
Exploring the Spatial Characteristics of MARS
Assessing the Impact of Neural Net Depth Increase and PointNet Architecture

Integration on MARS Performance

Kevin Hoxha
Supervisors: Marco Zuñiga Zamalloa, Girish Vaidya

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
22/06/2024

Name of the student: Kevin Hoxha
Final project course: CSE3000 Research Project
Thesis committee: Marco Zuñiga Zamalloa, Girish Vaidya, Michael Weinmann

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The modern workplace often exposes individuals to

privacy risks, such as the unauthorised visibility of
their computer screens. MARS (mmWave-based As-
sistive Rehabilitation System for Smart Healthcare),
coupled with VideowindoW screens, offers an innovat-
ive solution to these threats by using mmWave radar
to reconstruct human poses and estimate the position
of 19 key joints. This enables the screens to become
opaque based on the viewer’s position, ensuring pri-
vacy. Although originally designed as a rehabilitation
system, MARS can be utilised for its pose estima-
tion capabilities to enhance workplace privacy. This
research explores two modifications to the MARS
architecture to assess their impact on the system’s
accuracy and performance. Specifically, we modify
the MARS architecture by increasing the depth of its
convolutional neural network (CNN) and integrating
the PointNet architecture. Results establish that an
optimal CNN configuration with two convolutional
and two dense layers, followed by the output layer,
modestly improves joint location estimation. How-
ever, integrating PointNet does not improve perform-
ance, likely due to PointNet’s limitations in capturing
the necessary local structural details of point clouds.
These findings inform future research of possible im-
provements when leveraging the MARS dataset in the
fields of privacy enhancement and smart healthcare
applications.

Keywords

Convolutional Neural Networks (CNNs), MARS, mil-
limetre wave (mmWave), PointNet, 3D Human Pose
Reconstruction

1 Introduction
The modern workplace often exposes individuals
to privacy risks, particularly when colleagues have
unrestricted visibility of their screens. This issue is
crucial because it compromises the confidentiality of
sensitive information and violates individuals’ right
to privacy in professional settings. Furthermore, in
industries where intellectual property and propriet-
ary data are essential, such as finance, healthcare,
and technology, the potential consequences of unau-
thorised screen visibility can be critical, ranging from
data breaches to legal liabilities. Thus, addressing
these privacy risks is essential for fostering a secure
work environment.

One proposed solution involves surrounding work-
stations with VideowindoW1 screens that resemble
transparent displays but can be programmed to se-
lectively obscure areas corresponding to the gaze
directions of the unauthorised individuals, as illus-
trated in Figure 1. This approach prevents individu-
als from viewing others’ monitors directly, as their
1 https://www.videowindow.eu/

line of sight will be met with an obscured region,
such as a displayed image or black square, instead of
the intended screen content.

Figure 1: Illustration of screen exposure in the workplace (left),
and the usage of VideowindoW screens to block the intruders’
line of sight to the monitor by displaying a black square (right).

However, to know which part of the screen needs
to be obscured, the gaze direction can be estimated
through pose reconstruction. While pose reconstruc-
tion can be achieved through the use of video cam-
eras [1], opting for this method is costly and limited
in practicality, as video cameras require strict lighting
settings and introduce additional privacy risks, such
as the potential for people monitoring. To alleviate
these concerns, we can instead use millimetre wave
(mmWave) radars [2], which transmit mmWave sig-
nals to produce point clouds of people moving in the
range of the radar. The collected point cloud data can
then be used to reconstruct the poses of individuals
in front of these radars.

There are multiple proposed solutions in the area
of pose reconstruction through mmWave-based point
clouds, such as mmPose [3], mmBody [4], mmMesh
[5], Pantomime [6], SquiggleMilli [7], MARS [8],
and others [9]. While all these solutions have their
benefits and drawbacks, this paper will solely focus
on enhancing MARS (mmWave-based Assistive Re-
habilitation System for Smart Healthcare), since it is
a low-cost, low-power, and accurate pose reconstruc-
tion system with a large one-of-its-kind movement
dataset that has 40,083 frames [8]. MARS can estim-
ate the accurate location of 19 human joints by first
mapping the 5D time-series point cloud from the
mmWave radar to a lower dimension and then using
a convolution neural network (CNN) [8]. There are
currently no existing studies aiming to enhance the
architecture of MARS by exploring its spatial features
or integrating it with PointNet.

This research aims to explore the spatial dynamics
of the MARS framework, evaluating how increasing
the neural net depth and integrating the PointNet ar-
chitecture impact overall model performance. Point-
Net [10] is a neural network architecture specifically
designed for processing raw point clouds, commonly
used in tasks such as object classification and seg-

1

mentation. We aim to investigate whether integrating
PointNet enhances the CNN architecture’s perform-
ance in joint estimation tasks, contributing to more
accurate and robust pose reconstruction methods.

To address the research question, this paper
presents all the necessary background information
in Section 2, outlines the research methodology in
Section 3, and presents the results after establishing
the experimental setup in Section 4. Section 5 inter-
prets the findings and analyses the results. Finally,
Section 6 addresses the ethical considerations of the
research, before concluding and outlining potential
recommendations for future work in Section 7.

2 Background

This section provides the necessary background in-
formation regarding the main concepts explored in
this paper.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type
of artificial neural network designed for processing
structured grid data, such as images. Thus, they
are mostly used for computer vision tasks, including
object classification, segmentation, and pattern recog-
nition. The structure of a CNN comprises three main
elements [11]:

1. The convolutional layers apply filters or kernels
to input data to extract important features. These
filters (kernels) slide over the input data and
perform mathematical operations (convolutions)
to detect patterns like edges, textures, or shapes.
The higher the number of convolutional layers,
the more high-level patterns the CNN can detect,
however, this comes with a substantial increase
in computational complexity [12].

2. The pooling layers come after the convolutional
layers, and they apply downsampling to lower
the number of parameters in the input while
preserving the most important features. Two
of the most common pooling methods are max
pooling and average pooling [13].

3. The dense/fully-connected (FC) layers are
placed at the end of the CNN. They perform
either classification or regression tasks, based on
the use case of the CNN. They are responsible
for translating the extracted features from the
previous layers into outputs/predictions.

An example of a simple CNN structure is shown
in Figure 2 [14].

Figure 2: A simple CNN architecture illustrating its main
components [14]. The architecture starts with the input, followed
by convolutional and pooling layers for feature extraction and
dimensionality reduction, respectively. It concludes with fully-
connected and classifier layers that perform high-level reasoning
and classification based on the features extracted.

2.2 MARS

MARS (mmWave-based Assistive Rehabilitation Sys-
tem for Smart Healthcare) is a rehabilitation system
that monitors patients’ movement in home envir-
onments and provides real-time feedback [8]. This
system utilises 5D mmWave radar point cloud data
to reconstruct 3D human poses by estimating 19 key
joint coordinates. The use of mmWave radars [2] en-
sures that no video images or facial information are
collected, hence mitigating any privacy issues. The
structure of MARS can be seen in Figure 3.

Figure 3: Point cloud preprocessing and CNN architecture
of MARS [8]. The input data is first sorted and stacked on
an 8 × 8 feature map with 5 channels. Then, the feature map
passes through two convolutional layers with 16 and 32 channels,
respectively, before being flattened and passed through the fully
connected layer. The fully connected layer is composed of one
dense layer with 512 neurons, and the output layer of 57 neurons,
corresponding to the 3D locations of 19 joints.

MARS preprocesses the input data and passes it to
a CNN with two convolutional layers and one dense
layer. This dense layer connects to the output layer,
which estimates the coordinates of the key joints. The
paper on MARS [8] justifies that the best model con-
figuration is the one that uses Batch Normalisation
(BN) and a Dropout layer with a probability of 0.4 or
0.3 after every layer. The employment of BN avoids
the internal covariate shift [15], while the Dropout
layers avoid excessive dependency on specific neur-
ons [16].

2

2.3 PointNet

PointNet [10] is a deep neural network that directly
consumes point clouds without requiring conversion
to 3D voxel grids or images, thus preserving the
original spatial distribution of the data. It is used
for multiple 3D recognition tasks, including object
classification, part segmentation and semantic seg-
mentation.

One of the key features of PointNet [10] is its ability
to maintain invariance to permutations of the input
points. This characteristic makes it robust when deal-
ing with raw point clouds because they are naturally
unordered. PointNet [10] achieves this invariance
through a symmetric function, specifically a max
pooling layer, which down-samples the convolutional
outputs by selecting the maximum value within each
small window [13], ensuring that the outcome of the
neural network is the same regardless of the order of
the input points.

Moreover, PointNet [10] is designed to handle com-
mon transformations in 3D data, such as translations
and rotations. It employs a mini-network called the
"T-Net" [17] which regresses a spatial transform mat-
rix to align the points into a canonical, orientation-
normalised coordinate frame. This feature enhances
the model’s robustness and generalisation capabilit-
ies across various spatial orientations of objects.

An overview of the structure of PointNet [10] is
shown in Figure 4. It is composed of multilayer
perceptions (MLPs) with learnable parameters, and
the max pooling function. It takes an input of the
shape n × 3, where n is the number of points and
3 is the dimension of the data, applies input and
feature transformations (T-Nets), and then aggregates
point features by max pooling, resulting in the global
features [10]. This resulting 1024-dimensional global
feature vector describes the features of the input and
can be used for classification or segmentation tasks.

3 Methodology
As mentioned in Section 2, the MARS architecture
incorporates a CNN with two convolutional layers
and one dense layer, followed by the output layer that
estimates 19 joint positions. While this architecture
is very efficient and effective [8], this research seeks
to enhance it by exploring different configurations
of the spatial characteristics of the CNN, and then
replacing this CNN with PointNet and considering
the differences in performance.

To tackle the research question, it is best to split it
into two subquestions:

• SQ1: What is the performance impact of increas-
ing the depth of the neural network in the MARS
architecture? (Section 3.1)

• SQ2: What is the performance impact of integrat-
ing PointNet instead of using the current CNN
in the MARS architecture? (Section 3.2)

3.1 Increasing the Depth of the Neural
Network in MARS

While the paper on MARS [8] conducts various ab-
lation studies to demonstrate the necessity of each
component, it does not justify the chosen depth of
the CNN in the MARS architecture. This subquestion
focuses on the methodical approach of conducting
such a study.

To investigate the influence of the neural network
depth on MARS performance, we initially determine
the optimal number of convolutional layers in the
CNN architecture. To achieve this, we must manually
change the number of layers in the CNN and select
the best-performing configuration [18]. Thus, four
configurations of the MARS model are trained, each
with 1, 2, 3, and 4 convolutional layers, respectively,
and 1 dense layer. The number of filters in the first
convolutional layer is 16, and doubles after every
convolutional layer, consistent with the MARS paper.
To mitigate the influence of randomness, each model
configuration undergoes ten training iterations, and
the performance metrics are averaged.

Following the determination of the optimal convo-
lutional layer configuration, a similar methodology
is employed to decide the optimal number of dense
layers forming the Fully Connected (FC) layer. Four
MARS model configurations are trained with the
determined optimal number of convolutional layers
and 1, 2, 3, and 4 dense layers, respectively. The
number of neurons in the first dense layer is set at
512, halving after each subsequent layer. The out-
put layer consists of 57 neurons, corresponding to
the 3-dimensional coordinates of the 19 joint loca-
tions. Consistency is maintained in training details
and evaluation metrics, similar to the approach used
for evaluating different convolutional layer configur-
ations. Since ten iterations do not yield consistent
results, each model undergoes fifteen training itera-
tions instead, and the evaluation metrics are averaged
to derive appropriate approximations. The specific
training details are showcased in Section 4.

3.2 Integrating PointNet in MARS

Another promising way to enhance MARS is to re-
place the CNN it employs with the PointNet [10]
model. As mentioned in Section 2, PointNet’s archi-
tecture, designed to handle sparse and noisy data
efficiently, employs the max pooling symmetric func-
tion to focus on dominant features, thus enhancing
its capability to learn complex spatial relationships.

To integrate PointNet in MARS, some adjustments

3

Figure 4: An overview of the original architecture of PointNet [10]. This diagram showcases the structure, featuring an input
transformation network (T-Net), a sequence of multi-layer perceptrons (MLPs) applied to each point independently, a feature
transformation network (T-Net), and a max pooling layer that aggregates features into a global descriptor. After the global feature, the
model is specialised for either classification or segmentation.

must be made to the MARS dataset and the PointNet
architecture. MARS requires the data to be in an 8 ×
8× 5 shape since the CNN performs 2D convolutions
on the input. PointNet, conversely, is specialised in
directly consuming point clouds sequentially. Thus,
the input data must be reshaped to a 64 × 5 array.

Then, to effectively adapt PointNet for use in the
MARS system, data preprocessing plays a critical role
in maximising the network’s performance and accur-
acy in joint estimation tasks. Firstly, some noise is
added to the point cloud data, since studies suggest
that this enhances the model’s robustness against
real-world sensor noise [19]. The added noise has a
Gaussian distribution with a mean of 0 and a stand-
ard distribution of 0.2 times the standard distribution
of the input point cloud. This ensures that the ad-
ded noise can simulate variations consistent with
the data’s natural fluctuations. Secondly, MARS re-
orders all input points ascendingly according to their
x, y, and z, coordinates. PointNet, however, is per-
mutation invariant, meaning that it is invariant to the
input order. Therefore, the 64 × 5 input data should
be shuffled in a random order to take advantage of
the permutation invariance property.

These preprocessing steps are essential to exploit
PointNet’s potential in accurately estimating joint
locations. They align with the inherent capabilities of
the network to manage and interpret complex spatial
information from sparse and irregular input data.

Lastly, since Section 2 mentioned that PointNet
is typically used for classification or segmentation
tasks and MARS estimates joint locations, PointNet
needs to be adapted for regression. To adjust for this,
the classification network of PointNet (Figure 4) is
adopted until the global feature aggregation, with
the exception that the feature transformation T-Net
is removed for computational simplicity. Then, the
MLP that is used for classification is replaced with

a 4-layer MLP for regression that produces a final
linear output layer. This layer has 57 neurons, corres-
ponding to the 3 dimensions of the 19 key joints.

An overview of the modified PointNet architecture
is illustrated in Figure 5 and the final MARS architec-
ture after PointNet integration is shown in Figure 6.
They illustrate all the modifications mentioned in this
section together with the sizes of the data at different
parts of the architecture.

Figure 5: Architecture of the modified PointNet model. The
model takes an input of size n × 5, processes it through the input
transformation T-Net, and feeds it to a shared 3-layer multi-
layer perceptron (MLP) with layers of size 64, 128, and 512.
Then it performs max pooling and aggregates the data into a
512-dimensional global feature vector, which is fed into an MLP
with layers sized 256, 128, 64, and, lastly, 57.

Figure 6: Architecture of MARS after incorporating the modified
PointNet model. The model takes an input point cloud of size
8 × 8 × 5, preprocesses the data in multiple steps to fit PointNet,
passes it through the PointNet model, and outputs the 57 three-
dimensional coordinates of the 19 key joints.

3.3 Loss Function & Evaluation Metrics

To maintain consistency with the MARS paper [8],
the evaluation metrics that are employed in MARS
are also employed in this research. This enables an

4

appropriate comparison between the results of this
paper and that of MARS.

The loss function that MARS proposes to train the
models is the mean squared error (MSE) between the
reference positions xi, yi, zi of joint i, 1 ≤ i ≤ NJ
from the ground truth obtained by the Kinect V2
sensor [20], where NJ is the number of tracked joints,
and the estimations x̂i, ŷi, ẑi from the model. This
function is illustrated below:

Losscoor =
∑

NJ
i=1(xi − x̂i)

2 + ∑
NJ
i=1(yi − ŷi)

2

3NJ

+
∑

NJ
i=1(zi − ẑi)

2

3NJ

Furthermore, MARS’s accuracy is evaluated using
two metrics: the mean absolute error (MAE), and
root mean squared error (RMSE). These metrics rep-
resent the displacement between the ground truth
and the model’s estimations in centimetres (cm). The
mathematical equations of how they are calculated
can be found below:

MAE =
∑

NJ
i=1 |x̂i − xi|+ ∑

NJ
i=1 |ŷi − yi|+ ∑

NJ
i=1 |ẑi − zi|

3NJ

RMSE =

√
1

NJ
∑

NJ
i=1(xi − x̂i)2 +

√
1

NJ
∑

NJ
i=1(yi − ŷi)2

3

+

√
1

NJ
∑

NJ
i=1(zi − ẑi)2

3

4 Experimental Setup and Results

Following the described methodology in Section 3,
this section describes the utilised dataset, and
provides the specific evaluation setup used in this
research to allow the reader to replicate the results.
Finally, the obtained evaluation results are presented.

4.1 Dataset

The dataset used in this research is the one that
MARS presented [8]. It is a large-scale dataset con-
taining mmWave point clouds with well-labelled
joints. The dataset has 10,000 data frames per user,
each containing data for 19 joints, where each user
performed ten different kinds of rehabilitation move-
ments in front of a Kinect V2 sensor and a mmWave
radar. The data points have five dimensions, namely
the 3D coordinates, Doppler velocity, and reflection
intensity. In total, there are 2.28 million reference
data points from Kinect V2 and 3.81 million data
points from mmWave data.

4.2 Experimental Setup

The dataset followed the same split as the MARS
paper: 60% for training (24,066 frames), 20% for valid-
ation (8,033 frames), and 20% for testing (7,984 frames).

For the first research subquestion (SQ1), consist-
ent with the findings of the ablation study in the
original paper, each convolutional and dense layer
in the CNN of MARS is followed by a Dropout layer
with 30% and 40% dropout probability, respectively,
and Batch Normalisation (BN). While testing for the
optimal number of convolutional layers, the Fully
Connected (FC) Layer maintains a consistent struc-
ture across all models. To determine the optimal
number of dense layers, we also maintain a consist-
ent number of convolutional layers. This minimises
performance discrepancies resulting from changes in
other parts of the CNN architecture.

For the second research subquestion (SQ2), the con-
volutional and dense layers in our modified PointNet
implementation are followed by BN, but not Dropout.
BN is employed because it helps speed up training
and enhances the overall performance of the network
by reducing the internal covariate shift. Dropout is
not included because adding a Dropout layer after
each convolutional layer and dense layer did not im-
prove the performance of the model.

The training settings for both subquestions reflect
those in the MARS paper, employing an Adam op-
timiser [21] with a learning rate of 0.001, batch size
of 128, and 150 epochs. Since PointNet takes consid-
erably longer to train and reaches saturation quickly,
early stopping with a patience of 20 epochs is im-
plemented. Early stopping is a widely used method
to prevent over-training neural networks when para-
meter updates no longer begin to yield improvements
on a validation set [22].

For SQ1 training is executed on one of DelftBlue’s
supercomputer’s2 Intel XEON CPUs, whereas for
SQ2 training is executed on a Google Colab T4 GPU.
The training concludes when the validation loss con-
verges at 0.01.

4.3 Experimental Results

For SQ1, models with 1, 2, 3, and 4 convolutional
layers are trained following the experimental setup
described in Section 4.2. The validation MAE, loss,
and time taken to train each model can be found in
Figure 7, Figure 8, and Figure 9, respectively. It can
be deduced from these plots that the lowest valida-
tion MAE and loss from these four configurations is
the model with two convolutional layers. The MARS
model with only one convolutional layer underfits
the training data, while models with more than two

2 https://www.tudelft.nl/dhpc/system

5

https://www.tudelft.nl/dhpc/system

convolutional layers overfit the training data, thus
performing increasingly worse on the validation data.
The time taken to train these models increases expo-
nentially fast with the addition of more layers.

Figure 7: Average validation MAE for MARS models with 1, 2,
3, and 4 of convolutional layers after 10 runs.

Figure 8: Average validation loss for MARS models with 1, 2,
3, and 4 convolutional layers after 10 runs.

Figure 9: Average time taken to train MARS models with 1, 2,
3, and 4 convolutional layers after 10 runs.

After concluding that the optimal number of con-
volutional layers is two, four configurations with
1, 2, 3, and 4 dense layers, followed by the output
layer, are trained to decide the optimal number of
dense layers. The validation MAE, loss, and time
taken to train each model can be found in Figure 10,
Figure 11, and Figure 12, respectively. The lowest
validation MAE and loss from these four configura-
tions is the model with two dense layers. These plots
showcase a similar trend to the results of the optimal

number of convolutional layers, where one dense
layer underfits the training data, and more than two
dense layers overfit it. The time taken to train the
models increases almost linearly with the addition of
more layers. Thus, the results show that the optimal
setup in MARS, which currently has two convolu-
tional layers, one dense layer, and the output layer, is
the setup with two convolutional layers, followed by
two dense layers, followed by the output layer. This
setup, compared to the results from the MARS paper
[8], improves the MAE of MARS by 3.2%, and the
RMSE by 0.09%.

Figure 10: Average validation MAE for MARS models with 1,
2, 3, and 4 dense layers after 15 runs.

Figure 11: Average validation loss for MARS models with 1, 2,
3, and 4 dense layers after 15 runs.

Figure 12: Average time taken to train MARS models with 1, 2,
3, and 4 dense layers after 15 runs.

For SQ2, the PointNet-integrated model is trained
with the configuration outlined in Section 4.2. The

6

results of the model evaluation in comparison with
results from the original MARS model and the op-
timised MARS model are presented in Figure 13.

These box plots demonstrate that replacing the
CNN in MARS with the adapted PointNet described
in Section 3.2 does not achieve better performance.
The MAE is increased by 32.4%, from 5.87 to 7.77 cm
of error, while the RMSE is increased by 27.9%, from
8.10 to 10.36 cm of error. The complete table of the
localisation errors for all 19 key joints can be found
in Appendix A.

Figure 13: Comparison of the validation MAE and RMSE in
the default MARS, optimal MARS, and PointNet model.

A summary of the total number of parameters and
the training time for each model is showcased in
Table 1. The MARS model with PointNet integra-
tion has the least number of parameters, followed
by the default MARS configuration, followed by the
proposed optimal MARS configuration. Regarding
the training times, MARS with the default configur-
ation takes the least amount of time to train for 150
epochs, followed by the optimal MARS configuration,
followed by PointNet with early stopping (patience
of 20 epochs). In contrast, PointNet without early
stopping takes around 14 minutes to train and does
not improve the accuracy of the model as it overfits
the training data.

Model No. Parameters Training time
Default MARS 1,085,881 ∼ 3 - 4 mins
Optimal MARS 1,203,641 ∼ 3.5 - 4.5 mins

PointNet 805,202 ∼ 3 - 7 mins

Table 1: An overview of the total number of parameters and
training time for each model. These results were obtained using
a T4 GPU from Google Colab.

5 Discussion

This section analyses the results presented in Sec-
tion 4 and provides a reflection on what can be con-
cluded. It evaluates the findings in context and high-
lights significant insights.

5.1 Optimal Setup of MARS

As presented in Section 4.3, the best setup for the
MARS system included two convolutional layers, fol-
lowed by two dense layers, followed by the output
layer. The results demonstrated that increasing the
number of convolutional layers from one to two sig-
nificantly improves the model’s performance, as evid-
enced by a decrease in both validation loss and MAE.
This suggests that two layers are effective at captur-
ing the essential features in the data, contributing
to better generalisation of unseen data. However,
further increasing the layers to three and four resul-
ted in poorer performance, with both loss and MAE
figures rising. This indicates potential overfitting,
where the model learns the noise rather than the
underlying data pattern, diminishing its predictive
accuracy on new, external datasets. Additionally, the
training time increases greatly with more than two
convolutional layers, reflecting higher computational
demands and operational costs without correspond-
ing benefits in model accuracy.

Subsequently, the study assessed the influence of
varying the number of dense layers on the same per-
formance metrics. The findings revealed that two
dense layers, as opposed to one dense layer that
MARS originally employs, are optimal, where the
average model validation loss and MAE are minim-
ised, indicating an enhanced ability of the model to
generalise well to new data. Similar to the convo-
lutional layers, adding more than two dense layers
leads to an increase in both validation loss and MAE,
which can be attributed to overfitting. Moreover, the
training duration increases linearly with the number
of dense layers. This rise in training time signifies an
increase in computational resource utilisation, which
becomes unjustifiable given the decrease in model
performance with more than two dense layers.

To ensure the reproducibility of results, this setup
was run multiple times and the optimal number of
convolutional layers was always two. However, when
running the models ten times to determine the op-
timal number of dense layers, the results were incon-
sistent. Thus, the models were run fifteen times, and
the majority of the results suggested that two dense
layers perform better.

Despite these findings, the improvements observed
with optimal layer configurations- 3.2% in MAE and
0.09% in RMSE- are relatively small and might be at-

7

tributed to random variation within the experimental
data. Such subtle improvements may not represent
significant practical enhancements, especially when
considering the increased potential for overfitting
and the higher computational costs associated with
additional layers. However, the box plots in Figure 13
showcase how the optimal MARS, while only mod-
estly improving the model accuracy in comparison
with the default MARS, lowers the number of outliers
and achieves a smaller interquartile range (IQR). This
translates into more stable results with less variance,
since the lower the IQR, the more accurate the results.

5.2 MARS with PointNet Integration

The results indicated that PointNet was consider-
ably less effective than both the default and optimal
MARS architectures for this study. The primary chal-
lenge lies in the task of joint estimation in the human
body, which requires precise measurement of small
distances in centimetres. A significant limitation of
adapting PointNet for such a regression task is its
inability to leverage the local structural details of the
data. This issue arises from the use of a max pool-
ing layer in PointNet, as shown in Figure 4, which
only retains the maximum value from each region,
thereby discarding potentially valuable information
contained in the other values. Research supports
that traditional CNN architectures, like those used
in MARS, generally outperform PointNet for tasks
involving human pose estimation [23]. Therefore,
the observed difference in performance aligns with
expectations and reinforces the relevance of CNNs
for this type of application.

Furthermore, while PointNet’s model has around
200.000 fewer parameters than the default MARS
model and 400.000 less than the optimal MARS
model, the time taken to train these models does
not follow the same pattern, as shown in Table 1.
This is due to several factors inherent to its design
and the nature of the data it processes. Firstly, Point-
Net is tailored for unstructured and sparse point
cloud data, necessitating additional preprocessing
steps. Secondly, the architecture of PointNet includes
specialised operations like max pooling across points
to handle permutation invariance, which is less com-
putationally efficient than the highly optimised con-
volution operations used in CNNs. Lastly, PointNet
treats data sequentially, while MARS stacks points
and treats them in 2D. This can lead to increased
training times in comparison with MARS.

6 Responsible Research

Ensuring that the practices are ethical and that others
can replicate the results is essential in research. It is

vital that any reader can achieve the same outcomes
as those presented in this paper. Therefore, to up-
hold ethical standards and prevent misconduct, this
study was conducted with reproducibility in mind,
alongside a commitment to ethical research practices.

6.1 Ethical Considerations

The MARS dataset, as described in Section 4.1, con-
tains thousands of frames of point clouds of people
captured using a mmWave radar [2]. The main be-
nefit of using a mmWave radar, instead of a video
camera, is that it provides anonymous detection.
This means that this study does not utilise any sens-
itive data, and it mitigates any threats to the re-
identification of data.

This research also complies with the Netherlands
Code of Conduct for Research Integrity [24], which
emphasises the importance of honesty, scrupulous-
ness, transparency, independence, and responsibility.
The adherence to these principles is demonstrated
through a transparent methodology and an impartial
analysis of results. We ensure that all data sources
are properly referenced.

6.2 Reproducibility

The MARS dataset is public and it is located in an
open-source repository3, where the codebase for this
study also forked from. As such, anyone can access
the MARS database and codebase, and follow the
methodology described in Section 3 to achieve the
same results that this paper presents.

PointNet [10] also has numerous publicly available
implementations. We document all adjustments from
the default PointNet implementation in Section 3,
which aims to provide transparency in all choices
and reasoning made during all steps of the research.

Furthermore, the experimental setup, such as
model parameters and training details, are presented
in detail in Section 4.2. This section gives the reader
all the necessary technical information to replicate
the same results.

7 Conclusions and Future Work
This study aimed to answer the main research ques-
tion, which explored the spatial characteristics of
MARS and reported the performance impact of in-
creasing the neural network depth and integrating
the PointNet architecture. The conducted experi-
ments found that the optimal setup for MARS in-
cludes two convolutional layers, two dense layers,
and the output layer, as opposed to the original setup
of MARS, consisting of two convolutional layers, one
dense layer, and the output layer. This setup slightly

3 https://github.com/SizheAn/MARS

8

improves MARS’s accuracy in estimating 19 key joint
locations, while producing more consistent results
with fewer outliers. Integrating PointNet in MARS,
on the other hand, did not improve the performance,
due to PointNet’s limitations in preserving the local
structure information found in point cloud data that
is necessary for precise joint estimation.

These findings contribute to research in the field of
mmWave-based human pose estimation by exploring
the architecture of an existing pose estimation tech-
nology, namely MARS. The adaptations and modi-
fications explored in this study show that certain
architectural changes in MARS can yield modest per-
formance improvements.

For future work, it is recommended to explore al-
ternative methods to integrate the strengths of Point-
Net with CNNs, such as developing new models
or modifying existing models that can leverage the
feature extraction capabilities of PointNet while main-
taining the local contextual awareness provided by
CNNs. One suggestion is to explore the effective-
ness of PointNet++ [25] instead of PointNet since
PointNet++ tackles the issue of capturing the local
structures. Additionally, investigating the applica-
tion of these findings in real-world scenarios, such
as in-home rehabilitation and workspaces surroun-
ded by VideowindoW displays, could provide deeper
insights into their practical effectiveness.

Overall, this study has improved the current under-
standing of the performance differences between dif-
ferent neural network architecture choices in MARS
and their capabilities in handling mmWave data for
3D human pose reconstruction. It has also high-
lighted the inability of PointNet to properly capture
local structures. Following these findings, much re-
mains to be explored in investigating and optimising
systems trained with the MARS dataset for practical,
real-world applications in smart healthcare and pri-
vacy enhancement in the workspace.

Bibliography
[1] A. Yiannakidis, A. Aristidou and Y. Chrys-

anthou, ‘Real-time 3D human pose and motion
reconstruction from monocular RGB videos’,
Computer Animation and Virtual Worlds, vol. 30,
May 2019. doi: 10.1002/cav.1887.

[2] C. Iovescu, ‘The fundamentals of millimeter
wave sensors’, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:30625501.

[3] A. Sengupta, F. Jin, R. Zhang and S. Cao, ‘Mm-
Pose: Real-Time Human Skeletal Posture Estim-
ation Using mmWave Radars and CNNs’, IEEE
Sensors Journal, vol. 20, no. 17, pp. 10 032–10 044,
Sep. 2020, Publisher: Institute of Electrical and

Electronics Engineers (IEEE), issn: 2379-9153.
doi: 10.1109/jsen.2020.2991741. [Online]. Avail-
able: http://dx.doi.org/10.1109/JSEN.2020.
2991741.

[4] A. Chen, X. Wang, S. Zhu, Y. Li, J. Chen and Q.
Ye, mmBody Benchmark: 3D Body Reconstruction
Dataset and Analysis for Millimeter Wave Radar.
Sep. 2022. doi: 10.48550/arXiv.2209.05070.

[5] H. Xue, Y. Ju, C. Miao et al., ‘mmMesh: Towards
3D real-time dynamic human mesh construc-
tion using millimeter-wave’, in Proceedings of
the 19th Annual International Conference on Mo-
bile Systems, Applications, and Services, ser. Mo-
biSys ’21, event-place: Virtual Event, Wisconsin,
New York, NY, USA: Association for Comput-
ing Machinery, 2021, pp. 269–282, isbn: 978-
1-4503-8443-8. doi: 10.1145/3458864.3467679.
[Online]. Available: https://doi.org/10.1145/
3458864.3467679.

[6] S. Palipana, D. Salami, L. A. Leiva and S. Sigg,
‘Pantomime: Mid-Air Gesture Recognition with
Sparse Millimeter-Wave Radar Point Clouds’,
Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 5, no. 1, Mar. 2021, Place: New
York, NY, USA Publisher: Association for Com-
puting Machinery. doi: 10.1145/3448110. [On-
line]. Available: https : / / doi . org / 10 . 1145 /
3448110.

[7] H. Regmi, M. S. Saadat, S. Sur and S. Nelak-
uditi, ‘SquiggleMilli: Approximating SAR Ima-
ging on Mobile Millimeter-Wave Devices’, Proc.
ACM Interact. Mob. Wearable Ubiquitous Tech-
nol., vol. 5, no. 3, Sep. 2021, Place: New York,
NY, USA Publisher: Association for Comput-
ing Machinery. doi: 10.1145/3478113. [Online].
Available: https://doi-org.tudelft.idm.oclc.org/
10.1145/3478113.

[8] S. An and U. Y. Ogras, ‘MARS: mmWave-based
Assistive Rehabilitation System for Smart
Healthcare’, ACM Trans. Embed. Comput. Syst.,
vol. 20, no. 5s, Sep. 2021, Place: New York, NY,
USA Publisher: Association for Computing Ma-
chinery, issn: 1539-9087. doi: 10.1145/3477003.
[Online]. Available: https://doi.org/10.1145/
3477003.

[9] J. Zhang, R. Xi, Y. He et al., ‘A Survey of
mmWave-Based Human Sensing: Technology,
Platforms and Applications’, IEEE Communic-
ations Surveys & Tutorials, vol. 25, no. 4,
pp. 2052–2087, 2023, Publisher: Institute of Elec-
trical and Electronics Engineers (IEEE), issn:
2373-745X. doi: 10.1109/comst.2023.3298300.
[Online]. Available: http://dx.doi.org/10.1109/
COMST.2023.3298300.

9

https://doi.org/10.1002/cav.1887
https://api.semanticscholar.org/CorpusID:30625501
https://api.semanticscholar.org/CorpusID:30625501
https://doi.org/10.1109/jsen.2020.2991741
http://dx.doi.org/10.1109/JSEN.2020.2991741
http://dx.doi.org/10.1109/JSEN.2020.2991741
https://doi.org/10.48550/arXiv.2209.05070
https://doi.org/10.1145/3458864.3467679
https://doi.org/10.1145/3458864.3467679
https://doi.org/10.1145/3458864.3467679
https://doi.org/10.1145/3448110
https://doi.org/10.1145/3448110
https://doi.org/10.1145/3448110
https://doi.org/10.1145/3478113
https://doi-org.tudelft.idm.oclc.org/10.1145/3478113
https://doi-org.tudelft.idm.oclc.org/10.1145/3478113
https://doi.org/10.1145/3477003
https://doi.org/10.1145/3477003
https://doi.org/10.1145/3477003
https://doi.org/10.1109/comst.2023.3298300
http://dx.doi.org/10.1109/COMST.2023.3298300
http://dx.doi.org/10.1109/COMST.2023.3298300

[10] C. R. Qi, H. Su, M. Kaichun and L. J. Guibas,
‘PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation’, in 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), ISSN: 1063-6919, Los Alamitos,
CA, USA: IEEE Computer Society, Jul. 2017,
pp. 77–85. doi: 10.1109/CVPR.2017.16. [On-
line]. Available: https://doi.ieeecomputersociety.
org/10.1109/CVPR.2017.16.

[11] K. O’Shea and R. Nash, ‘An Introduction
to Convolutional Neural Networks’, ArXiv e-
prints, Nov. 2015.

[12] B. Shah and H. Bhavsar, ‘Time Complexity in
Deep Learning Models’, Procedia Computer Sci-
ence, vol. 215, pp. 202–210, 2022, issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2022.12.023.
[Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050922020944.

[13] H. Gholamalinezhad and H. Khosravi, ‘Pool-
ing Methods in Deep Neural Networks, a Re-
view’, ArXiv, vol. abs/2009.07485, 2020. [On-
line]. Available: https://api.semanticscholar.org/
CorpusID:221738915.

[14] L. Zaniolo and O. Marques, ‘On the use of vari-
able stride in convolutional neural networks’,
Multimedia Tools and Applications, vol. 79, May
2020. doi: 10.1007/s11042-019-08385-4.

[15] S. Ioffe and C. Szegedy, ‘Batch Normalization:
Accelerating Deep Network Training by Redu-
cing Internal Covariate Shift’, in Proceedings
of the 32nd International Conference on Machine
Learning, F. Bach and D. Blei, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 37,
Lille, France: PMLR, Jul. 2015, pp. 448–456. [On-
line]. Available: https://proceedings.mlr.press/
v37/ioffe15.html.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever and R. Salakhutdinov, ‘Dropout: A
Simple Way to Prevent Neural Networks from
Overfitting’, Journal of Machine Learning Re-
search, vol. 15, no. 56, pp. 1929–1958, 2014. [On-
line]. Available: http://jmlr.org/papers/v15/
srivastava14a.html.

[17] M. Jaderberg, K. Simonyan, A. Zisserman
and k. kavukcuoglu koray, ‘Spatial Trans-
former Networks’, in Advances in Neural In-
formation Processing Systems, C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama and R. Gar-
nett, Eds., vol. 28, Curran Associates, Inc.,
2015. [Online]. Available: https://proceedings.
neurips . cc / paper _ files / paper / 2015 / file /
33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf.

[18] X. Li, ‘Exploring the effect of depth and width
of CNN models on binary classification of dogs
and cats’, Applied and Computational Engineering,
vol. 47, pp. 147–158, Mar. 2024. doi: 10.54254/
2755-2721/47/20241274.

[19] M. Zhou, T. Liu, Y. Li, D. Lin, E. Zhou and
T. Zhao, ‘Toward Understanding the Import-
ance of Noise in Training Neural Networks’,
in Proceedings of the 36th International Confer-
ence on Machine Learning, K. Chaudhuri and R.
Salakhutdinov, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 97, PMLR, Jun.
2019, pp. 7594–7602. [Online]. Available: https:
//proceedings.mlr.press/v97/zhou19d.html.

[20] Microsoft, Kinect Sensor, Publisher: Kinect for
Windows, 2022. [Online]. Available: https://
learn . microsoft . com / en - us / windows / apps /
design/devices/kinect-for-windows.

[21] D. Kingma and J. Ba, ‘Adam: A Method for
Stochastic Optimization’, International Confer-
ence on Learning Representations, Dec. 2014.

[22] Papers with Code, Early Stopping, 2024. [On-
line]. Available: https://paperswithcode.com/
method / early - stopping# : ~ : text = Early %
20Stopping % 20is % 20a % 20regularization ,
improves%20on%20a%20validation%20set.

[23] Y. Zhou, H. Dong and A. El Saddik, ‘Learning
to Estimate 3D Human Pose From Point Cloud’,
IEEE Sensors Journal, vol. PP, pp. 1–1, Jun. 2020.
doi: 10.1109/JSEN.2020.2999849.

[24] The Netherlands Organisation for Scientific Re-
search (NWO), The Netherlands Code of Conduct
for Research Integrity, 2018. [Online]. Available:
https://www.nwo.nl/sites/nwo/files/documents/
Netherlands % 2BCode % 2Bof % 2BConduct %
2Bfor%2BResearch%2BIntegrity_2018_UK.pdf.

[25] C. R. Qi, L. Yi, H. Su and L. J. Guibas,
‘PointNet++: Deep Hierarchical Feature Learn-
ing on Point Sets in a Metric Space’, in Ad-
vances in Neural Information Processing Sys-
tems, I. Guyon, U. V. Luxburg, S. Bengio
et al., Eds., vol. 30, Curran Associates, Inc.,
2017. [Online]. Available: https://proceedings.
neurips . cc / paper _ files / paper / 2017 / file /
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

10

https://doi.org/10.1109/CVPR.2017.16
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.16
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.16
https://doi.org/https://doi.org/10.1016/j.procs.2022.12.023
https://www.sciencedirect.com/science/article/pii/S1877050922020944
https://www.sciencedirect.com/science/article/pii/S1877050922020944
https://api.semanticscholar.org/CorpusID:221738915
https://api.semanticscholar.org/CorpusID:221738915
https://doi.org/10.1007/s11042-019-08385-4
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://doi.org/10.54254/2755-2721/47/20241274
https://doi.org/10.54254/2755-2721/47/20241274
https://proceedings.mlr.press/v97/zhou19d.html
https://proceedings.mlr.press/v97/zhou19d.html
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://paperswithcode.com/method/early-stopping#:~:text=Early%20Stopping%20is%20a%20regularization,improves%20on%20a%20validation%20set
https://paperswithcode.com/method/early-stopping#:~:text=Early%20Stopping%20is%20a%20regularization,improves%20on%20a%20validation%20set
https://paperswithcode.com/method/early-stopping#:~:text=Early%20Stopping%20is%20a%20regularization,improves%20on%20a%20validation%20set
https://paperswithcode.com/method/early-stopping#:~:text=Early%20Stopping%20is%20a%20regularization,improves%20on%20a%20validation%20set
https://doi.org/10.1109/JSEN.2020.2999849
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

Appendix

A Accuracy of 3D Joint Position Estimation

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)
Joint MAE RMSE MAE RMSE MAE RMSE MAE RMSE
SpineBase 7.32 10.10 5.54 7.15 7.74 10.03 6.86 9.09
SpineMid 7.58 10.43 5.10 6.43 8.57 11.09 7.09 9.32
Neck 8.71 11.91 5.79 7.35 9.55 12.26 8.02 10.51
Head 9.05 12.35 5.65 7.74 10.19 12.97 8.30 11.02
ShoulderLeft 8.35 11.50 5.86 7.79 8.54 10.96 7.58 10.08
ElbowLeft 9.59 12.69 7.03 9.38 10.54 13.46 9.05 11.84
WristLeft 13.55 17.38 7.82 10.47 17.23 21.93 12.87 16.59
ShoulderRight 8.19 11.25 5.59 7.67 8.90 11.35 7.56 10.09
ElbowRight 9.78 12.90 6.66 9.22 9.81 12.46 8.75 11.53
WristRight 12.69 16.56 7.56 9.97 16.79 21.45 12.35 15.99
HipLeft 6.94 9.58 5.37 7.19 7.84 10.13 6.71 8.97
KneeLeft 7.72 10.58 5.92 8.17 4.57 6.26 6.07 8.33
AnkleLeft 8.33 11.16 6.23 8.58 3.74 6.02 6.10 8.59
FootLeft 8.43 11.43 6.74 9.32 4.04 6.20 6.40 8.99
HipRight 7.24 9.82 5.62 7.25 7.56 9.74 6.81 8.94
KneeRight 7.40 10.14 6.23 8.46 4.99 6.98 6.21 8.53
AnkleRight 8.50 11.31 6.42 8.55 4.68 7.05 6.53 8.97
FootRight 8.91 11.80 6.90 9.36 4.81 7.50 6.87 9.55
SpineShoulder 8.22 11.35 4.87 6.34 9.47 12.18 7.52 9.96
Average 8.76 11.80 6.15 8.23 8.40 11.05 7.77 10.36

Table 2: Average localisation error for 19 human joints position using MARS with PointNet integration. The results in this table are
for 20% test data.

11

	Introduction
	Background
	Convolutional Neural Networks
	MARS
	PointNet

	Methodology
	Increasing the Depth of the Neural Network in MARS
	Integrating PointNet in MARS
	Loss Function & Evaluation Metrics

	Experimental Setup and Results
	Dataset
	Experimental Setup
	Experimental Results

	Discussion
	Optimal Setup of MARS
	MARS with PointNet Integration

	Responsible Research
	Ethical Considerations
	Reproducibility

	Conclusions and Future Work
	Bibliography
	Appendix
	Accuracy of 3D Joint Position Estimation

