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Abstract

Background: In Overlap-Layout-Consensus (OLC) based de novo assembly, all reads
must be compared with every other read to find overlaps. This makes the process
rather slow and limits the practicality of using de novo assembly methods at a large
scale in the field. Darwin is a fast and accurate read overlapper that can be used for de
novo assembly of state-of-the-art third generation long DNA reads. Darwin is designed
to be hardware-friendly and can be accelerated on specialized computer system
hardware to achieve higher performance.

Results: This work accelerates Darwin on GPUs. Using real Pacbio data, our GPU
implementation on Tesla K40 has shown a speedup of 109x vs 8 CPU threads of an Intel
Xeon machine and 24x vs 64 threads of IBM Power8 machine. The GPU implementation
supports both linear and affine gap, scoring model. The results show that the GPU
implementation can achieve the same high speedup for different scoring schemes.

Conclusions: The GPU implementation proposed in this work shows significant
improvement in performance compared to the CPU version, thereby making it
accessible for utilization as a practical read overlapper in a DNA assembly pipeline.
Furthermore, our GPU acceleration can also be used for performing fast Smith-
Waterman alignment between long DNA reads. GPU hardware has become commonly
available in the field today, making the proposed acceleration accessible to a larger
public. The implementation is available at https://github.com/Tongdongq/darwin-gpu.

Keywords: Genomics, Read overlapper, De novo assembly, Long DNA reads, GPU
acceleration
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Background
DNA sequencing techniques used today produce short pieces of data (called reads) that
represent parts of the sampled DNA, possibly containing some errors. The length and
error rate of these reads depends on the sequencing technique used. DNA assembly tries
to combine the reads into larger, more accurate DNA segments. For these DNA reads,
graph-based assemblers are used for the assembly process, which comes in two flavors:
Overlap-Layout-Consensus (OLC) and de Bruijn Graph (dBG).

The OLC assemblers [1] first find overlaps and build an overlap graph. Each node rep-
resents a read, and each edge represents an overlap between two reads. During the layout
phase, the graph is analyzed to find paths, corresponding to segments of the original
genome. The perfect graph contains one path that visits each node exactly once. This
problem can be described as finding a Hamiltonian Path. A Hamiltonian Path includes all
vertices of a graph exactly once. Examples of assemblers that use the OLC approach are
Dazzler [2] and SGA [3].

In dBG based assemblers [4], each read is divided into K-mers. A K-mer is a substring
of a read having a length K. Each K-mer represents a directed edge between two vertices,
where the source vertex represents the first K − 1 bases of the K-mer, and the destination
vertex the last K −1 bases of the K-mer. When a particular K −1 vertex does not exist, it is
created, otherwise, the existing one is reused. The weights of the edges indicate how many
times a particular K-mer is encountered. The next step is to find an Eulerian Path, which
is a path that includes all edges of a graph exactly once. Examples of dBG assemblers are
Velvet [5], ABySS [6] and SOAPdenovo2 [7].

So called Next Generation Sequencing (NGS) techniques produce reads with lengths
anywhere from 50 to 500 base pairs. They can be produced at high throughput but at the
expense of a smaller read length. However, DNA can contain repeat regions, where a cer-
tain piece of DNA is repeated many times back-to-back, or a repeat could appear in many
different places in the genome. Since these repeats can be longer than the produced short
reads, this means the reads cannot be used to resolve these repeat regions. Third genera-
tion sequencing produces much longer reads, of up to 60K base pairs. Due to their length,
these reads are more likely to contain a whole repeat region, which makes them suitable
for accurately reconstructing the repeat regions. A major drawback of longer DNA reads
is their higher error rate, ranging from 15-30%, depending on the exact sequencing tech-
nology. dBG based assembly is the more preferred approach for NGS reads, which are
much shorter and have much lower error rates. However, de Bruijn Graphs are quite sus-
ceptible to sequencing errors, since one substituted base pair causes K incorrect K-mers.
Pair this with an often-used values of K above 50 and third generation sequencing error
rate of about 15%, it is clear that the graph will contain a lot of incorrect edges. Therefore,
OLC based assemblers are more suitable for state-of-the-art third generation long DNA
reads produced by Pacbio and Oxford Nanopore sequencers.

Darwin [8] is a read overlapper for the assembly of long DNA reads. Darwin is designed
to be highly accurate, achieving a sensitivity of 99.89% and a precision of 88.30% for
simulated Pacbio reads. This is higher than other commonly used read overlappers
such as Daligner [2]. The ASIC (Application-Specific Integrated Circuit) implementa-
tion of Darwin is shown to be hundreds of times faster than other software based
overlappers. However, ASIC implementation requires bulk volume production to be eco-
nomically feasible. Moreover, DNA analysis using high-throughput DNA sequencing is
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an evolving field, and any major improvement in the algorithm will require a new ASIC
implementation which costs both time and money.

Heterogeneous systems with GPU accelerators have become easily accessible due to
their widespread use. They have shown convincing speedups in many high performance
computing applications. Therefore, GPU acceleration of various genome analysis algo-
rithms has been the topic of many research works, like in [9, 10] and [11]. In this paper,
we present a GPU accelerated version of Darwin. We identified the computational bot-
tleneck in the Darwin software and replaced it with the GPU accelerated version. The
accelerated implementation proposed in this paper is orders of magnitude faster than its
software counterpart. The contributions of the paper are as follows:

• The paper shows the GPU implementation of the Darwin read overlapper used in the
de novo assembly of long DNA reads.

• The paper shows that the GPU acceleration of Darwin is orders of magnitude faster
than the multithreaded software version on both IBM Power8 and Intel Xeon
machines using a real Pacbio dataset.

• The results in the paper show that the GPU implementation of Darwin can also be
applied for accelerating Smith-Waterman alignment of long DNA reads.

Background
Smith-Waterman (SW) [12] algorithm finds local alignment between a pair of sequences.
Smith-Waterman is exact, producing the optimal local alignment. It can be implemented
using dynamic programming which computes a 2D matrix S. Let V and W be the two
sequences to be aligned. Let V0, V 1, . . . , V|V |−1 and W0, W 1, . . . , W|W |−1 be the bases of
V and W, respectively. |V | and |W | are the lengths of V and W. S(i, −1) = S(−1, j) = 0
for i = 0, 1, 2 . . . , |V |− 1 and j = 0, 1, 2 . . . , |W |− 1. The cells in the matrix are computed
using the following recurrence relation:

S(i, j) =max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(i − 1, j) + gap
S(i, j − 1) + gap
S(i − 1, j − 1) + subt

(
Vi, Wj

)

0

(1)

mi,j =
{

(i, j) S(i, j) > m
mi,j S(i, j) ≤ m

(2)

m =max
{

m
S(i, j)

(3)

D(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 S(i, j) = 0
↑ S(i, j) = S(i − 1, j)
← S(i, j) = S(i, j − 1)

↖ S(i, j) = S(i − 1, j − 1) + subt
(
Vi, Wj

)

(4)

Here, S and D are the score and traceback matrices, respectively. match, mismatch and
gap are numeric parameters. subt

(
Vi, Wj

)
is equal to match if Vi = Wj, and is equal to

mismatch otherwise. gap is the penalty for inserting a gap. m is the alignment score, which
is initialized to zero, and mi,j is the corresponding position on V and W. The traceback
matrix is required to compute the actual alignment. Traceback starts from the highest
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scoring cell and follows the arrows in D until a zero or a boundary of the matrix is encoun-
tered. Equations 1 and 3 indicate that for computing the alignment score m there is no
need to store the whole S matrix as all cells of the S matrix are computed using only the
values of three other cells S(i − 1, j), S(i, j − 1) and S(i − 1, j − 1). Hence, to compute the
alignment score, storing only the values in the previous row and column are sufficient
to compute m. The above equations are for calculating the alignment with a linear-gap
scoring model. However, Darwin and our GPU implementation also support the more
commonly used affine gap penalty model in which there are separate penalties for opening
a gap (gapo) and extending a gap (gape).

A straightforward way of finding all overlaps is performing an alignment algorithm,
such as Smith-Waterman, on every pair of reads. The number of alignments is quadratic
with the number of reads, and the runtime of one alignment is quadratic with the lengths
of the involved reads, making this method not feasible. Many heuristic algorithms have
been developed to perform this alignment, for different lengths and error rates. Seed-and-
extend is one heuristic, which dramatically reduces the amount of computation needed
[13]. A seed is a K-mer made up of K consecutive bases of a read. Instead of performing
Smith-Waterman on each read pair, only read pairs that have one or more common K-
mers are aligned. A common K-mer between two or more reads is known as a “seed hit”.
Darwin also uses the seed-and-extend approach, which reduces the amount of computa-
tion needed, without compromising the output by much. Other algorithms, like BLAST
[14], also use the seed-and-extend approach, but give sub-optimal alignments. Results in
[8] show that Darwin provides optimal Smith-Waterman alignments between long DNA
sequences with error rates up to 40%.

Darwin

Darwin is read overlapping algorithm for de novo assembly of third-generation long DNA
reads. It is based on the seed-and-extend. It consists of a filter called D-SOFT (Diagonal-
band Seed Overlapping based Filtration Technique), which finds seed hits, and GACT
(Genome Alignment using Constant memory Traceback), which extends the seed hit by
performing sequence alignment between the sequences on the left and right of the seed
hit. Figure 1 shows the seed-and-extend technique employed in Darwin to find the overlap
between Read A and Read B. To compute the overlap, a seed hit is extended on both sides
by aligning R_left with Q_left and R_right with Q_right. This speedups the computation by
avoiding the computation of a large number of dynamic programming matrix cells (grey
cells in Fig. 1).The dynamic programming matrix computed to align R_left with Q_left is
known as left extension matrix. Similarly, the dynamic programming matrix computed to
align R_right with Q_right is known as right extension matrix.

D-SOFT

D-SOFT is the seeding stage of Darwin, also known as the filtering stage. Darwin uses
minimizers [15] as seeds which are K-mers extracted from all the reads to be overlapped.
The position of a seed is stored in a minimizer table which records the location of the seed
in a read along with the identifier of the read. The window size w is the most important
parameter for building a minimizer table and must be smaller than the seed length (K).
To obtain seed hits, ‘N ’ K-mers of a read are used as seeds that are located in other reads
using the minimizer table. Two reads are considered for alignment in the extension phase
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Fig. 1 The seed-and-extend method used in Darwin to find the overlap between Read A and Read B. R_left
and R_right are the substrings of Read A. Q_left and Q_right are the substrings of Read B

if they have at least h unique bases in common. The pair of reads passing this filter are
aligned using a modified Smith-Waterman algorithm described below.

GACT

The seed-and-extend approach to find overlap between two reads is much faster than
performing the complete Smith-Waterman alignment algorithm. However, the reduced
dynamic programming matrices could still be quite large. State-of-the-art third genera-
tion sequencers produce reads having lengths in megabases and the dynamic program-
ming matrix in the seed extension may have around 1 Tera cells to compute. For example,
if the seed hit lies at the beginning of the two reads, i.e. near the top left corner in Fig. 1,
the right extension matrix is nearly as large as the full matrix.

Numerous efforts to accelerate Smith-Waterman have been made, both by using hard-
ware like [16] and software [17]. But the memory required to store the traceback matrix
D is still an issue. One can apply the Hirschberg’s algorithm described in [18] to reduce
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the RAM storage but at the cost of increase in computation time. Therefore, Darwin pro-
posed the GACT algorithm for seed extension. It has two advantages: 1) All the cells of
the right and left extension matrix are not computed reducing the computation time.
2) The traceback matrix is very small. GACT performs normal Smith-Waterman on a
submatrix of the extension matrix, known as tiles of size TxT. After computing a tile it
computes the next tile, which overlaps the previous tile with at least O cells on both axes.
For reasonable values for T and O, GACT has shown to produce the same result as nor-
mal Smith-Waterman [8]. Figure 2 shows an example of computing the extension matrix
with the GACT algorithm. In the example T = 8 and O = 3. The tiles are computed
in the order T1, T2, T3 and T4. The example in Fig. 2 can be used to explain both the
computation of left and right extension matrices. The only difference is R = R_right and
Q = Q_right in case of right extension, where R_right and Q_right is the reverse of R_right
and Q_right sequences, respectively. Listing 1, shows the algorithm for left extension.
Positions i_curr and j_curr are produced by D-SOFT. The start and end position of the
current tile are stored in (i_start, j_start) and (i_curr, j_curr), respectively. The traceback
path of the whole left extension is kept in tb_left. The function Align() uses Smith-
Waterman to compute traceback matrix D between subsequences R_tile and Q_tile. Once
the traceback matrix is filled, traceback is performed starting from the bottom-right cell,
except for the first tile, where traceback starts from the highest-scoring cell. The starting
cells of the traceback are coloured yellow in Fig. 2. Align() returns the number of bases in
R and Q aligned by this tile (i_off,j_off ), the traceback arrows/pointers (tb) and the posi-
tion of the highest-scoring cell (i_max,j_max). Align() also limits i_off and j_off to at most

Fig. 2 An example of the GACT algorithm



Ahmed et al. BMC Bioinformatics 2020, 21(Suppl 13):388 Page 7 of 17

Listing 1 GACT algorithm

t b _ l e f t = [ ]
( i _ c u r r , j _ c u r r ) = ( i _ s e e d , j _ s e e d )
t = 1

while ( i _ c u r r > 0 and j _ c u r r > 0 )
{

( i _ s t a r t , j _ s t a r t ) = (Max ( 0 , i _ c u r r − T) , Max ( 0 , j _ c u r r − T
) )

( R _ t i l e , Q _ t i l e ) = ( R [ i _ s t a r t : i _ c u r r ] , Q[ i _ s t a r t : i _ c u r r
] )

( i _ o f f , j _ o f f , i_max , j_max , tb ) = Align ( R _ t i l e , Q _ t i l e , t ,
T−O)

t b _ l e f t . Prepend ( tb )
i f ( t == 1 ) {
( i _ c u r r , j _ c u r r ) = ( i_max , j_max )
t = 0
}
i f ( i _ o f f == 0 and j _ o f f == 0 ) {
break ;
}
e l s e {
( i _ c u r r , j _ c u r r ) = ( i _ c u r r − i _ o f f , j _ c u r r − j _ o f f )
}

}
return ( i_max , j_max , t b _ l e f t )

T − O bases, to ensure the next tile overlaps by at least O bases on both R and Q. The
green arrows shows the path taken by the traceback in a tile if there is no limit and the
traceback is allowed to complete. The left extension finishes when it hits the end of R or Q,
or when traceback cannot add any bases to the existing alignment. The memory needed
for the traceback is O

(
T2), which is constant since T is chosen upfront. The whole align-

ment of the extension is contained in tb_left and is equivalent to the path traced by the
red arrows in Fig. 2. The alignment score of the extension can also be computed with the
help of tb_left The right extension operates on the reverse of R and Q.

The performance of GACT is linear (O(max{|ReadA|, |ReadB|} ·T)) where |ReadA| and
|ReadB| are the lengths of Read A and Read B, respectively. It is more suited for long reads
than banded alignment [19] because banded alignment uses a static band around the main
diagonal. GACT allows for flexible bands since the position of the new tile depends on
the traceback path, this is useful for long reads that have high indel rates.
GPU processing

A GPU is a Graphics Processing Unit, which is a processor that is mainly used to perform
video processing. GPUs contain many cores that allow them to perform parallelizable
tasks very quickly. A GPGPU, or General Purpose GPU, can be programmed to perform
tasks that are different from video processing. GPUs cannot operate on their own, they
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must be guided by a CPU. The functions that run on a GPU are called kernels and are
usually launched by a CPU.

CUDA is a parallel programming platform that allows people to use Nvidia GPUs for
their applications. Developers can write kernels, launched from a CPU function. The GPU
is referred to as device and the CPU as host. Kernels can be launched from the CPU with
a certain number of thread blocks with each block containing many GPU threads. The
number of blocks and the number of threads in a block are the kernel launch parameters.
Each thread executes the kernel code, although they usually operate on different data.

On a hardware level, an NVIDIA GPU is divided into Streaming Multiprocessors (SM).
Each SM contains several cores, or Streaming Processors (SP), these are the basic building
blocks and perform the actual calculations. Each block is assigned to at most one SM.
This block’s threads are then executed as warps, with 32 threads per warp. Each SM has
multiple warp schedulers, so multiple warps can run in parallel on an SM. All threads in a
warp must execute the same instruction, if a thread is the only to take a branch, the other
threads must wait until the branch is completed, this is called thread divergence.

GPUs have several different memory types and levels. It has its own DRAM known as
the global memory and a cache shared by all SM’s. Accesses to the global memory are also
executed in parallel, this means that all threads try to read/write to the memory in parallel.
If the addresses are next to each other, only one memory transaction is needed, since a
transaction processes a whole memory line. This is known as coalescing. Non-coalesced
memory accesses cause multiple memory transactions.

A general workflow using a GPU is:

1 Data is copied from the main memory to the GPU global memory.
2 The CPU launches the GPU kernel.
3 The GPU executes the kernel.
4 Results are copied from the GPU to the CPU memory.

Previous research

Multiple efforts to accelerate the DNA alignment algorithm on GPU have been made.
MUMmerGPU [20] is one of the first GPU accelerated algorithms, it stores a suffix tree of
the reference sequence on the GPU, and aligns it with queries. Its newest GPU implemen-
tation shows a 13x speedup over the CPU implementation. CUDAlign [21] accelerates the
exact Smith-Waterman algorithm and allows an affine gap. The input sequence length is
only restricted by the available global memory. It uses linear space and boasts a 702x and
19.5x speedup compared to 1 core and 64 cores, respectively. CUSHAW2-GPU [22] is
an accelerated short read aligner. Other work has been done on accelerating BWA-MEM
[23] and Protein database search [24].

Implementation
Profiling

We measured the runtime of various elements of the Darwin algorithm on the CPU. Two
notable parts are D-SOFT (which consists of building the minimizer table, and finding the
seeds) and aligning using GACT. Of those two, the Align() function in GACT (Listing 1)
takes the most time, namely 99.9% for Pacbio reads. Therefore, we accelerated the Align()

function on GPU. We selected a tile size T of 320 as it gives optimal Smith-Waterman
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alignment scores [8]. With this setting, 63% of the tiles are exactly 320x320. The remaining
tiles are smaller as they occur near the edges of R-Q matrix (Fig. 2). If some GPU threads
have a smaller tile size, it will cause some divergence, because they will have to wait until
the threads with larger tile sizes are finished.

Acceleration

It is possible to run the whole GACT kernel on the GPU, for both left and right exten-
sion. However, since it is not known how long the resulting alignment will be, and all GPU
threads have to wait until all threads are done, this will cause lots of idle time. Instead, it is
chosen to only have a single tile of size TxT aligned per GPU-thread per GPU-invocation
as shown in Fig. 3. The Align() function for many different R, Q pairs are executed in
parallel on the GPU. Figure 4 shows the flow graph of GPU accelerated Darwin. It has
two GPU kernels shown by green processes in the flow graph. All other tasks are per-
formed on the CPU. The CPU builds the minimizer table using all the reads for which
the overlaps have to be computed. The accelerated algorithm processes a set of reads to
exploit the massive parallelism of the GPU. The CPU first computes the seed hits for all
the reads in the set using the D-SOFT algorithm. With the help of the seed hit location
the sequences for the left and right extension matrices are determined. i.e. (R_left,Q_left)
and (R_right,Q_right). One tile (R_tile, Q_tile pair) from each extension matrix is assigned
to a GPU thread for alignment. All the tile alignments are computed in parallel on the
GPU. There are enough seed hits, and hence sufficient extension matrices in the set of
reads to fully utilize all the GPU resources. In the post-processing step, full alignment of
the extension using tb_left (and tb_right for right extension) is constructed on the CPU.
As described in the “Profiling” section all the tasks other than computing the alignment
between R_tile and Q_tile takes a negligible amount of time on the CPU.

To reduce the GPU memory accesses, the alignment is preceded by a packing step as
indicated in the flow graph of Fig. 4. The bases of both sequences are packed in a 4-bit for-
mat, where 8 bases are packed into a 32-bit integer. This packing is performed on the GPU
and it is hundreds of times faster than packing bases on CPU [25]. To align R_tile with
Q_tile, we extended the local alignment kernel of GASAL (GPU Accelerated Sequence
Alignment Library) library [25]. The tile is subdivided into submatrices of size 8x8. Since
there are 8 bases in one integer, only two global memory accesses are required to com-
pute a single submatrix. The layout of a tile computed on the GPU is shown in Fig. 5.
Each green box contains an 8x8 submatrix. The submatrices are computed in the order

Fig. 3 GPU thread assignment for parallelization of the tile computation in GACT. th is a GPU thread
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Fig. 4 The flow graph of GPU accelerated Darwin. The green boxes are GPU kernels
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shown by their number. The arrows in the submatrix number 4 show the order of compu-
tation of the dynamic programming cells in a submatrix. The figure shows that the Q_tile
sequence is read multiple times. Hence, packing the sequence with 4 bits per base helps
to keep it in the cache for faster access. It is clear from Eqs. 1-4 that to compute a column
of the submatrix only the cells in the left column and the row above it are required. The
required column and row are colored blue in Fig. 5. The column has only 8 elements, and
hence can be stored in GPU registers. Therefore, the total amount of memory required
is O

(
T + T2), where O(T) is required for computing maximum alignment score m and

O
(
T2) for storing the traceback matrix D. Algorithm 1 shows the GPU implementation

of the Align() function. The pseudocode above Line 4 is for computing the position of
maximum alignment score (imax, jmax) and the traceback matrix D. Observe that the all
the writes in D are coalesced to optimize the memory bandwidth and reduce the number
of memory transactions. The pesudocode below Line 4 is for computing the traceback
path tb. The GPU accelerated Darwin supports both linear as well as affine gap penalties.
Algorithm 1 shows the alignment using the linear gap penalties. The algorithm with affine
gap penalties has a similar layout and omitted here for brevity.
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Fig. 5 Layout of the tile computed on the GPU. Each green box is a 8x8 submatrix

Sequence alignment of long DNA sequence is a performance bottleneck in genome
analysis algorithms. The results of Darwin alignment are same as for normal Smith-
Waterman for reasonable values of T and O. Hence, the Darwin algorithm can also be
applied for Smith-Waterman alignment between two long DNA sequences and our GPU
implementation of Darwin can be used to accelerate Smith-Waterman alignment (with
traceback) for long DNA sequences.

Results
We compared our GPU acceleration with the hand-optimized CPU version of Darwin
[26] (commit: 16bdb81). Tests are performed on both IBM as well as Intel machines. The
IBM machine (S824L) has 2 sockets with each socket containing a 10-core POWER8 @
3.42 GHz processor. Each core has 8-way Simultaneous Multithreading. Hence, there are
160 logical cores in total. The machine has 256 GB of RAM and a Tesla K40m. The CUDA
version is 7.5, and the operating system is Ubuntu 3.19.0-28-generic. The GCC version is
4.9.2.

The Intel machine has 2 sockets with each socket containing a 6-core Xeon E5-2620 @
2.4 GHz processor. Each core has 2-way Hyperthreading. Hence, there are 24 logical cores
in total. The machine has 32 GB of RAM and a Tesla K40c. The CUDA version is 9.2, and
the operating system is CentOS 7.5. The GCC version is 4.8.5. The K40c and K40m have
the same performance, the only difference lies in their cooling method.

We use Pacbio 54x Human sequencing data [27]. The data has a size of 172 giga-
bytes containing 21,856,161 reads. Since the runtime of the experiments has a quadratic
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relationship with the number of reads, we use first 50 megabytes (8566 reads) as the
input dataset to finish the experiments in a reasonable time. Even with 50 megabytes
input dataset, the CPU implementation takes more than 2 hours to run on 8 threads
of the Intel machine (Fig. 8). The input dataset contains reads up to 33 kilo bases long
with an average read length of 6 kilo bases. Darwin computes the overlaps between the
reads in the input dataset. The settings for GPU and CPU implementation are as follows:
match, mismatch, gapo, gape = (1, −1, −1, −1), N = 800, T = 320, O = 120, K = 14,
h = 21, w = 1.

Since our GPU implementation accelerates only the Align() function on the GPU, every-
thing else is executed on the CPU with multiple threads. Each CPU thread launches
a batch of R_tile and Q_tile sequences to be aligned on the GPU. Since all these CPU
threads share a single GPU, it is necessary to investigate how the choice of numbers of
CPU threads, number of GPU blocks and the number of threads in a block affect the
performance. Figure 6 shows the total execution size for various settings of these fac-
tors. The figure shows that the fastest execution time is obtained with 8 CPU threads
running with the GPU launch parameters of 32 blocks and 64 threads per block. We per-
formed a similar analysis for the Intel machine and found that 8/32/64 is the best setting
in the case of the Intel machine as well. Therefore, we used the 8/32/64 ((Number of CPU
threads) / (number of blocks) / (number of threads per block)) setting for running the
GPU implementation in the remainder of the experimental results.

Figure 7 shows the total execution time of the CPU implementation of Darwin and
compares it with the total execution time of the GPU accelerated Darwin, for the IBM
machine. Note that the y-axis of the figure represents a logarithmic scale due to the
high speedup achieved by the GPU implementation. The CPU implementation is run-
ning with 64 threads, which gives nearly the fastest execution time. Two GPU times are
reported: “GPU” and “GPU-coalesced”. “GPU” is the time without coalescing the accesses
to the traceback matrix D. The figure shows that the GPU acceleration without coalesc-
ing is 2.4x faster than the CPU implementation. Coalescing further accelerates the GPU
implementation by 10x to achieve an overall speedup of 24x.

Fig. 6 Total execution time of GPU accelerated Darwin for different values of number of CPU threads,
numbers of blocks and block size on an IBM machine
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Fig. 7 Total execution time of the Darwin’s CPU implementation and GPU accelerated Darwin, on the IBM
machine. The CPU implementation is running with 64 CPU threads

Figure 8 show the comparison of total execution times on the Intel machine, again with
a logarithmic scale on the y-axis. The CPU implementation is running with 8 threads,
which gives nearly the fastest execution time. The non-coalesced GPU implementation
achieves a speedup of 11.8x over the CPU. With coalesced memory accesses the speedup
becomes 109x. Figures 7 and 8 indicate that coalescing helps to improve the speedup
by around 10x. This happens due to efficient utilization of large GPU global memory
bandwidth.

The above results were obtained with the linear-gap penalty model which is also the
default setting in Darwin. However, Darwin and hence our GPU acceleration also sup-
port the affine gap model. Table 1 shows the total execution time of the CPU and GPU
implementation of Darwin for various values of match, mismatch, gapo and gape on the

Fig. 8 Total execution time of Darwin’s CPU implementation and GPU accelerated Darwin, on the Intel
machine. The CPU implementation is running with 8 threads
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Table 1 Runtimes and speedup for different scoring schemes on the IBM machine

(2,-1,-2,-2) (1,-3,-1,-1) (5,-4,-10,-1)

CPU 31m15 21m28s 31m27s

GPU-coalesced 76.0 59.3 78.0

speedup 24.7 21.7 24.2

IBM machine. The CPU implementation is running with 64 threads. The table shows that
the speedup nearly remains constant (20x-25x) regardless of the scoring scheme. Hence
our GPU acceleration is equally effective for both linear and affine gap penalty scoring
models.

Conclusions
Read overlapping is an important step in OLC based de novo assemblers. Darwin is a fast
and accurate read overlapper for assembly of long DNA reads. It is based on the seed-and-
extend paradigm. It has two stages: 1) D-SOFT, to compute the seeds and 2) GACT, to
extend the seed hits on both sides to compute the overlap between two reads. The ASIC
implementation of Darwin is shown to be hundreds of times faster than software based
read overlappers. GPUs are cost-effective and easily accessible processing units that are
used to accelerate many high performance applications. In this paper, we have shown a
GPU implementation of Darwin which accelerates the Smith-Waterman alignment with
traceback computation used in the GACT stage. We pack the sequences on the GPU and
compute the Smith-Waterman alignment matrix by dividing the matrix into 8x8 subma-
trices. This helps to reduce the GPU memory accesses. To further reduce the memory
transactions, writing to the traceback matrix is coalesced. We tested our implementa-
tion against the hand-optimized CPU implementation of Darwin. The results show that
using the real Pacbio dataset, our GPU implementation is 24x faster than 64 IBM Power8
threads and 109x faster than 8 Intel Xeon threads, regardless of the scoring scheme (linear
or affine gap). The GPU implementation can also be used to accelerate generic Smith-
Waterman alignment of long DNA sequences. The implementation is available at https://
github.com/Tongdongq/darwin-gpu.

Availability and requirements
Project name: darwin-gpu
Project home page: https://github.com/Tongdongq/darwin-gpu
Operating system(s): Linux
Programming language: C++, CUDA
Other requirements: CUDA toolkit version 8 or higher.
License: Apache 2.0
Any restrictions to use by non-academics: Not applicable
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