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Abstract: The aim of this work is to investigate the fracture process of concrete under various 

boundary conditions.  Although numerous concrete fracture tests have been reported, showing the 

failure behavior of concrete, their evaluation is ambiguous due to the limitations of specimen size 

and experimental conditions. Therefore, it is necessary to use simulation models to better 

understand the fracture process. This is done herein by using a three-dimensional lattice model to 

simulate the failure behavior of concrete under different loading conditions ranging from uniaxial 

compression, tension, splitting, three point bending to shear by using a single set of input parameter. 

In addition, several influence factors including boundary condition and slenderness are also taken 

into consideration to give more detailed information about the fracture process of concrete. 
 

 

1 INTRODUCTION 

Concrete, a typical porous and anisotropic 

material, has complicated fracture mechanisms 

due to its microstructure [1,2]. It is generally 

accepted that cracking within concrete usually 

forms and propagates in a direction which is 

perpendicular to the maximum tensile stress 

[3,4]. During the process of crack propagation, 

the stress distribution caused by loading 

(external loading or internal loading) 

determines the final crack pattern together 

with the mechanical properties of the 

specimen. Therefore, understanding the 

deformation and fracture performance of 

concrete under various loading conditions is of 

importance for research and engineering 

practice.  

Numerical tools are an excellent choice to 

gain deeper insight of into these problems. 

Numerical modelling of concrete failure has 

experienced a great progress in the past 

decades. There are several modelling 

approaches for concrete fracture including but 

not limited to finite element method (FEM), 

extended finite element method (XFEM) [5,6], 

discrete element model [7], smeared crack 

model, and lattice discrete element model 

[8,9]. Based on the continuum theories, FEM 

is usually utilized to simulate the crack 

propagation. In order to better understand the 

fracture behaviour of anisotropic materials and 

simulate the cracks via discontinuity-based 

method, several discrete element models were 

proposed. Among these models, the medium 

can be discretized by introducing the particles 

or lattice beams. 

The lattice model was first proposed by the 

Hrennikoff [10]. Lattice discrete element 

model, in which one-dimensional element is 

utilized to represent structural continuum, 

emerged as an attractive alternative to 

continuum approaches to model cementitious 

materials and structures. In the 1980s, the 

lattice model was perfected by adding related 

theoretical physics to study the fracture 

behaviour of the material with high disorder 

[11]. Then, Zubelewicz and Bažant [12] 
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presented to use bidimensional particles 

assembly to study the fracture process of 

quasi-brittle materials. Almost in the same 

time, Schlangen and Van Mier [13] proposed 

lattice fracture model to compensate the 

drawbacks of discrete and smeared crack FE 

model .  More recently, such lattice model was 

utilized to study the fracture behaviour of 

cementitious materials such as concrete. It is 

generally accepted that the classical lattice 

uses the truss or beam elements to interconnect 

on the positioned points through triangle or 

quadrilateral method. When the positioned 

points are irregular, this construction method 

can implement the heterogeneity of the 

materials [2]. It is also possible to achieve it by 

assigning randomness local mechanical 

properties to different lattice beam elements 

[3]. Alternatively, the anisotropy of material 

can be achieved by mapping an image about 

material structure produced by computed 

tomography scanning, dynamical processes or 

random generators, to the available lattice 

model. Using this method, a simulation model 

very similar to the real material can be 

obtained. 

In this paper, the use of a three-dimensional 

lattice model for simulating fracture process of 

concrete under different boundary conditions 

ranging from uniaxial compression, tension, 

splitting, three point bending to shear by using 

a single set of input parameter was presented.  

The tendency of load displacement curve and 

failure mode were compared with 

experimental results. Based on it, several 

factors (i.e. boundary condition, load area, size 

effect) were also taken into consideration to 

show the influence to the final failure mode. 

2 DESCRIPTION OF LATTICE MODEL 

In this paper, the lattice model is 

constituted by brittle-breaking beam elements 

through triangle method. The triangular lattice 

is the essential for this model since it can give 

the least chance for preferential crack 

directions [3]. Node and mesh generation 

procedure of 3D lattice model is shown in 

Figure 1.   

 

Figure 1: Node and mesh generation procedure of 3D 

lattice model 

3 FRACTURE PROCESS 

In lattice fracture analysis, both 

displacement and loading could be regarded as 

boundary condition and imposed on the 

system. For every step, the element with the 

highest stress/strength ratio is removed and the 

inverse of this ratio is defined as the system 

scaling factor [2]. Once the critical element is 

found, the whole stiffness matrix is updated 

due to the damage. The step-by-step removal 

of critical lattice element present the initiation 

and propagation of the crack, finally, crack 

pattern of the lattice model could be obtained. 

Meanwhile, the displacement of the model, 

calculated by scaling factor and prescribed 

displacement, determines the load 

displacement curve of the model together with 

the reaction force. 

On the basis of the Timoshenko beam 

theory, the element is a lattice beam of 

uniform cross-section and can transfer the 

uniaxial force, shear, bending and torsion [14]. 

The stress for the lattice element is calculated 

by the following equation. 

 
 

max
,i jM MF

A W
     (1) 

Where F is the normal force for the lattice 

beam element, A is the cross-sectional area of 

an element, and W=πD
3
/32 (D is the diameter 

of the circle area). The coefficient α is the 

bending influence factor which balances the 

final failure mode in which either force or 

bending plays a dominate role.  

In the previous 2D analyses, the 

contribution of the bending moment to the 
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critical stress in the beam is taken into 

consideration by the value α=0.005 [15-17]. In 

[15], it is shown that the change of the α 

parameter affects the tail in the stress-

deformation curve. The large α shows a more 

brittle global behavior whereas, the small α 

gives a long tail in the load and displacement 

response, in particular, the fracture process 

shows a peeling effect when α is equal to 0 

[18].  In order to better understand the 

influence of α on the 3D lattice analysis, 

several analyses about uniaxial tension and 

compression with different values of α (0, 

0.25, 0.5,0.75,1) has been conducted to search 

for the effect of α on load-displacement curve 

and final failure mode. The results from these 

analyses are summarized in the following.  
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Figure 2: Load-displacement curve for different 

bending influence factors 

      
            (a) step=19796                (b) final failure mode 

Figure 3: Fracture process of the model with α=0.25 

It can be seen from Figure 2 and Figure 3 

that both the load displacement curve and 

failure mode of the model (α=0.25) show the 

similar tendency with experimental results.  

Thus, in the following section, α was taken as 

0.25 to conduct the analyses.  

After solving liner algebraic equations to 

get the node displacement, the stress for lattice 

beam element is obtained. Then the system 

scaling factor is calculated and the critical 

element was determined. The system scaling 

factor, together with the reactions on the 

restraint boundaries, determines the load 

displacement curve. 

4 NUMERICAL ANALYSIS 

In this part, all simulations ranging from 

uniaxial tension and compression, splitting 

test, three point bending test to double edge 

notched (DEN) beam shear test were 

conducted using a single input parameter 

including the bending influence factor, the 

local mechanical property (i.e. elastic 

modulus, shear modulus, tensile strength and 

compressive strength). One point should be 

noted that all input parameters keep the same 

except for the model size.  

In this paper, in order to remove the 

influence from other factors (coarse aggregate 

distribution and grading) and taking into 

account the computer resources, the model 

was considered as homogeneous, and the 

compressive strength and tensile strength were 

taken as 30MPa and 3MPa, respectively. The 

elastic modulus and shear modulus were set to 

25GP and 10GP, respectively. Other input 

parameter values used in this paper are 

summarized in Table 1. 

Table 1 Details about the input parameters for 

numerical analysis 

Simulation test Model size 

(mm×mm×mm) 

α Resolution 

 

Uniaxial 

compression 

20×20×20 0.25 1mm 

Uniaxial tension 20×20×20 0.25 1mm 

Splitting 25×25×25 0.25 1mm 

Three-point 

bending 

113×20×10 0.25 1mm 

DEN shear 128×12×48 0.25 1mm 

4.1 Uniaxial compression and tension test 

The model was loaded under constant strain 

rate conditions. In fact, the loading was 

applied by the displacement set on the upper 

boundary. The other direction displacements 
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were fixed to simulate the high friction 

between the specimen and the machine in the 

experiment. The simulation models are shown 

in Figure 4, and the failure evaluations of 

compression simulation and tension simulation 

are shown in Figure 5. The load displacement 

response of the lattice model under uniaxial 

compression and tension is plotted in Figure 6. 

 

 
         (a) tension                    (b) compression 

Figure 4 Examples of boundary conditions used for 

uniaxial compression and tension modelling. 

The fracture process of both uniaxial 

compression and tension simulation agrees 

qualitatively well with the observations in 

experiment with high friction condition. In 

compression, following a localization of 

deformations on diagonal bands within the 

specimen, the failure elements started to orient 

on the main diagonals connecting the edges of 

the specimen. The loss of lateral stiffness due 

to progressive beam breaking in the horizontal 

direction lead to bulging of the model. Finally, 

the broken element connected each other to 

form a diagonal main crack shown in Figure 5 

(a). For tension simulation, micro-cracks 

occurred in the beginning. Then, a main crack 

forms close to the middle of the specimen, as 

shown in Figure 5 (b). Meanwhile, the load 

displacement curve changed during the 

propagation of the main crack. Once the main 

crack passed through the whole specimen, the 

capacity of bearing the tension load lost. 

Finally, the final failure mode happened with 

an obvious main crack.  

 

         (a) tension                    (b) compression 

Figure 5: The final failure mode of concrete exposed to 

uniaxial loading (the white is crack and the blue is solid 

material) 
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Figure 6 The stress and strain curve of concrete 

exposed to uniaxial loading 

4.2 Effect of model slenderness and 

boundary condition 

Evidence of existing experiments [19]  

showed that the boundary conditions and 

slenderness affects the fracture process and 

load displacement curve in uniaxial 

compression. In order to see if the model is 

able to reproduce the effect of the boundary 

condition and slenderness, the following 

simulations were performed.  
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(a) Stress strain curve for high friction 
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(b) Stress strain curve for low friction 

Figure 7 Stress strain curves for compression test under 

different boundary conditions 

 
(a) High friction boundary condition (white 

denotes the crack) 

        
(b) Low friction boundary condition (red 

denotes the crack) 

Figure 8 Failure behavior of concrete in compression 

with different boundary conditions  

In Figure 7, the stress-strain curves are 

plotted for models with various slenderness 

and different boundary conditions.  For high 

friction boundary condition, the slenderness 

had a significant influence on the peak load, 

values for both peak load and strain at the peak 

stress increased with the decreasing model 

height. For low friction boundary condition, 

the change of slenderness had a very small 

influence on the peak load and strain at the 

peak load. Meanwhile, the peak load for high 

friction boundary condition was higher than 

for the free boundary since the high friction 

could constrain the lateral deformation and 

improve the bearing capacity. Figure 8 shows 

the final failure modes for the high friction and 

the low friction boundary condition. For the 

models with slenderness equal to 1, the failure 

mode of the model with low friction were 

characterized by localized cracks almost 

parallel to the applied load, besides, a huge 

number of elements from upper and lower 

surfaces broke. However, for the same model 

with high friction boundary condition, failure 

mode was characterized by inclined cracks that 

leaved the model end almost undamaged and 

had less opening than the free boundary 

condition. Furthermore, compared with high 

boundary condition, many micro-cracks 

happened on the upper and bottom area during 

the fracture process due to the free friction. 

This is in accordance with experimental 

observations [20]. 

4.3 Three-point bending test 

In this section, numerical analyses of the 

three-point bending test were carried out to 

evaluate the ability of lattice to simulate the 

fracture behavior in flexure. In order to take 

into consideration of the size effect, three 

models, height, equal 10mm, 20mm, 30mm, 

respectively, length, 139mm, 113mm, 80mm, 

respectively, were created, and one of models 

is shown in Figure 9. The thickness of the 

beams was 10 mm for all the three sizes.  All 

of these models are notched with half-depth 

2mm width notches.  With regard to the 
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loading, displacement was applied to the 

middle line of the upper area and two lines of 

nodes at the bottom were fixed, one side with 

3 translational directions, and the other one 

only in vertical direction. 

 

Figure 9 Geometry of three-point bending test 

specimen 
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Figure 10 Load displacement curve for three point 

bending test 

 

 
Figure 11 Failure mode for three point bending test 

It could be seen from Figure 10 that the 

peak load increased with the increase of the 

model size and the post peak behavior 

becomes more ductile. For the fracture 

process, the crack initial started from the notch 

and propagated to the upper area along with 

the almost straight path, as shown in Figure 

11. It is also worth noting that the fracture 

process for different size did not change. This 

is in agreement with the experiments 

performed by the Nallathambi et al and the 

typical evidence reported in the literature [21]. 

4.4 Splitting test 

The splitting test conducted by Bažant et al 

[22] was modelled in this part. Various sizes 

of specimens including 15mm, 25mm, 35mm, 

were created to simulate the size effect. The 

simulation is shown in Figure 12. Figure 13 

shows the nominal stress, calculated as 

2P/(πL
2
), versus displacement curve obtained 

in the numerical simulation.  

 

Figure 12 Geometry of splitting test specimen 
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Figure 13 Stress and displacement curve for splitting 

test 
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Figure 14 Fracture behaviour for splitting test 

Figure 14 shows the crack pattern from the 

splitting simulation. The results show that the 

peak nominal stress decreases with the 

increasing size. With respect to the failure 

mode, the size had a small influence on 

fracture process. In general, the crack initiated 

in the middle of the model because of the 

tension and propagated to the upper and 

bottom and a main crack formed. However, 

the peak load obtained by the splitting is lower 

than the value calculated by uniaxial tension 

for the same model, which needs to be further 

studied. 

4.5 Double-edged-notch beam shear 

The double edge notched (DEN) shear 

specimen was firstly proposed by the Bažant 

and Pfeiffer [23] to study the shear fracture of 

concrete, then, Schlangen [15] conducted the 

single edge notched (SEN) and DEN beam 

shear test using a specific test machine.  Based 

on his experiment, the crack generation and 

propagation are different from high and low 

friction boundary conditions.  

In this section, the numerical analysis about 

boundary conditions was carried out. The 

specimen is 128 mm in length, 13 mm in 

width, 48 mm in height and is shown in Figure 

15. Two pre-existing notches with a width of 5 

mm and a length of 25 mm are created at the 

two edges of the model. In the DEN beams, 

the value of crack mouth opening 

displacement (CMOD) and the crack mouth 

sliding displacement (CMSD) at the top and 

bottom notch on the front of the specimen is 

used as feed-back signal.  

 
Figure 15 Geometry of DEN beam shear test 

For high friction boundary condition, the 

model with a fixed support loading system 

instead of freely rotating supports was used 

and additions constraints were imposed on the 

rotations of support. In that way, the fixation 

of the supports introduced a constrains with 

respect to the horizontal displacement and 

rotations of the supports. For free boundary 

condition, the model with freely rotating 

support was used. Figure 17 illustrates the 

fracture process of SEN beam under fixed 

boundary condition. It can be seen that the 

crack generated from the notch and propagated 

in a curved shape. Because of the restrain of 

the horizontal displacement of loading nodes, 

the double curved crack was arrested due to 

the new configuration of the horizontal force 

in the model. Then, a splitting crack arose at 

the center of the beam and developed to the 

upper and bottom surface. This is the final 

failure mode for the high friction boundary 

condition. Unlike the high friction boundary 

condition, in the free boundary condition case 

one of the curved cracks continued 

propagating due to the lack of the horizontal 

constraint and reached to the bottom boundary. 

This was the final failure mode as shown in 

Figure 17.  
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(a) high friction boundary condition 
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(b) low friction boundary condition 

Figure 16 Load displacement curve for DEN exposed to 

shear with different boundary conditions 

 

(b) high friction boundary condition 

 

 
 (b) low friction boundary condition 

Figure 2 Failure mode for DEN exposed to shear with 

different boundary conditions 

 

Besides of the fracture process, the load-

displacement could be seen from the Figure 

16,  simulation results about free boundary  

keep the same tendency with the experimental 

results obtained by Schlangen [15]. However, 

the post peak response is too stiff for the high 

friction boundary condition, most probably 

because the supports in the experiments were 

not completely fixed. 

5. CONCLUSION 

 In this paper, a 3D lattice model was 

utilized to simulate different kinds of 

experiments ranging from uniaxial 

compression, tension, splitting, three point 

bending test to DEN beam shear test using a 

single set of input parameter.   

Based on the results obtained in this study, 

the following conclusion can be formulated, 

- Lattice model can simulate the fracture 

process of concrete under uniaxial 

compression and tension. The model 

captures well the effect of high friction 

boundary and low friction boundary 

conditions on compressive strength and 

post-peak ductility.  In addition, lattice 

model also predicted the difference 

between the different boundary 

conditions and slenderness. 

- Lattice model accurately simulated 

concrete subjected to three-point 

bending test. Besides, it also can 

predict the fracture process accurately 

and analyze the size effect on the load 

displacement curve. 

- Lattice model can simulate the fracture 

process in the Brazilian splitting test 

and analyze the size influence on the 

peak load.  

- Lattice model has the capacity to 

simulate the fracture process during a 

DEN experiment. It not only can 

predict the crack generation and 

propagation accurately but also show 

the influence by different boundary 

conditions. 

One of the most important point for this 

research, is that various experiments can be 

simulated by using a single set of parameters. 

Both the failure mode and load displacement 

or stress-strain curve show the same results or 

the same tendency with experiments.  
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