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ANALYTICAL APPROACHES TO NON-STEADY BEDLOAD TRANSPORT 

Introduction 

Time dependent variations of a riverbed due to natural causes and human 

interference can be estimated for a number of cases by means of a 

mathemati ea I mode I [ 4, 5 J o This mode I, however, is a numeri ea I one and 

it is therefore not very -sui table for rough guesses and first approximations 

on the influence of various parameters to the time scale of problems in river 

morphology o 

In this report the basic equations of these morphological processes are 

considered again with the aim to obtain analytical solutions. Naturally this 

requires assumptions and comparison with the numeri ea I so I uti on of the basic 

equations is necessary. 

The problem is described by the equations of motion and continuity of water 

and sand. The depth (h), flow velocity (v), bedlevel (z), and sediment 

transport (s) are the dependent variables, Only one space dimension (x) is 

used. As has been shown earlier [ 5 ] the flow can be considered quasi -steady 

because the adjustment of the bedlevel is much slower than the one of the 

waterlevel. Therefore the equation of motion of the fluid becomes the 

differential equation for backwater curves. This leads to a hyperbolic differential 

equation for z. This hyperbolic model is discussed in chapter 2. 

A stronger schematization is obtained if it is assumed that the water movement 

is uniform during transient stages. This results in a parabolic model simi Jar 

to the one used by Ashida and Michiue [ 1] and treated in chapter 3. 

Both models are used to describe the problem of degradation of a riverbed due 

to the drop of the water I eve I over a certain distance. The hyperbolic and 

parabolic models are compared in chapter 4 whereas chapter 5 deals with 

the comparison with the numerical solution obtained without linearization of 

the basic equations. The conclusions of this study are formulated in chapter 6. 
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2 Hyperbolic mode I 

The basic equations for the unit width read: 

v ov + g oh + g oz (2-1) 
ox ox oz 

v oh + h ov = 0 (2-2) 
ox ox 

oz + os = 0 (2-3) 
ot ox 
s = f(v) (2-4) 

As indicated in chapter 1 these equations ho Id for a quasi steady water

movement. The sediment transport s (x, t) is a function of the flow velocity 

v and other parameters whi eh are assumed to be constant. 

lt requires some algebra to combine these flow equations into one (hyperbolic) 

differential equation for the bedlevel z. 

Therefore first of all s can be eliminated from Eqs. (2-3) and (2-4) which 

gives 

oz + f' (v) ov = 0 
ot ox 
with f' = ds/dv 

Secondly h and oh/ox can be eliminated from Eqs. (2-1) and (2-2); 

this gives 

where q is the discharge per unit width. 

(2-5) 

(2-6) 
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The derivative avjax can now be eliminated from Eqs. (2-5) and (2-6), thus: 

= 0 

This can be considered as 

with 

a = oz/at arid ~ = azjax 
3 

Thus - (v - .f!9_ ) a + g f' ~ + g f' _v- = 0 

v2 C2q 

where it is assumed that the flow is in the positive x-direction. 

Differentiation with respect to a gives 

~ (V - !IS) - a (1 + ~ ) av + g fl 1 ~ av = 

or 

av -

a a 

2 3 aa aa 
V V 

j!g__ V 

"2· 
V 

3 
a (1 + 2 gq ) - g f I I ~ - g f I I _V__ - 3 g f I 

v3 C2q 

Differentiation of Eq. (2-10) with respect to ~yields 

2 
V 

(2-7) 

(2-8) 

(2-9) 

(2-1 0) 

(2-11) 

(2-12) 



- (1 +~) 
3 

V 

av a-
a~ 
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+ g f1 + g ~ f1 1 OV = 
a~ 

3 2 
(g fl' _v- + 3 g fl _v_ ) av 

C2q C2q a~ 

or 

av = 
g f' 

a~ 3 2 
a (1 + 2 gq ) • g f 1 1 ~ - g f' 1 _v_ - 3 g f 1 _v_ 

} C2q C2q 

Apparently 

g fl av --
~-V a a 

2 
V 

The term 

c = g f' 

~-V 
2 

V 

av - = 0 
a~ 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

is just equal to the celerity of a small disturbance at the bed for Froude 

numbers not too close to unity [ 5] . 

Hence 

av c- -
a a 

Turning back to Eq. (2-8) it follows 

av = ~ • aa + av a~ 
OX aa ox a~ ox 

(2-17) 

(2-18) 
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or with Eqs. (2-10}, (2-12) and (2-17) 

az + f' av 
at aa 

or introducing D = - f'. avjaa. c 

az _ D 

at 

D 

c 
= 0 

(2-19) 

(2-20) 

(2-21) 

The parameter D wi 11 now be studied which means that av/aa has to be 

considered. 

Eq. (2-1 0) yields 

a = g f' 

V - ..f!S_ 
2 

V 

(2-22) 

Using Eqs. (2-12), (2-16) and (2-22) the expression (2-20) for D becomes 

f' 
D = (2-23) 

3 
(~ + _v_ ) (1 + ~) 

c2 3 f" 3 2 
9 V + $+ V )+3-v-

.flS - V 
f' C2q c2q 

2 
V 
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If the initial bottom slope is denoted by i there results 
0 

3 
V 

v3 h 3 i 
o o = ( _v_ )3 i 
3 V O 

= 
q 0 

Introducing further the Froude number 

F =v/$ 

Eq. (2-23) becomes 

D = _!_ f'v 
3 i 

0 _31 f ~I + ( vv )3 J f F2 
+ 2 + f', V 1 + ( ~ )3 

l 0 0 1 - F2 f' V 0 

As an example the simple power-law transport relation 

can be introduced. This yields 

In general for nearly uniform flow -~/i and v/v approach unity and 
0 0 

D 
1 

3 

f'v 

i 
0 

which specializes to 

D =.!. b~ 
3 i 

0 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 
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if the power-law relation (2-25) is used. 

Thus the process is described by the hyperbolic differential equation (2-21), 

the celerity c and the coefficient D being given by Eqs (2-16) and (2-24). 

Analytical solutions of this equation generally are not possible as c and D 

depend on the velocity. However, by linearizing Eq (2-21) an equation with 

constant coefficients is obtained. This amounts to evaluating c and D at the 

initial uniform-flow situation and treating them as constants. 

As an example the degradation 

problem for a river wi 11 be taken • 

At x = 0 the bed level is lowered 

by an amount z . A new dependent 
0 

variable z' wi 11 be defined as the 

change in the bed level: 

z' = z(x,o) - z 

The differential equation (2-21) also applies to z', Boundary and initial 

conditions are: 

z' (x,o) = o 

z'(o,t) = z 
0 

(2-29) 

(2-30) 

Hereafter the primes are omitted as long as no confusion is possible, 

The solution of the problem is derived in the Appendix. 
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3 Parabolic model 

A parabolic model is reached by assuming from the very beginning that the 

water movements remains uniform during transient stages. 

The equation of motion now reads 

V lv I - az -g---g-
C2h ax 

Thus 

3 
V ----

or 

a
2

z -
2 

--- 3-v-

ax2 C2q 

av 

ax 

(3-1) 

(3-2) 

(3-3) 

From this equation and Eq. (2-5) the term av/ax can be eliminated leading 

to 

az C
2g f' a

2
z = 0 (3-4) 

at 3v2 ax2 

or 

az 
2 

D~ = 0 (3-5) 
at ax2 

with 

c2
g f' f'v 

V 

D = ( ~ )3 (3-6) --
3v

2 3 i V 
0 

Evaluating this at the initial situation yields the same result for D as Eq. 

(2-27). However, the assumption of uniform flow throughout the process leads to a 
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different equation (3-5), which is of the parabolic type. This is attractive 

as analytical solutions can easily be obtained but the validity of the parabolic 

mode I requires further attention. Eq. (3-5) is equivalent to the diffusion 

equation derived by Ashida and Michiue [ 1). The equation has earlier been 

derived by Culling [ 3] using qualitative arguments and not specifying the 

parameter D. 

Also the parabolic model can be used to solve the problem of the degradating 

river. Taking again z as the variation of the bedlevel with the original one, 

the problem is defined by 

z (x,o) = 0 

z (o,t) = z 
0 

The so I uti on derived in the Appendix reads 

z = z erfc (- __ x __ 
0 

with 

2 
erfc y = --

v;' 

(3-7) 

(3-8) 

The time at which 50 °/o of the final lowering of the bed has been reached 

is defined by 

x50 
erfc (- ----

2v'D"t; 
or 

x50 = - 0.96 J Dt50 

(3-9) 

(3-1 0) 
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thus 

(3-11) 

In the derivation of the parabolic model, Eq. (3-5), no assumption is made 

concerning the variation of the discharge q with time. Therefore the equation 

is also valid for transient flow, of course within the assumption of uniform 

flow. To take this into account, the linearization should be restricted to the 

consequences of bed-leve I changes, whereas the variation of the coefficient 

of diffusion D with time remains. With the conditions (3-7) then a very simple 

solution results: 

z = z 
0 

erfc f - ~ x 

t 

( f o (t') dt'r~ } 
0 

(3-12) 

which degenerates into Eq. (3-8) for a constant discharge. A similar simple 

extension of the hyperbolic equation is not possible. 

4 Comparison of linear models 

For the schematic case of a sudden drop z in the bottom I eve I the so I uti ons 
0 

of the hyperbolic and parabolic mode Is, as derived in the Appendix, are 

hyperbolic model 

2 
T jQ + T 

0 0 

z (x,t) = e -To 

z 
0 

parabolic model 

+ T 
0 

z (x,t) \ ~ -.:......:.......:... = erfc ( V "2 ·Q) 
z 

0 

f -w 
e 

.11 ('jw2 
I 

2 
- T ) 

0 dw (4-1) 

Vw
2 2 

- T 
0 

(4-2) 
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where Q = x
2
/ (2 Dt) and T = - cx/D. These expressions are shown in 

0 

Fig. 1 as a function of Q with T as a parameter. For small values of Q 
0 

(large values of time) the results of both models approach each other. This 

effect is stronger for larger values of T 1 i.e. for larger distances from the 
0 

origin of the erosion. A quantitative estimate of the rate at which the two 

mode Is approach each other can be obtained from asymptotic expansions of 

Eqs. (4-1) and (4-2) for large values of time. In the Appendix the following 

expansions are derived: 

hyperbolic model: 

z (x,t) ~ 
_.:-....:......:.. -rv -·VF [1- Q 

z 
0 

parabolic model: 

1T 

( _1_ - _1_ + .!_) + .... ] 
ST 2 2T

0 
6 

0 

z (x,t) Pd _ ~ (1 _ .!_ g + .... ) 
z 1T 6 

0 

(4-3) 

(4-4) 

These two expressions will be almost identical if Q is small (smaller than, 

say, 0. 25 or 0. 1) and/or if T is large (larger than, say 1 1 0). The latter 
0 

condition can be given a physical interpretat~on by introducing the values 

of c and D from chapter 2. For sma 11 values of the Froude number F 

c ~ b s;h and D ~ .!_ b _s_ 

so T > 10 means 
0 

3 i 

I X I > 1 0 D I c ~ 3 h/i 
0 

0 

The parabolic .model therefore is certainly a good approximation at distances 

where the river bottom is more than a few times the waterdepth higher than 

its downstream level. The approximation may also be good at smaller distances 



-12-

after a sufficient interval of time (Q small). The preceding is also illustrated 

by the time at which 50 °/o of the final lowering of the riverbed has been 

reached. From Eq. (3-10) this time for the parabolic model is given by 

x50 = 0.96 ~or 950 = 0.46 

lt is not possible to derive an analytical expression for the hyperbolic model. 

Values can be read, however, from Fig. 1 and the results are given in Fig. 2. 

It can also be seen from Fig. 1 , that the asymptotic expansion for the 

hyperbolic model is not very suitable to estimate 9
50

. 

5 Comparison to non-linear model* 

The numerical solution of the hyperbolic model without the linearization of 

equation (2-21) gives additional insight into the validity of the analytical 

approaches. 

In order to solve the same problem of a degradating river with an initial 

bottom discontinuity, a numerical 11 pseudo-viscosity 11 method was chosen. 

This method is especially suitable for avoiding 11shock-fitting 11 complications 

when discontinuities in the dependent variables exist [ 4] . 

The numerical procedure starts from a known steady state and approximates 

the differential equations by difference equations. Conditions at each new 

time-step are derived from results of previous time-steps with additional 

information at the boundaries. By the numeri ea I procedure, so I vi ng Eqs. (2-3), 

(2-4) and (2-6), an artificial 11 viscosity 11 is introduced which means that to 

a first approxi·mation Eq. (2.3) is replaced by [6] 

(5-1) 

*Materia I for this chapter has been contributed by Mr. C. Parra 
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where 1.1 =CAt/A x with the time step At, the mesh width A x and the 

velocity of propagation c definedbyEq. (2-16). The maximal value of 1.1 at 

a certain time level is denoted by 1.1 ; further ~ is an adjustable parameter. max 
Although the presence of the diffusive term limits the accuracy, it is essential 

to take care of possible shocks. The difference scheme is formed by equally

spaced points. Three locations of special interest can be recognized: the 

upstream boundary, the bottom-drop location and the downstream boundary. 

The upstream boundary presents no problems, At this point a constant bottom

level and sand-transport were specified as boundary conditions. Although this 

is not an exact assumption this point was chosen so far upstream that the 

region of interest is not influenced. 

The sudden drop in the river bottom, used as an example in the preceding 

chapters, has been treated in two different ways, shown in Figs. 3A and B. 

The schematization conforming as closely as possible to the analytical case is 

given in Fig. 3A. The initial discontinuity is (necessarily) spread over one 

mesh width. The downstream boundary condition to be use et for the backwater 

equation was found from two considerations. Within the most downstream mesh 

the equation of continuity for sand (2-3) should be satisfied and also the 

backwater equation (2-6) is valid. Expressing both in finite differences it is 

found that the water depth at the downstream boundary point can be solved. 

As the bottom I eve I at that point is kept constant a I so the water I eve I is 

known. Some resu Its are shown in Fig. 4, using data given in Fig • 3. 

Dimensionless values T and Q were computed using the local values of D and 

c. In all numerical computations the coefficient ~ in the numerical viscosity 

was taken 0. 01 • 

A second approach, shown in Fig. 3B, was used to represent the phenomenon 

in a physically more realistic way without fixing the bottom level at point B. 

Instead of this the bottom level was kept constant at a point so far downstream 

that backwater effects due to this assumption do not reach the region of 

interest. The initial conditions downstream of the bottom discontinuity (again 

represented by a steep slope over one mesh width) were chosen equal to the 

equilibrium conditions for the bottom level with uniform flow at point B. 
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As the drop in the bottom level at point B (Fig. 3) is not constant in time 

in this schematization, the asymtotic value reached after a long time has 

been used for z in the comparison. 
0 

Figs. 5 and 6 show results corresponding to this second schematization. If 

the bottom discontinuity z is small (e.g. smaller than 5 °/o of the normal 
0 

depth of flow), results are very similar to those of the analytical hyperbolic 

model. This is also true for small values of T (points near the bottom 
0 

discontinuity), where the parabolic model presents only a rough approximation. 

For larger values of T and for small values of Q (large values of time) the 
0 

results of the three models approach each other. For larger values of z , 
0 

however, the numerical model presents ever greater discrepancies from the 

linearized results. This non-linearity influences mainly those points near the 

bottom-di sconti nui ty. 

Therefore, the linearized approximations must be used carefully. When non

linear effects are negligible, the linearized hyperbolic model presents a good 

approximation to the phenomenon. The parabolic model gives adequate 

information only in those points far-in space and/or in time - from the initial 

disturbance. 

6 Conclusions 

The above given mathematical approach of the degradation problem leads to 

the following practical conclusions. 

The non-linear hyperbolic model gives of course via its numerical solutions 

quantitatively the best answers to the problem. 

2 The parabolic model provides easily analytical solutions for particular 

problems. The errors introduced in the differential equations via the 

rather crude assumptions have been indicated. Nevertheless the parabolic 

model can give useful results when used with care. 

3 The linear hyperbolic model, though principally better than the parabolic 

one, is hampered by the fact that analytical solutions cannot easily be 

obtained. 
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4 An interesting aspect of the parabolic model is that the river-regime 

can easily be introduced. It is possible that this aspect enlarges the 

applicability of this model significantly. The introduction of the river

regime in the linear hyperbolic model is not possible. For the non-linear · 

hyperbolic model the regime can of course be introduced in the numerical 

computations. 
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NOTATION 

a,b coefficients in power-law transport formula 

c velocity of propagation 

c Chezy coefficient 

D coefficient of diffusion 

f sediment transport function 

F Froude number 

g acceleration due to gravity 

h water depth 

i initial bottom slope 
0 

q discharge per unit width 

s sediment transport per unit width 

t time 

V mean velocity 

X coordinate 

z bottom level 

a oz/ot 
~ oz/ox 
Q x2 (2 Dt( 1 

T 2c
2

t/D 

T -cx/D 
0 
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Solution of the linearized equations 

The linearized differential equations (2-21) and (3-5) are most conveniently 

solved by means of Laplace-transforms (e.g. [ 2] ) • 

Denoting the Lap lace transform of a quantity by a bar over the symbo I, 

the transformed equation (2-21) becomes 

2- -
pz-D~ _.Q_p~=O 

ax2 c ox 

where p is the transformed time variable. Boundary conditions are: 

z 
- I ) _ 0 z \o, p --

p 

and for mathematical completeness 

i (x, p)~ o if x-+-C/.> 

(A-1) 

The solution of Eq (A-1) using these boundary conditions is straightforward 

and yields 

z = zo exp f bp - b V p2 + 2ap '} 
p 

2 
where b = -x/2c and a = 2c /D. 

(A-2) 

To find the original function of this transformed function the following 

series of relations is noted, where arrow indicates the inverse Laplace 

transform [ 2] • 

.~ 
exp (-b\/p--a-) -exp 

2 exp (-bp)-+- S (t-b) 

11 (aflJ 
(-bp)~ab ---~ 

J;2_b2 

H (t-b) 



3 from 1 and 2: 

\ 122:' 
exp (-b V p--a-) ~ 8 

-2-

1
1 

(avr:;t} 
(t-b) + ab -----

~ 
4 exp (-b V (p+a)2 -a2)~ e-at 8 (t-b) + abe -at 

Appendix A 

H (t-b) 

' I?'F' 1
1 

(aV t--b-) 

~, 
H (t-b) 

The factor 1/p in Eq (a-2) indicates an integration with respect to time and 

the factor exp (bp) indicates a displacement over a time interval -b. 

Consequently 

z (x , t) = z H ( t+b) 
0 

t+b 

f -au 
e 

~ r 8 (u-b) + ab -
11
-(a ___ )_ H (u-b) } du 

w:;! 0 

or 

t+b 
11 ~ z (x, t) -ab f -au (a 

= e +ab e du (A-3) 
z b v:;::;T 0 

~ 

which should be compared to Eq (3.8). In the above formulae the following 

definitions apply. 

8(t) Dirac- or delta function, defined by 

+o:> 

f 8(t) f(t) dt = f(o) 

for an arbitrary function f(t) 

H(t) unit-step function H(t) = 1 t ~ 0 

= 0 t < 0 
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11 (t) modified Bessel function of the first kind and first order, defined 

as -u1 (it) where J1 is an 11 ordinary 11 Bessel function of the first 

order and i is the imaginary unit. 

Further simplification of Eq (A-3) does not appear to be possible. lt therefore 

has to be evaluated numerically. In this respect it is important to note that 

only two dimensionless parameters are involved. By introduction of 

2 c
2 

t 
T =at=---

D 

Eq. (A-3) becomes 

-T 

and T = ab 
0 

T+T 
0 

z (x, t) = e 0 + T I 0 z 
0 

T 
0 

ex (A-4) 
D 

~ 11 ( 0 
-w dw · e 
~ 

0 

(A-5) 

The solution of the parabolic equation (3-5) is found in the same way. The 

Laplace transform of this equation reads 

d2-
D z 

pz -

dx
2 

= 0 

z (o, p) = z /p 
0 

z (x, p)--+-0 if x-4-- C/.> 

with the solution _i_ = - 1 
exp (x \fP.7D) 

zo p 

The original function of this can be found in [ 2 ]: 

z (x, t) = erfc (- x 

z 2Vot 
0 

or in the dimensionless quantities defined before: 

z (x, t) = erfc ( ~) 
z V'h 

0 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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A comparison of Eqs (A-5) and (A-9) is difficult because of the complicated 

form of the former. Some insight can be gained by means of asymptotic 

expansions for large values of time, derived from the Laplace transforms 

(A-2) and (A-7), For the relevant theory cf. [ 2] . It is noted that both 

expressions have singularities only at p = o, Developing them into power 

series with respect to p yields 

hyperbolic case 

z 

z 
0 

-
1 

[ 1 + integer powers of p - b ~ ~ 1 + ( -
1 

- b + _!_ b
2
a) p+ ... }] 

p 4a 3 

(A-1 0) 

parabolic case 

-
zz = ; [ 1 + integer powers of p + x ~ { 1 + ~ x ~ + , • ·} J (A-ll) 

0 

The corresponding asymptotic expansions of the original functions are then 

hyperbolic case 

z (x, t) ,...., 
1 
___ _ 

zo v:;· 

or 

Z (X 1 t) 1\v 1 + X 

zo \lillt 

- 1-~~ [ 1 
n\[T 

[1--
4Dt 

{ _!_ ( Q_) 2 + x Q_ + _!_ x2 } + ••• ] 
4 c c 3 

1 
T +-

0 6 
T

0

2 1 + .... ] (A-12) 
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parabolic case 

z (x, t) rv 1 + 
2 

+ 0 (t-5/2) X 
[ 1 

X ] ---
z ~ 12Dt 

0 

TOJ2' 2 

{ 1 
T 

+ ·~ .. } 1 - 0 (A-13) "'-4 ---

F 6-r 

2 In the above formulae it is convenient to replace the variable T by Q = T /-r. 
. 2 0 

The parabolic case thP.Jn wi 11 depend only on Q = x /(2Dt). 
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Equilibrium slope i 0 = 10-
3 

Equivalent sand roughness k = 0.02 m 

Equilibrium sand transport S 0 = 1.2 x 10
4 

m2/s 

zB I Sand transport formula: s= so ( v/1.485) 
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