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SUMMARY

The rapid pace of urbanization has an impact on climate change and other environmen-
tal issues. Currently, 54% of the global population lives in cities accounting for two-thirds
of global energy demand. Sustainable energy generation and consumption is the top hu-
manity’s problem for the next 50 years. Faced with rising urban population and the need
to achieve energy efficiency, urban planners are focusing on sustainable, smart energy sys-
tems. This has led to the development of Smart Grids (SG) that employs intelligent moni-
toring, control and communication technologies to enhance efficiency, reliability and sus-
tainability of power generation and distribution networks.

While energy utilities are optimizing energy generation and distribution, consumers
play a key role in sustainable energy usage. Several energy services are provided to the con-
sumers to know households’ hourly energy consumption, estimate monthly electricity cost
and recommendations to reduce energy consumption. Furthermore, advanced services
such as demand response, can now control and influence energy demand at the consumer-
end to reduce the overall peak demand and re-shape demand profiles. The effectiveness
and adoption of these services highly depend on the consumers’ awareness, their partici-
pation and engagement. Current energy services seldomly consider consumer preferences
such as their daily behavior, comfort level and energy-consumption pattern. In this thesis,
we investigate development of personalized energy services that strive to achieve a balance
between efficient-energy consumption and user comfort.

Personalization refers to tailoring energy services based on individual consumers’ char-
acteristics, preferences and behavior. To develop effective personalized energy services a
set of challenges need to be tackled. First, fine-grained data collection at user and appli-
ance level is required (data collection challenge). Mechanisms should be devised to col-
lect fine-grained data at various levels in a non-intrusive way with minimal sensors. Sec-
ond, personalized energy services require detailed user preferences such as their thermal
comfort level, appliance usage behavior and daily habits (user preference challenge). Ac-
curate learning models to derive user preferences with minimal training and intrusion are
required. Third, energy services developed needs to be easily scalable, from one household
to tens and thousands of households (scalability challenge). Mechanisms should be devel-
oped to tackle the deluge of data and support distributed storage and processing. Fourth,
energy services should deliver real-time feedback or recommendations so that users can
promptly act upon it (real time challenge). This calls for development of distributed and
low complexity algorithms.

This thesis moves away from traditional SG services – which hardly consider consumer
preferences and comfort – and proposes a novel approach to develop effective personalized
energy services. The proposed energy services provide actionable feedback, raise awareness
and promote energy-saving behavior among consumers.

In this thesis, we follow a bottom-up data-driven methodology to develop personalized
energy services at various scales – (i) nano: individual households, (ii) micro: buildings and
spaces, and (iii) macro: neighborhoods and cities. To this end, we present our approach –

xi



xii SUMMARY

physical analytics for sustainable, smart energy systems – that combines IoT data, physical
modeling and data analytics to develop intelligent, personalized energy services. Physical
analytics fuses data from various Internet of Things (IoT) devices such as smart meters,
smart phones and smart watches, along with physical information such as household type,
demographics and occupancy to infer energy-usage patterns, user behavior and discover
hidden patterns. This approach is used to learn and model user preferences and energy
usage, subsequently, employed to develop personalized energy services.

This thesis is organized into three parts. Part I describes how to derive fine-grained
information with minimal sensors and intrusion. We present two novel algorithms viz.,
LocED and PEAT that derive fine-grained information from appliance and user level, re-
spectively. This real-time information is used to raise awareness on energy-usage behav-
ior among occupants. Part II presents personalized energy services targeted at households
and buildings. We develop services that shift and/or reduce energy consumption and cost
by considering individual consumers’ preferences and comfort. These energy services are
aimed at providing actionable feedback to occupants towards sustainable energy usage.
Part III presents energy services targeted at neighborhood and city level. These energy
services aim to identify target consumers in a neighborhood based on their energy-usage
pattern and preferences for various DR programs. Finally, we present data-processing ar-
chitectures that investigate how to cope with the overwhelming data generated from smart
meters towards design and development of sustainable, smart energy systems.

This thesis advocates that the design and development of energy services should follow
personalized approach with consumer preferences and comfort given paramount impor-
tance. Results show that the personalized energy services developed has significant poten-
tial to raise awareness, reduce energy consumption and improve user comfort in smart –
homes, buildings and neighborhoods.



SAMENVATTING

De snelle urbanisatie wereldwijd heeft een grote impact op het klimaat en leefmilieu. Op
dit moment leeft 54% van de wereldbevolking in stedelijk gebied, en is verantwoordelijk
voor twee derde van het totale energieverbruik. Duurzame energieopwekking en gebruik is
het belangrijkste probleem van de mensheid voor de komende 50 jaar. Gegeven de immer
uitdijende steden en de noodzaak om zuinig om te gaan met energie, zoeken stadsontwik-
kelaars de oplossing steeds meer in duurzame, slimme energiesystemen. Deze trend heeft
geleid tot de ontwikkeling van zogeheten slimme energienetwerken (Smart Grids) geba-
seerd op slimme meters, geavanceerde beheer- en communicatietechnologieën, duurzame
stroombronnen, en betrouwbare transport netwerken.

Terwijl energieleveranciers de opwekking en transport optimaliseren, spelen gebruikers
een hoofdrol bij het verduurzamen van het energieverbruik. Diverse diensten spelen hier
op in door gebruikers inzicht te geven in hun dagelijkse/maandelijkse stroomverbruik, en
advies te geven hoe het energieverbruik verminderd kan worden. Verder worden er geavan-
ceerde diensten aangeboden, zoals Demand Response, die de vraag controleren en sturen
om de piekbelasting in het energienetwerk te spreiden en te verlagen. De effectiviteit van
deze maatregelen hangt sterk af van de betrokkenheid van de consumenten, hun medewer-
king en hun gebruikspatroon. In dit proefschrift onderzoeken we de ontwikkeling van ge-
personaliseerde diensten die beogen om de juiste balans te vinden tussen energieverbruik
en comfort.

Personalisatie verwijst naar het toespitsen van diensten op de individuele gebruikspa-
tronen, voorkeuren, en gedragingen van consumenten. Om tot een effectieve oplossing te
komen moeten de volgende uitdagingen overwonnen worden. Ten eerste is het noodzake-
lijk om gedetailleerde data te verkrijgen over het daadwerkelijke stroomverbruik per appa-
raat en per gebruiker. Dit meten moet zo onopvallend mogelijk en met minimale inspan-
ning van de gebruiker gerealiseerd worden, en tegen minimale kosten. Ten tweede moet
er per persoon inzicht verkregen worden in diens gewenste gebruikersinstellingen, bijv. de
ideale kamertemperatuur, diens gebruik van elektrische apparatuur, en diens dagelijkse ge-
dragingen. Zelflerende modellen zijn vereist om het achterhalen van deze informatie zo
gemakkelijk mogelijk te maken. Ten derde moeten slimme energiediensten naadloos kun-
nen opschalen van één huishouden tot duizenden. Dit vereist het ontwikkelen van oplos-
singen die de grote hoeveelheid gegenereerde data (lokaal) kunnen opslaan en verwerken.
Ten vierde moeten energiediensten ontwikkeld worden die in realtime werken ten einde de
gebruikers onmiddellijk van advies te kunnen voorzien. Dit vraagt om simpele algoritmen
die ter plaatse uitgevoerd kunnen worden.

De aanpak in dit proefschrift is dus een trendbreuk t.o.v. traditionele energiediensten
die de gebruikers buiten beschouwing laten. Het gebruik van persoonlijke voorkeuren en
energieconsumptie data opent de weg naar een nieuwe klasse van diensten die veel effici-
ënter zijn dan de huidige generatie. De voorgestelde gepersonaliseerde diensten resulteren
in concrete adviezen, verhogen het bewustzijn, en promoten energiezuinige leefstijl onder
de gebruikers ervan.
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We volgen een data-gedreven aanpak bij de ontwikkeling van gepersonaliseerde dien-
sten op diverse niveaus, te weten (i) nano: individuele huishoudens, (ii) micro: gebouwen
en openbare ruimtes, en (iii) macro: hele wijken en steden. Centraal staat de “physical
analytics” methode die, voor onze slimme energiediensten, Internet of Things (IoT) data
combineert met fysische modellering en data-analyse om zo te komen tot slimme, geperso-
naliseerde energiediensten. We combineren de data van verschillende IoT apparaten zoals
slimme meters, smartphones en smartwatches met demografische data, en huishoud type
en bezetting om gebruikspatronen en voorkeuren van consumenten te achterhalen, die ver-
volgens gebruikt worden om modellen te ontwikkelen die ingebouwd worden in onze ge-
personaliseerde energiediensten.

Dit proefschrift is opgedeeld in drie delen. Deel I beschrijft hoe gedetailleerde gebruik-
sinformatie gemeten kan worden met een minimum aan sensoren en medewerking van de
consumenten. We introduceren LocED en PEAT, twee strategieën om respectievelijk ge-
bruiksdata van apparaten en personen te meten. Dit gebeurt realtime om consumenten zo
direct mogelijk bewust te maken van hun energieverbruik. Deel II richt zich vervolgens op
het benutten van deze informatie in gepersonaliseerde diensten op de schaal van huishou-
dens en (kantoor)gebouwen. I.h.b. ontwikkelen we diensten die energieverbruik verschui-
ven of verminderen, en dus kosten besparen, aan de hand van persoonlijke voorkeursin-
stellingen voor comfort. Deze diensten resulteren in advies omtrent concrete acties voor
bewoners om hun stroomgebruik te verduurzamen. Deel III ten slotte beschrijft diensten
die toegepast kunnen worden op de schaal van wijken en steden. I.h.b. richten deze dien-
sten zich op het identificeren van groepen gebruikers die een profiel hebben dat geschikt is
voor verschillende demand-response technieken. We sluiten af met de introductie van een
reeks data-processing architecturen voor het verwerken van de overweldigende hoeveel-
heid data die door slimme energiemeters gegenereerd wordt, om het mogelijk te maken
duurzame, intelligente energiesystemen te kunnen ontwerpen en implementeren.

De essentiële bijdrage van dit proefschrift is het pleidooi om een gepersonaliseerde aan-
pak te kiezen bij het ontwikkelen van duurzame energiesystemen en gebruik te maken van
individuele voorkeursinstellingen en consumptiepatronen. De resultaten van diverse (si-
mulatie) experimenten laten zien dat deze gepersonaliseerde aanpak grote kansen biedt
om het bewustzijn van gebruikers te verhogen, hun verbruik te verminderen, en het com-
fort te verhogen in toekomstige, slimme huizen, gebouwen, wijken en steden.



1
INTRODUCTION

“The best way to predict the future is to create it."

Peter Drucker

A DVANCEMENTS in science and technology have played a key role in transforming our
lives and cities over the past few decades leading to urbanization. Urbanization refers

to a population shift from rural to urban areas in the interest of having a better quality of life
and economic opportunities. Underpinning this transformation are two key drivers, access
to affordable electricity and effective social policy. Currently, urban population accounts
for 54% of the total global population, up from 34% in 1960, and continues to grow [15].
This rapid pace of urbanization has an impact on climate change and other global environ-
mental issues. For example, cities account for more than two-thirds of the global energy
demand and result in 60-80% of global greenhouse gas (GHG) emissions [17]. The effects of
urbanization have increased awareness for sustainable practices.

Energy is the major factor for development and urbanization. Sustainable energy gener-
ation and consumption is the top humanity’s problem for the next 50 years [110]. In recent
years, researchers, industry and government organizations have focused on sustainable en-
ergy systems. A sustainable energy system aims to lower carbon emissions on the supply-
side (energy utilities) and improve distribution infrastructure along with lowering energy
consumption on the demand-side (consumers). With the ever-increasing energy demand,
utility companies started investigating peak demand-time periods, and ways to encourage
consumers to reduce and/or shift energy consumption giving rise to the concept of mod-
ernizing the power grid.

Traditional power grids are primarily used to carry power from a few generators to a
large number of consumers. In contrast, a modernized power grid – Smart Grid (SG) –
employs intelligent monitoring, control, communication and self-healing technologies to
enhance efficiency, reliability and sustainability of power generation and distribution net-
works [9] (See Figure 1.1). In this direction, several energy services are proposed such as in-
tegration of renewable energy sources reducing usage of fossil fuels and GHG emissions [87],
improving transmission and distribution infrastructure towards efficient electricity trans-
mission with lower costs [49], and reducing/shifting energy consumption by automated

1
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2 1. INTRODUCTION

Figure 1.1: Traditional power grid and smart gird [1].

demand management [91]. For example, washing machines do not need to run at a spe-
cific time-period and can be turned on automatically while the consumer is asleep, or at
work.

A key driver for sustainable energy usage needs to come from the demand-side – house-
holds, buildings, industries, neighborhoods – who must change their consumption patterns
and adopt energy-saving techniques. Prevalent efforts mainly focus on improving infras-
tructure to support bi-directional communication between consumers and utilities. Thus
enabling real-time feedback to the consumers on power consumption, power quality (e.g.,
steady supply voltage) and pricing details. A wide literature of works [26, 68, 122] focuses
on sensing real-time energy consumption at households, automated appliance controlling
based on the electricity price, integrating renewable sources to balance energy demand and
thwarting blackouts. While these techniques help in lowering carbon emissions, increasing
usage of renewable resources and smoothing peak demands at the demand-side, they sel-
domly consider consumer preferences such as their daily behavior, comfort level, energy
consumption pattern, social belief and ties. The effectiveness and adoption of SG tech-
niques/services highly depends on the consumers’ awareness, their participation and en-
gagement [64, 112]. Thus user-centric design and development of SG services need to be
considered for building the sustainable, smart energy system.

With the rapid advancements in embedded systems and wireless technologies, the vi-
sion of Mark Weiser is becoming a reality. In his monumental work [117], he envisioned
"ubiquitous computing” i.e., personal computers that integrate seamlessly into a user’s en-
vironment, enriching his everyday life by automating many of his routine tasks. User en-
vironments such as households and buildings are impregnated with embedded devices to
capture the context and adapt the ambience around a user accordingly to improve his ex-
perience. This has led to the development of smart homes and smart buildings, in general,
smart spaces. Researchers and industry are striving to create services where spaces / envi-
ronments are active (or even proactive) and take autonomous decisions without a user in
the loop. Several automated services are being developed such as, automated controlling
of appliances, opening and closing of blinds based on lighting conditions, and pre-heating
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rooms when the temperature falls below a threshold. These services over time were found
to be importunate and no more effective due to lack of consideration of user preferences.
Hence, services should provide the necessary information to the users1 empowering them
to make informed decisions (bringing them in the loop). Rather than the space taking au-
tonomous decisions, it should provide suggestions to the users for subsequent actions. For
example, rather than preventing the usage of washing machine when the electricity price
is high, services should provide necessary information to the user, where users decide to
participate or not based on their preferences.

Consider a smart-home scenario, where appliances in the household are monitored in-
dividually using a sensor. Energy-consumption information from individual appliances can
now be provided to the users in real time. Services such as real-time feedback, remote con-
trol of appliances and detection of faulty appliances are being developed to understand en-
ergy usage and to improve user comfort. Smart homes can now operate certain appliances
depending on the power availability and its associated cost. For example, a washing ma-
chine can be controlled in such a way that it will only start operating when there is enough
power in the grid and when the cost is under a certain threshold. Although these techniques
curb the energy demand they hardly consider preferences and comfort of consumers. A
consumer might not be willing to shift the usage of an appliance to the proposed time peri-
ods. Current techniques give higher importance to cost savings and/or demand reduction
rather than consumer comfort. Hence, there is a need to bring the user-in-the-loop (UIL)
for making informed decisions and developing personalized energy services. In order to be
effective, energy services should strive to achieve a balance between energy efficiency and
user comfort.

This thesis is motivated by such a scenario: the need to provide effective, personalized
energy services to users while striking a balance between energy consumption and user
comfort. The development of energy services should consider individual user preferences
and provide actionable feedback. The essence of this thesis is to raise awareness, reduce
energy consumption and improve user comfort in smart – homes, buildings and neighbor-
hoods.

1.1. SMART GRID ECOSYSTEM
In order to understand the challenges in developing personalized energy services, we will
first introduce some basic knowledge about smart grids (SG) and its services. The tradi-
tional power grid comprises of an interconnected network of power systems that carries
electricity from power plants to consumers. In contrast, SG takes advantage of ICT to in-
tegrate the power infrastructure with an information infrastructure [45]. The information
infrastructure supports sensing, computation, control and information exchange capabil-
ities. Smart grids (SG) are energy networks that can monitor energy flows and adjust to
changes in energy supply and demand accordingly.

Smart grids are not only about the modernization of traditional power girds but also
about enhancing cooperation among various actors. Actors in SG include energy genera-
tors, consumers and prosumers (those that do both), where each operates autonomously,
but needs to communicate with others to balance energy supply and demand. Smart grid
is an ensemble of several services (see Figure 1.2) such as demand response, demand fore-

1We use the terms user, consumer and occupant interchangeably.
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Figure 1.2: Smart Grid Ecosystem with various services [16].

cast, emergency management, anomaly detection, and adaptive pricing. We enlist some
key energy services and the issues associated for wide adoption in SG.

Smart Metering. A fundamental building block for all SG services is smart metering or ad-
vanced metering infrastructure (AMI). AMI comprises of electricity meters that measure,
collect and analyze data about energy usage [45]. The EU aims to replace at least 80% of the
traditional meters with smart meters by 2020 [9]. The electricity meters or smart meters can
analyze energy consumption and provide real-time feedback to the users. AMI supports
bidirectional communication between these devices and utility providers for a wide variety
of services. Some of the services include providing immediate feedback on power usage,
power quality, and pricing details.

Issues: Several commercial smart meters are available with different communication
and sensing mechanisms. Standards are needed to ensure interoperability among vari-
ous smart meters. Low-cost smart-meter design, reliable data communication between the
smart meters to utilities, and enforcing consumer-data protection and privacy are some
active research topics.

Demand Regulation. Demand regulation, or response (DR), is a technique that can control
and influence energy demand at the consumer-end to reduce the overall peak demand, re-
shape demand profiles and increase the robustness of the grid. The real-time pricing infor-
mation communicated to the smart meters can be used to control and adjust the demands
at the consumer premises. These reductions can result in lesser strain on the grid and de-
crease the need for high-cost generation resources. DR techniques can be broadly classified
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into direct load control (DLC) and incentive based [115]. In DLC utilities can directly con-
trol the consumer appliance to tackle peak-demand reductions, for example, preventing
the usage of washing machines during the peak time periods. DLC is a simple and effec-
tive way to support the operation of the power grid, however, it penalizes the user comfort.
Incentive based DR techniques provide pricing incentives to encourage consumers to shift
usage to off-peak hours. The effectiveness of these techniques highly depends on consumer
awareness and participation.

Issues: DR techniques require a robust, secure and reliable communication infrastruc-
ture for its operation. The effectiveness of DR programs relies on accurate measurement
of energy consumption and modeling of consumer preferences. Active research topics in-
clude developing distributed or decentralized DR programs, DR programs that target mini-
mization of the total power consumption and/or the maximization of the user comfort and
design of simpler, dynamic pricing schemes.

Demand Forecast. Demand forecasting (DF) refers to the prediction of power consump-
tion levels in the next hour, next day, or up to a week ahead for either a household, building,
neighborhood or city. The avalanche of data available from individual smart meters can
be analyzed effectively for demand forecasting. Demand forecasting can be classified into
(i) very short-term forecasting: from minutes to several hours and used in controlling the
demand, (ii) short-term forecasting: from hours to weeks and used to adjust energy genera-
tion and demand, (iii) medium-term and long-term forecasting: from months to years used
for asset management [58].

Issues: Demand forecasting techniques allow proper energy-generation planning and
adaptation. Algorithms that take into consideration consumer demographics, preferences,
weather information, and historical consumption information need to be developed for
accurate prediction of energy consumption.

Microgrids. Microgrids are localized, small-scale grids that enable the integration of dis-
tributed energy resources (DER) such as solar and wind. DER transforms a centralized,
producer-controlled energy network to a distributed, consumer network, where consumers
not only use the energy but also produce – prosumers. The use of local energy generation
to support the energy demand helps to reduce energy losses in transmission and distri-
bution. Microgrids can operate autonomously and are typically low-voltage DC/AC grids.
Numerous energy management techniques are proposed to determine when to borrow en-
ergy from the grid, when to store or sell excess energy generated from DER, and when to
trade energy between the households in a microgrid.

Issues: The adoption of microgrids is hindered mainly due to the cost of elements such
as solar panels, wind turbines, energy storage, and advanced controlling. Development
of distributed energy trading and management techniques, and standardization efforts to-
wards implementation of robust microgrids are some active research problems.

Over the past decade, research in academia and industry has focused on developing
the aforementioned SG services. We now highlight some of the challenges that exist across
various SG services.

1) Communication. Numerous sensors such as smart meters are being deployed to monitor
and control devices at utility and consumer ends. Reliable communication between these
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devices forms an essential component for various SG services. Due to a lack of standardiza-
tion, various technologies can be applied at household, neighborhood, and city level. One
has to identify the appropriate communication technology (e.g., Zigbee, WiFi), data collec-
tion protocol and Quality of Service (QoS) parameters (e.g., latency, bandwidth) based on
the requirements of the SG services.

2) Interoperability. Interoperability is the ability of diverse systems to work together, ex-
change information and cooperate. Interconnection of a potentially large number of dis-
parate energy-generation sources, distribution networks, consumers, and prosumers is a
key feature of SG. There is currently no common understanding for interoperability be-
tween these system components. Systems that are independent of the physical medium,
manufactures and the type of devices need to be designed.

3) Security. With the large-scale roll out of smart meters across the globe, they become an
attractive target for malicious hackers. The lack of standards for secure, reliable commu-
nication between these devices has led to several vulnerabilities. Hackers compromising
a smart meter can manipulate energy-usage information, associated cost and feed misin-
formation to the utilities. Energy-usage misinformation would mislead utilities in making
incorrect decisions and can harm the electrical infrastructure with excess production or
blackouts.

4) Privacy. Smart meters can measure the fine-grained energy consumption of a household,
leading to privacy concerns. Energy-usage information can reveal consumer habits and
behaviors such as when they are at home and watching TV. Standardization activities along
with data anonymization need to be designed to protect privacy-sensitive data.

5) Personalization. The effectiveness of several energy services such as demand regulation,
demand management and energy trading depend on consumer preferences and behavior.
Personalization refers to tailoring energy services based on individual consumers’ charac-
teristics, preferences and behavior. Depending on the energy service, personalization can
be fine-tuned to groups or segments of consumers. Several techniques need to be designed
to collect consumer data at various levels (activities, preferences, behaviors) and model
them efficiently, for wide adoption of energy services.

1.2. PROBLEM STATEMENT
Energy services provided by traditional SG applications target to reduce energy consump-
tion. Widespread adoption and effectiveness of energy services depend on consumer pref-
erences and comfort, for example, a DR scheme fine-tuned based on consumer preference
has a higher probability of success [81, 119]. We argue that the design and development
of energy services should follow a personalized approach with consumer preferences and
comfort given paramount importance. The design of user-centric, personalized energy ser-
vices will raise awareness, promote energy conservation behavior and has the potential to
reduce the total energy consumption.

Apart from the challenges described previously, we highlight the key challenges in de-
veloping personalized energy services towards building sustainable, smart energy systems.

1) Data collection. The fine-grained data collection at various levels (e.g., appliance, user) is
crucial towards the development of personalized energy services. A large number of sensors
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needs to be deployed to collect fine-grained energy-usage information of households, ap-
pliances and occupants. This setup is cumbersome to maintain and has a high cost. Thus,
obtaining fine-grained data at various levels in a non-intrusive way with minimal sensors is
challenging.

2) User preferences. User preferences such as thermal comfort level, appliance usage be-
havior, and daily habits, need to be obtained for designing personalized energy services.
Traditionally, user preferences are collected either by explicitly asking via a survey, or indi-
rectly by observing and interpreting user actions with the system. Accurate learning models
need to be developed to derive user preferences in an indirect manner using data collected
from various sensors such as smart meters, smartphones and wearables.

3) Scalability. Energy services need to be designed at various scales – households, buildings,
neighborhood, cities – to develop a sustainable energy system. As the number of house-
holds increases the data produced grow multifold. Thus, it is challenging to analyze and
handle the deluge of data. Further, traditional services that are centralized face high latency
and require large bandwidth to collect the data and have difficulties to scale.

4) Real time. Energy services such as feedback on consumption and DR events should be
analyzed and delivered to consumers in near real time. Hitherto, most of the services had
high latency due to centralized systems. Thus, distributed and low complexity algorithms
are required to develop real-time energy services.

Given the aforementioned challenges, this thesis addresses the following question.

How to develop effective personalized energy services?

Approach. Our take is that to develop effective personalized energy services, fine-grained
data collection at various levels with minimal sensors, coupled with accurate user prefer-
ence models, and low complexity algorithms are needed. This idea is distilled to define
physical analytics for sustainable, smart energy systems. Physical analytics (PA) [7] is an
approach that combines IoT data, physical modeling and data analytics to develop intelli-
gent, personalized energy services (see Figure 1.3). The three pillars of physical analytics
are listed below.

1) IoT data. This includes the avalanche of data collected from various devices/appliances
in the smart-grid ecosystem. At the energy level, smart meters and smart plugs are used
to collect energy consumption and generation data. At the user level, smartphones and
wearable devices are used to collect user preferences and comfort.

2) Physical modeling. This includes the modeling of user interactions in the physical world
either with devices or other users or with physical space, such as household, buildings and
neighborhood. Physical modeling utilizes data-driven techniques to study the effects of
user interactions and predict their behavior.

3) Data analytics. It combines raw data from various actors (producers, consumers, pro-
sumers) across scales (households, buildings, neighborhood) to discover hidden patterns,
preferences and relationships. The knowledge derived is utilized in developing effective
personalized energy services.
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Figure 1.3: Physical Analytics for Sustainable, Smart Energy Systems.

Using the aforementioned concepts, we present and evaluate various personalized en-
ergy services for occupants to provide actionable feedback, raise awareness and promote
energy-saving behavior. The proposed energy services follow a data-driven, distributed ap-
proach with low-complexity algorithms and are scalable, from one household to tens and
thousands of households.

Design principle. This thesis presents personalized energy services towards the develop-
ment of sustainable, smart energy systems. We follow a bottom-up approach wherein, en-
ergy services are developed at various scales – (i) nano: individual households, (ii) micro:
buildings and spaces, and (iii) macro: neighborhoods and cities. Our belief is that develop-
ing persuasive energy services can effectively raise awareness, change users’ attitudes and
behavior, rather than coercion or automated energy services.

1.3. THESIS CONTRIBUTIONS AND OUTLINE
This thesis tackles the problem of developing effective personalized energy services, which
underpins the road to sustainable, smart energy systems. In order to develop sustainable,
smart energy systems we follow a data-driven approach, where energy services are designed
to adapt based on consumer needs and preferences. Furthermore, we employ real-world
data collected from several households and buildings for the development of personalized
energy services. This thesis is organized into three parts. Part I forms the basic building
block, which describes how to derive fine-grained information with minimal sensors and
intrusion at households and buildings (data collection and real time challenge). This fine-
grained information is then used to develop energy services at various scales. Specifically,
Part II describes energy services tailored to individual consumer preferences (user prefer-
ences and real time challenge), and Part III presents energy services tailored to group or
segment of consumers at a neighborhood or city level (scalability challenge).
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PART I – FINE-GRAINED DATA COLLECTION
In this part, we address the fundamental problem in developing personalized energy ser-
vices: how to obtain fine-grained information with minimal sensor deployment. Specifi-
cally, we focus on obtaining energy-usage information from appliance level and user level.
Energy Disaggregation – Chapter 2 Providing detailed appliance-level energy-consumption
information may lead consumers to understand their energy-usage pattern. With this in-
formation users can be encouraged to change their behavior to save 5-15% of electric-
ity usage [47, 54]. Smart meters deployed at households can only provide aggregate en-
ergy consumption and fail to provide appliance-specific usage. The naive way of obtaining
appliance-level information is by deploying a sensor for each appliance. Such a deploy-
ment is intrusive, cumbersome to maintain, and has high cost. To this end, we propose the
Location-aware energy disaggregation framework (LocED) that estimates appliance-level
energy consumption from aggregated smart-meter data and user-occupancy information.
Traditional energy-disaggregation algorithms are centralized, have high computational com-
plexity, and consider only a subset of the appliances in the household [29, 63]. LocED over-
comes these challenges by utilizing room-level user-occupancy information. The key idea
is that an appliance usage in a household highly depends on the interaction between the oc-
cupants and the appliance. The energy-disaggregation complexity in LocED is reduced by
constraining the appliances considered based on the current user location. LocED was eval-
uated across multiple real-world datasets and state-of-the-art algorithms. LocED achieves
around 80% disaggregation accuracy across all appliances and around 20% increase in dis-
aggregation accuracy as compared to the state-of-the-art algorithms.

• S. N. A. U. Nambi, A. R. Lua, and R. V. Prasad, LocED: Location-aware Energy Disaggregation

Framework, in 2nd ACM International Conference on Embedded Systems for Energy-Efficient

Built Environments, BuildSys, 2015.

Energy Apportioning – Chapter 3 Recent studies highlight the advantages of providing
energy-consumption information to individual occupants of the household to promote en-
ergy savings and has the potential to reduce the energy consumption up to 20% [40, 54].
Current energy-disaggregation algorithms focus mainly on the energy consumption of build-
ings or households as a whole. However, providing user-level energy-consumption infor-
mation in real time is a challenging task due to the need for collection of fine-grained in-
formation at various levels. To this end, we present the Personalized Energy Apportioning
Toolkit (PEAT) that combines readily available data from the ubiquitous sensors (smart –
meters, phones, watches) present in the household to derive fine-grained user-level energy-
consumption information. PEAT combines energy disaggregation with indoor localization
and activity monitoring to determine when an appliance is being used, and which occupant
is currently using the appliance. PEAT employs simple classification techniques and infer-
ence algorithms to process and analyze data from the smart meter, smartphones and smart-
watches to derive per-occupant, per-appliance energy usage. PEAT was empirically evalu-
ated in a household and student housing. PEAT achieves 92.6% energy-apportioning accu-
racy with only location information of the occupants. Furthermore, the energy-apportioning
accuracy is around 95% if both location and activity information are available.

• S. N. A. U. Nambi, A. R. Lua, L. A. G. Godinez and R. V. Prasad, PEAT: Personalized Energy Ap-

portioning Toolkit for Shared Spaces [under review].
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PART II – DEMAND REGULATION IN SMART HOMES AND BUILDINGS
This part presents personalized energy services that are targeted to shift and/or reduce en-
ergy consumption and cost by considering individual consumer preferences and comfort.
Demand shifting – Chapter 4 Energy utilities can balance energy supply and demand by
nudging consumers to shift their demands to off-peak hours for load balancing and mone-
tary benefits. Existing DR techniques aim to reduce electricity cost by scheduling the de-
mand of the household based on the electricity prices (real time or day ahead) without
considering consumer preferences and their appliance-usage patterns. We present a de-
centralized demand-regulation scheme that can, (i) determine appliance-level information
and user preferences for appliance usage, using only aggregated energy consumption from
the smart meters and (ii) propose a demand-scheduling algorithm that minimizes the user
discomfort and electricity cost based on day-ahead hourly pricing. To tackle the chang-
ing consumer preferences, three coefficients (flexibility, sensitivity and dependency) are
developed to analyze user preferences and appliance-usage patterns from historic energy-
consumption data. The key idea is that the proposed day-ahead schedule should adhere
to these three coefficients and resemble the historic energy-consumption pattern of the
consumer (as the historic energy-consumption pattern would have been executed by the
consumers previously). The proposed algorithm was empirically evaluated across multiple
real-world datasets and saves up to 30% electricity cost.

• S. N. A. U. Nambi, A. R. Lua, and R. V. Prasad, Decentralized Energy Demand Regulation in Smart

Homes, in IEEE Global Communications Conference, GLOBECOM, 2016.

Demand reduction – Chapter 5 HVAC (heating, ventilation, and air conditioning) and arti-
ficial lighting systems account for about 25-40% of electricity usage in residential and com-
mercial buildings [19]. Thus efficient usage of the HVAC and lighting is a major step towards
reducing energy consumption. Traditional energy-management systems operate within a
conservative range or fixed set-point that is amenable to a large number of people providing
only an average comfortable environment. To this end, we describe a smart system called
indoor Lighting and Temperature Controller (iLTC), that achieves a fine balance between
preferred comfort levels of users and energy efficiency. iLTC decides energy-optimal op-
erating set-points based on the knowledge derived from comprehensive temperature and
lighting-comfort functions of individuals. The system learns the preferences of each indi-
vidual based on human perception of comfort through the developed smartphone App. We
evaluated iLTC with 21 participants housed in multiple rooms along with qualitative user
evaluation. iLTC’s set-point selection can reduce energy consumption up to 39% and 60%
by the HVAC and lighting systems, respectively, compared to the fixed set-point mechanism.

• C. Sarkar, S. N. A. U. Nambi, and R. V. Prasad, iLTC: Achieving Individual Comfort in Shared

Spaces, in International Conference on Embedded Wireless Systems and Networks, EWSN,

2016.

PART III – DEMAND REGULATION IN NEIGHBORHOODS
This part explores the design and development of novel energy services that can identify
target consumers in a neighborhood for various DR programs. Data-driven techniques
are proposed to determine consumer preferences and characteristics using only aggregated
energy-consumption data.
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Temporal demand regulation – Chapter 6 Energy consumption is highly influenced by
consumer behavior and their characteristics. Rather than selecting all the households in
a neighborhood for a DR event, an effective DR mechanism should first identify the set
of target consumers and then apply the DR technique. In a neighborhood or community
with thousands of households, heterogeneity in consumer characteristics hinders identify-
ing consumers for specific DR programs such as reduction in average energy consumption,
reduction in demand peaks, etc. Current techniques employ manual survey or behavioral
economics to identify target consumers. To this end, we propose a novel mechanism – tem-
poral demand regulation (TDR) – to analyze and classify households based on their historic
energy-consumption data. We present a new concept of computing the demand states of
each household, where a demand state measures either the demand – level, variation, or
peaks. A generalized data-driven methodology based on clustering of historic consump-
tion data from each household is designed for a local computation of the demand states.
This methodology captures the temporal dynamics of demand and can be used to identify
target consumers for DR programs. Further, an online self-regulation model for the adjust-
ment of demands by targeted consumers is proposed. The selection criteria is governed by
four temporal metrics, viz., transition probability, temporal membership, temporal adapt-
ability and temporal similarity. TDR is evaluated and validated using data from a real-world
SG project consisting of more than 4,000 households [12].

• S. N. A. U. Nambi, E. Pournaras, and R. V. Prasad, Temporal Self-Regulation of Energy Demand,

in IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1196-1205, 2016.

Techno-Social Smart Grids – Chapter 7 Prevalent SG deployments and programs have found
to be lacking in consumer awareness and engagement. Understanding what consumers
want and how they behave is fundamental for developing sustainable SG services. This
chapter fills the gap by modeling and analyzing the social context of consumers along with
the energy-usage information. To this end, we propose ideas toward the development of a
Techno-Social framework for Smart Grids (TSSG). The technological and social aspects of
the consumers in SG are modeled and analyzed to develop consumer-centric SG services.
We illustrate the benefits of modeling the techno-social aspects by forming communities di-
rected towards particular goals. The novelty in formation of communities lies in fusing the
technological and social data. These communities can now be targeted to promote energy
awareness, provide tailored recommendations and community-specific tariff-rates.

• S. N. A. U. Nambi and R. V. Prasad, Toward the Development of a Techno-Social Smart Grid, in

IEEE Communications Magazine, vol. 54, no. 11, pp. 1196-1205, 2016.

Data processing architectures – Chapter 8 While the deployment of smart meters is grow-
ing, the lack of adoption of energy services has hindered large-scale smart-grid deploy-
ments. This chapter explores how to cope with the overwhelming data generated from
smart meters towards design and development of sustainable, smart energy systems. Hith-
erto several mechanisms have been proposed to tackle a specific architectural aspect, like
communication, storage, processing requirement, etc. Currently, there is no comprehen-
sive way to determine which data processing architectures suit best for which SG service. To
address this, we investigate four data-processing architectures – centralized, decentralized,
distributed, and hybrid – that best satisfy certain information management requirements,
such as the accuracy and granularity of collected data, or the privacy level. We considered
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realistic SG deployments in both dense (i.e., urban areas with 1.6M households) and sparse
(i.e., rural areas with 476K households) environments. A detailed cost-benefit analysis of
the proposed architectures is presented, which SG designers can use to discern the archi-
tecture that best fits their system requirements.

• S. N. A. U. Nambi, M. Vasirani, R. V. Prasad and K. Aberer, A Cost-Benefit Analysis of Data Pro-
cessing Architectures for the Smart Grid, in WiMobCity workshop in conjunction with the Inter-
national Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, 2014.

• S. N. A. U. Nambi, M. Vasirani, R. V. Prasad and K. Aberer, Performance Analysis of Data Pro-

cessing Architectures for the Smart Grid, in 5th IEEE PES Innovative Smart Grid Technologies

Conference, ISGT, 2014.
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2
ENERGY DISAGGREGATION

W ORLDWIDE total energy consumption in residential and commercial buildings is es-
timated to be 30-40% of generation [3] and is expected to rise due to increased use

of appliances and electronic devices. A significant part of this could be reduced with better
real-time information of appliance-level consumption statistics. With the help of appliance-
level energy-usage information, one can provide personalized recommendations by iden-
tifying which appliances could most effectively reduce the total energy usage in a house-
hold. Furthermore, fine-grained appliance information can also be used to identify faulty
or malfunctioning appliances that consume more energy than they should. Consequently,
occupants know where the energy is being wasted.

The most common way of obtaining appliance-level information is by deploying sen-
sors for each appliance. Such a deployment is intrusive, cumbersome to maintain and
has a high cost. Alternatively, non-intrusive load monitoring (NILM) algorithms aim to
break down a household’s aggregate energy consumption into individual appliances [63].
NILM techniques are gaining popularity due to low-cost sensors for measuring energy us-
age, large-scale smart-meter deployments to obtain a household’s aggregate energy con-
sumption and inference algorithms proposed for energy disaggregation [56, 63, 85].

There still exist several challenges preventing NILM techniques from being widely adopted
in households: (i) Most of the proposed mechanisms consider only a subset of appliances –
a few high energy-consuming appliances – for disaggregation. This is due to the exponential
computation complexity associated with the number of appliances, hence tractable only for
a small number of appliances [29]. (ii) Several appliances with similar energy-consumption
profiles may exist and moreover, each appliance may have multiple states. Thus modeling
and inferring the states of appliances is not trivial. (iii) NILM is often performed in a cen-
tralized manner with third-party services or utilities having privacy-sensitive information of
consumers. Commercially available NILM systems are required to send smart-meter data
to a cloud service for energy disaggregation (for example, Bidgely, PlotWatt). This approach
raises several issues related to scalability and privacy. (iv) Lastly, only a few NILM systems
manage to provide near real-time energy disaggregation. The ones that do so require de-
tailed information of the household and its occupants and generally utilize cloud services.

15
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To tackle these problems, we present the Location-aware Energy Disaggregation frame-
work (LocED) that utilizes user-occupancy information and aggregated energy data to de-
rive accurate appliance-level information. The key idea is that an appliance usage in a
household highly depends on the interaction between the occupants and appliance. The
motivation for using occupancy/location information is threefold. First, by utilizing loca-
tion information of occupants, the NILM algorithms can reduce the number of potential ap-
pliances considered for energy disaggregation. Second, by reducing the state explosion, the
processing power and storage capacity required for disaggregation are also reduced, mak-
ing NILM algorithms tractable and implementable. Third, with the large-scale proliferation
of smartphones and wearables, it is now possible to monitor the location of the occupants
(indoor localization) in a non-intrusive and cost-effective manner. LocED performs energy
disaggregation at the household on a low-cost embedded system such as Raspberry Pi, due
to which consumers’ privacy-sensitive data is stored and processed locally.

We have instrumented a household in The Netherlands with several appliance-level
sensors and a smart meter to monitor energy consumption. We have released the collected
dataset – DRED (Dutch Residential Energy Dataset) – which can be used to test the per-
formance of disaggregation algorithms, derive appliance usage behavior and analyze de-
mand response algorithms. The DRED dataset1 and the LocED framework are made pub-
licly available for the community to support additional analysis.
Contributions. The main contributions of this chapter are:

• We propose a novel real-time location-aware energy-disaggregation framework (LocED)
to derive appliance-level information with lower computation complexity.

• We provide our data set – DRED (Dutch Residential Energy Dataset) – that contains
appliance level and aggregated energy data from a household. The dataset also in-
cludes occupancy information and several ambient parameters.

• We propose several accuracy metrics to determine the efficacy of LocED both at house
level and at appliance level. LocED was empirically evaluated across several publicly-
available datasets.

2.1. RELATED WORK
Several NILM algorithms have been proposed in the literature to derive fine-grained appliance-
level information. These algorithms rely on various techniques (supervised, semi-supervised
or unsupervised) and also additional data [122]. We first provide details of the existing al-
gorithms and then describe how our approach enhances the current state-of-the-art NILM
algorithms.

NILM TECHNIQUES

Unsupervised NILM techniques use no prior knowledge of the appliances, but often re-
quire appliances to be manually labeled, and work on low frequency (i.e., 1 Hz) data. These
techniques typically rely on accurate detection and modeling of the state change in the ag-
gregate consumption data [26, 63, 68]. Several variants of factorial hidden markov mod-
els (FHMMs) to model the states of the appliances are proposed in [63, 68]. Furthermore,
other machine learning approaches such as artificial neural networks (ANNs) and genetic

1http://www.st.ewi.tudelft.nl/~akshay/dred/

http://www.st.ewi.tudelft.nl/~akshay/dred/
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algorithms are also used [26]. These approaches are computationally intensive and exact
inference from models with large number of hideen markov models is intractable.

Supervised NILM techniques assume that ground-truth appliance-level data is avail-
able to train and develop appliance models prior to performing disaggregation. Hart’s algo-
rithm identifies step changes in the aggregate electricity consumption and matches them
with the appliance signature database to learn the states of the appliance [56]. Other ap-
proaches employ both real and reactive power measurements for energy disaggregation [118].
These algorithms require extensive training on appliance-level data to model the states.

Semi-supervised NILM techniques avoid the need to intrusively install sensors for de-
riving appliance signatures [85, 88]. Nambi et al. [85] propose a semi-intrusive approach
to determine the most-optimal number of appliances to be monitored for accurate energy
disaggregation. They explore the trade-off between monitoring accuracy and cost, and find
the minimum subset of plug-level meters that maximize energy disaggregation accuracy.
Parson et al. [88] utilize prior models of general appliance types, which are tuned to specific
appliance instances using signatures extracted from the aggregate load. In general, due to
the computational complexity involved in training and inference, these algorithms require
systems with high processing power for energy disaggregation and, hence, are not suitable
for low-power embedded systems.

ADDITIONAL DATA CONSIDERED IN NILM
NILM algorithms use additional information (either energy related or contextual data) to
simplify energy disaggregation and enhance its accuracy. Recent algorithms use informa-
tion on how loads are distributed across different power phases in a household [28, 118]
or use transient and harmonic information with very high frequency sampling [55]. How-
ever, sampling at high frequency requires expensive hardware and determining appliance
distribution across different phases is not trivial. Algorithms described in [69, 102] employ
information provided by other sensors as additional input for energy disaggregation. Rowe
et al. [102] propose an event detector to determine the state change by sensing the elec-
tromagnetic field (EMF) in the surrounding. Kim et al. [69] utilize signals from inexpensive
sensors such as light and sound sensor placed near appliances to estimate power consump-
tion. While the aforementioned approaches improve NILM accuracy, they also require ad-
ditional deployment and maintenance of these sensors. Moreover, algorithms developed
using additional data are generally constrained to a particular dataset or a household; con-
sequently, making it nearly impossible to employ the algorithm with other datasets.

2.2. LOCATION-AWARE ENERGY DISAGGREGATION FRAMEWORK
In this section, we describe the usage of occupancy information to derive accurate appli-
ance state information. Fig. 2.1 shows the block diagram of location-aware energy disag-
gregation.

2.2.1. USER OCCUPANCY MODELING
Occupancy information is generally used to develop efficient energy management systems
for smart homes [77]. For example, occupancy information can be used to control the HVAC
system efficiently or turn off appliances (lights) when user has left the room. We employ
user-occupancy information to improve NILM algorithms by considering only those appli-
ances that are in the current user location for disaggregation. Several direct and indirect ap-
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Figure 2.1: Location-aware energy disaggregation.

proaches have been proposed in the literature to derive user occupancy information [77].
Direct approaches employ low-cost sensors such as passive infrared (PIR), reed switches,
RFID tags to determine room-level occupancy information. Even-though these approaches
are cost-effective, they are cumbersome to maintain and intrusive in residential settings.

In this chapter, we employ an indirect approach for deriving occupancy information
with the help of smartphones/wearables. Indirect approaches do not use additional hard-
ware deployment, but rely on existing infrastructure for localization. Smartphones and
wearables enable collection of received signal strength (RSS) from WiFi and/or Bluetooth
(BT) radios in an indoor environment. In our DRED dataset (see Section. 2.3), we collected
both Bluetooth (BT) and WiFi RSS information using occupant’s mobile phones to infer user
location. To save battery and also to derive accurate location, a radio scan is performed only
upon detection of a user movement (i.e., change in accelerometer data or step detection).

The data stream from a radio scan includes the list of all visible access points (APs) and
their RSS values along with the timestamp information. In case of a WiFi scan, the list of APs
indicates the access points from the neighboring houses, whereas the BT scan indicates the
Bluetooth beacons available in the house. Currently there exist several Bluetooth enabled
devices in a household such as laptops, mobile phones, speakers, etc. Furthermore, in the
near future most of the household appliances will be Bluetooth enabled 2. Bluetooth en-
abled devices can now determine accurately indoor location information of the occupants.
Classification techniques such as Bayesian, Support Vector Machines, K-nearest neighbor,
decision trees, etc., have been proposed in the literature to derive room-level occupancy
using RSS information. Our localization algorithm is based on Bayesian classification tech-
nique and has two phases viz., training and testing phase as shown in Fig. 2.2. During the
training phase, data is collected in each room to build a classifier model. In testing phase,
new data from the scan is evaluated using the classifier model built to obtain the room-level
occupancy information. Note that other localization algorithms can be employed in LocED
framework to obtain occupants’ location information.

2http://www.bluetooth.com/Pages/Smart-Home-Market.aspx
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Figure 2.2: Indoor localization using WiFi/BT RSSI.

2.2.2. AGGREGATE ENERGY CONSUMPTION MODELING
We provide a brief description of the CO algorithm for energy disaggregation [56] and then,
propose a modified CO algorithm used in our LocED framework.
Combinatorial Optimization (CO): The goal of an energy disaggregation algorithm is to
provide estimates of actual energy consumed by each appliance from the aggregate energy
consumption data. Let ŷ (n)

t be the estimated energy consumed and y (n)
t be the actual en-

ergy demand of each appliance n at time t . y t represents the aggregate energy reading of
the household. The ground truth state of an appliance is represented by x(n)

t ∈ Z ≥ 0 and

x̂(n)
t represents the appliance state estimated by the disaggregation algorithm. CO finds the

optimal combination of appliance states, which minimizes the difference between the sum
of predicted appliance power and the observed aggregate power. It is given by,

x̂(n)
t = argmin

x̂(n)
t

∣∣∣∣y t −
N∑

n=1
ŷ (n)

t

∣∣∣∣ (2.1)

where N is the set of all appliances in the household and t is the current time period. The
predicted energy consumption of an appliance ŷ (n)

t is then mapped to the closest appliance

state x(n)
t . This approach requires an appliance model, which includes power consump-

tion details for each state of the appliance. This is further used during inference to predict
the current state of the appliance. The computational complexity of disaggregation for T
time periods is O(T SN ), where S is the number of appliance states and N is the set of all
appliances.

CO algorithm has several drawbacks. Firstly, this optimization problem resembles sub-
set sum problem and is NP-complete. Furthermore, the computation complexity in CO in-
creases exponentially with the number of appliances. Secondly, this algorithm does not dif-
ferentiate between appliances with similar power consumption and appliances with similar
states. Third, this algorithm assumes all the appliances in the household are being moni-
tored and assigns some portion of energy to appliances even if they are not currently used,
resulting in low disaggregation accuracy.
Modified Combinatorial Optimization: We propose a modified CO algorithm to overcome
some of the drawbacks of original CO. Our modified CO algorithm, constrains the number
of appliances considered for disaggregation based on the current location of the occupants.
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This results in exponential reduction in state space for disaggregation. Furthermore, we em-
ploy a crowd-sourced generic appliance model from the power consumption database. For
example, the power consumption database provides crowd-sourced information on maxi-
mum and idle power for a wide range of loads indexed by type, manufacturer, and model
number3. This information can be obtained a priori based on the appliances in the house-
hold from the manufacturers datasheet or crowd-sourced data, thus eliminating appliance
level energy modeling. Furthermore, our modified CO algorithm requires to know the num-
ber of appliances and their location in the household. This metadata information is col-
lected once during the deployment and, except from a few appliances like vacuum cleaner,
hair dryer, the location of the appliances is generally static. Fig. 2.3 shows an overview of
the proposed LocED framework.
1. Data preprocessing and downsampling: Our framework can handle various data sam-
pling rates and is designed to work with several datasets. In general, during data collec-
tion there might be gaps in the data due to sensor malfunction, network connectivity, etc.
Hence, it is important to preprocess these gaps either by removing them or using statisti-
cal models such as smoothing, interpolation, forward filling, etc. Furthermore, different
datasets include different sampling intervals typically from 1 second to 15 minutes. LocED
applies a downsampling mechanism similar to NILMTK [29], to filter transients that occur
due to high starting current of an appliance.
2. Priority combination: In original CO, at each time period the algorithm tries to find
the set of appliances, which are closest to the current aggregated energy consumption. This
may result in different set of appliances being used in each time period. For example, at time
period ‘t ’, CO may determine appliance TV and microwave are being currently used and at
time period ‘t +1’ it may select fan and microwave. This is due to the fact that TV and fan
may have similar energy consumption profiles. This result would mean TV is switched ON
in one minute and switched OFF the next minute and so on. Hence, it is necessary to pre-
serve consistency in selection of appliances during consecutive state estimations. LocED
defines a priority combination that is the set of appliances which are assumed to be cur-
rently running. This information can be retrieved from the last iteration of NILM algorithm.
At each time period, LocED first evaluates the priority combination to check whether the

3The Power consumption database. [Online] http://www.tpcdb.com/
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sum of all appliances in the priority combination matches the current aggregated value. If
the difference between the sum of priority combination and the aggregated energy is within
a threshold δ, then the current priority combination is retained as the predicted set. LocED
evaluates the following equation to determine whether the current priority combination of

appliances are still valid or not, [|y t −
K∑

n=1
ŷ (n)

t | ≤ δ], where K is the set of appliances present

in the priority combination and δ is the variation threshold. The variation threshold pa-
rameter ensures small fluctuations in aggregate power has minimal effect. Since these fluc-
tuations vary for different appliances based on their power rating, the δ value needs to be
adaptive. The δ value can be obtained by analyzing the energy consumption profiles of the
appliances. However, when the difference between current priority combination and ag-
gregate consumption is greater than δ, LocED finds the new set of appliances that are used.

3. Occupancy based appliance selection: When the current priority combination does not
match the aggregate energy consumption, LocED estimates the set of appliances that could
be currently used. This stage identifies the set of appliances which are present in the current
user location. For example, if the current location information of all occupants includes
Kitchen and Living room, only appliances present in these locations are considered valid
during that time period for energy disaggregation. In general, the appliances considered for
evaluation at a particular time period include, (i) appliances present in the current location
of the occupants; (ii) appliances that are already “ON"; (iii) appliances that are always “ON”,
these are autonomous appliances such as Refrigerator; and (iv) appliances that can be re-
motely controlled such as lights and other smart appliances. We refer to these appliances as
“constrained set of appliances”. LocED uses this constrained set for energy disaggregation
rather than the complete set of appliances present in the household. If for a time period,
there is no occupancy information available all appliances present in the household are
considered for evaluation.

4. CO based NILM algorithm: In this chapter, we employ modified CO algorithm to find the
optimal combination of appliance states. We calculate the sum of all possible state com-
binations from the constrained set and select the closest combination of appliances that
match the aggregated energy consumption. The computational complexity of disaggrega-
tion for T time periods in LocED is O(T SNc ), where S is the number of appliance states,
Nc is the constrained set of appliances and Nc ≤ N . This reduced computational complex-
ity enables LocED to determine the state of appliances in real-time. As mentioned earlier,
other NILM algorithms can be used at this stage to infer the state of the appliances from the
constrained set. For example, in case of FHMMs the constrained list of appliances can be
used during decoding the HMM state sequence.

5. Validation: We now validate the set of appliances predicted in the previous stage. Using
occupancy based appliance selection, LocED ensures we do not turn “ON" an appliance
when user is not present in that location. However, validation stage ensures not to turn
“OFF" an already “ON" appliance when the appliance location is different than the current
user location (except remotely controllable appliances). Moreover, this depends on the type
of the appliance. In this chapter, we broadly classify the set of appliances into: (i) User de-
pendent appliances – appliances that require user interaction to turn “OFF", for example,
TV, fan, etc., and (ii) User independent appliances – appliances that can turn “OFF" them-
selves and require no user interaction, for example, microwave, washing machine, dish-
washer, etc. If the set of appliances selected in the previous stage involves one or more user
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Figure 2.4: Deployment setup in DRED.

dependent appliances being turned “OFF" and even if the occupants location differs from
the appliance location, validation stage eliminates this combination of appliances. LocED
then selects the second closest combination from the previous stage and re-validates.

2.3. THE DRED DATASET
The dataset consists of several sensors measuring electricity, occupancy and ambient pa-
rameters in a household for over 8 months. The sensors were carefully installed to avoid
any inconvenience for the occupants. We refer to this dataset as DRED (Dutch Residential
Energy Dataset). Fig. 2.4 shows the layout of our deployment along with location of the
sensors and appliances in the household.
Electricity monitoring: We used off-the-shelf sensors to monitor energy consumption at
1 Hz sampling frequency.

(i) Mains level: We installed a smart electricity meter from Landis+Gyr E350 to measure
the aggregate energy-consumption information of a household. The data from the smart
meter was retrieved using Plugwise Smile4.

(ii) Appliance level: We used off-the-shelf smart plugs from Plugwise circle5 to collect
appliance-level energy-consumption data. 12 smart plugs were installed to monitor the
appliances across the household, viz., (1) Refrigerator, (2) Washing Machine, (3) Central
Heating, (4) Microwave, (5) Oven, (6) Cooker, (7) Blender, (8) Toaster, (9) TV, (10) Fan, (11)
Living room outlets, and (12) Laptop.
The plugs installed in the household communicate via Zigbee protocol by forming a mesh
network. We use an open source library python-plugwise to query the data from the plugs
at 1 Hz frequency. A Raspberry Pi was deployed locally to generate periodic queries and to
store the data. Furthermore, this data is also sent to a server for making it available for the
research community.
Ambient monitoring: Apart from collecting energy related data, in our deployment we also
collected room level indoor temperature, outside temperature, wind speed, precipitation
and humidity. We deployed low-cost Bluetooth beacons from Gimbal6 with in-built temper-

4Smile:https://www.plugwise.com/smile-p1
5Circle:https://www.plugwise.com/circle
6https://store.gimbal.com/collections/beacons/products/s10

https://www.plugwise.com/smile-p1
https://www.plugwise.com/circle
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ature sensor for each room and also one outside the house. These beacons have a battery
lifetime of 4 to 5 months. A smartphone and smartwatch application in Android was devel-
oped to read the data from these beacons every 1 minute. The wind speed, precipitation and
humidity data was collected from the publicly available Royal Netherlands Meteorological
Institute (KNMI) website every hour7.
Occupancy monitoring: In our deployment, we scan both visible WiFi access points and
the Bluetooth beacons present in the household for indoor localization every 1 minute. This
data is further used with different machine learning algorithms to determine the indoor
room level location of occupants. The room-level location inferred from the localization
algorithm is also made available. For WiFi based localization, no additional infrastructure
is deployed, however, for BT based localization we deployed the BT beacons, which could
be further replaced by the smart Bluetooth enabled devices.
Household metadata: Our dataset also includes household metadata such as number of
occupants, house layout, mapping between appliance and location. This metadata is gen-
erally useful for NILM algorithms. Further details on the metadata can be found in [2].

DRED dataset extends the current publicly available datasets: (i) In DRED, almost all ap-
pliances are monitored and has very constant baseline consumption. Baseline consump-
tion includes appliances which are occasionally used (guest devices) or not monitored.
Popular datasets such as REDD, Smart*, iAWE and ECO has very high and varying baseline
consumption. This variation significantly hinders the performance of NILM algorithms.
(ii) DRED dataset has less than 5% dropout rate in energy data. Dropout rate indicates
the missing data due to communication issue or sensor faults. Most of the other datasets
have around 10-20% dropout rate apart from Smart*. (iii) Even though ECO, Smart*, iAWE
datasets include occupancy data, they have large gaps and missing data. However, DRED
uses an indirect sensing approach for obtaining room-level occupancy information and has
high data availability rate.

2.4. EVALUATION
We provide performance evaluation results of the proposed framework across multiple datasets
to support wide-adoption and also to validate our work. Our framework imports data from
DRED dataset and also other popular publicly available datasets such as REDD (House 1),
Smart* and iAWE. Hence, we show the performance results across four datasets collected in
different countries.
Dataset Statistics: Each dataset includes data from different set of appliances and for vary-
ing time duration. Fig. 2.5a shows the percentage of total energy measured at the appliance
level for all days in the dataset. Most of the datasets do not monitor all the appliances in
the household, leading to large (sometimes more than 50%) unaccounted energy in the ag-
gregated consumption data. Furthermore, the variation of this unaccounted energy data
significantly reduces the accuracy of disaggregation algorithms. DRED has around 75% of
energy sub metered and all other datasets have around 45% of energy measured at the ap-
pliance level. Furthermore, DRED dataset has around 95% data availability rate at the mains
level. The other datasets have 90%, 86% and 50% mains data availability rates for all the days
(see Fig. 2.5b).

7KNMI:http://www.knmi.nl/climatology/daily_data/selection.cgi

http://www.knmi.nl/climatology/daily_data/selection.cgi
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Figure 2.5: Data characteristics across different datasets.

In general, only a few appliances constitute the majority of power consumed in a house-
hold. Hence, it is necessary to derive accurate information of these high power consuming
appliances during energy disaggregation. Fig. 2.5c shows the proportion of energy con-
sumed by top-5 appliances and other appliances present in the household across datasets.
It is interesting to see the variation of top-5 appliances across datasets, indicating the vary-
ing preference of appliance usage in different countries. The top-5 appliances in DRED
cover around 60% of total energy consumed.

Finally, since LocED relies on the occupancy information collected, it is important to
find the occupancy data availability rate. The occupancy availability rate is the ratio of total
number of occupancy data recorded over the total number of expected occupancy data.
DRED, iAWE and Smart* has occupancy rate of 81%, 76% and 36% respectively.
Accuracy Metrics

Several accuracy metrics both at house level and at appliance level are considered for
evaluation of LocED.
1. Fraction of total energy assigned correctly (FTE): It measures the fraction of energy
correctly assigned to an appliance and is one of the common accuracy metrics for NILM
algorithms [29, 72]. FTE is the overlap between the actual fraction of energy consumed by
each appliance and the fraction of energy assigned to each appliance. It is defined as,

F T E =∑
n

mi n


∑
n

y (n)
t∑

n,t
y (n)

t

,

∑
n

ŷ (n)
t∑

n,t
ŷ (n)

t

 , (2.2)

where n ∈ {1, .., N } and N is the total number of appliances. Also t ∈ {1, ..,T } and T is the
total time period considered.
2. Total disaggregation error (Te ): Total disaggregation error is the difference between the
total energy consumed by all appliances and the actual energy consumed by the appliances,
normalized by the total energy consumed. It is given by,

Te =
∑
n,t

|y (n)
t − ŷ (n)

t |∑
n,t

y (n)
t

(2.3)

We employed the functions provided in NILMTK for calculating FTE and Te metrics.
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Figure 2.6: Disaggregation performance of CO and LocED across datasets (1 week).

3. Number of appliances identified correctly (Ja ): Jaccard similarity coefficient is used
to measure the similarity between the predicted set of appliances (J p

a ) and the actual set of
appliances (J a

a ) used over a time period. Ja measures the percentage of appliances correctly
identified by the disaggregation algorithm. It is given by,

Ja = |J p
a ∩ J a

a |
|J p

a ∪ J a
a |

(2.4)

4. Number of appliance states identified correctly (Js ): It measures the similarity between
the predicted set of appliance states (J p

s ) and the actual set of appliance states (J a
s ). It is

given by,

Js =
|J p

s ∩ J a
s |

|J p
s ∪ J a

s |
(2.5)

2.5. RESULTS
We now show the performance of LocED and original CO algorithm. To ensure fair com-
parison, both LocED and CO utilize the same appliance model from the crowd-sourced
database as described in Section 2.2.2. Since the model and make of an appliance varies
from one dataset to another due to the geo-location of data collected in these datasets,
applying a generic model across all datasets is challenging. LocED uses a crowd-sourced
appliance model from the power consumption database based on the manufacturer and
model number of an appliance. In our evaluation, we used data obtained using direct sens-
ing (PIR sensors) in Smart*, iAWE datasets and also data from indirect sensing in DRED
dataset. Furthermore, we used an adaptive δ value for determining the priority combina-
tion. The values of δ was determined based on the appliance type. From our experimenta-
tion, we found that appliances with low power consumption have lower noise and smaller
variation in their energy consumption and appliances with high power consumption have
large variation due to the noise associated. Furthermore, the δ value can be also used to ac-
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count for unmonitored appliances or guest appliances by modeling the historic household
energy consumption.

Fig. 2.6 shows the disaggregation performance of CO and LocED across the house level
accuracy metrics. We considered one week of data (the week with highest data availability
rate) across all the four datasets. In general, F T E , Ja and Js can vary between 0 and 1, and
Te can take any non-negative value. It can be seen that, LocED performs significantly better
across all the datasets for all the metrics. LocED performs better than CO mainly due to two
reasons, (i) LocED ensures that the predicted set of appliances does not vary significantly for
consecutive time periods, thanks to priority combination. (ii) LocED constrains the number
of appliances considered to disaggregate based on occupancy information ensuring similar
appliances from a different location are not selected.

Fig. 2.6(a) shows that in DRED, LocED correctly assigns up to 80% of energy to all ap-
pliances, which is 40% more compared to CO. Furthermore, it determines more than 25%
of correct appliances and states than original CO. Fig. 2.6(c) shows more than 30% im-
provement across all metrics for Smart* dataset and similar trends can be seen in iAWE
and REDD datasets. LocED also has much lower Te across all datasets compared to CO.
Fig. 2.6(e),(f),(g),(h) show the disaggregation performance of CO and LocED for top-k (k=5)
appliances. As mentioned previously, disaggregating accurately top energy consuming ap-
pliances would be very beneficial to reduce cost and manage energy efficiently. It can be
seen that LocED correctly assigns upto 89% of energy to the top-k appliances in iAWE and
around 80% in DRED and Smart* datasets. Furthermore, the number of appliances and
states identified is also higher compared to original CO. In DRED and Smart* datasets the
number of appliances and states determined is more than 30% compared to original CO.

Fig. 2.7 shows the original power (in W) consumed by the refrigerator (top) and the re-
sulting disaggregation output using the original CO (middle) and LocED (bottom). CO has a
interrupted load profile due to its sensitivity to small changes in aggregated power, however,
LocED overcomes this with the help of priority combination and the δ parameter described
in Section 2.2.2.

Table. 2.1 shows the percentage increase in disaggregation accuracy of LocED compared
to CO for all the days across the datasets with all appliances and top-k appliances. It can be
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Dataset
All Appliances Top-k Appliances

FTE Ja Js Te FTE Ja Js Te

DRED 30.5 28.7 36.6 -37.9 22.4 23.3 36.5 -41.2
iAWE 8.5 3.2 2.2 -7.9 14.8 3.3 4.5 -9.6
Smart* 29.3 28.3 28.6 -14.4 1.9 28.1 30.4 -18.6
REDD 11.4 12.7 27.6 -13.6 -22.1 5.3 27.3 -8.8

Table 2.1: Percentage increase in performance of LocED over CO (all days).

seen that FTE improvement of 30%, 9%, 30%, and 12% is obtained for all days considered
in DRED, iAWE, Smart* and REDD datasets respectively. Similarly, number of appliances
correctly identified improves over 30% for all days considered in DRED and Smart* datasets
respectively. In DRED, FTE improvement of 22% was achieved for top-k appliances and
number of appliances and states identified improved by 23% and 36% respectively. The
negative Te shows the percentage reduction in total error achieved by LocED. The FTE for
top-k appliances in REDD dataset is lower for LocED. This is likely due to wrong inference
of locations from appliance ground truth data.

Even with additional location information there are errors associated with disaggrega-
tion due to several factors. In most of the datasets, due to lack of knowledge on number
of appliances and lack of monitoring of all appliances in the household, there exists a sig-
nificant amount of unaccounted energy in the aggregate consumption. Only DRED dataset
monitors almost all appliances and has a very low variation in baseline consumption. More-
over, the percentage of occupancy information available plays an important role in improv-
ing the accuracy. Only DRED and iAWE have more than 70% of occupancy data available.
Furthermore, if the occupants are spread out across the building or if all the appliances
are close to one another, then the benefits of using location information for disaggregation
is less. However, in residential settings as seen from the above datasets these cases arise
occasionally. In our evaluation, we showed that even with very less location information,
LocED was still significantly able to improve the disaggregation accuracy. Furthermore, the
framework proposed can include other contextual information such as room temperature,
number of users, etc. to further improve energy disaggregation accuracy.

Finally, we also computed the average number of state combinations evaluated in each
dataset by CO and LocED to disaggregate. Original CO has a fixed number of state combi-
nations depending upon the number of appliances and its states. However, for LocED the
number of appliances considered varies and is determined based on the constrained set of
appliances. In iAWE and Smart* the average state combinations to be evaluated for disag-
gregating a value is 59049 and 8192 for CO and it is 162 and 60 for LocED. Similarly, in DRED
104976 combinations was evaluated by CO and LocED evaluated only 10 combinations on
average. It can be seen that across all datasets the average number of state combinations
evaluated by LocED is drastically reduced, consequently, decreasing the computation com-
plexity for real-time disaggregation.

2.6. CONCLUSIONS
In this chapter, we proposed a novel location-aware energy-disaggregation framework (LocED)
to derive accurate appliance-level data from aggregated household energy data. We de-
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veloped a modified combinatorial-optimization algorithm to infer the state of the appli-
ances accurately. We also presented a comprehensive dataset (DRED), that can be used to
test the performance of energy-disaggregation algorithms, derive appliance-usage behav-
ior and analyze demand-response algorithms. We evaluated LocED across multiple publicly
available datasets such as DRED, iAWE and Smart*. Our evaluation shows that around 80%
disaggregation accuracy can be achieved for all appliances on the DRED and iAWE datasets.
Furthermore, up to 90% accuracy is achieved when only the top-5 appliances are consid-
ered for disaggregation in DRED and iAWE.

LocED forms the basis to derive appliance-level information for various personalized
energy services described in subsequent chapters. In Chapter 3, LocED is used to identify
per-occupant energy-consumption information and in Chapter 4, it is used to effectively
schedule appliances to maximize user comfort and minimize energy cost.



3
ENERGY APPORTIONING

T HE energy disaggregation techniques presented in Chapter 2 provide real-time feedback
on appliance-level energy consumption. While these techniques help in understand-

ing energy consumption in a building, they lack the ability to provide energy footprint of
individuals. A recent study highlighted the advantages of providing energy-consumption
information to individuals of a household to raise awareness, and to promote energy sav-
ings. This has the potential to reduce up to 20% of the total energy consumption [31, 54].
In shared spaces – such as student house, office environments, multi-occupant house-
hold – lack of individual occupant consumption data necessitates even-splitting of energy
cost. This results in inefficient energy usage where occupants maximize their energy us-
age by taking advantage of others [53, 54]. Hence there is a need for personalized energy
disaggregation systems moving from appliance level towards user-level information. The
disaggregated individual energy-usage information can be used to develop better energy-
management techniques apart from raising awareness.

The current literature focuses mainly on energy consumption of buildings or house-
holds as a whole. Aggregated energy information of households fails to answer questions
such as,“how much energy each occupant has used today?", “who amongst us burns most of
the energy?", “which occupant is more energy efficient in the household?". Currently there is
no comprehensive means of providing information to individual occupants on their energy
consumption. Hence, it is required to design an energy-apportioning system that disaggre-
gates household total consumption into per-occupant, per-appliance level.

Recently, there have been few research efforts [37, 57, 75, 98, 104] that aim to study per-
occupant energy footprints in various settings. However, providing energy-consumption
information of individuals, in shared spaces, is a challenging task due to the following re-
quirements: (i) Collection of fine-grained information at various levels. This fine-grained
information includes which occupant performed what activity and where in the household.
(ii) Deployment of additional sensors to determine the current location of occupants and
which occupant is using a particular appliance. This involves additional cost for deploy-
ment and is cumbersome to maintain. (iii) Identifying in real time the correct occupant
using an appliance when multiple occupants are present in the same location. Current ap-
proaches apportion the energy equally to all the occupants in that location [57, 104]. (iv)

29
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Most of the techniques proposed hitherto are centralized with either third-party services or
energy utilities collecting privacy-sensitive information of consumers. This raises several
issues related to scalability and privacy. (v) The resolution of apportioning may vary de-
pending upon the environment i.e., residential household – where some of the shared appli-
ances are for the total family (e.g., kitchen utilities and fridge usage during cooking); student
house – where a shared appliance is used by only one occupant at a time (e.g., kitchen util-
ities and fridge usage during cooking by a single occupant). In the former case, one might
not be interested in apportioning energy usage during cooking event, however, for the latter
it may be important to apportion the energy spent during cooking. Hence, identifying the
resolution of apportioning is an important issue.

In this chapter, we present the Personalized Energy Apportioning Toolkit (PEAT) that
combines readily available data from the ubiquitous sensors present in the household to
derive fine-grained occupant-level energy-consumption information. Specifically, we use
a single smart meter’s energy data to derive fine-grained appliance-level energy informa-
tion. The Modified Combinatorial Optimization (ModCO) algorithm presented in Chap-
ter 2 is used for energy disaggregation. Furthermore, Internet of Things (IoT) devices such
as smartphones and smartwatches with WiFi radios are used for indoor localization and to
determine the activities performed by the occupants. A plethora of sensors are now embed-
ded within wearable devices making it possible to gather information about users and their
activities. In this chapter, data from these sensors are used to detect the micro-activities
performed by occupants. Micro-activities refer to the activities performed by occupants
such as opening a microwave door, opening the refrigerator door, using a laptop, switching
on/off an appliance. PEAT combines NILM techniques with WiFi-based localization and
activity monitoring to determine when an appliance is being used, and which occupant
is currently using the appliance. Our system was extensively evaluated in two real-world
multi-occupant buildings, viz., (i) a student house and (ii) a residential house.
Contributions. The main contributions of this chapter are:

• We present a personalized energy-apportioning toolkit (PEAT) to derive real-time per-
occupant energy footprints in shared spaces.

• We describe our inference algorithm, which models the association between appli-
ances and users to determine the dynamics of appliance usage.

• We provide an extensive experimental evaluation of PEAT from two multi-occupant
buildings, viz., a student house and a residential house. PEAT was empirically evalu-
ated in both the settings for over two months.

3.1. RELATED WORK
Energy apportioning in shared spaces covers a broad range of research areas from appliance
monitoring, user monitoring to personalized energy monitoring. Please refer to Section 2.1
for related work on appliance-level monitoring. We now describe in detail the state-of-the-
art techniques proposed for user and personal energy monitoring in shared spaces.

User monitoring
User-occupancy detection is a crucial element in developing user-centric energy man-

agement services [43]. Several direct and indirect approaches have been proposed to de-
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None

Table 3.1: Comparison of various efforts towards energy apportioning.

rive user-occupancy information [23, 99]. Direct approaches employ low-cost sensors such
as passive infrared (PIR), reed switches, and RFID tags to determine occupancy informa-
tion [99]. Even though these approaches are cost effective, installing and maintaining these
sensors in a household is intrusive and cumbersome. Furthermore, these techniques do not
distinguish between different occupants, when the occupants have similar characteristics.
Indirect occupancy-monitoring approaches employ WiFi or Bluetooth (BT) fingerprinting
using smartphones to derive room-level occupancy [23]. In this chapter, we use the exist-
ing infrastructure like WiFi access points (AP) deployed in a household, along with smart-
phones to derive the current locations of the occupants. We employ simple classification
techniques that run locally on smartphones to model and train the data collected from the
WiFi scans.

Hitherto, several research efforts used smartphone sensors to determine user activities
such as walking, climbing stairs, running, and jumping. However, according to a recent
forecast [4] smart wearables are expected to grow from 9.7 M in 2013 to 135 M in 2018. The
forecast also predicts that around 87% of these wearables account for smartwatches and
wrist bands. Motivated by the large-scale penetration of smartwatches and their increas-
ing sensing capabilities, we employ smartwatches to derive user activities in the household.
Smartwatches provide an opportunity to accurately identify the micro-activities performed
by the occupant such as opening a microwave door, opening the refrigerator door, and
switching on/off an appliance. Unlike existing activity-monitoring techniques that require
additional sensors carried by occupants, we argue that sensors present in the smartwatch
are sufficient to determine micro-activities. Moreover, with both WiFi and BT radios avail-
able on smartwatches, one can use them for indoor localization.
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Personalized energy monitoring
Lack of per-occupant energy footprints has resulted in even splitting of energy costs

and negligent energy usage in shared spaces [31]. Table. 3.1 provides a concise overview of
state-of-the-art techniques proposed for energy apportioning. Hay et al. [57] investigate en-
ergy apportioning in an office building. They propose static and dynamic policies to appor-
tion shared energy usage. However, these policies assign energy evenly by determining the
number of people inside the building. In residential settings, Lee et al. [75] propose a per-
sonalized energy auditor to apportion energy with the help of smartphones and doorway
sensors. Doorway sensors were used to determine which occupant is present in a room.
They classified the appliances into “personal" and “shared". The policy for apportioning
assigns the personal appliance usage to that individual, whereas the shared appliance us-
age is evenly split across all occupants present in the room. The setup and installation of
doorway sensors is cumbersome. Furthermore, metadata information such as occupants
characteristics (e.g., height) and intrusive appliance-level metering was considered during
apportioning. Cheng et al. [37] present a model to determine the association between hu-
man activities and observed energy consumption. They use additional sensors such as light
and sound sensors to determine user movements and location. Saha et al. [104] propose
mechanisms to combine smartphone data with electricity data for accurate activity detec-
tion and energy apportioning. They use WiFi-based localization to determine the locations
of occupants and collect audio samples from the microphone continuously to determine
which appliance is being used. The proposed models require extensive data collection and
training for each appliance, hindering the applicability of the work in other households.
Ranjan et al. [98] map energy apportioning to a fixture assignment problem to determine
per-occupant energy usage. Fixture assignment is done by determining the unambiguous
assignments and then learning usage patterns. However, they use custom-made RFID an-
klets and RFID antennas for indoor location tracking and deploy sensors for appliance mon-
itoring.

3.2. PEAT
Considering the limitations of the state-of-the-art, we propose an energy apportioning toolkit
that integrates smartphones, smartwatches and smart-meter data with minimal user in-
tervention to derive real-time per-occupant energy footprint. Fig. 3.1 shows the system
overview of PEAT. The toolkit consists of four major components: (i) Appliance monitoring,
(ii) User monitoring, (iii) Appliance-User modeling and (iv) Online evaluation. We describe
each component in detail below.

3.2.1. APPLIANCE MONITORING

Appliance monitoring component with the help of NILM algorithm determines the state of
each appliance. A change in state of an appliance from “OFF” to “ON" is considered as an
event trigger. Event triggers represent the appliances, which are currently being used by the
occupants in the households. In Section 2.2 we described our Modified CO algorithm. Since
location of occupants are not known yet in the system, PEAT employs Modified CO without
Step 3 i.e., occupancy based appliance selection. This work distinguishes the appliances
in the household into three categories: (i) Personal appliances: Personal laptop, hair dryer,
smartphones, etc. (ii) Shared appliances: Television (TV), kitchen utilities, microwave, etc.
(iii) Baseline appliances: appliances that are always ON – modems, routers, refrigerator, etc.
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Figure 3.1: System overview of PEAT.

3.2.2. USER MONITORING
User monitoring component is activated upon the reception of an event trigger from appliance-
monitoring component. User monitoring determines the current location and activities
performed by all the occupants. Smartphones are used for indoor room-level localization
and smartwatches are used for micro-activity recognition. Note that, only a single smart-
watch can be used for both localization and activity recognition.
1. Location monitoring

This work focuses on smartphones/watches to determine indoor location of occupants
due to the following reasons: (i) smartphone/watch is personally associated and carried
by a user, (ii) change in sensor information such as accelerometer can be used to detect
user movements and (iii) localization techniques can use WiFi and/or Bluetooth radios to
identify user location. The event trigger from the appliance monitoring component initiates
the data collection for indoor localization. The data stream includes a scan of visible WiFi
access points (APs) and their Received Signal Strength (RSS) along with the timestamp. The
list of APs indicates the access points from the neighboring houses. To save battery and also
to derive accurate location, a scan is performed only upon detection of a user movement
(i.e., change in accelerometer data or step detection).
Naïve Bayesian classifier for localization: Classification techniques such as Bayesian, Sup-
port Vector Machines, K-nearest neighbor and decision trees, have been proposed in the
literature to derive room level occupancy using RSS information. Our localization algo-
rithm is based on Bayesian classification technique1 and has two phases viz., training and
testing phase. During the training phase, data is collected at each room to build a classifier
model. This phase is also called the fingerprinting stage, where data from WiFi scans are
used to learn the available APs and their RSS at different locations.

Feature extraction: The collected data from WiFi scan is then used to derive features for
the classifier model. Feature vectors are derived by using multiple scans performed. In this
work, we use four WiFi scans to derive feature vectors such as max, min, mean, standard

1Note that other classification techniques can also be used to derive location information.
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deviation of the signal strength for each available AP. Feature vector l for k access points is
represented as,

lt =< r ssmax
t (1),r ssmi n

t (1),r ssmean
t (1),r ssstd

t (1), ...,

r ssmax
t (k),r ssmi n

t (k),r ssmean
t (k),r ssstd

t (k) >
(3.1)

Building classifier model: Feature vectors obtained are provided as input to the classifier al-
gorithm to derive the class labels. The classifier model generates a probability distribution
function (PDF), which is further used in testing phase to determine the class label (room
location).

2. Activity monitoring
With the large-scale penetration of wearable devices, it is now possible to analyze user

activities accurately. These devices provide an opportunity to identify precisely the micro-
activities performed by the occupant such as opening a microwave door, opening the re-
frigerator door, using laptop, switching on/off an appliance. Smartwatch of an occupant is
used to determine the activity performed. The different sensors used for acquiring relevant
activity information include accelerometer, gyroscope, magnetometer, tilt, rotation and lin-
ear acceleration. The activity feature vector, a, includes data from both time and frequency
domain. Features considered are mean, standard deviation, variance from x, y, z axes along
with magnitude, fundamental frequency, zero crossing and step counter.

The event trigger initiates the data collection for activity monitoring. Similar to location
monitoring, the activity monitoring also has training and testing phase. During the training
phase, multiple samples of activity feature are collected for each micro-activity. The activity
feature vectors are then used by the classifier to model and determine the class-label asso-
ciated with each activity feature. The class label indicates the micro-activity performed by
the occupant. In the testing phase, each activity feature is evaluated by the activity model
to determine the micro-activity performed. Location and activity monitoring determine
where the occupant is and what activities are performed by the occupant when an event
trigger is received.

3.2.3. APPLIANCE-USER MODELING
The appliance-user modeling studies the user association with the appliance. The objective
of the appliance-user modeling is to determine the occupants that are currently associated
with the appliance being used. If the current appliance being used is personal, then it can
be assigned to the relevant user. However, some appliances are shared by all the occupants
at different time periods (e.g., Microwave) and some appliances are used by all the occu-
pants at the same time period (e.g., TV). Hence it is important to not just determine where
the occupant currently is but also to determine the activities performed by the occupant.
PEAT utilizes location and activity information to determine the user association with the
appliance.

To study the association between the appliances and users we first determine the event
type. PEAT distinguishes the event triggers from appliance monitoring into two viz., (i) un-
ambiguous events and (ii) ambiguous events. Unambiguous events are those when there
is a total certainty that a single occupant is using the appliance. These events occur when
there is only one occupant in the household at that time or when a personal appliance is
used. By filtering the occupants who are outside the household, the model determines the
occupant currently using the appliance. Unambiguous events can help to determine char-
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acteristics of occupants such as, which appliances are used by only one occupant at an
instance? Which appliances are commonly used by a specific occupant? Furthermore, for
an ambiguous event there is more than one occupant associated with the usage of an appli-
ance. This is typically the case in multi-occupant households, where cooking, watching TV,
and using lights are usually group activities.

In case of an ambiguous event, PEAT first determines the location of the occupant by
evaluating the location feature vector. All the occupants whose predicted location is differ-
ent from the location where the appliance event occurred are discarded. Furthermore, for
all occupants who are in the same location as the appliance being used, the system iden-
tifies the occupants who are associated with a smartwatch. The activity information from
these occupants is evaluated to identify the micro-activities performed. The model deter-
mines if the activity performed resembles the activity related to the appliance usage and
associates the occupant accordingly. For example, if the activity of an occupant inferred is
“opening microwave door" and the appliance event is from microwave, then PEAT assigns
the usage of microwave to that occupant. Energy is apportioned with a high certainty to
the occupant whose activity matches with that of appliance being used. Note that, not all
users in the household may have a smartwatch/phone. Hence, there could be an ambiguous
event that is not resolved. Most of the energy apportioning systems hitherto, divide evenly
the energy consumption if they cannot resolve the ambiguous events. To this end, PEAT
utilizes several heuristics that relies on historical data of the occupant’s association with the
appliances.

• Number of times used (H1) assigns higher association probability to the occupant who
has used the appliance more number of times.

• Recently used (H2) assigns higher association probability to the occupant who re-
cently used the appliance.

• Average usage duration (H3) assigns higher association probability to the occupant
whose average appliance usage duration matches the current appliance usage dura-
tion.

These heuristics are used to determine the percentage of energy that needs to be distributed
among the occupants when an ambiguous event is not resolved. For example, if the appli-
ance used is in a Bedroom, H1 assigns higher probability to the user of that bedroom. Simi-
larly, if the appliance used is Refrigerator, then H2 assigns higher probability to the occupant
who recently used. This is generally the case in the kitchen. If an Occupant-A watches TV
for approximately an hour and Occupant-B watches TV generally for 30 m, then the heuris-
tic H3 assigns higher probability to Occupant-A when the current TV usage exceeds 30 m.
Characteristics such as number of times an appliance is used, its average usage duration,
are learned over time by analyzing the energy consumption pattern and location informa-
tion of occupants. Finally, after applying all the heuristics, the event is assigned to a single
occupant or group of occupants who are more likely to have used the appliance. If the asso-
ciation probability to one or more occupants has similar values, then the event is assigned
to all those occupants and the energy is equally apportioned. The association probabilities
and usage characteristics of occupants are stored in Raspberry Pi for deriving per-occupant
statistics and to adapt the heuristics over time.
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3.2.4. ONLINE EVALUATION
This component evaluates the energy to be apportioned to each occupant in the household
in real-time. The evaluation starts when the “OFF" event trigger is obtained from the ap-
pliance. The event is then classified to be either ambiguous or unambiguous based on the
location information and appliance under consideration. PEAT then evaluates the location
and activity information obtained from the user monitoring component. The location ac-
curacy may be inaccurate in some scenarios due to misclassification or the user may not
have carried his/her phone. To overcome this PEAT applies a simple location correction
mechanism. From the metadata collected, we know the location of each appliance in the
household. If there is only one occupant and his location is other than the location of the
appliance being used, we then use the appliance location as the corrected location. This
corrected location information is then used by the appliance-user modeling component.
The association probability derived from the appliance-user modeling is used to apportion
the energy among occupants. This information is further sent to all the occupants with
individual and shared energy consumption details.

3.3. EVALUATION
Deployment details:

To evaluate PEAT in real-world, the complete system was deployed in two multi-occupant
settings viz., student house and a residential household. The student house is a two-bedroom
apartment with four locations viz., Kitchen, Living room, Bedroom 1 and Bedroom 2. All
locations apart from the bedrooms are shared by the occupants. The appliances include
microwave, refrigerator, grill, coffee machine, laptops and television (TV). Three occupants
were present in the student house during our experimentation. The residential household
contains 12 appliances spread across 5 rooms as described in Chapter 2.3. Two occupants
were present in the household during our experimentation.
Ground Truth: To validate results from PEAT, ground truth about the use of an appliance
is required. Hence, we deployed NFC tags to collect this information. Each tag is pre-
programmed with the appliance name and location. Upon the initialization of an NFC tag,
an event is logged into the system with the occupant ID. We use this information only for
comparing the results derived from PEAT.
Methods:

Appliance monitoring component was evaluated with both original CO and the pro-
posed modified CO. We evaluated location and activity feature vectors across three online
classifiers viz., Decision trees (J48), Naïve Bayesian (NB) and K-Nearest Neighbors (KNN).
Finally, we studied the trade-off between energy apportioning accuracy and the number
of devices (smartphones/smartwatches). The following methods were employed to derive
energy apportioning accuracy:

• M1: One user with the smartwatch, all other users with the smartphones and with
heuristics H1, H2 and H3.

• M2: No smartwatch, all users with the smartphones and with heuristics H1, H2 and
H3.

• M3: All users with the smartwatches, smartphones and with heuristics H1, H2 and H3.
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• M4: One user with smartwatch, all other users with the smartphones and no heuris-
tics.

• M5: No smartwatch, all users with the smartphones and no heuristics.

Metrics:
Several accuracy metrics are considered here to evaluate the components of the toolkit.

Different metrics considered for appliance monitoring are Fraction of total energy assigned
correctly (FTE), Total disaggregation error (Te ), Number of appliances identified correctly
(Ja), Number of appliance states identified correctly (Js ), which are described in Chapter 2
Section 3.2.4.

The set of metrics used to evaluate the classifier models obtained for location and activ-
ity are:
1. Precision: It is the ratio of number of correctly identified instances over total number of
identified instances. Let tp and fp indicate the true positives and false positives respectively
and precision is defined as,

pr eci si on = tp

tp + fp
(3.2)

2. Recall: It is the ratio of number of correctly identified instances over total number of
instances. It is given by,

r ecal l = tp

tp + fn
, (3.3)

where fn represents the number of false negatives.
3. F1 Score: It is a measure of accuracy and is defined as the harmonic mean of precision
and recall.

F1 = 2.
pr eci si on · r ecal l

pr eci si on + r ecal l
(3.4)

4. Energy apportioning accuracy (Ea ): Energy apportioning accuracy is the ratio of esti-
mated energy utilized by an occupant and the actual energy utilized by that occupant. It
measures the total percentage of energy correctly apportioned to an occupant and is given
by,

Ea =
(

Estimated energy per occupant

Actual energy per occupant

)
×100 (3.5)

System architecture:
The system architecture consists of several clients (occupants’ devices) communicating

with a server (local raspberry PI). Server-side includes a Raspberry PI with WiFi connectivity
that acts as the local server in each household. Raspberry PI receives the energy consump-
tion data from the smart meter. In our setup we used Plugwise Smile-P1 to retrieve the data
from smart meter and send it to the Raspberry PI via WiFi. Raspberry PI runs the proposed
ModCO energy disaggregation algorithm to derive fine-grained appliance usage informa-
tion. Upon detection of appliance ON event, Raspberry PI sends out a push notification
(trigger) to all the clients (occupants devices i.e., smartphones/watches) to start scanning
(i) WiFi RSSI samples for indoor localization on smartphones and (ii) data collection of in-
ertial sensors on smartwatches of users. Further, when an appliance OFF event is detected,
Raspberry PI sends out another push notification to stop the data collection at the client de-
vices. On the client-side, an application is developed for smartphones and watches of users.
There could be multiple occupants in a household and hence during the initial phase each
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Figure 3.2: Disaggregation performance of CO and modified CO in residential household.

occupant is assigned a unique ID along with their devices. To save energy on the client de-
vices, we do not start data collection until a trigger is received from the local server. Upon
reception of the trigger on smartphones, the application starts scanning for WiFi RSSI sig-
nals and then sends out a notification to the smartwatch associated for collecting activity
related information. Further, when an OFF event trigger is received, the application uti-
lizes an online version of Bayesian classification to derive the room level occupancy and
the micro-activity performed.

Further, Raspberry PI receives the inferred location and micro-activity performed for
ON-OFF event of each appliance. This information is used to develop an appliance-user
modeling and for apportioning energy to individual occupants. The proposed system archi-
tecture is distributed, wherein, localization and activity recognition is performed on smart-
phones/smartwatches, and energy disaggregation and apportioning is performed on the
Raspberry PI. Note that all the devices, Plugwise Smile-P1, Raspberry PI and smartphones,
are connected to the same access point in the household.

3.4. RESULTS
In this section, we present our experimental results in determining state change of an ap-
pliance, room level occupancy and activities performed by the occupants. Furthermore, we
show the energy apportioning accuracy across different real-world multi-occupant settings
and its trade-off with respect to the number of devices used.
Appliance detection accuracy:

PEAT employs modified CO to determine the state of the appliances in real-time. Accu-
rate energy disaggregation is a critical component for unambiguous energy apportioning.
To ensure fair comparison, both original and ModCO utilize the same appliance model from
the crowd-sourced database as described in Section 3.2.1. Furthermore, comparison with
other NILM algorithms (FHMM [85]) require additional training such as prior probability
and state transition matrix. Hence we restrict the comparison of proposed ModCO with the
original CO algorithm.

Fig. 3.2 shows the disaggregation performance of CO and modified CO across four ac-
curacy metrics in the residential household. We used over 2 months of aggregated energy
consumption data of the household. FTE, Ja and Js can vary between 0 and 1, and Te can
take any non-negative value. ModCO assigns (FTE) more than 85% of the aggregate en-
ergy accurately. Furthermore, around 75% of state changes (Js ) are estimated correctly as
compared to 35% by original CO. Similarly, when a student house was considered, 90% of
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(d) Appliance detection with location and activity
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Figure 3.3: Evaluation of user monitoring component in student house.

total energy was accurately assigned and 87% of the states were identified correctly. The
increase in FTE and appliance detection in student house compared to residential house-
hold is mainly due to reduced number of appliances considered. In both the settings, Te in
modified CO is much lower than original CO, indicating better disaggregation performance.

In general, the improvement in disaggregation accuracy for ModCO is due to the fact
that the predicted set of appliances does not vary significantly for consecutive time periods.
Our ModCO takes approximately 0.12 s and 0.05 s to determine the state of the appliances
in the residential household and student house, respectively.
Indoor location accuracy:

An Android application was installed on smartphones to scan for visible WiFi APs when
an event trigger is received. Feature vectors were computed as described in Section 3.2.2.
During our experimentation, we considered two approaches for building the classifier model
viz., supervised and unsupervised.

Supervised method requires a training phase where RSS values at each location is col-
lected and labeled. During testing phase, each feature vector is evaluated with the classifier
model obtained in the training stage to derive the class label (room level location). Unsu-
pervised method does not know the class labels a priori and learns the label of the location
based on occupancy and the appliance metadata. For example, when only one occupant
is present in the household and if the appliance trigger was from “Coffee Machine" then
the location of the appliance (i.e., Kitchen) can be obtained from metadata information.
Consequently, the algorithm learns this label and assigns it to the current location of the
occupant. Furthermore, this iterative approach continues until all the class labels are de-
termined. However, this method has several drawbacks such as works when only one user
is present in the household and longer delay in developing accurate location models. Re-
cently, several algorithms such as Zee [97] and EchoTag [114] employ crowd-sourced data
collection to eliminate the tedious training phase. These approaches could also be used in
PEAT. In this chapter, to show the effectiveness of PEAT, we use a standard online classifica-
tion model.

We employed Naïve Bayesian (NB) classifier model to derive class labels for each new
feature vector obtained. Fig. 3.3(a) shows the precision and recall for each location in the
student house. High values of precision and recall at each location indicate the good per-
formance of the classifier model. Moreover, F1 score of 84% was achieved for room level
localization using NB. Furthermore, we compared the classification results with two other
well-known classifiers viz., J48 Decision trees and KNN with 10-fold stratified cross valida-
tion. Fig. 3.3(c) shows that NB performs much better than J48 and KNN, with KNN having
the least classification accuracy. Finally, F1 score of 78% was achieved using NB for room
level localization in the residential household. NB does not over-fit the data as compared to
J48 and KNN.
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Methods M1 M2 M3 M4 M5

Energy apportioning accuracy 92.6 90.7 95.4 87.1 80.6

Table 3.2: Percentage of energy correctly apportioned for different methods in student house.

Appliance ID E1 E2 E3 E4 E5 E6 E7 E8

Apportioning 66.6 100.0 88.9 88.9 100.0 88.9 80.7 77.8
accuracy

Table 3.3: Percentage of energy correctly apportioned for each appliance among all the occupants.

Activity detection accuracy
In this chapter we considered si x micro-activities viz., (i) microwave usage (A1), (ii)

laptop usage (A2), (iii) refrigerator usage (A3), (iv) TV usage (A4), (v) grill usage (A5) and
(vi) coffee machine usage (A6). When there is an “ON" event from appliance monitoring,
activity information is collected from occupants using the smartwatch as described in Sec-
tion 3.2.2. In the training phase, each activity is labeled and the features in both time and
frequency domain are collected. Through exhaustive experiments we found that 6 s of sam-
ples at 100 Hz sampling frequency as optimal to detect the activities accurately. Note that
a large sampling duration may include additional information, which may not be relevant
and having a small sampling duration may not capture the relevant features of an activity.
Hence, identifying the right sampling duration is crucial.

Similar to location monitoring we evaluated the activity feature vector across three clas-
sifiers (see Fig. 3.3(c)). NB has a classification accuracy of 95% where as J48 and KNN has
around 87.5% and 90% respectively. Fig. 3.3(b) shows the precision and recall for each
micro-activity performed. It can be seen that the precision of all the activities are higher
than 85% and the overall accuracy of identifying the activities is around 95%. Even though
the activities A1 and A3 are quite similar, the classifier was still able to identify them cor-
rectly. This is attributed to the correct identification of the sampling duration.

Furthermore, we conducted several experiments to understand the effectiveness of the
location and activity features with respect to appliance detection. Accuracy of detecting an
appliance usage with either location or activity features is shown in Fig. 3.3(d). x-axis indi-
cates the various appliances in the student house and y-axis represents the appliance de-
tection accuracy. In general, the activity features can determine the associated appliances
more accurately than location features. This is due to the identification of micro-activities
using the smartwatches. It can be seen that for some appliances such as Refrigerator and
Grill, location features have higher accuracy than activity features. This is attributed to
the placement of appliances in different rooms and their distinctive consumption profile.
Moreover, for both location and activity information the average accuracy of identifying the
associated appliance is around 82%. This information can also be used with ModCO to
improve the accuracy of appliance detection.
Energy apportioning accuracy

We considered over 2 months of data to evaluate PEAT in both student house and res-
idential household. All the occupants were equipped with their personal smartphone and
smartwatch. Furthermore, the proposed toolkit can also be applied to other shared spaces
such as office environments. Note that the level of apportioning required in these spaces
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Figure 3.4: Energy apportioned correctly for each occupant in the residential household.

varies. In student house and residential household, PEAT apportions energy of shared and
personal appliances. The baseline appliances such as refrigerator, routers, air conditioning
and central heating are not apportioned to individual occupant. Moreover, the toolkit can
be extended to support apportioning of baseline appliances with additional training and
micro-activity recognition (e.g., open refrigerator door and take/keep items).

To study the efficacy of PEAT, we evaluated energy apportioning accuracy for varying
number of devices as mentioned in Section 3.3. Table. 3.2 shows the total percentage of
energy correctly apportioned for a week in student house with varying number of user de-
vices. When there is one occupant with smartwatch and other occupants have only their
smartphones i.e., method M1 with heuristics, PEAT achieves around 92% apportioning ac-
curacy per-occupant. This accuracy reduces to 87% when no heuristics are considered i.e.,
M4. Furthermore, when all the occupants have only their smartphone but no smartwatches,
PEAT still achieves 90.7% accuracy with heuristics (M2) and it is 80% when no heuristics are
applied (M5). Finally, if all the occupants had both smartphone and smartwatch, then the
energy apportioning accuracy achieved by PEAT is around 95% (M3). Clearly, having more
user devices increase the apportioning accuracy.

We now illustrate the energy apportioning accuracy for the method M1 among all oc-
cupants on per-appliance basis. Table. 3.3 shows appliance level energy that was correctly
apportioned to all the occupants in the student house. It can be seen that when an event
was associated with a personal appliance such as Laptops, the apportioning accuracy was
100%. However, with the shared appliances the apportioning accuracy reduces to 80% on
average. The average energy apportioning accuracy for all the appliances is close to 90%
and per-occupant average apportioning accuracy was around 92% in the student house.

Fig. 3.4 shows the energy apportioned to each occupant across appliances in the res-
idential setting when only smartphones were used (M2). PEAT achieves on average 87%
apportioning accuracy for all occupants when only location information was used in res-
idential household. The apportioning accuracy increases to 92% when all the occupants
in the household have their smartphones and smartwatches. Furthermore, for baseline ap-
pliance “refrigerator” an apportioning accuracy of 88.9% is obtained for both the occupants.

Discussions:
While PEAT takes the first few steps towards effective user-level energy disaggregation,

there are some limitations:
(i) Resolution of apportioning: The level of apportioning may vary depending on the envi-
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ronment, for example, in residential settings it may be more useful to apportion top energy
consuming appliances than all household appliances. In shared spaces such as student
house, shared appliance usage such as TV, washing machine, microwave and oven needs to
be apportioned to raise awareness among occupants. In PEAT, users can select appliances
for which energy needs to be apportioned to individual occupants during the setup.
(ii) HVAC apportioning: HVAC usage is the primary energy guzzler in households. Hitherto,
HVAC consumption was equally shared among all occupants. PEAT with the help of energy
disaggregation can identify when HVAC was turned on/off and using location monitoring
can determine when and where each occupants are in the household. PEAT attributes the
HVAC consumption to the users depending on the time they spent in the household. How-
ever, this works only for centralized HVAC systems and currently there is no way to deter-
mine individual room HVAC consumption without any additional sensors.
(iii) Shared appliances: PEAT with the help of activity and location monitoring can de-
termine which occupant is using the appliance when multiple occupants are in the same
location. However, when an occupant is not carrying his device (smartphone/smartwatch)
the event cannot be resolved to an occupant accurately. While we propose three heuris-
tics to apportion energy in such cases, further enhancement of appliance-user modeling is
required for accurate apportioning.
(iv) Moveable appliances: PEAT requires location of appliances known a priori. Hence it
cannot accurately apportion energy usage of moveable appliances such as hair dryer, when
there are multiple occupants present in the room.
(v) Localization and activity monitoring algorithms: PEAT achieves 90% apportioning ac-
curacy by using standard classification algorithms. We believe PEAT can be more effective
and robust by incorporating other crowd-sourced training free algorithms [97, 114].

3.5. CONCLUSIONS
In this chapter, we proposed a novel Personalized Energy Apportioning Toolkit (PEAT) to
accurately apportion energy amongst occupants in shared spaces. Inferring energy foot-
prints of occupants with minimal user intervention and no additional sensor deployment
is a challenging task. We showed that PEAT can accurately determine which occupant per-
formed what activity and where in the household. Furthermore, it combines online tech-
niques with minimal training for accurate energy apportioning. We proposed several ac-
curacy metrics to study the performance of each component of PEAT. We specifically de-
ployed the system in two multi-occupant settings – viz., a student house and a residential
household – to evaluate PEAT in real-world settings. With only the location information an
energy apportioning accuracy of 87% and 92% was achieved for all the occupants in the resi-
dential household and student house, respectively. The apportioning accuracy increases to
92% and 95% when both location and activity information are available in the residential
household and student house. We demonstrated that PEAT is highly scalable and privacy
preserving since privacy-sensitive data of occupants are stored and processed locally.

The techniques presented in this part provide real-time energy-consumption informa-
tion to occupants to understand their energy-usage behavior and encourage them to op-
timize their energy usage. LocED and PEAT take the first steps towards providing person-
alized energy services at both appliance and user level, respectively. In the next part we
describe the usage of fine-grained energy information for various demand-regulation pro-
grams such as demand shifting and reduction.
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4
DEMAND SHIFTING

W ITH the rapid advancements in embedded systems and wireless technologies, numer-
ous appliances such as vacuum cleaners, washing machines, ovens and refrigerators

are becoming more intelligent and can be controlled remotely in a smart home. In Smart
Grids (SG), utilities are allowed to dynamically adjust the electricity prices in order to con-
trol demand. The real-time pricing information communicated to the smart homes can be
used to control and adjust the demands at the customer premises.

Demand regulation (DR) is a key technique that can control and influence energy de-
mand at the consumer-end to reduce the overall peak demand, reshaping demand profiles
and increasing the robustness of SG [90]. Several demand-regulation techniques are pro-
posed in the literature for load shifting [35], peak clipping and valley filling [76]. In this
chapter, we limit the DR to load shifting. Load shifting, involves shifting loads from peak to
off-peak hours, without significantly influencing the average load over time. Load shifting
ensures the energy consumed by the household at any time period does not overload the
grid by altering the demand pattern of the household.

Each household is assumed to be equipped with an information system that collects
real-time demand measurements from smart meters and also controls energy consump-
tion. Existing energy management systems (EMS)/information systems are mainly designed
to improve energy efficiency and comfort, i.e., turning off appliances when not in use, chang-
ing HVAC/air-condition set points to minimize energy consumption [77, 106], etc. Re-
cent EMS aim to reduce electricity cost by scheduling the demand of a household based
on the electricity prices (real-time or day-ahead). These scheduling algorithms utilize ei-
ther (i) fine-grained energy-consumption information from the appliances or (ii) aggregate
energy consumption of the household for load shifting. In the case of fine-grained infor-
mation, energy consumption of each appliance in the household is analyzed for deriving
appliance-level schedules. These approaches require detailed user and appliance informa-
tion to schedule loads effectively. In case of aggregate consumption, the scheduler aims to
determine the energy that needs to be shifted from the total consumption of the household
at a given time period. This approach requires consumers to decide which appliance needs
to be turned-on/off to match the energy that needs to be shifted.

45
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There still exists several challenges hindering the applicability of load shifting in resi-
dential households. We enlist some of the important ones here: (i) Most of the approaches
presented [35, 62, 116] require detailed user and appliance-level information to schedule
loads effectively. This either requires additional deployment of sensors or significant con-
sumer involvement. (ii) Approaches based on aggregate energy consumption, either select
a demand pattern based on historic data or require the consumer to shift energy. Quite of-
ten, consumers have no real knowledge on appliance-level energy information. (iii) Most
demand-scheduling algorithms do not consider the heterogeneity of appliances in the house-
hold, flexibility in appliance usage, and appliance dependencies during scheduling. Hence
the resultant schedule is either infeasible or the user comfort is severely hampered. (iv) Load
scheduling or shifting is quite often performed in a centralized manner where energy con-
sumption information is sent to the utilities or an aggregator to determine the optimal
schedule. (v) Lastly, the scheduling algorithms are generally evaluated using simulations
or numerical analysis, which may not reflect the reality very well [32, 36, 62, 123]. Further-
more, the applicability of scheduling algorithms across different households has never been
considered in the prevalent research [105, 115].

To overcome the above limitations, we propose a decentralized demand-scheduling
scheme. The proposed demand-scheduling algorithm can, (i) determine appliance-level
information and user preferences for appliance usage, using only aggregated energy con-
sumption from the smart meters and (ii) propose a demand-scheduling algorithm that min-
imizes the user discomfort and electricity cost based on day-ahead hourly pricing. We de-
rive fine-grained appliance information and user preferences from the aggregated energy
information using a low-complexity energy-disaggregation algorithm (ModCO described in
Chapter 2). The proposed demand-scheduling algorithm is evaluated with our real-world
deployment Dutch Residential Energy Dataset (DRED) in the Netherlands [2]. Furthermore,
we show the applicability of the scheduler on another household in the USA using the open
dataset REDD [72]. The scheduler implementation is made publicly available for the com-
munity to support additional analysis [2].
Contributions. The main contributions are:

• We propose a novel decentralized demand-scheduling algorithm that minimizes user
discomfort and electricity cost of a household.

• We describe three coefficients to analyze user preferences and appliance usage pat-
terns using historic aggregated energy consumption.

• We provide a detailed empirical evaluation of the proposed algorithm using real-
world deployment and publicly open datasets.

4.1. RELATED WORK
Numerous DR programs [32, 36, 62, 105, 123] have been proposed to motivate changes in
the consumers’s power consumption with the objective to either (i) minimize the electricity
cost, (ii) maximize the social welfare, (iii) minimize the aggregated power consumption, or
(iv) any combination of the above [45].

Table. 4.1 provides a concise overview of the state-of-the-art approaches against the
proposed scheme. The columns indicate whether the scheduling algorithm is centralized or
decentralized, if consumer preferences are considered or not, whether the evaluation was
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Work Method Consumer Study Schedule implem
preference type level -entation

[62] Centralized Partial Numerical Appliance No
[123] Decentralized No Simulation Aggregate No
[35] Centralized Partial Simulation Aggregate No
[32] Centralized No Simulation Appliance Partial
[36] Centralized Partial Simulation Appliance No

Proposed Decentralized Yes Data-driven Appliance Yes

Table 4.1: Comparison of state-of-the-art approaches.

based on simulation or data-driven, if the scheduling algorithm is for appliance or aggre-
gated level, and if the scheduling algorithm can be implemented on an embedded system
such as a Raspberry Pi.

In [62] an optimized day-ahead pricing scheme is proposed by considering the flexi-
bility of appliance scheduling. A cost-minimization problem is formulated to reduce elec-
tricity cost. However this approach does not consider consumer preferences and authors
show only numerical analysis of the proposed scheduling algorithm. A genetic algorithm
to derive optimal power schedule of a household is proposed in [123]. The genetic algo-
rithm runs at the household to minimize electricity cost and to reduce the delay in usage
of appliances. Similar to [123], Chen et al. [35] propose a task-scheduling algorithm that
considers per-appliance delay and also long-term average delay to minimize the electricity
cost. Contrary to the above approaches in this chapter, we not only consider delay in ap-
pliance usage but we also consider the flexibility, appliance dependencies and consumer
preferences to schedule the appliance usage. In [32] an integer linear programming tech-
nique for online load scheduling is proposed to minimize energy cost. In [36], a scheduling
technique is proposed by modeling energy consumption and user preferences as a stochas-
tic variable. Appliance-level schedules derived are evaluated using simulation results. The
state-of-the-art techniques do not completely capture consumer preferences and appliance
usage patterns. Furthermore, these techniques cannot be applied across households.

4.2. SYSTEM MODEL
Each household is assumed to have an information system (i.e., Raspberry PI or Arduino)
connected with the smart meter to balance energy demand by applying demand regula-
tion techniques. Fig. 4.1 shows the system model of the proposed decentralized demand
scheduling system in smart homes.

The energy utilities send the day-ahead hourly pricing to all its consumer base. The
information system at the household then derives day-ahead schedules to minimize elec-
tricity cost. To derive day-ahead schedules, the aggregated energy demand data from the
smart meter is given to the energy disaggregation block. Energy disaggregation block em-
ploys a Modified Combinatorial Optimization (ModCO) algorithm to infer per-appliance
energy consumption information (more details on ModCO can be found in Chapter 2.2.
This information is also used to derive consumer preferences such as, which appliances are
used and its duration, usage patterns in weekdays and weekends, etc. The appliance level
energy information along with consumer preferences are used by the demand scheduler
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Figure 4.1: System model of decentralized demand scheduling.

to derive day-ahead schedules. The demand scheduler utilizes several coefficients to min-
imize the electricity cost and consumer discomfort. The proposed day-ahead schedule is
then communicated to the household/occupants via the information system. This we call
local feedback, which can be used to understand the effectiveness of the proposed schedule
or how the occupants are adapting. Furthermore, the information system communicates
the proposed schedule to the energy utilities, we call this global feedback. The global feed-
back allows utility to plan the energy purchase and also to balance energy at a larger scale
like neighborhood and township.

In this chapter, we distinguish the appliances in smart homes as non-schedulable and
schedulable. The former represents appliances that require fixed energy requirement and
are not subjected to scheduling decisions. These appliances include television, refrigera-
tors, modems, etc. Schedulable appliances allow appliance usage to be shifted in time and
has a direct relation with consumer preferences and behavior. These appliances include
dishwashers, washing machines and clothes dryers. The distinction between the loads can
be automatically done by analyzing the appliance usage patterns.

4.3. DAY-AHEAD DEMAND SCHEDULING ALGORITHM
We now describe an algorithm that generates day-ahead demand schedule for a household,
which minimizes electricity cost and consumer discomfort. Discomfort refers to the in-
convenience experienced by the consumers during load shifting. The derived schedule is
communicated to the occupants via information system to execute it the next day. Our al-
gorithm is agnostic to time granularity, i.e., it can be applied for an entire day, during peak
time periods, hourly, etc.

We formulate a cost minimization problem at the consumer-end by effectively schedul-
ing loads based on day-ahead hourly pricing. Appliance usage patterns and consumer pref-
erences are derived from the disaggregated energy data. The hypothesis considered here is
that the proposed day-ahead schedule should resemble to the historic energy consumption
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pattern of the consumer and it has minimal discomfort since the consumers have executed
them previously. However, consumer preferences may change over time. Hence, our algo-
rithm creates schedule not only based on historic demand patterns of consumers, but also
by determining several coefficients that define consumer preferences and appliance usage
patterns.

Fig. 4.2 shows an overview of the schedule generation algorithm. Our algorithm has five
modules viz., schedule creation, pattern abstraction, schedule filtering, schedule selection
and schedule enhancement.
Schedule creation:

The first step is to find the set of possible demand schedules of consumers from their
historic demand data. These schedules represent the energy usage behavior of consumers
in the past. We then group these schedules at different granularities i.e., either weekdays or
weekends, day of the week, etc. The past schedules generated are feasible and have minimal
impact on consumers daily routine since they have already executed them at some point in
the past.

A feasible schedule could be chosen from the past schedules that coincides with the type
of day in consideration. For example, a schedule for Saturday may choose only schedules
of past Saturdays or weekends. In such a way, the final proposed schedule retains a greater
resemblance to what the consumer typically does on that day. It may be possible that some
of these schedules do not match user preferences either due to huge variation in demand
profile on that day or due to arrival of guests in the household, etc. Hence it is necessary to
determine representative schedules that accurately depict consumer preferences from the
past schedules.
Pattern abstraction:

We propose three energy usage coefficients to analyze appliance usage patterns and
consumer preferences.

(i) Flexibility coefficient represents the average usage duration of an appliance in each
hour of the day. This indicates the time periods when an appliance was used previously and
how much time it was used. Fig. 4.3 shows flexibility coefficients heatmap of appliances
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Figure 4.3: Usage patterns of appliances in REDD.

during weekdays and weekends of a household from REDD dataset [72]. It can be seen
that, appliance usage is high in mornings (7-10AM) and evenings (6-8PM) on weekdays.
However, during the weekends the appliance usage is spread across the day. Flexibility co-
efficient indicates the most preferable time period of appliance usage by the users.

(ii) Sensitivity coefficient indicates the preferred time delay in usage of an appliance by
consumers. Some appliances can tolerate longer delays compared to others. For example,
the coffee machine might allow shorter delays than the washing machine as the user always
prepares coffee within a specific (and shorter) time period.

(iii) Dependency coefficient indicates the appliance dependencies, associations and us-
age sequence. In general, the occupants have a daily routine making it possible to use an
appliance in a sequence. For example, TV is always associated with a home theater.
Schedule filtering:

Schedule filtering employs the energy usage coefficients described previously to filter
and select schedules that most accurately represent consumer preferences. We select the
subset of schedules that adhere to the derived usage patterns and discard schedules that oc-
curred only a few times or that are not representative of a typical day. Fig. 4.4 shows the dif-
ference between a representative and non-representative schedule based on per-appliance
usage time. It can be seen that, a representative schedule has most of the appliances ad-
hering to the appliance usage time periods (flexibility) of a typical day. Moreover, in a non-
representative schedule only few appliances adhere to the average usage duration. The fil-
tering of schedules is done in combination with all the three energy usage coefficients.

The schedule filtering is based on individual appliances and to derive a representative
schedule for a household, a minimum number of appliances need to adhere to the require-
ments derived. This setting is adjustable by the consumer or the utility or after negotiation.
It represents the harshness in schedule filtering and can be used to identify the discom-
fort. For example, a requirement of low number of appliances to adhere to the coefficients
may result in selection of a schedule not matching the user preferences, leading to high dis-
comfort. The bounds on the coefficient values are derived based on consumer preferences.
Finally, the filtered schedules are the representative schedules for that household.
Schedule selection:

From the set of representative schedules derived, we find the schedule that minimizes
the electricity cost. Day-ahead hourly pricing information from the utilities1 is obtained

1Day-ahead hourly prices: http://www.powersmartpricing.org/pricing-table/

http://www.powersmartpricing.org/pricing-table/
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Figure 4.4: Appliance time usage duration in REDD for a representative and non-representative schedule..

to identify the schedule that results in minimal electricity cost. The scheduler selects the
schedule with least electricity cost by solving the following cost minimization problem,

minimize
N∑

i=1

24∑
t=1

Ct D(i )
t ,

subject to 0 ≤ Dt ≤ Dmax ,∀t ,

(4.1)

where N is the total number of representative schedules, Ct is the hourly electricity cost
and D t is the hourly energy demand of a representative schedule i . Dmax represents the
maximum hourly energy demand of the household.
Schedule enhancement:

Finally, we try to enhance the cost-optimal schedule derived previously. Enhancements
are typically appliance load shifting based on the flexibility and sensitivity coefficients, to
further reduce the cost and discomfort associated. Hence the optimization problem in (4.1)
can be re-written as,

minimize
24∑

t=1
Ct Dt

subject to 0 ≤ Dt ≤ Dmax ,∀t ,

l a
f ≤ f (d a

t ) ≤ ua
f , s(d a

t ) ∈ (l a
s ,ua

s ),∀a ∈ A,

(4.2)

where Ct is the hourly cost, D t is the cost-optimal energy demand, d a
t is the appliance en-

ergy demand, f a and sa are the flexibility and sensitivity coefficients for each appliance,
a ∈ A the set of appliances, and l a

f , ua
f , l a

s , ua
s are the corresponding lower and upper bounds

of flexibility and sensitivity coefficients.
We propose an iterative method to solve (4.2) where each appliance usage is either re-

tained at the same time period (if cost is lower) or shifted within the flexibility and sensitivity
range derived using energy data. As mentioned previously, the former indicates the average
usage time period of an appliance in a hour and the latter indicates the time delay the ap-
pliance can tolerate. The iterative method generates a sequence of improving approximate
solutions that adheres to these coefficients. Furthermore, the scheduler needs to ensure,
(i) an appliance usage event should not be subdivided into smaller events to avoid expen-
sive hours and (ii) an appliance event duration should not be altered i.e., neither stretching
nor shrinking of an event is allowed. Our algorithm ensures the above conditions are met
and shifts the appliance usage accordingly.
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Figure 4.5: Cost-optimal and enhanced schedule in REDD.

Cost-optimal
Electricty PriceEnhanced

Time (hours)
0 6 12 18 24

Po
w

er

Figure 4.6: Comparison of cost-optimal and enhanced schedule in REDD.

Since, the iterative method is applied only on the cost-optimal schedule the computa-
tional complexity associated in load shifting is minimal. Fig. 4.5 shows the demand shifting
of schedulable loads for cost-optimal and enhanced schedule. It can be seen that from
the cost-optimal schedule appliance usage are shifted to obtain the enhanced schedule.
The shifting of appliance usage is based on the electricity price and consumer preferences
derived using the energy usage coefficients. The comparison of cost-optimal and the en-
hanced schedule with day-ahead electricity price is shown in Fig. 4.6.

Furthermore, the proposed scheduler can incorporate renewable energy sources such
as solar and wind to balance the energy demand and supply. In this case, D t in (4.1) and (4.2)
can be replaced with D̂ t , where D̂ t =D t - DRES . Here, D t is the demand required by the
household, DRES is the demand generated from renewables such as solar and wind, and D̂ t

is the energy demand borrowed/requested from the grid.

4.4. RESULTS
We provide performance evaluation of the proposed scheduler across multiple datasets.
We first describe the datasets employed for empirical evaluation. We then provide detailed
results on energy disaggregation and efficacy of the scheduler.

4.4.1. DATASETS

The energy disaggregation and demand scheduler was evaluated using our deployment
Dutch Residential Energy Dataset (DRED) in the Netherlands [2]. Furthermore, the pro-
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Figure 4.7: Optimal schedule for a day in our DRED dataset.

posed models were also evaluated with a publicly available energy dataset called REDD
(Reference Energy Disaggregation Dataset) [72].

(i) DRED: Our deployment consists of several sensors measuring power, occupancy and
activities of occupants. The sensors were carefully installed to avoid any inconvenience to
the occupants. We collected data at both aggregated and appliance level using smart meters
such as plugwise sensors2 at 1 Hz sampling frequency for over 6 months. The dataset is
made public and more details about the deployment can be found in [2].

(ii) REDD: It is one of the first publicly available dataset with both appliance and aggre-
gated energy consumption data. The dataset includes data from 6 households in the USA.
Each household has more than 15 appliances and the data was collected at 1 Hz sampling
frequency. In our evaluation, we use House-1 data and more details can be found in [72].

4.4.2. DEMAND SCHEDULING
The accuracy of energy disaggregation obtained from ModCO has been previously described
in Chapter 2.5 and Chapter 3.4. We now describe the schedule derived using the proposed
scheduler in DRED dataset.

We implemented our algorithm described in Section. 4.3 on a Raspberry Pi to determine
day-ahead appliance schedule. Fig. 4.7 shows the results from each step of the scheduler
in DRED dataset. From all possible schedules, Fig. 4.7(i) shows the filtered representative
schedules with schedulable and non-schedulable loads. The grey color indicates the non-
schedulable loads such as refrigerator, modem, etc., and the red color shows the schedu-
lable loads washing machine, dishwasher, etc. Fig. 4.7(ii), (iii) shows the appliance usage
pattern in weekdays and weekends derived from disaggregated data.

Fig. 4.7(iv) show the cost effective schedule obtained based on the day-ahead pricing us-
ing (4.1). The cost-effective schedule shows the schedule executed previously by the house-
hold. The scheduler algorithm adapts the cost-effective schedule iteratively to further mini-
mize user discomfort based on the energy usage coefficients proposed. Fig. 4.7(v) shows the
derived enhanced schedule using flexibility and sensitivity coefficients. Finally, Fig. 4.7(vi)

2Plugwise energy monitoring: https://www.plugwise.com/smile-p1

https://www.plugwise.com/smile- p1
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shows the enhanced and cost-optimal schedule along with the day-ahead price. On this
particular day in DRED, around 70% of schedulable load was shifted to achieve minimal
cost and discomfort. Fig. 4.6 shows the comparison of enhanced and cost-optimal sched-
ules for a household in REDD dataset. On the average monthly electricity cost reduction of
25% and 30% can be seen in DRED and REDD households using the proposed scheduler.
The proposed scheduler can be adapted to incorporate renewable energy sources and bat-
tery storage. Furthermore, since all the data is stored and processed locally the proposed
decentralized demand scheduler is highly scalable. Moreover, the information system at
each household can negotiate in a distributed fashion to further minimize the total aggre-
gate load on the grid.

4.5. CONCLUSIONS
In this chapter, we took the first step towards utilizing the fine-grained consumption data
(described in Part I) to develop personalized energy services. We presented a decentralized
algorithm to derive optimal day-ahead schedules considering consumer preferences and
appliance-usage patterns. Our algorithm derives schedules that minimizes the electricity
cost and also associated consumer discomfort at the same time. The proposed algorithm
was empirically evaluated across multiple datasets such as DRED and REDD. Cost savings
of up to 25% and 30% can be achieved in DRED and REDD datasets. Indeed this is the first
time actual energy consumption datasets are used to evaluate load shifting at the consumer
side. The proposed day-ahead algorithm can also be applied to other variations of electric-
ity pricing such as real-time pricing, critical-peak pricing and time-of-use pricing.
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I N Chapter 4 we described how to shift energy usage such that user discomfort and elec-
tricity cost is minimized. While the scheduling algorithm proposed ensures the energy

is utilized in cost-optimal manner it does not reduce the total energy consumption. In this
chapter we look at services that provides recommendations to occupants to reduce overall
energy consumption.

HVAC (heating, ventilation, and air conditioning) and artificial-lighting systems account
for about 25-40% of electricity usage in residential and commercial buildings [19]. Thus ef-
ficient usage of the HVAC and lighting is one major step towards reducing energy consump-
tion. Automatic control of HVAC and artificial lights has been one of the popular methods
for achieving energy efficiency in buildings. The current systems use fixed set-point con-
trols, which are decided based on a conservative approach. Further, the lighting systems
require additional sensor deployment to cope with the continuous intensity fluctuation of
natural light.

With many occupants in smart buildings, there is a tradeoff in achieving the preferred
comfort levels of users and yet achieving energy efficiency. In this chapter, we present the
indoor Light and Temperature Controler (iLTC), which is a smart system that achieves a
fine balance between energy efficiency and user comfort. A brief overview of the system
is shown in Fig. 5.1. Unlike traditional building energy management systems (BEMS), iLTC
employs a room-level controller to decide on an energy optimal operating set-point for the
actuators while trying to make all the co-occupants feel comfortable with respect to their
preferences. This could be a simple addendum to the main controller of the HVAC in the
building. Moreover, the feeling of thermal and lighting comfort is not a single tempera-
ture or light intensity value for a person, but a range of values within which a user can feel
“equally” comfortable. Thus, iLTC needs to learn in detail about the thermal and visual
comfort preferences of each individual.

Implementing iLTC is highly challenging for the following reasons: First, an operating
set-point for the actuators is a mere number. It is not easy to correlate comfort levels of
humans with a certain light intensity and temperature value. A tangible scale of comfort
levels needs to be mapped onto the numbers that can decide the set-points. Second, ther-
mal comfort varies significantly from person to person. Complete information about the
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comfortable temperature range of each co-occupant is required to decide on a common
temperature set-point while keeping HVAC energy consumption as low as possible. Third,
lighting comfort also varies significantly from person to person [50]. Further, light intensity
also varies significantly at various locations inside a room. Thus, we need a mechanism to
identify natural light intensity at a desired location (e.g., work-desk of a user). An Android
application was developed to collect preferences of users. We collected user preference data
from 21 participants housed in different rooms to create individual temperature and light-
ing comfort functions. A detailed evaluation of iLTC is performed based on these comfort
functions to measure energy savings. Furthermore, the proposed iLTC system was tested
and evaluated by many users.
Contributions. The main contributions of this chapter are:

• We develop a layered design for iLTC that can offer room-level control for lighting and
HVAC systems.

• Our system employs a non-intrusive mechanism to derive comfort preferences with
minimal user intervention and training. We provide comprehensive mapping func-
tions for a person, which can indicate comfort level for any given light and tempera-
ture value.

• We estimate the natural light intensity at the work-desk of users by utilizing light sen-
sor available in their smartphones. We derive a relationship between the light inten-
sity measured by a smartphone sensor and the outdoor light intensity measured with
a single sensor. This eliminates the huge cost of deployment of additional sensors and
their management.

• We propose an algorithm to determine the most energy-optimal operating set-point
for HVAC and lighting systems while making all the co-occupants comfortable.

5.1. RELATED WORK
A significant amount of energy is wasted by the HVAC and artificial lighting systems in a
building due to their inefficient usage. Thus, a large body of current works focuses on the
efficient usage of these systems from various aspects. Simple solutions proposed to save en-
ergy elicit turning off the actuators automatically when there are no occupants [50, 70]. The
occupancy is detected using some sensor-based mechanism. ThermoCoach [92] provides
a personalized thermostat recommendation exploiting occupancy patterns. However, the
technique used cannot be applied for shared spaces where there are multiple occupants.

Another set of work focuses on the reduction in energy consumption and stable op-
eration of the HVAC systems. While some of the research efforts have been to optimize
operational efficiency of the HVAC for a given set-point temperature [66, 73], a significant
number of works also emphasize on selecting a suitable set-point temperature for the HVAC
in order to fulfill thermal comfort of the occupants. There are two main methods for deter-
mining thermal comfort, the heat-balanced way and the adaptive approach. The predicted
mean value (PMV) approach is a heat-balanced method and depends on six parameters:
metabolic rate, clothing insulation, air temperature, radiant temperature, air speed and hu-
midity. Most of these parameters are difficult to obtain from typical sensors in BEMS and
hence PMV proves to be impractical. The adaptive approach focuses on the adaptation
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Figure 5.1: iLTC overview.

of human psychological and physiological behavior [41]. Rather than using the traditional
PMV model, which assigns a static comfort level to a user, recent studies have shown that
participatory-based approaches can be used to optimize user thermal comfort and conse-
quently reducing energy costs [51, 74, 86].

Participatory approaches allow occupants to give feedback based on their comfort level.
From the feedback a consensus about a common comfort value can be derived. One major
challenge for such a system is that the set-point is resilient to outliers and thus a mecha-
nism is required to cope with outliers as, for example, proposed by Zhang et. al [78]. Another
challenge is to find the balance between intrusiveness and user involvement in order for the
occupants to maintain their incentive to participate. Most of the existing works require ad-
ditional sensor deployment or detailed user information (preferences, demographics, etc.)
and generate a fixed optimal set-point for each occupant given a room, which provides lim-
ited flexibility to decide a common set-point temperature. Erickson et. al [44] have used a
participatory sensing approach to customize HVAC settings. However, their approach does
not consider shared spaces with multiple co-occupants. Moreover, it requires a significant
amount of user participation to learn about their comfort preferences.

With respect to reducing energy consumption by the lighting systems, the basic idea is
to use artificial lights only when it is necessary. To do this light intensity inside a room need
to be known. As the natural-light level can change across days without any fixed pattern
and also the light intensity varies at different locations within a room, measurements need
to be done continuously at every location of interest. Thus many researchers have deployed
a number of sensor nodes to monitor the fluctuation in natural light level [27, 61, 89]. How-
ever these approaches are intrusive and cumbersome.

5.2. SYSTEM MODEL
A brief overview of iLTC is shown in Fig. 5.1. A room-level controller sets an energy optimal
operating point for the lighting and HVAC systems considering the comfort preferences of
all the occupants.

There are two major building blocks in iLTC – ‘user daemon’ and ‘room daemon’. A
user daemon is associated with each user and it is hosted on his/her smartphone. The
proposed system employed a smart-phone based App to learn individual temperature and
lighting comfort levels for various temperature and light intensity values. The data collected
through the App is utilized to create comprehensive comfort function. On the other hand,
any activity associated with a room is handled by the room daemon. For each room in a
building, a separate instance of room daemon is created for their independent operations.
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Figure 5.2: Layered design of iLTC.

These daemons can be hosted on a centralized server at the building or at a room-level
embedded device. The virtual representations of the actuators are hosted by the associated
room daemon. Additionally, a temperature and humidity sensor is required for every room
to get thermal feedback. As the modern HVAC systems can maintain a near homogeneous
temperature within a room, it eliminates various thermal zones within a room. Thus, a
single temperature sensor for a room is sufficient.

The proposed system uses artificial lights only when the received natural light at the
work-desk fall below the comfort level. The natural light intensity at various positions inside
a room varies significantly, and it keeps on changing. Thus, a trivial solution is to deploy
light sensor at every work-desks. We use a smart technique to avoid deployment of multiple
light sensors inside a room. Rather we use a single light sensor for the whole building, and
the effective natural light intensity at each user desk is estimated using this solitary sensor
data. This reference light sensor is used by all users and room daemons, and is not part of
either of the user and room daemons. Thus, the associated virtual representation is hosted
at a centralized location, which can be accessed by all stakeholders.

5.3. USER DAEMON
The user daemon obtains the preferences through the user interface and builds a compre-
hensive comfort function for thermal and visual preferences. In this section, we describe
how individual user preferences are obtained and modeled. Furthermore, we also discuss
how to estimate natural light intensity at a user’s work-desk using only a single reference
light sensor.

A user daemon hosts three modules – ‘light profile’, ‘temperature profile’, and ‘location’.
While the light and temperature modules learn preferences of users during the training pe-
riod, the location module identifies whether the user is inside a room or not. This binary
classification of user presence is performed using WiFi based indoor localization. We uti-



5.3. USER DAEMON

5

59

(a) Application screenshot.
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slightly warm/bright +1 3

neutral 0 4
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cool/dark -2 2

cold/very dark -3 1

(b) Comfort levels.

Figure 5.3: Screenshot of the App for collecting user preferences and their mapping into a numeric scale.
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(b) Comfort range: room 1
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Figure 5.4: Comfort function of an individual based on preference voting, and common comfort range of a room
based on individual comfort functions of all the co-occupants.

lized existing WiFi access points deployed in the building along with smartphones of occu-
pants. More details on the localization approach is described in Chapter 2.2.

5.3.1. INDIVIDUAL USER PROFILING
The core of iLTC is to build individual comfort profiles for temperature and lighting. For a
person, maximum thermal comfort is not a single temperature value rather a range of tem-
perature values. Similarly, visual comfort also spans over a range of light intensities. Most
users cannot easily correlate their comfort levels with temperature or light intensity val-
ues. Even if they do, there is a chance of significant deviations. To this end, iLTC utilizes a
smartphone App to learn the preferences, coupled with precise measurements from corre-
sponding sensors. When new users enter the system, we consider a conservative approach
with respect to her preferences. Initially, we assign preference values derived from survey,
which are then personalized based on the preferences data collected over time.
Collection of user preferences: Thermal comfort of a person for a particular temperature
cannot be determined without the feedback from the person. We use both explicit and
implicit way of learning the preferences (feedback on comfort levels) – explicitly by asking
the users to indicate their comfort levels and implicitly (later while iLTC is in operation)
when the user overrides the controller settings. This allows dynamic adaptation of comfort
preferences. Furthermore, if the new setting is significantly different, then preferences are
adapted again by collecting additional voting data from the user. Thus, by capturing the
changes in user preferences overtime, iLTC eliminates any outliers.
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A screenshot of the App, which is used to collect feedback, is shown in Fig. 5.3a. To
indicate comfort a seven-point scale is used as suggested by the American Society of Heat-
ing, Refrigerating and Air-Conditioning Engineers (ASHRAE). However, we convert the tra-
ditional numeric scale of [-3,+3] to [1,4] (see Fig. 5.3b), because indicator level ‘neutral’ is
given the highest preference, whereas indicator level ‘cold’ and ‘hot’ are given the lowest
preference. To learn the visual comfort a similar scaling is also adapted as indicated in
Fig. 5.3. The data collected from the App is used to model the comfort preferences for tem-
perature and light. Note that the explicit data collection is done only in the beginning when
a user becomes part of iLTC.

Our goal is to create comprehensive comfort functions that can indicate the comfort
level of the person for any given temperature or light intensity. To build such a function,
ideally, we should have comfort level indicator for each possible value, which is not a fea-
sible option. Thus we collected a few comfort indicators and then we try to model them.
The data collection was conducted from 21 users with 5 different ethnic background, age
varying from 24 to 51 years. The data collection is done over several weeks with a dedicated
sensor node deployed in each of the rooms of the occupants (participants). Next, we explain
the mapping from these measurements to comfort levels.
Modeling user profile – mapping room temperature and luminance to comfort levels:
Whenever a person indicates her comfort level, it is registered with its corresponding sen-
sor values. During function creation, we cluster these comfort indicators in multiple equal
sized bins. The bin size indicates a small range of sensor values for which user comfort re-
mains unchanged. Different bin sizes were empirically evaluated across all the participants
to determine the optimal bin size. More details on selecting appropriate bin size is dis-
cussed in Section 5.5. After analyzing user preference data collected from multiple users, we
notice that thermal comfort function can be represented using a Gaussian function (eq. 5.1),
whereas the light preference function can be represented using a Beta function (eq. 5.2).

FT (α, t ) = α1 exp
−(

t−α2
α3

)2

(5.1)

FL(β, l ) = β1l (β2−1)(1− l )β3−1 (5.2)

For every user, the parameters (α and β) of these functions differ. Based on the comfort
indicators, we derive the individual function parameters using the least square curve fitting.
To derive a reflective function from the limited samples, we assume that any temperature
beyond 14° C and 30° C will be uncomfortable for any person. Thus, with the existing com-
fort indicator data set, we add two additional data points of these two extreme temperatures
with comfort value 0 using the least square method. Similarly, for light these two extreme
values are 0 and 1200 lux.

Fig. 5.4a shows the clustered preference data and the thermal comfort function derived
for an individual. From this function, we can conclude that this particular user feels maxi-
mum comfort within the range of 20.25° C and 24° C . When multiple users occupy a room,
a common comfort range needs to be determined. Fig. 5.4b and 5.4c, shows the common
comfort range in two different rooms occupied by different set of people (each room with
two occupants). It is clear that common comfort range of two different rooms can be quite
different based on the individual comfort ranges of the occupants. Thus, a common tem-
perature set-point for all the room can cause discomfort for some of the occupants or it will
expend more energy by the HVAC or lighting systems or both. iLTC exploits the comfort
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ranges of all the occupants in a room to determine the most energy optimal HVAC set-point
for the room. Moreover, the comfort range for a user is location independent and it can be
carried over when user changes her location.

Similarly, the clustered lighting comfort indicators and the fitted comfort function for
two users is shown in Fig. 5.5. From these figures, we can conclude that the minimum
desirable luminescence varies significantly from person to person. Unlike temperature, a
common comfort range for lighting need not be derived for following reasons. First, when
the light intensity becomes uncomfortable due to superfluous light, the artificial lighting
system cannot be used to reduce the intensity (like a HVAC through cooling). Rather, the
lighting systems remain completely off and window blinds can be used to block additional
sunlight. Second, the particular light intensity from the lighting systems can illuminate dif-
ferently at various parts of the room. Thus, a work-desk close to window might get sufficient
sunlight, while a work-desk far away from the window might experience light deficiency. As
the received light intensity from a light source (natural or artificial) differs from desk-to-
desk, only individual visual comfort threshold need to be considered.

5.3.2. MODELING OF RECEIVED LIGHT AT WORK-DESKS

As the light intensity varies within a room, it is important to measure the amount of natural
light reaching each work-desk for a particular outdoor light intensity. Thus a single light
sensor is not sufficient to measure the amount of natural light at different locations (in case
there are more occupants in a room). Moreover, setting a particular set-point (brightness
level) for a light unit does not mean a uniform light intensity in all parts of the room. This
necessitates measuring received amount of light at the work-desks of the users from differ-
ent sources of lights – artificial and natural.

Modeling of received natural light: iLTC employs the smartphone light-sensor of a user to
measure the received light intensity at his/her work-desk. However, for natural light, one
time measurement using the smartphone is not sufficient as the natural light can vary over
the days. To resolve this, we use one reference light sensor. Based on the measurement tuple
of the reference light sensor and the smartphone light sensor, a relationship is established.
This can be used to derive received natural light at the work-desk when there is a particular
outdoor light intensity. Our goal is not to measure light intensity at every part of the room,
but only at the work-desk of the occupant. Once this measurement is done, the relationship
remains the same until the user changes his/her work-desk.

Though the gradient of light intensity can be expressed as, lr = ls
4πd 2 , where ls and lr are

the light intensity at the source and at a distance d from the source respectively, the gradi-
ent of light intensity inside a room cannot be described using the same relation. However,
a similar form of relationship can be seen between outdoor and indoor light intensity as,
lu = a1∗lo +a2, where lu and lo are the light intensity at the user work-desk and outdoor re-
spectively. To determine the unknown parameters (a1 and a2) for a work-desk, we collected
light values for a day after the user becomes part of the iLTC system (using her smartphone).
Using the training data set, the parameters are estimated using least square method. Once
these parameters are known for the work-desk, the received natural light can be estimated
based on the reference light sensor values.

Intuitively, it is clear that once the parameters are found, the same parameters can be
used to estimate light values for that location irrespective of the room and window dimen-
sion. However, the estimation accuracy suffers significantly if the same set of parameters is
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Figure 5.5: Comfort functions of individuals based on preference vote and lower bound of lighting comfort.

used irrespective of time of the day and weather condition. To improve the estimation ac-
curacy, our approach splits the data set collected into multiple segments based on the light
intensity values of the reference sensor. Then for each of these segments, we find the set of
parameters.

Another important factor that influences the accuracy of natural light estimation is the
visibility of the sun from the window (time of the day). We divide the data into various seg-
ments based on the location of the Sun and orientation of the window in the measurement
room, and then determine the estimation parameters. Our evaluation shows that dividing
the data set into two parts – when the Sun is visible from the window, and when it is not
visible from the window – improves estimation accuracy. By visibility of Sun, we mean the
Sun’s location is within the visible area of the sky through the window. Thus, to estimate
the natural light at a work-desk, the right set of estimation parameters are chosen based on
Sun’s visibility from the window and light intensity segment of the reference light sensor.

Though the visibility of Sun from a window changes drastically throughout the year,
it can be easily determined. If the direction of the window and geographical location of
the room (latitude and longitude) are known, visibility of Sun can easily be derived from
the Sun’s azimuth. To derive Sun’s azimuth, we have used the algorithm provided by the
measurement and instrumentation data center (MIDC) of the national renewable energy
laboratory (NREL) [5]. This is a one-time data collection activity to determine the direction
of the window and geographical location of the room.

Modeling received artificial light Similar to the natural light, the amount of received arti-
ficial light also varies within a room. Thus, it is also necessary to measure the amount of
received light from each of the light units at the work-desk of a user. During the training
period, we turn on the light units in appropriate steps to measure the received light inten-
sity from each of the light units at the work-desks. The light units were set to full brightness.
Using the collected data, the gradient of brightness can be determined. For every light unit,
there is a different gradient at different work-desks.

In building iLTC, we made the following two assumptions about modeling of prefer-
ence: (a) since the temperature preferences is not location dependent, it can be utilized
across various rooms, including a common meeting room and home environments; (b) the
same is applicable for visual comfort. However, in a different room the gradient of light in-
tensity from Sun and artificial sources varies differently. This necessitates a different set of
parameters to model received light intensity for different work-desks. Since a user spends
most of his/her time at a particular work-desk, one training campaign is sufficient.
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Figure 5.6: A three step algorithm to decide set-points of the light units inside a room.

5.4. ROOM DAEMON
Most of the real-time activities are handled at the room daemon. Whenever a user enters or
leaves the room the set-points for the actuators need to be adjusted. Moreover, if the natural
conditions change, that also influences the set-point values of the actuators. Each room
daemon hosts three modules – ‘main thread’, ‘light controller’, and ‘temperature controller’.

5.4.1. MAIN THREAD
The main thread module manages overall execution of the room daemon. When a person
enters a room, it sends an ‘arrival message’ to the room daemon. This message contains the
identity of the users and their preferences. Upon detecting arrival of an occupant, the dae-
mon communicates preference values to the controller modules. It also makes a temporary
local copy of the user preferences along with marking the presence of the user. It periodi-
cally monitors presence of occupants inside the room, and instructs the controller modules
to adjust set-points of the actuators if required. On the other hand, the user daemon sends
periodic ‘hello messages’ to indicate the presence. If no hello message is received from a
user for significant amount of time, it assumes that the user has left the room, and removes
her comfort preferences. If the user daemon itself identifies that the user left the room, it ex-
plicitly sends a ‘departure message’ to the room daemon. Whenever a departure is detected,
the controller modules are invoked to adjust the set-points if required.

5.4.2. LIGHT CONTROLLER
The goal of the light controller module is to ensure usage of artificial light only when the
natural light is insufficient for lighting comfort. Given that it knows the amount of received
natural light at a work-desk (ln) and the corresponding user preference regarding the light-
ing comfort (lp ) (see Section 5.3.2), the amount of light deficiency can easily be calculated
(ld = lp − ln). Using the artificial light modeling described earlier, received amount of light
at the work-desk can also be calculated if a particular light unit illuminates at certain bright-
ness. Based on these, the module can decide the minimum brightness for each light unit so
that the light deficiency of the user can be supplemented. A minimum amount of energy
consumption is ensured since lower brightness means lower energy consumption.

When there are multiple occupants inside a room, a certain brightness level for the light
units may not satisfy everyone’s lighting preference. Thus, to fulfill light deficiency of all
the occupants while maintaining lower energy consumption, a suitable combination of set-
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points (brightness level) for each light unit needs to be decided. We formulate this as an
optimization problem and it is given below.

min
n∑

i=1
l (i ) (5.3)

subject to :
n∑

i=1
A(l (i ), i ,u) ≥ dl (u), ∀u, (5.4)

where, A(l , i , j ) = a1(i , j )× l +a2(i , j ). (5.5)

The objective of the optimization problem is to select a combination of set-points for
each light unit in a room such that the light deficiency is fulfilled while having minimum en-
ergy consumption. If a light unit i sets its brightness to l (i ), then the received light amount
for user u can be calculated using 5.5. Eventually, the combined received light amount
should be at least equal to the light deficiency ld (u). If there are 4 light units and each light
unit has 16 brightness levels, there are a total of 65536 combinations to choose an optimal
brightness level. Light intensity can change quickly within a short time period. Thus, the
light controller needs to adjust the set-points every now and then. Selecting an optimal set-
point out of all possible combinations can incur significant computational cost. Thus, we
propose a heuristic algorithm to find the set-point that maximizes user comfort and mini-
mize energy consumed.

A brief overview of the algorithm is shown in Fig. 5.6. First, a combination of optimal
set-points for all the light units is derived for each of the occupants based on her light defi-
ciency. The common set-point for a particular light unit is decided by taking the maximum
among individual brightness levels required for all the occupants affected by that light unit.
This ensures that everyone would receive sufficient amount of light. In the final step of
the algorithm, the brightness levels are decreased one step at a time to see whether this
new combination can fulfill the deficiency of all the occupants. This iterative process stops,
when no further decrease in brightness level is possible. Here the algorithm assumes that
the brightness level of the light units can be varied. However, for traditional lighting system
with only two states (on/off), we use a similar but simpler technique to decide whether a
light unit should be On or Off at any time instant. When there is a quick drop in natural
light levels, the brightness levels are not increased immediately, rather a similar iterative
approach is considered but with faster rate of change in brightness level. This ensures oc-
cupants do not notice any immediate fluctuation in the light units.

5.4.3. TEMPERATURE CONTROLLER
The temperature controller module decides temperature set-point for the HVAC, which
maximizes the comfort of all occupants and minimizes HVAC energy consumption. Cur-
rent HVAC systems are quite efficient in terms of maintaining a room temperature based
on the given set point. Furthermore, with the introduction of zone heating, HVAC systems
can now eliminate hot or cold spots in a room and maintain a set temperature value across
the room. Moreover, several research efforts are conducted to determine the optimal pre-
conditioned temperature of a room before an occupant arrives or after she leaves. In this
regard, we focus on how to obtain an optimal temperature set-point, which maximizes the
comfort of all occupants and minimizes the energy consumed by the HVAC system. Deter-
mining a set-point is not trivial when there are multiple occupants present in a room. The
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Figure 5.7: State diagram of the HVAC operation and associated temperature set-point (st ) assignment. Transitions
among the states depend on the room temperature (rt ), outside temperature (ot ), number of occupants (Oc ), and
the common thermal comfort range (< bl ,bu >) of all the occupants.

temperature controller finds the common comfort range of occupants based on the prefer-
ences collected previously.

A HVAC can be at three different operating states – default, heating or cooling. Default is
a state when the HVAC consumes minimal amount of energy – without loss of generality, it
can be the Off state. In heating state, the HVAC blows warm air inside the room such that the
room temperature reaches a set-point value. The warmth of the air is decided based on dif-
ference between the desired set-point temperature and current temperature, whereas the
energy consumption depends on the difference between the desired set-point temperature
and outdoor temperature. In the cooling state, HVAC operation is similar.

We now describe how HVAC states are switched and how the set-point temperature is
decided (Fig. 5.7) so that all the occupants feel comfortable. In the beginning, the HVAC is in
the default state and its set-point is set to zero (st = 0). When an occupant enters the room,
the room daemon receives her thermal comfort function. Then, the temperature controller
finds a comfort range for the person, which includes a lower (bl ) and upper (bu) bound.
The module also gets the current room temperature (rt ) from the temperature sensor. If the
current room temperature is within this bound, then HVAC continues to remain in the de-
fault state. The module periodically checks if the room temperature falls out of this bound,
and changes its operating state. This can happen for two reasons: (i) the room temperature
changes due to occupants and/or the outdoor temperature; and (ii) the bounds of the com-
fort range are modified (narrowed) because of a new occupant entering the room. Hence
our system periodically monitors the user presence in the room and the current tempera-
ture to maximize user comfort.

In case, the room temperature falls below the lower bound of the common comfort
range (rt < bl ), the HVAC enters the heating state, and the set-point is set to this lower
bound (st = bl ). This ensures that all the occupants comfort preferences are met. At the
heating state, if a new occupant leaves/arrives, the bounds for the common comfort range
are modified. If the lower bound increases compared to the previous one (bl = bl +β), that
means the heating need to be continued and the set-point is adjusted to the new lower
bound. In case the lower bound gets reduced, there is a possibility of decreasing the heat-
ing intensity. If the new lower bound is significantly higher than the outside temperature
(bl −ot > θ), then the set-point is adjusted to the new lower bound and the HVAC continues
in this state. Otherwise the HVAC is switched to the default state. At the heating state, if
all the occupants leaves the room (Oc ) or the room temperature reaches sufficiently higher
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Figure 5.8: Estimation error of the received natural light at two work-desks.

than the set-point temperature (rt >= st +θ), the HVAC enters the default state with set-
point being zero. The switching between heating to default state is guarded with a threshold
θ to ensure that the state change does not happen frequently. A similar switching happens
on the right side of the state diagram when room temperature goes beyond the upper bound
of the common comfort range and the HVAC enters the cooling state. As mentioned earlier,
this work focus on deciding the optimal set-point and assumes that the current HVAC sys-
tem is capable of maintaining the set temperature value based on the physical conditions of
the room. Thus by constantly monitoring the room condition and occupancy, iLTC adapts
the set-points to maximize user comfort and minimize energy consumption of the HVAC.

5.5. RESULTS
In this section, we describe our experimental setup and provide details of all the sensors
used during the setup. Further, we present results regarding modeling of received light
at the user work-desk and energy savings incurred with the deployment of iLTC system in
shared environments.

5.5.1. EXPERIMENTAL SETUP
iLTC system was deployed in an office environment with multiple rooms. The number
of lights, window size and room size can vary depending upon the building considered.
However, the functioning of the iLTC system is independent of these parameters. The set
of devices used for our measurements, actuation and data collection includes: (i) Moteiv
tmote-sky sensor nodes measuring temperature and light intensity in indoor and outdoor
locations, (ii) Smartphones from different manufacturers for localization and user comfort
indicator, (iii) Philips hue light bulbs for indoor lighting, and (iv) Plugwise circles were used
to measure energy consumption of the hue bulbs.

Our experimentation considered 21 participants in an office environment from 5 differ-
ent ethnic background with age varying from 25 to 51. The participant list includes both
male and female users and all the users had their smartphone.

5.5.2. ILTC EVALUATION
The goal of iLTC is to decide set-points for the actuators such that (i) all the co-occupants in
a room can be provided maximal comfort; and (ii) the energy consumption by the actuators
is kept minimal.
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Lighting energy reduction. Deciding light unit set-point requires information about de-
ficiency in natural light conditions. Thus, we first show the natural light estimation at the
user work-desk using the estimation technique proposed in Section 5.3.2. Fig. 5.8 shows the
estimation error of the received natural light at two work-desks. It can be seen that, when
the whole day data is considered a high error is associated with the estimation. On the other
hand, by splitting the data set based on visibility of sun significantly reduces the estimation
error. This is mainly due to the consideration of rate of change of natural light with respect
to sun visibility at the user work-desk.

Fig. 5.9 shows the light intensity steps (in lux) and the corresponding number of in-
stances when the occupant noticed the change in light intensity. We experimented this
across participants and the average results are shown in Fig. 5.9. It can be seen that, when
the combined received light intensity at the work-desk changes in bigger steps more num-
ber of users feel annoyed. From our experiments, we determined 25 lux to be the step
change, applied when increasing or decreasing the light intensity to prevent user incon-
venience. In Section 5.3.1, we discussed that a range of temperature and light values are
clustered into bin before deriving the comfort functions. For the light values, a bin size of
25 lux is used for the range of 0 to 1200 lux (This is also clear from Fig. 5.9). For tempera-
ture, it starts from 14° C until 30° C with a bin size of 0.25° C , that means any comfort label
indicator for the range 18° C to 18.25° C is mapped to 18° C .

The light intensity of the hue bulbs considered in our experimentation are within the
range 600 to 16000 lux near the source, and the energy consumption ranges from 0.58 W/s
to 5.4 W/s. Unlike the temperature set-point, setting a particular brightness of light units
does not guarantee the required level of lighting comfort at the user’s work-desk as the light
intensity degrades significantly while moving away from the source. Consider two users
inside a room with minimum light comfort preference of 300 and 381 lux (Fig. 5.5). Fig. 5.10a
shows the amount of natural light received at the work-desks over a time period. The light
samples are measured every 10 s. During the real deployment of the system, the measured
value of received light intensity will not be available. Thus, we use an estimate of received
amount of light using the reference sensor as described earlier. It can be seen that, the
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Figure 5.10: Based on the estimation of the received natural light at two work-desks, and their corresponding light
preferences set-points are decided for the light units.
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Figure 5.11: Luminance of all light units: a comparison between iLTC and the optimal light level selection.

estimated light intensity closely follows the actual received light intensity. This estimated
light is used as input for the light controller module.

As mentioned in Section 5.3.2, we measured the gradient of light intensity from each
source at each work-desks. Fig. 5.10b shows the total amount of light seen at the source
(with all six lights) and the received light intensity at the user work-desks. The decrease of
received light at the work-desks is indeed due to distance from the artificial lights. Further-
more, Fig. 5.10c shows the total perceived light at the work-desk by considering both natural
and artificial light. It can be seen that, lighting preferences of both the occupants are always
met by adjusting the brightness level of the lighting system when necessary.

As mentioned in Section 5.4.2, the light controller uses a computationally inexpensive
algorithm to decide the set-points. From Fig. 5.10c, it is clear that the algorithm serves
the purpose of providing lighting comfort to all the occupants. To evaluate efficiency of
the algorithm, we derived the set-points using an optimal solution and compared it with
iLTC solution. The optimal solution is found by testing all the possible combinations of
brightness levels.

Fig. 5.11 shows the combined brightness of all the light units using the optimal and iLTC
set-point solutions. As the energy consumption is directly proportional to the brightness
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level, this also reflects the level of energy consumption. From the figure, we can conclude
that the iLTC solution is very close to the optimal solution. To be precise, iLTC uses only
6.92% higher light than the optimal solution. However, the number of iterations to find
a suitable brightness levels using iLTC is a mere 0.01% of the optimal solution. There is
another significant drawback with the optimal solution. In order to find the least energy
consuming brightness levels, the optimal solution can change the brightness levels of the
light units too frequently with certain change in natural light level. This may cause annoying
experience to the users. On the other hand, iLTC ensures that whenever the brightness
level gets decreased, it decrease by only one level of brightness (a closer look at Fig. 5.11
for samples between 1950 and 2050). From our empirical evaluation, we found that a lux
difference of 25 is unnoticeable by the users at their work-desk and we used that as the
minimum brightness step (see Fig. 5.9). This ensures that the user will hardly notice any
change in the brightness when decreasing the light intensity.

Fig. 5.12a shows the reduction in light intensity to maintain user comfort and minimize
energy consumption across two lamp units. It can be seen that the light intensity is reduced
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Sunny day Cloudy day
Switching
Method

Multi-step
light

On/off
light

Multi-step
light

On/off
light

Fixed 56.25% 31.20% 60.71% 33.06%
Stepwise 31.03% – 35.29% –

Table 5.1: Reduction of energy consumption by iLTC as compared to fixed and stepwise switching of the light units.

iteratively such that not more than 25 lux difference is perceived at the user’s work-desk.
This approach ensures sudden fluctuations in natural light do not affect the user comfort.
Moreover, when the natural light is not sufficient, artificial lights are turned ON to main-
tain the user comfort levels. For example, in evening the natural light perceived at the user
work-desk might be lower than the comfort preference. During this stage, we follow an iter-
ative approach to increase the lux value, but at a faster rate rather than abrupt change in lux
causing inconvenience to the user. Fig. 5.12b shows the rise in lux value to maintain user
comfort across two light units. Thus iLTC avoids both abrupt increase and decrease in light
intensity and follows a iterative approach to achieve the same without causing too much
inconvenience to the users.

We also conducted a post-deployment user evaluation to determine the efficacy of the
system (Fig. 5.13). Based on the user preferences collected, the set-points for the lighting
system and the brightness level of the light units were constantly adapted. The feedback
was collected using a questionnaire available on the smartphone App. The questionnaire
comprised of questions related to visual comfort feeling. Each user selects one of the com-
fort levels viz., (i) hostile, (ii) uncomfortable, (iii) amicable, and (iv) preferable based on the
current set-points decided by the iLTC. The post-deployment evaluation was conducted on
several days to generalize the outcome. On an average 78% of the feedback from 21 par-
ticipants indicated preferable comfort feeling when the light intensity was adjusted due to
either insufficient light intensity or excess light intensity. 22% feedback received indicated
amicable feeling at certain time periods. A closer look revealed that these are due to the
variation in comfort preference of the user and also due to sudden fluctuations in natural
light perceived at the user work-desks. This change is preference was further considered to
adapt the user preference models accordingly.

Finally, to evaluate the efficiency of the light controller, we compared iLTC with two
switching mechanisms. (i) Fixed switching – where the light units are turned on to the
maximum levels when the outdoor light intensity drops beyond a certain threshold. This
threshold is decided when either of the users face light deficiency. (ii) Stepwise switching
– where the light units are turned on with varying brightness with the variation of outdoor
light intensity. We tested these strategies on the data sets for a sunny day and a cloudy day,
where on the cloudy day indoor light intensity was insufficient for the occupants almost
throughout the day. The total energy consumption by all the light units is shown in Fig. 5.14
when various switching strategies are used. All the strategies considered include occupancy
detection before turning on the lights. iLTC based switching consumes the least energy as
compared to other strategies. This is mainly due to the individual control of brightness
level at each light unit. Table 5.1 shows the total reduction in energy consumption by iLTC
as compared to fixed and stepwise switching mechanisms.

HVAC energy reduction. To compare the energy consumption of the HVAC, we adopted
the energy-temperature correlation model P = | λM (ti − to)| as described in [120], where P is
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Figure 5.15: Comparison of energy consumption by the HVAC for fixed set-point technique and iLTC. Considering
the total yearly consumption, iLTC is 39% and 27% less expensive based on the outdoor temperature in two cities.

the amount of energy consumed by the HVAC system in one second, λ is the conductivity
of a particular room, M is the efficiency of the HVAC system, and ti and to are the indoor
and outdoor temperatures respectively. For a particular room, λ and M are constant. So,
the HVAC energy consumption is mainly dependent on the difference in set-point temper-
ature and outdoor temperature. Additional details of the HVAC system such as duct type,
radiation/convection, air re-circulation is not considered as it varies from one HVAC sys-
tem to another and also dependent on the building characteristics. Our objective is to show
the potential energy savings by finding the optimal set-point to maximize user comfort and
minimize energy consumption. Thus we use a simpler energy model based on difference
between indoor set-point and outdoor temperature as described in [120].

For our evaluation, we fixed the values of λ and M to be 70.5 J/s.K and 0.14, respec-
tively (from [120]). We consider two rooms at two different parts of the world – (i) Delft,
the Netherlands, and (ii) Delhi, India. We collected the yearly weather data for these two
cities from public repositories [6]. Also there were two occupants in these rooms in both the
places with comfort range spanning from 21.75° C to 26.5° C (Fig. 5.4b), and from 18.75° C to
22.25° C (Fig. 5.4c). iLTC sets the room temperature based on the common comfort range of
the occupants and the outdoor temperature, whereas a fixed temperature set-point strategy
selects a fixed temperature for rooms irrespective of the comfort preferences of the occu-
pants. However, we assume that the fixed set-points also vary between 21° C to 23° C from
winter to summer months. Both the strategies employed occupancy detection before se-
lecting a set-point.

The total energy consumption of the HVAC on a monthly basis is shown in Fig. 5.15. In
most of the cases, iLTC incurs significantly less energy consumption than the fixed set-point
strategy. However during the winter season in India, iLTC induces more energy consump-
tion. This is because the lower bound of the common comfort range is 21.75° C , where
the fixed-point strategy sets the temperature to 21° C . But, when yearly basis energy con-
sumption is calculated, iLTC outperforms fixed-point strategy in terms of lesser energy con-
sumption. In India, the total yearly energy consumption is 6032 kWh and 9881 kWh for the
two methods, respectively. On the other hand, in Netherlands, they are 13129 kWh and
9595 kWh, respectively. Thus, iLTC reduces energy consumption by 39% and 27% in the
respective cities.



5

72 5. DEMAND REDUCTION

5.5.3. DISCUSSION
As demonstrated in the previous sections, iLTC system can decide a set-point to reduce en-
ergy consumption to maximize the comfort level for all the co-occupants in a shared space.
However, there are a few challenges that need to be addressed: (i) The light intensity val-
ues collected from smartphone of users may vary due to the heterogeneity of the sensors
used by different manufacturers. Hence, the data collected needs to be calibrated to derive
accurate user comfort preferences. Data calibration can be easily performed by compar-
ing the sensed data with a baseline sensor data. (ii) In some scenarios, there may not be
any common comfort range between the co-occupants in a shared space. It could even be
discontinuous when more than two occupants share the space. iLTC then determines a set-
point to save energy and also minimize the average discomfort for all the co-occupants. (iii)
The efficiency of traditional BEMS can be very low, when there is frequent user movement.
Our iterative approach in iLTC for controlling the actuators ensures that frequent movement
of users does not affect the overall comfort drastically. (iv) The HVAC model utilized here
shows the energy saving considering only the temperature difference between outdoor and
indoors, however sophisticated simulation tools can be employed to derive detailed energy
savings by considering other building parameters such as duct type, air re-circulation, zone
thermal storage, etc. iLTC can take any given model and tries to set the operating point; (v)
Since iLTC system measures the current light intensity and temperature at a specific space,
it is agnostic with respect to building type and the surrounding spaces. It learns the comfort
preferences and decides on energy optimal set-points. Hence iLTC can also be used in large
shared spaces with multiple occupants; (vi) User involvement in iLTC is minimal where new
users can join and leave the system freely.

5.6. CONCLUSIONS
We developed an indoor environment controlling system called iLTC that offers automated
HVAC and lighting control at the room level trying to fulfill individual user preferences. In-
stead of choosing a conservative set-point for the actuators that can provide nominal com-
fort to the occupants in a shared space, iLTC decides a set-point that can be energy optimal
while considering comfort levels of all co-occupants. The system learns the preferences of
each individual based on human perception of comfort through the developed smartphone
App. We developed a comprehensive comfort representation function from a few comfort
indicators using the collected data, and reduced explicit human intervention. We leveraged
the light sensor in a smartphone to monitor the received light at users’ desk in addition to a
single reference light sensor for all the users in the building. Thus iLTC reduces the deploy-
ment and management costs of multiple light sensors. Results show that iLTC’s set-point
selection can reduce energy consumption up to 39% and 60% by the HVAC and lighting sys-
tems, respectively, compared to the fixed set-point mechanism. We evaluated iLTC with 21
participants housed in multiple rooms and qualitative user evaluation shows over 78% of
the participants felt comfortable with the deployed iLTC system.

In chapters 4 and 5 we presented services that shift or reduce energy consumption by
considering individual preferences in smart homes/buildings. In the next part, we present
services that can identify target households/buildings in a neighborhood for various DR
programs.
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6
TEMPORAL DEMAND REGULATION

T HE introduction of smart meters at a large scale offers new opportunities for fine-grained
real-time data collection. Energy utilities can now devise targeted demand-response

(DR) programs, tailored energy-saving advice, and dedicated electricity tariffs for specific
consumers. Energy consumption is highly influenced by consumer behavior and their char-
acteristics. Rather than selecting all the households in a neighborhood for a DR event, an
effective DR mechanism should first identify the set of target consumers and then apply the
DR technique. However, in a neighborhood or community with thousands of households,
heterogeneity in consumer preferences hinders identifying consumers for specific DR pro-
grams such as reduction in average energy consumption, reduction in demand peaks, etc.

Recent research works have shown that analyzing the energy consumption data of con-
sumers plays a crucial role in the classification of consumers [38]. Analyzing smart meter
data is challenging due to several reasons viz., (i) huge amounts of energy data from smart
meters need to be processed effectively, (ii) the granularity of smart meter data and relevant
features therein need to be identified across households, (iii) there is no comprehensive
method to analyze large-scale smart meter data from households.

In this chapter we present Temporal Demand Regulation (TDR) to analyze and classify
households based on their historic energy-consumption data. We describe a new perspec-
tive to study energy demand enabling the design of novel mechanisms for decentralized
demand-side energy management. Rather than only optimizing the demand levels of each
household so that it meets available supply, the concept of computing the demand states of
each household and feasible transitions between these states are introduced. The demand
states measure one of the following features: (i) demand level, (ii) demand variation and (iii)
demand peaks. In contrast to the related work [62, 93, 125], we show that the orchestration
of temporal transitions between the demand states can meet a broad range of Smart Grid
objectives set by the utility companies. A generalized data-driven methodology based on
clustering of historic consumption data (time-series) from each household is designed for
a local computation of the demand states at different aggregation granularities, e.g., daily,
weekly, etc. This methodology captures the temporal dynamics of demand and can be used
to identify target consumers for DR programs. The proposed methodology is decentralized,
highly scalable and privacy preserving. This can be used to build effective real-time recom-
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mendations for the self-regulation of demand. The methodology can be further applied to
other time series data, especially resource-consumption data such as water and gas. Fur-
ther, an online self-regulation model for the adjustment of demands by targeted consumers
is proposed. The selection criteria is governed by four temporal metrics, viz., transition
probability, temporal membership, temporal adaptability and temporal similarity. TDR is
evaluated and validated using data from a real-world Smart Grid project consisting of more
than 4,000 households.

The objective of TDR is two-fold, (i) identify target households for DR programs by clas-
sifying households based on their historic energy consumption data and (ii) a decentralized
self-regulation model for the adjustment of demands by targeted households.
Contributions. The main contributions of this chapter are:

• We present a generalized, domain-independent data-driven model and methodology
for the computation of demand states.

• We propose four temporal metrics for measuring and evaluating demand adjustments.

• We present an online self-regulation model for the adjustment of demands by tar-
geted consumers and its validation using survey responses of consumers.

• We describe our evaluation of the methodology using demand data from a real-world
Smart Grid project with 4,000 households.

6.1. RELATED WORK
Numerous DR programs [33, 62, 93, 109, 125] have been proposed to motivate changes in
the consumers’ power consumption. These DR programs can be broadly classified into
centralized and decentralized schemes [115]. In centralized schemes, a central controller
collects all the demand information from consumers for DR decisions [62, 125]. Decentral-
ized schemes allow consumers to coordinate directly with each other to participate in DR
programs [24, 34, 93].

Successful implementation of DR programs relies on the identification and participa-
tion of target consumers. The majority of previous efforts on the identification of target con-
sumers relied on customer self-reported data [18, 105]. Large-scale deployments of smart
meters has paved the way to analyze real-time energy consumption to provide insights into
the energy usage of households [63, 82, 83]. Moss et al. investigate the segmentation of
consumers into groups based on the similarity of energy usage [82], whereas, Chicco et al.
study different unsupervised clustering algorithms to classify consumers, based on the load
pattern shape [38]. The majority of earlier work does not study the temporal transitions for
classification of households. In contrast, we analyze the temporal dynamics of demand by
considering multiple features such as average and peak consumption.

A plethora of optimization-based models are designed for DR programs with various
objectives. Zhu et al. derive optimal power consumption, by taking into account loads that
can shift or adjust their consumption in successive time periods [125]. This centralized ap-
proach requires consumers to communicate their demand needs and usage patterns for
each appliance. In contrast, TDR analyzes the temporal demand of households to derive
consumer characteristics such as how often the demand pattern varies and which con-
sumers are willing to participate in DR. Joe-wong et al. propose a day-ahead device-specific
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Figure 6.1: Computation of demand states.

scheduler that is based on task schedules, which considers heterogeneity in appliance de-
lay tolerance [62]. This centralized model employs convex optimization to derive demand
schedules. However, the main problem is that it requires fine-grained appliance-level en-
ergy data and also continuous real-time communication between the energy provider and
the consumers. Recent work [93] shows how to manage the energy demand of households
by analyzing historic aggregated energy-consumption data. Pournaras et al. propose a de-
centralized approach for demand-side self-management [93], where software agents repre-
sent the demand preferences of consumers and control their demand by selecting a plan
according to the criteria defined by a selection function. The decentralized approach en-
forces all the consumers to select a plan that meets the DR objective set by the utility. In
contrast, TDR identifies the target consumers who can participate in different DR programs
by analyzing the temporal dynamics of demand. Baharlouei et al. propose a decentralized
scheme along with a fairness index to minimize total generation cost with a smart billing
mechanism [24]. This approach assumes all consumers are flexible in participating towards
DR. In TDR, the selection of consumers and the discomfort associated with the demand reg-
ulation is governed by the threshold parameter θ. Several insights obtained from temporal
analysis can be applied to develop more effective consumer-centric DR programs. Majority
of the literature is concerned with simulations or numerical analysis compared to the real
data employed here.

6.2. MODELING TEMPORAL DYNAMICS OF DEMAND
A generalized data-driven model and methodology (illustrated in Fig. 6.1) for computing
local demand adjustments for each household is introduced in this section. An outline of
mathematical symbols used in this article is given in Table 6.1. Each household is assumed
to be equipped with an information system that collects and stores real-time demand mea-
surements using smart meters [77]. The collected data are aggregated at different granular-
ity levels – daily, weekly or seasonal. The information system manages l samples of historic
demand series d1,...,dl , with d1 being the most recent historic time series and dl is the ear-
liest. Each demand series consists of T = |d j | demand measurements, therefore, T is the
number of measurements aggregated for a certain granularity.
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The information system serves the DR program of the utility companies by turning the
forecasted demand series dl+1 to the regulated demand series d̂l+1. Such an adjustment is
achieved by mining the historic demand series to infer and reason about possible demand
changes observed in each household. Utility companies may introduce one or more fea-
tures for characterizing and assessing the quality of the forecasted and regulated demand.
The quality of the demand represents the characteristics extracted from the demand time
series. For example, a household demand with low load factor shows occasional high de-
mand peaks resulting in low quality of demand.

The quality q j of a demand series d j is defined by a set of m measurable features q j =
{p1

j , ..., pm
j }, where pu

j is the property of a demand series d j according to the feature u at

time j . A property pu
j is defined as pu

j = fu(d j ), where fu(d j ) is a function performed over

the demand time series.
This work focuses on m = 3 quality features of demand: (i) average (AVG), (ii) relative

standard deviation (RSD) and (iii) load factor (LF). The average (AVG) feature is defined as,

p1
j = f1(d j ) = 1

T

T∑
t=1

d t
j , (6.1)

where, d t
j ∈ d j is the demand measured at time t within the demand time series d j . This

feature indicates the aggregate demand over the time period T and does not provide infor-
mation about how demand is distributed over T . In contrast, relative standard deviation
(RSD) feature computes the homogeneity of demand over time period T and is defined as,

p2
j = f2(d j ) = 1

p1
j

√√√√ 1

T

T∑
t=1

(d t
j −p1

j )2, (6.2)

where, d t
j ∈ d j is the demand measured at time t within the demand time series d j . Note

that the average demand over the time period T in demand time series d j is indicated
in (6.1) by the property p1

j . Finally, the load factor (LF) [33] determines the scale of demand

peaks and is computed by the ratio of average demand and maximum demand measured
over a time period T and is defined as,

p3
j = f3(d j ) =

p1
j

maxd j
, (6.3)

where, the property p1
j denotes the average demand over the time period T . The maxd j =

max(d t
j ),∀t ∈ {1, ..,T } denotes the maximal element that corresponds to the maximum de-

mand peak during the time period T for the demand time series d j .
Demand, and its quality features, can be forecasted by analyzing the historic demand

time series. For example, the average demand p1
l+1 at time period l +1 can be predicted by

using the average demand p1
1,...,p1

l during the past l time periods. Although a broad range
of data mining and machine learning algorithms can be used for predicting future demands,
the main focus here is on clustering because of the following reasons: (i) clustering is an un-
supervised method that does not require labeling of the demand data; (ii) future demand
predictions can be determined by analyzing the centroids of the clusters and their corre-
sponding sizes [109]; (iii) the possible states, in which a feature of demand may be, can be
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extracted via clustering. For example, by clustering the past average demand p1
1,...,p1

l into
three clusters, the centers of the clusters ranked from low to high indicate the low, medium
and high demand states of a household; and (iv) clustering provides information about the
temporal transitions between different demand states that represent the center of the clus-
ters. In this way, the temporal dynamics of demand are modeled, since clustering reasons
about whether or when certain demand transitions are feasible by each household.

Given l demand properties pu
1 , ..., pu

l of a feature u, clustering to k clusters is defined as,

k⋃
o=1

co
u = pu

1 , ..., pu
l , (6.4)

where, co
u is the cluster o containing demand properties for the feature u. For each cluster

co
u , the center co

u is computed by the centroid or medoid [30]. Expectation Maximization
(EM) clustering [39] is employed here to determine the number of clusters based on the
demand properties.

When a demand property changes its membership from one cluster to another, this
is defined as a transition. A demand state su

j = o ∈ {1, ..,k} is defined by the cluster index

to which the demand property pu
j belongs. States su

l+1 and ŝu
l+1 represent forecasted and

regulated demand states, respectively for a feature u. A sequence of z transitions defines a
demand adjustment observed or triggered at time j and is given by,

au
j = {su

j , .., su
j+z }, (6.5)

where, au
j is a sequence of transitions starting from state su

j of feature u at time point j to

state su
j+z with z = |au

j |.

6.3. MEASURING DEMAND ADJUSTMENT
This section defines the following four metrics to measure and evaluate demand adjust-
ments, viz., (i) transition probability, (ii) temporal membership, (iii) temporal adaptability
and (iv) temporal similarity.
Transition probability.

It measures the probability of moving from a certain demand state to another demand
state. Given a quality feature u, the average transition probability Tu

a→b from demand state
a to b is defined as,

Tu
a→b = 1

l −1

l−1∑
j=1

β j ; β j =
{

1 if su
j+1 = b | su

j = a

0 if su
j+1 6= b | su

j = a
(6.6)

where, β j is a binary variable that equals ‘1’ if a transition from demand state a to b occurs
at time j or ‘0’ otherwise. It holds that Tu

a→b ∈ [0,1].
Temporal membership.

This metric evaluates the probability of a certain demand state occurring over time. The
temporal membership Mu

o of a demand state o for feature u is defined as,

Mu
o = 1

l

l∑
j=1

γ j ; γ j =
{

1, su
j = o

0, su
j 6= o

(6.7)
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Table 6.1: List of mathematical symbols used.

Symbols Description
l Number of historic demand time series

d j A demand time series at time j
T Number of measurements of a demand series
j Time index, e.g., j th aggregation time period

dl+1 Forecasted demand series
d̂l+1 Regulated demand series

q j Quality of a demand series d j
u Quality feature e.g.„ AVG, RSD, LF
m Number of quality features
pu

j Demand property of feature u at time j

co
u Cluster o for feature u

k Number of clusters computed
su

j Demand state of a feature u at time j

su
l+1 Forecasted demand state for feature u

ŝu
l+1 Regulated demand state for feature u

au
j Demand adjustment for feature u at time j

z Number of state transitions
Tu

a→b Transition probability from demand state a to b for feature u

θ Transition probability threshold
Mu

o Temporal membership of a demand state o for feature u
A(au

z ) Temporal adaptability on a demand adjustment au
z

Su
x,y Temporal similarity between two consumers

x and y for a demand feature u
β,γ,σ Binary variables to compute temporal metrics

J Jaccard similarity coefficient

where, γ j is a binary variable that equals ‘1’ if the demand state su
j occurs at time j or ‘0’

otherwise.
Temporal adaptability.

This metric measures the probability of a demand adjustment occurring over time. Tem-
poral adaptability A(au

l+1) of a demand adjustment au
l+1 for feature u and with size |au

l+1| =
z ≤ l is defined as,

A(au
l+1) = 1

l − z +1

l−z+1∑
j=1

σ j ; σ j =
{

1, au
j = au

l+1

0, au
j 6= au

l+1

(6.8)

where,σ j is a binary variable that equals ‘1’ if the demand adjustment au
l+1 defines the same

sequence of transitions as the sequence of the demand states su
j , .., su

j+z . Otherwise it holds
σ j = 0.
Temporal Similarity.

This metric evaluates the similarity between the demand states of two consumers. Tem-
poral similarity Su

x,y between the demand states of consumer x and consumer y for a feature
u is defined by the Euclidean distance as,

Su
x,y =

√√√√ l∑
j=1

(su
j ,x − su

j ,y )2 (6.9)

where, su
j ,x , su

j ,y represent the demand states of two households x and y , respectively.
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6.4. ONLINE SELF-REGULATION OF DEMAND
A model that improves the quality of demand by a transition from the forecasted state su

l+1
to the regulated state ŝu

l+1 is introduced in this section. Demand quality is improved by
adjusting one of the demand properties (see Section 6.2), e.g., performing a transition to a
demand state with reduced demand, lower variation in demand or lower demand peaks. A
heuristic is presented to select consumers who can perform such a transition. The heuristic
employs the temporal adaptability metric to quantify the probability of each consumer to
perform such a transition. The criterion for selection of target consumers is governed by
the threshold θ. For example, if a consumer has θ = 0.2 and A(au

l+1) = 0.25 > θ, the model
reasons that this consumer can self-regulate its demand, i.e., it can perform the change to
regulated state using the forecasted state. Otherwise, if A(au

l+1) < θ the consumer remains in
the forecasted state. This threshold can be selected by the utility companies, each consumer
or it can even be the result of a negotiation between the two parties. For example, utility
companies can provide monetary incentives to consumers for lower values of θ so that they
increase the likelihood of participation in DR programs in case of a high overload in the
power grid.

Algorithm 1 A heuristic for online self-regulation of demand.

Input: Demand properties pu
1 , ..., pu

l , the forecasted state su
l+1 and the threshold θ.

Training phase:
1. Compute the demand states by clustering pu

1 , ..., pu
l as in (6.4).

2. Compute the transition probability Tu
a→b for all possible transitions.

3. Compute the transitions from step 2 that satisfy the DR objective.
4. Compute the regulated state ŝu

l+1 from the transitions of step 3 with maximum Tu
a→b < θ.

Testing phase:

if au
l = {su

l , su
l+1} satisfies the DR objective then

5. No demand regulation is required.
else

6. Change from forecasted state su
l+1 to the regulated ŝu

l+1.
7. Compute efficiency: AVG reduction, RSD reduction or increase in LF.

end if

Algorithm 1 illustrates the local heuristic that realizes the online self-regulation model.
The heuristic is executed by each household. It consists of a training and testing phase.
In the training phase, all possible demand adjustments that satisfy the DR objectives are
computed and ranked according to the transition probability metric. The training phase
completes with the computation of the regulated state, in case the constraint for a maxi-
mum Tu

a→b < θ is satisfied. The testing phase checks if the adjustment from the current
demand state su

l to the forecasted demand state su
l+1 satisfies the DR objective. If the ob-

jective is satisfied, no regulation is required, otherwise, the forecasted state is adjusted to
the regulated state. Each household is assumed to be equipped with an information system
that can translate the forecasted demand state to the regulated demand state [34]. Based
on this adjustment, the efficiency of the heuristic can be computed by measuring the AVG
reduction, RSD reduction or LF increase, depending on the selected quality feature.
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Figure 6.2: Dataset charcteristics.

The self-regulation model is online and the training model proposed is adaptive, wherein
the temporal metrics are updated after each time period. To regulate the demand, house-
holds have to only identify the current and forecasted demand states at each time period.

6.5. RESULTS
This section illustrates the experimental evaluation by employing a dataset [14] of 4,232
residential households to identify target consumers for the DR programs. The performance
of the proposed online self-regulation of demand is evaluated empirically.

6.5.1. DATASET
CER dataset [14] collected during a smart metering trial in Ireland is used for empirical
evaluation. The dataset contains energy consumption measurements from 4,232 house-
holds every 30 minutes between July 2009 and December 2010 (75 weeks in total). The
objective of the trial was to investigate the effect of feedback on household electricity con-
sumption. Each participating household fills out a questionnaire before and after the trial.
The questionnaire contains questions about the socio-economic status of the residential
consumer, appliance stock, properties of the dwelling, and the consumption behavior of
the occupants. Fig. 6.2(a) shows the distribution of loads across households in the dataset.
The x-axis represents the percentage of the households having an appliance. Furthermore,
Fig. 6.2(b) shows the distribution of daily and weekly average energy consumption across
all households.
Expectation Maximization (EM) clustering [39], [48] is employed to determine number of
clusters based on the demand properties. One of the major limitations with clustering algo-
rithms such as k-means clustering is its requirement of prior knowledge on the number of
clusters, k. EM clustering iteratively refines an initial clustering model to fit the data based
on the principle of maximum likelihood estimation.

The number of clusters found for all the households is 7 and 5 for daily and weekly
AVG features, respectively. Similarly, 5 and 4 clusters are found for the RSD feature and,
5 and 5 clusters are found for the LF feature with daily and weekly granularity, respectively.
Members of Cluster 1, for the AVG feature indicate households with low average energy con-
sumption. Similarly, members of Cluster 1 for the RSD feature indicate households with low
demand variation and members of Cluster 5 for the LF feature indicate households with low
demand peaks.

The number of clusters computed with the unsupervised EM approach is validated with
two well-known cluster evaluation metrics [101]: Davies-Bouldin Index (DBI) and Silhou-
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Figure 6.3: Transition probabilities for the quality features – AVG, RSD and LF.

ette. The cluster evaluation metrics verify the number of clusters and confidence of EM
method. More details on the cluster evaluation metrics can be found in [84].

Summary: Clustering identifies the demand state of the households. Cluster evaluation
metrics such as DBI and silhouette verify the accuracy of cluster formation.

6.5.2. TEMPORAL DYNAMICS OF DEMAND

Fig. 6.3 shows the average transition probability of all households for the AVG, RSD, and LF
features. The higher the gradient, the higher is the probability of transition from one de-
mand state to another. Households in a certain demand state have higher probability to re-
main in the same state than transiting to other demand states. This can be seen in Fig. 6.3(a)
and 6.3(b), where a household has a high probability to remain in the same demand state,
indicating a constant average demand. However, for the RSD and LF features the transi-
tions are more rapid indicating the variations in demand and sudden peaks, respectively.
The transition probability from a high RSD state to a low RSD state is low, indicating not so
drastic variation in the demand as seen in Fig. 6.3(c) and 6.3(d). Hence, DR programs em-
ployed by utilities should consider step-wise reduction matching the variations instead of
immediate reduction in demand variation. Fig. 6.3(e) and 6.3(f) show the transition proba-
bilities for the LF feature. The households change their load factor quite often as depicted
by the transitions in low demand states.
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Figure 6.4: Temporal membership for all households.

Summary: The transition probability illustrates the temporal adjustments of demand.
The results show that for the AVG feature transitions are more fixed than the ones of RSD and
LF features, where households change their states frequently.

Fig. 6.4 shows the average temporal membership of all households. The box plots de-
scribe the distribution of households for each demand state membership. The lowest line
segment indicates the minimum temporal membership value of a household and the top
line segment indicates the maximum temporal membership value. The rectangular box in-
dicates the distribution of temporal membership values for different households with the
red line segment indicating the median. The majority of the households belong to the inter-
mediate demand states (States 2, 3 and 4) as seen in Fig. 6.4(a) and 6.4(b) for the AVG daily
and weekly properties. Indeed, less than 10% of the households belong to low and high
AVG state. Temporal membership reveals the most favorable demand state of a household.
Utilities can use this information in order to provide tailored recommendations.

Fig. 6.4(c) shows that around 40% of households have high membership probability in
state 2 and 3 indicating the majority of the households having moderate demand varia-
tions. However, Fig. 6.4(d) shows that around 80% of households have high membership
probability in demand state 1 and 2 indicating a low variation in weekly demand. Thus,
weekly demand variation of households is more stable compared to the daily variation,
which increases the membership probability associated with the weekly properties. Hence,
varying the granularity level provides insights on how demand properties change over time.
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Figure 6.5: Temporal adaptability for all households.

Fig. 6.4(e) and 6.4(f) show the membership of households for the LF feature. The majority
of the households are distributed over low demand states, indicating high demand peaks.

Summary: Temporal membership reveals the most probable demand state of a house-
hold. With respect to the AVG feature, only 10% of the households belongs to low demand
states indicating that the majority of the households are either moderate or high energy con-
sumers.

Fig. 6.5(a) show the average temporal adaptability of all households for different qual-
ity features with transitions that aim to reduce average energy demand, demand variation
and demand peaks. This work considers, (i) one step demand adjustment – transition from
one state to another (consecutive or non-consecutive states); (ii) two step demand adjust-
ment – two consecutive transitions from one state to another; and (iii) no transition – self-
transitions to the same demand state. An adjustment from a high demand state to a low
demand state for the AVG and RSD features indicates the reduction in average demand and
variation (e.g., transitions from State 5 to 1 (one step) or State 5 to 3 and then to 1 (two
step)). Similarly for the LF feature, demand adjustments from a low LF state to a high LF
state indicates reduction in demand peaks. Fig. 6.5(a) shows around 30% of the house-
holds can reduce AVG daily demand with one step demand adjustment. For the RSD and
LF features, 30% of the households have transitions that can result in reduction of demand
variation and demand peaks. The total number of households adaptable for weekly gran-
ularity is around 15% for all the quality features. This observation is due to stabilization of
demand properties over a week. Fig. 6.5(b) shows the number of households having state
transitions to the same state (for example, transition from State 2 to itself). The house-
holds containing no/self-transition, indicate the consumers who are not adaptable towards
demand regulations. Hence, utilities can use temporal adaptability to identify households
that can participate in the DR programs.

Summary: Temporal adaptability identifies households that are potential target con-
sumers for the DR programs. The results show that around 30% and 15% of the households
can participate in the DR programs for daily and weekly granularity, respectively.

Fig. 6.6 show the average temporal similarity of all households for the AVG, RSD and LF
features. Around 25% and 10% of the households have similar demand state transitions for
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Figure 6.6: Average temporal similarity for all households.

the AVG feature with daily and weekly granularity respectively. Similarly, for the RSD and
LF features around 16% and 18% of the households have same transitions for the daily de-
mand. DR programs can use temporal similarity to determine potential households, which
have similar demand variation for peak reduction and peak shifting.

Summary: The results show that, around 25%, 16% and 18% of households have similar
demand state transitions among the 4,232 households for daily AVG, RSD and LF features,
respectively.

6.5.3. ONLINE SELF-REGULATION OF DEMAND

The online self-regulation model considers over a year of energy consumption data for the
training phase. Since the proposed model is adaptive and online, the duration of training
data can be varied. Fig. 6.7 shows the demand regulation for each quality feature with both
daily and weekly demand properties. The x-axis represents the threshold value θ indicating
the probability of having a demand adjustment that satisfies the DR objective. The y-axis
indicates the demand regulation in percentage. The figure also illustrates the number of
households participating in the demand regulation.

Fig. 6.7(a) and 6.7(b) show the total energy reduction by all households for daily and
weekly AVG demand properties. Each day around 3000 households have demand adjust-
ments that can support energy reduction, resulting in 33% daily average energy reduction
(this corresponds to 3.5kW of power) for threshold θ = 0.1. With the increase in θ, the num-
ber of households participating in demand reduction decreases. This means that not every
household has a demand adjustment with high probability, which can regulate the demand.
Moreover, the percentage of energy reduction decreases with the increase in θ. For example,
when θ > 0.9, even though around 400 households have state transitions that can regulate
the demand, the average energy reduction per day is low. This is because, most of these
households selected for θ > 0.9 have low energy consumption. Hence regulating the de-
mand of these households results in low demand reduction. The θ value can be used to
select the households, which can participate in demand reduction. Utilities can set a low θ
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Figure 6.7: AVG, RSD and LF regulation for daily and weekly demand properties.
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value during the peak period to select more households for demand regulation and a high
θ value during the off-peak period. Fig. 6.7(b) shows the demand reduction for weekly de-
mand properties and it follows a similar trend like daily reduction. For all θ values, reduc-
tion of 10% is achieved for daily AVG demand properties.

Fig. 6.7(c) and 6.7(d) show the RSD regulation by all households for daily and weekly
demand properties. Demand variation is reduced by 30% and 50% for daily and weekly RSD
feature when θ = 0.1. The RSD regulation is higher for the weekly demand than the daily
demand. This indicates that households prefer to adjust their demand properties during the
week as compared to the daily regulation. For all θ values, the demand variation is reduced
by 15% for weekly RSD properties. Fig. 6.7(e) and 6.7(f) show LF regulation by all households
for daily and weekly demand properties. Households regulate the LF by reducing the peak
demand. Load factor is increased by 80% for both daily and weekly demand properties
when θ = 0.1. The number of households participating in demand peak shaving gradually
decreases, with the increase in θ. For all θ values, LF increase of 15% is achieved for both
daily and weekly demand properties.

The results from the self-regulation model can be used to identify the households that
participate in different DR programs. Furthermore, recommendations can be provided to
the utilities regarding their DR programs. For example, utilities are encouraged to choose
daily AVG demand properties over weekly AVG demand properties for effective demand re-
duction program. Similarly, for an effective reduction in demand variation, utilities need
to select the weekly RSD demand properties over daily RSD demand properties. Utilities
can either select daily or weekly LF demand properties for the demand peak shaving as they
result in similar LF improvement.

Summary: The online demand regulation model enables average reduction of 10% in
daily average energy demand, 15% in weekly demand variation and 15% in daily demand
peak shaving for all θ values.

Fig. 6.8 illustrates the distribution of households participating in a DR program for all θ
values. Fig. 6.8(a) and 6.8(b) show the households that participate either towards (i) reduc-
tion in demand (AVG) or (ii) reduction in demand variation (RSD) or (iii) reduction in de-
mand peak (LF). The number of households participating towards demand reduction (AVG)
for θ between 0.3 and 0.5 is comparatively higher than for other θ values. This indicates that
these households have frequent demand adjustments that regulate the average demand. A
large number of households participate in reduction of demand variation when θ is greater
than 0.4, indicating that these households have frequent state transitions from low RSD de-
mand state to high RSD demand state. In contrast, more number of households participate
in demand peak shaving when θ is lower than 0.5.

Fig. 6.8(c) and 6.8(d) show the households that participate either towards (i) demand
reduction (only AVG feature) or (ii) demand variation and demand peak shaving (LF and/or
RSD features) or (iii) all the three DR objectives. The number of households participating
to all the three features reduce as θ increases and is maximum when θ = 0.1. Utilities can
use these insights to choose the appropriate θ value for the selection of households towards
the DR program. For example, incentives to consumers with lower values of θ can increase
the likelihood of their participation in DR programs. In [14], consumers are incentivized to
participate in DR program either based on (i) time of use tariffs, (ii) weekend tariffs and (iii)
behavioral change in energy consumption.
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Figure 6.8: Number of consumers participating in DR programs.

Summary: The results show that the selection of θ plays a crucial role in identifying the
target consumers for the DR programs.

Evaluating the proposed distributed methodology with other related methodologies is
a challenge and requires an equivalent context, same dataset and experimental settings.
However, we present a constructive empirical comparison with EPOS, the Energy Plan Over-
lay Self-stabilization system [93]. EPOS is a fully decentralized mechanism for planning and
optimizing demand, and employs the same CER [14] dataset for its evaluation. The experi-
mental evaluation settings of EPOS are replicated1 and compared with the proposed model
for different values of θ.

Fig. 6.9 shows the performance of the proposed model against EPOS for θ values in the
range 0 and 1. Each colored block indicates the model with the highest performance for the
corresponding θ value. The consumer associated with regulation can be managed with a
relevant choice of θ. This means that the selection of this parameter is a trade-off and can
make the proposed methodology perform higher or lower than other methodologies.

Fig. 6.10 shows the comparison of the proposed online model against EPOS on two spe-
cific days viz., 19/01/2010 and 28/05/2010 for all features. Threshold value of θ ≤ 0.5 is used
to obtain the regulation results. The proposed online self-regulation model has a higher
performance than EPOS across all quality features. Demand regulation can be further im-
proved by allowing higher θ values that implies higher consumer tolerance in discomfort.
EPOS studies a scenario in which all households participate in the process of demand regu-

1Three selection functions of EPOS viz., MIN-Demand, MIN-Relative-Deviations and MAX-Load-Factor are used
for comparison. These three functions corresponds to the proposed AVG, RSD and LF regulation.
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Figure 6.10: Comparison of the proposed model with EPOS.

lation. In contrast, the online self-regulation model identify the households for DR program
based on the temporal characteristics of the demand. Consequently, only households that
have a valid transitions satisfying the DR objective are selected.

6.5.4. VALIDATION WITH SURVEY DATA
The experimental findings derived are validated with the survey data collected from the
trial [14]. Each participant is asked questions regarding the collection of energy data, their
attitude towards energy reduction, environment, etc. The objective of this validation is to
quantify how close the data-driven analysis is to the survey data. Specifically, the survey
responses of consumers are compared with the demand regulation results. The following
questions are selected from the survey questionnaire:

• Q1: I/we am/are interested in changing the way I/we use electricity if it reduces the bill.

• Q2: It is too inconvenient to reduce our electricity usage.

• Q3: I/we am/are interested in changing the way I/we use electricity if it helps the envi-
ronment.

The answers to the above question is in the range [1, 5], where 1 stands for a strong
agreement and 5 stands for a strong disagreement. Questions Q1 and Q2 are used to com-
pare the results obtained for the AVG feature and Question Q3 is used to compare results
obtained for the RSD and LF features. Consumer survey responses are grouped into two
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categories, (i) households which agree towards reduction (survey response: 1,2,3,4) and (ii)
households which do not agree towards reduction (survey response: 5). The hypothesis
here is that a survey response of strong disagreement (i.e., response 5) means the consumer
has no interest towards DR programs. Hence, any other response indicates the willingness
towards the DR program. Grouping of consumer survey responses with different combina-
tions is also evaluated, viz., (i) households with survey response (1,2,3) and households with
survey response (4,5); and (ii) households with survey response (1,2) and households with
survey response (3,4,5). Jaccard similarity coefficient is used to compare the results from
the data analysis to the survey results. It is defined as,

J (Rs ,Ra) = | Rs ∩Ra |
| Rs ∪Ra | , (6.10)

where, J(·) is the Jaccard similarity coefficient [113], Rs and Ra are the set of households
obtained based on the outcome of the survey response and data analysis respectively. The
similarity coefficient is the ratio of intersection and union of these two sets and takes a
value [0, 1]. The output of J (Rs ,Ra) indicates the percentage of households, which are found
both in the survey and analysis results. To evaluate the similarity, the following statistical
measures are derived:

• True Positive (TP): The number of households that are present both in survey and
analysis. This is similar to Jaccard similarity coefficient.

• False Positive (FP): The number of households that are present in the survey, but are
not present in the analysis.

• False Negative (FN): The number of households that are not present in the survey, but
are present in the analysis.

• True Negative (TN): The number of households that are not present in both survey
and analysis.

• F1-score: The measure of accuracy and is obtained by calculating the harmonic mean
of precision and recall [94].

Table 6.2 shows the TP, FP, FN, TN and F1-score for all questions when compared to the
data analysis results. The analysis correctly identifies 70% of the consumers in the survey
data, who agree with the reduction. FP shows the percentage of consumers who responded
positively towards reduction but are not found in the analysis. This observation can be ex-
plained by the fact that survey response collected is from only one occupant of a household
and this opinion may be different from the other occupants in the household. Similarly, FN
indicates the consumers who do not agree towards reduction but are found participating
in the analysis. These households could be the potential new target consumers for the util-
ities. The FN in the dataset for the AVG feature is around 2% (85 households) and for the
RSD/LF feature it is around 9% (380 households). Overall, the analysis results are around
87% accurate (F1-score) when compared to the survey data. Due to paucity of space, results
from different groupings of consumer survey responses are not shown in detail.2

2When survey response (1,2,3) are grouped together, the TP for Q1,Q2, Q3-RSD and Q3-LF is 0.64, 0.67, 0.69 and
0.69 respectively. Furthermore, when survey response (1,2) are grouped together, the TP for Q1 is 0.65, Q2 is 0.55,
Q3-RSD is 0.65 and Q3-LF is 0.63.
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Table 6.2: Comparison of survey data with analysis result.

Questions TP FP FN TN F1-score
Q1 0.68 0.12 0.02 0.17 0.90
Q2 0.63 0.20 0.02 0.15 0.85
Q3-RSD 0.69 0.13 0.09 0.09 0.86
Q3-LF 0.68 0.15 0.09 0.08 0.85

Summary: Validation results show 70% similarity among the consumers identified in the
data analysis and survey. New potential target consumers close to 10% are determined for the
DR programs, which are not apparent in the survey data.

6.6. CONCLUSIONS
In this chapter, we presented a promising data-driven methodology for understanding and
measuring the temporal dynamics of energy-demand adjustments. Based on this method-
ology, an online self-regulation model was introduced that identifies consumers who can
adjust their demands to meet various DR objectives. Since time-series analysis is used, the
approach could be generally applied to any application domain that deals with such data.
Experimental evaluation of demand data from real-world Smart Grids shows that around
30% and 15% of the consumers can be incentivized to participate in daily and weekly DR
programs. In this case, DR programs achieve 10% reduction in the average daily demand,
15% reduction in the weekly demand variations and 15% reduction in daily peak demand.
The data-driven analysis was also validated with the data from the survey.

Several energy services can be designed using the proposed TDR to identify target con-
sumers for DR programs in a neighborhood. In the next chapter, we present techniques
that can identify target consumers based on both energy consumption and consumers’ so-
cial context (beliefs, behavior and ties).



7
TECHNO-SOCIAL SMART GRIDS

I N the previous chapter, we presented energy services that can identify target consumer
for various DR programs. However, the effectiveness and adoption of these techniques

highly depend on the consumer awareness, their participation and engagement. Preva-
lent SG deployments and programs have been found to be lacking in consumer awareness
and engagement [13]. Hence understanding what consumers want and how they behave is
fundamental for developing a sustainable future-proof energy system. In this chapter, we
present a novel techno-social framework that combines both technological aspects of SG
and social aspects of consumers to determine target consumers.

Energy utilities need to develop innovative energy services to understand how the en-
ergy supply is perceived by consumers and engage them to actively participate in the func-
tioning of the grid. Current research efforts [64, 112] try to design feedback mechanisms
to promote awareness of energy consumption by providing detailed energy breakdowns
and appliance-specific energy/cost details. While these mechanisms are necessary and
valuable, they are not sufficient to motivate pro-environmental behavior. Hence along
with energy-consumption characteristics, consumer preferences (pro-environmental, pro-
reduction, pro-behavioral change) and their social context (social -ties, -influences, and
-relationships) need to be considered during the development of SG programs.

A growing number of efforts, hitherto, have been applying the principles of social net-
work analysis to home energy management. These mechanisms are aimed at revolutioniz-
ing the understanding of energy-usage characteristics and help lessening the impact on the
environment1. Rich data from social networks capturing human interactions has closed an
important loop [52, 71]. This has enabled to model social interactions and to use them in
the design of SG services.

Most of the current work does not consider the interplay between the social context of
consumers and their energy information in developing consumer-centric services. In con-
trast, we try to fill the gap by modeling and analyzing the social context of consumers along
with the energy network. We propose a techno-social framework to model both technolog-
ical and social aspects of the SG. The framework determines how the social context of con-
sumers can be obtained and which social network models can be used along with energy-

1C. Chima. http://mashable.com/2011/02/08/smart-grid-social-media/
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consumption details to develop consumer-centric services. For example, aspects such as,
interests and preferences of consumers can be deduced from social networks through posts,
comments, likes, products purchased, etc. These aspects along with consumer energy-
usage patterns can be used by utilities to target specific groups of consumers in DR pro-
grams to either reduce or shift their usage. We also see that the social context of consumers
constantly change and evolve, e.g., new friends, change in relationships, preferences, etc.
Modeling both the technological and social aspects jointly is a challenging task as the mod-
els developed should capture the dynamics, not only the energy-consumption patterns but
also the social context of consumers.

We propose a Techno-Social framework for Smart Grids (TSSG), where infrastructure
composed of various technologies and social aspects are studied together. A social net-
work overlay is proposed to capture the behavior and preferences of consumers vis-à-vis
SG. The framework utilizes traditional social network models [42] to analyze consumers’
preferences along with energy-consumption profiles. We illustrate the benefits of model-
ing the techno-social aspects by forming communities directed towards particular goals.
The novelty in formation of communities lies in fusing the technological and social data.
These communities can now be targeted to promote energy awareness, provide tailored
recommendations and community-specific tariff rates. Most of the real-world datasets in
smart grids include only energy consumption information of consumers with very mini-
mal user information. While, social network analysis has plenty of user information from
various social networking sites, merging these two is non-trivial. Due to lack of real-world
datasets containing both the information we choose a dataset with 4000 households, which
has energy consumption information and also a survey on consumer preferences. We con-
sider consumer preferences such as pro-environmental, pro-behavioral change, and pro-
reduction as key social context information for demonstrating the potential of TSSG. While
we use survey to get this information, later we show how consumer preferences can be de-
rived if one had access to consumers social network. This chapter shows the potential of
combining technological and social aspects by employing just consumer preferences, we
believe it can be extended to provide several novel services if sufficient user data is col-
lected. To the best of our knowledge we are the first to propose the interaction between en-
ergy consumption and consumer preferences to determine communities for targeted rec-
ommendations.
Contributions. The main contributions of this Chapter are:

• We propose a novel techno-social framework for smart grids (TSSG) to enable effec-
tive energy -coordination, -management and -awareness amongst consumers.

• We describe the advantages of having a social network overlay for different SG pro-
grams to engage active participation of consumers.

• We present a case study of goal-oriented community formation by fusing the techno-
social data from a real SG deployment with more than 4,000 households.

7.1. TSSG FRAMEWORK
The techno-social framework integrates physical (energy network), cyber (ICT network) and
social dimensions of the SG (see Fig. 7.1).
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Figure 7.1: Techno-social framework of the SG with its entities.

7.1.1. OVERVIEW
The proposed TSSG framework consists of three layers viz., physical grid, smart grid, and
social grid (see Fig. 7.2).
Physical grid is an interconnected network for delivering electricity to consumers. The
physical grid consists of several power generation stations, power plants, high-voltage trans-
mission lines to carry power to the consumers and distribution lines to interconnect vari-
ous entities of the grid. The different actors in physical grid include transmission system
operators (TSO) and distribution system operators (DSO) for operating, maintaining and
developing the grid.
Smart grid is an intelligent power system that uses ICT to enhance efficiency, reliability and
sustainability of power generation and distribution network [45]. SG utilize several mech-
anisms to curtail and balance load, flatten peak demands, automate load control, apply
adaptive pricing, and bring awareness to its consumers.
Social grid promotes interactions among different SG entities to support coordination of
energy consumption, to trade energy between prosumers and consumers, and to promote
awareness. With the increased growth in deployment of embedded sensors in the environ-
ment, the social grid can now accurately monitor consumers in different dimensions [25,
71]. In social grid, third-party services such as Facebook, Twitter, LinkedIn, and Google,
along with ubiquitous sensors play a crucial role in collecting consumer social activities.

TSSG framework supports development of several consumer-centric services like per-
sonalized recommendation, forming communities with similar consumer characteristics
and energy profiles, etc., by modeling and analyzing the data from the techno-social ecosys-
tem. The introduction of social overlay on SG supports two-way information flow: (i) TSSG
derives information about consumer norms, preferences, ties and interactions to under-
stand the perception of consumers regarding the energy pricing, demand reduction, etc.;
and (ii) TSSG analyzes these preferences to derive best practices towards sustainable be-
havior and disseminates them using the social overlay. Moreover, it is easy to see that this
feedback itself could be used to gather more inference and to understand whether con-
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Figure 7.2: Techno-Social framework for SG.

sumers followed certain practices. Further, it is easy to gather which feedback informa-
tion was useful or followed. This helps in further improvement of information dissemina-
tion. Furthermore, the proposed TSSG framework is decentralized, i.e., it is implemented
at a neighborhood/community level, where techno-social data from SG and social grid are
available.

7.1.2. CORE COMPONENTS

To enable interactions between the SG and social grid layer, several challenges need to be
addressed in gathering and modeling both energy and consumer data. Some of these chal-
lenges are: (i) processing the raw, fragmented, and unstructured data collected from the
techno-social ecosystem; (ii) analyzing and modeling multi-dimensional data from differ-
ent data sources; (iii) adapting to changing and evolving social context (preferences, rela-
tionships, and ties) of consumers over time; (iv) striking a trade-off between quality of col-
lected data and privacy; (v) deducing aggregated behavior of consumers to promote collec-
tive awareness; and (vi) adjusting to temporal dynamics of the techno-social data with dif-
ferent resolution (hourly, daily, monthly, seasonal). To address these challenges, we define
two core components viz., techno-social sensing and mining. Fig. 7.3 shows the core com-
ponents of the TSSG framework and their interactions towards development of consumer-
centric services.

Techno-social sensing: Techno-social sensing is responsible for collectively harvesting data
from the SG and social grid layers. From the smart grid layer data regarding energy con-
sumption at households, appliance-specific consumption, power factor, voltage and cur-
rent are collected. From the social grid layer data regarding consumer activities, their social
ties, behavior, interactions, preferences and opinion are collected with the help of wear-
able devices, smartphones, RFID tags, online social networks, GPS logs, and IoT sensors
embedded in the environment [83]. Furthermore, several participatory sensing and social
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Figure 7.3: Interactions of core components of techno-social SG.

network API’s can now be used to search and gather information about consumers. For ex-
ample, Social media such as Facebook, Twitter, Google+, Pinterest and Youtube, has wealth
of information on preferences of consumers. Data collection from these networks is now
possible with the help of open-source API2.
Techno-social mining: Techno-social mining aims to develop models to understand con-
sumer behavior by identifying underlying patterns, rules and beliefs from the data collected
by techno-social sensing. At the smart grid layer, user-specific energy consumption profiles,
appliance energy profiles, cost-aware appliance usage schedule, load shifting strategies can
be derived by applying different pattern recognition and machine learning algorithms. At
the social grid layer, consumer behavior, their beliefs, and social ties can be derived by min-
ing consumers’ content on social media using social network analysis. Many ways have
been proposed for social mining, e.g., social network analysis, social media mining, and
sentiment analysis. Recently, sentiment analysis is gaining popularity to analyze consumer
sentiments. For example, sentiment analysis on consumers’ posts on Facebook and Twit-
ter can help in determining the sentiment of user towards a technology (electric vehicles,
energy reduction, sustainable energy usage, etc.). We now illustrate how consumer prefer-
ences on some of the energy related topics can be derived using sentiment analysis across
social networks. Sentiment analysis aims to identify and extract subjective information
from data shared across social networks. We utilize open source sentiment analysis mech-
anisms to determine positive or negative sentiments with respect to energy related topics
across various social networking sites. Fig. 7.4 shows the sentiments of several consumers
(more than 1000) over a week towards green energy campaigns.

Fig. 7.4(a) shows the percentage of positive and negative sentiments associated with
“sustainable energy" on Twitter for a week. Among the tweets related to sustainable energy,
85% of tweets had positive sentiment and 15% had negative sentiment. Similarly, Fig. 7.4(b)
shows the strength, sentiment, passion, and reach for three keywords viz., energy reduction,
sustainable energy, and electric vehicles. Electric vehicles have strength of 50% – likelihood
of it being discussed in social media; Sentiment of 15:1 – ratio of positive to negative sen-

2Social Media API’s http://www.programmableweb.com/category/social/apis?category=20087
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Figure 7.4: Sentiments of several consumers over a week towards various energy campaigns.

timents; passion of 75% – likelihood of repetition of the topic; and, reach of 11% – range of
influence of the topic in the social media. Fig. 7.4(c) shows the classification of tweets cor-
responding to various sentiments associated with energy reduction on Twitter. Here a tweet
is classified into one of the 20 categories derived from social behavior models. Fig. 7.4(d)
shows the percentage of posts with positive, neutral and negative sentiments across social
networking sites such as Facebook, Google+, Reddit and news/blogs for energy reduction.
Several metrics have been proposed in the literature to derive accurate and reliable sen-
timents over several days. Techno-social mining uses these to derive preferences of con-
sumers, which can be employed to develop consumer-centric energy services.

7.2. ROLE OF TSSG IN CONSUMER-CENTRIC SERVICES
This section describes how TSSG can be employed towards developing consumer-centric
SG programs.
1. Consumer awareness: Smart meter data when analyzed effectively can help consumers
to reduce both energy consumption and cost. In-house displays, interactive games, and
smartphone applications are being proposed to increase awareness amongst consumers.
However recent research efforts show that, this approach fades away after a few initial weeks
of deployment [64]. With constant increase in number of consumers using social networks
(SN), information propagation on SN is a promising approach to seek responses from con-
sumers; interacting with them and also to disseminate information [25]. The proposed
TSSG framework enables smart meters to directly connect to social networks and provide
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energy consumption information to online social networks. The role of TSSG is to provide
the energy consumption information to consumers using SN in an unobtrusive way. Fur-
thermore, SN models can be utilized to analyze who is the most influential consumer, how
information spreads among consumers and consumer-interest based groups in SN.

2. Consumer coordination: The coordination of energy consumption among consumers
in a neighborhood helps in balancing the temporal energy usage. Current approaches for
active coordination require a central coordinator and prior agreements among consumers.
TSSG framework can support completely distributed coordination with the help of SN over-
lay on SG. TSSG identifies and enables interactions among consumers with similar interests
to balance aggregate consumption. These consumers can coordinate among themselves to
address their energy demands over SN. Consequently other consumers can schedule their
demands such that total energy consumed may not exceed the generated energy. Identi-
fying such a group of consumers is highly challenging due to the evolving nature of social
context. TSSG utilizes the data from techno-social ecosystem to derive consumer groups
that can effectively coordinate and support energy management programs.

3. Energy trading: With the penetration of electric vehicles and renewable energy sources
such as wind turbines, solar panels in residential settings, households not only consume
but also produce their own energy (“prosumers"). Concepts such as, vehicle to home, ve-
hicle to grid and energy trading requires active coordination among consumers to enable
direct selling of excess energy. Currently there exists no secure, privacy-aware, market place
to enable real-time coordination for energy traders. TSSG supports energy trading by allow-
ing consumers to coordinate on SN. Specifically, TSSG aims to enable trading of energy by
mining the techno-social data where consumers with similar social contexts and beliefs are
allowed to negotiate.

4. Goal-oriented communities: Heterogeneity in consumer characteristics hinders identi-
fying target consumers for specific SG programs. Hitherto, utilities used methods based
on sociology, psychology, and behavioral economics to determine target consumers for
DR programs. These efforts mainly considered data reported by consumers and did not
model the dynamics of energy consumption and social contexts. TSSG supports identi-
fication of consumers by deriving virtual communities – group of consumers such that
intra-community associations are denser than inter-community association. The associ-
ations could be derived based on various features explained earlier. Based on the require-
ment utilities can identify the features and consequently forming communities, we call this
as “goal-oriented communities". The goal could be identifying consumers who are pro-
environmental, pro-behavioral change or pro-energy reduction. Consequently, utilities can
devise different incentives such as community-specific recommendations and tariffs. TSSG
supports formation of these communities by applying community detection algorithms
based on correlation among energy consumption, social ties and relationships.

The key requirement in determining the techno-social mining techniques that could be
used in TSSG, depends on the objective of the SG program. For example, to promote energy
awareness and sustainability in energy usage, we need to understand consumer behavior,
their preferences and also their energy consumption pattern. Several models, for example,
Theory of planned behavior, Health belief model, Social practice theory, and Diffusion of
innovation theory [111] exist to understand and model behavior changes. However, Social
practice theory (SPT) is increasingly being applied to analyze behavior in the context of
energy management, transportation and waste management.
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The principle of SPT is that behavior of consumers (vis-à-vis energy consumption) arises
from the interactions between three components [111]: (i) norms – individual and shared
expectations on comfort levels, social aspirations, etc.; (ii) material culture – physical as-
pects of a home i.e., building type, heating devices, energy-related technologies; and (iii)
energy practices – actions of and processes used by consumers i.e., temperature settings,
maintenance of technologies, etc. SPT argues that the focus should not be on individual
behavior, rather, (a) on social practices to understand why certain practices are performed;
(b) how and why others are prevented from carrying out some tasks; and (c) the evolution of
technology with respect to societal behavior. Furthermore, behavior change is most likely
due to careful scrutiny of the norms and practices, and then the promotion of the best prac-
tices.

Recently, a framework for energy cultures [111] is proposed to understand energy con-
sumption behavior of consumers. This framework utilizes the basic components from SPT
and adapts them to understand energy consumption behavior of consumers. For example,
space-heating inefficiencies might be the result of ineffective heating technologies (ma-
terial culture) or inappropriate heat settings (practices) or unrealistic expectations about
warmth (norms). The combination of norms, material culture and energy practices can
create self-reinforcing habitual patterns. Achieving behavioral change involves altering one
or more of these components, noting that a change in one will almost inevitably lead to
change in the others.

TSSG extends the current social science models and can provide feedback to the con-
sumers on the best practices to support sustainability. Specifically in TSSG, (i) norms about
consumers are derived from techno-social sensing, i.e., deriving consumer preferences and
values from social networks such as Facebook, LinkedIn and Twitter as described earlier;
and (ii) material culture and current practices can be derived from electricity consumption
pattern of the households. Furthermore, TSSG also supports integration of other models
from social sciences to analyze behavior of consumers and promote sustainability.

7.3. ILLUSTRATION: GOAL-ORIENTED COMMUNITIES
In TSSG, Social Networks (SN) help us to derive consumer preferences, which can be used
in designing better energy management services. Some SG services may be location de-
pendent i.e., energy sharing between neighboring houses, and energy shifting in a neigh-
borhood. However, energy reduction and pro-environmental energy usage apply to a larger
group of consumers irrespective of their locations. To show the benefits of collecting pref-
erences of consumers, we develop new goal-oriented virtual communities to promote en-
ergy awareness and provide tailored recommendations and community specific tariff-rates.
Utilities currently employ techniques that offer the same information to all consumers –
such as how to reduce cost and new energy policies – to its entire consumer base irrespec-
tive of their preferences and energy consumption profiles. This information may not be
valid or mostly redundant to some consumers. Forming goal-oriented communities en-
ables tailored feedback and tariff-rates to consumers with similar preferences and interests.
Virtual communities formed by analyzing both the social and energy contexts help in bring-
ing effectiveness in the campaign.

We employ the CER dataset [12] collected during a trial in Ireland. The dataset contains
energy consumption measurements from 4,232 households every 30 minutes between July
2009 and December 2010. The objective of the trial was to investigate the effect of feedback
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Figure 7.5: Block diagram of goal-oriented community formation.

on energy consumption in households. Each participating household filled a questionnaire
before and after the trial. The questionnaire contained questions about the socio-economic
status of the consumers, appliances, properties of the dwelling, and the consumption be-
havior of the occupants.

Fig. 7.5 shows the block diagram of goal-oriented community formation using TSSG
core components. The techno-social sensing gathers data about average energy consump-
tion using the smart meter (SM) and consumer preferences, beliefs, opinion and interests
using the survey data collected during the trial. The techno-social mining component tries
to find structures in the sensed data to detect communities that match the goals set by the
utilities. The community detection is performed by applying unsupervised clustering tech-
nique called Expectation-Maximization (EM) clustering [39]. The EM clustering applies
Maximum Likelihood Estimation to determine the optimal number of communities. The
techno-social data is used by EM clustering to determine different communities based on
the goals defined by the utilities. This article studies three goal-oriented community for-
mation viz., (i) pro-behavioral change, (ii) pro-environment and (iii) pro-energy reduction.
Thus utilities now can devise tailored recommendations to the communities formed based
on these goals.

Fig. 7.6(a) shows the communities formed by traditional approaches, which utilize only
average energy consumption of the consumers. Each community here indicates the group
of consumers who have similar average energy consumption. Utilities currently use this
mechanism to provide incentives and feedback to each community to reduce or change
their usage patterns. However, these recommendations are not tailored based on consumer
preferences, which may result in lesser adoption rate of SG programs. Hence, TSSG frame-
work considers data from both energy network and social context of consumers to provide
tailored recommendations and to promote awareness. In this article, we deduce consumer
preferences, opinion and interests from the survey data. Note that, social context of con-
sumers from other sources such as online SN, mobile phones, and other sensors embedded
in the environment can also be utilized. The questions considered from the survey are:

1. Pro-behavioral change: Am/Are I/we interested in changing the way we use electricity
if it results in reduction of the bill?
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(b)  Communities based on Pro−behavioral change          
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Figure 7.6: Different goal-oriented community formation strategies. (Numbers on the bar indicate average energy
consumed per household in kWh)

2. Pro-environment: Am/Are I/we interested in changing the way we use electricity if it
helps the environment?

3. Pro-energy reduction: Is it too inconvenient to reduce our usage of electricity?3.

The answers to the above questions are in the range [1, 5], where 1 means strongly agree
and 5 means strongly disagree. The techno-social mining, i.e., EM clustering uses both
the average energy consumption and social context data of consumers to derive accurate
goal-oriented communities. Fig. 7.6(b), (c), and (d) shows the various communities formed
based on the above questions and average energy consumed.

Fig. 7.6(b) shows six communities formed based on consumers who are “pro-behavioral
change". Mean average energy consumed in each community is shown over each bar and
the bar color shows the average response by all the consumers in that community. It can be
seen that, communities 1, 4 and 6 are more towards behavioral change. Communities 2 and
5 are moderate towards change in their behavior and Community-3 strongly disagrees with
changing the usage pattern to reduce bills. Even though consumers in communities 1, 4,
and 6 have similar interests their average energy consumption are different. Hence, utilities
can now target each of these communities separately with tailored recommendations, feed-
back and tariff-rates. For example, utilities can target Community-6, whose members are
open to behavioral change and consume high energy to change/modify their energy usage
pattern. These recommendations and feedback have high potential to reduce consump-
tion. Moreover, the same recommendations may not be applicable to Community-1 as their
energy consumption is low, even though they have similar interests as Community-6. Thus
TSSG supports utilities to segment consumers to promote sustainable energy usage.

3Questions 1, 2 and 3 corresponds to questions 4332, 4333, and 4352, respectively in the residential pre-trial survey.
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Similarly, Fig. 7.6(c) shows five communities formed based on consumers who are “pro-
environment". Members of communities 2 and 5 strongly agree with change in usage be-
havior to help the environment. Communities 1 and 3 are moderate towards environmental
impact and members of Community-4 do not worry about the environment. It is inter-
esting to see that, even though average energy consumed in Community-2 is lower than
communities 3 and 4, members of Community-2 are more environment-friendly and agree
to change energy usage pattern. Members of Community-5 have the highest average en-
ergy consumption and are willing to change their usage patterns to become environment-
friendly. This can be used by utilities to target members of Community-5 by providing rec-
ommendations on different usage patterns to reduce consumption.

Fig. 7.6(d) shows the communities formed based on consumers who are “pro-energy
reduction". Only two communities are formed based on the answer and the average energy
consumption. Both the communities have similar average energy consumption. However
members of Community-1 strongly think there is no inconvenience to reduce their energy
usage, unlike members of Community-2 who are moderate towards reduction in energy
usage. In total, 33% of 4232 consumers think that there is no inconvenience in reducing
energy usage and the rest 67% are moderate towards reduction in energy usage. Utilities
can provide different tariff-rates to these communities as incentives to reduce their average
energy consumption.

Deriving communities with consumers having various levels of social activities is one
of the open problems that need to be addressed to guarantee fairness. Recent work by
Muhammad et. al [121], proposes several fairness constraints to adapt the clustering and
classification algorithms to consider consumers with varying levels of participation in SN.
TSSG can incorporate these constraints during community formation to guarantee fairness
among consumers with varying levels of social activity. Additionally, data from surveys,
face-to-face interviews, and campaigns can be used to guarantee fairness. Furthermore,
our community formation strategy can be applied to DR algorithms such as load shifting,
load reduction and energy sharing, by using data from physical grid and consumers loca-
tion.

7.4. CONCLUSIONS
The development of sustainable energy services depends heavily on active participation
and engagement of consumers. We proposed a novel Techno-Social framework for Smart
Grids (TSSG) where infrastructure composed of various SG technologies interacts with so-
cial activities of consumers. The TSSG framework uses traditional social network mod-
els to analyze consumer behavior along with energy-consumption information to develop
consumer-centric services. The role of TSSG towards various SG services and its benefits
were described. Furthermore, we illustrated goal-oriented community formation with data
from more than 4,000 households. We also showed how groups of consumers can be tar-
geted differently by considering the heterogeneity in consumer preferences and their en-
ergy consumption.

To the best of our knowledge, TSSG is the first framework that employs a holistic view, in-
clusive of consumers, prosumers, utilities and SG infrastructure. We believe the integration
of technological and social aspects lead to the development of sustainable, smart energy
systems.





8
DATA PROCESSING ARCHITECTURES

I N the previous chapters, we discussed several personalized energy services that aim to
improve user comfort in smart spaces – households, buildings and neighborhood. In

this chapter, we explore how smart-meter data can be stored and processed efficiently to
support these energy services at city level. While the deployment of smart meters is grow-
ing, the lack of adoption of energy services has hindered large-scale smart-grid (SG) de-
ployments. A sustainable, smart energy system should support handling huge amounts of
smart-meter data from millions of consumers, protect privacy-sensitive data of consumers,
allow designing of energy services at various scales and provide guidelines for implement-
ing a large-scale system for DR programs.

This chapter explores how to cope with the overwhelming data generated from smart
meters towards design and development of sustainable, smart energy systems. An estimate
from a utility provider indicates 22 gigabytes of data being generated every day from its 2
million customers [108]. The overwhelming data generated by smart meters calls for devel-
oping information management mechanisms for large-scale data storage and processing.
While there have been deployments of SG (e.g., Grid4EU1 and SmartWatts2) with a few par-
ticipants, the design of a suitable architecture to support envisaged SG services on a large
scale is an important research topic currently [124], [100].

In this chapter, we investigate the cost-benefit analysis of four data processing archi-
tectures for various energy services. We introduce several key cost indicators to analyze
hierarchical data processing architectures for SG. In our evaluation, we consider realistic
deployments for both dense (i.e., urban areas with 1.6M households) and sparse (i.e., rural
areas with 476K households) environments.

Contributions. The main contributions of this chapter are:

• We model different data-processing architectures (centralized, decentralized, distributed
and hybrid) for hierarchical power-distribution networks in both urban and rural en-
vironments.

1http://www.grid4eu.eu/
2http://www.smartwatts.de/
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• We introduce and model several key cost indicators, such as energy consumption,
processing power, storage requirements, communication bandwidth, accuracy and
privacy.

• We provide a detailed cost-benefit analysis of the proposed architectures, which SG
designers can use to select the architecture that best fits their requirements.

8.1. RELATED WORK
The majority of architectures proposed hitherto focus only on a specific architectural as-
pect, like communication, storage or processing. In recent SG deployments, smart meters
collect data at an interval of 5 to 15 min compared to traditional systems that only records
meter data once a month [10]. Data values obtained as an average over a 15 minute inter-
val may not be detailed enough to support energy services such as advanced distribution
automation, asset management, and appliance energy disaggregation [85]. Current, smart
meters in the near future may well measure values every 30 s, posing a significant challenge
in processing and storage of huge amount of data generated.

A secure decentralized data-centric information infrastructure for the SG is proposed
in [60]. Kim et al., describe challenges in low-latency communication protocols, and secu-
rity mechanisms for SG. Balancing supply and demand is mapped to a constraint-satisfaction
problem and evaluated using a decentralized hierarchical architecture in [100]. A cloud-
based SG information management model is proposed in [103] and [46], along with a dis-
cussion on key challenges. The focus on cloud-computing approaches is to provide ade-
quate resources for the SG. In contrast with the above works, we not only propose and an-
alyze several architectures, but we also model important key cost indicators such as energy,
communication, storage, processing, accuracy and privacy based on the physical topology of
the grid. The cloud-based Demand Response (CDR) architecture using a distributed infor-
mation infrastructure is proposed in [67]. Scalability aspects of data storage and processing
of monthly bills in SG is investigated in [21]. Several data-storage mechanisms like central-
ized relational databases, distributed relational databases and file systems are compared
and evaluated. Similarly, scalability aspects of data communication for smart metering in
SG is investigated in [124]. They also study how communication cost scales with the num-
ber of smart meters and sampling frequency.

A comparison of centralized and distributed monitoring architectures for billing and
demand-response applications is proposed in [79]. Martinez et al. explore the potential
benefits of having distributed architectures compared with centralized ones. In [79], the
authors evaluate the proposed architectures by considering a fixed number of houses. In
comparison, our work improves on the existing literature to provide a comprehensive anal-
ysis of various data-processing architectures with realistic environments viz, urban and ru-
ral environments. We consider accuracy and privacy cost indicators to provide a detailed
cost-benefit analysis along with other cost indicators like energy, communication, storage,
and processing.

8.2. DATA PROCESSING ARCHITECTURES
The current topology of the power distribution network is arranged according to the volt-
age [20]. The distribution network is organized into multiple subgrids and consequently
forming a hierarchical topology. Our architectural model adopts hierarchical topology of
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Figure 8.1: Data processing architectures for the smart grids.

the power distribution networks. The key elements of our architectural model are the fol-
lowing.
Home Area Nodes (HANs)- are devices interconnected with the smart meter at the con-
sumer premises. HAN receives energy-consumption information from all appliances in the
household and can employ mechanisms or receive information to match supply and de-
mand at the household level.
Neighborhood Area Nodes (NANs)- act as an intermediate node between consumers and
utility providers, and it serves a small geographical area, i.e., a neighborhood consisting of
several houses. NAN receives information from the households within the neighborhood.
Multiple NANs are deployed to cover utility’s territory.
Utility Control Unit (UCU)- is the central control entity of utility providers. This node is
responsible for billing, maintaining data, determining electricity price and carrying out de-
mand response. UCU acts as the root node in our architectural model.
Design Choices.

In our architectural model, the HANs at each household periodically sense energy con-
sumption and transmit to the respective NAN. NANs act as the intermediate nodes be-
tween HANs and UCU. Communication between HANs and NANs is based on sub −1G H z
transceivers which are best suited for both indoor and outdoor environments [22]. The in-
terconnection between NANs and UCU is based on IEEE 802.16 (WiMAX) which supports a
maximum data rate up to 1 Gbps. The communication choice is supported by some of the
recent works [124], [20].

Data aggregation at the nodes can minimize the overall data communicated and also
help in preserving sensitive information of customers. Three major data aggregation mech-
anisms considered in literature are:
a) Time-wise aggregation: where consecutive time-stamped energy consumption readings
are aggregated to reduce the granularity of the data collected.
b) Value-wise aggregation: where similar energy consumption readings are bucketed to ob-
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tain discrete energy readings and thus reducing number of readings.
c) Consumer-wise aggregation: where the energy consumption values of several individual
customers are aggregated into one time series to obfuscate the consumption of each indi-
vidual customer.

We consider only time-wise data aggregation with different granularity. UCU can ac-
quire information from the households by initiating a query and nodes can respond to the
query depending on their roles. Based on the data aggregation, processing and storage ca-
pabilities of HANs, NANs and UCU, different architectures are proposed. By default, all
nodes can send and receive a message, which is the minimum capability assumed at each
node. The storage and processing icons in the Fig. 8.1, show the additional capability avail-
able at each node depending on the architecture.
Centralized Architecture.

In centralized architectures as illustrated in Fig. 8.1a, only the UCU has data processing
and storage capability. HANs periodically sense and transmit the energy consumption val-
ues to the respective NANs. NANs act as relays and forward it to the UCU. UCU has all the
information and is responsible for processing and storage of the data. Thus, the informa-
tion flow is uni-directional from HANs to UCU via NANs. No data aggregation is applied in
centralized architecture.
Decentralized Architecture.

In this architecture, only NANs have data processing and storage capabilities as shown
in Fig. 8.1b. HANs transmit data periodically to the respective NAN similar to the central-
ized architecture. Instead of forwarding the data, NAN stores and processes this data locally.
In decentralized architectures, since all data is available at the NAN, fine grained data ag-
gregation is possible. NANs can aggregate hourly energy consumption and report to UCU.
UCU generates queries to retrieve information from the NANs only when required. Thus,
NANs act as central entities in this architecture.
Distributed Architecture.

In distributed architectures, all HANs have data processing and storage capabilities.
HANs periodically sense and store the energy consumption values locally. UCU initiates a
query to fetch data, which is forwarded to the NAN and in turn to the HANs. HANs process
the query and send the reply to UCU via NAN. Thus, making the architecture completely
distributed as illustrated in Fig. 8.1c. HANs are assumed to have sufficient data storage and
processing capability and communicate only upon reception of a query.
Hybrid Architecture.

In hybrid architectures, HANs and NANs both have data processing and storage capabil-
ities as shown in Fig. 8.1d. Hybrid architectures are extension of distributed architectures,
where HANs not only sense and store but also transmit aggregated energy values to NANs.
For instance, HANs can sense and store energy values periodically and at the end of the day
send an aggregate energy consumption reading to the NAN. The data aggregation granular-
ity may vary depending upon the energy services considered.

8.3. KEY COST INDICATORS
Architectures proposed in the previous section are characterized based on the availability
of data storage and processing capabilities at the node, hence monetary costs of a node
needs to be modeled in architecture evaluation. Data aggregation is employed by architec-
tures to reduce the amount of data communicated as well as increasing the privacy of the
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customer. However, data aggregation results in decreased accuracy, since the UCU might
need to disaggregate energy readings that have been aggregated over time by the HAN or
the NAN. The trade-off between accuracy and privacy cost as a function of data aggregation
granularity provides a key insight in the design of architectures. Our cost-benefit analysis
hence considers monetary cost, accuracy and privacy as the key cost indicators to evaluate
the performance of proposed architectures.
Monetary cost: Monetary cost CM is the cost (in $) to deploy and operate the nodes in the
architecture (HANs, NANs, UCU).

CM =CD +CO . (8.1)

The deployment cost CD is a one-time cost that accounts for the deployment of storage,
processing and communication capacity.

CD =CS +CP +CT , (8.2)

where CS is the cost of storage, CP is the cost of the processing units, and CT is the cost of
the transceivers.

The operational cost CO is the cost incurred for the operation of the entire network for
one month period.

CO = Etotal · fE , (8.3)

where Etotal is the average energy (in Joules) required by all nodes to be operational for a
period of one month, and fE is the price of energy (in $/Joule).

Apart from these factors, the deployment and operational cost may include other fac-
tors such as cooling, sensors, peripherals and maintenance, which are not considered in
our cost modeling. The components of CD and CO are described in detail in the following
sections.
Energy consumption: The energy required for the operation of the entire network (ex-
pressed in Joules, J) includes the various activities the nodes can perform, such as reading
from and writing into the storage, communicating, processing, etc. Energy consumption is
calculated for the duration of one month. The energy consumed by a HAN is given by,

EHAN = E H→N
t +E H

r /w +E H
p , (8.4)

where E H→N
t is the energy consumed for communication, E H

r /w is the energy consumed for

reading from and writing into the storage, and E H
p is the energy consumed for processing.

The energy consumption for communication is,

E H→N
t = eH→N

t x `H→N
t x +eH→N

r x `H→N
r x , (8.5)

where eH→N
t x (eH→N

r x ) is the energy required for transmission (reception) of one byte of in-
formation between HAN and NAN, and `H→N

t x (`H→N
r x ) is the length in bytes of the messages

that have been transmitted (received) by the HAN in one month. The energy consumption
due to storage is defined as,

E H
r /w = eH

r `
H
r +eH

w`
H
w , (8.6)

where eH
r (eH

w ) is the energy required to read (write) one byte of information, and `H
r (`H

w )
is the length in bytes of the messages that have been read from (written into) the storage in
one month. Finally, the energy consumption of processing is defined as,

E H
p = eH

p nH
p , (8.7)
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where eH
p represents the energy required for processing a byte of information at HAN, and

nH
p is the number of processed bytes.

Similarly, energy consumption for a NAN is given by,

ENAN = E H→N
t +E N→U

t +E N
r /w +E N

p , (8.8)

where E H→N
t is the energy consumed for communication between HANs and NANs, E N→U

t
is the energy consumed for communication between NANs and UCU, E N

r /w is the energy

consumed for reading from and writing into the storage, and E N
p is the energy consumed

for processing. These terms are defined as,

E H→N
t = eH→N

t x `H→N
t x +eH→N

r x `H→N
r x

E N→U
t = eN→U

t x `N→U
t x +eN→U

r x `N→U
r x

E N
r /w = eN

r `
N
r +eN

w`
N
w

E N
p = eN

p nN
p .

(8.9)

Finally, for the UCU we have,

EUCU = E N→U
t +EU

r /w +EU
p . (8.10)

The terms E N→U
t (energy consumption for communication), EU

r /w (energy consumption for

storage reading/writing) and EU
p (energy consumption for processing) are defined as,

E N→U
t = eN→U

t x `N→U
t x +eN→U

r x `N→U
r x

EU
r /w = eU

r `
U
r +eU

w`
U
w

EU
p = eU

p nU
p .

(8.11)

Thus, the total energy consumption for the entire network in a month is,

Etotal = EUCU + ∑
i∈N

ENAN(i )+ ∑
j∈M

EHAN( j ), (8.12)

where N is the set of NANs and M is the set of HANs in the network.
Communication: The communication cost accounts for the data rate (expressed in bits per
second, bps) needed to transmit data from a HAN to the UCU through a NAN. Data rate for
a HAN is expressed as,

THAN = 8 `H→N
m

t H→N
, (8.13)

where `H→N
m is the length of the message that has to be transmitted from the HAN to the

NAN, and t H→N is the time period within which a HAN needs to transmit its information to
the NAN. Given THAN, the resulting monetary cost for communication at HAN j is,

CT ( j ) = THAN · fT (THAN), (8.14)

where fT (·) is a non-linear function that models the cost of bandwidth (expressed in $/bps).
Similarly, data rate for a NAN is expressed as,

TNAN = 8 `N→U
m

t N→U
. (8.15)
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The resulting monetary cost for communication at NAN i is,

CT (i ) = TNAN · fT (TNAN). (8.16)

Therefore, the total communication cost required for transmission between HANs to NAN
and NANs to UCU is expressed as,

CT = ∑
i∈N

CT (i )+ ∑
j∈M

CT ( j ). (8.17)

Storage: The storage cost accounts for the total amount of storage capacity (expressed in
bytes) required by the node. The storage cost depends on the sampling interval τ and the
time duration ∆T for which storage is needed. Thus, the storage requirement for a node k
is expressed as,

Sk =∆T
`m

τ
, (8.18)

where `m indicates the length of a message. Depending on the architecture selected and
application requirement, `m and τ varies for each HANs, NANs and UCU. Given Sk , the
resulting monetary cost for storage at node k is,

CS (k) = Sk · fS (Sk ), (8.19)

where fS (·) is a non-linear function that models the cost of storage (expressed in $/byte).
Thus total storage cost of the network for one month is given as,

CS =CS (UCU)+ ∑
i∈N

CS (i )+ ∑
j∈M

CS ( j ). (8.20)

Processing: The processing cost accounts for the number of operations (ops) required to
respond to a query received at the node. The in-node operations to respond to a query in-
cludes mainly arithmetic and relational operations. Processing cost depends on the num-
ber of messages to be processed and number of operations to be performed based on the
query. The processing cost at node k calculated for one month is expressed as,

Pk = ∑
q∈Q

nm ·nq , (8.21)

where Q is the set of queries generated in the network, which depends on the supported
energy services, nm is the number of messages to be processed and nq represents the num-
ber of operations to be performed for query q . These values depend on the architecture
selected, the types of query and the node. Given Pk , the resulting monetary cost for pro-
cessing at node k is,

CP (k) = Pk · fP (Pk ), (8.22)

where fP (·) is a non-linear function that models the cost of processing (expressed in $/ops).
Thus total processing cost of the network for one month is given as,

CP =CP (UCU)+ ∑
i∈N

CP (i )+ ∑
j∈M

CP ( j ). (8.23)

Accuracy cost: As mentioned before, in order to reduce storage and communication, a pos-
sible strategy is to do a time-wise aggregation of consecutive energy readings. In this way,
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an original time-series X of n readings is reduced to a smaller time-series Y of length m,
(where m < n) by aggregating each k consecutive values in X into a single value y in Y .
However, certain services may need to restore the original time series X from Y , using a
disaggregation algorithm. The restored time-series X̂ may differ from the original one, X .

Accuracy is therefore an important measure of how accurately the original data can be
retrieved from aggregated data. We utilize Normalized Root Mean Square Error (NRMSE) as
our accuracy cost. Let xt ∈ X be the real energy consumption value of a HAN j at time t ,
and x̂t ∈ X̂ the energy consumption value that has been inferred through the disaggregation
algorithm. The NRMSE is expressed as,

NRMSE( j ) = RMSE( j )

xmax −xmin
, (8.24)

where xmax and xmin are the maximum and minimum real energy consumption values of
X , and

RMSE( j ) =
√∑n

t=1 (xt − x̂t )2

n
. (8.25)

The accuracy cost C A is therefore defined as the average NRMSE among all the HANs. For-
mally,

C A = 1

|M |
∑

j∈M

NRMSE( j ). (8.26)

Privacy cost: Although the compression of the original time-series X into Y through time-
wise aggregation reduces the accuracy of the restored time-series X̂ , it also enhances the
customer privacy. In fact, Y can be considered as an obfuscated version of X . To quantify
the privacy of the aggregation of k consecutive values into a single aggregated value y , we
use Shannon entropy [107] associated with the disaggregation of y into k values. In general,
higher the entropy, the higher is the customer privacy. The entropy of a system with S

states is expressed as,

H(y) = ∑
s∈S

−p(s) · log (p(s)), (8.27)

where p(s) is the probability that the system is in state s. In our case, S is the set of all
possible disaggregations, i.e., all the possible ways a value y can be split into k values such
that the sum of the k values equal y . The number of possible disaggregations (i.e., the state
space size |S |) is called weak integer composition of y into k parts, and it is computed as,

|S | =
(

y +k −1

k −1

)
=

(
y +k −1

)
!

(k −1)! · y !
.

Assuming that each disaggregation of y into k values has the same probability, we can
rewrite Eq. (8.27) as,

H(y) = l og (|S |) . (8.28)

The average entropy of the aggregated time-series Y of HAN j is,

H( j ) =
∑

y∈Y H(y)

|Y | . (8.29)
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Table 8.1: Queries generated (E=energy consumption)

Queries generated BAP DR DF EM

E / 10 seconds X X
E / 30 seconds X X
E / 15 minutes X X X

E / hour X X
E / day X X X X

E / month X X X
(Min, Max, Avg)E / day X X

(Min, Max, Avg)E / month X X

Thus, the privacy cost CH of a data processing architecture is defined as,

CH =− 1

|M |
∑

j∈M

H( j ). (8.30)

8.4. EVALUATION
Services in SG have different data requirements, which imply different data acquisition
queries generated by the UCU. In our evaluation we consider Billing and adaptive pricing
(BAP), Demand Response (DR), Demand Forecast (DF) and Emergency Management (EM).
The requirements of the services considered for our cost-benefit analysis are described in
Table 8.1.

Billing and adaptive pricing (BAP). In the future, utility providers will be able to bill con-
sumers based on the real-time demand-supply balance. Consumers will also get real-time
pricing information in order to alter their energy demand. Thus, queries related to mini-
mum, maximum and average energy consumption, as well as hourly and monthly energy
consumption are generated by UCU for this application.

Demand-response (DR). DR strategies are designed to reduce or shift energy consumption
from peak periods to off-peak periods. Thus, energy consumption readings at high fre-
quency during peak periods and low frequency consumption readings at off-peak periods
are required to envisage DR.

Demand forecast (DF). Demand forecast algorithms can assist utility providers towards
efficient distribution of electricity and better planning of resources. Aggregate energy con-
sumption readings and high frequency readings at peak periods can assist in accurate de-
mand forecast.

Emergency Management (EM). Cascading failures and robustness of the grid are some of
the challenges that are handled using emergency management strategies. To detect abnor-
mal energy consumption patterns, readings at high frequency are required.
Environment: In our cost-benefit analysis we consider two environments viz, urban and
rural. We define the number of HANs and NANs in an urban and rural setup based on
Electric Power Research Institute (EPRI) [11] survey about the NAN, population density and
number of households in the USA.

Average total population in an urban environment is around 4.8M , with a maximum
population density of roughly 33.7K persons per km2 and land area of 121 km2. Thus,
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Table 8.2: Energy consumption for different operations. [95]

Operations Energy consumption

Transmission @sub-1GHz 0.164 mJ/byte
Reception @sub-1GHz 0.08 mJ/byte

Transmission @IEEE 802.16 0.324 mJ/byte
Reception @IEEE 802.16 0.100 mJ/byte

Read from flash 0.09 µJ/byte
Write to flash 0.8 µJ/byte

Processing 0.14 µJ/byte

an urban environment is composed of 1.6M households. To provide adequate coverage
to the collection of energy data from the households, 73 NANs operating at sub-1GHz are
required [11].

Rural environments with different terrain and population density are considered to have
total population of 1.4M and land area of 215000 km2. Thus, rural environment consists of
around 476K households, with 76 NANs operating at sub-1GHz to provide coverage [11].
Simulation parameters: A standard wireless sensor node (WSN) is considered as HAN and
its configuration depends on the architecture. Each HAN samples data by default every 5
minutes, which can be programmed based on the requirement or upon reception of the
query. Each HAN is associated with a sub-1GHz transceiver to communicate with the NAN.
Similarly, NANs are equipped with both sub-1GHz and WiMAX transceivers to communi-
cate with HANs and UCU respectively. Table 8.2 shows the energy consumption for different
operations performed by the HAN.

Data message contains HAN number, time stamp and energy consumption values. The
Query message includes the HAN number and query number. Similarly, the Query-reply
message carries the energy consumption value, HAN number and query number. Finally,
the Aggregated data includes HAN number, aggregation granularity and aggregated energy
consumption value. Message size of data, query, query-reply, aggregated messages are con-
sidered to be 50, 5, 10 and 10 bytes respectively.

8.5. RESULTS
This section describes the performance of each architecture based on the key cost indica-
tors for urban and rural environments. To calculate the key cost indicators, we used the
data over a duration of one month in our simulations.
Energy consumption.

Energy consumption cost per architecture for both urban and rural environments3 is
illustrated in Fig. 8.2a and Fig. 8.2b. In urban environments, it is evident that centralized
architecture consumes significant amount of energy compared to other architectures. In
centralized architecture, complete data needs to be relayed to the UCU, thus increasing the
number of transmissions and the energy required. Distributed and hybrid architectures

3In our experimental evaluation we considered two cases: (i) each NAN has the same number of HANs, and
(ii) each NAN has a uniformly distributed random number of HANs. We found that there is not much differ-
ence in energy consumption between the two cases. Thus, for simplicity we consider equal number of HANs
being allocated to each NAN.
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Figure 8.2: Energy consumption across architectures.

Table 8.3: Energy consumption distribution for urban environments with 1.6M HANs.

Architectures Storage Proc. Comm. Total Energy

Centralized 4% 12.6% 83.4% 554.0 MJ
Decentralized 2.3% 16.2% 81.5% 213.5 MJ

Distributed 15.9% 20.4% 63.7% 19.8 MJ
Hybrid 7.1% 3% 89.9% 9.6 MJ

consume much lower energy compared to centralized and decentralized architectures. The
significant energy saving in distributed approaches is due to the reduced number of trans-
missions. Energy consumption of the hybrid architecture is the lowest compared to all other
architectures. This energy saving is achieved by sending aggregated data to NANs as com-
pared to storing data only at HANs, as in distributed architecture.

In general, the total energy consumption increases rapidly as the number of houses in-
creases for centralized and decentralized architectures. In case of distributed and hybrid
architectures, the increase in energy consumption is very gradual, thus increasing their scal-
ability. Similar trends can be seen for rural environments, as shown in Fig. 8.2b.

Table 8.3 shows energy consumption distribution for different architectures (number of
HANs = 1.6M). We remark that the energy consumption considers only communication,
storage and memory operation, although other factors could be considered, such as cool-
ing, lights, etc. It is evident that the most significant energy factor in all the architectures is
communication. Hence, reducing communication needs can in turn reduce overall energy
consumption, as can be seen in distributed and hybrid architectures.
Communication.

The communication cost as described in Section 8.3 is the average data rate required
to support the SG services considered. The time of reference t H→N and t N→U in Eq. (8.13)
and Eq. (8.15) are considered to be 1 s. Table 8.4 shows the average bandwidth requirement
at each HAN and NAN for both urban and rural environments with 1.6M HANs and 476K
HANs respectively. Data rate requirement for a HAN is same, irrespective of the environ-
ment, as each HAN transmits the same data based on the architecture selected. However,
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Figure 8.3: Bandwidth required in urban environment.

Table 8.4: Bandwidth required for various architectures.

Urban Rural
Architectures HAN NAN HAN NAN

Centralized 480 bps 11 Mbps 480 bps 3 Mbps
Decentralized 480 bps 32 Mbps 480 bps 1 Mbps
Distributed 144 bps 3 Mbps 144 bps 1 Mbps
Hybrid 138 bps 2 Mbps 138 bps 0.5 Mbps

the data rate required at NANs in urban environment is higher than rural environment,
since more HANs are associated with each NAN in an urban environment. The bandwidth
requirements from HANs to NAN and NANs to UCU in an urban environment are shown in
Fig. 8.3a. The needed bandwidth between HANs and NAN is higher for centralized and de-
centralized architectures.However, since distributed storage and processing is adopted in
distributed and hybrid architectures, the number of transmissions performed at the HAN
is reduced. Thus, the bandwidth requirement is significantly reduced in these architec-
tures. Similarly, the average bandwidth requirement between NANs and UCU is shown in
Fig. 8.3b. In general, the bandwidth increases with the number of houses as seen in the
Fig. 8.3. Similar trends with scaled-down bandwidth requirements are observed for rural
environments.
Storage.

Storage required by each node for different architectures in urban environment, for du-
ration ∆T = 1 year is shown in Fig. 8.4a. The default sampling interval of 5 minutes is con-
sidered to determine the storage cost as described in Eq. (8.18). As with other costs, storage
cost for centralized architecture is the highest compared to other architectures, as all data is
stored at one place i.e. the UCU. The storage required by other architectures is much lower
than the centralized architecture, with distributed architecture having the lowest. As the
number of HANs increases, the required storage increases linearly in centralized architec-
tures. On the other hand, since equal number of HANs are allocated to each NAN, for all the
other architectures storage is constant, as seen in the Fig. 8.4a.
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Figure 8.4: Required storage in urban environment.

Table 8.5: Processing operations in urban environment.

Architectures Number of operations

Centralized 9000 M-ops
Decentralized 9000 M-ops
Distributed 0.36 M-ops
Hybrid - NAN 15.75 M-ops
Hybrid - HAN 0.008 M-ops

Finally, the required storage as a function of sampling interval is shown in Fig. 8.4b.
Higher sampling intervals indicate less frequent sensing of energy values. Storage cost in
general decreases with increase in sampling interval, regardless of the architecture.

Processing.
Processing accounts for the number of operations performed to respond to a query as

described in Section 8.3. Processing requirements depend on the number of messages the
node has to process before replying. For each query, all messages until the reception of
query are processed and each query is independent of other queries. Thus the process-
ing requirement depends on when the query is received (in turn number of messages to be
processed) and the operations performed. The processing requirement for one month du-
ration in an urban environment with 1.6M HANs is shown in Table 8.5.

In centralized architectures, since UCU performs all processing, the processing require-
ments increase with the number of houses. Since number of HANs per NAN is constant,
processing at each NAN in decentralized architectures is merely a constant with increase in
number of houses. In a distributed architecture, processing is done in a distributed manner
at each HAN, thus reducing the number of operations at each HAN by order of four com-
pared to decentralized architecture. In hybrid architectures, processing effort is distributed
at both HANs and NANs and has the least processing cost at each HAN. Similar trends are
also observed for rural environments.
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Figure 8.5: Monetary cost details for deployment, operational and each node in urban environment.

Cost-Benefit Analysis.

Monetary cost: The monetary cost as described in Section 8.3 accounts for deployment
and operational costs. Deployment cost is the cost for installing nodes (HANs, NANs, UCU)
and varies based on the capabilities provided to each node with respect to processing, stor-
age and communication. Operational cost is calculated based on the energy required to
operate all nodes for one month. The cost of electricity ( fE ) in Eq. (8.3) is considered to be
0.194 $/KWh, based on Pacific Gas and Electric Company4 yearly average electricity costs.
Based on the storage, processing and communication requirements obtained in previous
Section, appropriate modules and price details are considered from digikey5. In general,
fS (·) in Eq. (8.19) model the cost of storage per byte and is considered to vary from 2$ to 60$
for 256KB to 500GB of storage. Similarly fT (·) in Eq. (8.14) models the cost of transceivers
and is considered to be 5$ and 10$ for sub − 1G H z and WiMAX transceivers respectively.
fP (·) in Eq. (8.22) models the cost of processing and varies from 5$ (MSP43016xx processor)
to 60$ (ARM Cortex-M3 processor).

The deployment cost for each architecture as a function of number of houses is shown
in Fig. 8.5a. Since processing and storage are performed by only UCU in centralized ar-
chitecture, the total deployment cost is the lowest compared to all other architectures. In
decentralized architectures, all the NANs have storage and processing capabilities. The dis-
tribution of processing and storage capabilities to the NANs overcomes single point fail-
ure but follows the same trend in monetary cost as compared to centralized architectures.
In distributed architecture, each HAN is equipped with processing and storage capabili-
ties, thus increasing the monetary cost of each node in the network. Due to sheer number
of HANs, the total deployment cost of the distributed architecture increases rapidly with
number of HANs. The deployment cost in hybrid architectures is lower compared to a dis-
tributed architecture, since processing and storage are distributed at both HANs and NANs.
The operational cost for various architectures in urban environment is shown in Fig. 8.5b.

Fig. 8.5c shows the break-up of monetary cost incurred for each architecture in urban
environment with 1.6M HANs. The figure shows the cost in $ for each HAN, NAN, UCU

4http://www.pge.com/.
5http://www.digikey.com/
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Figure 8.6: Accuracy, privacy and cost-benefit analysis.

(with storage, processing, communication), as well as the operational and deployment cost
across various architectures. As seen in the figure, adding storage and processing features to
each HAN increases the deployment cost of distributed and hybrid architectures. However,
distributed and hybrid architectures have the least operational cost compared to central-
ized and decentralized architectures and hence more energy efficient.

Accuracy cost: Centralized and distributed architectures do not employ data aggregation,
as data is stored either in UCU or HAN. Since complete data is available at each NAN in a de-
centralized architecture, low data aggregation granularity of 1 hour is employed. In hybrid
architecture, NAN receives data aggregated with granularity every 12 hours from each HAN.
NRMSE is the metric used to determine the accuracy based on data aggregation granularity.
To calculate the accuracy cost, we used two weeks of data collected by the REDD [72]. Data
aggregation granularity of 1, 6, 12, 24 hours are considered, while the step-size of the time-
series to be restored is assumed to be 5 minutes. The focus here is not on accurate disaggre-
gation algorithms. For this reason, we employ a rather simple algorithm that equally split
an aggregated reading into the 5 minute buckets of the time-series to be restored. Fig. 8.6a
shows the NRMSE values for various data aggregation granularities. It is evident that, higher
the data aggregation granularity, the higher is the NRMSE and thus lower is the accuracy.

Privacy cost: This cost factor also depends on the data aggregation granularity. Intuitively,
higher the data aggregation granularity, the higher is the entropy and thus lower is the pri-
vacy cost. In centralized architectures, all sensitive data of customers is available at UCU,
thus making centralized architecture the least privacy-preserving architecture. On the other
hand, distributed architectures with distributed storage ensure that customer’s sensitive
data is stored locally at HAN, making them completely privacy-preserving.

However, privacy cost varies in decentralized and hybrid architectures. As before, we
used two weeks of data collected by the REDD initiative [72] to calculate the privacy cost.
Fig. 8.6b shows the average entropy for different data aggregation granularities. The figure
shows that the higher the data aggregation granularity, the higher the entropy, therefore the
lower the privacy cost (see Eq. (8.30)).

The radar plot in Fig. 8.6c shows the performance of each architecture according to the
monetary, accuracy and privacy costs. All cost indicators have been normalized to the [0,1]
interval. Clearly, the lower the value of monetary, accuracy and privacy costs, the more de-
sirable is the architecture for the smart grids.
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Centralized architectures has low monetary cost, high privacy cost and low accuracy
cost, thus making them less privacy-preserving but economically cheaper, since all data
is stored and processed at the UCU. Thus, centralized architectures are less scalable and
suffer from single point of failure but with low deployment cost. Decentralized architectures
on the other hand have low monetary cost, moderate privacy cost and moderate accuracy
cost. The privacy cost reduction is achieved with data aggregation at NANs, which also in-
creases the accuracy cost. Decentralized architecture distributes the processing and storage
efforts to the NANs thus achieving moderate privacy and low monetary cost. Distributed
architectures have the highest monetary cost, the lowest privacy and accuracy costs. Dis-
tributed architectures are clearly the most privacy-preserving system, since data is stored
and processed locally, however this increases the monetary cost of the architecture. Hybrid
architectures have lower monetary cost compared to distributed architectures, with low pri-
vacy cost and moderate accuracy cost. Distributing storage and processing at both HANs
and NANs reduces the deployment cost, with a loss in accuracy due to data aggregation at
NANs. Also, hybrid architectures are more energy efficient but with high deployment cost.

8.6. CONCLUSIONS
In this chapter, we presented different data-processing architectures for SG. To gain in-
sights, the proposed architectures were evaluated with respect to energy consumption, pro-
cessing power, storage requirements, communication bandwidth, accuracy of data collec-
tion and privacy. From our cost-benefit analysis, we conclude that even though centralized
architectures perform well in terms of accuracy and deployment cost, they are less scalable
and the least privacy preserving. On the other hand, distributed architectures overcome
privacy issues with local storage and processing, but with additional deployment cost. De-
centralized architectures perform well in terms of accuracy and monetary cost, while hy-
brid architectures increase the privacy by increasing the deployment cost. Thus, the choice
of the architecture could be to have a more energy-efficient architecture or highly-scalable
distributed architecture with high deployment cost or simple less-scalable architecture and
depends upon the objective of the implementation. The proposed comprehensive analysis
on various data-processing architectures shows how to cope with the overwhelming data
generated from smart meters.
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“Two roads diverged in a wood, and
I took the one less traveled by, and that has made all the difference."

Robert Frost

Sustainable development while reducing the energy footprint has become an impor-
tant field of study. This calls for many innovative solutions in the generation, transmission,
and consumption of energy. In this thesis we majorly focused on the consumption-side of
energy systems.

We explored how to develop effective personalized energy services towards designing
sustainable smart energy systems. We argue that the design and development of energy
services should follow a personalized approach giving paramount importance to consumer
preferences. We followed a bottom-up approach where energy services are developed from
nano scale targeting individual households, to micro scale targeting smart buildings, to
macro scale targeting neighborhoods and cities. To this end, we presented an approach
– physical analytics for sustainable and smart energy systems – that combines IoT data,
physical modeling and data analytics to develop intelligent, personalized energy services.
Our results are grouped in three parts as follows.

In Part I, we discussed energy services that raise awareness among occupants of a house-
hold by providing fine-grained energy consumption information in real-time. Specifically,
we developed a simple, effective energy-disaggregation algorithm to derive appliance-level
information. Further, we designed a personalized energy-disaggregation system moving
from appliance-level towards user-level information. This energy-disaggregation system
provides per-occupant energy-usage information that is used to create better energy man-
agement techniques apart from raising awareness.

In Part II, we proposed energy services to reduce/shift demands by considering the
preferences of individual occupants. We presented a demand-scheduling algorithm that
minimizes the user discomfort and electricity cost by shifting usage of appliances. Several
metrics to analyze user preferences and appliance-usage patterns from historic energy-
consumption data were described. Further, consumer preferences with respect to indoor
temperature and lighting levels were modeled to develop a demand-reduction algorithm.
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The proposed iLTC system improves user comfort and efficient usage of HVAC and lighting
systems in smart buildings.

In Part III, we explored how to develop energy services that can be applied across various
segments of consumers. To this end we presented a temporal demand-regulation scheme
that can identify target consumers in a neighborhood for various DR programs. After iden-
tifying consumers, utilities can target specific groups of consumers to adjust their demand,
such as reduction in average and peak demand. Further, to develop effective energy ser-
vices at the city level, a comprehensive analysis on where to store and process smart-meter
data was required. We presented four data-processing architectures and analyzed which ar-
chitecture is best suited to efficiently store and process the data for various energy services.

9.1. RECAPITULATION
As mentioned above, the essence of this thesis is to raise awareness, reduce energy con-
sumption and at the same time improve user comfort in smart – homes, buildings, and
neighborhoods. We now enlist the three main achievements of the work presented in this
thesis:

• We demonstrated that, with minimal intrusion and computational complexity, fine-
grained energy-consumption information can be derived accurately in real time to
raise awareness (Part I).

• We have achieved a significant reduction in energy consumption and electricity cost
by modeling consumer preferences and energy-usage patterns (Part II).

• We presented novel schemes toward developing consumer-centric energy services
that analyze and classify households based on the energy-consumption data and con-
sumer preferences to provide targeted recommendations (Part III).

Through the above accomplishments, this thesis advocates developing personalized en-
ergy services towards the design of sustainable, smart energy systems. The proposed energy
services follow a distributed approach with low-complexity algorithms that are scalable,
from one household to tens and thousands of households. Let us now recapitulate our con-
tributions through the prism of personalization.
Data collection. Fine-grained data collection is the cornerstone of developing personalized
energy services. While smart-meter deployments have paved the way to collect energy-
usage data at the house level, fine-grained data at appliance-level and user-level is still not
readily available. We presented algorithms that utilize least amount of data from sensors al-
ready deployed in the households to derive fine-grained consumption data at appliance and
user levels. State-of-the-art algorithms work well only on the specific household from where
training data was collected and involve high-computational complexity. The algorithms
presented in this thesis circumvent these limitations and perform significantly better than
the state-of-the-art algorithms with low complexity. The derived fine-grained data is used
by personalized energy services to raise awareness and provide information on faulty appli-
ances, per-appliance and per-occupant energy consumption. Furthermore, energy services
can use this information to model per-occupant energy-usage behavior, find anomalies in
energy usage and predict energy consumption. Through the proposed inference algorithms
we demonstrated that effective personalized energy services can be developed without de-
ployment of additional sensors, thus avoiding maintenance and deployment cost.
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User preferences. To tailor energy services to individual consumers, apart from data col-
lection, accurate modeling of consumer characteristics is crucial. We presented two ap-
proaches to derive user preferences keeping in mind, (i) the applicability across households
and (ii) the ability to run in real time. Our first approach uses data-driven techniques to
infer user preferences from historic energy-consumption information. With the inferred
user preferences, the proposed personalized energy services such as demand shifting and
TDR outperform traditional energy management services. The second approach employed
a crowd-sourced technique to collect user preferences with the help of a smartphone App.
We demonstrated that with a few user-provided inputs one can develop comprehensive
models of user comfort requirements. Hitherto, energy services were generic and hence in-
effective. Energy services based on consumer preferences enable active participation and
promote sustainable energy usage. Even though our data-driven approaches provide the re-
quired information to tailor energy services quite effectively, there is still a need to develop
generic algorithms to model large numbers of consumers.

Scalability. While we tailor energy services to cater to individual consumer preferences, it
is also important to ensure applicability of personalized energy services at various scales
– households, buildings, neighborhoods, and cities. We address the scalability of energy
services at two levels (i) at occupant level – the ability to provide information to multiple
occupants in a household based on their preferences and (ii) at household level – the ability
to provide information to multiple households in a neighborhood/city. To support scala-
bility at occupant-level, we developed low-complexity online algorithms that can run on
consumer devices such as smartphones and send only events to the local server (a Rasp-
berry PI), thus eliminating the need to transfer all the data to a server for processing. This
allows the local server to process event streams from multiple occupants in real time. Sim-
ilarly, at household-level we proposed algorithms that utilize historic energy consumption
of a household to characterize energy-usage behavior and can run locally at each house-
hold. They were evaluated on a dataset with more than 4,000 households to characterize
their energy-usage behavior and provide targeted recommendations towards energy reduc-
tion. This validates the personalized energy services that are developed for large numbers
of consumers. Furthermore, it is also crucial to design efficient end-to-end energy systems
addressing the issues related to data storage and processing for these services. Our pro-
posed data-processing architectures provide insights such as where to store and process
large-scale smart-meter data from millions of households for various energy services.

Real-time feedback. To raise awareness and enable active consumer participation, per-
sonalized energy services need to provide real-time feedback to the consumers. The real-
time requirements vary depending on the energy service. Services such as identification of
faulty appliances and current energy usage of an occupant need information relaying in real
time to alert consumers, whereas services such as day-ahead demand shifting and monthly
electricity-bill estimation may tolerate higher latency. The former can be implemented with
a distributed architecture to minimize latency; the latter can follow a hybrid architecture
where some processing can be offloaded to aggregation nodes. The designers can choose
the best architecture depending on the latency requirements. Furthermore, we developed
a smartphone App to provide real-time recommendations to consumers on appliance-level
consumption, per-appliance energy usage and cost per month, and estimated monthly en-
ergy cost based on usage patterns. Further analysis on how consumers react (or adapt) to
these recommendations is needed to develop effective feedback mechanisms.
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In summary, we demonstrated that personalized energy services can be implemented at
large scales to promote sustainable energy usage. We showed that using less data and with
the help of personalized feedback and recommendations in real time we can enhance con-
sumers –awareness, –participation and –engagement. We followed a bottom-up approach
wherein energy services were proposed at various scales. Unlike prior works focusing on
synthetic data, we advocated data-driven techniques to model energy usage behavior of
consumers and energy consumption patterns. The proposed personalized energy services
were implemented and evaluated in a real-world setting and across multiple datasets. As
such this thesis provides a promising direction towards the development of real time, scal-
able, personalized energy services consequently leading to designing sustainable, smart en-
ergy systems at scale.

9.2. FUTURE WORK
In this section, we offer some ideas for future work into the topics covered in this thesis.
While we tackled some of the key challenges involved in developing personalized energy
services, there still exist several open challenges for the large-scale development of person-
alized energy services. We enlist some of them below.

Data-driven techniques. The adoption of energy services at large scale is still limited due
to the lack of consideration of consumer preferences. Hitherto, energy services were eval-
uated either using numerical analysis or simulations resulting in unrealistic assumptions
about acceptance and usage of these services. In this thesis, energy services were developed
by analyzing real-world data. While we demonstrated the advantages of our data-driven en-
ergy services at households and buildings, there is a need to evaluate these services at large
scale. This requires collecting information about energy consumption of occupants at the
city level. Currently there are a few pilot projects like the Smart Grid, Smart City project [8]
and Pecan street [59] that collect this information. Future energy services should be evalu-
ated across large-scale using real-world datasets from various cities for its wide adoption.

Towards generic algorithms. The energy disaggregation and apportioning algorithms
proposed in this thesis require information about the occupants (location and activity) and
their appliances (type and state). Collecting this information in large-scale deployments
across households is not feasible. Deriving appliance-level information in a household is
challenging due to two reasons viz., multiple appliances with similar energy-consumption
profile and appliances with multiple states. LocED addresses this by considering occu-
pants’ location to constrain the number of appliances during disaggregation. However,
when there are occupants in each room it fails to constrain the set of appliances. Devel-
oping generic algorithms to predict the number/type of appliances, user location and ac-
tivities is non-trivial. Recently, deep neural networks based energy-disaggregation algo-
rithms [65, 80] were proposed, where neural nets are trained on few appliances in a house-
hold. This trained model is later used to infer appliance-usage from a different household.
They have been found to provide very good results. Similarly, deep neural-nets are also em-
ployed for human activity recognition [96]. While these are promising, they require large
amounts of labeled data. It is also difficult to analyze this data for inferring an event on
an embedded device. Some open questions are: how to develop an effective model with
little/no training data? Can the trained model run locally on an embedded device?

Integrating energy services on the fly. In this thesis, we developed energy services to
raise awareness, provide actionable feedback and promote sustainable energy usage. While
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these services target specific scenarios, there is a need to support additional services with-
out much overhead. Currently, with large-scale penetration of renewable sources such as
solar and wind, consumers also produce energy at various capacities. Energy services tar-
geting these new actors should be explored. Supporting additional services on the fly is
non-trivial as the system needs to learn new relevant information about energy production
and usage. A generic framework needs to be developed that tackles challenges apart from
the ones described in this thesis such as privacy-preserving mechanisms and user-behavior
analysis, and can support additional services on the fly.

Applicability of personalized services to other domains. Finally, the applicability of the
proposed mechanisms across various domains, especially to other resources such as water
and gas needs to be investigated. We believe personalized services such as disaggregation,
apportioning and demand reduction can be directly applied to water consumption in smart
houses and buildings.





BIBLIOGRAPHY

[1] “Building the power grid of the future.” [Online]. Available: http://www.news.gatech.
edu/features/building-power-grid-future

[2] “Dutch residential energy dataset.” [Online]. Available: http://www.st.ewi.tudelft.nl/
~akshay/dred/

[3] “Energy outlook 2010. Energy Information Administration.” [Online]. Available:
http://www.eia.doe.gov/oiaf/ieo/index.html

[4] “International data corporation (idc).” [Online]. Available: http://www.idc.com/
getdoc.jsp?containerId=prUS25903815

[5] “Measurement and instrumentation data center.” [Online]. Available: http://www.
nrel.gov/midc/

[6] “Meteorologisk institutt.” [Online]. Available: http://www.yr.no/

[7] “Physical analytics.” [Online]. Available: http://researcher.watson.ibm.com/
researcher/view_group.php?id=6566

[8] “Smart grid and smart city project and.” [Online]. Available: https://www.
energyaustralia.com.au/sgsc

[9] “Smart grids strategic research agenda towards 2035.” [Online]. Available: http:
//www.smartgrids.eu/documents/sra2035.pdf

[10] “U. S. dept of energy, advanced metering infrastructure,” 2008. [Online].
Available: https://www.smartgrid.gov/sites/default/files/pdfs/advanced_metering_
infrastructure_02-2008.pdf

[11] “Electric Power Research Institute, Wireless Field Area Network Spectrum Assess-
ment,” 2010.

[12] “The commission for energy regulation (cer), “Electricity customer behaviour trial",,”
2012.

[13] “Council of european energy regulators, 2020 vision for europe’s energy customers. a
discussion paper,” 2012, ref. C12-SC-02-04.

[14] “Electricity customer behaviour trial, the commission for energy regulation (cer),”
2012.

[15] “Who urban population growth,” 2014. [Online]. Available: http://www.who.int/
gho/urban_health/situation_trends/urban_population_growth_text/

127

http://www.news.gatech.edu/features/building-power-grid-future
http://www.news.gatech.edu/features/building-power-grid-future
http://www.st.ewi.tudelft.nl/~akshay/dred/
http://www.st.ewi.tudelft.nl/~akshay/dred/
http://www.eia.doe.gov/oiaf/ieo/index.html
http://www.idc.com/getdoc.jsp?containerId=prUS25903815
http://www.idc.com/getdoc.jsp?containerId=prUS25903815
http://www.nrel.gov/midc/
http://www.nrel.gov/midc/
http://www.yr.no/
http://researcher.watson.ibm.com/researcher/view_group.php?id=6566
http://researcher.watson.ibm.com/researcher/view_group.php?id=6566
https://www.energyaustralia.com.au/sgsc
https://www.energyaustralia.com.au/sgsc
http://www.smartgrids.eu/documents/sra2035.pdf
http://www.smartgrids.eu/documents/sra2035.pdf
https://www.smartgrid.gov/sites/default/files/pdfs/advanced_metering_infrastructure_02-2008.pdf
https://www.smartgrid.gov/sites/default/files/pdfs/advanced_metering_infrastructure_02-2008.pdf
http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/
http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/


128 BIBLIOGRAPHY

[16] “Price waterhouse coopers (pwc),” 2016. [Online]. Available: http://www.pwc.co.uk/

[17] “U. N. world cities report,” 2016. [Online]. Available: http://wcr.unhabitat.org/

[18] W. Abrahamse and L. Steg, “How do socio-demographic and psychological factors re-
late to households’ direct and indirect energy use and savings?” Journal of Economic
Psychology, vol. 30, October 2009.

[19] U. S. E. I. Administration. [Online]. Available: http://www.c2es.org/technology/
overview/buildings

[20] A. Aggarwal, S. Kunta, and P. Verma, “A proposed communications infrastructure for
the smart grid,” in Innovative Smart Grid Technologies (ISGT), 2010.

[21] M. Arenas-Martinez, S. Herrero-Lopez, A. Sanchez, J. Williams, P. Roth, P. Hofmann,
and A. Zeier, “A comparative study of data storage and processing architectures for
the smart grid,” in IEEE SmartGridComm, 2010.

[22] S. Aust, R. Prasad, and I. Niemegeers, “Performance evaluation of sub 1 ghz wireless
sensor networks for the smart grid,” in IEEE Local Computer Networks, 2012.

[23] M. Azizyan, I. Constandache, and R. Choudhury, “Surroundsense: mobile phone lo-
calization via ambience fingerprinting.” In Proceedings of the 15th annual interna-
tional conference on Mobile computing and networking (MobiCom), 2009.

[24] Z. Baharlouei and M. Hashemi, “Efficiency-fairness trade-off in privacy-preserving
autonomous demand side management,” IEEE Transactions on Smart Grid, vol. 5,
no. 2, pp. 799–808, 2014.

[25] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social networks in infor-
mation diffusion,” in Proceedings of the 21st international conference on World Wide
Web (WWW ’12), ACM, 2012.

[26] M. Baranski and J. Voss, “Genetic algorithm for pattern detection in nialm systems,”
in In Proc. SMCS. IEEE, 2004.

[27] C. Basu, J. J. Caubel, K. Kim, E. Cheng, A. Dhinakaran, A. M. Agogino, and R. Martin,
“Sensor-based predictive modeling for smart lighting in grid-integrated buildings,”
Sensors Journal, IEEE, vol. 14, no. 12, pp. 4216–4229, 2014.

[28] N. Batra, H. Dutta, and A. Singh, “Indic: Improved non-intrusive load monitoring
using load division and calibration,” in In Proc. of ICMLA, 2013.

[29] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and M. Sri-
vastava, “Nilmtk: An open source toolkit for non-intrusive load monitoring,” in In
Proc. e-Energy. ACM, 2014.

[30] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping multidimen-
sional data. , Heidelberg. Berlin: Springer, 2006, pp. 25–71.

[31] D. Bonino, F. Corno, and L. D. Russis, “Home energy consumption feedback: A user
survey,” Energy and Buildings, vol. 47, pp. 383–393, 2012.

http://www.pwc.co.uk/
http://wcr.unhabitat.org/
http://www.c2es.org/technology/overview/buildings
http://www.c2es.org/technology/overview/buildings


BIBLIOGRAPHY 129

[32] D. Brunelli and L. Tamburini, “Residential load scheduling for energy cost minimiza-
tion,” Energy Conference (ENERGYCON), 2014 IEEE International, 2014.

[33] R. F. Chang and C. N. Lu, “Feeder reconfiguration for load factor improvement,” Power
Engineering Society Winter Meeting, IEEE, vol. 2, no. 7, pp. 980–984, 2002.

[34] C. Chen, J. Wang, and S. Kishore, “A distributed direct load control approach for large-
scale residential demand response,” in IEEE Transactions on Power Systems, vol. 29,
no. 5, pp. 2219–2228, 2014.

[35] S. Chen, N. B. Shroff, and P. Sinha, “Heterogeneous delay tolerant task scheduling and
energy management in the smart grid with renewable energy,” in IEEE J. Sel. Areas
Communication, 2013.

[36] X. Chen, T. Wei, and S. Hu, “Uncertainty-aware household appliance scheduling con-
sidering dynamic electricity pricing in smart home,” in IEEE Transactions on Smart
Grid, vol. 4, no. 2, pp. 932–941, 2013.

[37] Y. Cheng, K. Chen, B. Zhang, C. j. M. Liang, X. Jiang, and F. Zhao, “Accurate real-time
occupant energy-footprinting in commercial buildings,” in In Proceedings of ACM
BuildSys, 2012.

[38] G. Chicco, R. Napoli, and F. Piglione, “Comparisons among clustering techniques for
electricity customer classification,” IEEE Transactions on Power Systems, vol. 21, no. 2,
pp. 933–940, 2006.

[39] B. D. Chuong and B. Serafim, “What is the expectation maximization algorithm?” Na-
ture Biotechnology, vol. 26, no. 8, pp. 897–899, 2008.

[40] S. Darby, “The effectiveness of feedback on energy consumption, billing and direct
displays,” A review for DEFRA of the literature on metering, 2006.

[41] R. D. Dear and G. S. Brager, “Developing an adaptive model of thermal comfort and
preference,” Center for the Built Environment, 1998.

[42] D. Easley and J. Kleinberg, “Networks, crowds, and markets: Reasoning about a highly
connected worldnew york„” 2010.

[43] V. L. Erickson, S. Achleitner, and A. E. Cerpa, “Poem: power-efficient occupancy-
based energy management system,” in In Proceedings of international conference on
Information processing in sensor networks (IPSN), 2013.

[44] V. L. Erickson and A. E. Cerpa, “Thermovote: participatory sensing for efficient build-
ing hvac conditioning,” in Proceedings of the 4th ACM Workshop on Embedded Sys-
tems for Energy-Efficient Buildings. ACM, 2012, pp. 9–16.

[45] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid - the new and improved power
grid: A survey,” Communications Surveys & Tutorials, IEEE, vol. 14, no. 4, pp. 944–980,
2012.



130 BIBLIOGRAPHY

[46] X. Fang, D. Yang, and G. Xue, “Evolving smart grid information management cloud-
ward: A cloud optimization perspective,” Smart Grid, IEEE Transactions on, vol. 4,
no. 1, pp. 111–119, 2013.

[47] C. Fischer, “Feedback on household electricity consumption: A tool for saving en-
ergy?” 2008.

[48] C. Frale and A. E. Raftery, “How many clusters? which clustering method? answers
via model-based cluster analysis,” Computer Journal, vol. 41, pp. 578–588, 1998.

[49] M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl, D. Lindenberger, and E. Tröster, “The
role of grid extensions in a cost-efficient transformation of the european electricity
system until 2050,” Applied Energy, vol. 104, 2013.

[50] A. D. Galasiu and J. A. Veitch, “Occupant preferences and satisfaction with the lumi-
nous environment and control systems in daylit offices: a literature review,” Energy
and Buildings, vol. 38, no. 7, pp. 728–742, 2006.

[51] A. Ghahramani, F. Jazizadeh, and B. Becerik-Gerber, “A knowledge based approach
for selecting energy-aware and comfort-driven hvac temperature set points,” Energy
and Buildings, vol. 85, pp. 536–548, 2014.

[52] F. Giannotti, D. Pedreschi, A. Pentland, P. Lukowicz, D. Kossmann, J. Crowley, and
D. Helbing, “A planetary nervous system for social mining and collective awareness",”
The European Physical Journal Special Topics, no. 1, pp. 49–75.

[53] U. Gneezy, E. Haruvy, and H. Yafe, “The inefficiency of splitting the bill,” The Eco-
nomic Journal, vol. 114, no. 495, pp. 265–280, 2004.

[54] Y. Guo, M. Jones, B. Cowan, and R. Beale, “Take it personally: personal accountability
and energy consumption in domestic households,” 2013.

[55] S. Gupta, M. S. Reynolds, and S. N. Patel, “Electrisense: Single-point sensing using
emi for electrical event detection and classification in the home,” in In Proc. Ubi-
Comp. ACM, 2010.

[56] G. W. Hart, “Nonintrusive appliance load monitoring,” in Proc. of the IEEE, 1992.

[57] S. Hay and A. C. Rice, “The case for apportionment,” 2009.

[58] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. Lloret,
and J. Massana, “A survey on electric power demand forecasting: future trends in
smart grids, microgrids and smart buildings,” IEEE Communications Surveys & Tu-
torials, vol. 16, no. 3, pp. 1460–1495, 2014.

[59] C. Holcomb, “Pecan street inc.: A test-bed for nilm,” in In Proc. NILM workshop, 2012.

[60] Y. j. Kim, M. Thottan, V. Kolesnikov, and W. Lee, “A secure decentralized data-centric
information infrastructure for smart grid,” Communications Magazine, IEEE, 2010.

[61] Y. j. Wen and A. M. Agogino, “Wireless networked lighting systems for optimizing en-
ergy savings and user satisfaction,” in Wireless Hive Networks Conference. IEEE, 2008,
pp. 1–7.



BIBLIOGRAPHY 131

[62] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized day-ahead pricing for smart
grids with device-specific scheduling flexibility,” IEEE J. Sel. Areas Communication,
vol. 30, no. 6, pp. 1075–1085, 2012.

[63] J.Z.Kolter and T.Jaakkola, “Approximate inference in additive factorial hmms with ap-
plication to energy disaggregation,” In Proc. AIS-TATS, 2012.

[64] S. Karjalainen, “Consumer preferences for feedback on household electricity con-
sumption,” Energy and Buildings, vol. 43, pp. 458–467, 2011.

[65] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks applied to energy
disaggregation,” in In Proceedings of the 2nd ACM International Conference on Em-
bedded Systems for Energy-Efficient Built Environments, 2015.

[66] A. Kelman, Y. Ma, and F. Borrelli, “Analysis of local optima in predictive control for
energy efficient buildings,” Journal of Building Performance Simulation, vol. 6, no. 3,
pp. 236–255, 2013.

[67] H. Kim, Y. j. Kim, K. Yang, and M. Thottan, “Cloud-based demand response for smart
grid: Architecture and distributed algorithms,” in IEEE SmartGridComm, 2011.

[68] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised disaggregation of
low frequency power measurements,” in In Proc. SDM. SIAM, 2010.

[69] Y. Kim, T. Schmid, Z. Charbiwala, and M. Srivastava, “Viridiscope: Design and im-
plementation of a fine grained power monitoring system for homes.” In UbiComp,
2009.

[70] L. Klein, J. Y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakantham, and
M. Tambe, “Coordinating occupant behavior for building energy and comfort man-
agement using multi-agent systems,” Automation in Construction, vol. 22, pp. 525–
536, 2012.

[71] J. Kleinberg, “The convergence of social and technological networks,” Communica-
tions of the ACM, vol. 51, no. 11, pp. 66–72, 2008.

[72] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy disaggregation re-
search.” In SustKDD, 2011.

[73] A. Kusiak, M. Li, and F. Tang, “Modeling and optimization of hvac energy consump-
tion,” Applied Energy, vol. 87, no. 10, pp. 3092–3102, 2010.

[74] A. H. Y. Lam, Y. Yuan, and D. Wang, “An occupant-participatory approach for thermal
comfort enhancement and energy conservation in buildings.” in Proceedings of the
5th international conference on Future energy systems. ACM, 2014, pp. 133–143.

[75] S. Lee, D. Ahn, S. Lee, R. Ha, and H. Cha, “Personalized energy auditor: Estimating
personal electricity usage,” in In Proc. of the International Conference on Pervasive
Computing and Communications, 2014.



132 BIBLIOGRAPHY

[76] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side management in smart
grid using heuristic optimization,” in IEEE Transactions on Smart Grid, vol. 3, no. 3,
pp. 1244–1252, 2012.

[77] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. White-
house, “The smart thermostat: Using occupancy sensors to save energy in homes,” in
In Proc. SenSys, November 2010.

[78] L.Zhang, A. Lam, and D. Wang, “Strategy-proof thermal comfort voting in buildings.”
in Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings. ACM, 2014, pp. 160–163.

[79] R. Martinez, F. Ramos, and S. e. a. A. Gormus, “Comparison of centralized and dis-
tributed monitoring architectures in the smart grid,” In Systems Journal, IEEE, De-
cember 2013.

[80] L. Mauch and B. Yang, “A new approach for supervised power disaggregation by using
a deep recurrent lstm network,” in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2015.

[81] M. Minou, G. hanos, M. Vasirani, T. Ganu, M. Jain, and A. Gylling, “Evaluating demand
response programs: Getting the key performance indicators right,” 2014.

[82] S. J. Moss, “Market segmentation and energy efficiency program design,” 2008.

[83] S. N. A. U. Nambi, A. R. Lua, and R. Prasad, “Loced: Location-aware energy disaggre-
gation framework,” in In Proceedings of ACM BuildSys, 2015.

[84] S. N. A. U. Nambi, E. Pournaras, and R. V. Prasad, “Clustering and temporal evaluation
of energy demand,” 2016, arXiv preprint.

[85] S. N. A. U. Nambi, T. G. Papaioannou, D. Chakraborty, and K. Aberer, “Sustainable
energy consumption monitoring in residential settings,” in In Proc. IEEE INFOCOM,
2013.

[86] D. Pan, A. Lam, and D. Wang, “Carrying my environment with me in iot-enhanced
smart buildings,” in Proceeding of the 11th annual international conference on Mobile
systems, applications, and services. ACM, 2013, pp. 521–522.

[87] N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in envi-
ronmental protection: A review,” Renewable and Sustainable Energy Reviews, vol. 15,
pp. 1513–1524, 2011.

[88] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Non-intrusive load monitoring using
prior models of general appliance types,” in In Proc. AAAI, 2012.

[89] R. Paulson, C. Basu, A. M. Agogino, and S. Poll, “Inverse modeling using a wireless sen-
sor network (wsn) for personalized daylight harvesting,” In SENSORNETS, pp. 213–
221, 2013.

[90] L. Peretto, “The role of measurements in the smart grid era,” in IEEE Instrumentation
& Measurement Magazine, vol. 13, pp. 22–25, 2010.



BIBLIOGRAPHY 133

[91] M. A. Piette, G. Ghatikar, S. Kiliccote, E. Koch, D. Hennage, P. Palensky, and C. McPar-
land, “Open automated demand response communications specification,” 2009.

[92] D. Pisharoty, R. Yang, M. W. Newman, and K. Whitehouse, “Thermocoach: Reducing
home energy consumption with personalized thermostat recommendations,” in Pro-
ceedings of the 2nd ACM Conference on Embedded Systems for Energy-Efficient Build-
ings. ACM, 2015, pp. 201–210.

[93] E. Pournaras, M. Vasirani, R. E. Kooij, and K. Aberer, “Decentralized planning of en-
ergy demand for the management of robustness and discomfort,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 4, pp. 2280–2289, 2014.

[94] D. M. W. Powers, “Evaluation: From precision, recall and f-factor to roc, informed-
ness, markedness & correlation,” In Journal of Machine Learning Technologies, pp.
37–63, 2011.

[95] T. Prabhakar, S. N. Akshay, R. V. Prasad, S. Shilpa, K. Prakruthi, and I. Niemegeers, “A
distributed smart application for solar powered wsns,” In LNCS NETWORKING, 2012.

[96] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, and F. Kawsar, “To-
wards multimodal deep learning for activity recognition on mobile devices,” in In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing: Adjunct, 2016.

[97] A. Rai, K. Chintalapudi, V. Padmanabhan, and R. Sen, “Zee: zero-effort crowdsourcing
for indoor localization,” in In Proceedings of ACM Mobicom, 2012.

[98] J. Ranjan, E. Griffiths, and K. Whitehouse, “Discerning electrical and water usage by
individuals in homes,” in In Proceedings of ACM BuildSys, 2014.

[99] J. Ranjan, Y. Yao, and K. Whitehouse, “An rf doormat for tracking people’s room loca-
tions,” in In Proceedings of the ACM International Joint conference on Pervasive and
Ubiquitous Computing, 2013.

[100] D. Rech and A. Harth, “Towards a decentralised hierarchical architecture for smart
grids,” in Proceedings of the Joint EDBT/ICDT Workshops, U. Acm., Ed., 2012.

[101] E. Rendon, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal versus external clus-
ter validation indexes,” International Journal on Computer Communication, vol. 5,
no. 1, pp. 27–34, 2011.

[102] A. Rowe, M. Berges, and R. Rajkumar, “Contactless sensing of appliance state transi-
tions through variations in electromagnetic fields,” in In Proc. BuildSys. ACM, 2010.

[103] S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data cloud: A model for utilizing
cloud computing in the smart grid domain,” in IEEE SmartGridComm, 2010.

[104] M. Saha, S. Thakur, A. Singh, and Y. Agarwal, “Energylens:combining smartphones
with electricity meter for accurate activity detection and user annotation,” in In Pro-
ceedings of 5th International Conference on Future Energy Systems, 2014.



134 BIBLIOGRAPHY

[105] T. F. Sanquist, H. Orr, B. Shui, and C. Bittner, “Lifestyle factors in U.s. residential elec-
tricity consumption,” Energy Policy, vol. 42, 2012.

[106] C. Sarkar, S. N. A. U. Nambi, and R. V. Prasad, “iltc: Achieving individual comfort in
shared spaces,” in in International Conference on Embedded Wireless Systems and
Networks (EWSN), 2016.

[107] C. Shannon, “A mathematical theory of communication,” Bell System Technical Jour-
nal, vol. 27, no. 379, pp. 623–656, July 1948.

[108] M. Shargal and D. Houseman, “The big picture of your coming smart grid,” vol. 2009.
[Online]. Available: http://www.smartgridnews.com/artman/publish/commentary/
The_Big_Picture_of_Your_Coming_Smart_Grid-529.html

[109] W. Shen, V. Babushkin, Z. Aung, and W. L. Woon, “An ensemble model for day-ahead
electricity demand time series forecasting,” in In Proceedings of the fourth interna-
tional conference on Future energy systems, ACM e-Energy, 2013.

[110] R. E. Smalley, “Top ten problems of humanity for next 50 years,” 2003.

[111] J. Stephenson, B. Barton, G. Carrington, D. Gnoth, R. Lawson, and P. Thorsnes, “En-
ergy cultures: A framework for understanding energy behaviours,” Energy Policy,
vol. 38, 2010.

[112] Y. Strengers, “Designing eco-feedback systems for everyday life,” in In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM, 2011.

[113] P. Tan, M. Steinbach, and V. Kumar, “Introduction to data mining.”

[114] Y. Tung and K. Shin, “Echotag: Accurate infrastructure-free indoor location tagging
with smartphones,” in In Proceedings of ACM Mobicom, 2015.

[115] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand response programs
in smart grids: Pricing methods and optimization algorithms,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 1, pp. 152–178, 2015.

[116] C. Wang, Y. Zhou, J. Wu, J. Wang, Y. Zhang, and D. Wang, “Robust-index method for
household load scheduling considering uncertainties of customer behavior,” in IEEE
Transactions on Smart Grid, vol. 6, no. 4, pp. 1806–1818, 2015.

[117] M. Weiser, “The computer for the 21st century,” Scientific american, pp. 94–104, 1991.

[118] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake, “Leveraging smart meter data to
recognize home appliances,” in In Proc. PerCom. IEEE, 2012.

[119] T. K. Wijaya, M. Vasirani, and K. Aberer, “When bias matters: An economic assessment
of demand response baselines for residential customers,” 2014.

[120] Y. Yuan, D. Pan, D. Wang, X. Xu, Y. Peng, X. Peng, and P. j. Wan, “A study towards apply-
ing thermal inertia for energy conservation in rooms,” ACM Transactions on Sensor
Networks (TOSN), vol. 10, p. 1, 2013.

http://www.smartgridnews.com/artman/publish/commentary/The_Big_Picture_of_Your _Coming_Smart_Grid-529.html
http://www.smartgridnews.com/artman/publish/commentary/The_Big_Picture_of_Your _Coming_Smart_Grid-529.html


BIBLIOGRAPHY 135

[121] M. Zafar, I. Valera, M. Rodriguez, and K. P. Gummadi, “Fairness constraints: A mech-
anism for fair classification,” in Proceedings of ICML, 2015.

[122] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring:review and out-
look,” 2011.

[123] Z. Zhao, W. C. Lee, Y. Shin, and K. B. Song, “An optimal power scheduling method
for demand response in home energy management system,” in IEEE Transactions on
Smart Grid, 2013.

[124] J. Zhou, R. Hu, and Y. Qian, “Scalable distributed communication architectures to
support advanced metering infrastructure in smart grid,” 2012.

[125] Z. Zhu, J. Tang, S. Lambotharan, W. H. Chin, and Z. Fan, “An integer linear program-
ming based optimization for home demand-side management in smart grid,” in in
Proc. IEEE PES ISGT, 2012.





ACKNOWLEDGMENTS

Doing a PhD was always my ambition and the last four years have been quite remarkable.
This thesis is the result of few amazing collaborations within and outside TU Delft. While
my work was solitary at times (always?), I had a good bunch of friends, colleagues and family
members who supported and pushed me to achieve my ambition. I would like to sincerely
thank all the people who have inspired, advised, criticized and helped me along the way.

First, I would like to thank my promotor, Koen Langendoen (Koen) and daily supervisor,
Venkatesha Prasad (VP) for their unwavering support along my PhD journey. I would like
to explicitly thank Koen’s extra mile efforts to hire me as a PhD student without a master’s
degree. When doing a PhD, it is very important to work on a topic, which you are pas-
sionate about. Koen gave me a free hand to pursue a topic of my interest. Even though
we did not have weekly meetings and write papers together, he has always shown interest
and kept tabs on me. I have thoroughly enjoyed our coffee/tea discussions and fun-filled
technical meetings. Over the years, he has played a crucial role in shaping my thinking, im-
proving my presentation skills (koenification) and expressing my ideas/problems/solutions
in a structured way. Through your Dutch pragmatic thinking and punctilious attitude, you
have taught me how to become a thorough researcher. I was also lucky enough to enjoy
numerous bike rides with you exploring the flat land.

I would also like to thank my daily supervisor, VP. I was very fortunate to have a daily
supervisor who supported everything I ventured into. VP gave me complete freedom to
pursue any problem I am interested in, collaborate with others, and buy necessary equip-
ment. Generally a daily supervisor’s role is to push his PhD students, however, in my case it
was the other way around. I have pushed VP to several all-nighters to finish up the papers,
interact and manage my master students, support conference trips and much more. I am
truly grateful for the support and trust bestowed upon me.

Apart from my supervisors, I also had privilege to interact with several colleagues and
students from EWI. I would like to thank all my colleagues from embedded software group –
Andreas, Andrei, Coen, Ioannis, Marco (x2), Przemek, Qing, Qingzhi, Sinan, Stef, and Yunus
– who have been great company. I want to especially thank Chayan – my partner in crime,
be it to write a paper for a conference in a fancy location or to vanish for a week in greek
islands; Kishor – my well-wisher, he has constantly helped me throughout my stay in Delft;
Vijay – my adviser (and sounding board), he was always there if I had to share something
and without his pampering and kindness I would not have completed my PhD in time. I
would also like to thank Marco Zuniga; I have had the privilege to be part of his course on
smartphone sensing, co-guide master students, and write amazing papers. I have enjoyed
our numerous in-depth technical discussions and his attitude towards deep analysis of a
problem has helped me improve the quality of my publications.

During my PhD I also interacted and worked with MSc students – Antonio, Bontor, Dun-
can, Johnny, Luis, and Nikos; I want to thank them for choosing me as their supervisor and
for their efforts in various projects. I would also like to thank our group staff members –
Janneke, Munire, Paula, Paulo, Rina, and Stephen for their support on logistics and systems

137



138 ACKNOWLEDGMENTS

related queries (often asked last minute). This thesis would not have been possible without
the funding from the iCore EU FP7 project. It was an amazing experience to be part of this
project, attend project meetings at various locations in Europe and I would like to thank
all the project partners of iCore. I would also like to thank Prof. Ignas Niemegeers and Fer-
nando Kuipers who were part of my Go/No-go committee and trusted my PhD plan. I am
grateful to all the committee members for agreeing to be part of my PhD committee.

I have been very fortunate to work with a bunch of wonderful external collaborators.
My passion towards systems research grew when I started working in ZENLab in DESE, IISc
under Prof. H.S. Jamadagni and T.V. Prabhakar. I have always admired their passion towards
systems challenges and it has helped me to identify fundamental societal problems that
exist just around us. I would also like to thank all the research assistants who worked with
me in DESE, IISc for their constant support and motivating me to pursue a PhD. I would like
to thank Prof. Karl Aberer and LSIR group members in EPFL for hosting me as an intern. My
special thanks to Matteo Vasirani, he is the best post-doc researcher I have worked with till
date. I would also like to thank Evangelos Pournaras; I really enjoyed our brainstorming
sessions and it has significantly contributed to chapter 6 in this thesis. I am very grateful
to my mentor Dr. Venkat Padmanabhan who hosted me in Microsoft Research India in the
summer of 2016. I thoroughly enjoyed my time in MSR India and I would like to thank
Manohar, Saikat and all my colleagues at MSR India for their support.

During my stay in Delft I was lucky to have an amazing bunch of friends – Anuradha,
Geetha, Kruthika, Mihir, Nimish, Sakshi, Shruti and Wendy who have fed me and cheered
me up on numerous occasions. I have greatly enjoyed the time we have spent together
on various vacations and day-outs. I would also like to thank the open-minded, English
speaking people of The Netherlands who welcomed me and made my stay very pleasant. I
greatly admire the Dutch culture – Dutch treat, being direct and straight forward, bargain
on stuff, and bicycle always (be it rainy or windy) – and hope to follow them.

Finally, I would like to thank my mother, brothers and other relatives. You always be-
lieved in me and trusted that I would do the right thing in my career. In particular, I want
to thank my mother (Veda) who has selflessly cared for me. I remember the days/weeks’
prior to paper deadlines where I used to go home only to get some food and sleep. I will
certainly try to ensure to spend more quality time with you. My brothers (Ranga and Arjun)
have been constantly supporting me in all my endeavors and have taken the responsibility
to manage the family back in India. Without your love and kindness, I wouldn’t have come
this far!

Akshay Srirangam Narashiman
Delft, May 2017



LIST OF PUBLICATIONS

Journals:

1. S. N. A. U. Nambi, A. R. Lua and R. V. Prasad, Decentralized Energy Demand Regulation in
Smart Homes, in IEEE Transactions on Green Communications and Networking, 2017.

2. S. N. A. U. Nambi, Evangelos Pournaras and R. V. Prasad, Temporal Self-regulation of Energy
Demand, in IEEE Transactions on Industrial Informatics, Vol. 12, Issue. 3, pp. 1196-1205, 2016.

3. S. N. A. U. Nambi, and R. V. Prasad, Toward the Development of a Techno-Social Smart Grid, in
IEEE Communications Magazine, Vol. 54, Issue 11, pp. 202-209, 2016.

4. C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, A. Rahim, R. Neisse, G. Baldini, DIAT: A Scalable
Distributed Architecture for IoT, in IEEE Internet of Things Journal, Vol. 2, Issue. 3, pp. 230-239,
2014.

5. V. S. Rao, S. N. A. U. Nambi, R. V. Prasad, I. Niemegeers, On systems generating context
triggers through energy harvesting, in IEEE Communications Magazine, Vol. 52, Issue 6,
pp. 70-77, 2014.

Conferences:

1. S. N. A. U. Nambi, L. A. Gonzalez, R. V. Prasad, CoachMe: Activity Recognition using Wearable
Devices for Human Augmentation, in ACM International Conference on Embedded Wireless
Systems and Networks, EWSN, 2017.

2. S. N. A. U. Nambi, A. R. Lua and R. V. Prasad, Decentralized Energy Demand Regulation in
Smart Homes, in 59th Annual IEEE Global Communications Conference (Globecom), 2016.

3. C. Sarkar, S. N. A. U. Nambi, and R. V. Prasad, iLTC: Achieving Individual Comfort in Shared
Spaces, in ACM International Conference on Embedded Wireless Systems and Networks
(EWSN), 2016.

4. S. N. A. U. Nambi, A. R. Lua and R. V. Prasad, LocED: Location-aware energy Disaggregation
Framework, in 2nd ACM International Conference on Embedded Systems For Energy-Efficient
Built Environments, BuildSys, 2015.

5. S. N. A. U. Nambi, M.Vasirani, R. V. Prasad, K. Aberer, Performance Analysis of Data Processing
Architectures for the Smart Grid, in 5th IEEE PES Innovative Smart Grid Technologies (ISGT)
European 2014 Conference, 2014.

6. S. N. A. U. Nambi, M.Vasirani, R. V. Prasad, K. Aberer, A Cost-Benefit Analysis of Data
Processing Architectures for the Smart Grid, in Wireless and Mobile Technologies for Smart
Cities (WiMobCity) with ACM MobiHoc, 2014.

7. S. N. A. U. Nambi, C. Sarkar, R. V. Prasad, A. Rahim, A unified semantic knowledge base for IoT.
In IEEE World Forum on Internet of Things (WF-IoT), 2014.

8. C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, A. Rahim, A scalable distributed architecture towards
unifying IoT applications. in IEEE World Forum on Internet of Things (WF-IoT), 2014.

139


	Summary
	Samenvatting
	Introduction
	Smart Grid Ecosystem
	Problem Statement
	Thesis Contributions and Outline

	I Fine-grained data collection
	Energy Disaggregation
	Related Work
	Location-aware Energy Disaggregation Framework
	User occupancy modeling
	Aggregate energy consumption modeling

	The DRED Dataset
	Evaluation
	Results
	Conclusions

	Energy Apportioning
	Related Work
	PEAT
	Appliance monitoring
	User monitoring
	Appliance-User modeling
	Online evaluation

	Evaluation
	Results
	Conclusions


	II Demand Regulation in Smart Homes and Buildings
	Demand Shifting
	Related Work
	System Model
	Day-ahead Demand Scheduling Algorithm
	Results
	Datasets
	Demand scheduling

	Conclusions

	Demand Reduction
	Related Work
	System Model
	User Daemon
	Individual user profiling
	Modeling of received light at work-desks

	Room Daemon
	Main thread
	Light controller
	Temperature controller

	Results
	Experimental setup
	iLTC evaluation
	Discussion

	Conclusions


	III Demand Regulation in Neighborhoods
	Temporal Demand Regulation
	Related Work
	Modeling Temporal Dynamics of Demand
	Measuring Demand Adjustment
	Online Self-regulation of Demand
	Results
	Dataset
	Temporal dynamics of demand
	Online self-regulation of demand
	Validation with survey data

	Conclusions

	Techno-Social Smart Grids
	TSSG Framework
	Overview
	Core components

	Role of TSSG in Consumer-centric Services
	Illustration: Goal-oriented Communities
	Conclusions

	Data processing architectures
	Related work
	Data Processing Architectures
	Key Cost Indicators
	Evaluation
	Results
	Conclusions

	Conclusions
	Recapitulation
	Future Work

	titleBibliography
	Acknowledgments
	List of Publications


