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Summary 

Freight transportation makes up 5% of the Gross Domestic Product (GDP) and 25% of total greenhouse 
gas emissions in the European Union (EU). In order for the EU to meet its emission reduction goals, 
inland freight transportation, 77% of which is currently by road, must shift more to inland waterway and 
rail (Eurostat, 2020) (Eurostat, 2022). Mode choice models are necessary to evaluate how well 
transport policies can affect this desired change. Although these are typically estimated using a 
Multinomial Logit (MNL) or other Logit-based model, machine learning (ML) models have gained more 
popularity recently due to their often higher predictive accuracy. 

The identified research gap is that previous studies using machine learning models to predict freight 
mode choice employed disaggregate data at the individual shipment level. This data includes details 
about the shipment including its weight, monetary value, and commodity type, as well as information 
about the shipper’s industry, all of which are known important factors in freight mode choice (Xu, et al., 
2024). It is therefore unclear whether ML models trained with aggregated data of total goods 
transported between regions could achieve comparable predictive performance. In the EU, aggregate 
freight transport data is more easily accessible than shipment-level data; exploring the performance of 
models trained with aggregate data could thus precede the creation of an EU-wide machine learning-
based freight mode choice model. 

Secondly, earlier research has focused on evaluating and improving the predictive performance of ML 
models for freight mode choice and has not considered whether or how these models may be used for 
policy analysis. Further investigation is needed into the criteria such models must meet to be used in 
practice. This would support the development of a model whose results could be used by analysts and 
policymakers in transport policy evaluations and other real-world applications. 

The main research question was: 

What role can machine learning-based approaches have in freight mode choice modeling for policy 
analysis? 

This research compared three machine learning models: logistic regression (LR), chosen as a baseline 
model, Random Forest (RF), and XGBoost (XGB). In response to the research gaps, the models were 
trained using aggregate data at a Nomenclature of territorial units for statistics (NUTS) 2 level, 
consisting of basic regions in the EU. To answer the second research gap, a case study of the NEAC 
MNL mode choice model, developed and maintained by Panteia, was undertaken. The NEAC MNL 
model is currently used by Panteia to estimate and forecast transport demand in response to cost and 
infrastructure changes. To assess whether ML models are suitable for this type of application, the ML 
models trained in this study were compared to the NEAC MNL model based on seven criteria: predictive 
performance, interpretability, practicality, computation time, generalizability, robustness, and data 
efficiency. 

The dataset was constructed using road, rail, and inland waterway freight flows datasets from 2015 
accessed through Eurostat. The explanatory variables included from Eurostat and other sources were 
generalized costs, commodity type, inland waterway availability, distance from terminals, East/West 
Europe dummy variables, and rail and inland waterway service quality. Due to some missing or 
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unavailable data from Eurostat, namely for road, some adjustments were made to the data resulting in 
a dataset that differs from real-world mode shares and patterns: inland waterway is overrepresented 
by 154.2%, rail by 10.8%, and road by 7.9%. Additionally, compared with Panteia’s cost estimates from 
2017, the calculated generalized costs were on average lower for road and inland waterway and higher 
for rail. In some OD pairs, the relative cost ranking between modes also shifted, revealing possible data 
quality issues due to inaccuracies in the feature values. 

Several highly correlated variables were not included in the models, as high correlations cause feature 
importance measures to be unreliable and less interpretable. Many variables had high Variance 
Inflation Factor (VIF) values, indicating widespread multicollinearity. These variables were kept in the 
models despite the multicollinearity as removing all of them would overly simplify the models and reduce 
interpretability. 

After feature selection and engineering, the data was split into a training set and test set stratified by 
OD pair and mode. The best hyperparameters for each algorithm were found using 
RandomizedSearchCV. The hyperparameter ranges were adjusted based on the gap between the 
training set log loss and test set log loss in the 5 cv-folds, a larger gap being an indication of model 
overfitting (Hawkins, 2004). The models were trained and evaluated using the tonnage amounts in each 
row as sample weights, which penalizes the model for incorrect predictions on higher tonnage rows. To 
evaluate model interpretability, Shapley Additive exPlanations (SHAP) values were calculated for RF 
and XGB, and the estimated Logit coefficients for LR were discussed. 

The models were assessed and compared to each other and the NEAC MNL model using the 
previously mentioned criteria. The XGBoost model had the best overall predictive performance, 
followed by Random Forest, and finally, logistic regression. The predictive performance of the models 
was evaluated using the accuracy, precision, recall, log-loss, overfitting gap (i.e., difference between 
training and test set log-loss), and differences between actual and predicted mode shares. 

The MNL model was considered the most interpretable and practical. Likely due to the high 
multicollinearity of some variables, some of the Logit coefficients appeared counterintuitive and poorly 
identified, which reduced the LR model’s interpretability. Using beeswarm plots to observe the mean 
average SHAP values for each variable per class, some of the RF and XGB SHAP values appeared 
counterintuitive as well. In all three models, a higher rail service (i.e., better quality service) negatively 
affected the probability of choosing rail. XGB had more behaviorally realistic SHAP values than RF due 
to each mode’s respective costs being more important in predicting that mode in the former model. 

The model with the shortest computation time was the logistic regression/MNL model. Logistic 
regression was the most data efficient, as it had the smallest change in performance with greater 
amounts of training data. XGB had the greatest improvement in performance with more data, making 
it the least data efficient. 

To assess generalizability, one country was omitted from the training set and used as the test set. This 
was repeated for each country in the dataset for each algorithm. None of the models were particularly 
generalizable to new, unseen countries, as they had an average 25.3-26.3 percentage point drop in 
accuracy across all countries and an average 0.485-0.583 increase in log loss compared to when they 
were trained and tested on the same countries. Logistic regression was the most generalizable model 
as it performed similarly or only slightly worse than RF and XGB on almost all countries and 
substantially better on three countries. 
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Robustness was tested by introducing varying levels of noise with a Gaussian distribution into the 
training set cost and terminal distance variables. As noise increased, accuracy and log loss worsened 
for all models, but LR performance dropped the least, making it the most robust to noise. 

In earlier research comparing machine learning models for mode choice predictions, the differences in 
accuracy between linear models such as logistic regression and more complex models such as RF or 
XGB were much greater than the 2 to 3 percentage points exhibited in this study. This could be because 
the relationships in the dataset were largely linear, thus the slight improvements in accuracy with RF 
and XGB were in the few areas where there were nonlinearities. Recall and precision for the minority 
classes of rail and inland waterway were lower than for road, similar to other previous studies. This 
could be partly due to some data incompleteness and feature inaccuracies, with the expectation that if 
these data quality issues are addressed, the performance of the models would improve. 

The ML and MNL models were determined to be complements rather than substitutes. To achieve the 
best performance, the ML models should be used for short- or medium-term forecasting, applied to 
scenario analyses that involve only small variations in feature values, and retrained whenever new 
scenario features are introduced. The XGBoost model was recommended to Panteia for further 
exploration of its implementation into the NEAC framework. Data quality issues should be addressed 
prior to the model’s use, and after these are addressed, the model should be retrained using the existing 
workflow in this report. 

Future studies could assess the performance of other algorithms as well as ensembled learning 
techniques for this use case. Secondly, adding more explanatory variables, including physical locations 
of shippers and buyers and mode-specific characteristics, could help the models to differentiate inland 
waterway and rail from road, potentially improving minority class precision and recall. Lastly, hybrid 
models offer an opportunity to combine the advantages of both Logit and ML models into a single 
model. This would provide a more seamless solution compared to this study’s recommended course of 
action where either the MNL or ML model is employed depending on the project. 
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1 Introduction 

1.1 Background 

Freight transportation represents 5% of the Gross Domestic Product (GDP) of the EU, as well as 25% 
of the EU’s total greenhouse gas emissions, making it a highly impactful industry for European 
businesses and citizens (Eurostat, 2022). The sector has experienced significant changes, including 
the disruption caused by COVID-19, which interrupted the steady growth in the volume of goods 
transported since 1995. Other changes include policies that aim to reduce emissions by encouraging a 
shift to renewable energy and more sustainable transportation modes, such as inland waterways and 
rail, which have lower environmental footprints than road transport (European Commission, 2024). 
Currently, approximately 77% of European freight transport occurs by road, followed by 17% by rail, 
and 5% by inland waterways (Eurostat, 2020). 

Freight mode choice models are used to estimate, analyze, and forecast transport demand and assess 
how various factors influence mode choice decisions. These models help to evaluate the impact of 
environmental policies, infrastructure projects, and regulatory changes on freight transport patterns. By 
providing insights into modal distribution, mode choice models support strategic planning, sustainability 
efforts, and logistics optimization. 

1.2 Problem Definition 

Traditionally, mode choice models have been estimated using the Multinomial Logit (MNL) model, 
introduced by McFadden in the 1970s for transportation applications. This model remains a highly 
popular tool for modeling mode choice due to its ease of development, transparency, and interpretability 
(Benjdiya, Rouky, Benmoussa, & Fri, 2023). Other Logit-based models, namely Mixed Logit and Nested 
Logit, were created to overcome some of the limitations of the MNL model and are also commonly used 
to predict mode choice. 

One of the disadvantages of Logit-based models is that they typically perform poorly in predictive 
accuracy. For this reason, the mode share output of these models often does not closely reflect real-
world behavior, leading these models to either under- or overestimate the effects of policies and other 
changes in transportation patterns (Hillel, Bierlaire, Elshafie, & Jin, 2021). This means that these 
policies cannot more precisely target certain behaviors in order to produce the desired outcome. 

Machine learning models have more recently been explored as an alternative to Logit-based models. 
These have been shown to produce higher accuracy. However, the application of machine learning for 
freight policy analysis as well as these models’ performance with aggregated data has not been 
explored. Even if machine learning models produce better accuracy, there are other important model 
characteristics that these models must meet in order to be suitable for freight policy analysis. 
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1.3 Research Objective and Questions 

The aim of this study is to explore the contribution that machine learning approaches can make to 
freight mode choice modeling. Specifically, the focus of this study is on the performance of machine 
learning mode choice models using aggregated data and on the application of such models in freight 
policy analysis. This research will use a case study of the NEAC European freight transport model. 

The main research question is: 

What role can machine learning-based approaches have in freight mode choice modeling for policy 
analysis? 

This question is answered by the following sub-questions: 

1. What are the criteria a machine learning mode choice model should meet to be suitable for 
freight transport policy analysis? 

2. Which machine learning methods are most suitable for modeling freight mode choice? 
3. What additional explanatory variables and external datasets can enhance model performance? 
4. How does the performance of machine learning models compare to that of an MNL model? 
5. Based on the results, should a machine learning mode choice model be incorporated into the 

NEAC framework, and if so, under what conditions? 

1.4 Case Study Description: NEAC Freight Transport Model 

NEAC is a European-wide freight transport model developed and maintained by Panteia. The model is 
used for forecasting and assessing the effects of transport policy and infrastructure changes on 
transportation patterns (Leest, Duijnisveld, & Hilferink, 2006). It is used for both predictions now and 
forecasting based on future possible conditions. NEAC contains several submodels, including a trade 
model, mode choice model, and assignment model, as well as a mode chain builder which was used 
to create the 2010 base year database. The mode chain builder takes national-level trade data and 
converts it to origin-destination (OD) matrices for each mode. This is then calibrated using known 
transport data. The 2010 base year database contains estimated tonnes per commodity type 
transported between regions in Europe. There are 10 commodity types, based on the Standard goods 
classification for transport statistics (NST). The regions are based on the EU Nomenclature of territorial 
units for statistics (NUTS) level 3 regions of which there are 1,585 in Europe. 

The NEAC mode choice model uses a Multinomial Logit (MNL) model to predict changes in road, rail, 
and inland waterway mode shares between time periods. These predicted mode share changes are 
based on defined scenarios, such as changes in the cost structure or in the networks (Newton, 
Kawabata, & Smith, 2015). The probability that a given mode is chosen is calculated using the formula: 

𝑃!|#$% =
𝑒&!|#$%

∑ 𝑒&&|#$%$∈(
	

𝑤𝑖𝑡ℎ:	𝑉!|#$% = 𝛽!) +.𝛽!*𝑥#$%!*
*

	

Where: 
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M: set of available modes 
𝑃'|()*: choice probability of mode m given commodity group c and OD relation ij 
𝑉'|()*: systematic utility of mode m given commodity group c and OD relation ij 
𝑥()*'+: level of service k for mode m given commodity group c and OD relation ij 
𝛽'+: logit parameter for mode m and level of service k 

Level of service refers to the explanatory variables which are the generalized costs and regional and 
border resistance dummy variables. The estimated shift per mode is calculated as the difference 
between the mode probabilities in the base year and the scenario year. 

The NEAC mode choice model was formulated in 2005, with a more recent update on the base year 
data in 2015 (Newton, Kawabata, & Smith, 2015). At the time the mode choice model was updated in 
2005, the MNL formulation was chosen over machine learning because firstly, machine learning was 
deemed to not be transparent enough for NEAC use, and secondly, user-friendly machine learning 
software tools were not readily available at the time (Leest, Duijnisveld, & Hilferink, 2006). Lastly, it was 
determined that Artificial Neural Networks (ANN) are better for spatial rather than temporal forecasting. 

Since 2005, a wide number of advancements have been made in the field of machine learning. User-
friendly software is now available, making it easier for researchers without a data science background 
to train their own models. Many other methods besides ANN have been developed and applied to 
predict mode choice. Other tools such as Shapley Additive exPlanations (SHAP) are used to help make 
machine learning models more transparent. Given the large number of changes that have occurred 
since 2005, it now appears more appropriate to explore the potential integration of machine learning 
into the NEAC mode choice model. Therefore, in this study, NEAC’s current MNL model will be 
compared to machine learning approaches. 

1.5 Report Structure 

Chapter 2 presents the literature review which consists of recent research on using machine learning 
for mode choice predictions, criteria used to evaluate the suitability of machine learning models for 
policy analysis, and freight transport demand predictors. Chapter 3 describes the data collection, 
preparation, and analysis steps conducted prior to training the models. The methodology of the machine 
learning models trained in this research are discussed in Chapter 4. In Chapter 5, the results of the 
different machine learning models are discussed and compared. Chapter 6 includes a discussion of the 
research’s limitations as well as the type of policy analysis projects where these models could be 
applied. Finally, Chapter 7 summarizes the report, answering the research questions, and Chapter 8 
provides recommendations for future research. 
 
 



 
 
 

 
 
 

 

 

4 

2 Literature Review 

The literature review in this chapter presents existing studies on machine learning mode choice models 
for both freight and passenger transportation as well as hybrid models (models that incorporate Logit 
and machine learning characteristics). Section 2.4 provides an explanation of evaluation criteria useful 
for determining the suitability of machine learning models for freight transport policy analysis. Section 
2.5 synthesizes factors influencing freight transport demand and mode choice, followed by a conclusion 
and discussion in Section 2.6. 

2.1 Machine Learning for Freight Mode Choice Models 

Several studies have compared the performance of various machine learning methods to more 
traditional models such as the MNL model in predicting freight mode choice. Uddin, Anowar, & Eluru  
(2021) developed eight machine learning models and an MNL model and evaluated their accuracy and 
precision in predicting mode choice with US commodity flow data. Accuracy is the percentage of 
correctly classified observations across all modes, while precision refers to the number of correct 
predictions for a specific mode. All machine learning models with the exception of Support Vector 
Machine (SVM) had a higher mean accuracy than the MNL model, with Random Forest (RF) having 
the best results (75%) and ANN (51%) having a slightly higher accuracy than the MNL (42%). SVM had 
an accuracy of 36.7%. 

Lui et al. (2024) sought to improve the predictive accuracy of machine learning models with ensemble 
learning techniques where various models are combined for the best result. They used the same US 
commodity flow data as Uddin, Anowar, & Eluru (2021) and incorporated additional spatial information 
in the form of derived distances for all modes. They also created local models for each commodity and 
industry type and achieved 92% accuracy with ensemble learning and derived distances. Tree-based 
methods, particularly RF and Bagging Decision Tree, had the highest accuracy, aligned with earlier 
findings from Uddin, Anowar, & Eluru (2021). Similarly, Xu et al. (2024) compared the performance of 
RF, XGBoost, and CatBoost models with an MNL model using the same US commodity flow data and 
also found that the machine learning models performed better than the MNL model in terms of accuracy 
and precision. 

Another recent study used machine learning methods to predict freight vehicle type choice for logistics 
firms, comparing RF to multinomial and mixed logit models using commercial travel surveys from 
Toronto, Canada (Ahmed & Roorda, 2022). They found that RF provided more accurate predictions 
(49.5% accuracy) compared to the MNL (41.7%) and mixed logit (39.9%) models. The low accuracies 
in general were attributed to the small sample size, and the mixed logit model accuracy was lower than 
the MNL model likely due to its lower number of explanatory variables. Finally, other earlier studies 
investigated the application of neural networks for freight mode choice, though the number of papers 
on this topic is quite limited. This is in part because machine learning methods are more effective when 
applied to disaggregate data, and this type of freight data is difficult and expensive to obtain (Samimi, 
Kawamura, & Mohammadian, 2011) (Benjdiya, Rouky, Benmoussa, & Fri, 2023). 

One of the identified research gaps is that existing studies on machine learning for freight mode choice 
focus mainly on predictive accuracy, with less emphasis on other important model characteristics such 
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as interpretability. Although some of the studies mentioned above also use Shapley Additive 
exPlanations (SHAP) to explain the output of the machine learning models used, a more extensive 
exploration of interpreting machine learning models for freight mode choice is lacking. Secondly, most 
of these studies use North American disaggregated shipment-level data, and all of them apply models 
at either a national or even local (city-wide) level. Thus, the use of machine learning to predict freight 
mode choice between two or more countries using aggregated data has not been studied. Finally, 
additional factors such as shipping reliability and quality of service could be included in future models 
to further improve predictive accuracy, as these also influence freight mode choice (Xu, et al., 2024). 

2.2 Machine Learning for Passenger Mode Choice Models 

Although machine learning models have been shown to have significantly higher predictive accuracy 
for freight mode choice than MNL and mixed logit models, the results for passenger mode choice are 
more mixed. Martin-Baos, Lopez-Gomez, Rodriguez-Benitez, Hillel, & Garcia-Rodenas (2023) 
compared the MNL model to five machine learning models: SVM, RF, XGBoost, ANN, and Deep Neural 
Network (DNN). They found that while all of the machine learning models had higher accuracy than the 
MNL model, this accuracy was at most only 6.16% higher. This aligns with previous research showing 
that discrete choice models (DCMs) had only 3-4% lower accuracy than the top machine learning 
classifiers (Wang, Wang, & Zhao, Deep neural networks for choice analysis: Extracting complete 
economic information for interpretation, 2020), as cited in (Martin-Baos, Lopez-Gomez, Rodriguez-
Benitez, Hillel, & Garcia-Rodenas, 2023). 

Zhao, Yan, Yu, & van Hentenryck (2020) compared two logit models (MNL and mixed logit) with seven 
machine learning methods using stated preference survey data. They found that while tree-based 
methods such as RF and BAG were significantly more accurate than the logit models, Naïve-Bayes 
(NB), CART, and ANN performed either as well as or slightly worse than the logit models. Using 
ensemble techniques, Zhang, Zhang, Liu, & Zhang (2023) achieved 83% accuracy on passenger travel 
mode choice in Jinan, China, compared to 66% predictive accuracy for the MNL model, which was also 
the same accuracy as the AdaBoost model they tested. Literature on passenger mode choice indicates 
that predictive accuracy can vary greatly depending on the data used and the selected machine learning 
method. 

Additionally, Hillel, Bierlaire, Elshafie, & Jin (2021) highlight a number of limitations in previous studies 
that may have led to overestimations in the predictive improvements gained from machine learning 
methods. These limitations include using input features which are dependent on output choice, for 
instance using trip duration for prediction even though this is dependent on the mode taken. Other 
limitations include using inappropriate validation schemes, using incorrect sampling methods, and 
optimizing hyperparameters on test data, all of which may result in inaccurate estimates of model 
performance (Hillel, Bierlaire, Elshafie, & Jin, 2021). Of the 70 studies included in their research, only 
one did not have any of the identified limitations. 

Despite the higher predictive ability of machine learning models, many passenger mode choice studies 
still prefer DCMs due to their advantages in understanding causality, greater interpretability, and better 
generalization (Benjdiya, Rouky, Benmoussa, & Fri, 2023). Similarly to freight mode choice studies, 
much research on passenger mode choice has focused on comparing the predictive accuracy of 
various machine learning methods with logit models. The findings range from significant accuracy 
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improvements with some tree-based methods such as RF and BAG to either the same or lower 
accuracy in ANN and NB compared to logit models. 

2.3 Hybrid Models 

Other studies have investigated how machine learning methods can be combined with DCMs to 
potentially gain improvements in predictive accuracy without losing interpretability. Aboutaleb, Danaf, 
Xie, & Ben-Akiva (2021) argue that machine learning models cannot replace DCMs for policy analysis 
because they can only capture correlations, not causations. Additionally, if the results are 
counterintuitive, machine learning models do not provide a clear way of understanding what went wrong 
and how it should be fixed (Aboutaleb, Danaf, Xie, & Ben-Akiva, 2021). For these reasons, they suggest 
using optimization techniques, regularization, and out-of-sample validation to determine the 
specification of the random component of the utility equations in logit models and discuss how this can 
be applied to nested logit and mixed logit models. 

Similarly, Sifringer, Lurkin, & Alahi (2020) propose a hybrid approach that integrates neural networks 
into discrete choice modeling, referring to it as the Learning-Multinomial Logit Model (L-MNL). This 
approach allows for the utility function to be partially specified using neural networks, enabling the 
capturing of non-linear relationships. In their framework, the utility function is divided into one 
interpretable, knowledge-driven part, written as a convoluted neural network, and a data-driven part, 
obtained using a dense neural network. The L-MNL model was applied to Swissmetro revealed 
preference data and resulted in higher accuracy (76%) compared to the 66% for the standard MNL 
model, likely because the traditional MNL model was not able to capture non-linear dependencies 
among variables. The authors argue that interpretability is also maintained, as key variables such as 
time, cost, and trip distance are kept in the MNL part of the model, while sociodemographic variables 
such as age and education are added to the data-driven part (Sifringer, Lurkin, & Alahi, 2020). An 
extension of the L-MNL model, the TasteNet-MNL model, uses a neural network to learn individual-
specific taste parameters, which are then inputted into a utility function (Han, Camara Pereira, Ben-
Akiva, & Zegras, 2022). This results in an interpretable model with improved model fit, indicated by a 
lower negative log-likelihood, compared to models with manually specified parameters. 

Another framework combining Logit models and machine learning is the architecture with alternative-
specific utility functions (ASU-DNN) in which a deep neural network (DNN) is designed to use only the 
data for each specific alternative to calculate that alternative’s utility (Wang, Mo, & Zhao, Deep neural 
networks for choice analysis: Architecture design with alternative-specific utility functions, 2020). In a 
fully connected DNN (F-DNN), the utility of each alternative is computed using the attributes of all 
alternatives, which violates the independence of irrelevant alternative (IIA) constraint in Logit models. 
By designing the DNN to adhere to IIA, the model provides more interpretable behavioral insights than 
an F-DNN does and also gains an 8% increase in accuracy compared to a baseline MNL model. 

Areas for future research related to hybrid models include developing a framework for the inclusion of 
a data-driven part to mixed logit, latent class, or other more advanced DCMs. As existing studies on 
hybrid models focus on passenger data, the question of interpretability and the application of these 
models for freight mode choice is also another research gap. 



 
 
 

 
 
 

 

 

7 

2.4 Machine Learning Model Evaluation Criteria for Freight Policy 
Analysis 

A study on passenger travel mode choice defined the following criteria for selecting machine learning 
models used to inform policy decisions: predictive performance, behavioral interpretability and 
explainability, computational complexity, and data efficiency (Martin-Baos, Lopez-Gomez, Rodriguez-
Benitez, Hillel, & Garcia-Rodenas, 2023). In a separate paper, the AP-GRIP framework was introduced 
to evaluate train delay prediction models. Using this framework, the models are assessed based on 
their accuracy, precision, generalizability, robustness, interpretability, and practicality (Yong, Ma, & 
Palmqvist, 2025). The criteria mentioned in these two studies are described below. No other studies 
were found that define evaluation criteria for machine learning models applied to freight transport policy 
analyses or other policy areas; existing work emphasizes predictive performance as the primary basis 
for assessing and comparing machine learning models. 

Predictive performance: in machine learning studies, predictive performance is most commonly 
assessed using accuracy, which measures how often the model correctly predicts the outcome. It is 
also the most widely used metric for model comparisons (Martin-Baos, Lopez-Gomez, Rodriguez-
Benitez, Hillel, & Garcia-Rodenas, 2023). Another commonly used metric is precision which measures 
the variability or uncertainty in prediction errors (Yong, Ma, & Palmqvist, 2025). 

Interpretability: for policy applications, interpretability includes both behavioral and technical aspects. 
Behavioral interpretability involves deriving economic indicators such as willingness to pay or 
elasticities, which are particularly relevant in passenger transportation studies (Martin-Baos, Lopez-
Gomez, Rodriguez-Benitez, Hillel, & Garcia-Rodenas, 2023). More generally, interpretability can be 
defined in two ways: first, as providing explanations for users to assess the impact of the inputs on the 
outputs, such as through feature importance analysis. The second, deeper definition of interpretability 
allows users to understand not only the importance of the features involved in the prediction but also 
how the model itself learns from the input data (Yong, Ma, & Palmqvist, 2025). For this deeper 
interpretability, post-hoc techniques are often applied to black-box machine learning models. 

Practicality: lastly, practicality considers whether the model’s outputs are usable and meaningful for 
end-users. For example, in train delay predictions, a model whose outputs fluctuate excessively may 
lead to user distrust, making this model less practical in real-world applications (Yong, Ma, & Palmqvist, 
2025). 

Computational complexity (computation time): different models vary in computational complexity, which 
depends on a number of factors including the algorithm itself, the number of input features, and the 
hyperparameters. Models that are less computationally complex may be preferred depending on the 
resource availability and the required level of predictive accuracy (Martin-Baos, Lopez-Gomez, 
Rodriguez-Benitez, Hillel, & Garcia-Rodenas, 2023). 

Generalizability: this criterion relates to a model’s performance on new, “unseen” data that differs from 
the data that it was trained on. Generalizability is assessed through external validation, which involves 
training on one dataset and testing on another, either from a different time period or geographic region 
(Yong, Ma, & Palmqvist, 2025).  

Robustness: robustness in machine learning can refer to adversarial robustness, robustness to natural 
distribution shifts (similar to the previously described generalizability), shortcut learning, or other 
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specific robustness notions (Freiesleben, T & Grote, 2023). In this study, robustness refers to a model’s 
ability to produce acceptable predictions under poor data quality or exceptional conditions. This can be 
evaluated by testing model performance under various realistic perturbations in the data (Yong, Ma, & 
Palmqvist, 2025).  

Data efficiency: data efficiency refers to a model’s ability to learn effectively from limited data. In 
practical applications where large, high-quality datasets may not be available, models that can perform 
well with less data are preferable (Martin-Baos, Lopez-Gomez, Rodriguez-Benitez, Hillel, & Garcia-
Rodenas, 2023). 

The relative importance of these evaluation criteria may differ depending on the individual priorities of 
the model user or domain expert. In this study, the ordering of the criteria is based on the perspective 
of a potential end-user of the model. Predictive performance is considered the most important, as 
improving predictions is one of the main motivators in exploring an alternative to the current MNL model. 
Interpretability and practicality are also highly valued; models that are too complex become less useful 
if this shifts the focus of the client away from the model’s results to the more technical aspects of the 
model itself. Next, computation time is important due to the need to complete analyses within a limited 
project timelines. In freight transport policy analysis, robustness and generalizability are important as 
they help ensure the models produce credible results under noisy or imperfect data, which is common 
in freight datasets, and when applied to shifting conditions, which such models are made to assess. 
However, these criteria are considered secondary to predictive performance, interpretability, and 
computation time. Lastly, data efficiency may be important in contexts where large amounts of high-
quality data are unavailable, but in this case it is considered least important, as the potential end-user 
prioritizes other factors over minimizing data requirements. 

2.5 Predictors of Freight Transport Demand and Mode Choice 

One of the main drivers of freight transport demand is Gross Domestic Product (GDP), which has been 
shown to account for 81% to 92% of the variation in total tonne-kilometres of transported goods across 
countries (van de Riet, de Jong, & Walker, 2012). GDP acts as an indirect driver of freight demand, 
primarily by influencing consumer demand, which more directly drives freight activity. Other key factors 
influencing freight demand include the economic structure and logistics systems within countries, as 
well as mode characteristics (van de Riet, de Jong, & Walker, 2012). The relationships between these 
factors are shown in Figure 2.1 below. 
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Figure 2.1. Drivers of Freight Transport Demand (van de Riet, de Jong, & Walker, 2012) 

Factors affecting freight mode choice can be divided into four categories: industry of the shipper, 
commodity characteristics, including commodity type, shipment size, and shipment value, mode 
characteristics, and infrastructure characteristics, which include network density and the presence of 
intermodal facilities (Xu, et al., 2024). Mode characteristics which affect the choice of mode include 
infrastructure and vehicle capacity, availability of modes, service characteristics, travel costs, and travel 
time (van de Riet, de Jong, & Walker, 2012). Another influencing factor is the location of the sellers, 
buyers, and shipping carriers (Xu, et al., 2024).  

Regarding mode availability, road transportation tends to be more widely available than rail or inland 
waterways due to the former’s denser networks. Service characteristics include cost, travel time, 
reliability, flexibility, tracing of freight, use of infrastructure, scale/volume, service of terminals, 
legislation, safety, and security (van de Riet, de Jong, & Walker, 2012). Road transportation is 
commonly preferred, especially for short and medium distance trips, due to its greater flexibility and 
availability. For large volumes of lower-value bulk goods, rail and inland waterways are preferred, 
whereas air and truck transport are preferred for goods with higher value-to-weight ratios (van de Riet, 
de Jong, & Walker, 2012). 

2.6 Conclusion and Discussion 

Previous studies on both freight and passenger mode choice demonstrate that machine learning 
methods often offer greater predictive accuracy compared to Logit models, with tree-based methods 
such as RF providing the highest accuracy. In freight mode choice models, accuracy can also be 
improved through ensembled learning techniques, the inclusion of additional spatial information such 
as derived distances for all modes, and the specification of local models per commodity type and 
industry. Machine learning methods work best with large datasets, but they can still offer higher 
accuracy than MNL models on smaller datasets (Ahmed & Roorda, 2022). Some studies use SHAP to 
explain the output of machine learning models, but most research focuses on the predictive 
performance of these models and does not explore the interpretability or application of machine learning 
for freight policy analysis. Hybrid models such as the Learning-MNL model offer a way to maintain 
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interpretability while improving predictive accuracy, though these frameworks have only been 
developed for passenger mode choice predictions. 

This research aims to address two key gaps in the existing literature. First, previous studies on machine 
learning for predicting freight mode choice have used disaggregate shipper survey data, with detailed 
information about shipment value, shipment weight, commodity type, trip distance, and shipper industry 
type, to train machine learning models. This research explores the performance of machine learning 
models trained with aggregated freight data and how this compares with Logit models as well as what 
additional factors can be incorporated to enhance the predictive accuracy of machine learning models 
for cross-border freight transport. The second research gap lies in the suitability of machine learning-
based freight mode choice models for policy analysis. Previous studies have focused mainly on the 
predictive accuracy of machine learning models and have not considered other model characteristics 
such as interpretability and the role this may play in the adoption of machine learning for freight policy 
studies. By comparing different machine learning models and considering their advantages and 
disadvantages compared to an MNL model, this research will explore whether and how machine 
learning can enhance mode choice models used in freight policy studies. 
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3 Data Preprocessing 

In the first section of this chapter, the freight flows data sources and how this data was assembled are 
described. Section 3.2 defines the explanatory variables used in this research. Section 3.3 provides a 
description of the data analysis conducted on the combined dataset, including the correlations between 
explanatory variables. Lastly, Section 3.4 summarizes the main conclusions from this chapter. 

3.1 Freight Transport Data Sources 

The data for actual freight flows per mode is from Eurostat. As described earlier in Section 1.4, the 
NEAC mode choice model uses a base year database to estimate modal shifts in a scenario year. In 
order for the machine learning models to learn the patterns in real-world behavior rather than 
assumptions made in the base year database, actual freight flows data was used when possible. The 
NEAC base year estimated data was used to fill in some of the gaps where real data was not available. 

For inland waterway, the dataset used contains information about freight transported from region of 
loading to region of unloading per 22 cargo types (Eurostat, 2024). These regions are at a NUTS 2 
level, which are basic regions suitable for regional policy use (Eurostat, n.d.). There are 20 countries in 
the EU for which there is inland waterway transportation data available, and these figures are reported 
by eight different reporting countries. The data is reported on an annual basis from 2014 to 2023; for 
this research, the 2015 annual data was utilized. 

The rail transportation dataset used from Eurostat also provides freight flows by NUTS 2 region of 
loading/unloading (Eurostat, 2024). However, this is only provided in terms of total cargo, not by cargo 
type. Other Eurostat datasets break down total rail flows by cargo type, but these are only available by 
country, not NUTS 2 or 3 zones. There are 20 EU countries with available rail transportation data, and 
each of these report transported freight by tonnes. In this dataset, annual data is provided for 2005, 
2010, 2015, and 2020. 

Finally, two datasets for road transportation are used: one on road freight transport by region of loading, 
and the second of road freight transport by region of unloading (Eurostat, 2024) (Eurostat, 2024). There 
is no single dataset for road flows from region of loading to region of unloading as there is for inland 
waterway and rail. Instead, these two datasets provide region of loading/unloading by reporting country. 
Each reporting country reports amount transported by vehicles registered in that country inside and 
outside of the country. These amounts are reported in terms of total annual tonnes from 1999 to 2023 
for NUTS 3 level zones for 20 countries in the EU. 

In the rail and inland waterway datasets, there are multiple tonnes amounts for the same OD pair 
reported by different countries. When downloading the data, only one of these values was selected, 
with a preference for the amount reported by the country where the goods were loaded. If this was 
unavailable, then the value reported by the country of unloading was used. For inland waterways, 
because not all countries of loading/unloading were also reporting countries, if these had no reported 
values for a given OD pair, then the value reported by Germany was used as Germany is well-
connected to many of the other countries in the EU by inland waterways and thus provides a lot of data 
for the region. 
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The road datasets were restructured into a format matching the inland waterway and rail datasets. First, 
in the “region by loading” dataset, an assumption was made that the reporting country was the same 
as the destination country. In reality, the reporting country is the country where the vehicle is registered, 
not necessarily the vehicle’s destination. However, this was assumed in order to be able to adjust the 
dataset into a usable format; the results are further discussed in Section 3.3. Data Analysis. Then, total 
unloaded values within a given destination country were allocated to NUTS 3 zones in that country 
based on the distribution of unloaded goods in those NUTS 3 zones from the same origin country in 
the “region by unloading” dataset. This resulted in a matrix with road OD flows at NUTS 3 level, based 
on the totals from the region of loading dataset. The data was aggregated to NUTS 2 to match with the 
other mode datasets, and all origin-destination data for all modes was combined into a single dataset 
to be used in model training. 

3.2 Explanatory Variables 

For each origin-destination pair, additional information about the generalized costs, commodity types, 
inland waterway availability, travel time, travel distance, distance from rail and inland waterway 
terminals, and regional characteristics was acquired from other data sources. These variables are those 
which have been identified in previous studies as being influential factors in freight mode choice and 
for which data was available. An explanation of each variable and how it was integrated with the 
Eurostat datasets is provided in the following sections. 

3.2.1 Generalized Transportation Costs 

Transportation costs are a key factor in freight mode choice, with an increase in the costs for one mode 
typically leading to a shift to other transportation modes (van de Riet, de Jong, & Walker, 2012). In 
standard Logit models, the influence of transportation costs on mode choice is usually assumed to be 
linear, although several studies have shown that nonlinear transformations of costs can improve model 
fit (Jensen, et al., 2019) (Xu, et al., 2024). In this research, these costs are included as linear inputs. 

The NEAC generalized cost formula contains five basic elements: track or infrastructure, traction or 
haulage, equipment (wagons, containers, etc.), terminals or transshipment/loading points, and service 
(Newton, Kawabata, & Smith, 2015). These are divided into distance-based variable costs and time-
based fixed costs. For each mode and OD pair in the dataset, the generalized costs as well as several 
individual cost components which are incurred across all modes are calculated. Rail and road costs are 
calculated based on country, and inland waterway costs are determined based on CEMT size, or the 
size of the vessel. 

Total kilometres and minutes for each mode and OD pair were taken from a NEAC cost model output 
from 2017. This output contains the time and distance as well as generalized costs per mode for each 
OD pair at the NUTS 3 level. To use these values for NUTS 2 level freight flow data, the time and 
distance for all NUTS 3 OD pairs within each NUTS 2 OD pair were averaged and used as the NUTS 
2 time and distance. The OD pairs for which this data was not available in this dataset were dropped. 
To obtain country-specific distances for calculating rail and road costs, the shortest path between each 
NUTS 2 zone’s centroid along each mode’s network was calculated in QGIS. The total kilometres and 
minutes for each OD pair and mode from the 2017 data were then distributed to the countries along 
this path using the QGIS amounts as weights. The QGIS calculations were only used where necessary 
to fill in the gaps from the 2017 file in order to reduce data validation time. For inland waterway, the 
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assumed CEMT size for each OD pair is the one that produced the generalized cost amount closest to 
the 2017 cost model amounts. 

The final cost calculations are the total generalized cost, seven fixed time-based costs (depreciation, 
insurance, drivers’ wages, other fixed traction costs, fixed equipment costs, fixed service costs, fixed 
maintenance costs), five variable distance-based costs (variable maintenance costs, track costs, fuel 
costs, other variable traction costs, and variable equipment costs), and one fixed terminal cost for each 
mode. For each row in the dataset, the costs of the chosen mode as well as the other possible 
alternatives are calculated. 

Several of these individual costs are zero for certain modes. These are fixed equipment costs, fixed 
service costs, fixed maintenance costs, variable maintenance costs, other variable traction costs, and 
variable equipment costs. These are eliminated from the dataset as they would allow the model to learn 
to predict mode choice with just these variables (e.g., learning that any time fixed service costs = 0, the 
correct mode is inland waterway) instead of learning from the entirety of the data. 

The generalized costs per OD pair and mode differ from the 2017 costs for a number of reasons. Firstly, 
the 2017 costs are based on NUTS 3 OD pairs, whereas these calculations are adjusted for NUTS 2 
zones. The assumed CEMT size for inland waterway and the countries in the shortest path calculated 
in QGIS for road and rail may also differ from the 2017 values. For inland waterway, the newest costs 
are on average €8.33 lower than the 2017 costs. For road, the newer costs are also lower, with an 
average difference of €15.46. For rail, the newer costs are on average €10.18 greater than the earlier 
costs. For some OD pairs, the relative difference in costs between modes has shifted; for instance, 
where rail ought to be less expensive than road, in this new calculation, the road cost is lower than rail. 

3.2.2 Commodity Types 

Commodity type is a known factor in freight mode choice: for instance, low-value, bulk items such as 
coal, grains, and chemicals are more often transported by rail, whereas higher-value items such as 
prepared foods, electronics, and textiles are more commonly transported by road (van de Riet, de Jong, 
& Walker, 2012).  

For inland waterway, the commodity types from Eurostat were used. Since this was not available for 
the other two modes at a NUTS 2 level, the commodity types from the NEAC 2010 base year estimated 
data were used for rail and road. To add commodity type for road and rail, first the estimated tonnes 
data was aggregated from NUTS 3 to NUTS 2 zones. In the Eurostat freight flows data, each tonnage 
amount per mode and OD pair is represented by one row in the dataset. This was split into multiple 
rows, one per commodity type, based on the commodity types transported along this OD pair in the 
NEAC base year estimated data. The Eurostat tonnes for each OD pair were then allocated to the 
commodity-specific data rows based on the estimated share of tonnes of each commodity type 
transported between that OD pair. 

The inland waterway Eurostat data contains 22 cargo types, whereas the NEAC base year database is 
based on the Standard Goods Classification for Transport Statistics (NST) of 10 commodity types. In 
order to match these, the Eurostat cargo types were converted to the NST commodity type they most 
closely align with. NST 10 was added to encompass all unknown commodity types. This mapping is 
shown below in Table 3.1. 
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Table 3.1. NST Commodity Type and Inland Waterway Cargo Type Mapping 

NST Code NST Description Cargo Type Description 
0 Agricultural products and live animals Dry bulk – agricultural products 

1 Other food products and animal feed  

2 Solid mineral fuels Dry bulk – coal 

3 Petroleum and petroleum products 

Liquid bulk – refined oil 

products 
Liquid bulk – other 
Liquid bulk – unspecified 

4 Ores, metal waste, roasted iron oxide Dry bulk – ores 

5 
Iron, steel, and non-ferrous metals (incl. semi-
finished products) 

Other cargo – iron and steel 
products 

6 
Crude minerals and manufactured products; 
building materials 

Dry bulk – construction 

materials 
Dry bulk – other 
Dry bulk – unspecified 

 

7 Fertilizers  

8 Chemical products Liquid bulk – chemicals 

9 
Vehicles, machinery and other goods (including 
general cargo) 

Other general cargo 
Other cargo – forestry products 

10 Other/unknown Other cargo - unknown 

 
3.2.3 Inland Waterway Availability 

Mode availability can refer to both the mobile (e.g., trucks, wagons) and fixed (e.g., roads, railways) 
infrastructure required to ship goods, with road being more often the preferred mode due to its greater 
availability in terms of its network density (van de Riet, de Jong, & Walker, 2012). Including mode 
availability as an explanatory variable gives the model additional information about the nature of the 
transportation networks. 

For each row of data, a column is added with a binary value indicating whether inland waterway 
transportation is available for this OD pair. Availability is determined based on whether a valid route is 
found between the two zones with Dijkstra’s shortest path algorithm. The road and rail networks are 
much denser compared to inland waterway, thus it is assumed that road and rail are always available 
as mode alternatives for each OD pair. There are 8,509 unique OD pairs in this dataset. The total 
number of OD pairs for which inland waterway is available are 6,731 (79.10% of the total). 

3.2.4 Travel Time and Distance 

Travel time and distance are two other mode-specific characteristics that influence mode choice; a 
previous study on machine learning for freight mode choice found that travel time, distance, and cost 
were the explanatory variables with the greatest impact on mode predictions (Xu, et al., 2024). Different 
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modes are also known to be preferred for different trip lengths, with for example, the amount of goods 
transported by road typically dropping as travel distance increases (van de Riet, de Jong, & Walker, 
2012). As with transport costs, travel time and distance are often assumed to have a linear relationship 
to mode choice, although nonlinear specifications of these variables in discrete choice models have 
been shown to result in an improved model fit than linear ones (Koppelman, 1981). 

As described in Section 3.2.1, the generalized costs for each OD pair and mode are calculated based 
on the trip’s length and travel time. Because of this, the variables time, distance, and cost are highly 
interconnected. For this research, travel time and distance are inputted as the total minutes and 
kilometres for each OD trip, based on the NEAC 2017 cost model output. 

3.2.5 Distance from Terminals 

The distance of an origin or destination zone to rail and inland waterway terminals is related to 
infrastructure characteristics, which as mentioned earlier, have been identified as influencing mode 
choice (Xu, et al., 2024). Although this distance would be included in the total distance of the trip and 
in the generalized cost, adding this as a separate variable may allow the model to identify other non-
monetary costs associated with the distance to terminals that were not captured in the cost calculations. 

The distances are calculated in QGIS as the Euclidean distance in kilometres between the NUTS 2 
zone centroids and the nearest rail and inland waterway terminals. For each OD pair in the dataset, 
four distances are included: the distance from the origin zone to the closest rail terminal, origin zone to 
nearest inland waterway terminal, destination zone to closest rail terminal, and destination zone to 
closest inland waterway terminal. 

3.2.6 Regional Characteristics 

The quality of service and reliability of rail and inland waterway transportation are also factors in mode 
choice decisions (van de Riet, de Jong, & Walker, 2012). These can vary greatly across different 
countries. In the current NEAC MNL model, a distinction is made between Eastern and Western 
Europe, with separate parameters estimated per mode and region. 

In this research, two additional columns are added to the dataset identifying whether the origin and 
destination are both in Eastern Europe, or one of the two zones is in Western Europe and the other in 
Eastern Europe, or vice versa. In the first column, a value of 1 indicates that both zones are in Eastern 
Europe. In the second of these columns, 1 indicates that the origin zone is in Western Europe and the 
destination zone is in Eastern Europe, or vice versa. The countries considered part of Western Europe 
are Austria, Belgium, Switzerland, Germany, Denmark, Spain, Finland, France, Ireland, Italy, 
Netherlands, Sweden, and Luxembourg (Statistics Netherlands (CBS), n.d.). Eastern European 
countries are Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, and Slovakia. 

In addition to distinguishing between Eastern and Western Europe, several other columns are added 
to represents differences in level of service in different countries. For rail, OD pairs are categorized into 
three levels of service: high quality, medium quality, and low quality. These are based on the 2017 
European Railway Performance Index which grouped European countries into three tiers based on the 
intensity of use, quality of service, and safety of their passenger and freight railway systems (Duranton, 
Audier, Hazan, Langhorn, & Gauche, 2017). The ranking of countries is shown in Table 3.2; Croatia 
was not included in the 2017 performance index, so it was placed in the same category as its 
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neighboring countries Slovakia and Hungary. The OD pair is assigned to one of the categories based 
on the worst of the origin and destination countries’ service levels. 

Table 3.2. Railway Systems Level of Service Categories by Country 

Service Level Countries 
High Switzerland, Denmark, Finland, Germany, Austria, Sweden, France 

Medium The Netherlands, Luxembourg, Spain, Czech Republic, Belgium, Italy 

Low Ireland, Hungary, Slovakia, Poland, Romania, Bulgaria, Croatia 

Three service level categories were also defined for inland waterway systems. The categories and the 
countries in each one are shown below in Table 3.3. There is no service performance index for inland 
waterway as there is for rail. For this reason, each country was ranked based on the average speed 
across all trips that originate in that country in the NEAC 2017 cost model output file. Although service 
level is typically measured by frequency and length of delays (van de Riet, de Jong, & Walker, 2012) 
(Duranton, Audier, Hazan, Langhorn, & Gauche, 2017), in this case average speed is used as a proxy 
as it can also be indicative of infrastructure bottlenecks, terminal delays, and other reliability issues. As 
with rail, the OD pairs in the dataset used in this research are assigned to one of the categories below 
based on the worst of their origin and destination countries’ service levels. 

Table 3.3. Inland Waterway Systems Level of Service Categories by Country 

Service Level Countries 
High Belgium, Switzerland, Germany, Netherlands 

Medium Bulgaria, France, Italy, Romania 

Low Austria, Czech Republic, Hungary, Poland, Slovakia 

3.3 Data Analysis 

The resulting dataset has 67,210 total data points, with 8,716 of these of goods transported by inland 
waterway, 25,639 of rail, and 32,855 of road. The mode shares by the number of data points is inland 
waterway (12.97%), rail (38.15%), and road (48.89%). The modal shares by the amount of tonnes 
transported per mode is inland waterway (9.32%), rail (11.5%), and road (79.17%). The actual mode 
split of inland freight transport in the EU in 2015 based on an aggregated dataset of modal shares in 
tonne-kilometres provided by Eurostat is inland waterway (6.9%), rail (18.8%), and road (74.2%) 
(Eurostat, 2025). 

Compared with Eurostat’s aggregate mode-specific data, the tonnage per mode in this dataset is under-
estimated. 499,574 thousand tonnes are transported by inland waterway across all countries in this 
dataset, compared to 541,599 thousand tonnes in the aggregate data (Eurostat, 2025). Similarly, 
616,377 thousand tonnes are transported by rail here, compared to 1,530,899 thousand tonnes in the 
aggregate rail transportation data (Eurostat, 2025). Road tonnage is the most underestimated, with 
4,241,777 thousand tonnes in this dataset compared to the actual 12,665,191 thousand tonnes 
(Eurostat, 2024). These underestimations reflect excluded flows due to both missing or confidential 
values in the disaggregated Eurostat data as well as trips lacking a generalized cost estimation. For 
road, the underestimation is largely due to the way the two Eurostat datasets were combined. 
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The mode shares based on the Eurostat datasets described above are 3.67% inland waterway, 10.39% 
rail, and 85.95% road. Based on these percentages, the dataset used in this research overrepresents 
inland waterway by 154.2% and rail by 10.8% and underrepresents road by 7.9%. 

Most total transported tonnes are domestic flows within Germany (2,725,777 thousand tonnes), Czech 
Republic (444,294), Austria (335,216), Switzerland (281,613), and Belgium (262,614). The most non-
domestic flows are between Germany and The Netherlands (281,068 thousand tonnes), Belgium and 
The Netherlands (111,605), Belgium and Germany (51,449), Austria and Germany (45,652), and 
Germany and Poland (42,244). There are also seven country pairs with less than 2,000 tonnes 
transported between them: these are Denmark-Hungary, Switzerland-Denmark, Denmark-Romania, 
Belgium-Romania, Czech Republic-Norway, Spain-Poland, and Spain-Slovakia. 

The most transported commodity type is NST6 (1,448,207 thousand tonnes), following by NST9 
(1,192,152), and NST4 (666,703). The least transported commodity types are NST10 (27,158 thousand 
tonnes), NST7 (92,028), and NST3 (167,031). Figure 3.1 shows the percentage of tonnes of each 
commodity type transported by each mode. As shown in the figure below, two commodity types, NST1 
(other food products and animal feed) and NST7 (fertilizers) are not transported by inland waterway. 
NST3 (petroleum and petroleum products) and NST2 (solid mineral fuels) have the highest percentage 
of tonnes transported by inland waterway compared to other commodity types. The commodities with 
the highest percentage of tonnes transported by rail is NST2, NST7 (fertilizers), and NST10 
(other/unknown). Eight of the eleven commodity types are most commonly transported by road.  

 

Figure 3.1. Percentage of Tonnes Transported per Commodity Type and Mode 

For road flows, the Germany-Netherlands corridor is the largest both in this dataset and in regional 
reports (European Commission, 2017). However, the magnitude of some of the other trade corridors 
has shifted in this dataset, with Belgium-Netherlands and Germany-Poland transporting the next most 
amount of goods by road, whereas in official data, Belgium-France and Netherlands-Belgium are 
identified as the second and third biggest trade corridors in the EU (European Commission, 2017). 
Additionally, most domestic road flows are missing, but for the six countries that have domestic flows, 
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these amounts are largely consistent with aggregate reports (Eurostat, 2024). While some major 
corridors and relative rankings are preserved, differences arise due to missing entries and data filtering. 

3.3.1 Correlations and Multicollinearity 

High correlations between predictor variables cause feature importance measures to be unreliable, 
leading the model to become less interpretable (Kashifi, Jamal, Kashefi, Almoshaogeh, & Rahman, 
2022). To check for correlations, the Phik correlation coefficients for all variable pairs are calculated.  
Phik can calculate correlations between categorical, ordinal, and interval variables, compared to 
Pearson correlation which is primarily intended for numerical variables (Baak, Koopman, Snoek, & 
Klous, 2020). Figure 3.2 displays a heatmap with the Phik coefficients for all variables except the 
individual cost components. 

 

Figure 3.2. Phik Correlations Between Explanatory Variables 

A correlation coefficient of 0.8 or 0.9 is typically used as a cut-off to indicate high correlation (Yi-Le 
Chan, et al., 2022). As seen in the heatmap, OriginRail (the distance from the origin zone to nearest 
rail terminal) and DestRail (distance from destination zone to nearest rail terminal) are highly correlated, 
with a Phik coefficient of 0.91. Total distance and time variables are highly correlated with each other 
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and with the generalized cost variables. Since the generalized cost variables are calculated from the 
individual cost component variables, these are also highly correlated. The set of variables with Phik 
correlations less than 0.80 are shown in Table 3.4 below. 

Table 3.4. Explanatory Variables without High Phik Correlations 

Variable Name in Dataset Type of Variable 

Generalized cost 
Cost2Road 
Cost2Rail 

Cost2Water 

Continuous 

Commodity type Commodity Nominal 

Inland waterway 

availability 
WaterAvailable Binary 

Distance from 

terminals 

OriginIWW 
OriginRail 

DestIWW 

Continuous 

East/West Europe 
EastWest 
EastEurope 

Binary 

Service levels 
ServiceRail 
ServiceWater 

Ordinal 

High correlations between variables may indicate multicollinearity, when a linear or near-linear 
relationship exists between two or more predictive variables (Yi-Le Chan, et al., 2022). This increases 
the standard errors and makes it harder to measure the impact of an individual variable on the 
prediction. One way to measure multicollinearity is with the Variation Inflation Factor (VIF), defined as  

𝑉𝐼𝐹* =
1

(1 − 𝑅*,)
 

where 𝑅*, is the R-squared from regressing 𝑥* on every other predictor. A VIF of 10 or more is considered 
the cut-off for high multicollinearity (Yi-Le Chan, et al., 2022). 

Table 3.5 reveals the VIF values for many of the variables are very high, indicating high multicollinearity. 
These values fall below 10 only after dropping the variables road cost, rail service, origin distance rail, 
inland waterway service, and inland waterway availability. If road cost is not removed, the VIF value for 
rail cost remains high at 24.0 which shows there is high multicollinearity between road and rail cost. 
However, filtering out important variables solely due to their high multicollinearity may oversimply the 
models and reduce interpretability. 
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Table 3.5. VIF Values 

Variable VIF 
Cost2Rail 39.73 

ServiceRail 15.01 

WaterAvailable 13.95 

ServiceWater 12.72 

Cost2Road 10.37 

Cost2Water 3.93 

Commodity 3.73 

OriginRail 2.73 

EastWest 2.44 

DestIWW 2.43 

OriginIWW 2.23 

EastEurope 2.16 

Another strategy to reduce multicollinearity is to merge correlated variables. Road and rail cost could 
be merged into a single variable representing the difference between these two costs. The estimated 
coefficient of the cost difference variable signifies the change in utility as the road cost increases relative 
to rail cost, or vice versa. Although the coefficient estimate will be more reliable due to reduced 
multicollinearity, the merging of the two variables means it is not possible to estimate the change in 
utility as only one cost increases or as both costs increase. When the separate road and rail cost 
variables are replaced by the cost difference variable, the variables inland waterway availability, rail 
service, and inland waterway service still have VIF values over 10. Due to the large number of 
multicollinear variables, eliminating or merging these would restrict model complexity and potentially 
result in less accurate predictions. Thus, all variables as they are listed in Table 3.4 are included as 
explanatory variables, with the understanding that the high VIF values may affect coefficient estimate 
reliability. 

3.4 Data Preprocessing Conclusions 

Although real data was used as much as possible when constructing the dataset used in this research, 
various estimations in and adjustments to the data as well as some confidential or otherwise unavailable 
data led to some deviations from known real-world values. The key areas where this dataset differs 
from reality are in the relative mode shares in the EU, absolute values of tonnage transported by each 
mode, and the road tonnage amounts transported between certain OD pairs, namely for domestic trips 
in numerous countries in the EU. Despite these limitations, this dataset may still be useful to compare 
different machine learning algorithms’ performance and demonstrate how machine learning models 
could be used for mode choice modeling for freight policy studies. However, it is important to 
acknowledge that the best machine learning algorithm found for this dataset may not be the best 
algorithm for a less biased one. Lastly, the data limitations in the dataset should be addressed prior to 
its use in real-world policy applications. 

Several explanatory variables were chosen and added to the dataset, based on a literature review and 
on data availability. The Phik correlations calculated for each variable pair showed high correlations 
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between many of the time, distance, and cost variables. VIF values were also calculated, and these 
indicated high multicollinearity among many variables. In order to estimate feature importance, which 
is a valuable element of model interpretation, the variables with very high Phik correlations were 
excluded from the set of explanatory variables to be used during model training. The remaining 
variables were kept as predictors, with the acknowledgement that the high VIF values for some of these 
may result in unreliable coefficient estimates and may make it more difficult to derive policy insights 
from the model results. 
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4 Methodology 

In this chapter, Section 4.1 describes the machine learning algorithms selected for this research. 
Section 4.2 details the model training process for each algorithm, including the selection of 
hyperparameters and the use of explainability tools. Finally, Section 4.3 provides conclusions on the 
methods. 

4.1 Method Selection and Description 

Three machine learning algorithms were selected: logistic regression (LR), Random Forest (RF), and 
XGBoost (XGB). Logistic regression was chosen as a baseline of comparison to the two more advanced 
machine learning methods. Random Forest and XGBoost were chosen due to their high accuracy 
demonstrated in previous freight mode choice studies (Xu, et al., 2024) (Liu, et al., 2024). While other 
studies have found that neural networks and support vector machines can estimate behavioral outputs 
such as willingness to pay more accurately than Random Forest and XGBoost (Martin-Baos, Lopez-
Gomez, Rodriguez-Benitez, Hillel, & Garcia-Rodenas, 2023), these models were not included in this 
research because deriving and comparing behavioral outputs is outside the scope of this research and, 
due to time constraints, only a limited number of algorithms could be trained. The following sections 
provide a description of the three selected algorithms. 

4.1.1 Logistic Regression 

Logistic Regression is a supervised machine learning method that uses the same mathematical 
formulation as a Random Utility Model (RUM) in Logit discrete choice models. The model estimates the 
coefficients that minimize the multinomial log-loss, or the negative log-likelihood of the observed 
choices. In multiclass classification problems, LR uses the SoftMax logistic function to compute the 
probabilities of the input data belonging to each class (Hillel, Bierlaire, Elshafie, & Jin, 2021). The 
difference between LR and the RUM approach is that in LR, regularization is applied automatically 
through either L1 (or lasso) regularization which adds a penalty based on the absolute value of the 
model’s weights or L2 (or ridge) regularization, where the penalty is based on the square values of the 
model’s weights. L2 regularization is often applied to address multicollinearity in logistic regression 
problems (Oluwadare, 2020). The amount of regularization is controlled by a hyperparameter called C, 
where a smaller C allows for a greater penalty on large weights, and a larger C means less penalties, 
or weaker regularization. 

In 38 studies on travel mode choice models between 2020 and 2023, only two utilized LRs, compared 
to 10 using Artificial Neural Networks (ANNs) and 11 employing Random Forest/Decision Trees 
(Benjdiya, Rouky, Benmoussa, & Fri, 2023). This is in part because LR tends to offer lower accuracy 
than other more complex machine learning models, as it fails to capture nonlinear relationships between 
variables (Kashifi, Jamal, Kashefi, Almoshaogeh, & Rahman, 2022). 

4.1.2 Random Forest 

Random Forest is a combination machine learning algorithm used for classification and regression 
problems. It combines multiple decision trees, each trained on a random subset of the data, to make a 
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more robust and accurate prediction (Roßbach, 2018). Each tree makes a prediction based on the input 
data, and the final output of the model is the average of the predictions of all the decision trees 
(Benjdiya, Rouky, Benmoussa, & Fri, 2023). This approach helps to reduce overfitting, a common issue 
with decision trees. An illustration of a random forest is shown below in Figure 4.1, where each box 
contains a decision tree. The circles in the image represent decision nodes, starting with the root node 
at the top which is then split until the final leaf node is reached. 

 

Figure 4.1. Random Forest Structure (Dutta, Paul, & Kumar, 2021) 

RF has become one of the most popular machine learning techniques applied to mode choice problems 
in recent years due to its high accuracy, computational efficiency, and ability to handle large, complex 
datasets with minimal tuning. In a previous study comparing various machine learning methods for 
mode choice predictions, RF was determined to be both the most computationally efficient and accurate 
(Xu, et al., 2024). RFs are able to handle different types of input data, including both categorical (e.g. 
commodity type) and numerical (e.g. distance) variables as well as missing data. 

RFs have several hyperparameters that must be set by the user; different combinations of 
hyperparameter values can be explored through tuning strategies to find the appropriate values for the 
given dataset. Some of the hyperparameters that are typically tuned in RF for classification problems 
and their default values in the scikit-learn library are described in Table 4.1. 

Table 4.1. Random Forest Default Hyperparameter Values 

Hyperparameter Description Default value 
n_estimators Number of trees in the forest 100 

max_depth Maximum depth of each tree None 

min_samples_split Minimum samples to split a node 2 

min_samples_leaf Minimum samples in each leaf 1 

 max_features Number of features considered at each split sqrt 

bootstrap Whether to bootstrap samples for each tree True 

A greater number of trees (n_estimators) typically lead to better performance. However, the 
computation time of a model increases linearly with the number of trees, and at a certain number of 
trees, the gains in performance are very slight (Probst, Wright, & Boulesteix, 2019). 

The maximum depth of each tree (max_depth) sets the maximum number of splits from a root node 
before stopping at a leaf node. Shallow trees with small depth are simpler and less likely to overfit. 
Maximum depth is also closely connected to the leaf node size hyperparameter, as a lower leaf node 
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size leads to deeper trees, and a higher leaf node size limits the depth of trees (Probst, Wright, & 
Boulesteix, 2019). For certain datasets, including larger ones with more noise variables, previous 
studies have shown that increasing the leaf or terminal node size (min_samples_leaf) can improve the 
model’s performance, decreasing runtime (Probst, Wright, & Boulesteix, 2019). 

Increasing the minimum samples to split a node (min_samples_split) reduces the creation of very small, 
specific branches, thus also potentially reducing overfitting. Nodes are split based on a split criterion 
which is Gini by default but can be set to entropy or log-loss instead. 

The max_features hyperparameter determines how many features are considered at each decision 
node. The default value of sqrt means that number of features considered at each node is the square 
root of all features; these are randomly selected from all the features. Using fewer features can help to 
reduce overfitting. The maximum number of features can also be set to None, log2, an integer, or float 
value. Finally, bootstrapping means sampling with replacement, where random samples are drawn 
multiple times from the dataset, leading to some rows being chosen multiple times. Using bootstrapping 
can also reduce overfitting. 

4.1.3 XGBoost 

eXtreme Gradient Boosting (XGBoost) is a boosting tree machine learning algorithm that is widely used 
for classification tasks, including mode choice, due to its high accuracy, interpretability, flexibility, and 
scalability (Li, et al., 2024). It starts with a weak learner, or simple decision tree, and builds a new tree 
that learns from and reduces the residual errors in the weak one. Through each iteration, the model 
improves mistakes from previous trees, and the final prediction is a weighted total of all decision trees, 
weighted by the trees’ predictive accuracy (Chen & Cheng, 2023). Bagging and boosting are two types 
of ensembled learning techniques. XGBoost is a boosting method as it learns from an ensemble of 
decision trees iteratively, meanwhile Random Forest is a bagging method because it constructs each 
tree independently and then combines them (Xu, et al., 2024). The two methods often perform similarly, 
although in some studies XGBoost models have a slightly higher accuracy than Random Forest (Zhang, 
Zhang, Liu, & Zhang, 2023) (Fatima, Hussain, Amir, Ahmed, & Aslam, 2023). 

In Table 4.2 are some of the hyperparameters that are typically tuned in XGBoost models. These 
include hyperparameters tuned in a previous travel mode choice study (Chen & Cheng, 2023), as well 
as hyperparameters that are useful for controlling overfitting (DMLC XGBoost, n.d.). Two of these 
hyperparameters, number of trees and maximum depth, are the same as in Random Forest. The 
learning rate sets how much each tree contributes to the ensemble; a lower learning rate reduces the 
impact of each tree, slowing the learning process (DMLC XGBoost, n.d.) The larger the gamma, or 
min_split_loss, the more conservative the algorithm is. A larger min_child_weight means more weight 
is required in each leaf, which leads to simpler trees and less overfitting. Setting a lower subsample 
ratio means the model randomly samples a smaller amount of the total training data prior to growing 
trees. This introduces randomness to the model and helps to prevent overfitting. The max_delta_step 
is the maximum allowed weight for each tree; a lower maximum value makes the model more 
conservative, reducing how much the weights of each tree can change at a time. The default value of 
0 means no limit is set on how much the weights can change. 
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Table 4.2. XGBoost Default Hyperparameter Values 

Hyperparameter Description Range 
Default 
value 

n_estimators Number of trees in the forest [0, ∞] 100 

max_depth Maximum depth of each tree [0, ∞] 6 

learning_rate (eta) Step size shrinkage used to prevent overfitting [0,1] 0.3 

 gamma 
(min_split_loss) 

Minimum loss reduction required to make a further 
split on a leaf node of the tree 

[0, ∞] 0 

min_child_weight Minimum sum of instance weight needed in a child [0, ∞] 1 

subsample Subsample ratio of the training instances [0,1] 1 

max_delta_step Maximum delta step allowed for each leaf output [0, ∞] 0 

4.2 Model Training and Interpretation Process 

For each algorithm, a model was trained using the variables in Table 3.4 from the data processing 
chapter as features. For each row in the data, the other mode costs for the alternatives not chosen are 
included to prevent data leakage from giving the model only the mode-dependent cost. The target, or 
y variable, is the transportation mode. The model training and interpretation workflow which is described 
in this section is also shown in Figure 4.2. The same features and training/test set split are used for all 
three algorithms, and the same CV folds are used during hyperparameter tuning. 

 

Figure 4.2. Model Training and Interpretation Workflow 

The data is split into a training (85% of the data) and test set (15%), stratified by group and class. 
Groups are formed based on OD pairs, so all of the rows of data with the same origin and destination 
zone pair are placed in a single group. All data rows associated with one group are placed in the same 
subset of data during data splitting, either the training or test set. Splitting by group is important when 
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data rows are not independent, for instance when multiple samples are taken from the same patient 
(scikit-learn, n.d.). In this dataset, the rows associated with the same OD pair are not independent, as 
they have the same costs and distances. If some rows for the same OD pair were placed in the training 
set and others in the test set, the model would see the actual mode chosen for these rows during 
training and then would be tested with other similar rows. The model’s predictive performance may thus 
be overestimated because some predictions may be based on the actual mode that the model saw 
during training for these rows, which is a form of data leakage. By stratifying by class as well, the 
distribution of modes by rows is mostly preserved in the training and test sets. 

For logistic regression, the continuous variables of cost and terminal distance are standardized after 
the initial data splitting. These are not standardized for Random Forest and XGBoost. 

To find the best hyperparameters for each algorithm for this dataset, RandomizedSearchCV is used. 
This is a cross-validation technique that does not require the creation of a separate validation set to 
test the hyperparameters, as it splits the training set in k smaller sets, or folds, trains the model on k-1 
folds, and holds the remaining part of the data for validation (scikit-learn, n.d.). The number of folds 
chosen is 5. These are created out of the 85% of the data that is allocated for training. In each iteration, 
four of the folds serve as the training data, and the fifth fold is used for validation. Thus, in each iteration, 
68% of the total data is used for training during hyperparameter tuning and 17% for validation. The 
folds are created using StratifiedGroupKFold so that data rows with the same OD pair are kept in the 
same fold, and each fold maintains a similar distribution of modes based on the rows.  

In random search, a range of values is pre-chosen for each hyperparameter, from which a random 
sample is taken to be tested. The number of iterations chosen is 20, so 20 combinations of 
hyperparameters are tested on each of the 5 folds. Different class weights for the minority classes rail 
and inland waterway were also tested in LR and RF. A class weight on rail for instance penalizes 
mistakes in rail predictions compared to road and inland waterway mistakes. 

When finding the hyperparameters and training the final models, the tonnage weights in each row are 
applied as sample weights, increasing the importance of each data row proportionally to its transported 
tonnage. This leads the model to prioritize correctly predicting rows with higher tonnage amounts. The 
scorers for hyperparameter tuning, or the metric that is being optimized during the selection of 
hyperparameters, are the tonne-weighted log-loss and tonne-weighted rail and inland waterway recall. 
The final models are trained on the full training set. 

As the models are trained with tonnage sample weights, they are also evaluated with tonne-weighted 
metrics. The final accuracy, precision, recall, F1-score, log-loss, and confusion matrices are all 
calculated per tonnes, rather than per rows. For instance, the precision for each mode is the percentage 
of correctly classified tonnes out of all the tonnes predicted for that mode, rather than the percentage 
of correctly classified rows. These evaluation metrics are calculated for the “best” model for each 
algorithm, or the one with the best hyperparameters found, on the test set which was not used during 
hyperparameter tuning. The log-loss of the training set and the test set are both calculated to assess 
potential overfitting, a much smaller training set log-loss compared to the test set being one indication 
of overfitting (Hawkins, 2004). 

To explore model explainability, the Shapley Additive exPlanations (SHAP) values are computed for 
Random Forest and XGBoost. Shapley values explain the contribution of each feature to the model’s 
output and can offer insights into the local (data instance-level) and global (model-level) importance of 
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each feature. SHAP assumes that features in the dataset are independent. SHAP can also be sensitive 
to outliers and noisy data; high correlations or noise in the data can lead to unreliable and misleading 
estimates of feature importance (Pan & Takefuji, 2025). For logistic regression, the estimated 
coefficients are also discussed in the Results chapter. The estimated coefficients for logistic regression 
and SHAP values for Random Forest and XGBoost are used to investigate whether the models’ 
predictions and how the features are used to make these predictions align with what is expected from 
a theoretical perspective. 

4.3 Methodology Conclusions 

Logistic regression was chosen as a baseline machine learning method to compare to more complex 
algorithms. Random Forest and XGBoost were selected as previous studies have shown they offer the 
highest accuracy in freight mode choice prediction. These algorithms offer a range for which to compare 
not only predictive performance but also interpretability and other model characteristics. A limitation of 
this study is the number of models compared. There are many other machine learning algorithms for 
classification tasks, such as Artificial Neural Networks, Naïve Bayes, Support Vector Machine as well 
as other bagging and boosting decision tree methods which may offer other advantages not covered 
by the three models in this research. For instance, several previous studies have identified a trade-off 
between predictive accuracy and behavioral interpretability in machine learning algorithms; Random 
Forest and XGBoost often have higher accuracy than neural networks but produce less reasonable 
behavioral outputs such as elasticities and willingness to pay (Zhao, Yan, Yu, & van Hentenryck, 2020) 
(Martin-Baos, Lopez-Gomez, Rodriguez-Benitez, Hillel, & Garcia-Rodenas, 2023). 

Finally, the model training and interpretation process was discussed, including the specific 
considerations made to split the data by group and class and weight the data samples and evaluation 
metrics by tonnage. The described model training and interpretation workflow could offer insights on 
how to handle aggregated freight flow data, potentially filling a research gap as previously only 
disaggregate-level datasets have been used to predict freight mode choice. 
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5 Results 

Section 5.1 in this chapter presents the results of the logistic regression, Random Forest, and XGBoost 
models. Section 5.2 compares the results of the various machine learning algorithms, based on the 
criteria outlined in Section 2.4 in the literature review and against the current NEAC mode choice model. 

5.1 Model Results 

The test set accuracy, log-loss, and training/test set log-loss gap are presented in Table 5.1 below. The 
overall accuracies, or percentage of correctly classified tonnes in the dataset, are very similar across 
the different models, ranging from 89.1% in the logistic regression model to 92.1% in the XGBoost 
model. Similarly, the log-loss is highest in logistic regression and lowest in XGBoost, indicating that the 
latter fits the test set better. The high accuracies are largely due to the models’ high accuracy in 
predicting road tonnes. Since the vast majority of tonnes are transported by road (79%), the overall 
predictive accuracy is high despite the models’ comparatively poor ability to correctly identify tonnes 
transported by rail and inland waterway. 

Table 5.1. Test Accuracy and Log-Loss 

 Logistic regression Random Forest XGBoost 

Test accuracy 0.891 0.915 0.921 

Test log-loss 0.3490 0.2951 0.2454 

Train/test log-loss gap 4.37% 24.99% 20.95% 

The log-loss gap is the test set log-loss minus the training set log-loss divided by the training set log-
loss. While no specific thresholds were found in academic literature, some programming resources 
suggest that a gap larger than 5% is an indicator of overfitting (Ogbemi, M, 2023). Overfitting is 
problematic in this context because the models are intended to be used for predicting under changing 
conditions; if the models overfit, they will be less reliable in new, unseen scenarios. Based on the 5% 
threshold, the logistic regression model is not overfitting to the training set, whereas the RF and XGB 
models with a log-loss gap of 25% and 21% respectively are overfitting greatly. 

The improved performance of the Random Forest and XGBoost models on the test set and the greater 
variance of their performance between the test and training sets compared to the logistic regression 
model reflect the bias-variance trade-off (DMLC XGBoost, n.d.). The RF and XGB models are better 
able to fit the test set and reduce bias but have a greater variance in performance across the different 
datasets, whereas the logistic regression model has higher bias but lower variance. 

In all of the models, tonnes actually transported by inland waterway and rail are most mistaken for road 
tonnes. For road tonnes that are misclassified, these are most often classified as inland waterway 
tonnes; this is presented in the confusion matrices in Figure 5.1. 
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Figure 5.1. Normalized Confusion Matrices 

Table 5.2 displays the precision and recall for each mode. Precision is the proportion of total tonnes 
predicted for a mode that were actually transported by that mode, or true positives over the sum of true 
positives and false positives. Recall is the proportion of all actual tonnes for a mode that the model 
correctly classified as that mode, or true positives over the sum of true positives and false negatives. 
The F1-score is the harmonic mean of precision and recall. 

Table 5.2. Classification Report 

Mode Model Precision Recall F1-score Support 

Inland waterway 

Logistic Regression 0.52 0.69 0.59 

35,582.00 Random Forest 0.54 0.66 0.59 

XGBoost 0.68 0.56 0.61 

Rail 

Logistic Regression 0.69 0.62 0.65 

65,200.87 Random Forest 0.88 0.65 0.75 

XGBoost 0.89 0.60 0.71 

Road 

Logistic Regression 0.94 0.93 0.94 

578,842.56 Random Forest 0.95 0.96 0.95 

XGBoost 0.93 0.98 0.96 
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The road precision and recall is much higher than for the minority classes in all of the models. Compared 
to the logistic regression model, Random Forest improves the precision of the minority classes by 2 
percentage points for inland waterway and 19 points for rail, while XGBoost improves precision by 16 
and 20 points for inland waterway and rail respectively. The recall for inland waterway drops 3 and 13 
points respectively for Random Forest and XGBoost compared to logistic regression. For rail, recall 
also drops 2 percentage points in XGBoost but increases by 3 in the Random Forest compared to the 
0.62 recall in logistic regression. This largely demonstrates the rail-precision trade-off, where precision 
improves at the expense of recall, or vice versa. Based on the average F1-scores across inland 
waterway and rail, Random Forest has the best performance in predicting the minority classes with an 
average F1-score of 0.67, followed by XGBoost (0.66) and logistic regression (0.62). 

Table 5.3 below presents the differences between actual and predicted mode shares in the test set for 
each model. Both logistic regression and Random Forest overpredict inland waterway and rail and 
underpredict road, with the latter model displaying greater differences from the actual mode shares. 
XGBoost has by far the smallest differences between actual and predicted mode shares. 

Table 5.3. Differences Between Actual and Predicted Mode Shares 

 Logistic Regression Random Forest XGBoost 
 Difference Relative 

error 
Difference Relative 

error 
Difference Relative 

error 

Inland 

waterway 
+2.79% +53.24% +3.43% +65.46% +0.50% +9.54% 

Rail +4.78% +49.84% +4.68% +48.80% -0.05% -0.52% 

Road -7.57% -8.89% -8.11% -9.52% -0.45% -0.53% 

5.1.1 Logistic Regression Coefficients 

As mentioned in Section 3.3.1, due to the high multicollinearity of some variables, the estimated 
coefficients may be unreliable. This is evident in several of the coefficients which have opposite signs 
from what might be expected, shown in Table 5.4: the ServiceRail coefficient for rail is negative, 
meaning that a higher rail service negatively affects rail utility. This could be due to interactions with 
other variables, such as rail cost, as both of these have high VIF values. Another possibility is that the 
rail service variable is capturing the effects of other variables that were not included in the model; other 
factors such as road infrastructure quality, trade flow characteristics, or physical barriers could be 
correlated with rail service and influence mode choice, leading to the counterintuitive negative 
coefficient. 

The rail cost and OriginRail coefficients for inland waterway are both negative, meaning as the cost of 
rail and the distance to a rail terminal increases, the utility for inland waterway decreases. Despite 
potential multicollinearity, most coefficients have low standard errors and are statistically significant, 
with the exception of NST 5, 9, and 10 which are not significant. 

The alternative-specific constants (ASCs) for rail and inland waterway are 6.18 and -8.65 respectively, 
with road as the base alternative, which are very different from the ASCs in the NEAC mode choice 
model which are on average -1.96 for rail and -1.89 for inland waterway across all commodity types. In 
the NEAC model, the dummy rail variables for East-West Europe and Eastern Europe are both positive, 
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meaning rail is favored compared to road and inland waterway. In the LR model, road is preferred in 
both East-West Europe and Eastern Europe over inland waterway and rail which both have negative 
coefficients. 

Table 5.4. LR Coefficients and Alternative-Specific Constants with Road as Base Alternative 

 Inland waterway Rail 
 Coefficient Standard Error Coefficient Standard Error 

Alternative-specific constants -8.654 0.197 *** 6.177 0.121 *** 

Road cost 2.455 0.009 *** 1.242 0.004 *** 

Rail cost -0.134 0.009 *** -0.727 0.005 *** 

IWW cost -2.928 0.014 *** 0.0927 0.002 *** 

IWW available 14.977 0.154 *** -0.582 0.007 *** 

NST 0 0.348 0.122 *** -0.782 0.121 *** 

NST 1 -10.205 0.175 *** -2.788 0.121 *** 

NST 2 3.212 0.123 *** 4.533 0.121 *** 

NST 3 2.885 0.175 *** 0.853 0.121 

NST 4 0.149 0.123 ** 0.232 0.121 ** 

NST 5 -0.211 0.123 0.541 0.121 

NST 6 0.373 0.123 ** 0.153 0.0121 ** 

NST 7 -5.994 0.196 *** 3.599 0.121 *** 

NST 8 0.122 0.123 ** 0.031 0.121 ** 

NST 9 -0.705 0.122 -0.731 0.121 *** 

NST 10 1.427 0.124 *** 0.465 0.122 

Origin IWW -2.292 0.009 *** 0.303 0.002 *** 

Origin Rail -0.564 0.003 *** -0.202 0.002 *** 

Dest IWW -2.623 0.01 *** 0.046 0.002 *** 

East West -4.892 0.032 *** -3.06 0.014 *** 

East Europe -2.538 0.022 *** -3.053 0.012 *** 

Service Rail -4.444 0.008 *** -2.362 0.005 *** 

Service Water 0.345 0.07 *** -0.267 0.003 *** 

Other coefficients are more in line with what is behaviorally realistic. The availability of inland waterway 
increases the utility of inland waterway, though this coefficient (14.98) is very high. The utility of both 
inland waterway and rail increases as the cost of road increases. Utility of rail decreases as the cost of 
rail and distance to rail terminal increases. As inland waterway costs increase, the utility of inland 
waterway decreases and the utility of rail increases. These are consistent with typical substitution 
patterns. Finally, a higher service quality of inland waterway increases inland waterway utility and 
decreases rail utility. 

5.1.2 Random Forest and XGBoost SHAP Values 

The beeswarm plots in Figure 5.2 show the SHAP values of the variables for each mode in the Random 
Forest model. The variables are listed along the y-axis with the strongest predictors at the top. Each 
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point represents one prediction, with the vertical spread representing the density of predictions with the 
same SHAP value. A negative SHAP value means the variable predicts a negative outcome, i.e. that 
the mode is not chosen. The colors indicate the feature values, with blue representing low values and 
red representing high values. For the binary variables (inland waterway availability, East Europe, East-
West Europe), blue = 0 and red = 1. 

 

Figure 5.2. RF Beeswarm Plots 

For all modes, the strongest predictor is rail service. The plots show that better quality rail service is 
associated with a lower probability of choosing rail and inland waterway. This is counterintuitive for rail, 
where a higher rail service might be expected to increase the probability of choosing rail. This 
contradiction was also evident in the Logit coefficients. A higher rail service is associated with positive 
road predictions. Based on these results, the model has learned that even when rail service is high, 
road transportation dominates, thus associating high rail service with a high probability of choosing 
road. 

Another variable whose SHAP values appear counterintuitive is OriginRail, where shorter distances 
from the origin zone to the nearest rail terminal have a positive influence on choosing inland waterway, 
and longer distances increase the probability of choosing rail. This is the opposite pattern as what was 
found in the LR estimated coefficients, where a greater rail terminal distance negatively affected the 
utility of both inland waterway and rail. The rail cost SHAP value is also counterintuitive, with a higher 
cost associated with a higher probability of choosing rail. This could be because rail is preferred even 
for long distance trips where the costs are higher. 

Many of the SHAP values for inland waterway are largely behaviorally consistent: lower inland 
waterway service reduces the probability of choosing inland waterway and increases the probability of 
choosing rail. Lower distances to the nearest inland waterway terminal, lower inland waterway costs, 
and inland waterway availability are positively associated with choosing inland waterway. 

The XGBoost beeswarm plots with SHAP values in Figure 5.3 appear quite similar to those for the RF 
model. ServiceRail is still one of the strongest predictors for all modes, but destination zone distance 
to inland waterway terminal and Commodity 2 have replaced rail service as the biggest predictors for 
inland waterway and rail respectively. NST 2 has the highest proportion of tonnes transported by rail 
out of all the commodity types, as described in Figure 3.1 in the Data Preprocessing chapter. Both RF 
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and XGB learned this pattern and rely on NST 2 for rail predictions, although this predictor is much 
more important for XGB. Likewise, Commodity 1 is a predictor for road in both RF and XGB, but it is a 
much stronger predictor in the latter. Many of the other variables’ mean absolute SHAP values are also 
much larger in the XGB model than in Random Forest. 

 

Figure 5.3. XGB Beeswarm Plots 

The XGBoost beeswarm plots reveal some of the same counterintuitive relationships between rail 
service and rail, and rail service and road, as the Random Forest model. A lower rail service is used by 
the model to positively predict rail, and a higher rail service is associated with choosing road. The 
variable OriginRail for rail predictions is also still counterintuitive, with longer distances positively 
associated with choosing rail. 

Other predictors appear more behaviorally realistic with XGB than with RF, such as OriginRail (for 
inland waterway predictions), rail cost, and road cost. Greater distances from the origin zone to nearest 
rail terminal are positively associated with choosing inland waterway, whereas in RF, short rail terminal 
distances predicted inland waterway. Lower rail costs predict choosing rail in the XGB model, compared 
to higher rail costs predicting rail selection in RF. ServiceWater was one of the top predictors for rail in 
the RF model; in XGB, this is a much smaller predictor, with rail cost and road cost as stronger 
predictors which intuitively should be strongly associated with choosing rail. Previous studies have also 
consistently demonstrated that cost is often considered by logistics decision-makers as the most 
important factor in mode choice (Tavasszy, Van de Kaa, & Liu, 2020). Likewise, inland waterway cost 
becomes a stronger predictor for inland waterway, and road cost for road, in the XGB model, which 
also appears more reasonable than the RF model where these are less important for predictions 
compared to other variables.  

5.2 Model Comparison Against Evaluation Criteria 

In this section, the various models are compared and evaluated against the evaluation criteria outlined 
in Section 2.4 in the literature review. These criteria are: predictive performance, interpretability, 
practicality, computation time, generalizability, robustness, and data efficiency. The current NEAC 
mode choice model will also be discussed in relation to these criteria. Since the NEAC MNL model was 
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not estimated as part of this research, it may not be as directly comparable for all evaluation criteria to 
the three machine learning models which were all trained on the same dataset. 

5.2.1 Predictive Performance 

XGBoost achieved the best predictive performance overall, with the highest accuracy, lowest log-loss, 
and the smallest differences between actual and predicted mode shares. Logistic regression performed 
only slightly worse in terms of accuracy than the more complex machine learning models; this could be 
because most of the relationships in the dataset are linear, and RF and XGB improve on the small 
number of data instances where nonlinearities are present. Since logistic regression has the same 
mathematical formulation as an MNL model, an MNL model estimated with this dataset would have the 
same accuracy as the LR model. 

With the logistic regression and Random Forest models trained in this research, a trade-off between 
mode share accuracy and minority class performance was identified; adding class weights for the two 
minority classes improved their recall and precision but overestimated their mode shares. In a weighted 
Logit model predicting mode choice in the Rhine-Alpine corridor, the relative errors for predictions for 
inland waterway, rail, and road mode shares were between 0.28% and 1.16% (Ramos, et al., 2024). 
This shows that very accurate mode share predictions are possible to achieve with Logit models. 

Logistic regression had the lowest train/test log-loss gap, indicating the least overfitting, while Random 
Forest achieved the highest average F1-score for the minority classes. In comparison, XGBoost better 
balanced predictive accuracy and realistic mode shares. Based on these results, the XGBoost model 
performs best in overall predictive performance compared to the other two machine learning models. 
Considering that logistic regression and Logit models have the same mathematical formulation, the 
XGBoost model is also better in terms of predictive performance than an MNL model would be with this 
dataset. 

5.2.2 Interpretability 

As discussed in Section 2.4 on evaluation criteria, there are several types of interpretability. The first is 
behavioral interpretability, where economic indicators such as willingness to pay and elasticities are 
derived from a model. As mentioned in the results section for logistic regression, the coefficients 
estimated in this model are not reliable due to high multicollinearities. For this reason, it is not 
recommended to use the coefficients to derive the behavioral insights that might normally be derived 
from Logit-based models. If behavioral interpretability is important, then an MNL or logistic regression 
model would be preferred over Random Forest, XGBoost, or other machine learning models. In this 
case, the variables should be adjusted or transformed to reduce multicollinearities, while taking 
precautions not to remove too much information from the model which could result in poor predictive 
performance. 

The second type of interpretability relates to explanations about the impact that the variables have on 
a model’s predictions, such as through feature importance analysis. Although there are several model-
agnostic explainability tools, SHAP was used in this research to demonstrate how feature importance 
insights can be derived from a machine learning model for freight mode choice. The mean average 
SHAP values for each variable for predicting each mode were discussed for the Random Forest and 
XGBoost models in the results chapter. It is also possible to observe local feature importance (i.e., the 
impact that features have on a single observation), though these were not presented in the results.  
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The current NEAC MNL model is used not to derive behavioral insights but rather to observe the 
differences in mode shares between a base scenario and one or more other scenarios. The predicted 
mode shares per OD pair and commodity from the mode choice model are inputted into the traffic 
assignment model, with the Logit coefficients and alternative-specific constants remaining fixed across 
different scenarios. For this reason, the second type of interpretability is considered more relevant for 
this use case than behavioral interpretability. 

SHAP is a model-agnostic tool and thus can be used for any machine learning model, though the SHAP 
results were not shown for the logistic regression model in this research. In previous freight mode 
choice studies, the variables with the greatest SHAP-based importance were shipment weight, 
shipment monetary value, shipping cost, distance, and travel time, with commodity type and industry 
type shown to be less important (Liu, et al., 2024) (Xu, et al., 2024). Many of the commodity types are 
less important than other variables to the models’ predictions in this research, which is consistent with 
prior studies. Some differences were observed between the SHAP values in the Random Forest and 
XGBoost models, with the latter exhibiting more behaviorally realistic feature importance values. For 
example, in XGB, the generalized mode costs were ranked higher in terms of mean absolute SHAP 
values for their respective modes than in RF. This is more aligned with the known strong influence cost 
has on mode choice.  

SHAP values can also be used to help validate a model or different scenarios in a model by observing 
whether the way the model uses each feature for its predictions aligns with domain knowledge. For 
instance, if the cost of rail is increased in a new scenario, then the SHAP values for rail cost for 
predicting rail might be expected to become more negative compared to the base scenario where the 
costs were lower. By already aligning more with behavioral expectations, this kind of validation might 
be easier with the XGBoost model than the Random Forest model. 

5.2.3 Practicality 

Practicality involves considering the usefulness of the prediction results for the model’s end-users. In 
this case, the end-users are both the analysts who use the model to run different scenarios as well as 
the clients who commission Panteia to perform the analysis work. Practicality can be measured through 
more quantitative means, such as by assigning a penalty for prediction errors that are more impractical 
for end-users (Yong, Ma, & Palmqvist, 2025). In this section, practicality will be discussed more 
qualitatively in terms of how the models can be used in application. 

One of the challenges with machine learning models is extrapolation. Machine learning models are not 
capable of predicting using features with values that go far outside the range of values in the training 
data (Gao, Yang, Zhang, Li, & Qu, 2021). This could potentially limit the types of projects that the 
models in this research could be used for. For instance, if one of the policy changes that is being 
evaluated (e.g. an increase in cost or change in a network) goes far beyond the range of values within 
the current dataset, an MNL model may be more appropriate. Likewise, machine learning models have 
not been used for predictions on new transportation alternatives or for forecasting over longer time 
periods of 10 or more years (van Cranenburgh, Wang, Vij, Pereira, & Walker, 2022), also because of 
their known issues with extrapolation. This could affect the practical use of a machine learning-based 
mode choice model for analysts, as it requires an additional step of considering the appropriateness of 
the model for a given use case and may require retraining the model with a wider range of values before 
analyzing different scenarios. In some cases, data with wider ranges may also not be available or 
realistic. 
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A second challenge with machine learning models is that it is not possible to determine causality. With 
Discrete Choice models, a causal relationship between policy changes and mode choice can be 
established based on theoretical assumptions. Although model explainability tools like SHAP can reveal 
the importance of different features to a machine learning model’s predictions, they cannot be used to 
derive the effect features have on mode choice. SHAP values only reveal how the model uses each 
feature to make its predictions. For instance, if the SHAP values reveal that higher rail costs have 
negative SHAP values for predicting rail, it is not correct to assume that higher costs lead to lower rail 
use based on the SHAP values alone. As one of the purposes of a mode choice model like NEAC is to 
determine the appropriate policy to enact in order to produce the desired change in people’s behavior, 
an MNL model appears more practical as it is able to more clearly describe the cause and effect of 
different policies. If a machine learning model is used to evaluate policy interventions, different 
language must be used beyond the more straightforward causal wording. The acceptability, trust, and 
understanding of such a model by policymakers has not been extensively studied. 

Despite the higher predictive accuracy and other advantages gained from machine learning models, 
from a practicality standpoint, an MNL model provides results that may be more understandable to end-
users. The applicability of a machine learning model should also be carefully considered on a project-
by-project basis. 

5.2.4 Computation Time 

The training times for each model are shown in Table 5.5 below. It is assumed that the current NEAC 
mode choice model has a similar estimation time as the logistic regression model training time. The 
estimation time for an MNL model with this dataset would be much lower than all of the machine learning 
models as it does not include hyperparameter search time. 

Table 5.5. Models' Computation Time 

 Logistic Regression Random Forest XGBoost 
Hyperparameter search time (seconds) 45.6 218.9 88.3 

Training time (seconds) 3.8 2.2 2.1 

Total time (seconds) 49.4 221.1 90.4 

The parameter search for logistic regression takes less time than the other two models mainly because 
only two parameters are being searched, compared to 7 hyperparameters for both Random Forest and 
XGBoost. The hyperparameter search time is longer for Random Forest than XGBoost partly because 
of the max depth ranges: for Random Forest, a larger range of up to 10 depth is searched, whereas 
the tree depth was limited to 4 for XGBoost in order to reduce the high overfitting that was observed. 

5.2.5 Generalizability 

One way to assess a model’s generalizability is through testing it on data from a different time period 
or geographical region than the data it was trained on. Generalizability to new time periods is more 
relevant for NEAC, as the mode choice model is used to estimate mode shifts over time given changes 
in costs, infrastructure, or other predictor variables. However, generalizability to different geographical 
regions is assessed and discussed in this section as this can be done with the data that has already 
been collected. 
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The models are trained on the full training dataset excluding rows originating or arriving in a certain 
country; these omitted data rows become the test set. This is repeated for all of the countries in the 
dataset, so that each country is removed from the training set and used as the test set data once for 
each algorithm. The hyperparameters are kept the same as described in the Results chapter for each 
algorithm. 

Table 5.6 presents the average test set accuracy and log-loss across all of the model versions where 
one country was excluded during training but used as the test data. As seen in the table, the average 
accuracy for each algorithm is much lower than the 89-92% the models previously discussed. The log-
losses are also much higher than before. Using the average scores, XGBoost performs the best in 
terms of accuracy and Random Forest on log-loss. 

Table 5.6. Average Accuracy and Log-Loss for Leave-One-Country-Out Test 

 Average Accuracy Average Log-Loss 
Logistic Regression 0.628 0.856 

Random Forest 0.653 0.780 

XGBoost 0.668 0.828 

For countries with a high road share, the models tend to perform well on this unseen data. They perform 
much worse for countries with a larger inland waterway share. For countries with a high rail share, the 
results are mixed, with models achieving a high accuracy for some of these countries and a low 
accuracy for others. The full results for all countries are shown in Appendix A. 

Based on these results, none of the models are especially generalizable to new, unseen countries, as 
performance drops significantly when tested on countries the models were not trained on. Although the 
average accuracy and log-loss for logistic regression is lower than for the other two models, logistic 
regression’s performance is either equal to or slightly worse than the other models for most of the 
countries. For three countries (Bulgaria, Czech Republic, and Spain), the accuracy and log-loss of 
logistic regression is significantly better than the other two models. For this reason, logistic regression 
may be considered the most generalizable to new countries of the three models. 

5.2.6 Robustness 

Robustness is a model’s ability to perform well even with errors, or noise, in the data. Two types of 
noise are class noise, where a row in the data has the wrong class, and attribute noise, where the 
values of an attribute are incorrect, missing, or unknown (Fabra-Boluda, 2024).  A model can be tested 
for robustness by introducing noise into the training set and comparing the model’s test set performance 
with its performance when trained on a non-noisy training set. 

Noise is added to the generalized cost and terminal distance variables in the training set according to 
a Gaussian or normal distribution. The noise levels used are 5% increments between 5% and 30%. 
The standard deviation for each cost and terminal distance variable is calculated. The noise level times 
this standard deviation becomes the new standard deviation for the Gaussian noise distribution, where 
the mean is 0. For example, if the standard deviation of rail cost is €50, then with a noise level of 5%, 
the standard deviation of the Gaussian noise distribution is €2.50. With 30% noise, the standard 
deviation is €15. Noise is added to each value in the three cost and three terminal distance variables 



 
 
 

 
 
 

 

 

38 

according to this distribution. Any values that become negative when noise is added are set to zero. 
The same training/test set splitting and hyperparameters are used as before. 

The graph in Figure 5.4 below shows the tonne-weighted log-loss for each of the algorithms with 
different noise levels. For each model, increasing the noise increases the log-loss. For logistic 
regression, this increase is much smaller compared to RF and XGB.  

 

Figure 5.4. Models' Log-Loss with Varying Noise Levels 

The accuracy of the models with varying noise levels is displayed in Table 5.7. For logistic regression, 
the accuracy steadily decreases as more noise is introduced. For Random Forest and XGBoost, the 
accuracy actually increases slightly with 20% and 10% noise respectively. Based on the accuracy and 
log-loss values with increasing noise, logistic regression is the most robust model, as the accuracy 
drops 1.6% and log-loss only 2% with 30% noise, compared to a similar drop in accuracy with RF and 
XGB but an 8.5% and 10.2% decrease in log-loss respectively. However, the overall log-loss and 
accuracy of RF and XGB are still better than LR despite this larger drop. 

Table 5.7. Models' Accuracy with Varying Noise Levels 

 No 
noise 

5% 
Noise 

10% 
Noise 

15% 
Noise 

20% 
Noise 

25% 
Noise 

30% 
Noise 

Logistic 
Regression 

0.891 0.888 0.885 0.885 0.884 0.880 0.877 

Random Forest 0.915 0.915 0.899 0.897 0.916 0.910 0.906 

XGBoost 0.921 0.916 0.919 0.916 0.912 0.913 0.910 

 
5.2.7 Data Efficiency 

Data efficiency refers to how well a model performs with small datasets. This is especially relevant for 
freight mode choice models as often there is not that much high quality data available. One way to 
measure data efficiency is through learning curves which show how a model’s performance changes 
as the training set size increases. A data efficient model is able to perform well on a subset of the total 
training data. More complex, nonlinear models like decision trees have been found to perform better 
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with larger datasets, whereas simpler models like logistic regression tend to be better for small ones 
(Viering & Loog, 2023). The learning curves for the three machine learnings models in Figure 5.5 show 
the changes in training and test set accuracy and log-loss for different training set sizes. 

 

 

 

Figure 5.5. Models' Learning Curves 

The learning curve plots reveal that the training and test set accuracy in the logistic regression model 
are very similar even with only 20% of the total training data. For Random Forest and XGBoost, the 
gap between the two accuracies is wider and closes as more training data is used. This aligns with 
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expectations about linear models such as logistic regression being more data efficient than more 
complex, nonlinear models such as Random Forest and XGBoost. In the log-loss learning curves, the 
test set log-loss starts higher with 20% of the training data for all of the algorithms and improves as 
more data is introduced. The gap between the training and test set log-losses closes with more data, 
although the size of this gap even with 100% of the training data for RF and XGB reveals the models’ 
overfitting. The log loss improves the most with more training data in the XGBoost model and the least 
with logistic regression. 

5.2.8 Model Comparison Summary 

The logistic regression, Random Forest, XGBoost, and when possible, NEAC MNL models are 
compared using the seven criteria. Their relative performance is summarized in Table 5.8, where green 
(+) indicates the best performance, yellow indicates moderate, and red (-) indicates the worst. 

Table 5.8. Model Performance Against Evaluation Criteria 

 NEAC 
MNL 

Logistic  
Regression 

Random  
Forest 

XGBoost 

Predictive performance   - + 
Interpretability +  -  
Practicality +    
Computation time + + -  
Generalizability / +   
Robustness / +  - 
Data efficiency / +  - 

The XGBoost model performed the best in terms of predictive performance, with the highest overall 
accuracy and smallest differences between actual and predicted mode shares, while maintaining 
balanced minority class precision and recall. The current NEAC MNL model is superior in terms of 
interpretability and the related practicality, although SHAP values can provide some level of 
interpretability for machine learning models. Between RF and XGB, the latter produced SHAP-based 
feature importance values that were more consistent with behavioral expectations. 

The logistic regression model was shown to perform the best in the remaining criteria. LR had the 
lowest computation time and highest data efficiency compared to the other two machine learning 
models. It also had the best results in the generalizability and robustness tests. RF performed worse 
than one or both of the other machine learning models on all of the criteria. Given the high importance 
of predictive performance as well as XGBoost’s close results to logistic regression in computation time 
and generalizability, XGBoost is considered the overall strongest machine learning model for this 
dataset and use case. 
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6 Discussion 

In this research, three machine learning models were trained on a 2015 European freight flows dataset 
and evaluated based on various criteria including predictive performance and interpretability. In this 
chapter, the results of the models, namely the accuracy, precision, and recall, will be discussed in 
comparison to previous studies. Next, some of the limitations of this research are described. Finally, 
the application of the models used in this study is considered, including the types of projects where 
these models may be useful. 

All of the machine learning models trained in this research had similar predictive accuracies, ranging 
from 89.1% in the logistic regression model to 91.5% and 92.1% for Random Forest and XGBoost 
respectively. In previous studies comparing RF and XGB for predicting freight mode choice, the 
accuracies of these models were within a few percentage points of each other, with RF performing 
better than XGB (Uddin, Anowar, & Eluru, 2021) (Xu, et al., 2024). In studies that also used logistic 
regression and/or MNL, the accuracies of these linear models were much lower than the more complex 
models they were compared to. In the Uddin et al., 2021 study, Random Forest accuracy was 75.4%, 
while the MNL model had an accuracy of 42%. Similarly, RF and XGB achieved accuracies of 91% and 
87% respectively in a 2024 study using US commodity flow data, and the baseline MNL model 
estimated had an accuracy of 73% (Xu, et al., 2024). In another study, the RF accuracy was the highest 
with 72.9%, followed by XGB (71.3%) and LR (55.9%) (Liu, et al., 2024). Although the better 
performance of the more complex RF and XGB models in this study compared to the LR model aligns 
with previous research, the differences in accuracy between the various models is much smaller than 
in other studies. 

One reason for these smaller differences between LR and RF/XGB could be that most of the 
relationships in the dataset are linear and thus capable of being correctly captured by logistic 
regression. In this case, the small gains in accuracy with RF and XGB could be from the few areas in 
the data where there are nonlinear interactions. Secondly, previous studies used disaggregate 
shipment-level data, whereas this research uses aggregated data of goods transported between 
regional zones. It is possible that with aggregation, some detailed information and variation in the data 
was lost where more complex models would have had a greater advantage over a linear model. 
Additionally, due to the initial very high overfitting observed in RF and XGB, the range of 
hyperparameters included in the hyperparameter search was reduced. These limited ranges 
constrained the complexities of the models in order to control overfitting. The moderately simple nature 
of the RF and XGB models thus further shrinks the differences in performance between these models 
and LR. 

Each of the models is much better at predicting road correctly than the two minority classes, rail and 
inland waterway. This is a common occurrence with imbalanced datasets, where the model learns to 
predict the majority class well and fails to accurately predict minority classes (Abdelhamid & Desai, 
2024). However, this is not always the case in other machine learning models predicting mode choice. 
For instance, in the US commodity flow data, air transportation has a mode share of only 0.7%, but in 
a study comparing RF, XGBoost, and CatBoost, the precision and recall for air were both 1.0 (Xu, et 
al., 2024). In a study predicting passenger mode choice with different machine learning algorithms, the 
F1-score for buses was 0.84, despite having a mode share of only 3% based on a household travel 
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survey dataset in China (Zhang, Zhang, Liu, & Zhang, 2023). Taxis, bike sharing, and subways were 
also predicted poorly, and this was attributed to the class imbalance and limited amount of data for 
these modes. In the models trained in this research, adding a class weight for inland waterway and rail 
in the LR and RF models improved their precision and recall, but the highest F1-scores were still only 
0.59 and 0.75 respectively, compared to road which had a high F1-score of 0.95. 

Besides a class imbalance in the dataset, other data quality characteristics such as data completeness 
and feature accuracy have been shown to have a high effect on machine learning model performance 
(Mohammed, et al., 2025). Data completeness is defined as an absence of missing or unknown values. 
Feature accuracy is the extent to which feature values are equal to their “respective ground truth values” 
(Mohammed, et al., 2025). In this dataset, there are some data rows with an unknown commodity type 
(NST 10) and some possible errors in calculating some of the feature values, including generalized 
costs and terminal distances; these may be lowering data completeness and feature accuracy which 
could also be negatively affecting the model’s performance. Due to limited time, a more extensive data 
validation was not undertaken to address these data quality issues. 

Another limitation is that the comparison of models across the evaluation criteria was conducted 
qualitatively. This assessment could be strengthened by, for instance, applying a weight to each 
criterion based on its importance for freight mode choice models used in policy analysis. As these 
weights were not found in existing literature, they could be derived in future studies from interviews with 
policymakers or domain experts. Additionally, gains in predictive accuracy have been achieved in 
previous studies by using ensemble learning techniques such as stacking or voting methods which 
combine the results from multiple algorithms (Liu, et al., 2024), though this research was limited to only 
single-model approaches. 

The machine learning models in this research, as well as the NEAC MNL mode choice model, are 
suitable for regional analyses. As the machine learning model with the strongest overall performance, 
the XGBoost model is considered the most suitable for use in the NEAC framework. The types of 
projects where the XGBoost model could be used may differ from those of the current NEAC MNL 
model. Firstly, the dataset used in the MNL model contains NUTS 3 zone information, whereas the 
dataset for training the machine learning models uses the larger NUTS 2 zones. For this reason, the 
machine learning models are not able to predict mode choice on a more local level with the dataset as 
it was constructed. Secondly, as mentioned previously, machine learning models do not generalize well 
to new scenarios with data values far outside the range present in the training data. Thus, the current 
NEAC MNL model may be better suited for policy analyses where the proposed changes are very 
different from the current situation. Lastly, the XGBoost model has a recall of 0.56 and 0.60 for inland 
waterway and rail respectively, and a precision score of 0.68 for inland waterway. Therefore, it should 
be considered whether these scores are acceptable depending on the purpose and scope of the 
scenario analysis. 
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7 Conclusion 

This chapter summarizes the main contributions of this research and answers the research questions. 
The main research question was on the role machine learning-based approaches can play in freight 
mode choice modeling for policy analysis. To answer this question, three machine learning models 
were trained using a 2015 aggregated freight flow dataset. These models were evaluated and 
compared to an MNL mode choice model in the NEAC framework using seven criteria to evaluate 
machine learning models for freight transport policy applications. Previous studies have only used 
disaggregate data to predict freight mode choice and have not considered the models’ application to 
real-world policy analysis. Based on the results in this research, using aggregated data can provide 
high predictive accuracy, although the models struggle more with predicting the minority classes of rail 
and inland waterway compared to road. Using the NEAC model as a case study, the advantages and 
disadvantages of machine learning models compared to Logit models were considered. Depending on 
the policy analysis case, SHAP values can provide adequate interpretability for machine learning 
models. 

The main contributions of this study are thus: 1) a demonstration of the predictive results that can be 
achieved using aggregated freight flow data, even when the data has some data quality issues, 2) a 
workflow for how to train and evaluate machine learning models using aggregated freight flow data, 
including using tonnes as sample weights and splitting the data into training/test sets stratified by OD 
pair and mode, 3) an exploration of the types of explanatory variables that can be useful with 
aggregated freight data, both through a literature review and through the inclusion of some of these in 
the trained models, and 4) a discussion of how SHAP values can be used to help validate and explain 
machine learning models intended for use in freight policy analyses. In the remainder of this chapter, 
the five sub questions will be addressed and answered. 

1. What are the criteria a machine learning mode choice model should meet to be suitable 
for freight transport policy analysis? 

Through a literature review, seven criteria were identified to evaluate machine learning models used in 
freight transport policy analysis. These criteria are predictive performance, interpretability, computation 
time, data efficiency, generalizability, robustness, and practicality. The three models trained in this 
research were compared to each other and to the current NEAC MNL model using these seven criteria. 

2. Which machine learning methods are most suitable for modeling freight mode choice? 

Previous studies have compared the predictive performance of various machine learning classification 
models for mode choice. These models include logistic regression, Naïve-Bayes, K-Nearest Neighbors, 
Support Vector Machine, Artificial Neural Networks, decision trees, Random Forest, and various 
gradient boosting algorithms such as XGBoost and CatBoost. In many studies, Random Forest and 
XGBoost have been shown to produce the highest accuracies for mode choice modeling. This is 
supported by this research, as Random Forest and XGBoost had higher accuracies than the logistic 
regression model. 

3. What additional explanatory variables and external datasets can enhance model 
performance? 
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The explanatory variables used in the models were included based on their known influence on mode 
choice decisions as well as the availability of the data. Several highly correlated variables were 
excluded from the models in order to help with model interpretation. The final set of variables covers 
mode-specific shipping characteristics (i.e., cost), commodity characteristics (i.e., commodity type), 
infrastructure characteristics (i.e., availability of inland waterway, distance to terminals, rail and inland 
waterway service level), and other regional characteristics (i.e., whether the origin and destination are 
in Eastern Europe or Western Europe). These variables provided sufficient information to the models 
which resulted in high overall predictive accuracy. However, more mode-specific variables, specifically 
for rail and inland waterway, would help the models to distinguish these minority classes from the 
majority class of road. 

4. How does the performance of machine learning models compare to that of an MNL 
model? 

This question is answered in the Model Comparison section of the Results chapter. The three machine 
learning models and current NEAC MNL model were compared as mentioned using the seven criteria 
described in the literature review. XGBoost performed the best in predictive performance. The NEAC 
MNL model is the most interpretable and practical. Logistic regression performed the best in the other 
remaining criteria: computation time, data efficiency, generalizability, and robustness. Random Forest 
did not perform better in any of the criteria than the other models. Due to the high importance of 
predictive performance and XGBoost’s similar results to logistic regression for some of the other criteria, 
XGBoost was considered the best machine learning model. 

5. Based on the results, should a machine learning mode choice model be incorporated 
into the NEAC framework, and if so, under what conditions? 

The machine learning models trained in this research are suitable for scenario analyses on how freight 
transport policies could affect changes in mode shares for large regional areas in the European Union. 
Ideally, the time frame of these changes would be short- to medium-term. As mentioned in the Results 
and Discussion chapters, these models cannot determine causality. Depending on the specific policy 
analysis required, the machine learning models could be preferred over the MNL model due to the 
former’s higher predictive accuracy. However, since the MNL model is more interpretable, it cannot be 
completely substituted by the machine learning models. In the following chapter, additional details are 
provided on how the XGBoost model could be incorporated into the NEAC framework. 
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8 Recommendations 

In this chapter, recommendations are provided both for areas of future research and for the company 
on the implementation of the models in this research. 

8.1.1 Future Research 

A limitation of this study is that only three machine learning models were trained and assessed. In future 
studies, other algorithms could be compared in order to potentially improve the current accuracy 
achieved with the three algorithms used in this research. In addition to testing different algorithms, using 
ensembled learning techniques where two or more models are combined may also improve predictive 
performance for machine learning freight mode choice models using aggregated data. 

Secondly, adding other explanatory variables to the models and using class imbalance techniques 
could help improve minority class recall. Adding other variables would give the models more information 
to help differentiate rail and inland waterway from road. Based on the literature review, other variables 
that have been shown to influence freight mode choice include physical locations of shippers and 
buyers and mode characteristics such as flexibility, safety, and security. Including other country-specific 
variables may also help the models to identify mode share patterns by country, potentially improving 
predictive accuracy as well. To overcome the lower predictive accuracy with minority classes, testing 
different class imbalance techniques such as SMOTE may also help to improve rail and inland 
waterway accuracy. 

Due to the MNL models’ greater interpretability and practicality for a greater variety of freight transport 
policy studies, it cannot be completely replaced by the machine learning models used in this research. 
Depending on the specific analysis or project, one of the two methods may be preferred over the other. 
For this reason, another area of future research is in hybrid models, where the two methods could be 
combined into one single model that could be used for all types of projects and would combine the 
benefits from both methods. 

Lastly, future studies could seek input from policymakers and additional domain experts on the relative 
importance of the evaluation criteria described in this research, as well as on the perceived 
trustworthiness and acceptability of machine learning models for different types of freight policy 
applications. 

8.1.2 Company Recommendations 

Out of the three machine learning models in this study, the XGBoost model is the most suitable for 
implementation in the NEAC framework due to its higher predictive performance and better or similar 
performance than the other models in the other criteria. This model is recommended as a complement, 
rather than a substitute, of the current NEAC MNL model. Section 5.2.3 and Chapter 6 contain 
additional details about the types of projects that the XGBoost model may and may not be suitable for. 

Prior to using the model for policy analysis, the 2015 freight flows dataset should be adjusted to fill in 
missing OD data using estimates and checked for errors in costs and other variable calculations. After 
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these adjustments, the model will have to be retrained using the same workflow as outlined in Section 
4.2. The ranges for the hyperparameters may also have to be changed. 

XGBoost performed the best out of the three models on this dataset, but this does not guarantee that 
it will perform the best on a validated, less biased dataset. If the model’s performance on an adjusted 
dataset is much worse than the performance presented in this report, it is recommended to use logistic 
regression, Random Forest, or another algorithm not trained as part of this research. 

Once the performance of XGBoost has been validated using the workflow from this report, the model 
can be retrained using 100% of the training data. To estimate the changes in mode shares based on 
different scenarios, the values of the features can be adjusted and the mode shares between the base 
scenario and other scenarios compared. Changes can only be incorporated into features that already 
exist in the trained data. Therefore, in order to introduce a new policy change, this must be done on 
one of the existing features used in this research, or a new feature must be added to the full dataset 
and the model retrained prior to scenario analysis. SHAP can be used to help validate the predictions 
in the base and new scenarios. Sections 5.1.2 and 5.2.2 contain more information on interpreting 
predictions using SHAP. 
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Appendix A: Generalizability Results  

The full results for the generalizability test are shown in the table below. The road, rail, and inland 
waterway mode shares are calculated based on tonnage amounts across all data rows for a particular 
country. The data rows for a country are rows where the origin, destination, or both is within that country. 
The accuracy and log-loss are also tonnes-weighted. 
 

Country Data 
Rows 

Road 
% Rail % IWW 

% Accuracy Log-Loss 
     LR RF XGB LR RF XGB 
AT 8678 96.96 2.62 0.41 0.898 0.866 0.903 0.417 0.484 0.275 
BE 8566 85.08 0.94 13.98 0.326 0.304 0.436 1.936 1.469 1.418 
BG 1098 91.42 6.32 2.26 0.527 0.066 0.376 1.094 1.835 1.352 
CH 2321 97.31 1.26 1.43 0.954 0.960 0.956 0.169 0.308 0.211 
CZ 7756 89.31 10.69 0.01 0.691 0.135 0.255 0.667 1.498 1.473 
DE 50202 86.72 8.17 5.11 0.823 0.816 0.830 0.873 0.647 0.604 
DK 688 63.73 36.27 0.00 0.741 0.762 0.751 0.693 0.593 0.748 
ES 981 1.61 98.39 0.00 0.894 0.583 0.319 0.424 0.717 1.670 
FR 5245 71.43 5.84 22.74 0.644 0.722 0.700 1.093 0.791 0.793 
HR 206 0.00 99.67 0.33 0.406 0.950 0.855 0.807 0.601 0.559 
HU 1534 48.57 31.08 20.36 0.548 0.655 0.619 1.072 0.720 0.927 
IE 9 0.00 100.00 0.00 0.001 1.00 1.00 1.792 0.165 0.174 
IT 953 20.58 79.42 0.00 0.838 0.218 0.366 0.386 0.985 1.232 
LU 347 100.00 0.00 0.00 0.642 0.998 0.998 0.980 0.372 0.141 
NL 12711 13.68 4.52 81.80 0.363 0.211 0.228 1.168 1.529 1.985 
NO 198 0.00 100.00 0.00 0.719 0.967 0.961 0.330 0.342 0.305 
PL 5373 12.74 86.86 0.41 0.697 0.756 0.794 0.624 0.490 0.433 
RO 1057 0.31 70.63 29.06 0.232 0.324 9.386 1.769 1.347 1.471 
SE 688 5.80 94.20 0.00 0.844 0.948 0.849 0.285 0.212 0.314 
SK 1876 38.73 59.73 1.54 0.761 0.820 0.789 0.541 0.490 0.469 
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Appendix B: Scientific Paper  

B.1.     Abstract 

Freight mode choice models until recently have been developed using discrete choice models such as 
Multinomial Logit (MNL) models. These models have advantages in transparency and interpretability 
but are often limited in their predictive performance and ability to capture complex, nonlinear 
relationships between variables. Although machine learning has been applied to modeling freight mode 
choice, a knowledge gap exists in the performance of these models when trained with aggregated 
freight data, as opposed to the more detailed, disaggregate shipment-level data, and in the role they 
could play in real-world policy analyses compared to MNL and other Logit-based models. To support 
accurate predictions of EU freight flows, and by extension, provide more reliable policy 
recommendations, it is important to use aggregate data, as this is the form most commonly available 
at the European level, and to evaluate models holistically beyond just their predictive performance. To 
fill this gap, three machine learning models are trained using EU aggregate freight data. These are 
compared to the NEAC MNL model, an EU freight transport model developed and maintained by 
Panteia, using seven criteria identified for evaluating machine learning models for freight transport 
policy evaluations. The results show that XGBoost achieves the highest predictive performance 
(92.1%), while logistic regression demonstrates advantages in generalizability, robustness, and data 
efficiency. The analysis highlights the trade-off between predictive performance and 
interpretability/practicality, demonstrating that machine learning models can complement but not 
replace Logit-based models in freight policy applications. 

B.2.     Introduction 

Freight transportation makes up 5% of the Gross Domestic Product (GDP) and 25% of total greenhouse 
gas emissions in the European Union (EU). In order for the EU to meet its emission reduction goals, 
inland freight transportation, 77% of which is currently by road, must shift more to inland waterway and 
rail (Eurostat, 2020) (Eurostat, 2022). Mode choice models are necessary to evaluate how well 
transport policies can affect this desired change. Although these are typically estimated using a 
Multinomial Logit (MNL) or other Logit-based model, machine learning models have gained more 
popularity recently due to their often higher predictive accuracy. 
 Previous studies applying machine learning models for modeling freight mode choice 
demonstrate that many machine learning algorithms produce more accurate predictions compared to 
Logit models, with tree-based methods such as Random Forest achieving the highest accuracy (Liu, et 
al., 2024) (Ahmed & Roorda, 2022) (Xu, et al., 2024). In some studies, this difference in accuracy 
between the best machine learning model and the Logit model can be as much as 33 percentage points 
(Uddin, Anowar, & Eluru, 2021), whereas other studies show discrete choice models have only 3-4% 
lower accuracy than the top machine learning classifiers (Wang, Mo, & Zhao, Deep neural networks for 
choice analysis: Architecture design with alternative-specific utility functions, 2020). Finally, to obtain 
the improvement in predictive accuracy with machine learning while maintaining the interpretability of 
discrete choice models, other studies have developed hybrid approaches wherein for example a part 
of the utility function is specified using neural networks and the other part with an MNL model (Sifringer, 
Lurkin, & Alahi, 2020) (Han, Camara Pereira, Ben-Akiva, & Zegras, 2022). 
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 The purpose of this study was to explore the role that machine learning models can play in 
freight mode choice modeling for transport policy analyses. This was done through a case study of the 
NEAC model, a European freight transport MNL model developed and maintained by Panteia. The 
existing knowledge gap was in the use of machine learning models trained on aggregated freight data, 
as previous studies have only used shipment-level disaggregated data. It was therefore unclear 
whether machine learning models trained with the less detailed aggregate data could achieve a 
comparable level of predictive accuracy. Because aggregated data is more easily accessible and 
available across European countries, it is necessary to utilize this type of data in order to develop a 
European-wide model capable of predicting mode shares across the region. 
 The second research gap was in the suitability of machine learning for freight transport policy 
analyses, considering other evaluation criteria beyond predictive performance. Previous studies 
focused on improving the predictive accuracy of machine learning models and did not more 
comprehensively consider whether and how these models could be useful in real-world policy 
applications. In response to this gap, seven evaluation criteria were defined, and several machine 
learning models were trained and compared to each other and to the NEAC MNL model using these 
criteria. 
 Based on a literature review and the input from a potential end-user of the machine learning 
models developed in this study, the evaluation criteria were defined and ordered in term of importance 
as follows: predictive performance, interpretability, practicality, computation time, robustness, 
generalizability, and data efficiency. The algorithms included in this study were logistic regression, 
Random Forest, and XGBoost, the former chosen as a baseline of comparison to the more advanced 
algorithms and the latter two chosen due to their high accuracy demonstrated in previous freight mode 
choice studies (Xu, et al., 2024) (Liu, et al., 2024). A dataset was constructed using datasets with freight 
tonnage amounts in the EU in 2015 and other external data sources. Lastly, recommendations were 
offered on whether and how machine learning models can be used in a freight transport model for policy 
applications. 

B.3.     Data and Methodology 

B.3.1  Data Sources 

The dataset was constructed from Eurostat freight flow data for road, rail, and inland waterway transport 
at a NUTS-2 level for 2015. NUTS-2 zones represent basic regions suitable for regional policy use 
(Eurostat, n.d.). Real data was used where available and supplemented by estimates from the NEAC 
base year database. The final dataset contains 67,210 data rows, with freight transported in tonnes 
between Origin-Destination (OD) pairs by mode and commodity type. In the data, 499,574 thousand 
tonnes are transported by inland waterway, 616,377 thousand tonnes by rail, and 4,241,777 by road. 
Due to estimations and adjustments that were necessary when constructing the dataset, inland 
waterway and rail tonnes are overestimated and road underestimated relative to Eurostat’s aggregate 
statistics, but the dataset retains several key structural features of EU freight flows including the 
dominance of road transport and the main international corridors. 
 Explanatory variables such as costs, commodity type, and regional characteristics were 
included. Generalized cost variables were calculated from fixed (time-based) and variable (distance-
based) values for each mode. Commodity types were incorporated from Eurostat data for inland 
waterway and from estimates for rail and road. Other variables include inland waterway availability, 
travel time and travel distance, distance from zones to rail and inland waterway terminals, rail and inland 
waterway service, and dummy variables for Eastern and Western Europe. Phik correlations and 
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Variance Inflation Factors (VIF) were calculated to assess multicollinearity. Variables with Phik 
correlations above 0.8 were excluded to help with model interpretability, while others with high VIF 
values were retained to preserve explanatory power. The final feature set is shown in Table B.1. 

Table B.1. Explanatory Variables 

 

B.3.2  Model Selection 

Three algorithms were selected: logistic regression, Random Forest, and XGBoost. Logistic regression 
has the same mathematical formulation of MNL but applies regularization automatically through L1 
(lasso) or L2 (ridge) regularization. Random Forest is an ensemble of decision trees built on random 
subsets of data. XGBoost is a gradient boosting algorithm that builds on simpler decision trees 
iteratively to reduce residual errors. 
 While artificial neural networks and support vector machines are widely used in choice 
modeling and have been shown to produce more accurate behavioral outputs such as willingness to 
pay (Martin-Baos, Lopez-Gomez, Rodriguez-Benitez, Hillel, & Garcia-Rodenas, 2023), they were not 
included because deriving and comparing behavioral outputs is outside the scope of this research and, 
due to time constraints, only a limited number of algorithms could be trained. 

B.3.3  Model Training and Evaluation 
 
The data was split into training (85%) and test (15%) sets, stratified by OD pair and mode. Data 
instances with the same origin and destination are not independent, so they were kept together in either 
the training set or the test set to prevent data leakage. The continuous variables were standardized 
only in the logistic regression model. Hyperparameters were tuned using RandomizedSearchCV with 
5-fold stratified group cross-validation. The models were trained with the tonnage amounts as sample 
weights, leading the models to prioritize correctly predicting rows with higher tonnage amounts. 
 The evaluate metrics included tonne-weighted accuracy, precision, recall, F1-score, log-loss, 
and confusion matrices as well as differences between actual and predicted mode shares in the test 
set. Additional evaluation tests were done to assess generalizability, robustness, and data efficiency. 
For generalizability, a country was taken out of the training set and used as the test set. This was done 
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for every country in the dataset, and the average accuracy and log-loss was taken to compare the 
models’ performance on unseen regions. To assess robustness or sensitivity to measurement error, 
noise was injected to the cost and distance variables. To measure data efficiency, the learning curves 
were plotted to observe the change in performance with different amounts of training data. Shapley 
Additive exPlanations (SHAP) values were calculated for Random Forest and XGBoost to assess 
feature importance and interpretability. For logistic regression, interpretability was discussed based on 
the Logit coefficients and alternative-specific constants. 

B.4.     Results 

B.4.1  Model Results 

Logistic regression achieved the lowest accuracy (89.1%) but also the smallest overfitting, with a log-
loss gap of 4.4%, shown in Table B.2. Random Forest and XGBoost produced higher accuracies 
(91.5% and 92.1%) and lower log-loss values, but both exhibited greater overfitting (25% and 21% log-
loss gaps, respectively). These outcomes reflect the bias-variance trade-off: LR has higher bias but 
lower variance, whereas RF and XGB reduce bias at the expense of greater variance. 

Table B.2. Test Accuracy and Log-Loss 

   

Class-level results (Table B.3) show that all models predicted road with high precision and 
recall (>0.93), while performance on inland waterway and rail was weaker. RF achieved the highest 
average F1-score for the minority classes (0.67), slightly more than XGB (0.66) and LR (0.62). XGB, 
however, reproduced aggregate mode shares most accurately (Table X), with differences between 
actual and predicted mode shares below 1% for all modes, whereas LR and RF overpredicted inland 
waterway and rail shares. 

Table B.3. Precision, recall, F1-scores by Mode and Differences between Actual and Predicted Mode 
Shares 

 

Coefficient estimates from the LR model, shown in Table B.4, highlighted possible 
multicollinearity problems: several signs were counterintuitive, such as a negative effect of rail service 
on rail utility. Another possibility is that the rail service variable is capturing the effects of other variables 
that were not included in the model; other factors such as road infrastructure quality, trade flow 
characteristics, or physical barriers could be correlated with rail service and influence mode choice, 
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leading to the counterintuitive negative coefficient. Other coefficients are more in line with behaviorally 
realistic substitution patterns: higher road costs increase the utility of rail and inland waterway, and 
inland waterway utility increases with inland waterway availability. 

Table B.4. LR Coefficients and Alternative-Specific Constants with Road as Base Alternative 

 

In both RF and XGB, the SHAP values shown in Figure B.1 revealed the same counterintuitive 
relationship between rail service and the probability of choosing rail as in the Logit coefficients. Other 
predictors were more behaviorally realistic, especially in XGB: rail and road costs ranked higher in 
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importance compared to RF which is more aligned with the known strong influence cost has on mode 
choice. 

 

 

Figure B.1. RF (top) and XGB (bottom) Beeswarm Plots 

 
B.4.2  Model Comparison by Criteria 

The three machine learning models were compared against the seven evaluation criteria. Where 
possible, the results were also compared with the NEAC MNL model, though the latter was not 
estimated as part of this research. 

Predictive performance. XGBoost achieved the best overall predictive performance, with the 
highest test accuracy (92.1%), lowest log-loss (0.245), and smallest errors in predicted mode shares. 
Logistic regression performed only slightly worse in terms of accuracy, likely reflecting the mostly linear 
relationships in the dataset. Random Forest produced the best F1-scores for the minority classes, but 
this also resulted in overpredicting inland waterway and rail shares. Overall, XGBoost provided the best 
balance of predictive accuracy and mode share realism. 
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Interpretability. Interpretability can be divided into behavioral and explanatory dimensions. 
Behavioral interpretability, including willingness-to-pay and elasticities, was limited in this dataset due 
to multicollinearity; several logistic regression coefficients had counterintuitive signs. Explanatory 
interpretability, based on SHAP values, provided insights into the importance of each variable in RF 
and XGB’s predictions. XGBoost produced feature importance rankings that aligned more closely with 
behavioral expectations in that generalized costs were stronger predictors than in Random Forest. The 
NEAC MNL model remains superior for deriving behavioral measures, though SHAP offers a useful 
complement for machine learning models. 

Practicality: Practicality relates to the usability of results by analysts and policymakers. 
Machine learning models are limited by their inability to extrapolate beyond the training range and by 
their lack of causal inference. MNL models remain preferable in projects requiring scenario analysis 
with large deviations from the base year. Nevertheless, for short- to medium-term applications where 
explanatory causality is less critical, machine learning models may provide reliable predictive 
performance. 

Computation time: Logistic regression required the least computation time (49.4 seconds), with 
only two hyperparameters to search. XGBoost (90.4 seconds) was more efficient than Random Forest 
(221.1 seconds) due its restricted tree depth. While the differences are small, they may become more 
important when using larger datasets or when extensive hyperparameter tuning is required. 

Generalizability: The leave-one-country-out testing revealed a marked drop in performance for 
all models when tested on countries excluded from the training set. Average accuracies fell to 62.8% 
(LR), 65.3% (RF), and 66.8% (XGB). Logistic regression outperformed the other two models in some 
cases (Bulgaria, Czech Republic, Spain), while only being slightly less accurate in most other countries, 
suggesting it may be slightly more generalizable to new regions. Overall, none of the models 
demonstrated strong generalizability to unseen countries. 

Robustness: Noise was introduced into the cost and terminal distance variables to test 
robustness. Logistic regression showed the least sensitivity to measurement errors, with accuracy 
falling by only 1.6% under 30% noise, while Random Forest and XGBoost displayed larger relative 
increases in log-loss (8.5% and 10.2%). Despite this, RF and XGB maintained higher absolute 
accuracies overall. Due to its smaller drop in performance with greater noise, LR is the most robust. 

Data efficiency: Logistic regression achieved stable accuracy even with just 20% of the training 
data, while Random Forest and XGBoost continue to improve more in predictive performance with 
larger datasets. This aligns with expectations that linear models are more data efficient, while tree-
based models benefit from larger, richer datasets. 
 The results across all seven criteria are summarized in Table B.5, where a plus sign (+) 
indicates the best performance, a minus sign (-) indicates the worst. 
 

Table B.5. Model Performance Against Evaluation Criteria 
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 XGBoost outperformed the other models in predictive performance and produced more 
behaviorally realistic SHAP values compared to Random Forest. Logistic regression performed best in 
terms of generalizability, robustness, computation time, and data efficiency. Random Forest did not 
outperform either other model across any criterion. The NEAC MNL model remains superior for 
interpretability and practicality due to its ability to produce behavioral indicators. Overall, XGBoost was 
considered the strongest candidate for integration into the NEAC framework, though logistic regression 
remained a valuable baseline, particularly when interpretability, robustness, or data efficiency are 
prioritized. 

B.5.     Discussion 

The predictive accuracies of the models in this research (89.1-92.1%) are largely consistent with earlier 
studies, though the relative differences between models are smaller. Prior studies found Random 
Forest and XGBoost outperformed logistic regression and MNL by a larger margin, with gaps exceeding 
15-30 percentage points (Uddin, Anowar, & Eluru, 2021) (Xu, et al., 2024) (Liu, et al., 2024). In contrast, 
the models in this study showed only marginal improvements of the tree-based methods over logistic 
regression. One explanation is that the dataset used contains primarily linear relationships that logistic 
regression can capture effectively, leaving fewer gains for non-linear models. Another factor is the use 
of aggregated rather than disaggregate data. It is possible that with aggregation, some detailed 
information and variation in the data was lost where more complex models would have had a greater 
advantage over a linear model. Finally, the search ranges for RF and XGB hyperparameters were 
constrained to reduce overfitting, resulting in models of moderate complexity. 
 All three algorithms performed better at predicting road than the minority classes of rail and 
inland waterway, reflecting the imbalance in mode shares. This reflects a common challenge in 
transport mode choice modeling (Abdelhamid & Desai, 2024). In this study, adding class weights 
improved minority class recall, but this was still far below road recall. By comparison, other studies 
using different datasets have sometimes achieved strong performance even for minority modes (Xu, et 
al., 2024). The lower minority class performance in this research may be the result of data quality issues 
in the dataset or insufficient distinguishing features between road and the minority classes. 
 One of the limitations of this study is firstly the possible data quality issues in data 
completeness, as some flows lacked commodity classifications, and several OD pairs were excluded 
due to missing or confidential values. Secondly, generalized cost and terminal distance variables may 
contain estimation errors, resulting in lower feature accuracy. Previous work has emphasized that both 
completeness and accuracy strongly influence machine learning model performance (Mohammed, et 
al., 2025). Addressing these issues through more extensive data validation could improve minority 
mode predictions. Another limitation is that model evaluation across criteria was primarily qualitative; a 
weighted multi-criteria framework would enable more systematic assessment. Lastly, this study 
considered only single-model approaches, while ensembled learning techniques have been shown to 
improve predictive accuracy in other freight mode choice studies (Liu, et al., 2024). 
 The XGBoost model demonstrated the strongest overall performance and appears most 
suitable for integration into the NEAC framework. However, its potential applications differ from those 
of the current NEAC MNL model. Machine learning models cannot extrapolate well to scenarios with 
values outside the training range, such as long-term forecasts. For such cases, the MNL model remains 
more appropriate. While XGBoost predicts overall mode shares with high accuracy, its recall for inland 
waterway and rail is moderate (0.56 and 0.60 respectively), making it potentially less suitable for 
analyses where minority modes are of central interest. Based on these findings, the XGBoost model is 
determined to be a strong complement rather than substitute to the NEAC MNL model. 
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X 

B.6.     Conclusion 

This study examined the role of machine learning in freight mode choice modeling for policy 
applications. Three models were trained on a 2015 EU aggregated freight flows dataset and evaluated 
against an MNL model using seven criteria: predictive performance, interpretability, practicality, 
computation time, generalizability, robustness, and data efficiency. Previous studies used disaggregate 
shipper data and emphasized mainly predictive accuracy; this research demonstrates that aggregated 
data can still yield high predictive accuracy, while also offering an assessment of how model 
characteristics beyond accuracy shape their suitability for policy use. 
 The evaluation across criteria highlights trade-offs between models. XGBoost achieved the 
strongest predictive performance and the most behaviorally plausible SHAP feature rankings, while 
Random Forest improved minority class precision at the expense of mode share accuracy. Logistic 
regression outperformed the tree-based methods in computation time, generalizability, robustness, and 
data efficiency. The current NEAC MNL model remains more interpretable and practical. The results 
indicate that machine learning and MNL approaches should be seen as complementary: XGBoost 
enhances predictive performance within observed data ranges, while MNL maintains interpretability 
and extrapolation capabilities. 
 Future studies could compare additional algorithms, including neural networks and support 
vector machines, which may improve the current accuracy achieved and also offer additional 
advantages in the other criteria besides predictive performance. Secondly, adding other explanatory 
variables such as physical locations of shippers and buyers and other mode characteristics including 
flexibility, safety, and security could improve minority class recall. Including other country-specific 
variables may also help the models to identify mode share patterns by country, potentially improving 
predictive accuracy as well. 
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