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Abstract

Polder areas as typical in the Netherlands require real time control on the water levels.
Efficient pumping is a subject with increasing interest due to a required use of 20%
green energy by 2020 set by the government. In 2010, the energy requirements already
exceeded 175 GWh per year. For optimal control, water level predictions are important.
However, they are uncertain due to errors in model structure, parameter estimation,
initial states and observed forcing data. Especially the rainfall was found to contribute
to water level prediction uncertainty. The uncorrected radar rainfall forcing data avail-
able in real time underestimate the corrected radar rainfall measurement over 100%,
worsening with increasing rainfall intensities.
The aim of the research was to asses whether data assimilation can reduce the uncertainty
on the water level predictions in a Delfland polder. The polder is modelled with a
conceptual rainfall-runoff model in Sobek RR, while the data assimilation is implemented
as an ensemble Kalman filter in OpenDA. In order to manipulate the states in Sobek RR
for data assimilation, the model was extended by a black-box wrapper that was newly
created in Java for this research.
To asses the theoretical applicability of data assimilation in a polder area, four twin ex-
periments were carried out, which differed only in the model components to which noise
was applied. The four set-ups included the use of a rainfall multiplier, additive noise
on the model states, additive noise on the groundwater state and a single multiplier for
all states. The results were compared visually and objectively through the probabilistic
Nash Sutcliffe, a model efficiency coefficient.
All set ups for the twin experiment generated good results for the assimilated water level,
mimicking the observed water levels closely with probabilistic Nash Sutcliffe values
ranging between 0.92 to 0.97. However, only the set up with the rainfall multiplier
exhibited good score measures for the hidden states, with an average of 0.6, showing a
significant improvement over the case without assimilation. The other twin experiments
failed to represent the hidden states, with average score measures below zero.
The data assimilation set-up with the rainfall multiplier was then applied using water
level observations from Tedingerbroek polder. The pump pattern and magnitude of
water levels of the modelled and observed water level differed significantly. The influ-
ence of the different model components on the modelled water level was assessed, from
which was concluded that these could not account for the difference in modelled and
observed values. Possible explanations are due to a non-representative measurement
point in the polder or additional unknown water fluxes coming into the polder.
Recommended further research should focus on creating a larger observation network;
implementing multiple water level observation locations, collecting pump discharges
and taking measurements of the storage in greenhouse basins. The last could give a
method to validate the assimilation of the hidden states, whereas the pump discharges
should be used as additional observation in the data assimilation.
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Introduction

Technological process has merely provided us with more efficient ways of going backwards
– Aldous Huxley, Brave New World

Water resource management aims at controlling water systems such that they meet the
quantity and quality needs that are set. This often includes the operation of structures
such as pumps and dams (Grigg, 2005). Regulating a water system does not just require
a certain capacity but also the proper operation of the structures present. This is done
by controllers which can be either human or software driven and in practice are often a
mix of both. The operation of a water system is often challenging, amongst other things
because of uncertainties in forcing data and model predictions.
For flood control, management needs to be enforced in a relative small time scale in the
range of minutes or hours, referred to as Real Time Control (RTC). In the Netherlands,
RTC of pumping stations and weirs is needed to keep the water in polders at a desired
level. These systems can be operated in real time by processing new information (e.g.
predicted weather conditions or measured water levels) as it comes in (Mayne et al.,
2000). Over the last decade, much research has been devoted to improving and defining
new methods that allow better real time water management. This thesis follows in that
trend.
In this chapter an explanation of the current methods used to improve RTC systems
can be found, including background information on model predictive control, data
assimilation and model uncertainty analysis. This leads to the motivation and relevance
for this thesis, including the research questions. The chapter concludes with a guide for
reading the report.

1.1 Background

1.1.1 Model Predictive Control
The method most commonly used to calculate optimal operation of a RTC system is
model predictive control (MPC) (Lee, 2011; Bemporad, 2011). In RTC systems using
MPC, different control options (e.g. pump discharges) are optimized such that their
corresponding system response (e.g. water level) fulfils set goals (e.g. a water level
close to a set water level). The system response is calculated using a model over a
finite horizon, meaning only a limited time horizon is taken into account to evaluate the
system response. Instead of giving the optimal actions for the complete time horizon,
the output of the MPC is the optimal control action of the current time-step only. This
way, when new information about the states or forecasts come in, the optimization can
be recalculated using the current state of the system as initial state (Mayne et al., 2000).
Using real time data to immediately update the model makes it an on-line approach.
The biggest difficulty for MPC in real time operational systems is the small time scale
in which optimal actions need to be calculated. Solving the optimization problem is
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generally slow and requires recalculations of the coupled hydrological model (Wang and
Boyd, 2010). Therefore, the coupled hydrological models usually need to be simplified
drastically to ensure the requirement is met. This can reduce the reliability of the model
outcome and hence of the proposed control actions based on this.

1.1.2 Data Assimilation
Another method to improve the operation of water resource systems is Data Assimilation
(DA) (Liu et al., 2012), often used in combination with MPC. DA is the concept of
updating model parameters or states using online measurements of the real system
(e.g. discharge or precipitation measurements). These are used to reduce the difference
between the modelled and the measured output (Pedersen et al., 2016). Different DA
approaches have been developed to suit a wide variety of models including conceptual
rainfall-runoff (CRR) models and, even though much less common, real-time control
models (Pedersen et al., 2016). In combination with hydrological models, DA methods
were found to be promising in reducing model uncertainty.

1.1.3 Model Uncertainty
For all models assumptions need to be made on how errors propagate through the
model. This becomes more so if the model needs to give ’real time’ outputs, requiring
often oversimplification of the model to reduce calculation time. The uncertainty in
predicted stream flow by CRR models has been a topic of interest among hydrologists
for a long time and its importance for good decision making in control of structures is
well known (e.g. Pappenberger and Beven, 2006; Schaake et al., 2006; Brown, 2010).
Figure 1.1a shows the error that is usually taken into account when validating, cali-
brating or applying models; one lumped term called the model error representing all
uncertainties caused by errors in parameter estimation, model structure, initial states
and observed forcing data. The forcing error is mostly neglected completely as source of
uncertainty by assuming that the measured and forecast input data equal the true forcing
data (Kuczera et al., 2006). This not only influences the calibration of models, but also
reduces the understanding of where the errors originate from. In its turn, this reduces
the option to target the most import sources of error. An improved conceptualisation of
model errors is illustrated in Figure 1.1b, where three different sources for model errors
can be distinguished (e.g. Kavetski et al., 2002; Kuczera et al., 2006):

1. Errors in the observation of forcing inputs. Especially precipitation measure-
ments can be very different from the physical reality.

2. Errors in the model structure and parameters. These cause the deviation in model
response and true response even if the forcing input and the output were measured
without error.

3. Errors in the measured response of the catchment. For example, measured water
level is subject to errors caused by the measurement device.

Another important error, not mentioned in Figure 1.1b is the error in the initial condi-
tions (N. K. Ajami, Q. Duan, 2007); a rainfall event on a system that is already saturated
will generate a different response than on an empty system.

Dealing with different sources of uncertainty In the last ten years, finding the differ-
ent error sources has become of interest. It allows to find the main causes of uncertainty
in the model, so that improvements can be pinpointed to the appropriate causes (Liu
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(a) Current conceptualization (b) Improved conceptualization

Figure 1.1: Schematic of error propagation in a conceptual RR model (taken from
Kavetski et al. (2002))

et al., 2012). Furthermore, knowing the contribution of model uncertainties also allows
to compare a model to others without obscuring the results through errors in the forcing
and output data (Renard et al., 2010).
One method to address model uncertainties is by abandoning the notion of a determinis-
tic model and making it a probabilistic model instead, for example by putting it in an
Bayesian context (Jin et al., 2010). DA methods such as the Kalman Filter can also be
interpreted in a Bayesian context (Hairer et al., 2005) and can be used not only to reduce
the input uncertainty but also help showing the pain-points in the model.

Role of forcing data uncertainty Forcing errors can dominate the causes for model
uncertainty. Rainfall is seen as the forcing input that is most uncertain due to short
correlation length scales as well in space as in time (e.g. Huard and Mailhot, 2006;
Renard et al., 2010; Xu et al., 2006). Furthermore, Kuczera et al. (2006) found the rainfall
multiplier (used to simulate the error in precipitation) to be the second most sensitive
parameter of the CRR model in their case study.
Input precipitation data is difficult to improve because new methods that account for
better spatial and temporal variation, such as radar and satellites, have errors that exceed
those of operational station networks (Volkmann et al., 2010). These (ground) radar
measurements are useful and commonly used in RTC systems since they give near real
time data with high spatial scale, at the price of higher uncertainty (Carpenter and
Georgakakos, 2004).

1.2 Objective & Research Questions
The different backgrounds come together in the main research question of this thesis:

’How can data assimilation methods be used in real time hydrological models to
reduce the uncertainty on predicted water levels?’

The scientific relevance of this question is that it brings together three topics in which
a lot of research has been done in each topic on its own, but not in the combined field.
It is obvious that larger water level prediction uncertainties can be expected when
models are oversimplified to fulfil the short calculation requirements needed for RTC.
Hence, the possible gain in applying DA methods to improve the modelled states is high.
Furthermore, DA methods are very suitable for RTC systems in water management,
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since often real time observations of pump discharges and water levels are collected and
available to be used to update the modelled states.
The most important reason that these fields are not more commonly combined is that
both DA and MPC require large calculation times, while RTC systems require outcomes
in a very small time slot. Furthermore, mixing DA and MPC introduces difficulties
because both methods influence the outcome of the optimization, which can make it
impossible for the algorithm to find a solution close to the optimum.
The practical relevance is for to improve the optimization of control actions and was
initiated by the Water Boards, responsible for the water levels in polders, and civil
consultancy firm Witteveen and Bos. The water boards are required to use 20 % green
energy in 2020. Energy-efficient use of the pumps to reduce the amount of energy used is
therefore a great possibility, as the combined energy needed to keep the water at set level
of the water boards in the Netherlands was already 176.8 GWh per year in 2010 (Dahm
et al., 2010). This is the equivalent energy use for approximately 50.500 households. In
order to reduce energy for pumping, e.g. by reducing pumping time, accurate forecasts
of the water levels need to be possible. DA could potentially assist in improving this
forecast.
The research will be applied to a hydrologic CRR model for a polder area as are common
in The Netherlands. To obtain an answer for the main research question, five sub-
questions will be answered.

1. Which model components have the largest influence on the uncertainty in water level
predictions; parameter values, initial states or forcing data?

Finding the components which are most uncertain and to which the water level
predictions are most sensitive will help to pinpoint the uncertainties which the
data assimilation should aim to reduce.

2. Are there technical or practical issues for the application of DA?

Some models are more suitable for DA than other. The aim should be to find
whether technical issues that reduce the applicability of DA exist and how these
should be dealt with.

3. Which model components can best be perturbed for data assimilation, such that optimal
state estimates are found?

The DA should reduce uncertainty in the model components which can result in
improved estimates of the initial states which in their turn can improve the forecast
water levels. Following the first research question, the aim is to find how to target
the biggest source of uncertainty for water level predictions in the technical set-up.
Noise can be applied to different model components, either by adding a certain
value or by multiplying the model component. One example is the use of a rainfall-
multiplier to represent uncertainty in the forcing data. Different methods will be
tested in their ability to estimate the initial states of all the modelled storages, such
as the groundwater storage or storage in greenhouse basins.

4. Can DA, with a perfect model, recover the right initial states while running with distorted
forcing data?

Before testing with an actual case study, for which no validation is possible, it is
interesting and necessary to know if DA can work in theory on a real-time polder
model.

5. Can prediction uncertainty be reduced using DA in a case study where many different
components contribute to the uncertainty in water level predictions?
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When considering an actual case, much more uncertainty about sources of errors
has to be dealt with. The distributions of the uncertainties are now unknown
and validation is not easily possible. Data is clustered and different water levels
even within the polders apply. Is it possible to apply the data assimilation in this
situation?

1.3 Thesis Outline and Guidelines for Reading
In Chapter 2 the model structure is explained and uncertainties used for this research
are defined, giving body to the probabilistic model used in this research. Chapter
3 describes the polder area under control of Hoogheemraadschap Delfland and the
observed forcing data, used for the case study. How the model is implemented will be
discussed in Chapter 4. This includes an overview of possible DA techniques and the
theory behind it for readers less familiar with the topic. It also explains the concept of
a twin experiment, which is used to quantify which data assimilation method works
best. Chapter 5 includes a discussion of the software used to perform the hydrological
and data assimilation calculations. To let these programs work together, a coupling was
programmed for this thesis. Some flaws and useful points were found and discussed.
In Chapter 6 the results are presented, which are discussed in Chapter 7. This chapter
also includes the recommendations. Conclusions to the main research question and
sub-questions can be found in Chapter 8.
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2

Probabilistic rainfall-runoff model of
a polder

"We balance probabilities and choose the most likely. It is the scientific use of the imagination. "
–Sherlock Holmes, The Hound of the Baskervilles. AC Doyle, 1901.

A polder is part of a canal-drainage system, of which a representation is given in
Figure 2.1. The lower areas in the canal-drainage system are called the polder areas,
where polder pumps (poldergemalen) discharge the excess water to the boezem. The
boezem is a connected system of larger canals. In dry periods, water can be channeled
from the boezem back into the polder to maintain the desired water level. During rain
events, water can be pumped to the boezem to prevent flooding in the polder. The water
levels in the polders are maintained at different set water levels (peil) depending on the
function of the polder such as housing, nature area and farm land.
As the water levels in the polder determine a big part of the inflow into the boezem, it is
important that they can be modelled well. To do this, proper modelling of the rainfall-
runoff (RR) processes in the polder are of importance. This chapter will describe a
probabilistic framework focusing on the deterministic model set-up and its probabilistic
extension.

Figure 2.1: The concept of a canal drainage system (taken from Gemeente Rotterdam,
2017)

2.1 Deterministic rainfall-runoff model
The conceptual rainfall-runoff (CRR) set-up for a polder as used in Sobek RR is taken
for the deterministic model in this research. Sobek RR is a software calculating rainfall-
runoff using a distinction of four different land-use types: paved, unpaved, greenhouse
and open water. Within these areas, different hydrological processes are dominant such
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Figure 2.2: Overview of the deterministic model structure; different land-use classes
contain different storage reservoirs. The paved, unpaved and greenhouse land-uses are
disjointly modelled and all discharge to the open water land-use. The pumps regulate
the open water level by removing water from, or adding water to, the water balance of
the model. The blue arrows show which components interact with each other. WWTP
stands for waste water treatment plant.

that their model structure is different. A complete overview of the model set-up can
be found in Appendix A and is included because the nature of the system influences
the results of the data assimilation significantly. A short explanation about the model
is given in the next paragraph and is visualized in Figure 2.2. An overview of the
parameters, states, forcing data and model names and symbols is given in Table 2.1.
The model implements forcing data (evaporation and rainfall in L/T) by multiplying it
with the area of each land-use type. For the different land-use types, the rainfall is chan-
nelled to various reservoirs, including the groundwater storage, storage in greenhouse
basins and storage in the unsaturated zone. These reservoirs allow a change in stored
water volume and delay in run-off to the open water. The different land-use types, with
exception of the open water land-use, are disjointly modelled. The allocation between
the different storages per land-use type is given by equations mimicking rainfall-runoff
processes such as percolation, infiltration and sewage overflow. All land-use types con-
tain a series of the reservoirs, of which some are connected to the open water reservoir.
The accumulated water in the open water bodies is maintained around a set water level
by pumps, transporting the water outside the model boundaries. The pumps have a set
turn on and off point; 0 cm above set water level and -5 cm below respectively.
In the bigger picture, these pumps discharge to the boezem and form the forcing input
for the model predictive control system determining the optimal control of the boezem
pumps. It is the pump discharge from the polder to the boezem the model output that
this research aims to improve. Since the polder pump discharge depends on the water
level, improving water level predictions has the same effect.
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Parameters Θ States S Forcing data F ModelM
Name Symbol unit Name Symbol unit Name Symbol unit Name Symbol

Paved Paved Area APA ha Storage on Street Sstreet mm Precipitation P mm/5 min Deterministic
CRR Model

M

Maximum Storage
on the street

Sstreet,max mm Storage in sewage Ssew mm Potential Evaporation Epot mm/day

Maximum storage
in the sewage

Ssew,max mm

Maximal sewer
pump capacity

Qsew,max m3/s

Greenhouse
Total greenhouse
area

AGH ha
Storage in basins
for i = 1 . . . 10

Sgh,i m3 Precipitation P mm/5 min

Area of greenhouse
classes i = 1 . . . 10

AGH,i ha Potential Evaporation Epot mm/day

typical depth of
storage basins

dGH m
Irrigation
greenhouses

QGH m3/s

Unpaved Unpaved area AUP ha Storage on land Sland m3 Precipitation P mm/5 min
Resistance
coefficients i = 1 . . . 4

Ri -
Storage in
unsaturated zone

SUS m3 Potential Evaporation Epot mm/day

Maximal storage
on land

Sland,max mm
Shallow
groundwater storage

SSG m3
Percolation
to deep
groundwater

QP m3/s

crop type c -
Max infiltration
capacity

Imax mm/hour

soil type s -

Open Water Open water area AOW ha Open Water SOW m Precipitation P mm/5min
Maximal pump
capacity

Qpump,max m3/s Potential Evaporation Epot mm/day

Maximal inlet
capacity

Qinl,max m3/s

Table 2.1: Parameters, states, model and forcing data in the probabilistic model: names and symbols. Note that at the beginning of a model run, all
states are represented by an initial state Sx,ini.
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2.2 Uncertainties
Using the represented deterministic model to describe the rainfall-runoff introduces
multiple types of uncertainty. Besides an overview of names and symbols, Table 2.1
shows the different contributors to uncertainty for this CRR model per land-use type
taken into account in this study, grouped into four classes.
The first column gives the parameters, a first source of uncertainty because they are
implemented as fixed values. In reality the value of these parameters are spatially
distributed, or even a lumped representation of different properties themselves. The
second column shows the model states, which at the start of each model run have initial
filling degrees. The initial values of these states form a second source of uncertainty.
Empty storages or a filled-up system will generate a completely different response in the
next rainfall event. The third uncertainty comes from observation errors in the forcing
data used to run the model and can account for a huge part of the uncertainty (Kuczera
et al., 2006). The fourth column shows the uncertainty introduced by the simplified
model structure f .
The fifth uncertainty, not shown in Table 2.1, stems from the uncertainty in the observed
water level. It is not given in Table 2.1 because it does not influence the deterministic
model. However, it will influence the data assimilation and is therefore taken into
account as well in the probabilistic model set-up.
The uncertainty of the different components is represented by a probability distribution
for each component. Since the distributions are not generic for different models, they
are discussed in the case study in Chapter 3.

2.3 Probabilistic model

2.3.1 Why is a probabilistic model needed?
To account for the uncertainties introduced by parameters, initial states, forcing data,
observation data and model structure, the model can be placed into a probabilistic
context. That way, the stochastic errors that arise from the uncertainties, and get lost
in a deterministic model, can be addressed (Renard et al., 2010). It has been argued
that the notion of a deterministic model is not defensible at all due to the inevitable
uncertainties in modelling (e.g. Kuczera et al., 2006). Besides this, DA works in a
probabilistic framework, requiring the model to be defined as a probabilistic model as
well.
The overall idea is to use the new uncertain observed water levels to reason backwards
to the most likely corresponding forcing data and unmeasured states. In this approach,
the uncertainties are represented by a probability distribution, which was propagated
through a deterministic structure. One of the methods of ’backwards’ reasoning is using
Bayes’ rule, which can be applied if the probabilistic model fulfils some characteristics
(namely a state-space model). Bayes’ rule can then be applied several times, calculating
an improved (posterior) distribution of the states. The following sections will explain
the concepts of the probabilistic framework and the state space model. The next chapter
will then explain Bayes’ rule and how this is used in the data assimilation.

2.3.2 Probabilistic model formulation
The deterministic model of section 2.1 (and more elaborate in Appendix A) can be seen
as a functionM, which depends on a vector of states (xt−1) at the previous time step,
the forcing observations (F) and the set of parameters (Θ). The outcome of the model is
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given by xt, the state vector, giving the storages in the different reservoirs. The model
outcome is mapped, by a function which shall be named H, to the state that is observed;
for this research the water level (yt) at time t. Furthermore, as initial condition, an
initial state vector xt=0 needs to be given. In formulas the deterministic system can be
represented by:

xt =M(xt−1, Ft,obs, Θ) (2.1)
yt = H(xt) (2.2)
xt=0 = x0 (2.3)
yt=0 = H(x0) (2.4)

where

Ft,obs = The precipitation and evaporation forcing from time t− 1 to t.
Θ = The 28 dimensional parameter vector.
M = The non-linear deterministic CRR-model described in section 2.1, depended on

the forcing data, the parameters and the previous state vector.
H = The function mapping state vector x to the modelled observable state y.

and where

xt = The state vector at time t, including also the water level state.
yt = The water level at time t, the state that can be observed

As discussed, each of the components is modelled with a single value, while in reality
it carries uncertainties. To create a probabilistic model, a probability distribution of
the errors for each item, such as the initial storage of the greenhouse basins, in each
component, such as the initial storages, is estimated. Furthermore, the modelled water
level including model uncertainty can be represented by the observation of the water
level including the observation uncertainty vt. The new schematic representation of the
probabilistic model then becomes:

yt = yt,obs + vt (2.5)
xt =M(xt−1, Ft,obs · wt, Θ + kt) + mt (2.6)
x0 = x0 + s0 (2.7)

where the uncertainties are represented by:

vt = the observation error of the water level
wt = the forcing error (evaporation and rainfall)
s0 = the error on the initial states
kt = the error on the parameters

mt = the model structural error

The errors are chosen to be additive. An exception is the error on the rainfall which is
taken to be a multiplier, following the approach of Kuczera et al. (2006). The reason for
this is that often no-rain/rain can be predicted well whereas errors in observations are
known to increase as rainfall-intensity increases (see the uncertainty analysis in Chapter
3).
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Figure 2.3: Representation of the model as a state-space model. The forcing F influences
the (mostly hidden) states S, which can be mapped to the observed water level Y. As
the model progresses in time, only the previous time step influences the next, such that
the model fulfills the first order Markov property when also the pump state is included.
∆F represents the time correlation in the noise on the rainfall.

2.3.3 A State-Space Model
As discussed in Section 2.3.1, the aim is to apply data assimilation on the probabilistic
model sketched in 2.3.2 to update the initial states using online data. Basically this
means the aim is to apply state-space modelling: ’a form of modelling with the objective to
estimate hidden states using a recursive application of Bayes’ rule given the observations’ (Chen,
2003).
These so-called state-space models (SSM) satisfy two properties:

1. Firstly, the model has hidden variables. These include states and parameters that
are not or cannot be measured by the observer (e.g. the soil moisture content)
(Gharamani, 2001). The observations (in this case, the observed water levels)
have to be a result of these hidden variables through the rainfall-runoff processes
mimicked by the model.

2. Secondly, the model has to fulfill the first order Markov property, which states
that if one knows the previous state St−1, one does not need to know states Sj with
j < t− 1 to compute the current state St (Gharamani, 2001).

The hidden variables are clearly present in the model presented section 2.1. Of the 16
states given in Table 2.1, only one is measured; the storage in the open water bodies. The
storage in the greenhouse basins could easily be measured but this is not the case. The
first order Markov property only holds if besides the storage reservoirs, also the pump
discharge and the correlation between the rainfall are viewed as states. The first because
given a water level at time t, one can not deduce the pump discharge at time t without
knowing the previous discharge. The following equation illustrates this:

Qpump(t) =



Qpump,max if ∆hre f (t) > 0.2
or Qpump(t− 1) = Qpump,max & ∆hre f (t) > 0

0.5 ·Qpump,max if 0.1 < ∆hre f (t) < 0.2
or Qpump(t− 1) = 0.5 ·Qpump,max & ∆hre f (t) > −0.1

0 otherwise
(2.8)
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where

Qpump(t) = The pump discharge in m3/s from the polder to the boezem at time t.

Qpump,max = The maximal pump discharge in m3/s from the polder to the boezem.
∆hre f (t) = The water level difference (m) from the set water level (reference point) at time t.

This shows that the pump can be turned on at time t even though the water level is
already within the operational bounds of the water level. Furthermore, note that the
pump is a discrete variable, only able to take three values. This is likely to cause problems
for the data assimilation, which works with continuous states only.
The second additional state that needs to be introduced to fulfill the first order Markov
property is the rainfall correlation ∆F. This component is not explained in the set-up
of the deterministic model in Appendix A because it is not part of the Sobek model.
However, it is implemented in the DA framework to account for correlation in the errors
on rainfall and so should be part of the probabilistic framework. It is given by:

∆F(t + 1) = α∆F(t) + η(t), (2.9)
η(t) ∼ N (0, ση) (2.10)

N0 = 0 (2.11)

where

∆F(t) = noise on rainfall at time t
α = dimensionless factor determining the correlation between two timesteps

η(t) = independently drawn noise for time step t

The rainfall implemented in the model (F̃(k)) is then:

F̃(k) = F(k)(1 + ∆F(k)) (2.12)

Figure 2.3 gives a representation of the State Space model that is obtained.
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3

Case: Polder Area
Hoogheemraadschap Delfland

What the use of P implies, therefore, is that a hypothesis that may be true may be rejected because
it has not predicted observable results that have not occurred.

– Sir Harold Jeffreys, Theory of probability, 1961

As much as theoretical cases can support hypothesis and theories, civil engineering is
an applied science and it is good to know how the approach works with actual cases
and data. That way, not only can the hypothesis be rejected because it cannot predict
observable results that have not occurred, but also because it might not predict the
observable result that have occurred.

3.1 Area of Hoogheemraadschap van Delfland
The area under consideration for the case study is the polder area regulated by the
Hoogheemraadschap of Delfland (HHvD) and is shown in Figure 3.1a. The HHvD is an
organization in the Netherlands which is among other things responsible for regulating
the water levels in the polders and boezem to prevent flooding and drought.
The area of HHvD consists of a hundred polders (Beukema, 2017), bounded by the
North Sea, the Nieuwe Waterweg and the line from Rotterdam to Zoetermeer and
Wassenaar (Hoogheemraadschap van Delfland. www.hhdelfland.nl, 2017). The control
for the polders is supported by a model system, BOS2.0, which consists of a Sobek
RR model, a hydraulic model in Sobek and implementation of MPC in RTC-Tools. In
the RR model, the polders are grouped into 25 polder areas as depicted in Figure 3.1b.
The clustering involves an aggregation of storage and an averaging of the rainfall and
potential evaporation over these areas. The total area is around 41,000 hectares and is
inhabited by approximately 1,4 million people. Around 40,000 businesses are situated
in the area and it is one of the most intensified glasshouse horticulture in the world
(Hoogheemraadschap van Delfland. www.hhdelfland.nl, 2017).
The maximal allowed deviation from the set water levels in the polders is 0.2 m for
a rainfall event of 100 mm in 48 hours with a return period of 190 years (Delfland,
2017). When a lot of rain is expected, the poldergemalen will lower the water level in
anticipation (Hoogheemraadschap van Delfland. www.hhdelfland.nl, 2017). The set
water level in Tedingerbroek polder is −1 meter below sea level. In anticipation of big
rainfall events this can be lowered to −1.2 meter below sea level.
The boezem system that receives the excess water from the polders is controlled by the
HHvD and is called ’Boezem van het Westland’. It consists of bigger canals like the
Schie in Delft and the Vliet in Voorburg. The water level of the boezem is maintained
at a constant level called the ’boezempeil’, which equals −0.43 m NAP for Delfland
(Hoogheemraadschap van Delfland. www.hhdelfland.nl, 2017) . The six boezemge-
malen (placed in Rotterdam, Schiedam, Maassluis, Hoek van Holland, Ter Heijde and
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(a) The modelled area of Delfland. The red
triangles show the boezemgemalen, the blue
lines give the main boezem water ways

(b) Clustering of the polders in BOS2.0,
the red arrow indicating the Tedingerbroek
polder (N64), the test case of this thesis.

Figure 3.1: Area of Case study: Delfland

Figure 3.2: Tedingerbroek polder in Delfland; the area modelled in this research

Scheveningen) pump out the excess water present in the polder, whereas two inlets can
raise the water level in case of droughts.
The Tedingerbroek polder (Figure 3.2) is chosen to test the hypothesis whether data
assimilation can improve the predicted water levels in the polders. This polder was
chosen since it has only one outlet to the boezem, consists of all land-uses described in
Section A and has well documented water levels.

3.2 Data Sets
Different data sets are input for the probabilistic model discussed in Chapter 2. These
are precipitation, potential evaporation, and water level measurements. An overview of
the data products, their sources, temporal resolution and time horizon is given in Table
3.1.
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product source location
frequency
available

measurement
frequency

start series end series

uncorrected
radar-rainfall

Hydronet
AECL_N64
(Tedingerbroek
polder)

15 minutes 5 minutes 02-03-2016 10:35 06-01-2017 19:00

1st corrected
radar-rainfall

Hydronet
AECL_N64
(Tedingerbroek
polder)

1 hour 5 minutes 09-06-2016 19:10 06-01-2017 19:00

day-corrected
radar-rainfall

Hydronet
AECL_N64
(Tedingerbroek
polder)

1 day 5 minutes 08-06-2016 19:10 06-01-2017 19:00

KNMI
rainfall

KNMI
station 330
(Hoek van
Holland)

1 day 1 hour 01-01-2015 31-05-2017

KNMI
rainfall

KNMI
station 334
(Rotterdam)

1 day 1 hour 01-01-2015 31-05-2017

KNMI potential
evaporation

KNMI
station 449
(Delft)

1 day 1 day 01-01-1951 31-05-2017

Water levels HHvD
408101
(Tedingerbroek
polder)

5-15 minutes 1-15 minutes 09-07-2015 09:00 17-03-2017 09:00

Table 3.1: Overview of used data series with corresponding source, frequency, location
and start-end of time series. The frequency available gives the time-slot in which the
data becomes accessible after the moment of measurement. The measured frequency
gives the interval between two data points.

Precipitation The past, current and predicted precipitation used by Delfland and
therefore also in the probabilistic model is given by HydroNET, a product provided by
Hydrologic B.V.. The rainfall product has a spatial resolution of 1 x 1 km2 and a temporal
resolution of nearly real time: each 5 minutes. The real time data are the uncorrected
radar rainfall product which is used for the calculation of the next ’model’ time step.
This product shall from here on be called the uncorrected radar precipitation: Pobs

unc.
The uncorrected product is calibrated with precipitation measurements of more than
300 KNMI ground measurement stations in 24− 32 hours. This product shall be called
the 2nd-corrected radar precipitation: Pobs

2nd and its reliability is supposedly equal to the
precipitation measurements of a properly installed rain-gauge (Lobbrecht et al., 2012).
This product is used by Delfland to restart the model as soon as it becomes available.
Furthermore there is an hourly product, which gives a first correction on the uncorrected
precipitation. This product does not differ much from the uncorrected rainfall product
and is not used from here onwards. To give an idea of the huge differences between
these products, they are shown for two events in Figure 3.3 and the cumulative amounts
over a timespan of seven months in Figure 3.5. These differences are further discusses in
Section 3.3.
To compare the radar rainfall product to a different rainfall product, the KNMI rainfall
data at location Hoek van Holland and Rotterdam are also included in Table 4.1.

Potential evaporation Daily, gridded potential evaporation is given by a product of
KNMI and is calculated using the method of Makkink. It depends on the temperature,
wind and solar radiation. The product is determined daily at the KNMI station in
Rotterdam.

Water level The water level is measured every 5 minutes at many places within the
boezem and polder of Hoogheemraadschap van Delfland. Water levels near the polder
pump of Tedingerbroek, as can be seen in 3.2, are supplied by the HHvD. The measure-
ments are taken using a sensor in a tube with holes over which a filter is applied to
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(a) Extreme rainfall event june 23 2016 (b) steady rainfall event 4 - 6 november 2016

Figure 3.3: Illustration of the difference between uncorrected, 1st correction and day
(2nd) corrected radar rainfall products.

Figure 3.4: Timescale of the used rainfall products and restarts in BOS2.0, as used by
Delfland for the operation of the pumps.

reduce the noise caused by disturbances (such as waves).

Practical implementation of the data for RTC The uncorrected and 2nd-corrected
radar rainfall data and the water level measurements are used by Delfland to determine
the operation of the pumps and the state of the system. The uncorrected radar is used to
calculate the current water levels in the boezem and upto 36 hours in the future, so that
the pumps in the boezem can be optimized using MPC. As soon as the 2nd-corrected
rainfall becomes available, the model is recalculated and a restart is made with the
updated states. The water levels are real time available so that the operators can check
whether the operation is going well and they overrule the modelled pump settings
whenever need be (and this happens daily). The time line is shown in Figure 3.4. For
forecast calculations, a rainfall prediction product is used called Harmonie. Since data
assimilation uses real time measurements to update the modelled system up to the
current time, this product is not of interest for this research.

18



3.3 Probability distribution of the variables
The probabilistic CRR model for the polder as discussed in Chapter 2 is applied to the
polder area of Delfland for this research. The probability distributions of the parameters,
states, forcing and model structure as presented in Section 2.3 can now be specified for
this particular case study. These are given for the parameters and initial states in Table
3.2 and were found from literature and interviews with water-operators. For the rainfall
uncertainty, an analysis of uncorrected and corrected radar rainfall data is given below.

Uncertainty on the Radar Rainfall

The difference between the radar rainfall products is emphasized in Figure 3.5. This
figure shows the sum of the 5-minute rainfall products over time. The difference in the
total fallen rainfall in the period from the 9th of June 18.00 2016 until 6th of January 5.00
2017 between the uncorrected and 2nd corrected product is approximately 190 mm, an
underestimation of 40%. The first period resulting in a significant difference in products
corresponds to the extreme event on June 23rd. Two locations with KNMI rainfall data
are also shown in Figure 3.5, showing a similar pattern as the 2nd corrected radar
rainfall, strengthening the belief that the main error is in the uncorrected rainfall instead
of the 2nd corrected rainfall. It is expected that a difference this large will influence the
modelled water levels significantly. The 1st correction on the radar rainfall does not
show a real improvement to the uncorrected product.
Figure 3.6 shows that the underestimation of the uncorrected radar rainfall increases
when intensities increase. The error between these products was analysed from 58180
measurements. The found relation between the 2nd-corrected and the difference in

Figure 3.5: Cumulative rainfall over the period of half a year; difference between radar
rainfall products at location Tedingerbroek polder. Two KNMI products for the locations
of Hoek van Holland (HvH) and Rotterdam are included to have a reference value.
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Name Value Based on Source year
Estimated
Uncertainty

Comments

Areas Ai

Paved: 255.2 ha
Greenhouse: 3.3 ha
Unpaved 687.3 ha
Open water: 75 ha

LGN5 2004 N (Ai, Ai · 0.05)

Initial States Stateini

Paved: 21744 m3

Greenhouse: 903 m3

Unpaved 95090832 m3

Open water: 0.32 m from peil

N (Stateini, Stateini · 0.3)

The initital states
result from a model
run.They take lumped
errors of forcing,
structure and parameters

Paved

Maximum stroage
on the street

2 mm RIOKEN (INTWIS) N (2, 0.5)
Based on
commonly used
values

Maximum storage
in the sewage

3 mm RIOKEN (INTWIS) N (3, 0.2)
Based on
commonly
used values

Maximal sewer
pump capacity

211 m3/h RIOKEN (INTWIS) N (211, 5)

Greenhouse

Area of greenhouse
classes i = 1 . . . 10

See Table A.3
Studie Watervraag
Kasgebied Nelen
Schuurman

2005 N (Agh,i, Agh,i · 0.1)

outdated
information,
new legislation
and only lowest
bound of the
classes is taken

typical depth of
storage basins

1 m
Studie Watervraag
Kasgebied, Nelen
Schuurman

2005 − Only volume
matters

Unpaved

Resistance
coefficients
i = 1, . . . 4

Surface Run-off: 0.3 day
Inflow 1300 day
Drainage high 70 day
Drainage low 200 day

BOEZ09 2011 N (Ri, 0.1 · Ri) Based on soil type.

Maximal storage
on land

5 mm BOEZ09 2011 N (5, 1)

crop type
urban: miscellaneous (6)
rural: Grass
nature: Nature(13)

LGN5 2004 −
Not preferable
to put noise
on the crop type

soil type Podzol (loamy, light sand)
Stiboka
soil map

1980 − Relative certain

Max
infiltration

20 mm/h N (20, 3)

Based on
commonly
used values
of soil type

Open water

Max pump
capacity

365 m3/h Delfland N (340, 20)

Pumps usually
do not live up to
their maximum
capacity

Max inlet
capacity

365 m3/h Delfland N (340, 20) " "

RIOKEN (INTWIS): RIOKEN is a data model for sewage information in Holland, and is a module of the integrated waterboard information system
(INTWIS) https://www.riool.net/-/andere-standaardisatie-van-invloed-op-stedelijk-waterbeheer
LGN5: Landelijk grondgebruik kaar Nederland versie 5; A detailed 25 x 25 m landuse map produced by Alterra. The land is devided into 39 landuse
classes, devided over main classes: argraic, forest, water, urban and nature. It is based on satellite images from 2003-2004 (Hazeu, 2005)
Study ’Watervraag Kasgebied t.b.v. de droogte’. In this study by Nelen en Schuurmans, an inventarisation was made on the distribution and sizes of
the basins in Delfland.
BOEZ09 ’Uitgangspuntennotitie modelinstrument Boezemmodel Delfland (BOEZ09)’, a study where the groundwork for the BOS2.0 model was
defined(Nelen & Schuurmans and Delfland, 2011)
Stiboka Soil map The Stiboka (stichting voor bodem kartering) map is made by Alterra. It consists of information about the top soil layer in whole
Netherlands, differentiating between 3168 soil types. This is simplified using a conversion list of Alterra to 21 soil types, of which Podzol is one (Nelen
& Schuurmans and Delfland, 2011).

Table 3.2: Values and estimated distributions for the deterministic parameters presented
in Table 2.1
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(a) The relation between the difference in radar
rainfall products and the intensity of the 2nd
radar rainfall.

(b) Relation between uncorrected and 2nd-
corrected radar rainfall products.

Figure 3.6: Relationships between radar rainfall products.

uncorrected radar and 2nd-corrected, shown in Figure 3.6a was

(Punc − Pday) = −0.04P2
day − 0.48Pday, (3.1)

with an R2 of 0.9. This shows that given the 2nd correction, a relative good estimate of
the uncorrected radar rainfall product can be given. The other way around, illustrated
in Figure 3.6b, the relation between the uncorrected radar rainfall and the corresponding
error, is less clear. However, the relation still illustrates the underestimation and is given
by

Pday = 0.45P2
unc + 1.5Punc, (3.2)

with an R2 of 0.8.
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4

How to Solve the Model

An approximate solution to the right problem is worth more than a precise solution to the wrong
problem

– Tukey, 1962

Many different methods for data assimilation exist. These are discussed in Section
4.1 and an appropriate method for this system is chosen, which is explained in further
detail in Section 4.2. Sections 4.3, 4.4 and 4.5 describe the set-up of the tests that were
carried out. The methodology to compare the results objectively is discussed in Section
4.6.

4.1 Data Assimilation Methods
Three main approaches that divide the great number of data assimilation algorithms

are (Pedersen et al., 2016):

1. Updating model states. This can be done directly from measurements (e.g. Hansen
et al. (2014) and Ho and Lee (2015)), or using more sophisticated methods such as
Kalman filtering approaches (e.g. applied by Vrugt et al. (2006) and Borup et al.
(2015)).

2. Error correction. Using a more statistical approach, e.g. using time series models
or ARMA filters (Liu et al., 2012).

3. Joint state and parameter estimation approaches. Examples also include particle
filtering approaches (e.g. Moradkhani et al. (2005)) or evolutionary algorithms (e.g.
Dumedah and Coulibaly (2013)).

The main interest in this thesis is updating model states, i.e. the storages in the different
reservoirs of the deterministic RR model of Chapter 2. Three possible data assimilation
methods include the Ensemble Kalman Filter (EnKF), Particle Filters (PF) and the Moving
Horizon Estimate (MHE). These should transform the output observations (e.g. water
levels or pump discharges) into an estimate of all states. The main ideas, advantages
and disadvantages are discussed below and summarized in Table 4.1.

Moving Horizon Estimate MHE is a state estimation method that was developed to
deal with non-linear and constrained dynamic systems (Copp and Hespanha, 2014). It
can be applied even if prior distributions are estimated poorly and works well with MPC.
However calculation speed is slow, which makes it unattractive for real time updating.
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Particle Filters PF is the collective name for sequential Monte Carlo methods, which
allows the distribution of the parameters to vary over time (Rawlings and Bakshi, 2006).
This is done by sampling, where the samples are called particles. When the PF were first
introduced, they ignited a spark in the believe that they could be a robust and accurate
solution to solve non-linear dynamic systems. However, this relative good performance
is only true if the initial distribution on the uncertainties can be estimated well. For
simple CRR-models, this can be difficult making it not the ideal method for this research.

Ensemble
Kalman Filter

Particle Filters
Moving Horizon
Estimate

Idea
Ensemble
representation
of the KF

Sampling Optimization

Information
propagated
by the algorithm

Ensemble
representation of
mean vector and
covariance matrix

Complete probability
density conditioned
on the measurements

Estimated
state vector

Prediction of
statistics from
one
measurement
time to the next

approximate the
posterior distribution
of the states
using Bayes’ rule

MC integration using
importance sampling
& resampling

Minimizes an estimator
cost function based on
a finite number of time
stages (?).
The cost function
consists of a prediction error
and an arrival cost that
summarizes past data.

Accuracy of
estimation state
vector

Performance depends
on knowledge
of priors

Optimal performance
for low dimensional
problems. Can be poor
for high dimensions
because it is limited
by real time computer
speed

High quality solution
for constrained, non-linear
systems (Rawlings, 2009).

Computational
complexity

relative low,
depends on
ensemble size

Beats the curse of
dimensionality for
’nice’ problems. Not
necessarily otherwise.

Relative high. Computational
cost does not grow as
more data becomes available
due to fixed time-frame
(Copp and Hespanha, 2014)

Advantages

Much applied.
Also works for
non-linear, non-
Gaussian systems.
(Copp and Hespanha, 2014)

Can handle constraints
& non linearity in
state estimation
(Rawlings, 2009).
Simple to program,
fast to execute.

Attractive to use with
MPC (Copp and Hespanha, 2014).
Can handle constraints &
non linearity in state
estimation. Recovers robustly
from poor prior distributions
and un-modelled
disturbances
(Rawlings, 2009).

Disadvantages
cannot deal well
with non-continuous
state options

Does not recover from
poor guess of initial
distribution
(Rawlings, 2009).

Requires on-line computation

Table 4.1: Overview of the properties of different DA techniques. Unless stated otherwise,
information taken from Daum (2005).

The Ensemble Kalman filter (EnKF) is a filtering method approximating the standard
Kalman filter (KF) (Kalman, 1960) and was introduced by Evensen (1994). The EnKF
works with an ensemble of vectors that approximates the distribution of the state or
input (Katzfuss et al., 2016) every time new data comes available. It works by calculating
the distribution using a linear ’shift’, where the error of the state space model is assumed
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to be linear Gaussian. Since hardly any real-life models are linear Gaussian state-space
models, additional approximations are always made.
The EnkF is often applied to cases where the theoretical conditions do not hold. Many
examples can be found in geophysical literature where the EnKF is successful and
robust for systems to which the assumptions of linearity and Gaussian do not apply
(e.g. Evensen, 2003; Katzfuss et al., 2016, ) . Using this method on systems where these
assumptions do not hold is justified by the principle that "an approximate solution to the
right problem is worth more than a precise solution to the wrong problem" (Tukey, 1962). This
research will embrace the same principle.
The main difference between the Kalman filter and other sequential Monte Carlo meth-
ods (e.g. Particle Filters), is that it uses a shift instead of re-weighting when new data
becomes available. This shift allows that the method stays very stable, even in high
dimensional problems. It is said that for realistic, complex systems, the EnKF is still the
only way to do approximate inference, while other techniques can give exact solution
but only of simplified versions of the model (Katzfuss et al., 2016).
Weighing the methods against each other gives the EnKF as preferable approach for its
robustness and calculation speed. It is an advantage that it is the most common applied
DA method, so that if results are applicable, implementation will be accepted more
easily. This method will in the next Section be explained in detail and depends on the
recursive application of Bayes’ rule which shall be explained first.

4.1.1 Bayes’ theorem
With the probabilistic model, the likely resulting water levels given a certain causes, such
as errors in rainfall or initial states, can be determined. However, the result is observed
and the aim is to determine from this the underlying causes. This can be done using
Bayes’ rule in order to get a better understanding of the system, but also to update the
states so the future initial states can be improved.
This means Bayes’ theory gives a method of describing the conditional probability
of an event A after the observed data B becomes available. This is the probability
P(A|B), visualized in Figure 4.1b. This probability can be calculated based on two
other probabilities which are known or can be estimated beforehand: the conditional
probability of the data B given the event A (P(B|A)), and the probability of event
A occurring in the first place (P(A)). This is visualized graphically in Figure 4.1a.
Additional reading on probability theory can be found in the MIT open course as taught
in 2014 (Orloff and Bloom, 2014). Bayes’ theorem is as follows:

Bayes’ theorem Consider multiple events A1, . . . , Ak, which give a finite, disjunct
partition of the sample space F . If B is an event in F (note that B /∈ {A1 . . . Ak}
necessarily), with P(B) > 0, then Bayes’ theorem gives the following rule:

P(Aj|B) =
P(B|Aj)P(Aj)

∑k
i=1 P(B|Ai)P(Ai)

(4.1)

For the continuous case:

fX|Y(x|y) =
fY|X(y|x) fX(x)

fY(y)
=

fY|X(y|x) fX(x)∫
fY|X(y|x) fX(x)dx

(4.2)

As the research at hand will deal with the continuous case, this is most important and
an example of this can be found in Example 2.1 of which the results are shown in Figure
4.2.
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(a) Information of the different effects A from
a cause B, representing the probability P(A|B)
can, together with the probability P(A),...

(b) ... by Bayes theorem be turned into informa-
tion about the probable cause given observed
results A (P(B|A) ).

Figure 4.1: Graphical representation of Bayes’ theorem, giving information about the
cause after the effect is observed. Illustration adjusted from (Sivia, 1996).

Figure 4.2: Prior and posterior pdf’s of Example 2.1, with prior distribution θ ∼ N (2, 1),
x ∼ N (θ, 1) and observation x = 4. The posterior is again normally distributed;
θ ∼ N (3, 0.5). Note how the mean of the posterior lies in between the prior and the
observation and that the variance of the posterior is smaller than that of the prior and
the observation distributions.

Example 2.1: Bayesian Example with continuous data and priors
For the continuous case, let the notations be given by:

• Observation x

• Prior f (θ)dθ

• Likelihood f (x|θ)dx

• Posterior f (θ|x)dθ.

This example looks at the case of water level observations versus modelled water
levels. Both contain uncertainties. The goal is to find an improved estimation
of the water level from the modelled water level and the observation combined.
Let θ be the modelled water level, assumed to have a normal prior distribution
θ ∼ N (2, 1). Let x denote the uncertain observed water level, assumed to be
related to θ and drawn from the normal distribution x ∼ N (θ, 1).
First the ingredients for the calculation are obtained and then Bayes’ rule will be
applied to find an improved posterior distribution of θ, given observations x. The
prior pdf of θ is (because it is normally distributed) given by
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f (θ) =
1√
2π

e−(θ−2)2/2 (4.3)

and the likelihood function of the error in water level given an error θ on the
rainfall is:

f (x|θ) = 1√
2π

e−(x−θ)2/2. (4.4)

The numerator of Bayes’ rule is composed of the product of the likelihood and the
prior:

f (θ) · f (x|θ) = 1√
2π

e−(θ−2)2/2 · 1√
2π

e(−x−θ)2/2

=
1

2π
e−(2θ2−(4+2x)θ+4+x2)/2

=
1

2π
e−(θ

2−(2+1x)θ)+(4+x2)/2

=
1

2π
e−(θ−(1+x/2))2−(1+x/2)2+(4+x2)/2

=c1e−(θ−(1+x/2))2

where c1 is constant for given x and is given by

c1 =
1

2π
e−(1+x/2)2)+(4+x2)/2.

To calculate the denominator of Bayes’ rule, the product of the likelihood and the
prior need to be integrated over θ;

f (x) =
∫ b

a
f (x|θ) f (θ)dθ

=c1

∫ b

a
e−(θ−(1+x/2))2

dθ

Since the integral for given x will be a constant (say c2) the posterior can be
calculated as

f (θ|x)dθ =
f (x|θ) f (θ)dθ

f (x)

=
c1e−(θ−(1+x/2))2

c2

From the form of the posterior density function it can be seen that it is again a
normal distribution, but with mean 1 + x/2 and variance 1/2. The normaliza-
tion constant can therefore also be calculated as 1

σ
√

2π
, hence the final posterior

distribution is:

f (θ|x)dθ =
1√
π

e−(θ−(1+x/2))2

Now what does this mean? The posterior shows an updated version of the way θ
is assumed to distributed. This new distribution has a smaller variance than the
prior distribution and will result in a posterior distribution for θ in between the
likelihood and the posterior. For the case where x = 4 was drawn as observation,
the results are shown in Figure 4.2.
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4.2 Mathematical Application of the EnKF to the
Probabilistic Model

The EnKF is the approximation of the exact method of the Kalman Filter, which
calculates the full posterior distributions of the states. This is computationally not be
feasible in the small time-slot in real-time systems and is not possible because the linear
condition would need to hold, making the EnKF approximations necessary. First the
KF is explained in Section 4.2.1, after which the ensemble representation by the EnKF is
explained in Section 4.2.2. This is followed by an explanation of the computational steps
that are to implement the EnKF.

4.2.1 The Kalman Filter
The main idea of the Kalman Filter is to estimate the states based on the observations
collected so far. This is done by calculating the posterior (also called filtering) distri-
bution of the states for each discrete time step k. As the KF theoretically only gives an
exact solution for linear-Gaussian state-space models, assume the system can thus be
represented by:

yk = Hkxk + vk (4.5)
xk = Mkxk−1 + wk, (4.6)

where the errors are Gaussian distributed, i.e.

vt ∼ Nmk(0, Rk), the Gaussian distributed observation error with zero-mean
wt ∼ Nnk(0, Qk), the Gaussian distributed innovation error with zero-mean

and where

yk = the vector with observation with mk entries at time k
xk = the n-dimensional state vector at time k, including the state of the openwater level

Hk = the observation matrix, linking the state to the observation
Mk = the evolution matrix, linking the previous state to the next

The errors are assumed to be mutually and serially independent. Furthermore, assume
the observation- and innovation matrix and the variances Qk = Q and Rk = R are known
and time independent. Let the posterior distribution at time k− 1 (or equivalently the
prior distribution for time k) be

xk−1|y1:k−1 ∼ N (µ̂k−1, Σ̂k−1). (4.7)

Notation: The accent ∧ on the mean or variance implies these belong to the posterior
distribution of that time-step.
The posterior distribution can now be calculated in two main steps, the forecast step
(giving the likelihood) and the update step.

Forecast step

The aim of the forecast step is to calculate the parameters of the forecast distribution

xk|y1:k−1 ∼ Nnk(µ̃k, Σ̃k) (4.8)

27



at time k, denoted by the accent ∼. Given the posterior distribution of time k− 1, this
is calculated by propagating the uncertainties through the observation- and evolution
model (equation 4.6 and 4.5 respectively), i.e.

µ̃k = Mµ̂k−1, (4.9)

Σ̃k = MΣ̂k−1MT + Q. (4.10)

Note here that 4.9 and 4.10 only hold so nicely since the errors vk and wk are drawn from
a Gaussian distribution with zero-mean.

Update step

The update step aims to include the newly observed data yk and combine this with the
forecast step to find the posterior distribution, i.e.

xk|y1:k ∼ Nn(µ̂k, Σ̂k), (4.11)

In order to find the values for µ̂k and Σ̂k, one looks first at the joint distribution of xk and
yk, given observations y1:k−1 and is explained in Text-box 4.1. This gives the following
joint distribution:(

xk

yk

)
|y1:k−1 ∼ Nnxm

((
µ̃k

Hµ̃k

)
,
(

Σ̃k Σ̃k HT

HΣ̃k HΣ̃HT + R

))
(4.12)

Note that in order to derive 4.12, vk and wk have to be mutually and serially independent,
which was conveniently (and for water systems often reasonably) assumed. The mean
of the distribution of yk is found by propagating the mean of the state in the observation
equation, where this results in Hµ̃k only because the noise on v is zero-mean Gaussian.
From the properties of the multivariate normal distribution and Bayes’ rule, one can
derive that the filtering distribution at time k is defined by

µ̂k = µ̃k + Kk(yk − Hµ̃k) (4.13)

Σ̂k = (In − Kk H)Σ̃k, (4.14)

where K is the n×m Kalman-gain matrix defined by

Kk = Σ̃k HT(HΣ̃k HT + R)−1. (4.15)

In words equation 4.13 means that the posterior distribution is a weighted average of
the forecast mean µ̃ and the observations at time k, where the weighing occurs based on
the forecast variance Σ̃k, the observation matrix H and the observation variance matrix
R. The filtered covariance matrix Σ̂k depends on the forecast variance from the previous
time and the data distribution.

Text-box 4.1: Determining the joint distribution of xk and yk given observations
y1:k−1.
The joint distribution of x and y given the observations at times k = 1 . . . k− 1 is
given by: (

xk

yk

)
|y1:k−1 ∼ Nnxm

((
Exk|y1:k−1

Eyk|y1:k−1

)
,
(

Σ11 Σ12
Σ21 Σ22

))
(4.16)

The expectation
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The expected (mean) values can be calculated using the linear properties of the
expectation, the known forecast distribution 4.8 and the fact that the observation
and innovation error are zero-mean Gaussian distributed (hence there expectation
is zero). The derivation of Exk|y1:k−1 follows:

Exk|y1:k−1 =E[M(xk−1|y1:k−1) + wk] (4.17)
=ME[xk−1|y1:k−1 ] +Ewk (4.18)
=Mµ̂k−1 + 0 (4.19)
=µ̃k (4.20)

The expectancy Eyk|y1:k−1 uses similar properties, but is now propagated trough 4.5.

The covariance matrix

The covariance matrix consists of four sub-matrices, where Σ11 and Σ22 denote the
variance of xt|y1:k−1 and yk|y1:k−1 respectively and Σ12 and Σ21 denote the covariance
between the two. For the calculation, remember that if A is a matrix, Var(AX) =
A(VarX)AT = AE[X−E(X)]2AT. Now:

Σ11 = Var(xk|y1:k−1) (4.21)
= Var(Mxk−1|y1:k−1) + Var(wk) (4.22)

= MΣ̂k−1MT + Qt (4.23)

= Σ̃k (4.24)

The variance matrix Σ22 follows in a similar fashion. For the covariance matrix Σ12
(and Σ21):

Σ12 = Cov(xk|y1:k−1 , yk|y1:k−1) (4.25)

= E[xk|y1:k−1 · (yk|y1:k−1)
T]−E[xk|y1:k−1 ](E[yk|y1:k−1 ])

T (4.26)

= E[(xk · (Hxk + v)T)|y1:k−1 ]− µ̃k(Hµ̃k)
T (4.27)

= E[xkxT
k HT|y1:k−1 ] +E[xkvT|y1:k−1 ]− µ̃kµ̃T

k HT (4.28)

= E[xkxT
k |y1:k−1 ]H

T + 0− µ̃kµ̃T
k HT (4.29)

where E[xkvT|y1:k−1 ] = 0 because v is Gaussian distributed with E[v] = 0. The
trick to continue is to make a substitution for E[xkxT

k |y1:k−1 ], as for this expectancy
nothing can be said. Remember:

Var(xk|y1:k−1) = E[xkxT
k |y1:k−1 ]−E[xk|y1:k−1 ]E[xk|y1:k−1 ]

T. (4.30)

Substituting gives:

Σ12 = (Var(xk|y1:k−1) +E[xk|y1:k−1 ]E[xk|y1:k−1 ]
T)HT − µ̃kµ̃T

k HT (4.31)

= (Σ̃ + µ̃µ̃T)HT − µ̃kµ̃T
k HT (4.32)

= Σ̃k HT (4.33)

The case of Σ21 follows similarly, where the matrix HT ends up on the left of Σ̃k.
Hence the joint distribution of 4.12 is obtained. �
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4.2.2 The Ensemble Kalman Filter
The EnKF uses a range of possibilities (the ensemble) to represent the prior, forecast
and posterior distributions. The ensemble members are propagated forward in time as
soon as new data becomes available, giving again a spread of discrete values instead
of a complete distribution. Since the parameters of the posterior distribution no longer
need to be calculated nor stored, calculation time is reduced. This can be viewed as a
form of dimension reduction (Katzfuss et al., 2016), that ensures the algorithm stays
computationally feasible.
The same steps as in the KF prevail; a forecast and an update step. Two different EnKF
branches exist for the update step; stochastically or deterministic. Since the focus in this
research is on uncertainties, the choice for stochastic updates comes naturally. The steps
can then be carried out as follows:

Start with an initial ensemble x̂(1)0 , . . . , x̂(N)
0 , representing the prior distribution. Here

N denotes the number of ensemble members. Iteratively from time step k− 1 to k, the
ensemble is updated using the KF approach as follows:

Forecast Step

The ensemble x̂(1)k−1, . . . , x̂(N)
k−1 represents a sample from the theoretical posterior distribu-

tion of the KF given in 4.7 at time k− 1. In Bayesian terms, this is the sampled prior
distribution for time k. Now for each ensemble member i, a noise component w(i)

k is

randomly drawn from w(i)
k ∼ Nn(0, Q). The sample of the forecast distribution is then

calculated as:

x̃(i)k = Mx̂(i)k−1 + w(i)
k , (4.34)

for i = 1 . . . N. In its turn the forecast ensemble samples the forecast distribution given
by the KF in equation 4.8, i.e.

x̃(i)k ∼ N (µ̃k, Σ̃k). (4.35)

This is a representation for the likelihood. The forecast step is now reduced to simply
Monte Carlo sampling, such that the EnKF can also be applied to non-linear models.
However, when the model is non-linear this would imply that the ensemble will not
represent the normal distribution of the forecast by the KF any more.

(Stochastic) Update Step

When a new observation yk comes available, the update step provides a method to
incorporate this knowledge. The aim of this step is again to find a sample of x̂(1)k , . . . , x̂(N)

k
of the posterior distribution such that the distribution corresponds to the posterior
distribution of the original KF, i.e.

x̂(i)k ∼ Nn(µ̂k, Σ̂k). (4.36)

In order to find this, the forecast states are propagated in the observation matrix H with
observation error v ∼ N (0, R) such that the set of simulated observations becomes:

ỹ(i)k = Hx̃(i)k − v(i)k , (4.37)
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for i = 1 . . . N. Using the Kalman-gain factor K (equation 4.15) as a weighing factor
between uncertainties in the observations and the simulated observations, the filtered
state becomes

x̂(i)k = x̃(i)k + Kk(yk − ỹ(i)k ). (4.38)

This leaves two things. The first is to show that filtered states of 4.38 sample the distribu-
tion from 4.36. This is shown in Text-box 4.2 . The second is to find a method to estimate
the Kalman Gain K, since the solution offered by the KF would require full computation
of the forecast covariance matrix, while the EnKF avoids this to reduce calculation time.
The determination of K is explained in Section 4.2.4 where the computational steps are
shown.

Text-box 4.2: The updataed EnKF ensemble represents the posterior distribution
of the KF To check this, the expectancy and the variance need to be calculate.
The first follows easily:

Ex̂(i)k = Ex̃(i)k + K(yk −E[ỹ(i)k )])

= µ̃k + Kk(yk − Hµ̃k)

= µ̂k

The variance is calculated as

Var(x̂(i)k ) =Var(x̃(i)k ) + Var(Ktỹ
(i)
k )

− 2Cov(x̃(i)k , Kkỹ(i)k )

=Σ̃k + Kk HΣ̃k (See calculation Σ21 in textbox 1)

=Σ̂k

Hence the ensemble samples the posterior distribution 4.11 of the KF. �

4.2.3 Assumptions of the EnKF that are not met
In the case of the probabilistic polder model described in Chapter 2, some of the as-
sumptions of the theoretical explanation above do not apply. Even though the EnKF
has proven to be very robust concerning deviations from these requirements, it seems
appropriate to mention the ’failed’ properties:

1. Linearity of the system The probabilistic model of Chapter 2 is non-linear due to
for example threshold behaviour in the reservoir system of the CRR-model, delay
coefficients for runoff over paved areas, pump settings and due to the interaction
between the shallow groundwater and the open water.

2. Additive noise From the analysis of the precipitation error it is clear that a mul-
tiplier for the error on the rainfall would make more sense than the mandated
additive noise by the EnKF. Whether it rains or not can be determined well and the
higher intensity of precipitation, the bigger the correction needed. The observation
error vt remains additive, the noise on the intitial states will be tested as both
multiplicative and additive. This deviation from the requirements is not expected
to cause too large problems.

3. Gaussian distributions on the noise The noise in this research will be put on
the state and observation equation, i.e. the error associated with the modelled
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transition from the previous state to the next and from the state to the observation.
These error distributions were defined in Chapter 3. As the priors were difficult to
estimate for the parameters, these were conveniently assumed to be normal. For
the precipitation error, more information was available. The estimated relation
between uncorrected and 2nd correction of the radar rainfall product was the
relation y = 0.45x2 + 1.5x given in equation 3.2, hence not normally distributed.
This is adjusted to suit the requisite of normality. The normal distribution of the
rainfall multiplier rk representing the error in rainfall is determined by solving the
multiplier needed to let rkPunc,k = P2ndk . For these values of rk for all time steps
k where the uncorrected precipitation measurement was larger than zero (4870
points), the mean and variance were deduced . The normal distribution for the
multiplicative error on the rainfall (rk) then becomes:

wk = N (1.32, 1.4). (4.39)

4. Zero-mean noise When working with a multiplier, the mean has to be 1 instead of
0 as required by the EnKF. Since the error becomes multiplicative, this means that
the ’nice’ properties that µ̃t = Mµ̂t−1 and Σ̃t = MΣ̂t−1MT + Q in the forecast step
still holds if the mean is indeed 1. Therefore the normal distribution of the rainfall
is adjusted to

wk = N (1, 1.4). (4.40)

If it becomes clear from the test runs that this prior cannot live up to the day-
corrected rainfall, the standard deviation can be enlarged to compensate for the
reduced mean.

4.2.4 Computational steps for applying the EnKF to the proba-
bilistic model

Let i = 1, . . . N the ensemble members, k the discrete time-step and j = 1 . . . m the
different states (where m = 16 in this case), so xi

j(k) is the jth state of ensemble member
i at time-step k. Since the only available observation is the water level, vector H of the
observation equation 4.5 needs to map the state vector x to the modelled water level
state (for this explanation let state j = m = 16 represent the observable state). Thus, the
observation equation becomes:

y(k) =
[
0 . . . 0 1

]


x1(k)
x2(k)

...
xm(k)

+ v(k) (4.41)

where x(k) ∈ Rmx1, H ∈ R1xm and v(k) and y(k) ∈ R.
Computationally, the forecast and update step are calculated as follows:

Forecast-step For each ensemble member j at time step k, noise ηj(k) is drawn and
added or multiplied to the respective component (e.g. the rainfall and water level obser-
vation). The forecast state vector x̃i(k) for each ensemble member i is then calculated
by running the eterministic CRR model with the perturbed components (e.g. rainfall or
states) for that ensemble member:

x̃i(k) =M(x̂i(k− 1), ηi(k)). (4.42)
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Let ξ̃ denote the average of the ensemble members, then the forecast expectancy E f is
given by

E f (k) =
[

x̃1 − ξ̃ x̃2 − ξ̃ . . . x̃N − ξ̃
]
∈ RmxN (4.43)

Update step The forecast variance Σ̃, the numerical version of equation 4.10, is calcu-
lated as

Σ̃ =
1
N

E f (k)E f (k)T ∈ Rmxm (4.44)

=
1
N


∑N

i=1(x̃i
1 − ξ̃1)

2 ∑N
i=1(x̃i

1 − ξ1)(x̃i
2 − ξ̃2) . . . ∑N

i=1(x̃i
1 − ξ1)(x̃i

m − ξ̃m)

∑N
i=1(x̃i

2 − ξ2)(x̃i
1 − ξ̃1) ∑N

i=1(x̃i
2 − ξ̃2)2 . . . ∑N

i=1(x̃i
2 − ξ̃2)(x̃i

m − ξ̃m)
...

...
. . .

...
∑N

i=1(x̃i
m − ξ̃m)(x̃i

1 − ξ̃1) ∑N
i=1(x̃i

m − ξ̃m)(x̃i
2 − ξ̃2) . . . ∑N

i=1(x̃i
m − ξ̃m)2


(4.45)

The Kalman Gain K as in equation 4.38 can now be calculated as

K = Σ̃HT[HΣ̃HT + σ2
obs]
−1 (4.46)

= Σ̃HT

( [
0 . . . 0 1

]
Σ̃


0
...
0
1

+ σ2
obs

)−1

(4.47)

= Σ̃HT

(
∑N

i=1(x̃i
m − ξ̃m)2

N
+ σ2

obs

)−1

(4.48)

=
1
N


∑N

i=1(x̃i
1 − ξ̃1)(x̃i

m − ξ̃m)

∑N
i=1(x̃i

2 − ξ̃2)(x̃i
m − ξ̃m)

...
∑N

i=1(x̃i
m − ξ̃m)2·

 (σ2
m + σ2

obs

)−1
(4.49)

=
σ2

m(
σ2

m + σ2
obs

)


∑N
i=1(x̃i

1 − ξ̃1)(x̃i
m − ξ̃m)/σ2

m
...

∑N
i=1(x̃i

m−1 − ξ̃m−1)(x̃i
m − ξ̃m)/σ2

m
1

 (4.50)

Equation 4.49 shows that the ’gain’ for each state depends on the sampled covariance
with state m, representing the open water watel. The variance in the observations
determines the magnitude of the ’pull’ provided by K. Finally, the posterior state of the
ensemble members is calculated as

x̂i = x̃i + K(yobs − xm + v) (4.51)

4.3 Sensitivity analysis
Before deciding which part of the model components can best be improved using data
assimilation, it is good to know which factors influence the model outcome most. The
states are conditionally depended on the forcing, the initial states and the parameters.
As there are many parameters, coupled to their own land-uses, it was chosen to first
focus on which land-uses the model is most sensitive to. To test the influence of the
initial states and the forcing, Sobek is run for a very short time period multiple times,
with each time a small deviation from the ’normal’ run in one of the components.

33



The settings Sobek is run for 15 minutes from 04:15 to 04:30 on the 23nd of June 2016.
The pumps were removed from Sobek to prevent confusing results due to turning on
and off of pumps. The short timespan is chosen because this corresponds to the time
step which will be used as assimilation step. This means the uncertainties in OpenDA
and the comparison with the observed data will be applied every 15 minutes as well.
Therefore this time step gives the most important method of determining the sensitivity
relative for this case. If a longer run period would be taken, the influence of initial states
would reduce.
The specific period is chosen because it covers the start of the rainfall event already
discussed in Chapter 3 and the initial states as specified in Table 3.2. This means non of
the system states are empty , allowing the different initial states to be calculated with
some form of multiplicative factor. The factor is taken as σ = 0.3 · Si,ini for the states
and σ = 1.4 for the precipitation as was found to be the rainfall distribution in Section
3.3. Sobek is then run for the cases where the initial states are perturbed per land-use
class with Si,ini + σ, Si,ini + 2σ, Si,ini − σ and Si,ini − 2σ. The same is done for the rainfall.
Note: The only forcing data that is chosen for this analysis is the precipitation, since the
evaporation is known not to make a huge impact on such a short time-scale.

Evaluation of the results The results are compared with the ’zero’ run where no
deviations in settings or forcing data were made. Since the areas are taken from the case
study, these might not give an honest representation for the sensitivity of different Sobek
parts for general polder models. Therefore also the relative influence is looked into by
calculating the produced water level difference per hectare of area.

4.4 Experiment 1: Twin Experiment
In order to test the effectiveness of the EnKF updates, a twin experiment is executed. The
test consists of two parts, a control run and a data assimilation run, which are depicted
in Figure 4.3.

1. The model-run generating the synthetic data is called the control run (Zhang et al.,
2014). This creates the ’true’ states and outputs. To implement the control run,
a fixed set of parameters, initial states and forcing data is used as input in the
model and the resulting water level is called the control (or ’true’) water level. The
assimilation is said to work well if the updated water level predictions approximate
the control water level.

2. The data assimilation run that follows the control run uses a set of a priori input
(precipitation) and states which are perturbed with noise drawn from a mean-zero
Gaussian distribution. The ’actual’ observation (the water level) is assimilated after
adding random mean-zero Gaussian errors to the ’true’ water level (Nie et al.,
2011). The DA run uses the same model as in the control run.

The advantage of a twin experiment is that it gives a method to test and compare the
effectiveness of a new data assimilation approach, because it limits other sources of
error such as model structure. These real-life uncertainties can make it impossible to
see the potential of these methods. This immediately leads to the ’but’ of the twin
experiment: it will give only an idea of how well the DA method can work in ideal
situations, where one has the perfect parameters and model structure. Hence, the twin
experiment will give a very optimistic view on the applicability of the DA method. To
test the effectiveness on a real-life system, the best working DA approach from the twin
experiment is applied to the case study set out in Chapter 3.
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Figure 4.3: Schematic diagram of a twin experiment, comprised of a control run and
data assimilation run, based on the paper by Zhang et al. (2014).

4.4.1 The Set-Up
Four DA approaches are compared in different twin experiments. These twin experi-
ments have the same control run, but different DA runs. The DA implementations differ
by implementing perturbations on different model components:

1. Multiplicative noise on the Rainfall In this approach, the distribution of the
ensemble is generated by applying a multiplication factor on rainfall as only noise
before generating the resulting states with the CRR model. The first advantage
of this approach is that the root of the uncertainty is well defined such that one
keeps a grip on what the assimilation is correcting for. Second, the rainfall is
known to be a very uncertain product (see Chapter 3) and the prior distribution
can be estimated well due to many measurements available. Disadvantages are
that the assimilation can only perturb the rainfall when it is greater or equal to
zero. Furthermore, errors in other model components are ascribed to the rainfall
as well.

2. Additive noise on all states This approach adds an independently drawn error of
the prior distribution for each state to the initial state of that assimilation time step.
This has as advantage that the states can be updated separately, such that all sorts
of model and forcing errors can be taken into account. The disadvantage of it is that
is will be unclear which root causes of the uncertainty are being corrected for. The
second disadvantage is that without rain, the reservoirs with threshold processes
(all states except for the states connected to the unpaved-land use) are not directly
connected the water level. For example, the storages in the greenhouse basin only
overflow if the maximum storage is reached; any adjustment of the storage below
this level does not influence the observation of that time. The distributions on
the initial states are taken as defined in 3.2: a zero-Gaussian distribution with a
variance of 5 % of the initial states.

3. Additive noise on the groundwater state The groundwater state is the only state
that is also connected to the water level when no rain occurs, making it the unpaved
area the only land-use class that can be assimilated separately. The advantage is
that the correction is again more pinpointed and can also be applied during dry
spells. The disadvantage is that it is a slow responding land-use, such that it could
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be difficult to assimilate for peak flows, which are most important to the controller.
Furthermore, all other model errors are ascribed to the errors in groundwater
modelling. The additive noise vk is drawn from vk ∼ N (0, 2000 m3) (which is
approximately one percent of the average volume in the groundwater reservoir).

4. One multiplication factor on all states This is a method that aims at ascribing the
main prediction error to the rainfall, but in an indirect method. The reasoning
behind this is that one multiplication factor for all states can represent the dry or
wetness of the system, but also represent a part of the model error. The advantage
over a rainfall multiplier could be that now corrections can also be applied without
rainfall, for example if their is a time lag between the modelled and observed
response. The factor has a chosen prior of rstates = N (1, 0.1).

The time span of the twin experiment covers 1.5 day, from 22-06-2016 06.00 to 23-06-2016
22.00. This period was chosen because it contains an extreme storm, a period of interest
for the controller. The uncorrected rainfall data is used as a priori input for the data
assimilation run. The forcing input for the control run is a synthetic rainfall event created
by perturbing the uncorrected rainfall randomly with noise drawn from the normal
distributionN (1.4, 1.32). The time-step of the CRR model is five minutes, corresponding
to the frequency of the forcing data.
Before comparing the different DA approaches, the DA method with the rainfall multi-
plier is used to determine the best settings for ensemble size and time increment. The
different settings are compared by the ability of the DA run to approach the control
run within short computational times. Furthermore the influence of the pumps on the
assimilation is tested.

4.5 Experiment 2: Case study
For the case study, the same deterministic model structure is used as in the Twin Experi-
ment. The uncorrected rainfall is used as the a priori input for the model. The water level
observations are now changed from synthetic values to actual observations supplied by
Delfland.
The main difference between the twin experiment and the experiment for the case study
is the lack of validation data to compare the update of the states other than the water
level to. The interpretation of the results is therefore less objective and will need to be
done by qualitatively looking at the patterns of the hidden states.

4.6 Comparing results: The probabilistic Nash Sut-
cliffe

The evaluation of results is mainly visual, but to objectively rank the success of the
forecasts, a score measure is applied. The score measures are the Nash Sutcliffe (NS) and
the probabilistic Nash Sutcliffe (NSp), following the approach of Bulygina et al. (2011).
The NS is a commonly applied model efficiency coefficient in hydrological models and
is for state xj defined as

NS = 1− ∑T
t=1(xj

m(t)− xj
obs(t))

2

∑T
t=1(xj

obs(t)− xj
obs)

2
(4.52)
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where

xj
m(t) = the modelled state xj at time t (4.53)

xj
obs(t) = the value of the observation or control value of state xj at time t (4.54)

xj
obs = The average of the control values of the state xj over t = 1 . . . T. (4.55)

The value ranges between −∞ and 1, where values close to one show modelled and
observed values close to each other, while low values show little relation between both.
The coefficient is sensitive to extremes.
The probabilistic Nash Sutcliffe gives an extension of the regular Nash Sutcliffe value
of the average modelled values xj

m by taking into account the variance of the ensemble.
The NSp is defined as:

NSp = NS− ∑T
t=1 Var(xj

m(t))

∑T
t=1(xj

obs(t)− xj
obs(t)

2
(4.56)

where Var(xj
m(t)) is the variance of the ensemble for the modelled state xj.
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5

Software

Every program has at least one bug and can be shortened by at least one instruction - from which,
by induction, one can deduce that every program can be reduced to one instruction which doesn’t
work.
– Anonymous

5.1 SobekRR
The program used to implement the conceptual rainfall-runoff polder model is Sobek RR.
Sobek is a software package that integrates the different aspects of the water management
systems; river, urban and rural areas, by linking rivers, canals and sewage systems
(Prinsen, 2013a). The schematic representation of Tedingerbroekpolder, the case study
for this research, in Sobek RR can be seen in Figure 5.1. Given forcing data and initial
state vector x0, the program was used to calculate the water levels and the corresponding
pump discharge to the boezem deterministically. The different processes and reservoirs
used for this research were explained in Appendix A.

Figure 5.1: Visualization of Tedingerbroekpolder as seen in the Sobek RR interface . The
green squares are the unpaved nodes. The yellow, red and blue the greenhouse, urban
and open water areas respectively. The orange rectangles are the model boundary, the
stars the inlet and outlet pumps and the hourglass the WWTP.

5.2 OpenDA
OpenDA is a software package developed by Deltares, VORtech and TU Delft, and is
used for data assimilation and calibration for numerical models (OpenDA-Association,
2016). It is open source and was first launched in 2010. Its toolbox comprises different
DA methods, including the EnKF, the ensemble square root Kalman filter (EnSR), steady
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state Kalman filter, the particle filter and 3DVar. These methods can be applied to
different numerical models, but the coupling needs to be prepared for each model
separately and is available for certain models.

5.2.1 OpenDA interfaces
Different components of OpenDA work together as indicated by their ’interfaces’. For
the model, these interfaces consist of a model interface and a stochastic model interface. The
objective of the model interface is to define the functionalities that a coupled deterministic
model (in this case Sobek RR) should implement, e.g. the calculation horizon and the
list of items that can be provided as input to the model or that can be retreived as output
from the model. The stochastic model interface is an extension of the model interface that
makes the model a probabilistic model. The OpenDA algorithm use the stochastic model
interface to access and manipulate the model.
The exterior model (Sobek RR) needs to be extended with these interfaces, which is
called ’wrapping the model’. For quite some models the wrappers already exist, but not
for Sobek RR. This means a wrapper needed to be created, which was done as a black-box
wrapper. The advantage of this is that it requires in principle no alterations in the model
code. As Sobek is not a model in which code can easily be changed this was beneficial.
For implementing a black black box wrapper, OpenDA offers utilities that reduce the
actual implemention to:

• Coding to the implementation of the so called IDataObject interface for those
SobekRR input files and output files that needs to be adjusted by OpenDA. The
data object exposes the various items in these files as input exchange items and output
exchange items.

• Setting up a black box configuration to specify on which input exchange items noise
has to be added, which exchanges items are part of the model state that is adjusted
by OpenDA, and which output exchange items should be used to compare the
model results with the observations.

From the black box configuration the OpenDA black box utilities instantiate a stochastic
model, that can be accessed by the algorithm.
A visualization of the elements in a black-box wrapper are given in Figure 5.2.

5.2.2 OpenDA configuration with Sobek RR
The configuration for the black-box set up of Figure 5.2 is specified in three different
categories, the model configuration, the algorithm configuration and the stochastic
observer configuration. Each configuration branch is specified in the main file, called
’RRDelfland.oda’. The different properties of the main configuration files are explained
below.

Model configuration The model configuration consists of three main files, from inner
to outer layer:

1. The WrapperConfig file Is the file ’closest’ to the model executable, or the most
inner layer of the configuration. It consists of different parts. The run section starts
the initialActions that are carried out to start the OpenDA run. This includes the
cloning of a template directory containing the information on the Sobek model for
each ensemble member. The clones are called instance 1, instance 2,. . . and instance
0 which is approximately the average of the other instances. The next section
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Figure 5.2: Schematization of the black-box model wrapper. A configuration specifies
how the input and output items in the numerical model (Sobek RR) were extended to a
stochastic model which can be used for DA. .

is the computeActions section which defines the model executables (the run.bat)
and the stacking of the output.his files from Sobek for the consecutive restarts.
The last section, inputOutput is the part where the input and output data objects
are defined. This is the part which was most time-consuming to set up in the
blackbox wrapper because it requires the coding of java classes that implement
the OpenDA data object interface. These input and output data objects are called
ioObjects and include an ascii- restart file for Sobek, a rainfall input file (.BUI) for
Sobek, the setting for Sobek (.INI) and the output that needs to be compared to
the observation (in this case the waterlevel of the open water nodes in Sobek). The
ioObjects are transferred back and forth each assimilation step for each ensemble
member and adjusted. The java code that specifies the different actions were
written for this research and can be found in Appendix B. The code for reading out
the precipitation file of Sobek and reading in the perturbed rainfall data created by
OpenDA is given in Appendix B.1. The code storing and transferring the restart
information of the states is given in Appendix B.2 and the code to read out and
change the time specifications of the runtime in Sobek each assimilation run is
given in Appendix B.3

2. The ModelConfig file The ModelConfig file is in the middle of the model config-
uration. It gets called by the StochModelConfig file and starts with referring to
the WrapperConfig file. The important part of this file is the timeInfoExchangeItems,
which calls an exchange item which takes the value specified by one of the ioOb-
jects from the Java code given by SobekRRTimeStepExchangeItem.java, specifying
the start and end time of the simulation run. The exchange items here determine
which information from Sobek RR is used, and the id they contain determines their
name within the OpenDA configuration and refers to the ioObjects defined in the
wrapper. Other important exchange items that are called here are the AsciiRestart
file, the rainfall file, the Sobek settings file and modelled water level states.

3. The StochModelConfig file We are now getting to the stochastic part of the black-
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box configuration, the left side of Figure 5.2. The first section of this file links to
the ModelConfig file. The second section called vectorSpecification, states all the
stochastic parts of the model and includes a state and predictor part. As the name
suggests, the first part gives the state exchange items which are considered by the
EnKF algorithm; all the states defined here will be updated accordingly. Another
part of this section is the reference to Noisemodels, giving normal distributions
on the uncertainty of the variables in a separate file. The outcome of the noisy
vector is checked for feasibility in RangeValidationConfigReader.java. In this case that
means for example that if the multiplicative noise on the rainfall is negative it is
changed to 0 instead. The predictor part specifies the id of the state that should be
compared to the observation as defined in StochObservation.

Stochastic Observer configuration This consists of two configuration files, the sto-
chObsConfig and the ObservationUncertainties file. The first defines the uncertainty on
the found observations. This file is referred to in the stochObsConfig, which first refers
to the second file and then specifies which Java class and filename are used to retrieve
the data used for observation.

Algorithm configuration The last part of the main configuration is the file specifying
the algorithm used for the DA. In this case, it includes also the settings of the EnKF such
as the timeincrement between the assimilation steps, the size of the ensemble and the
timeformat (modified julian date). The mathematical implementation of the EnKF was
explained in section 4.2.4.

5.3 Problems with coupling both programs
Both Sobek RR and OpenDA have been tested extensively, so it is likely that any errors
that occur when using the wrapper are due to incorrect coupling of the software. How-
ever, some flaws can also appear once the black-box wrapper is in place. Especially since
Sobek RR was originally not designed to be restarted this often, which could introduce
inconsistencies and model errors when changing the model states. The problems with
the coupling or with settings that occurred during this research are discussed in this
Section.

Noise resets to average zero The first big problem encountered was a strange phe-
nomenon that the EnKF algorithm seemed to loose ’strength’ over time. The distribution
N (1, 1.4) of which the rainfall multiplier is drawn would be corrected to N (0, 1.4) in a
few assimilation steps. The resulting figures were confusing, starting out well but losing
grip as the figures moved along in time. This was an OpenDA flaw, fixed in the noise
time series model files in OpenDA by Deltares.

Different time zones in Sobek and OpenDA If the time zone was not explicitly speci-
fied in the observations, these observed values were interpreted differently by Sobek and
OpenDA, causing presumptuous corrections and strange over-corrections as result (see
Figure 5.3). This is easily overlooked and it is not so self-explanatory from the results
what goes wrong. However, the solution is simple and can be implemented using the
Noose module of OpenDA in which the time-zone GMT can be specified to the data. A
similar specification can be done in the StochObsConfig file.
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(a) Assimilation steps of 15 minutes (b) Assimilation steps of 1 hour

Figure 5.3: The results on assimilated water levels when not explicitely specifying the
observations are in GMT

Average time step in Sobek OpenDA requires the current modelled water level for
the analysis. However, the settings in Sobek were set such that the output gave the
average of the time step. This caused very different behaviour for different output times
of Sobek as can be seen in Figure 5.4. The ensemble band became very wide when
applying a large model time step of 15 minutes. However, when the model output time
step was only 5 minutes, the assimilation over corrected the water level. This was fixed
by changing the Sobek settings to give the current state as output.

(a) Sobek output every 15 minutes (b) Sobek output every 5 minutes

Figure 5.4: The results on assimilated water levels when Sobek RR gives the average
water levels of the time period as output.
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6

Results

"Louise: "How did you get here?" Johnny: "Well, basically, there was this little dot, right? And
the dot went bang and the bang expanded. Energy formed into matter, matter cooled, matter lived,
the amoeba to fish, to fish to fowl, to fowl to frog, to frog to mammal, the mammal to monkey, to
monkey to man, amo amas amat, quid pro quo, memento mori, ad infinitum, sprinkle on a little
bit of grated cheese and leave under the grill till Doomsday."

– from the movie Naked, by Mike Leigh

In this chapter, the main results which are relevant to the research questions are shown.
The model settings and uncertainties were used as set out in Chapter 4. Some recurring
terminology for this Chapter:

- time increment - the time span between two analysis steps of the EnKF

- assimilated - the resulting values of a data assimilation run

- no assimilation - the resulting values when Sobek RR is run without any adjust-
ments

- observed - the values used as observations by the EnKF. These can be physical
observations (in the case study), or made by a control run (in the twin experiment)

- NSunc and NSp - NSunc denotes the Nash Sutcliffe value of the uncorrected (not
assimilated) run compared to the observations. NSp is the probabilistic Nash
Sutcliffe comparing the ensemble with the observations.

6.1 Contributions of the different model compo-
nents to predicted water levels

The results on the sensitivity of the modelled water level to deviations in model compo-
nents are shown in the bar-plots of Figure 6.1a and 6.1b. These were obtained following
the set up described in Section 4.3, implementing relative increases per component of
σ = 30%,2σ = 60%,−σ = −30% and−2σ = −60% The distinguished components were
the precipitation forcing data and the initial states grouped per Sobek RR node. The
resulting difference in water level predictions from the reference run for the particular
case study of Tedinger broek are shown in Figure 6.1a. Since this is highly depended
on the chosen areas of the land-use classes, Figure 6.1b normalizes the influence over
the the area, obtaining results in millimetre per hectare. The results for the different
components are summarized individually:

1. Sensitivity on errors in the precipitation: Figure 6.1a shows that for Tedinger-
broek polder, the largest influence on the water level comes from variations in
the precipitation. The effect of the ’range validation’ algorithm as implemented
in OpenDA can also be seen in Figure 6.1a: The algorithm prevented the rainfall
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(a) Sensitivity of modelled water level on uncertainty in initial states (per Node) and rainfall for
Tedingerbroek polder

(b) Relative sensitivity of modelled water level on uncertainty in initial states (per Node), where
the influence to the water level was normalized over the land-use area.

Figure 6.1: Sensitivity of modelled water level on uncertainty in the initial states. The
figure shows the corresponding deviation in water level for different test-cases. Sobek
was run for 15 minutes, where the restart file was perturbed by adding x · σ, where σ
was defined as 0.3 times the initial volume in the states, for x = 1,−1, 2,−2. For the
rainfall it was multiplied with x · (1 + 1.4) as 1.4 was the variance found in the rainfall
analysis in Section 3.3.

from becoming negative, explaining the identical results for the cases where the
initial storage decreased with −30% and −60%.

2. Sensitivity on errors in the states of the greenhouse node: The Greenhouse node
contributes only 0.2 and 0.07 mm to the open water level for 2σ and σ respectively.
There is no negative influence on the water level when the initial storage is de-
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creased. The latter is logical since the only influence on the open water node is
when the basin overflows. The reason for the small contribution compared to the
states of the other nodes is the size of 3.3 hectares of the greenhouse area, only 3%
of the total area of Tedingerbroek polder. Figure 6.1b shows that the influence on
the water level per hectare is second highest of the areas with an increase of 4.7
mm on the water level when the storage increases with 60%.

3. Sensitivity on errors in the states of the paved node: Errors in the initial filling of
the states of the paved area (storage on land and storage in the sewage) contribute
both absolute and relatively speaking significantly with a 13.1 mm total increase
and 5.1 · 10−2 mm per hectare in the water level for a 60% increase.

4. Sensitivity on errors in the states of the unpaved node: The states of the unpaved
node (groundwater volume, volume in the unsaturated zone and storage on land)
show low influence on the water level with a maximum of 2.8 mm when the state
is perturbed with +60%. This is in contrast to the size of the area; 690 hectares,
a 68% of the total area, illustrated in Figure 6.1b. The negative influence on the
water level when reducing the initial storage is largest of the components, a total
reduction of 13.4 mm. This visualizes the non-linear behaviour of the storages of
the unsaturated zone and the groundwater volume. The resistance factors R given
in equation A.8 determine this behaviour. The higher the difference between the
groundwater level and the open water level, the bigger the flux towards the open
water. As soon as the groundwater level is lower than the water level (∆h < 0),
water flows to the groundwater instead turning from the flux q = ∆h

200 the flux
changes direction and flows towards the groundwater, reducing the open water
level.

6.2 Twin Experiment
The conceptual feasibility of data assimilation to reduce input uncertainty was tested
with four twin experiments as set out in Section 4.4. Before testing the different DA
approaches, the influence of the algorithm settings was evaluated. The evaluated settings
are the influence of the pumps, the ensemble size and the time increment.

6.2.1 Influence of pumps
The influence of the pumps discharging water from the open water state to the boezem
can be seen in Figure 6.2 for different time increments. It can be seen that the assimilated
water level is lower than both the uncorrected as the observed water levels for the first
half of the time run, showing that the data assimilation has a negative effect on the
predicted water levels in this period. This becomes more so when the time increment
increases.
The negative effect DA has on predicted water levels is the result of the restart pump
settings for each individual ensemble member. Due to the perturbations on each ensem-
ble member, every ensemble member will reach a point where the water level reaches
above the turn-on point of the pump (in the twin-experiment 2 cm above the peil). From
that moment on, the pump will stay turned on until the water level of the ensemble
member reaches the turn-off point (set at −2 cm). As every ensemble member reaches
this turn-on point at a different time, there is a big spread in water level results of the
ensemble members. The water levels in the control run have not necessarily reached the
turn-on level. If they have not, the water level of the ensemble members will drop under
that of the observations. This results in upward corrections on the forecast water level of
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(a) Time increment of 5 minutes (b) Time increment of 15 minutes

(c) ime increment of 30 minutes (d) ime increment of 60 minutes

Figure 6.2: The influence of the pump settings on the assimilated ensemble. The figures
correspond to a run with an ensemble of 16 members with the perturbation on the
rainfall.

the ensemble members. Therefore, the ensemble member can take a long time to reach
its turn-off point, resulting in the zigzag movement shown in Figure 6.2. As soon as the
water levels of the control run become higher than the turn-on point of the pump, the
control and assimilation run approach each other again.
The time increment influences the magnitude of the zigzag movement. The bigger the
time increment, the longer the pump gets to discharge water to the boezem and reduce
the water level before it is corrected upwards again. However, even if the time increment
is only 5 minutes, the pumps reduce the water level below the uncorrected and observed
values, as can be seen in Figure 6.2a. This results in a decrease of predictive power of the
water level. This holds not only for the water level but for the complete assimilated state
vector, as can be found in Figure C.1.
To prohibit the pump settings from obscuring the comparison of the different DA
approaches, the pumps were removed for the remaining of the twin experiments.

6.2.2 Testing algorithm settings
The algorithm settings that were fine-tuned are the time increment and the ensemble
size. To compare different settings, the set-up of Section 4.4 with the rainfall as only
perturbed uncertainty was used. The NSp results for the assimilated water level for time
increments between 5 minutes and 5 hours are given in Figure 6.3a. The NSp results
for the water level with ensemble sizes between 4 and 64 are given in Figure 6.3b. The
figures showing the assimilation of the water level can be found in Appendix C.3 and
C.2 respectively. The results are discusses per setting:

Time increment: From Figure 6.3a it can be seen that the time increment influences
the ensemble approximation of the observed water level significantly. A time increment
of an hour still improves the prediction over the run without assimilation, while a time
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(a) (b)

Figure 6.3: Influence of algorithm settings; ensemble size and time increment

increment of five hours reduces the NSp from 0.89 to 0.36 which is far lower than the
original NSunc = 0.77. With reducing time increments, the computational cost increases.
The optimal settings are therefore where both the NSp results and the absolute value
of the derivative of Figure 6.3a are high. A time increment of 15 minutes is therefore
optimal for this model and will be used throughout the following experiments.

Ensemble size: From Figure 6.3b it can be seen that the highest rate of change, together
with high NSp values occurs at an ensemble size of 16. Note that only 4 ensemble
members give already an improvement to the NSunc = 0.77 corresponding to the setting
without assimilation. Note that the influence of the ensemble size is relatively low
compared to the influence of an increasing time increment.

The computational time needed with a time increment of 15 minutes and an ensemble
size of 16 is approximately half an hour to calculate a time-period of 1 day, which equals
20 seconds per assimilation step of 15 minutes. This is a feasible computational cost
for real time implementation because the optimal solution can be calculated in a time
smaller than the implementation time, which can be taken as the time increment.

6.2.3 Perturbation on different components of uncertainty
The different DA cases implemented noise on the following model components, follow-
ing the set-up discussed in Section 4.4.1. The four approaches were:

1. Multiplicative noise on rainfall: The rainfall multiplier was drawn from the
Gaussian distribution N (1, 1.4).

2. Additive noise on the groundwater state: The noise was drawn fromN (0, 470000)
m3, where 470000 is one percent of the initial state of a half filled system.

3. Additive noise on all states: The noise was drawn from multiple normal distribu-
tions, where the variation is taken as one percent of the initial state of a half filled
system.

4. Multiplicative noise on all states: One multiplier drawn from N (1, 0.05), where
the variance represents relative change of 5 percent of each storage component.

The assimilated water levels for these different approaches are shown in the left column
of Figure 6.4. The resulting NSp values for the assimilated water level range between
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Water level Added storage in GH basins

(a) Multiplicative noise on Rainfall

Water level Added storage in GH basins

(b) Additive noise on one state, the groundwater volume

Water level Added storage in GH basins

(c) Additive noise on all states

Water level Added storage in GH basins

(d) One multiplication factor on all states

Figure 6.4: Assimilated results for data assimilation with the noise on different model
components. For each approach, the resulted water level and the combined storage in
the greenhouse (GH) basins are shown.
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0.92 and 0.97. This does not need to imply that the other assimilated states also mimic
the control values well. This is illustrated in the right column of Figure 6.4, where
the summed storages of the greenhouse basins are shown. The NSp values for the
assimilated greenhouse storage range between −8.31 for the single multiplier for all
states and 0.8 for the case with a rainfall multiplier. The DA set-up with the rainfall
multiplier generates the best results for the water level and the greenhouse storage, but
also for the other states as can be seen in the additional figures in Appendix C.3.
The DA set-up with additive noise on all states shows a NSp of only 0.13 for the assimi-
lated greenhouse state. However, visual inspection shows that the ensemble average
follows the observations reasonably, such that the low NSp value is due to the high
variance shown by the wide blue band. Even though the the NSp is low, the assimilated
result could still be seen as an improvement to the system without assimilation.
The result of the greenhouse basins in Figure 6.4.b shows that for model components
without noise, there is no ensemble spread and therefore not updating either. The
assimilated results overlay the modelled values without assimilation.

6.3 Case study

6.3.1 Difference between modelled and measured water levels
The physical observations of the water level near the pump in Tedingerbroek polder
are shown in blue in Figure 6.5. The same figure shows the water levels as modelled in
Sobek with respectively the uncorrected radar rainfall product, the 1st corrected radar
product and the 2nd-corrected radar rainfall. The rainfall corresponding to these periods
could be found in Figure 3.3. Observations when comparing modelled and observed
water levels were:

1. The rainfall generated an immediate effect on the modelled water level, while the
observed water levels showed a time-lag.

2. The modelled pump does not behave in the same way as the observations sug-
gested. In a period of two days in November, as shown in Figure 6.5b, the obser-
vations suggested that the pumps turned on 12 times. In contrast, the modelled
pumps turned on only once, independent of the chosen radar rainfall product.

3. The amplitude of the modelled water level during the extreme rainfall event on
the 23rd of June was much smaller for the modelled water levels than compared
to the observed values. The observed water levels reached a maximum of 0.33 m
above set water level, while the modelled values in Sobek did not exceed the set
water level.

6.3.2 Data assimilation applied to case study
From the previous results, the set up with the rainfall multiplier generated the highest
NSp for the assimilated states compared to the control values of the Twin experiment.
This method was chosen to be applied to the case study of Tedingerbroek. Both the
events of Figure 6.5a and Figure 6.5b were assimilated and the resulting water levels are
shown in Figure 6.6. The results for the hidden states can be found in Figures D.1 and
D.2.
The assimilation for the event in June showed that the water levels were corrected
towards the measurements, but that the magnitude of the observed water level was never
reached. After the observations drop again, the assimilated ensemble overestimated the
water level for at least 9 more hours with a high average of 20 cm. For the assimilation
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(a) Event on the 23rd of June, 2016 (b) Event from 4 to 6 November, 2016

Figure 6.5: Observed water levels compared to modelled water levels. The respective
input for the modelled water levels in Sobek are the uncorrected (15 minutes) radar
rainfall, the first corrected (hourly) radar rainfall and the second corrected (daily) rainfall
radar rainfall.

(a) Assimilation for the 23rd of June, 2016 (b) Assimilation from 4 to 6 November 2016

Figure 6.6: Assimilated water levels for case study, with multiplicative noise on the
rainfall.

in November, the results showed only a small ensemble spread in the water level and
the ensemble mimicked the observations no more than the results without DA did.
Even though the parameter values used in the case study were based on literature
and existing models of the polder, the results represented in Figure 6.5 suggested that
the assimilation could benefit from a model calibration. A manual calibration was
performed, based on an analysis of relative increases of −80%, −60% ,−30%, −15%,
+15%, +30%, +60% and +100% on different parameters and their effect on modelled
water levels. The analysis was applied to the parameters that were expected to influence
the magnitude, pump pattern and time lag, which included the different land-use areas,
pump capacity and concentration time. The results are illustrated in Figure 6.7 for the
open water area and the paved area. Relevant points of this analysis for the calibration
were:

1. Small water bodies fill and empty faster, creating higher, but short, peaks and more
frequent turning on and off of the pumps. In the calibrated model, the open water
area was changed from 40 hectares to 10.

2. The paved areas did not only influence the magnitude of the water level peak, but
also showed a wider peak compared to reducing the water bodies. These were
increased from 280 to 400 hectares in the calibrated model.
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(a) OW area

(b) PA area

(c) UP area

Figure 6.7: Influence of variations in land-use areas on the modelled water level
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Figure 6.8: Resulted water levels from calibrated model, original model and observations

3. The groundwater contributed little to the peak flows, but implemented a baseflow,
increasing with the size of the unpaved area. The surface area of the groundwater
was left unchanged but the area for groundwater computations was increased
with the paved area to 600 hectares.

4. The relative increases in greenhouses did not contribute to a change in water level
because their representation in Tedingerbroek polder is small, as it is not realistic
to implement this feature as a dominant part of Tedingerbroek polder, the value
was left unchanged.

5. Higher pumping capacities reduced the peak flow, but implemented a pump pat-
tern better comparable to the observation. In the calibrated model, the pumping
capacity for Tedingerbroek, which equalled 56 m3/min, was changed to the pump-
ing capacity as was implemented in the original Sobek polder cluster, equalling
202 m3/min.

The modelled water levels corresponding to the calibrated areas are displayed in Figure
6.8, and showed improvement in the sense that the magnitude of the peak could match
the observations and the pattern of the pumps was similar to the observations. However,
the time lag remained, as did the difference in duration of the peak water level. For the
implementation of DA on this case, the same assimilation set-up was implemented of
which the results, given in Figure 6.9, showed an increase compared to the DA applied
to the original model. Visually, the DA of the calibrated model captured the water level
behaviour much better because the ensemble reached the high water levels and had a
similar amount of turn on- and off points. The assimilated hidden values go down when
the rain cedes, following the trend of the model, but correct upwards as soon as there is
rainfall again.
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(a) Water levels and rainfall

(b) Storage in greenhouse basins

(c) Storage in unsaturated zone

Figure 6.9: Results of DA with calibrated RR model
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7
Discussion

Scientists should always state the opinions upon which their facts are based.

–Author Unknown

The discussion will review the results for their quality and shortcomings with respect
to the research questions. Furthermore, the resulting applicability of the data assimilation
approaches in practical situations is assessed. Possible improvements or further research
are given where necessary.

7.1 Sensitivity to errors in model components
Sensitivity on errors in the rainfall forcing data The rainfall multiplier was the model
component that influenced the response water level most when relatively increased.
This underlines the research of (Kuczera et al., 2006) and justifies the further approach
in the results of using data assimilation techniques which mainly tackle the uncertainty
in the rainfall by use of a rainfall multiplier.

Subjectiveness of the analysis The results on the sensitivity of errors in initial states
and precipitation depend on the following factors:

1. The value of the initial states and rainfall: The effects of the paved- and rainfall
components will increase during wet periods or extreme rainfall. More so, without
rain the only model component influencing the water level is the unpaved area,
whose groundwater state is directly linked to the water level. The justification for
the chosen initial states is that the high water levels and hence the corresponding
wet system state are of interest most for the controllers because their main task is
to prevent water nuisance. Thesame argumentation justifies for an analysis period
of a rainfall event.

2. The areas corresponding to the typical area-nodes: The area sizes per node influ-
ence the volume of water the nodes receive during rainfall events influencing their
runoff. For the states corresponding to an area-node, their response is normalized
over this area to reduce this bias, shown in Figure 6.1b. This could not be done for
the rainfall, as its contribution per area is again depended on the distribution of
the polder area of the area classes (paved, unpaved, greenhouse and open water).
Therefore, the sensitivity of errors in the rainfall on predicted water levels will
always be a weighed number of the normalized contribution of the other areas.

3. Time increment chosen for the analysis. Initial states would yield smaller changes
in the water level if the analysis is applied over a longer run-period. Furthermore,
Changes in initial storage in the reservoirs with fast runoff processes will generate
a relative larger effect on the water level in a short time increment than slow pro-
cesses. Hence, the short run favours fast runoff processes over slow processes. The
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small time increment is chosen to be 15 minutes, the same as the time between data
assimilation updates, such that the influence of the uncertainty on the storages in
the states can be assessed for the application of the DA.

7.2 DA and perturbed model components
From the sensitivity analysis and the assimilated results it can be seen that perturbing
different model components gives a large deviations in assimilated results. These results
for the twin experiment can be biased towards the approach with the multiplicative noise
on the rainfall, because the control values were also simulated by adding noise on the
rainfall forcing data. To be able to draw better conclusions, different twin experiments
should be compared and this is advised to do for further research. The effect of the
different approaches is discussed per set-up:

Perturbations on the precipitation

Applying noise on the rainfall using a rainfall multiplier is the best option as noise
component. The assimilated NSp values do not only score high for the assimilated water
level but also highest for the different states. These results are better compared to the
other noise approaches, and yield improved results over no assimilation both visually
and in terms of NSp values. Furthermore, the concept of applying the noise directly on
the rainfall has conceptual benefits:

1. The precipitation has in a short time span the largest influence on the water level,
making it a sound parameter to scale.

2. The uncertainty on the rainfall is significant, can be estimated well and influences
the water level most, making it an ideal noise component for DA. Different rainfall
products are available to determine the prior including the uncorrected radar
rainfall, 1st corrected radar rainfall, 2nd corrected radar rainfall and KNMI data.
The prior in form of a multiplier r ∼ N (1, 1.4) shows the uncertainty is significant
and Figure 6.1a showed that the system response is also sensitive to this error.

3. By putting noise on the forcing data, the whole system is updated ’equally’, i.e.
the incoming volume of water changes equally for the different land-uses relative
to their areas. This ensures that the data assimilation cannot correct for the error in
one parameter in one land-use by choosing a different multiplier, since then also
the other land-uses will respond differently.

4. The sources of error stay disentangled, following the conceptual hopes that DA can
be used to target specific elements of model uncertainty set out in the introduction.

There are two downsides of using only the the rainfall as source of error in the DA.
The first, as no other sources of error are specified, the distribution of the ensemble
predicted water level might have a small variance allowing for only small corrections.
Furthermore, the assimilation is only effective during rainfall events.

Perturbations on the states

The advantage of applying perturbations on the states is that the assimilation is not
dependent on whether it rains or not. The states were perturbed in different ways, the
results of which are discussed below:
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(a) Storage in sewage (b) Water level

Figure 7.1: Assimilation with only the storages of the paved area (storage on land
and storage in sewage) perturbed. The water level observation are still approached
by the assimilatation run (7.1b), but this is reached by over-adjusting the storage on
paved land and in the sewage (7.1a). The method to generate the images is DA on the
Twin-experiment set-up with additive noise on the storage on land and storage in the
sewage. The chosen noise distribution (in mm) was N (0, 0.3) for the storage on land
and N (0, 0.5) for the storage in the sewage.

1. Additive noise on the groundwater state: When only the groundwater was per-
turbed, the states of the other land-uses were unchanged for each ensemble mem-
ber because the Sobek land-use classes are not linked. Remember that the update
is calculated using

x̂i = x̃i + K(yobs − xm + v), (7.1)

with Kalman gain K given by

K =
σ2
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1

 . (7.2)

As the average ξ is the same as xi
j for all states j disconnected form the perturbed

states, this gives K[j] = 0, implying that also the updated states of the ensemble
members remain unchanged for the unperturbed areas. This can be seen in Figure
6.4b. Perturbing only one state is therefore only a viable option if the prediction
uncertainty is believed to root dominantly in one of these area-classes. A downside
is that the perturbed states will try to correct for all model deficiencies, not just
an underestimated rainfall event or discharge processes. This is illustrated by 7.1
showing an increase in NSp value over NSunc from 0.77 to 0.98, but a decrease
from 0.26 to−0.27 for the storage in the sewage when only applying additive noise
on the states of the paved area.

The groundwater volume state is the only state which always communicates with
the open water. It is also the state with the biggest water volumes. According to the
controllers (peilbeheerders) in Delfland, the unsaturated zone and groundwater
are not always modelled well. It is said that the unsaturated zone does not hold
enough water such that the groundwater discharges to the open water bodies
too quickly. This would opt that the groundwater volume would be a possibility
to perturb. However the results only approximate the water level better, not the
states of the unpaved area.
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2. Additive Noise on all states: This method allows each state to be perturbed with
the noise drawn from its own prior uncertainty distribution. The average of the
ensemble showed to approximate the control values of most states well, but failed
to capture the behaviour of some of the states. The first possible explanation for
this is that many states, such as the greenhouse storage basins, work with threshold
behaviour, such that different storages generate a similar behaviour until that limit
is reached. This can create a very wide ensemble representation for the states,
which all generate the same water level. The second explanation for the ensemble
to be wide and not capturing the behaviour of some states, is because the prior
was chosen quite broad, because not much was known about the uncertainties of
the different parameters and states. Perhaps the results could be improved with
better fine-tuning of the respective distributions, which would require additional
information of the modelled system. Thirdly, it is possible that due to random
drawing of errors, the states corrections nullify each other, which could disturb the
algorithm. This method might therefore benefit from an increased ensemble size.
Before this method can be implemented in practice, it will need additional testing.

3. Multiplicative noise on all states: This approach assumes that the error in the
states is correlated due to wrong forcing data and has one multiplicative factor
drawn from an uncertainty distribution which is used to perturb all the states. The
results for the single multiplicative noise component on all states do not show
good results. This can be explained by a scaling problem; the different states work
with very different orders of magnitude. For the systems generating fast runoff,
such as the storage in the sewage, the volumes are often low and would need to be
multiplied by six before creating runoff, while a multiplication of the groundwater
by six would not be realistic at all. The problem of scaling is also within the storage
buckets. For example, if the storage in the sewage is relatively filled (e.g. 2.5 mm),
it is unrealistic to create ensemble members that contain a sixfold of this, which
would generate 2.5 · 6− Ssew,max = 12 mm runoff instead of zero. Hence, it is
difficult to choose one prior distribution for the multiplication factor.

7.3 Influence of pumps
For the twin experiment, pumps were eliminated from the technical set-up such that the
theoretical applicability of different DA methods could be assessed. For the case study,
the pumps could not be removed from the set-up because the observed water levels
were also influenced by the pumps. Therefore, the introduced errors by the pumps
cloud the results on applicability of DA in the case study. Since the results from the
twin experiment showed significant improvements to the modelled response without
assimilation, it is worth fixing the problem introduced by the non-linearity of the pumps.
There are two reasons the pump settings could not be implemented as a state themselves
that could be updated by the assimilation. The first is that these settings cannot be
changed per restart by the user or by the DA because the state of the pumps is not given
in the ascii-restart file that was created for this thesis. The second reason is that even
if the pumps could technically be implemented as state, the three pump settings, off,
half capacity and full capacity, are not continuous. This introduces an integer problem:
The data assimilation can only deal with continuous states and will update the pump
discharge as a real number, which cannot be implemented in Sobek RR. One solution
would be to translate this number again into one of the three settings, e.g. by rounding
off. This would be worth looking into, but is not the preferred approach.
The recommended approach to fix the problems introduced by the pumps is first to
allow additional information on the pump settings in the ascii-restart files. This software
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(a) Sobek output when the uncertainty on the
observation is 1.5 cm.

(b) Sobek output when the uncertainty on the
observation is 1 mm.

Figure 7.2: The influence of the observation uncertainty on assimilated water levels

extension is possible and should be implemented by Deltares. The recommended
approach to change the pump settings to match the reality better is by implementing
the pump settings as an additional observation in OpenDA. The observation should be
limited to whether the pumps are turned on or off and implemented as an observation
with zero uncertainty. That way, the ensemble members can recover for falsely turning
on of the pumps. In this approach, the human actions, which do not always follow the
modelled optimal control, can also be taken into account.
In practice in Delfland, the observations and restarts are handled by a data handling
platform called FEWS. This means that in practise, the pump settings can be communi-
cated via this platform to Sobek RR or the DA wrapper such that the ensemble members
can be tuned accordingly during each restart.

7.4 Conceptual feasibility of DA
Considering the DA study with only perturbations on the rainfall, the concept worked
really well. The ensemble spread with a small variance around the control values. As
was seen already in Figure 7.1b and in the right column of Figure 6.4, the EnKF algorithm
can ’pull’ the posterior to have a distribution with its mean approximating the observed
value and a reasonable small sigma. The approximation of the observed value was
only limited by the observation uncertainty. This is illustrated in Figure 7.2, where the
realistic water level uncertainty of 1.5 cm was changed to 0.1 mm.
Caution needs to be applied to the effects the assimilation has on the other modelled
states. Even when the assimilated water levels approach the observed water levels well,
the approach does not necessarily generate realistic results for the other states. Consider-
ing this, the only DA method that demonstrated plausible results for all states in the twin
experiment was the approach with the rainfall multiplier, giving an average value for
the NSp of 0.6, and through visual inspection an improvement over the predicted water
levels without assimilation for all states, hidden and observed. This showed that by only
implementing the forcing uncertainty, the water level predictions could be improved.

7.5 Assesment of algorithm settings
The algorithm settings were only tested with the DA approach with the rainfall multiplier,
and only for the assimilated water level. It could be that the settings have a different
effect on other states. Furthermore, it could mean that the results are biased, favouring
the DA method with the rainfall multiplier because the algorithm is optimized for
this approach. One could hypothesize, that as the number of noise elements drawn
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16 ensemble members 32 ensemble members

(a) Assimilated storage in greenhouse basins, for DA approach with additive noise on all states

16 ensemble members 32 ensemble members

(b) Assimilated storage in greenhouse basins, for DA approach with multiplicative noise on
rainfall

Figure 7.3: Influence of ensemble size on the assimilated storage in the greenhouse
basins for two DA approaches; rainfall multiplier and additive noise on all states.

from different distributions increase, so should the number of ensemble members. This
could increase the optimal ensemble size for the approach where additive noise was
implemented on all states. Nothing on this was found in literature and a simple test
of comparing to 16 to 32 ensemble members for the set-up with additive noise on all
states, gave no large improvement on the assimilated water levels. However, comparing
the assimilation of different states in the control run does show an improvement with
increasing ensemble size for both the noise-approaches. The NSp values for the storage
in the basin for the additive-noise component increases from 0.13 to 0.44. The results for
both noise-approaches is shown in Figure 7.3. For practical application it is advised to
use a maximal ensemble number allowed by the time span available for computation.
For the twin experiment, the small time increment of 15 minutes is ideal for all cases.

7.6 Application of DA in the case study
However, as shown in Figure 6.5, the modelled values showed a complete different
pattern in the turning on- and off of the pumps, a large difference in the magnitude
of the water level rise and a significant time lag in the observed response. These are
factors that were not tested in the twin experiment because the control values were
created with the same Sobek RR model. These differences between model and observed
water levels resulted in concerns about the applicability of the data assimilation to the
case study because if the model could not represent the observations, how would the
data assimilation result in updates of hidden states with a proper physical meaning?
Furthermore, as the case study had no state observations besides the water level, it
was not impossible to validate whether the assimilated states made physically sense.
However, the extreme drop in the values of hidden states half way throughout the
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(a) Water level assimilated with observation un-
certainty of 1.5 cm

(b) Unsaturated zone assimilated with ob-
servation uncertainty of 1.5 cm

(c) Unsaturated zone assimilated with ob-
servation uncertainty of 1 mm

Figure 7.4: Influence of different observation uncertainties on the assimilated unsatu-
rated storage for the case study with original RR model.

rainfall event, as shown in Appendix D.2, confirmed the suspicion that the updated
hidden states would not result in probable values.
As in the case study, the assimilated water level could be improved when the uncer-
tainty on the observation was low. However, even though the assimilated water levels
improved visually, this only increased the errors in the hidden states, which dropped to
unrealistic levels, as shown in Figure 7.4.
In order to get a better insight in the applicability of DA, the model was calibrated. A
visual inspection showed improved values for the assimilated water level compared to
the DA set up with the original model and compared to the set up without assimilation.
More so, the hidden states now showed a pattern as would be expected. The temporary
drop in storage in the states of the greenhouse and unsaturated zone could be linked
to the corresponding drop in water level, and remained within a realistic range of the
modelled values without assimilation. Furthermore, the hidden states increased in
storage again when the water level was adjusted upwards by the EnKF. This resulted
at the end of the run in values higher than the results produced without assimilation,
which would be expected because of the underestimation of the real time rainfall during
extreme events.
Figure 6.9b shows that the calibrated model still contained the problem of the time-
lag. The difference in time-lag is assumed to be a model-based problem instead of an
observation problem because the comparison of rain or no rain of the uncorrected and
day-corrected radar rainfall products was rather good. The influence of the time lag in
the case study on the calibrated model can be seen in Figure 6.9b and can be explained
as followsS: First the occurrence of a rainfall peak caused the modelled water level to
exceed the observations. The Kalman gain became negative and the states were all
lowered instead of filled. After the time lag, the observations exceeded the modelled
water levels. However, since the rainfall had already stopped by that time, the variance
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in the ensemble spread (σ2
m) remained small, meaning the factor

σ2
m

σ2
m + σ2

obs
=

1

1 + σ2
obs

σ2
m

(7.3)

in the Kalman gain remained small too, such that K would become small, reducing the
effectiveness of the updates.
Two ideas are proposed here to reduce the inhibiting effect the time lag is expected
to have on the assimilation. The feasibility of the options and a small example are
discussed here. The first is most straightforward and should always be favoured;
improve the knowledge of the system and incorporate this into a better RR model
giving the appropriate time-lag in the system. A parameter that is expected to create
unrealistic fast modelled runoff is the greenhouse storage of the lowest class. This
class implements greenhouse areas with a storage capacity of less than 500 m3/ha. The
reservoir is modelled without storage creating direct runoff. This greenhouse class
takes up a significant 35 % of the total greenhouse area, while it is even obligated by
law for greenhouse farmers to have a storage of at least 500 m3/ha (Keizer, 2017). The
model could already be improved by setting the are of the lowest class to zero and
implementing this in the greenhouse class of basins with a storage between 500 and
1000 m3/ha. Note that implementing this measure would reduce the magnitude of
the generated response. Another component determining the fast runoff during large
rainfall events is the concentration time of the water on the paved surface to the sewage.
This is now modelled as 0.1 [1/min], but this could be increased. Last, the unsaturated
zone is said not to hold water long enough (Beukema, 2017), which would result in too
fast runoff.
The second proposed approach to reduce the problem of the time-lag for data assimi-
lation is by implementing a larger time increment in the DA. If the timespan between
assimilation steps is larger, the effect of the rainfall event on the observation can already
be measured and the responses could be compared better.
The effectiveness of the case studies were difficult to determine because there was
no possibility of validation for the other hidden states. A recommended approach to
improve the case study is by collecting water levels at different locations within the
same polder to create a more representative water level observation for the whole polder.
Furthermore, very detailed information on some of the Greenhouse basins were collected
in 2017 for the master thesis of Keizer (2017). The measurement devices to measure the
water level in the storage basins are cheap or even already in place. Collecting data of the
greenhouse storages would allow validation of the assimilated state of the storage in the
greenhouse area. Furthermore, collecting and processing data of greenhouse storages
will give a better understanding of the discharges of the basins to the open water level.
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8

Conclusions and Recommendations

The chances of finding out what is really going on in the universe are so remote, the only thing to
do is hang the sense of it and keep yourself occupied.

– Douglas Adams, The Hitchhikers Guide to the Galaxy

The individual research questions are first discussed in this chapter, after which an
answer will be formulated to the main research question. The chapter will be concluded
with recommendations for the direction of future research and practicalities to allow
the implementation of the data assimilation. The aim of the research was to answer the
main research question:

’How can data assimilation methods be used in a real time hydrological models to
reduce water level prediction uncertainty?’

by answering the following sub-questions:

1. Which model components have the largest influence on the uncertainty in water level
predictions; parameter values, initial states or forcing data?

2. Are there technical or practical issues for the application of DA?

3. Which model components can best be perturbed for DA, such that optimal state estimates
are found?

4. Can DA, with a perfect model, recover the right initial states while running with distorted
forcing data?

5. Can prediction uncertainty be reduced using DA in a case study where many different
components contribute to the uncertainty in water level predictions?

As an answer to the first sub-question, this thesis demonstrated that the largest
source of uncertainty for the predicted water levels is the rainfall component. Firstly,
because the water level was most sensitive to errors in the observed rainfall, which
was represented by a rainfall multiplier. Secondly, because for real time control, the
rainfall product is limited to the uncorrected product, which contained large errors. The
resulting prior distribution on the uncorrected radar rainfall product, found through
an analysis between the uncorrected and 2nd corrected radar rainfall products, was
N (1.4, 1.3). This error causes a modelled water level of only a third of the water level
generated by the 2nd corrected radar product. Errors in other model components, of
which mostly the groundwater and paved states, influenced water level prediction
uncertainties as well.
To answer the second sub-question, one technical issue remained, caused by the influence
of the pumps on the assimilation. The pumps disturb the assimilation when the pumps
state is opposite of that of the observation. The pumps were not implemented as state in
the DA set up, because of the technical limitation that they were not included in the ascii
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file created to alter initial states in Sobek RR for this thesis. Furthermore, assimilating the
pump state would impose an integer problem because DA can only deal with continuous
states. To prevent this behaviour from obscuring the results of the theoretical case, the
pumps were removed for the twin experiment.
As an answer tot the third sub-question, the results of the twin experiments showed that
the technical set up where the rainfall is perturbed, produced better results than for the
set up with additive noise to all states, additive noise to the groundwater or a single
multiplication factor for the states. The assimilation with rainfall multiplier showed
not only for the water level, but also for the hidden states a significant improvement
over the case without assimilation. The approach to assume the main uncertainty to be
caused by errors in rainfall observation is justified by the answer to the first sub-question.
Furthermore, this method has as conceptual advantage that it is exactly known which
error is being targeted. The NSp values of the assimilated results of the water level were
not bounded by the algorithm set up or the prior, but the uncertainty of the observations,
set at 1.5 cm. For all set ups for the twin experiment, the NSp values for the assimilated
water level scored between 0.92 and 0.97, suggesting all methods to work. This leads to
a note of caution when applying DA techniques; it is important to check the physical
feasibility of the updated state of the model. To illustrate this, the set up with rainfall
multiplier showed visual and objective improvements for the assimilated hidden states,
with an average of the NSp values 0.6. However, The other DA set-ups showed for
some states unrealistic model behaviour and the average NSp values were negative
for the three approaches showing the assimilation results increased model prediction
uncertainty for the hidden states compared to a situation without assimilation.
To answer the fourth sub-question, data assimilation can recover the right initial states
when implementing the set up of the twin experiment with the rainfall multiplier and a
perfect model. When implemented with a time increment of 15 minutes and an ensemble
size of 16, good results for all states were generated within an acceptable computation
time of twenty seconds per assimilation step, well within the bounds of the fifteen
minutes of the time increment.
The answer of the fifth and final sub-question is that DA works in a case study, but only
when the model showed a similar pattern to the observations. The results of the original
case study were clouded by large differences in response time, the number of times the
pump had to turn on and the amplitude of the modelled and observed water levels in
the Tedingerbroek polder. The maximal observed water level was 0.3 meter, while the
maximum modelled water level after during calibration was 0.06 m. To improve the
model, it was recalibrated for the landuse areas, concentration time and pump capacity,
the parameters expected to reduce the difference between model and observation most.
Within a reasonable bound of uncertainty for the parameters, the modelled water levels
could not mimic the pattern of the water level observations, resulting in the current belief
that the Tedingerbroek polder receives additional water fluxes, or that the water level
observation taken near a pump are not representative enough for the polder. However,
when allowing larger deviations from the original parameters, the calibrated model
could mimic the maximal modelled water level and the pump pattern. The remaining
time lag disturbed the DA application, but the assimilated results of water level, with
a NSp of 0.67, showed an improvement and the assimilated hidden states gave results
that corresponded with the expected pattern.
The main question can be answered using the answers on the previous question. It is
indeed possible to use data assimilation methods to reduce the influence of the error
in precipitation forcing data on the predicted water levels. The corresponding initial
states were deduced from the observed water levels in the theoretical twin experiment.
However, the assimilation was not directly applicable to the test case considered in
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this thesis because the model did not approximate the observations enough. After
recalibration of the model, the assimilated results improved, showing that with a model
that can predict the observation relatively well, DA can be used to update the model
states and reduce water level prediction uncertainty.
Future research should be focussed on methods to validate the updated states for a case
study. The suggested approach is to collect time series of the storages in the greenhouse
basins. Keizer (2017) started a project with Deltares to collect this data, which would
complement this study well. Furthermore, the representativeness of the observed water
levels should be assessed by using multiple locations for measurements within one
polder. Whether pumps are turned on or off should be implemented as an observation
with zero uncertainty in OpenDA. To make this technically possible, the request is to add
pump information in the Ascii restart file for Sobek. This should then be implemented
in FEWS such that the ensemble members receive additional observations of the pump
settings which can be updated directly. A practical recommendation for Delfland would
be to multiply the uncorrected radar rainfall product P = 0.45P2

unc + 1.5Punc in advance,
to account for the consistent underestimation of the rainfall, especially for high rainfall
intensities.
To conclude, considering the trend of water authorities in the Netherlands to improve the
operation of the pumping, this research showed that data assimilation has the potential
to be a method applicable to real time water systems. It is therefore relevant to further
research methods for validation and implementation in real-case studies.
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A

Deterministic Rainfall Run-off model

Figure A.1: Conceptual representation of the paved
areas (adjusted from Prinsen, 2013b).

The CRR set-up for a polder as
used in Sobek RR is taken for
the deterministic model in this re-
search. Sobek uses the distinction
of four different land-use types:
paved, unpaved, greenhouse and
open water. Within these areas, dif-
ferent hydrological processes are
dominant such that their model
structure is different. The next sec-
tions explains the model set up and
settings per land-use type.

A.1 Paved Area
A schematic representation of the model
set up for paved area is given in Figure A.1. It consists of two storage buckets; one for
storage on the street one for storage in the sewage pipes. An overview of the processes,
water balance and fluxes are given in Table A.1.

Storage on the street

The storage on the street has as input precipitation (P), calculated as the area multiplied
by the rainfall intensity and time-step. The evaporation (E) takes place between 7.00
and 19.00 and equals the potential evaporation when storage on the street is present. As
soon as the maximal storage on the street Sstreet,max is reached, the surplus water drains to
the sewage (Qsew). This is modelled with a delay using the rational method given by

Qsew = c · h · APA, (A.1)

where

Q in L3/T is the flow to the sewage

c in T−1 is the runoff factor
h in L is the hight of the water on the surface exceeding the maximum storage on the surface

APA in L2 is the total paved area

For illustration purposes: a runoff factor of c = 0.1 min−1 would mean that 10% of the
excess surface volume reaches the sewage in one minute. Note that this implies that the
storage on the street can be higher than the Sstreet, max would indicate.
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Process Water Balance Constitutive Relationships

Ea = min
(

Epot·, Sstreet/dt
)

Street Interception dSstreet
dt = P− Ea −Qsew Qwwtp = min

(
Ssew

dt , Qwwtp,max

)
Qso = max

(
Ssew−Ssew,max

∆t + Qsew −Qwwtp, 0
)

Sewage dSsew
dt = Qsew −Qwwtp −Qso Qsew = max

((
(Sstreet − Sstreet,max + P− E) · APA

)
· c, 0

)
Table A.1: Processes, water balance and fluxes for the model structure of the paved areas

Storage in the sewage

The storage in the sewage has as only input (Qsew), assuming a dry weather flow of
zero. Outgoing fluxes are the discharge to the waste water treatment plant (Qwwtp)
and the sewage overflow QSO. As long as there is storage in the sewage, Qwwtp equals
the maximum sewage capacity Qsew,max. When the maximal storage in the sewage Ssew,max
is exceeded , additional inflow discharges directly to open water via sewage overflow
QSO. The sewage is assumed to have no leakages.

A.2 Greenhouse Area
The conceptualization used for greenhouse areas presented here was developed by
Alterra and Deltares in the 90s (Prinsen, 2013b). As shown in Figure A.2, only one kind
of storage bucket is in place, the storage basin. These storage basins are divided into
ten classes, which are defined by the volume of water that can be stored per hectare of
greenhouse area. An overview of the class intervals (between < 500 and 5000− 6000
m3/ha ) is given in Figure A.3. An overview of the processes, water balance and fluxes
are given in Table A.2.

Storage in Basins

Figure A.2: Conceptual representation of the green-
house areas ( adjusted from Prinsen, 2013b).

The input flux is precipitation.
The outward fluxes are evapora-
tion, outtake for watering the
greenhouses (QGH) and over-
flows to open water (QOF).
The precipitation input to the
basin is modelled as the total
greenhouse area AGH multiplied
with the rainfall intensity and
the time step. The evaporation
is taken as the potential evapora-
tion between 7.00 and 19.00, but
limited to the surface of the stor-
age basins. The storage per basin
Sbasin,i is taken as the lowest
bound of the greenhouse class.
Note that this implies that the
lowest class (<500 m3/ha) is modelled without storage or time lag.
When the depth in the basin exceeds the typical depth after extraction of the evaporation
and the outtake for watering of the plants, the surplus overflows to open water. The
water used in the greenhouses is taken as a constant timeseries, which are compared to
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Process Water Balance Constitutive Relationships

Storage Basins dSgh,i
dt = P− E−QGH −QOF QOF = max

(
Sgh,i,max−Sgh,i

∆t , 0

)

QGH =

min

(
QGH,input , Sgh,i−0.1·Sgh,i,max

∆t

)
for Sgh,i > 0.1 · Sgh,i,max

0 for Sgh,i < 0.1 · Sgh,i,max

Table A.2: Processes, water balance and fluxes for the model structure of greenhouse
area

Greenhouse
class

Storage per area
(m3/ha)

Percentage of
paved area (%)

1 <500 34
2 500 - 1000 19
3 1000 - 1500 12
4 1500 - 2000 7
5 2000 - 25000 5
6 2500 - 3000 5
7 3000 - 4000 5
8 4000 - 5000 7
9 5000 - 6000 6
10 > 6000 0

Table A.3: Distribution of greenhouse classes

the basin storage which needs to retain a minimum filling percentage of 10 percent. No
underground storage or storage in silo’s is taken into account.

A.3 Unpaved Area
To model the unpaved areas (in rural and urban areas), three storage basins are taken into
account (Figure A.3), the surface storage, storage in the unsaturated zone and the shallow
groundwater storage. The water balance is given by Table A.4, but the constitutive
relationships for QUS, ETa and QD are explained below since they entail some further
elaboration. For the unpaved area; the groundwater calculations are applied over the
total area of paved and unpaved areas, while the rainfall and evaporation only depend
on the size of the unpaved surfaces.

Storage on the land surface

The incoming flux on the land surface is the precipitation. From the surface the water
either infiltrates (QI) or evaporates. Infiltration is limited to the maximum infiltration
capacity (Imax) and the available water on the surface. When the precipitation intensity

Process Water Balance Constitutive Relationships

Storage on Land QSR = max
(

Sland − Sland,max, 0
)

/∆t

Unsaturated Zone dSUS
dt = QI − T −QUS QI = max

(
Imax, Sland

∆t

)
Shallow Groundwater dSSG

dt = QUS −QD −QP

Table A.4: Processes, water balance and fluxes for the model structure of the unsaturated
zone
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Figure A.3: Conceptual representation of the unpaved area ( adjusted from Prinsen,
2013b).

exceeds the infiltration capacity or when the groundwater level exceeds the surface
level, the storage on the surface increases. Once the maximum storage on land (Sland,max)
is exceeded, any additional water is directly routed to the open water bodies.

Storage in unsaturated zone

The unsaturated zone (or root zone) can receive water either from infiltration or capillary
rise from the shallow groundwater. Water leaves the storage unit through transpiration
and percolation.

Capillary rise (qCR) takes place when the water content in the root zone is less than
the equilibrium moisture storage (Veq), defined as a water deficit. When the storage in
the unsaturated zone exceeds the equilibrium, percolation (qP) occurs . The water is
assumed to reach the groundwater (via percolation) or root zone (via capillary rise)
within the same time step. The following scheme is used to calculate the flux q between
the unsaturated zone and the shallow groundwater:

q =



qp =
Veq−(Vt−1+∆V)

∆t , for Vpot > Veq Rootzone too wet, percolation

qCR,act = qCR,pot for Vpot < Veq and Vact < VpF3 Rootzone too dry, capillary rise

qCR,act = qCR,pot
Veq−Vact
Veq−Vp f 3

for Vpot < Veq and Vact > VpF3 Rootzone much too dry, CR

(A.2)

To solve this equation, some elements need to be defined. First, the potential water content
in the root zone (Vpot) at time t:

Vpot = Vt−1 + (P− Ea) · ∆t (A.3)
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Second and third, the equilibrium moisture storage (Veq) and the potential capillary rise
(QCR,pot). These change over time and are depended on the following factors:

1. Veq = f ( soil type, groundwater table (t), thickness root zone)

2. qCR,pot = f ( drainage resistance, groundwater table (t))

These values are predetermined for different inputs using CAPSEV, a program developed
by Wesseling (1991). For different conditions, Veq and qCR,pot are available from CAPSEV
in a table, which is used as input in Sobek.

Last but not least, the amount of Transpiration (T) needs to be calculated. T depends
on the amount of moisture in the root zone, the potential evapotranspiration ETpot and the
limiting factor αE, which in its turn is a function of the soil water pressure head hi . The T is
calculated as

ETa = ETpot · αE, (A.4)

where αE is determined by

αE =


0 if 0 < V/Veq < h4 Root zone much too dry, no ETa

1− (x− h3i)/(h4 − h3i) if h4 < V/Veq < h3i Root zone dry, reduced ETa

1 if V/Veq > h3i. Root zone saturated, ETa = Epot

(A.5)

The factors hi depend on the root zone thickness, the crop and soil type and are calculated
using CAPSEV. The ’reduction point’ h3 is also dependent on the potential evaporation ETpot
and can for each situation obtain different values:

h3i =

{
h3High for ETpot > 5 mm/d
h3Low for ETpot < 1 mm/d

(A.6)

Between the potential evaporation values, a linear interpolation between the two values
for h is made.

Shallow groundwater storage

The shallow groundwater drains to the open water using Ernst equation (Prinsen, 2013b)
given by:

qD =
∆h
R

, (A.7)

where ∆h [m] is the difference between the groundwater level and the water level and R
is the resistance factor [day]. R depends on the drainage level d [m below surface]:

R =


0.3 if d < 0 and ∆h > 0
70 if 0 ≤ d < 0.3 and ∆h > 0
200 if d > 0.3 and ∆h > 0
1300 if ∆h < 0

(A.8)

The interaction with deeper groundwater is implemented as a fixed time series.
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Figure A.4: Conceptual representation of the open water

A.4 Open Water
Open Water is modelled as a very simple storage box with water balance:

SOW

dt
= (P− Epot) · AOW + QSO + QSR + QD + QOF −Qpump, (A.9)

as represented in Figure A.4, with AOW the area of the open water bodies and Qpump the
discharge to the boezem.
The pumps responsible for Qpump are regulated on zero/half/full capacity and switch
on or off at certain reference levels in order to keep the water to a set level (peil). The
mechanisms are provided in equation A.10 and depend on the water level difference
from the set water level (∆hre f ) and the previous pump settings:

Qpump(t) =



Qpump,max if ∆hre f (t) > 0.2
or Qpump(t− 1) = Qpump,max & ∆hre f (t) > 0

0.5 ·Qpump,max if 0.1 < ∆hre f (t) < 0.2
or Qpump(t− 1) = 0.5 ·Qpump,max & ∆hre f (t) > −0.1

0 otherwise
(A.10)
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B

Code for coupling Sobek RR and
OpenDA

B.1 Exchange of forcing data
The code that was written for the exchange of forcing data can be found in SobekR-
RFile.java, SobekRRExchangeitem.java and SobekRRTimeStepExchangeItem.java
SobekRRFile.java initializes by reading out the precipitation file from Sobek and cre-
ates exchange items of the class SobekRRExchangeItems (defined in the corresponding
SobekRRExchangeitem.java). These contain the corresponding ID of the weather station,
the times and the values of the precipitation. Furthermore the exchange item containing
the timestep of the data is created. After the OpenDA calculations, the values in the
exchange item of the precipitation are perturbed. The module SobekRRFile.java then
reloads them in the finalize part and writes an identical text file (.BUI) as the precipitation
file that it read in, but with the perturbed rainfall values at the times corresponding to
the DA step. This file is loaded into Sobek as the new precipitation event.

package nl.deltares.openda.models.sobek;

import nl.wldelft.util.DateUtils;
import nl.wldelft.util.io.LineReader;
import nl.wldelft.util.io.LineWriter;
import org.openda.exchange.timeseries.TimeUtils;
import org.openda.interfaces.IDataObject;
import org.openda.interfaces.IExchangeItem;
import org.openda.interfaces.IPrevExchangeItem;
import org.openda.utils.Time;

import java.io.File;
import java.io.IOException;

import java.text.NumberFormat;
import java.text.ParseException;

import java.util.*;

/**
* Created by petraizeboud on 07/02/2017.
*/

public class SobekRRFile implements IDataObject {

LinkedHashMap<String, IExchangeItem> exchangeItems = new LinkedHashMap<>();

//The variable that has the restart file that is read & rewritten
private File buistations;
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private static final String FIRST_6_LINES = "*Name of this file:
\\SBKRural\\FIXED\\DT458_1A.BUI\r\n" +↪→

"*Date and time of construction: 25-02-2016 11:54:05\r\n" +
"*Enige algemene wenken:\r\n" +
"*Gebruik de default dataset (1) of de volledige reeks (0) voor overige

invoer\r\n" +↪→

" 1\r\n" +
"*Aantal stations";

private static final String SECOND_1_LINES = "*Namen van stations";
private static final String THIRD_2_LINES = "*Aantal gebeurtenissen (omdat het

1 bui betreft is dit altijd 1)\r\n" +↪→

"*en het aantal seconden per waarnemingstijdstap";
private static final String FOURTH_4_LINES = "*Elke commentaarregel wordt

begonnen met een * (asteriks).\r\n" +↪→

"*Eerste record bevat startdatum en -tijd, lengte van de gebeurtenis in
dd hh mm ss\r\n" +↪→

"*Het format is: yyyymmdd:hhmmss:ddhhmmss\r\n" +
"*Daarna voor elk station de neerslag in mm per tijdstap.";

//System.lineSeparator() can be used instead of \r\n, \r is for Unix systems
\r\n for windows.↪→

@Override
public String[] getExchangeItemIDs() {

return exchangeItems.keySet().toArray(new
String[exchangeItems.keySet().size()]);↪→

}

@Override
public String[] getExchangeItemIDs(IPrevExchangeItem.Role role) {

return new String[0];
}

@Override
public IExchangeItem getDataObjectExchangeItem(String exchangeItemID) {

return exchangeItems.get(exchangeItemID);
}

@Override
public void finish() {

String splitline;
//Loop over exchange items to save id's, time and values
List<String> idList = new ArrayList<>();
Collection<IExchangeItem> values = exchangeItems.values();
double[][] valuesDoubles = new double[values.size()][];
double[] times = null;
int i = 0;
for (IExchangeItem exchangeItem : values) {

if (exchangeItem instanceof SobekRRTimeStepExchangeItem) continue;
valuesDoubles[i] = exchangeItem.getValuesAsDoubles();
times = exchangeItem.getTimes();
String id = exchangeItem.getId();
idList.add(id);
i++;

}
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//Calculate timestep, length of timeseries & dateline
int timestep = (int) (TimeUtils.mjdInMinutes(times[1] - times[0])) * 60;

//# seconds in timestep↪→

int nmbtimestepts = valuesDoubles[0].length;

//Convert mjd to yyyy mm dd hh mm ss dddd hh mm ss
String time0 = TimeUtils.mjdToString(times[0]); //in mjd
StringBuilder splitdate = new StringBuilder(35);
splitdate.append(" " + time0.substring(0, 4));
// Split the string 201001010000 to 2010 1 1 0 0 0
for (int k = 4; k < time0.length() - 1; k = k + 2) {

String substring = time0.substring(k, k + 2);
String sub = substring.substring(0, 0);
String sub2 = substring.substring(0, 1);
// Translate the 01 to " 1"
if (substring.substring(0, 1).equals("0")) {

substring = substring.substring(1);
splitdate.append(" " + substring);

} else {
splitdate.append(" " + substring);

}
}
// to find # days, hours, minutes, seconds to put in string splitetimelength
double totalseconds = (nmbtimestepts) * (timestep);
int days = (int) Math.floor(totalseconds / (60 * 60 * 24));
int hours = (int) Math.floor((totalseconds / (60 * 60 * 24) - days) * 24);
int min = (int) Math.floor((((totalseconds / (60 * 60 * 24) - days) * 24)-

hours)*60);↪→

int sec = (int) Math.floor((((((totalseconds / (60 * 60 * 24) - days) * 24)-
hours)*60)-min))*60;↪→

splitdate.append(" 0 " + Integer.toString(days) + " " +
Integer.toString(hours) + " "↪→

+ Integer.toString(min) + " " + Integer.toString(sec));
// The first zero in splitdate is to account for zero seconds.

//Rewrite the new buistations file for Sobek
try (LineWriter lineWriter = new LineWriter(buistations)) {

//lineWriter.writeLine(String.valueOf(doubles));
lineWriter.writeLine(FIRST_6_LINES);
int nmbstations = idList.size();
lineWriter.writeLine(" " + nmbstations);
lineWriter.writeLine(SECOND_1_LINES);
for (int k = 0; k < nmbstations; k++)

lineWriter.writeLine(idList.get(k));↪→

lineWriter.writeLine(THIRD_2_LINES);
lineWriter.writeLine(" 1 " + timestep);
lineWriter.writeLine(FOURTH_4_LINES);
lineWriter.writeLine(splitdate); // Dateline
for (int k = 0; k < valuesDoubles[0].length; k++) {

splitline = Double.toString(valuesDoubles[0][k]);
for (int j = 1; j < nmbstations; j++) {

splitline = splitline + " " + valuesDoubles[j][k];
}
lineWriter.writeLine(splitline);

}

} catch (IOException e1) {
throw new RuntimeException(e1.getMessage(), e1);
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//System.out.println("Something went wrong writing the file with new
values " + e1.getMessage());↪→

}
}

@Override
public void initialize(File workingDir, String[] arguments) {

//code for reading bui file, get values, times, ids

// File that is read and later rewritten
buistations = new File(workingDir, arguments[0]);

// Variables defined for outside the loop
String dateline;
String[] stationnames = null;
int nmbstations = 0;
int timestep = 0; // in seconds
int nmbtimesteps = 0;
double[][] doubles = null;
double[] timedouble = null;
NumberFormat decimalnumber = NumberFormat.getNumberInstance(Locale.US);

// First loop determines the timestep, # stations and, number of timesteps
// With this the number of exchange items can be determined and the right
// double string can be made.
try (LineReader lineReader = new LineReader(buistations)) {

String line = lineReader.readLine();
while (line != null) {

// Find number of weather stations
if (line.equals("*Aantal stations")) {

String values = lineReader.readLine().trim();
nmbstations = Integer.parseInt(values);
lineReader.readLine();
stationnames = new String[nmbstations];
for (int j = 0; j < nmbstations; j++) {

stationnames[j] = lineReader.readLine();
}

}
// Find length of timesteps (in seconds)
if (line.equals("*en het aantal seconden per waarnemingstijdstap")) {

String values = lineReader.readLine();
String seconds = values.substring(2);
timestep = Integer.parseInt(seconds.trim());

// Timestep is given to ExchangeItem SoebkRRTimeStepFile in
Modified Julian date↪→

double[] timestepMjd = new double[1];
timestepMjd[0] = Double.valueOf(timestep) / Double.valueOf(24 * 60

* 60); // Timestep(seconds)/1 day (in seconds)↪→

SobekRRTimeStepExchangeItem exchangeItemTimestep = new
SobekRRTimeStepExchangeItem("TimeStep", timestepMjd);↪→

exchangeItems.put(exchangeItemTimestep.getId(),
exchangeItemTimestep);↪→

}
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// For the different stations, doubles are made. They are named after
// the corresponding stations and contain all the rainfall or

evaporation data↪→

// for that station.
if (line.equals("*Daarna voor elk station de neerslag in mm per

tijdstap.")) {↪→

dateline = lineReader.readLine();
String[] splitline = dateline.split(" ");
//Find start date model run
List<String> goodsplit = new ArrayList<String>();
//List[] goodsplit = null;
//StringBuilder goodsplit = new StringBuilder(35); //Without empty

values due to irregular spacing↪→

for (int j = 0; j < splitline.length; j++) {
if (splitline[j].isEmpty()) continue;
goodsplit.add(splitline[j]);

}
// Recover time length of data
int year = Integer.parseInt(goodsplit.get(0));
int month = Integer.parseInt(goodsplit.get(1));
int day = Integer.parseInt(goodsplit.get(2));
int hour = Integer.parseInt(goodsplit.get(3));
int min = Integer.parseInt(goodsplit.get(4));

// Determine total seconds of time during measurements
int Days = Integer.parseInt(goodsplit.get(6)) * 24 * 60 * 60;
int Hours = Integer.parseInt(goodsplit.get(7)) * 60 * 60;
int Minutes = Integer.parseInt(goodsplit.get(8)) * 60;
int Seconds = Integer.parseInt(goodsplit.get(9));
int timelength = Days + Hours + Minutes + Seconds;
nmbtimesteps = timelength / timestep;

timedouble = new double[nmbtimesteps];
doubles = new double[nmbstations][nmbtimesteps];

for (int i = 0; i < nmbtimesteps; i++) {
//Set time of timestep to Mjd.
long millies = DateUtils.getTime(year, month, day, hour, min +

i * timestep / 60);↪→

timedouble[i] = Time.milliesToMjd(millies);
String read = lineReader.readLine();
int j = 0;
String[] splitRain = read.split(" ");
// The length of split array is dependent on whether or not
// values of rain & Ep are zero. This is why the following loop
// is constructed.
for (int k = 0; k < splitRain.length; k++) {

String rain = splitRain[k];
if (rain.trim().length() != 0) {

// To ensure scientif (E) notation can be dealt with
Number number = decimalnumber.parse(rain);
doubles[j][i] = number.doubleValue();
j++; // To ensure the #rows in doubles object are equal

to #stations↪→

}
}

}
}
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line = lineReader.readLine();
}

} catch (ParseException e1) {
e1.printStackTrace();

} catch (Exception e) {
throw new RuntimeException(e.getMessage(), e);

}

//Creation of Exchange Items

// The exchange items have as ID the station name, e.g. "'Scheveningen'",
the times (in modified Julian Date)↪→

// over which the raindata are avaialble and the corresponding values of
those times as doubles.↪→

for (int k = 0; k < nmbstations; k++) {
SobekRRExchangeItem exchangeItem = new

SobekRRExchangeItem(stationnames[k], timedouble, doubles[k]);↪→

exchangeItems.put(exchangeItem.getId(), exchangeItem);
}

}
}

package nl.deltares.openda.models.sobek;

import org.openda.interfaces.*;

/**
* Created by petraizeboud on 07/02/2017.
*/

public class SobekRRExchangeItem implements IExchangeItem {

private final String id;
private double[] values;
private final double[] times;

public SobekRRExchangeItem(String id, double[] times, double[] values) {
this.id = id;
this.times = times;
this.values = values;

}

@Override
public Role getRole() {

return null;
}

@Override
public double[] getValuesAsDoubles() {

return values;
}

@Override
public void axpyOnValues(double alpha, double[] axpyValues) {

if (this.values != null) {
for (int i = 0; i < values.length; i++) {

values[i] += alpha * axpyValues[i];
}

}
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}

@Override
public void multiplyValues(double[] multiplicationFactors) {

if (this.values != null) {
for (int i = 0; i < values.length; i++) {

values[i] *= multiplicationFactors[i];
}

}
}

@Override
public void setValues(Object values) {

this.values = (double[]) values;
}

@Override
public void setValuesAsDoubles(double[] values) {

this.values = values;
}

@Override
public double[] getTimes() {

return times;
}

@Override
public void setTimes(double[] times) {

}

@Override
public String getId() {

return id;
}

@Override
public String getDescription() {

return null;
}

@Override
public void copyValuesFromItem(IExchangeItem sourceItem) {

}

@Override
public ITimeInfo getTimeInfo() {

return null;
}

@Override
public IQuantityInfo getQuantityInfo() {

return null;
}

@Override
public IGeometryInfo getGeometryInfo() {
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return null;
}

@Override
public ValueType getValuesType() {

return null;
}

@Override
public Object getValues() {

return null;
}

@Override
public Class getValueType() {

return null;
}

}

B.2 Exchange of restart file
SobekRRRestartFile.java and SobekRRRestartExchangeItem As the name suggest,
the information of the states are stored in an Exchange item of the form SobekRRRestar-
tExchangeItem, with as IDs the names of the storages (e.g. Unsaturated zone, storage
on land, storage in sewage, etc.), and the corresponding values. This corresponds to
16 sobekRRRestartExchangeItems, since there are 16 different storage states. Once the
values of the states in the exchange items are replaced by the posterior value calculated
by the DA, SobekRRRestartFile finalizes by writing an ascii- restart file with the updated
states. This was previously not possible since the restart file of Sobek was a binary file,
but this was adjusted especially for this thesis such that Sobek RR can now be restarted
with a text file specifying the initial storage in the states.

package nl.deltares.openda.models.sobek;

/**
* Created by Izep on 15-02-2017.
* code for reading out states from Sobek and saving them as exchange items
* can be found under public void inititialize. The arguments refer to the
* document with the states from SobekRR.
* The exchange items are recognized in OpenDA and the values of the states
* are changed as desired. This is then written to a restart file fed to
* Sobek in public void finish.
*/

import nl.wldelft.util.DoubleArrayUtils;
import nl.wldelft.util.io.LineReader;
import nl.wldelft.util.io.LineWriter;
import org.openda.interfaces.IDataObject;
import org.openda.interfaces.IExchangeItem;
import org.openda.interfaces.IPrevExchangeItem;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
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import java.util.*;
import java.util.List;

public class SobekRRRestartFile implements IDataObject {

//Map for exchange items
LinkedHashMap<String, IExchangeItem> exchangeItems = new LinkedHashMap<>();

// These save the node-ID names of the different node types
List<String> nodesUnpv = new ArrayList<String>();
List<String> nodesPave = new ArrayList<String>();
List<String> nodesGrhs = new ArrayList<String>();
List<String> nodesOpwa = new ArrayList<String>();

//The variable that has the restart file that is read & rewritten
private File sobekRRRestartFile;

// These are Fixed
public static final String[] STATENAMES_UNPV = new String[]{" gwvolume ", "

onvzonevolume ", " bergingland "};↪→

// Note: the additional space before bergingland similar to the given restart
file by Geert Prinsen↪→

public static final String[] STATENAMES_PAVE = new String[]{" streetvolume ",
" sewervolumeRWA ", " sewervolumeDWA ", " dynamicvolume "};↪→

public static final String[] STATENAMES_GRHS = new String[]{" roofvolume ",
" basin1 "," basin2 "," basin3 "," basin4 "," basin5 "," basin6 ","

basin7 "," basin8 "," basin9 ", " basin10 ",↪→

" silovolume "};
public static final String[] STATENAMES_OPWA = new String[]{" openwaterlevel

"};↪→

public static final String[] STATENAMES = new String[]{ " streetvolume ", "
sewervolumeRWA ", " sewervolumeDWA ", " dynamicvolume ",↪→

" gwvolume ", " onvzonevolume ", " bergingland ",
" roofvolume ", " basin1 "," basin2 "," basin3 "," basin4 "," basin5 ","

basin6 "," basin7 "," basin8 "," basin9 ", " basin10 ", " silovolume
",

↪→

↪→

" openwaterlevel "};

@Override
public String[] getExchangeItemIDs() {

return exchangeItems.keySet().toArray(new
String[exchangeItems.keySet().size()]);↪→

}

@Override
public String[] getExchangeItemIDs(IPrevExchangeItem.Role role) {

return new String[0];
}

@Override
public IExchangeItem getDataObjectExchangeItem(String exchangeItemID) {

return exchangeItems.get(exchangeItemID);
}

@Override
public void finish() {
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// Make new File
File sobekRRRestart_reload = new

File("D:\\Users\\izep\\Documents\\Afstuderen\\Java\\Test",
"sobekRRRestart_all_reload.txt");

↪→

↪→

try {
sobekRRRestart_reload.createNewFile();

} catch (IOException exception) {
System.out.println("Something went wrong: " + exception.getMessage());

}

//Collect data from Exchange Items

Collection<IExchangeItem> values = exchangeItems.values();

//Variables defined outside loop

double[][] valuesDoubles = new double[values.size()][];
List<String> idList = new ArrayList<>();

//Information from Exchange items

int i = 0;
for (IExchangeItem exchangeItem : values) {

valuesDoubles[i] = exchangeItem.getValuesAsDoubles();
String id = exchangeItem.getId();
idList.add(id);
i++;

}

try (LineWriter lineWriter = new LineWriter(sobekRRRestartFile)) {
// Write information of the unpaved nodes
//lineWriter.writeLine("test");
for (i = 0; i < nodesPave.size(); i++) {

StringBuilder string = new StringBuilder(35);
string.append("PAVE id " + nodesPave.get(i) );
for (int j = 0; j < STATENAMES_PAVE.length; j++) {

string = string.append(STATENAMES_PAVE[j] +
valuesDoubles[j][i]);

}
string.append(" pave");
lineWriter.writeLine(string);

}
for (i = 0; i < nodesUnpv.size(); i++) {

StringBuilder string = new StringBuilder(35);
string.append("UNPV id " + nodesUnpv.get(i) );
for (int j = 0; j < STATENAMES_UNPV.length; j++) {

string = string.append(STATENAMES_UNPV[j] + valuesDoubles[j+
STATENAMES_PAVE.length][i]);↪→

}
string.append(" unpv");
lineWriter.writeLine(string);

}
for (i = 0; i < nodesGrhs.size(); i++) {

StringBuilder string = new StringBuilder(400);
string.append("GRHS id " + nodesGrhs.get(i));
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string.append(STATENAMES_GRHS[0] +
valuesDoubles[STATENAMES_UNPV.length +↪→

STATENAMES_PAVE.length][i] + " basinvolumes ");
for (int j = 1; j < 11; j++) {

string = string.append(" " + valuesDoubles[j +
STATENAMES_UNPV.length +↪→

STATENAMES_PAVE.length][i]);
}
string.append(STATENAMES_GRHS[11] +

valuesDoubles[STATENAMES_UNPV.length +↪→

STATENAMES_PAVE.length][i]);
string.append(" grhs");
lineWriter.writeLine(string);

}
for (i = 0; i < nodesOpwa.size(); i++) {

StringBuilder string = new StringBuilder(35);
string.append("OPWA id " + nodesOpwa.get(i) );
for (int j = 0; j < STATENAMES_OPWA.length; j++) {

string = string.append(STATENAMES_OPWA[j] + valuesDoubles[j +
STATENAMES_UNPV.length +↪→

STATENAMES_PAVE.length + STATENAMES_GRHS.length][j]);
}
string.append(" opwa");
lineWriter.writeLine(string);

}

} catch (IOException e1) {
e1.printStackTrace();
System.out.println("Something went wrong writing the file with new

values " + e1.getMessage());↪→

}
}

@Override
public void initialize(File workingDir, String[] arguments) {

//***********************************Load restart file
*******************//↪→

sobekRRRestartFile = new File(workingDir, arguments[0]);
//sobekRRRestartFile2 = new

File("D:\\Users\\izep\\Documents\\Afstuderen\\Java\\", arguments[1]);↪→

//test = arguments[0];
//***********************************Data verzamelen*********************//

// Save all the storage of the different Nodes per 'bucket' in a List for
each bucket↪→

List<ArrayList<Double>> states = new ArrayList<ArrayList<Double>>();
// Add empty lists to the states
for (int i = 0; i < STATENAMES_UNPV.length + STATENAMES_PAVE.length +

STATENAMES_GRHS.length↪→

+ STATENAMES_OPWA.length; i++)
states.add(new ArrayList<Double>());
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// Collect states to be put in List<ArrayList<Double>> states
// Collect nodeIDs to be put in nodesXXX.
try (LineReader lineReader = new LineReader(sobekRRRestartFile)) {

String line = lineReader.readLine();
while (line != null) {

String[] splitline = line.split(" ");
List<String> goodsplit = new ArrayList<String>();
for (int j = 0; j < splitline.length; j++) {

if (splitline[j].isEmpty()) continue;
goodsplit.add(splitline[j]);

}
//List[] goodsplit = null;
//StringBuilder goodsplit = new StringBuilder(35); //Without empty

values due to irregular spacing↪→

if (splitline[0].equals("PAVE")) {
nodesPave.add(goodsplit.get(2));
for (int i = 0; i < STATENAMES_PAVE.length; i++) {

states.get(i).add(Double.valueOf(goodsplit.get(2 * i + 4)));//0
tm 3↪→

}
line = lineReader.readLine();
continue;

}
if (splitline[0].equals("UNPV")) {

for (int i = 0; i < STATENAMES_UNPV.length; i++) {
states.get(i+4).add(Double.valueOf(goodsplit.get(2 * i +

4)));//4 t/m 6↪→

}
nodesUnpv.add(goodsplit.get(2));
line = lineReader.readLine();
continue;

}
if (splitline[0].equals("GRHS")) {

nodesGrhs.add(goodsplit.get(2));
states.get(7).add(Double.valueOf(goodsplit.get(4))); // roofvolume
for (int i = 0; i < STATENAMES_GRHS.length-2; i++) {

states.get(i + 8).add(Double.valueOf(goodsplit.get(i + 6)));
//8 t/m (+10) 17↪→

}
states.get(18).add(Double.valueOf(goodsplit.get(17))); //

rilovvolume↪→

line = lineReader.readLine();
continue;

}
if (splitline[0].equals("OPWA")) {

nodesOpwa.add(goodsplit.get(2));
states.get(19).add(Double.valueOf(goodsplit.get(4)));
line = lineReader.readLine();
continue;

}
}

} catch (FileNotFoundException e) {
e.printStackTrace();
System.out.println("ascii Restartfile openda not found " +

e.getMessage());↪→

} catch (IOException e) {
e.printStackTrace();
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System.out.println("Something went wrong in Linereader " +
e.getMessage());↪→

}

//
int size = STATENAMES_UNPV.length + STATENAMES_PAVE.length

+ STATENAMES_GRHS.length + STATENAMES_OPWA.length;
for (int i = 0; i < size; i++) {

//Steps for changing Arraylist to double[] that can be recognized by
openDA↪→

ArrayList<Double> stateList = states.get(i); //Gives storages for
state(i), e.g. [0.0 3.0 310] for 'unvzone'↪→

Double[] stateArray = new Double[stateList.size()]; //Creates from the
Arraylist an Array of Doubles↪→

stateList.toArray(stateArray); //puts the values of the doubles in the
new Array of Doubles.↪→

double[] unboxedStateDoubles = DoubleArrayUtils.unbox(stateArray);
//Creates from the Array of objects a double[]↪→

// Create Exchange items
SobekRRRestartExchangeItem exchangeItem = new

SobekRRRestartExchangeItem(STATENAMES[i].trim() + "_state",
unboxedStateDoubles);

↪→

↪→

exchangeItems.put(exchangeItem.getId(), exchangeItem);
}

}
}

B.3 Exchange of time functionalities
SobekRRModelRunTimeFile and SobekRRModelRunTimeExchangeItem. This part
only reads out the information on the duration of the sobek run, i.e. the data assimilation
should be done the multiple of times that the DA-timestep fits in the time-horizon
specified in the CRR-model.

package nl.deltares.openda.models.sobek;
/**
* Created by Izep on 20-02-2017.
*/

import nl.wldelft.util.DateUtils;
import nl.wldelft.util.FileUtils;
import nl.wldelft.util.io.LineReader;

import org.openda.exchange.timeseries.TimeUtils;
import org.openda.interfaces.IDataObject;
import org.openda.interfaces.IExchangeItem;
import org.openda.interfaces.IPrevExchangeItem;
import org.openda.utils.Time;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.*;

public class SobekRRModelRunTimeFile implements IDataObject {
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LinkedHashMap<String, IExchangeItem> exchangeItems = new LinkedHashMap<>();

private File delft3Bini;

@Override
public String[] getExchangeItemIDs() {

return exchangeItems.keySet().toArray(new
String[exchangeItems.keySet().size()]);↪→

}

@Override
public String[] getExchangeItemIDs(IPrevExchangeItem.Role role) {

return new String[0];
}

@Override
public IExchangeItem getDataObjectExchangeItem(String exchangeItemID) {

return exchangeItems.get(exchangeItemID);
}

@Override

public void finish() {

String text = null;
List<String> datelines = new ArrayList<String>();

// Get data from Exchange Items

Collection<IExchangeItem> values = exchangeItems.values();
double[][] valuesDoubles = new double[values.size()][];
//List<String> idList = new ArrayList<>();

//Loop over Exchange Items
int i = 0;
for (IExchangeItem exchangeItem : values) {

valuesDoubles[i] = exchangeItem.getValuesAsDoubles();
String id = exchangeItem.getId();
//idList.add(id);
i++;

}

//Create new date line to be put in delft3Bini

for (int j = 0 ; j < 2; j++) {
String time = TimeUtils.mjdToString(valuesDoubles[j][0]); //in mjd
String year = time.substring(0,4);
String month = time.substring(4,6);
String day = time.substring(6,8);
String hour = time.substring(8,10);
String min = time.substring(10,12);
datelines.add( year + "/" + month + "/" + day + ";" + hour + ":" + min +

":00");↪→

}
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//Read file delft_3B.ini and save text in String
try {

text = FileUtils.readText(delft3Bini);
} catch (IOException e) {

e.printStackTrace();
}

// Replace old date string in text by new date string
if (text.contains("PeriodFromEvent=0")){

text = text.replaceFirst("(.*)StartTime=(.*)", "StartTime='" +
datelines.get(0) + "'");↪→

text = text.replaceFirst("(.*)EndTime=(.*)", "EndTime='"+
datelines.get(1) + "'");↪→

}

//Rewrite the delft3Bini file with new text
try {

FileUtils.writeText(delft3Bini, text);
} catch (IOException e) {

e.printStackTrace();
}

}

@Override
public void initialize(File workingDir, String[] arguments) {

//code for reading actual time span that is used in Sobek
//A different start and end time are used if periodfromevent = 0 in file

DELFT_3B.INI↪→

//If indeed PeriodFromEvent = 0, the actual start and enddate are saved as
ExchangeItems.↪→

//If PeriodFromevent =! 0, it will print "Period from event not 0", and no
exchange items are made↪→

//Variables

String time = null;
String[] timeID = {"start_time", "end_time"};
double[][] timedouble = new double[2][1];

//Load File

delft3Bini = new File(workingDir, arguments[0]);

//Read out Start and End time

try (LineReader lineReader = new LineReader(delft3Bini)) {
String line = lineReader.readLine();
while (line != null) {

if (line.contains("PeriodFromEvent=0")) {
for (int i = 0; i < timeID.length; i++) {

line = lineReader.readLine();
if (i == 0) time = line.substring(11);
if (i == 1) time = line.substring(9);
int yearInt = Integer.parseInt(time.substring(0, 4));
int monthInt = Integer.parseInt(time.substring(5, 7));
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int dayInt = Integer.parseInt(time.substring(8, 10));
int hourInt = Integer.parseInt(time.substring(11, 13));
int minInt = Integer.parseInt(time.substring(14, 16));
long millies = DateUtils.getTime(yearInt, monthInt, dayInt,

hourInt, minInt);↪→

timedouble[i][0] = Time.milliesToMjd(millies);
}
break;

}
line = lineReader.readLine();

}
} catch (FileNotFoundException e) {

e.printStackTrace();
System.out.println("File DELFT_3B.INI not found " + e.getMessage());

} catch (IOException e) {
e.printStackTrace();
System.out.println("Something went wrong reading DELFT_3B.INI file, for

Period of Event " + e.getMessage());↪→

}

//Exchange Items

if (time == null) System.out.println("PeriodFromEvent is not 0");
else {

for (int i = 0; i < 2; i++) {
// Note: Because time is asked to be a double[] timedouble[i] is a

double[] with only 1 entry. This seems a bit weird.↪→

SobekRRModelRunTimeExchangeItem exchangeItem = new
SobekRRModelRunTimeExchangeItem(timeID[i], timedouble[i]);↪→

exchangeItems.put(exchangeItem.getId(), exchangeItem);
}

}

}
}
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C

Additional results of the twin
experiment

C.1 Additional results on the influence on the states
due to pump settings

The figures show the influence of the pumps on the assimilated states. The results are
generated with a data assimilation run for the twin experiment described in 4.4, where
pumps are in place. The ensemble size is 16 and the time increment is 15 minutes.

(a) Sewage overflow (b) Storage in groundwater

(c) Cumulative storage in GH
basins

(d) Storage in the unsaturated
zone

(e) Storage in sewage (f) Storage on land

Figure C.1: The influence of the pump settings on the assimilated states.
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C.2 Additional results for different algorithm set-
tings

(a) 5 minutes (b) 15 minutes

[ht!]
(c) 1 hour (d) 5 hours

Figure C.2: Assimilated results for different time increments with an ensemble size of 16.

(a) 8 members (b) 16 members

(c) 32 members (d) 64 members

Figure C.3: Assimilated results for different ensemble sizes with time increment of 15
minutes.
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C.3 Additional results for DA with different noise-
components

(a) Swl (b) Sgwater

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sland,UP (f) Sunszone

(g) QSO

Figure C.4: Multiplicative noise on Rainfall
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(a) Swl (b) Sgwater

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sland,UP (f) Sunszone

(g) Qsew

Figure C.5: Additive noise on one state: the groundwater volume
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(a) Swl (b) Sgwater

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sland,UP (f) Sunszone

(g) Sunszone

Figure C.6: Additive noise on all states
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(a) Swl (b) SGW

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sland,UP (f) Sunszone

(g) Sunszone

Figure C.7: Multiplicative noise on all states
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D

Additional results of the case study

(a) Swl (b) Sgwater

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sunszone (f) Sunszone

Figure D.1: Additional results for case study on 23rd of November
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(a) Swl (b) Sgwater

(c) ∑10
i=1 Sbasin,i (d) Ssew

(e) Sland,UP (f) Sunszone

(g) Sunszone

Figure D.2: Additional results for case study on 23rd of June
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