targets over the other two targets in the Mountain
Car environment however is substantial.
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Figure 5.4: Ablations study consisting of different policy targets. All agents use max value targets, alternating
episodes and double planning. The effect of using policy targets that follow an exploitatory policy in exploration
episodes (tree exploit. policy targets) is the most significant, and the most detrimental. Max policy targets appear
to overcome the detrimental effect that the exploitatory policy targets show, as well as induce additional learning
stability.

5.3.2 Policy targets ablation study
In order to investigate the effect of the different policy targets proposed and considered in this
work, we compare 3 ablations. To separate the effect of the policy ablations from the effect of the
other modifications, we use the following configuration in all policy target ablation experiments:
all agents use max value targets, alternating episodes and double-planning. The policy target
ablations investigated are as follows: 1) Exploratory-tree policy targets in exploration episodes,
to evaluate the effect of incorporating off-policy policy-targets. In exploitation episodes, the agent
always uses the same policy targets, which come from a regular, exploitatory, planning tree. 2)
Exploitatory-tree policy targets in exploration episodes, to evaluate the effect of policy targets
that may conflict with the learned values (see section 3.5.2). 3) Max policy targets in exploration
episodes, to evaluate whether this middle-ground provides significant gain over the others. The
results are presented in figure 5.4.

In the slide environment, all agents appear able to converge to a similarly optimal final pol-
icy. Exploitatory policy targets induce significantly slower learning, however. In Mountain Car,
the exploratory and max policy targets again achieve similar final policy-optimality, while the ex-
ploitatory has a more significant detrimental effect. In both environments however, having access
to exploratory trajectories’ policy targets (positive, or both) accelerates the learning significantly.
We note that under the reward scheme used in this experiment, exploratory policy targets from
negative exploration trajectories do not appear to have a significant effect on the learning of the
agent. This can be expected, considering that the exploration parameter is tuned such that upon
learning to achieve the goal, exploitation should overcome exploration in the decision making of the
agent (the modified UCB step in the planning tree).

5.3.3 Double-planning ablation study
In order to investigate the necessity for double-planning, we compare 2 ablations. The double-
planning ablations investigated are as follows: 1) No double planning max value targets, ex-
ploratory policy targets, alternating episodes. 2) Double planning max targets for both policy
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Figure 5.5: Ablations study consisting of configurations of the agents with and without double-planning. All agents
use max value targets and alternating episodes. In no double-planning all tree-approximations (such as the policy
targets and the value bootstrap) in exploration episodes are from exploratory planning trees. In the slide environment,
relying on exploitatory targets from accessible from double-planning appears to do nothing but slow the learning of
the agent. In Mountain Car however, double-planning appears to induce stability, and does not show any slowing
down of the learning.

and value, alternating episodes. The results are presented in figure 5.5. Against the slide environ-
ment, the no-double planning learns faster, if the difference in actual environmental steps is small
(about 2000 environmental steps). Against the Mountain Car environment, both methods provide
similar learning speeds. The learning stability of the double-planning ablation appears better.

5.3.4 Alternating episodes ablation study
In order to investigate the effect of alternating between exploratory / reevaluation episodes, we
consider two different sets of agents, one for each environment. First, over the slide environment,
the following agents are compared: 1) Alternating, max targets for both value and policy, to
evaluate the gain from alternating episodes with the agent that incorporates all ablations. 2) Non-
alternating, max targets for both value and policy, to compare with the above agent. During
learning, a non-alternating agents only performs exploration episodes. 3) Alternating, zero-step
value targets in exploration episodes, max policy target, to evaluate the expected balancing effect of
alternating episodes on the detrimental effect of zero-step targets. 4) Non-alternating, zero-step
value targets, max policy targets, non-alternating episodes, to compare to the above agent.

In the Mountain Car environment however, in figure 5.3, the severe detrimental effect of zero-
step value targets is already explored, both when the agent alternates with reevaluation episodes
and uses n-step value targets in them, as well as when the targets in those episodes are zero-step
targets. An agent that does not alternate with reevaluation episodes at all, and uses zero-step value
targets in all episodes (as with this configuration, all episodes are exploration episodes), can only
be expected to perform worse. Thus, instead we compare the following agents, that are expected
to provide a more interesting study: 1) Alternating, max targets for both value and policy,
to evaluate the gain from alternating episodes on the agent that incorporates all ablations. 2)
Non-alternating, max targets for both value and policy, to compare with the above agent.
3) Alternating, n-step value targets in exploration episodes, max policy target, to evaluate the
expected balancing effect of alternating episodes on the detrimental effect of n-step targets. 4)
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Figure 5.6: Ablations study consisting of different configurations of the agent, with and without alternating between
exploration and reevaluation episodes. The improvement compared to agents using zero-step value targets (Slide)
is more significant than against those using n-step value targets (Mountain Car). Additionally, in Mountain Car,
alternating episodes slows down the learning distinguishably. Still, the agent with alternating episodes as well as max
targets appears to achieve the most learning stability as well as most optimal final policy, if with meager statistical
significance.

Non-alternating, n-step value targets, max policy targets, non-alternating episodes, to compare
to the above agent. The results are presented in figure 5.6.

In the Slide environment, we can see that alternating episodes can be sufficient to overcome the
detrimental effect of zero-step targets. This result does not extend to the more complex Mountain
Car environment, as illustrated in figure 5.3 presented in the value-ablations section, where both
versions of the zero-step targets are unable to learn to arrive at the goal stably. In the Mountain
Car environment alternating between exploration and reevaluation episodes results in an identifiable
slowdown of the learning of the algorithm (the different time of the learning spike in the first 10000
environmental steps), which is to be expected, as the early reevaluation-episodes are "wasted" as
long as the goal state has yet to have been found. When looking at learning stability and stability
of final policy however, the dominating agent is the alternating, max-targets agent.

5.3.5 Conclusions from the ablations study
The adaptations for learning from off-policy, dedicated-exploration trajectories introduced demon-
strate an overall significantly positive effect on the learning under the conditions investigated.
Among the conditions investigated, the effects were the most significant against the more complex
Mountain Car environment. It is clear that removing the on-policy n-step value targets and re-
placing them with zero-step targets is not a sufficient modification in Mountain Car, and further
replacing them with max value targets can alleviate the problems arising from the use of zero-step
targets, without losing their benefits. While training with value targets that are exploitatory is
reasonable, training on policy targets that are exploratory (i.e. training the agent to follow its ex-
ploration policy in exploration episodes) appears preferable to training on policy targets that may
be conflicting with the value targets that are learned by the agent from positive exploration trajec-
tories. While the effect of max policy targets does not appear significant, we stipulate that this is
due to the environments being of one goal and zero reward in all other states. We would still expect
both the max value as well as the max policy targets modifications to provide the same or more
stable learning compared to the other targets in most environments, especially environments with
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rich reward schemes and multiple possible near-optimal policies. Double planning, which is mostly
responsible for providing access to exploitatory-targets, demonstrates an effect on the stability of
the final policy. Finally, alternating between exploration and reevaluation episodes can stabilize the
learning further, with the price of slowing it down by a distinguishable, if not necessarily significant,
margin.

To summarize, based on the results obtained, all the configuration of the different target-
adaptation mechanisms we propose recommend themselves when employing dedicated-exploration:
max value targets, max policy targets, double planning and alternating episodes between exploration
and reevaluation.



Chapter 6

Related Work & Discussion

This chapter summarizes related work that tackles similar problems to the ones approached in our
work, and discusses expected strengths and possible limitations of our method.

6.1 Related work

In this section we cover several branches of related work that are adjacent or overlap with different
aspects of our work. First, we discuss existing approaches to utilizing uncertainty in MBRL (section
6.1.1) including an approach that uses epistemic uncertainty in planning specifically for exploration
(section 6.1.2). Next, we summarize existing approaches for utilizing forms of uncertainty in MCTS
(section 6.1.3). That is followed by a description of existing approaches for using uncertainty to
achieve deep and directed exploration (section 6.1.4). Last, we discuss previous work on on policy
training from off-policy trajectories (section 6.1.5).

6.1.1 Model-based reinforcement learning under uncertainty
Probabilistic ensembles with trajectory sampling (PETS) [62] is an approach for uncertainty-aware
MBRL. PETS uses the cross entropy method (CEM) [63] for trajectory optimization, by proba-
bilistically sampling trajectories from an ensemble. [64] extends PETS to achieve Bayesian MBRL,
by introducing a new framework for model-predictive control (MPC), variational inference MPC.
This line of work however does not distinguish between aleatoric and epistemic uncertainty, nor is
uncertainty utilized specifically to drive exploration. [65] proposes an optimistic MBRL algorithm,
dubbed Hallucinated-UCRL (H-UCRL), aiming to achieve optimistic exploration with deep-MBRL.
H-UCRL relies on Upper-Confidence Reinforcement Learning (UCRL) [66], which optimizes jointly
over policies and models inside a set that contains statistically plausible models. H-UCRL combines
offline policy optimization with a learned model with online planning with a learned model. The
policy optimization step is executed prior to the start of every episode, and aims to provide the
agent with a policy that maximizes the most-optimistic plausible model, as well as a critic and the
optimistic-model itself. Following that step, an episode is executed in the environment. At every
step in the episode the agent executes online-planning with respect to the optimistic model, learned
policy and critic, to induce optimistic exploration in the environment.

47
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Calibrated DMBRL [67] proposes a different approach for using uncertainty estimates in DM-
BRL. Specifically, Calibrated DMBRL proposes to insert a model-recalibration step into the learning
process of the agent, in order to improve the probabilistic model used by the agent for its otherwise
unmodified DMBRL approach, with any DL uncertainty quantification method. This work’s contri-
bution is essentially orthogonal to the one proposed by our work, with the exception that our work
does not require the usage of probabilistic models, but rather, formulates discrete models as prob-
abilistic in order to estimate and utilize epistemic uncertainty. [68] proposes an MBRL approach
that is safety aware in systems with uncertainties. The work does not target exploration however,
nor are its contributions immediately extendable to other MBRL approaches. [16] is another ap-
proach that aims to achieve safe learning through awareness of uncertainty, but does not distinguish
between aleatoric and epistemic uncertainty. Another approach to MBRL is to use the model to
generate virtual data and train the RL algorithm against it as well as against (or sometimes instead
of against) data from the real environment [69].

6.1.2 Planning to explore in DMBRL
Another line of work on DMBRL algorithms that use planning with learned models, parallel to that
developed by DeepMind and culminating in MuZero, had been proposed in [52], [70]–[72]. One of
the later algorithms proposed in this line of work, Dreamer [71] (and later Dreamer-v2 [73]), are
very similar to MuZero in many aspects, in the components of the model they learn and the choice
to use it for planning. Two central differences between the two methodologies are that Dreamer
is trained with a standard actor-critic approach, and does not employ MCTS in its planning. A
recent work in this line has also proposed the idea of planning explicitly for exploration, dubbed
Plan2Explore [52]. The approach of Plan2Explore, while conceptually and on the surface very
similar, differs from our planning for exploration approach in several key aspects. First, the only
uncertainty that is taken into account by Plan2Explore is from disagreement over state representa-
tions in the dynamics model, while our method takes additional uncertainties: in value prediction
and reward prediction. Second, Plan2Explore does not conduct any explicit forward-propagation
of uncertainty, which is encapsulated in the fact that the uncertainties are estimated locally at each
imagined state in planning. In other words, the influence of the depth of a planning trajectory is
not directly taken into account in the uncertainty computation in Plan2Explore. Our framework
however is constructed specifically to evaluate and approximate the propagated uncertainty, both
forward (in the approximation of the local uncertainties, sections 3.2.1 to 3.2.3) and back (in the
value uncertainty, section 3.2.4), which induces different and potentially more robust uncertainty
estimates. Third, Plan2Explore uses the transition-uncertainty as imaginary-intrinsic-reward, and
propagates the uncertainty back as intrinsic reward, and not explicitly as variance. In comparison,
our method propagates the uncertainty explicitly as variance, which induces different back propa-
gation that is more theoretically motivated. Fourth, in Plan2Explore the planning is used explicitly
to train an exploration policy, that is used for sample gathering in the environment with which
an exploitatory policy will later be trained using offline-RL. Our method does not require training
of two policies, and also avoids the unexpected effects associated with learning a policy that is
optimized to maximize non-stationary reward-dynamics that are induced by learning intrinsic re-
wards that are based on decaying novelty of states, by planning to explore in real time rather than
learning to explore. Fifth, the Plan2Explore objective optimizes entirely for novelty of states (or
state-transitions). This design choice is made to enable fast adaptation to exploring new tasks with
unknown reward schemes. A consequence of this approach is an exploration policy that the extreme
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case aims to explore the entire environment’s state space, without prioritizing for more promising
regions with respect to the return. Exploring the entire state space in environments with large
state spaces is, while effective, highly inefficient. In contrast, rather than optimizing for the most
information gain (most novelty), our objective optimizes for the most relevant information gain,
by including the value estimate as well as the uncertainty in the planning objective. To summarize,
while the underlying idea is very similar between Plan2Explore and our planning for exploration,
both the approach as well as the details of the methodology differ significantly.

6.1.3 Planning with uncertainty in MCTS
[74] identifies a source of uncertainty that is unique to MCTS, and proposes methodology for uti-

lizing it in order to optimize the trajectory selection process in MCTS. As this approach does not
consider environmental epistemic uncertainty, but rather, planning-tree uncertainty, the contribu-
tion is orthogonal to the one proposed in our work. POMCP [75] is an approach that was proposed
in order to be able to perform MCTS in large POMDPs, and even continuous state and action
POMDPs. POMCP implicitly introduces uncertainty into MCTS by maintaining a probabilisticly
modelled Bayesian belief state over the state of the agent, using a particle filter. This approach was
extended in POMCPOW [76] and later in BOMCP [77]. This line of approach does not explicitly
utilize epistemic uncertainty to optimize decision making for exploration, but rather improves the
UCT operator used in the trajectory selection step to achieve better exploitatory decisions.

6.1.4 Utilizing epistemic uncertainty for exploration in RL
The work in [78] proposes to use epistemic uncertainty, as well as aleatoric uncertainty, to drive
informed exploration, in an on-policy, model-free setting using Thompson sampling [79] to uti-
lize the learned uncertainties for exploratory action selection. As this work proposes a model-free
methodology, it does not deal with any explicit propagation of uncertainty, in planning or otherwise.
The uncertainty Bellman-equation (UBE) [8] presents an analytically-motivated upper bound on
the (epistemic) uncertainty associated with Q-values, in the form of its variance. This quantity is
then used to drive exploration with Thompson sampling. This work does not involve model-based
algorithms however, and thus does not consider any transition-based uncertainty, whether in propa-
gation or otherwise. Bootstrapped-DQN [7], later extended with Bootstrapped-DQN with randomized
prior networks [40] aims to achieve deep and directed exploration by implicit estimation of epistemic
uncertainty. Rather than learning one approximator for the agent’s Q values, Bootstrapped-DQN
proposes to train an ensemble of approximators as a tractable, if crude, approximation for the pos-
terior distribution over possible Q-networks. Bootstrapped-DQN than proposes to epsilon-greedily
follow each estimators’ Q-value estimations during learning, relying on variety in the ensemble’s
estimations on un-known states to drive exploration into states that are unvisited, and enjoy a high
initial estimate with at least one of the ensemble members. Randomized prior networks were later
introduced into this methodology, to increase variety in ensemble predictions in untrained areas of
the state space.

The idea of intrinsic-motivation for exploration [32] has been proposed in RL in the form of
intrinsic reward [46]. When employing intrinsic reward, the agent learns a modified value function
that takes into account as a reward bonus a quantity that relates to the (epistemic) uncertainty
with this reward, or the transition associated with this reward. In other words, the original value
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function:

V π(st) = E[r(st, a) + γV π(st+1)|a ∼ π(st), st+1 ∼ P (·|st, a)]

Is modified with an uncertainty-related bonus:

V π
intrinsic(st) = E[r(st, a) + u(st, a) + γV π(st+1)|a ∼ π(st), st+1 ∼ P (·|st, a)]

Where u(st, a) denotes some bonus that decays as the epistemic certainty grows. Common uncer-
tainty bonuses are computed based on visitation counts [80], pseudo-counts [46] and others [48].
The intrinsic reward methodology allows for very effective, far-horizon uncertainty propagation.
Because the information about the uncertainty is immediately inserted into the value approxima-
tion, it propagates in every value-learning step, and only decays with time and training. The
introduction of intrinsic rewards into the value learning carries with it unintended consequences,
such as teaching the agent to explore rather than execute, at least in the earlier part of the training,
or requiring other algorithmic acrobatics in order to decouple the effect of learning the epistemic
uncertainty in the value function, with learning an optimally-exploitatory value function.

An inventive exploration approach dubbed go-explore [10] is vying for the title of the most
farsighted exploration of them all. Go-explore saves attractive-to-explore states explicitly, and exe-
cutes exploration by reaching them deterministically, and then exploring from the probabilistically.
While this method violates many assumptions that have been standard in RL so far, it is able to
achieve far above previous state of the art performance in many of the most challenging exploration
domains that RL has faced. One of the metrics go-explore uses to evaluate the attractiveness of
states for exploration is epistemic uncertainty.

6.1.5 On-policy training with experiences from off-policy trajectories
A recent work by [57] attempted to achieve greater sample efficiency by using information from
simulations done inside the MCTS planning tree in MuZero, as a source of additional virtual expe-
riences to train the algorithm, building on work done in [81]. The method proposed for generating
targets from these virtual experiences relies on a traversal of the MCTS planning tree that does not
necessarily follow the order in which the tree was created, which induces targets that are off-policy.
In order to incorporate these off-policy targets to MuZero’s training, the method proposed is to
modify the loss function by adding auxiliary value and policy losses from the simulated games. This
modification is not applicable to the challenge our method is required to overcome, of introducing
none-exploitatory trajectories into on-policy training.

6.2 Discussion

Advanced exploration can be expected to achieve the following goals: 1) Directed and informed
The method should be able to choose an action for exploration based on decision making that
transcends random action selection. 2) Directed over multiple time-steps If the exploration is
only able to choose one action every so often, the agent will be unable to direct itself towards areas
that appear attractive to explore, but are more than one local decision away. Therefor, the method
should be capable of executing a trajectory of consecutive exploratory actions. 3) Farsighted It
is very plausible that areas that are attractive to explore are some decisions away from the agent’s
current position (in the state-action transition space), and local information will not be sufficient
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to inform the agent of the existence of these areas. In other words, information that is relevant for
exploration is required to propagate from the areas that are attractive to explore, all the way back
to the agent’s current position. Our method is one of a small set of advanced-exploration methods
that expect to achieve all three goals, to some degree. In the following sections, we investigate the
extent to which our method achieves those targets.

6.2.1 Directed and informed
Our method combines epistemic uncertainty from different sources to choose decisions for explo-
ration by planning in real time. In that regard, the exploration provided by our method is both
directed (action selection is not arbitrarily-random) as well as informed (action selection is based
on epistemic uncertainty).

6.2.2 Directed over multiple time-steps
There is a large design space for deciding when to start exploring, for how long a period, and when
to stop, as investigated in recent work [82]. In the results presented, the two dominating candidates
for exploration periods were exploration that is interleaved in-episode for multiple time steps at
a time (intra-episodic), and exploration that lasts for an entire episode, every so-many episodes
(episodic). This is well in line with the assumption that in many environment, exploring one step
at a time is insufficient, and the exploration must be able to direct the agent over multiple time
steps towards far attractive areas of the state space. In our work, for simplicity of evaluation,
we chose to employ our method with episodic exploration, rather than intra-episodic exploration.
Regardless, both approaches are naturally usable with our method, and both approaches achieve
directness over multiple time steps, which is the target discussed in this section.

6.2.3 Farsighted
Possibly the most challenging goal to achieve out of the three, reliable farsightedness requires the
agent to effectively propagate possible-future information back over many steps into the agent’s
current state. Perhaps the most farsighted among the standard advanced-exploration methods
is the standard variation of intrinsic reward, which inserts local uncertainty information into the
agent’s value learning. This choice to propagate the uncertainty through the value function induces
that over time, the uncertainty can potentially be propagated over the entire state space. This
method, while able to propagate uncertainty through the entire learned-space of the value function
given time, nonetheless suffers from several drawbacks arising from the fact that the uncertainty
propagates through the values.
Slow propagation The information cannot propagate faster than the values themselves, which
depending on the value-targets used, can be as slow as one step into the future at a time when the
value targets are the standard vtargett = rt + γv(st+1). This can cause the method to require many
training steps to propagate the information sufficiently far.
Unreliable estimates in under-trained areas Intrinsic reward cannot expect to reliably propa-
gate information through values of states that are not trained on sufficiently often, for two reasons.
First, the information potentially has yet to propagate far enough, following the argument above.
Second, propagating the uncertainty, which is expected to decay in time with more interactions,
induces non-stationarity into the value function which may further reduce the reliability of under-
trained value estimates.
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On/off-policy challenges Propagating the uncertainty through the value function implicitly
trains an explicitly-exploratory policy. Since in RL we mostly wish to train exploitatory-policies,
the standard solution involves introducing an additional value function, that is trained side by side
but without the uncertainty. This creates the same set of challenges our method faces when incor-
porated into on policy algorithms that struggle to learn from trajectories that have been executed
following an exploratory policy.
Learning non-stationary values The values induced by intrinsic reward that decays with novelty
are by definition non-stationary. While the exact effects of learning non-stationary values are not
trivial to evaluate, it is generally considered to be a source for additional behavioral artifacts that
may cause unexplained and unwanted behavior in the learning and acting of the agent.

In comparison, our method is able to elegantly propagate epistemic uncertainty from future
states in real time without any of the effects introduced by learning the uncertainty through the
value function, by taking advantage of the planning that is already used by the agent. The choice
to propagate the information through the planning also induces the main limitation of our method
- farsightedness that is potentially limited in the depth of the plannig tree, which is at best linear
O(n) in the planning budget n, and at worst logarithmic O(log(n)). If the MCTS tree plans in
the same direction for an entire planning phase, the planning tree will take the form of a chain of
length n. This behavior is generally unwanted due to nonexistent exploration in the tree, and is
not generally the behavior expected when employing MCTS. On the other extreme, if the planning
tree plans evenly in every direction, the number of nodes n in such a planning tree of height h with
action space with cardinality |A| is n ≤ |A|h+1 − 1, and therefor h ≤ log|A|(n + 1) − 1. Thus, in
a general worst case, our method is able to propagate information only as far as O(log(n)). The
negative effect of this property is expected to decrease as the reliability of the uncertainty in the
values of leaves V ar[vleaf

k ] increases - the more far-seeing and thus reliable the uncertainty estimate
already is, the lesser the harm from not planning further. Increasing the reliability of V ar[vleaf

k ]
can be achieved by combining our method with UBE [8] which proposes a method for learning
upper bounds on the uncertainty in values.



Chapter 7

Conclusions & Future Work

In this chapter we discuss our conclusions, as well as possible directions for future work that arise
from our work.

7.1 Conclusions

Using the framework we propose for modelling epistemic uncertainty in planning with a determin-
istic model, along with the analytic motivation of the law of total variance, we answer the first
research question investigated in this work and develop methodology for approximating uncertainty
as it propagates in planning. To answer the second research question, we develop a new exploration
method, planning for exploration, that uses this framework to achieve deep exploration. The results
demonstrate the efficient and effective deep exploration achieved by the method, expressing the gain
from incorporating epistemic uncertainty into planning. These results are maintained even in the
presence of less-reliable uncertainty estimation mechanisms, such as the variance within an ensem-
ble, illustrating the resilience of the method to unreliability in uncertainty estimation, which is
currently proliferate among uncertainty estimation methods. To answer the last research question,
we introduce modular approaches for generating on-policy targets from off-policy exploratory tra-
jectories. The ablation study we conduct demonstrates the capacity of these approaches to enable
stable on-policy learning from exploratory trajectories. These approaches introduce an exciting
opportunity to incorporate advanced exploration into other on-policy algorithms.

We believe that the effective exploration achieved by incorporating epistemic uncertainty into
planning suggests that other approaches for more informed decisions making through planning
with epistemic uncertainty can be developed. The framework we propose for incorporating the
uncertainty provides a simple and convenient foundation that can be used for developing such
approaches. We explore part of this space in the following section.

7.2 Future work

We suggest several directions for future work, that naturally arise out of our work:
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7.2.1 Evaluation of state-abstraction propagation
Extending this work by introducing mechanisms to estimate the state-abstraction uncertainty
Σsk;a1:k−1,o, and evaluating their effect on the method through an ablation study, is perhaps the
most immediate of all opportunities for future work. We propose a simple approach for estimating
the state-abstraction uncertainty in the form of the same ensemble variance already used in this
work. In vanilla MuZero, there is no explicit loss for the state abstraction, which introduces a
challenge for using ensembles for this purpose. However, [83] proposes an extension to MuZero that
introduces an explicit state-abstraction loss that can be used to train such an ensemble.

7.2.2 Reliable planning
Our framework for epistemic uncertainty propagation immediately suggests an additional opportu-
nity for planning-reliability improvements. Specifically, in each step in the planning tree, the total
uncertainty associated with a certain estimate can drop, if the uncertainty after expansion is smaller
than or equal to the uncertainty before expansion:

V ar(vk+h; a0:k+h, o) < V ar(vk+h; a0:k+h−1, o) (7.1)

Or rise, otherwise (or in a limiting case stay the same). If the epistemic uncertainty grows, the
framework suggest that planning in this direction actually reduces the reliability of the new estimate,
compared to the old estimate. As the purpose of planning is to increase the reliability of estimates,
this immediately suggests that perhaps the tree should cease planning in this direction, both to
optimize its planning-resources allocation, as well as increase the quality of the estimates that result
from the planning.

7.2.3 Planning for reliable exploitation
Our method planning for exploration immediately suggests a method for planning for reliable ex-
ploitation. Rather than modifying the UCB to incentivize for planning in the direction of high
uncertainty, we can disincentivize planning in the direction of high uncertainty. In settings such as
offline-RL, where executing in untrained areas of the action space can lead to arbitrarily bad per-
formance, such planning can be expected to provide significant reliability to the final exploitation
policy.

7.2.4 Planning for exploration and exploitation in the same tree
An additional venue for future research related to planning resource optimization that we believe
would be attractive to pursue is in combining the double-planning effort into a single planning
tree, thus reducing the planning resources required by exploration episodes to the same planning
resources required by regular episodes. We believe this can be achieved by alternating within the
same planning tree between expansion-for-exploration and expansion-for-exploitation, and utilizing
the fact that the tree now employs two separate search heuristics as additional exploration within the
tree. Further separating the visitation counts to exploratory-purposed visitations and exploitatory-
purposed visitations can allow to retain the same action-selection in the environment employed by
MuZero, without any further modifications.
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7.2.5 Stabilizing through targeted sampling from the replay buffer in-
stead of sampling in the environment

In order to stably learn reliable exploitation policies despite acting exploratorily in the environment,
we proposed to alternate between exploration and practice episodes in the environment. As illus-
trated in the ablation testing, while this can indeed increase learning stability it induces a slightly
lower sample efficiency with many "wasted" practice episodes. To further increase sample efficiency,
we believe the same problem can be overcome by balanced sampling of practice and exploratory tra-
jectories from the replay buffer, instead of balanced acting in the environment. In fact, the already
parrallelized framework used by MuZero can be extended to use samples from MuZero’s existing
dedicated evaluation thread to keep a constantly updating practice trajectory in the replay buffer,
and alternating the sampling from the replay buffer between exploration and practice trajectories,
to achieve higher sample (and computational) efficiency as well as stable learning. If the sanctity
of evaluation is wished to be kept, a new dedicated exploitation thread can be added rather than
using samples from the evaluation episodes.
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Appendix A

Covariance Approximation

In this section we will elaborate on the motivation for the approximation of the covariance of a
nonlinear multivariate function f with respect to a random variable sk−1; a0:k−2, o used in section
3.2.1:

Cov

(
f
(
(sk−1; a0:k−2, o), ak−1

))
≈ JsΣsk−1;a0:k−2,oJ

T
s

To shorten notation, we will drop the dependence of sk−1; a0:k−2, o on a0:k−2, o from the notation
in the rest of this formulation, and use only sk−1 instead. Additionally, we will change notation to
Cov(f(sk−1, ak−1)) := Cov(fak−1

(sk−1)) , to emphasize that from the perspective of the covariance,
the constant ak−1 need not be considered an variable input of the function f . The first order Taylor
approximation of a general function g(x), multivariate in input as well as output, can be written as
g(x) ≈ g(x0) + Jg(x0)(x− x0) [84], where Jg(x0) denotes the Jacobian matrix of g at point x0. The
Jacobian matrix Jg(x) is the matrix of all the first derivatives of the multivariate function g with
outputs [g1 . . . gm]T , with respect to every variable xi ∈ [x1, . . . , xn]

T = x organized as follows:

Jg(x) := [
∂g

∂x1
. . .

∂g

∂x2
] =


∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
∂gm
∂x1

. . . ∂gm
∂xn


Substituting g for f and x0 for µsk−1

a mean-estimate of sk−1 and using the first order Taylor
approximation:

Cov

(
fak−1

(sk−1)

)
≈ Cov

(
fak−1

(µsk−1
) + Jfak−1

(µsk−1
)(sk−1 − µsk−1

)

)
Where the dimensionality m×n of the Jacobian matrix Jfak−1

(µsk−1
) is the length of the input state

vector µsk−1
, times the output state-estimate of f(µsk−1

) = sk, which is of the same dimensionality.
In other words, the matrix Jfak−1

(µsk−1
) is square and its number of rows and columns is the same

as the dimensionality of the state estimates sk. We will proceed to simplify the notation with
Jfak−1

(sk−1) := Js. Using the property that Cov(b+Ax) = ACov(x)AT , for a constant vector b, a
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constant matrix A and a random vector x:

Cov

(
fak−1

(sk−1)

)
≈ Cov

(
fak−1

(µsk−1
) + Js(sk−1 − µsk−1

)

)

= Cov
(
Jssk−1 − Jsµsk−1

)
= JsCov(sk−1)J

T
s

Finally, using the notation Σsk−1;a0:k−2,o := Cov(sk−1; a0:k−2, o) := Cov
(
sk−1

)
for the covariance

of sk−1; a0:k−2, o as used in section 3.2.1, we can arrive at the final approximation that is used in
the section:

Cov

(
f
(
(sk−1; a0:k−2, o), ak−1

))
≈ JsΣsk−1;a0:k−2,oJ

T
s



Appendix B

Implementation

The implementation used to evaluate the agent is accessible in [22]. This implementation was built
on the implementation by [23], which in turn is built on the official psuedocode released in the
original MuZero paper [2]. The implementation of the ensemble architecture was based on [85],
which is an implementation of the bootstrapped-DQN with randomize prior networks proposed
in [40]. In the following sections, we specify first the details of the network architecture used, and
second the hyperparameters used.

B.1 Network architecture

Two network architectures were used in this work to evaluate the planning for exploration method-
ology. These architecture are divided between agents that used ensemble-variance as an uncertainty
mechanism, and the agents that didn’t. Both architectures use blocks of feed-forward networks for
every estimator used by the agent: 1) the representation function g(o). 2) the transition dynamics
f(s, a). 3) the reward function r(s). 4) the value function v(s) and 5) the policy function π(s).
Representation function block This feed-forward network consisted of an input layer of size 1
(the dimensionality of the observation space), a hidden layer of size 16, and an output layer of size
4.
Transition dynamics function block This feed-forward network consists of an input layer of
size 7 (state-abstraction-encoding size of 4, and action space of 3), two hidden layers of size 16, and
an output layer of size 4.
Reward & value function blocks These two feed-forward blocks have identical architecture, con-
sisting of an input layer of size 4, two hidden layer of size 16 and an output layer of size support·2+1,
for a categorical representation of real numbers, as discussed in section 4.1.3. The support size used
was 15, for a output-layer size of 31.
Policy function block This feed forward block used an input layer of size 4, two hidden layers of
size 16, and an output layer of size 3, the size of the action space.
Ensemble architecture The architecture of networks used by the ensemble-using agents formu-
lated the relevant blocks (reward and value blocks) as ensembles rather than individual blocks. This
translates to having 5 (the ensemble size used) independent blocks of reward, and 5 of value. The
prediction from the block is taken as the average of the individual blocks’ predictions.
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B.2 Hyperparameters configuration

We divide the hyperparameters into 3 distinct classes: 1) planning for exploration target-adaptation
parameters, such as whether to use n-step or 0-step targets. These parameters are described in the
experimental setup, section 4. 2) Network-architecture details. These parameters are described in
a dedicated appendix, B.1. 3) Additional hyperparameters, such as number of training steps, batch
size, learning steps decay, etc. These hyperparameters are detailed in this section, in table B.1.

Slide Slide, abl. Mountain Car Mountain Car, abl. Comment
Num. of stacked obs. 1 1 1 1 -
Discount parameter γ 0.95 0.95 0.997 0.997 -
Planning nodes budget 30 30 200 200 1

Root dirichlet α 0.25 0.25 0.25 0.25 -
Root exploration fraction 0.25 0.25 0.25 0.25 -

UCB’s pb-c-base 19652 19652 19652 19652 2
UCB’s pb-c-init 1.25 1.25 1.25 1.25 3
Training steps 70000 45000 120000 100000 4Traning ratio 2.25 2.25 1.75 1.75

Batch size 128 128 128 128 -
Value-loss weight 1 1 1 1 5
Training hardware distributed CPUs distributed CPUs distributed CPUs distributed CPUs -
Learning rate λ 0.02 0.02 0.02 0.02

6Rate of decay 0.9 0.9 0.9 0.9
Decay steps csteps 500 500 2000 2000
Replay buffer size 500 500 1000 1000 -
Unroll steps in loss 10 10 10 10 -
n-step target’s n 50 50 50 50 -
Prioritized replay 0.5 0.5 0.5 0.5 7

Reanalyze True True True True 8

Table B.1: Hyperparemeters used in the results presented in chapter 5

We provide a list of comments for additional details regarding some of the hyper-parameters:

1. The number of nodes in each MCTS planning tree. Preliminary results in Mountain Car with
planning budget of 50, showed the same behavior as in the results presented in section 5.1
but with lower stability.

2. A UCB parameter used by MuZero’s MCTS variant. For more details, see [2].

3. A UCB parameter used by MuZero’s MCTS variant. For more details, see [2].

4. The implementation maintains a ratio of Training ratio between the training steps and the
environmental steps. A ratio of x represents x training steps for each environment steps. Ad-
ditional results attained but not presented in the work experimented with up to 300000 steps.
The behavior observed was the same as the one showed in the results presented. Observing
that the large number of training steps does not appear to be necessary to demonstrate the
capacity of our method, and due to compute and time resource limitations, the experiments
with the final hyperparameters, presented in chapter 5, were conducted with a smaller number
of timesteps.

5. MuZero enables scaling of the different losses in the loss computation independently.
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6. The learning rate decay is computed as follows: λρn/csteps , for n the current training step
count.

7. The sampling-priorities of trajectories in the replay buffer are computed as the absolute value
of the difference between the value and the value target, to the power of this hyperparameter.

8. The rudimentary implementation of MuZero-Reanlyze used in this implementation replaces
old value estimates from planning trees, with new value estimates from the value function.

B.2.1 Temperatures
Two ranges of temperatures were used in each environment. The regular temperatures were used to
evaluate the vanilla agent, while the low temperatures were used to evaluate the exploratory agent.
The exact temperature values are specified in table B.2. The regular temperatures’ values switched
at 0.3, and 0.5 of the total training step budget. The low temperatures’ values switched at 0.3, 0.5
and 0.75 of the total training step budget.

Slide Mountain Car
Regular 1.0, 0.5, 0.25 1, 0.5, 0.25

Low 0.75, 0.25, 0.175, 0.02 0.5, 0.25, 0.175, 0.1

Table B.2: Temperature ranges used in this work



Appendix C

Training

The training framework used in this implementation, developed based on the implementation by
[23], which is in turn based on the framework proposed by Deep Mind in [2], is highly parallelized.
It consists of several dedicated threads: a replay-buffer worker, shared-storage worker, reanalyze
worker, training worker, self-play workers, as well as a master worker. The replay-buffer worker
maintains the replay buffer. The shared storage maintains the weights of the networks, as well
as other information such as current environmental steps, trained steps, last reward, etc. The
reanlyze worker iterates over the replay buffer, samples games uniformly randomly, and replaces
the value target bootstraps’ from old MCTS-planning trees’ value estimates, to outputs of the
current value function. The training worker randomly samples trajectories from the replay buffer
according to a priority. In order to prevent over-training on a small amount of data, the trainer
maintains a constant ratio, which is a specifiable hyperparameter, between the trained steps and
the environmental steps. The self-play workers update the weights of their networks from the
shared-storage at the start of each episode, play an episode, and store the relevant information in
the replay buffer and shared storage. Finally, the master worker runs a constant evaluation of the
agent, by running greedy evaluation episodes, that are not used for training, with the most recent
version of the weights of the trained networks, from the shared storage.

We trained the agent on a non-stationary, distributed computation architecture using the
TUDelft’s INSY computation-cluster operating based on SLURM [86]. The architecture is none-
stationary in the sense that different computation nodes with different hardware were provided by
the cluster for each experiment independently. All agents were trained on CPUs. Training on GPUs
was not dimmed necessary due to the relatively small size of the network-architectures used.
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