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Abstract

This thesis offers a detailed exploration of the integration of input signals and control mech-
anisms within max-min-plus-scaling (MMPS) systems, a subclass of discrete event (DE) sys-
tems. Unlike traditional control systems, which rely on continuous evolution modeled by
differential equations, DE systems progress through the occurrence of discrete events. MMPS
systems enhance this adaptability by encompassing maximization, minimization, scaling, and
addition, creating a framework for modeling and managing various processes, including logis-
tics networks and urban railway systems.

The primary objective of this thesis is to introduce input signals into MMPS systems and
systematically investigate control strategies. This involves establishing a structure accom-
modating these input signals while preserving essential properties such as time invariance.
The study examines both open-loop and closed-loop control strategies, focusing on the latter
to implement optimization-based control to optimize system performance through effective
feedback control.

This thesis is organized, beginning with the mathematical foundation of MMPS systems and
progressing to the development of control methods. The implementation of these methods is
validated through practical applications such as manufacturing systems and the urban railway
system, demonstrating their effectiveness.

By advancing our understanding of control in MMPS systems, this research provides a system-
atic methodology that integrates control and illustrates how optimization-based techniques
can enhance overall performance. The insights gained from this work lay a groundwork for
future research, potentially extending beyond transportation systems to other discrete event-
driven industries. Engaging with this research has the potential to control numerous fields,
promising innovative solutions and improved efficiencies across sectors.
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Chapter 1

Introduction

This chapter introduces the research topics addressed in this thesis. Section 1-1 presents
relevant background information. Section 1-2 discusses the motivation for this research, based
on the literature review [1] conducted prior to this thesis, from which the research topics
emerged. Additionally, this section outlines the approach used to investigate the research
questions. Finally, Section 1-3 provides an overview of the structure of this thesis.

1-1 Background

In today’s world, systems and control theory plays an increasingly vital role, driven by the
rising demand for automation across various industries. The importance of this engineering
discipline extends far beyond what many initially recognize. Control systems are integral
to a wide range of applications, including energy distribution, transportation, manufactur-
ing, medical devices, and even in managing economic processes such as unemployment and
inflation. A critical aspect of effectively implementing control is the accurate modeling of
these systems. Models capture the dynamics of control systems, allowing for simulation and
analysis. Typically, these models are described by differential equations within conventional
algebra (also known as plus-times algebra), where system evolution is influenced by internal
and external factors over time.

However, there exists a subclass of systems that operate under a different mathematical
framework: dioid algebra. These systems, known as discrete event (DE) systems, evolve
based on the occurrence of discrete events rather than continuous time. In this context,
events refer to sudden changes in a process [2]. Examples of DE systems include logistics
networks, manufacturing systems, and urban railway systems [3].

When DE systems are modeled using conventional algebra, they often exhibit non-linear be-
havior, making the implementation of control more challenging and less flexible than with
linear systems. Linear systems are foundational in classical control theory due to their sim-
plicity and the wide applicability of linear control methods [4]. This challenge has led to
the development of a subclass of DE systems that can be described as linear under max-plus
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2 Introduction

algebra [3]. Max-plus algebra differs from conventional algebra by replacing addition and
multiplication with maximization and addition, respectively.

Further research into this area has led to the extension of max-plus linear (MPL) systems
to max-min-plus-scaling (MMPS) systems, which also incorporate minimization and scaling
operations. Early studies on MMPS systems were conducted by [5, 6]. More recently, [7]
introduced a mathematical framework for modeling MMPS systems by combining max-plus
and min-plus algebra with scaling factors. Additional work by [8] explored key characteristics
of MMPS systems, particularly the importance of time invariance, while [9] examined the
stability of MMPS systems. However, much of the existing research focuses on autonomous
systems, which are unaffected by external control. This presents a promising opportunity to
investigate how control can be introduced to MMPS systems.

Incorporating inputs into MMPS systems introduces complexities that require careful consid-
eration. Properties such as time invariance, as discussed in [8], must be maintained. Moreover,
there are multiple ways to introduce input channels into DE systems, each requiring a tailored
approach when applied to MMPS models. After structuring the input signal integration, this
thesis will explore both open-loop and closed-loop control strategies for MMPS systems. The
goal of this research is to provide a comprehensive methodology for adding input signals to
MMPS systems and to apply various types of control to these systems.

1-2 Problem description

After defining the background of this research and identifying the research opportunity, we
can describe the research problems for this thesis. The research questions are stated to guide
the investigation conducted in this master’s thesis. The research gap around the introduction
of input signals and the application of control in MMPS systems gives rise to the following
research questions.

1-2-1 Research questions

1. How can input signals be systematically integrated into MMPS systems, considering
both temporal and quantity-based signals?

(a) How can the existing ABCD canonical form be extended to accommodate input
signals?

(b) What constraints must be applied to the input structure to preserve key properties,
such as time-invariance?

2. What is a systematic approach to implementing control strategies in MMPS systems?

(a) What are the effects and limitations of using open-loop control in MMPS systems?
(b) What are the effects and limitations of using closed-loop control in MMPS systems?

3. How can closed-loop control strategies be employed to regulate the dynamic behavior
of MMPS systems?

S.R. Daams Master of Science Thesis



1-3 Outline 3

(a) What specific objectives are pursued by implementing closed-loop control in MMPS
systems?

(b) What methods and criteria are most effective for designing and optimizing closed-
loop controllers for MMPS systems?

(c) How can closed-loop control mechanisms be tailored and applied to improve per-
formance in urban railway systems?

1-2-2 Approach

In the first subsection of this chapter, we discussed the motivation and background for the
research questions outlined above. Before addressing these questions, however, it is essen-
tial to thoroughly investigate the topic. To this end, we will first provide a comprehensive
overview of the mathematical foundations of dioid algebra and MMPS systems. Following
this, we will extend the MMPS system model, drawing inspiration from conventional algebra,
to incorporate input signals, addressing research question 1.(a). An analysis of the MMPS
with input signals will then be conducted, considering the properties outlined in [8], to iden-
tify the requirements needed to preserve key system properties, thereby answering research
question 1.(b). This will result in the development of a systematic approach to implementing
input signals in MMPS systems, fully addressing research question 1.

Next, the extended MMPS model with input signals will be used to validate control strategies.
We will explore open-loop and closed-loop control in conventional algebra to identify parallels
between classical control theory and control in MMPS systems. Leveraging these insights,
along with the answers to research question 1, we will define several open-loop and closed-loop
control strategies for MMPS systems, answering research question 2.

The closed-loop models developed in response to research question 2 will then serve as the
foundation for formulating control goals for the closed-loop systems. We will define control
objectives, such as minimizing the system’s growth rate or tracking a reference signal answer-
ing question 3.(a). Optimization problems will be constructed to identify optimal controllers
for these objectives, addressing research question 3.(b). Finally, the insights gained from this
research will be applied to evaluate closed-loop control possibilities and optimize the per-
formance of a closed-loop urban railway system, providing, an answer to research question
3.(c).

1-3 Outline

This thesis is organized as follows. Chapter 1 introduces the subject, providing a background
and defining the research questions. It also outlines the approach for addressing these ques-
tions and concludes with an overview of the thesis structure. Chapter 2 lays the mathematical
groundwork, presenting the theory of dioid algebra and the fundamentals of MMPS systems.
In Chapter 3, the MMPS canonical form is introduced with the inclusion of input signals,
where three distinct input strategies are developed, each defined by unique mathematical
characteristics. Chapter 4 examines open-loop control, applying it across the three input
strategies to analyze its effects on the system. Practical examples are included for additional
clarity. Chapter 5 expands the control framework to closed-loop control, focusing on state
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4 Introduction

feedback. This chapter includes analyses of critical properties and illustrates closed-loop con-
trol in MMPS systems through examples. Chapter 6 introduces optimization-based control,
outlining control objectives and a key concept in MMPS systems: the existence of distinct
regions. The chapter then focuses on applying optimization-based closed-loop control to
achieve various objectives. Chapter 7 introduces model predictive control (MPC), a popular
optimization-based control approach. It demonstrates how MPC can be applied to an MPL
system by incorporating an MMPS controller to create a closed-loop MMPS system. Chapter
8 explores the urban railway system (URS), presenting simulations of both stable and unsta-
ble initial conditions. Using insights from previous chapters, optimization-based closed-loop
control is applied to enhance system performance through stabilization and optimizing an
objective. Chapter 9 concludes the thesis by summarizing its contributions to the field, while
Chapter 10 suggests directions for future research.
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Chapter 2

Max-min-plus-scaling (MMPS)
discrete-event systems

This chapter provides an introduction to the field of dioid algebra and max-min-plus-scaling
(MMPS) systems. In the early 1980’s max-plus algebra was introduced as a framework to
model discrete event (DE) systems [10]. Section 2-1 elaborates on these types of systems.
Section 2-2 introduces dioid algebra, a more general concept of max-plus algebra, defining
its properties and the use of operators for dioids. In Section 2-3, the definition of MMPS
systems is provided with an explanation of the operations used and how these systems can be
modeled. Additionally, several canonical forms of MMPS systems relevant to this research are
presented. Finally, Section 2-4 offers a comprehensive analysis of MMPS systems, covering
key properties and the definition of stability.

2-1 Discrete-event systems

Discrete-event (DE) systems form a large class of dynamical systems in which the evolution of
the system is specified by the occurrence of discrete events [11]. This is different to well known
discrete time (DT) systems which evolve based on a sampling time. A sampling time is not
changing over a time series making the difference between points constant. In DE systems,
the difference between events does not have to be the same for different steps. An example
of such a system is an urban railway system (URS). In [7], the event cycle (k) is modeled
as the train number. Each train will go from station 1 to J but during this simulation. The
distance between trains 1 and 2 are not always the same. Therefore, the difference in distance
between trains can change for every event cycle, or in the provided case study, the differences
in arrival times at several stations might differ.

The changing difference between event cycles results in non-linear behavior when modeling
this type of system in conventional (plus-times) algebra. However, there exists a mathematical
frameworks that can linearize a certain class of DE systems. This mathematical framework
includes dioid algebra, which will be discussed in the next section.
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6 Max-min-plus-scaling (MMPS) discrete-event systems

2-2 Dioid algebra

In dioid algebra, a dioid is defined by the following definition:

Definition 2.1. (Dioid, [10]). A dioid is a set R endowed with two operations: addition (⊕)
and multiplication (⊗) and a set of properties stated in Appendix A.1.

Using Definition 2.1, two kinds of algebra will be defined; max-plus and min-plus algebra.
The overall sets of both algebra’s are defined by:

Rmax = (Rε, ⊕, ⊗, ε, e) , Rmin =
(
R⊤, ⊕′, ⊗′, ⊤, e

)
(2-1)

for which ε = −∞, ⊤ = ∞ and e = 0. Rε is the set R ∪ {ε}, R⊤ is the set R ∪ {⊤} and
Rc = R ∪ {ε} ∪ {⊤}, where R is the set of real numbers. In this research, often the set R is
used, which can be either R, Rε, R⊤ or Rc. The remaining entries in the sets Rmax and Rmin

are the operators: max-plus addition (⊕), min-plus addition (⊕′), max-plus multiplication
(⊗) and min-plus multiplication (⊗′). The use of these operators are defined as follows:

Definition 2.2. (Use of operators in dioid algebra, [2]). For the elements a, b ∈ R. The
operators are defined as:

a ⊕ b = max(a, b)
a ⊕′ b = min(a, b)
a ⊗ b = a ⊗′ b = a + b

Rewriting a model from conventional (plus-times) algebra into dioid algebra is advantageous,
as it preserves the applicability of basic operations. These properties are outlined in Appendix
A.1.
When defining dioid systems in matrix notation, three operations are used frequently: matrix
summation, matrix multiplication and the power of a matrix. These operations are defined
as follows:

Definition 2.3. (Matrix summation, matrix multiplication and the power of a matrix, [2]).
The sum of matrices A,B ∈ Rn×m, denoted by A ⊕ B, is defined as:

[A ⊕ B]ij = [A]ij ⊕ [B]ij = max([A]ij , [B]ij) (2-2)

for i ∈ n and j ∈ m. The multiplication of matrices A ∈ Rn×l and B ∈ Rl×m, denoted by A
⊗ B, is defined by:

[A ⊗ B]ik =
l⊕

j=1
[A]ij ⊗ [B]jk = max

j∈l
{[A]ij + [B]jk} (2-3)

for i ∈ n and k ∈ m. Note that matrix multiplications are generally not commutative, i.e.: A
⊗ B ̸= B ⊗ A. The power of a matrix A ∈ Rn×n with n, k ∈ Z+ as:

A⊗k = A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k times

(2-4)
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2-3 Max-min-plus-scaling (MMPS) systems 7

Dioid algebra can be used to formulate linear systems. For example, we can model a DE
system in dioid algebra with the characteristics of using synchronization and no choice. Syn-
chronization means that the next event can only start as soon as all previous events are
finished. No choice means that the system is deterministic in a way that it does not have
to choose between several possibilities. These types of systems have nonlinear behavior in
conventional algebra but when modeled in dioid algebra they can be written into a set of
linear equations following the next definition.

Definition 2.4. (Max-plus linear (MPL) system, [3]). A discrete-event system with only
synchronization and no choice as described above can be modeled by a dioid algebraic model
of the following form called a max-plus linear (MPL) system:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k)
y(k) = C ⊗ x(k) (2-5)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and k ∈ Z+ with event counter k, number of outputs l
and number of inputs m. The resulting set of equations have a linear relation in dioid algebra.

Similar to plus-times algebra, dioid algebra also includes the concepts of eigenvalues and
eigenvectors. In this context, we use additive eigenvalues and eigenvectors, defined as follows:

Definition 2.5. (Additive eigenvalues and eigenvectors in dioid algebra, [2]). Let A ∈ Rn×n

be a square matrix. If λ ∈ R is a scalar and v ∈ Rn is a vector that contains at least one
finite element such that:

A ⊗ v = λ ⊗ v (2-6)

then λ is called an eigenvalue and v an eigenvector of A associated with eigenvalue λ.

In a dioid system, a stable additive eigenvalue indicates the rate of a systems growth. There-
fore, this eigenvalue is often referred to as the system’s growth rate.

2-3 Max-min-plus-scaling (MMPS) systems

MMPS systems generalize dioid linear systems and are particularly useful for modeling a
wide range of discrete-event systems. The same mathematical symbols as those used in dioid
algebra will be applied here. MMPS functions are a combination of different operations
defined as:

Definition 2.6. (Max-min-plus-scaling (MMPS) functions, [7]). MMPS functions use four
operators: maximization, minimization, addition and multiplication which are combined in
the formula:

fMMPS := xi|α| max(fk, fl)| min(fk, fl)|fk + fl|β · fk (2-7)

with α ∈ R, β ∈ R and fk, fl are MMPS functions over the set R. The notation "|" means
"or" and is a recursive definition. The above statement holds componentwise for vector-valued
MMPS functions.
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8 Max-min-plus-scaling (MMPS) discrete-event systems

The MMPS functions can be used to construct MMPS systems. Consider the following vector:

χ(k) = [xT (k), xT (k − 1), . . . , xT (k − M), uT (k), wT (k)]T , (2-8)

where χ ∈ X ⊆ Rnp , x ∈ Rn represents the state, u ∈ Rq the control input, and w ∈ Rz an
external signal. MMPS systems can be formulated as state-space models in the form:

x(k) = f(χ(k)), (2-9)

where f is a function as defined in Definition 2.6 with variables χ. For explicit systems, the
vector changes to:

χ(k) = [xT (k − 1), . . . , xT (k − M), uT (k), wT (k)]T , (2-10)

and for autonomous systems, we have:

χ(k) = [xT (k), xT (k − 1), . . . , xT (k − M)]T . (2-11)

In the following subsection, we will describe the states of an MMPS system, as well as how to
use the operators defined in Definition 2.6 within system equation to model an MMPS system
in a structured way.

2-3-1 State and operator description

An MMPS system within a DE framework features states that can be described in two distinct
ways [12]. The first type is temporal, which depends on the start and end times of operations
within the event cycle k. For instance, in the context of the urban railway system (URS)
discussed in 2-1, this refers to the moment a train arrives at a station. The second type
represents quantities, such as the number of passengers in a train, which can lead to delays
if an excessive number of people need to disembark. For this research, we define the state of
an MMPS system as follows:

Definition 2.7. (State of an MMPS system, [12]). The state of an MMPS systems includes
two types combined in the vector:

x =
[

xt

xq

]
(2-12)

with xt the temporal signal state and xq the quantity signal state. For [xt]i, we define i the
time instant at which an event will occur for the k-th time and similar [xq]j defines the value
of the quantity j at event step k.
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2-3 Max-min-plus-scaling (MMPS) systems 9

In the system equations of MMPS systems appear four basic operators, namely maximiza-
tion, minimization, addition and scaling. All operators will be elaborated upon in the next
definitions.

Definition 2.8. (Addition I: processing, [7]).

Figure 2-1: Operator example 1

The arrow in Figure 2-1 represents an operation with processing time τ and the starting and
ending times x1 and x2 for an event cycle k. This relation can be described by the plus-
operation: x2(k) = x1(k) + τ .

Definition 2.9. (Maximization I: sequential processing (no concurrency), [7]). In another
situation of Figure 2-1, there are two operations in the same resource that needs to be finished
before the next operation can take place (no concurrency). Let u1 be the earliest possible
starting time of x1 for the cycle k, then the starting time x1 is given by the max-operation:
x1(k) = max(x1(k − 1) + τ, u1(k)).

Definition 2.10. (Maximization II: synchronization, [7]).

Figure 2-2: Operator example 2

In Figure 2-2, there exist a third operation x3 which starts when both previous operations are
finished. The starting time x3 is given by the max-operation: x3(k) = max(x1(k)+τ1, x2(k)+
τ2).

Definition 2.11. (Minimization: competition, [7]). Consider Figure 2-2 again. This time,
x3 will start when one of the previous operations are finished and the product is delivered.
The starting time x3 is now given by the min-operation: x3(k) = min(x1(k) + τ1, x2(k) + τ2).

Definition 2.12. (Scaling I: state-dependent processing time, [7]). Consider Figure 2-1
again. We have processing time τ which equals an affine function of the state x. Such that,
τ(k) = α + βT · x(k) with α ∈ R+ and β ∈ Rn

+. Therefore, both are non-negative and n is
the dimension of the state. The relation between x1 and x2 now includes a scaling-operation:
x2(k) = x1(k) + α + βT · x(k).

Definition 2.13. (Scaling II: splitting quantities, [7]). In Figure 2-3, an operator splits the
quantity state x1 into two new quantities x2 and x3 with a ratio η and (1 − η). The quantities
are given by a scaling-operation: x2(k) = η · x1(k) and x3(k) = (1 − η) · x1(k).
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10 Max-min-plus-scaling (MMPS) discrete-event systems

Figure 2-3: Operator example 3

In the following subsection, we will explore various methods of representing MMPS functions
within MMPS systems.

2-3-2 Canonical forms of MMPS systems

An MMPS system can be expressed in either implicit or explicit format. An MMPS system
in implicit format utilizes the state vector from Eq. (2-8), where the state evolution relies on
states within the same event cycle. This format is generally less desirable, as it necessitates
information about the current state. However, most MMPS systems can be converted to an
explicit format through substitutions, allowing the state evolution to depend solely on past
information. This conversion may lead to a significant increase in system size or result in a
nested structure.
In contrast, systems presented in explicit form utilize the state vector from Eq. (2-10), where
the next state is determined only by previous states and external signals.
A canonical form involves rewriting the system in a standard manner that preserves its be-
havior [12]. While several canonical forms exist for modeling MMPS systems, this subsection
will focus solely on those that are relevant to the present research.
The first two definitions describe systems with different orders of operators:

Definition 2.14. (Conjunctive form of an MMPS system, [12]). A conjunctive MMPS sys-
tem describes a model of the form:

x(k) = min
i=1,...,K

max
j=1,...,ni

(
αT

i,j · p(k) + βi,j

)
(2-13)

for some integers K, n1, . . . , nK vectors αi,j and real numbers βi,j.

Definition 2.15. (Disjunctive form of an MMPS system, [12]). A disjunctive MMPS sys-
tems describes a model of the form:

x(k) = max
i=1,...,L

min
j=1,...,mi

(
σT

i,j · p(k) + ρi,j

)
(2-14)

for some integers L, m1, . . . , mL, vectors σi,j, and real numbers ρi,j.

The distinction between both is the order of the maximization and minimization. Every
system in conjunctive form can be rewritten into disjunctive and vice versa [13]. However,
there is redundancy when interchanging between forms.
The next form to be defined is the disjunctive matrix form, which is the most general format
and will be used extensively throughout this research.
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Definition 2.16. (Implicit ABCD canonical form, [12]). The implicit ABCD canonical form
describes an MMPS system in the following form:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) (2-15)

with A ∈ Rn×m, B ∈ Rm×p, C ∈ Rp×n, D ∈ Rp×n, x ∈ Rn and k ∈ Z+. The system can be
made explicit by defining D = 0.

The ABCD canonical form makes no distinction between the different types of signals dis-
cussed in Section 2-3-1. Therefore, we define a more specified form.

Definition 2.17. (Implicit ABCD canonical form with diverse states, [9]). The implicit
ABCD canonical form with diverse states describes an MMPS system in the following form:[

xt(k)
xq(k)

]
=
[

At ε

ε Aq

]
︸ ︷︷ ︸

A

⊗(
[

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′(
[

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11 D12
D21 D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]
))

(2-16)

where xt ∈ Rnt , xq ∈ Rnq , At ∈ Rnt×mt , Aq ∈ Rnq×mq Bt ∈ Rmt×pt , Bq ∈ Rmq×pq , C11, D11 ∈
Rpq×nt , C12, D12 ∈ Rpt×nq , C21, D21 ∈ Rpq×nt, and C22, D22 ∈ Rpq×nq . The values nt and nq

represent the amount of temporal and quantity signal states.

To rewrite systems from one to another canonical form. Some properties of the maximization
and minimization operators can be used which are discussed in Appendix A.2. In the next
subsection, an example will be provided that evaluates the steps on how to model an MMPS
system.

2-3-3 Modeling of an MMPS system

Using the information of the previous subsections, we can model an MMPS system. In this
subsection, an example will be provided that elaborates upon the translation from a schematic
overview of an DE system to its system equations, and from modeling the system equations
into the ABCD canonical form. Suppose we have the situation from Figure 2-4 where a
production system is schematically visualized.

The model exists of two machines (M), traveling times (t) and production times (d). The
formula’s for machine 1 equal:

x1(k) = max(x1(k − 1) + 5, x2(k − 1))
d1(k) = α · (x2(k − 1) − x1(k − 1))
x2(k) = x1(k) + d1(k) (2-17)
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12 Max-min-plus-scaling (MMPS) discrete-event systems

Figure 2-4: Schematic overview of a production system

In these set of system equations, the start of the machine (x1) is based on the finishing time
of the previous product and the incoming stream. The production time is based on a scaling
multiplied with the previous production time and finally, the finishing time is a summation
between the starting and production times. When combining these equations and using the
fact that max(A, B) + C = max(A + C, B + C), we get:

x2(k) = max(x1(k − 1) + 5 + α · (x2(k − 1) − x1(k − 1)), x2(k − 1))
+ α · (x2(k − 1) − x1(k − 1))

= max((1 − α) · x1(k − 1) + α · x2(k − 1) + 5, −α · x1(k − 1)
+ (1 + α) · x2(k − 1)) (2-18)

Then there is a third incoming line of products (x3) which will be used together with the
output of machine 1 (x2) in competition to create the final output (x4) given by the equations:

x3(k) = x3(k − 1) + 4
x4(k) = min(x2(k) + t1 + d2, x3(k) + t2 + d2) + t3

= min(x2(k) + t1 + d2 + t3, x3(k − 1) + 4 + t2 + d2 + t3) (2-19)

The total set of system equations are as follows:

x1(k) = max(x1(k − 1) + 5, x2(k − 1))
x2(k) = max((1 − α) · x1(k − 1) + α · x2(k − 1) + 5, −α · x1(k − 1) + (1 + α) · x2(k − 1))
x3(k) = x3(k − 1) + 4
x4(k) = min(x2(k) + t1 + d2 + t3, x3(k − 1) + 4 + t2 + d2 + t3) (2-20)

The system will be maintained in implicit form. It can be transformed into explicit form by
substituting the formula for x2 into the system equations of x4. This substitution results in
an MMPS system in conjunctive (min − max) form, which cannot be directly expressed in the
explicit ABCD canonical form. Converting it to disjunctive (max − min) form is a tedious
process; therefore, we will represent the system in the implicit ABCD canonical form:
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2-4 Analysis of MMPS systems 13


x1(k)
x2(k)
x3(k)
x4(k)

 =


5 0 ε ε ε ε
ε ε 5 0 ε ε
ε ε ε ε 0 ε
ε ε ε ε ε 0


︸ ︷︷ ︸

A

⊗(



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ 4 + t2 + d2 + t3 t1 + d2 + t3


︸ ︷︷ ︸

B

⊗′ (



1 0 0 0
0 1 0 0

1 − α α 0 0
−α 1 + α 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

C

·


x1(k − 1)
x2(k − 1)
x3(k − 1)
x4(k − 1)

+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


︸ ︷︷ ︸

D

·


x1(k)
x2(k)
x3(k)
x4(k)

))

(2-21)

The schematic overview of the production system presented in Figure 2-4 has been reformu-
lated into an implicit MMPS system in ABCD canonical form. In Section 3-3, we will explore
various strategies for incorporating input signals into the system equations of MMPS systems,
demonstrating how to model them in a format similar to the ABCD canonical form.

2-4 Analysis of MMPS systems

In this section, we will analyze both implicit and explicit MMPS systems concerning several
key properties: time-invariance, monotonicity, non-expansiveness and stability. These proper-
ties are significant for the following reasons. According to [14], time-invariance indicates that
if all events in the system are shifted by the same amount, the system’s dynamics will remain
unchanged. For example, in a railway system, whether a train departs today or tomorrow,
it will follow the same operational dynamics. Monotonicity implies that the system is non-
decreasing; thus, if events are delayed, this delay will not lead to compensatory adjustments
in subsequent events. Non-expansiveness is essential for constraining the system’s dynamics,
as highlighted by [15]. This section will define the necessary conditions for these properties
based on the works of [12] and [8]. Finally, the stability of MMPS systems will be discussed,
as analyzing stability is essential for ensuring that these systems remain bounded and will
not grow exponentially.

2-4-1 Requirements for explicit MMPS systems

In this subsection, we will establish the requirements for explicit MMPS systems to ensure
that the properties of time-invariance, monotonicity, and non-expansiveness hold. We will
utilize the explicit form of the ABCD canonical form defined in Definition 2.17, where D = 0.
Furthermore, the vectors 1 and 0 are defined as the unit and zero vector of appropriate
dimensions.
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14 Max-min-plus-scaling (MMPS) discrete-event systems

To define time-invariance, the property of homogeneity is essential, a homogeneous system is
defined as follows:

Definition 2.18. (Homogeneous system, [8]). Consider a system x(k + 1) = f(x(k)). This
system is called homogeneous if there holds:

f(x(k) + h · 1) = f(x(k)) + h · 1 (2-22)

for any h ∈ R.

In other words, a time or event jump added at the state is equal to the same addition to the
output of the system. The definition of time-invariance in a system is as follows:

Definition 2.19. (Time-invariant systems, [8]). A system x(k) = f(x(k − 1)), where x is a
temporal signal, is time-invariant for any delay h ∈ R if it holds that:

x(k + 1) + h · 1 = f(x(k) + h · 1) (2-23)

This basically means that delaying a state at instance k results in the exact same delay for
k + 1 and there are no other changes in the system dynamics.
Following [8], an MMPS system is time-invariant if and only if it is homogeneous. Therefore,
we want to prove homogeneity. Consider an MMPS system in explicit ABCD canonical form
following Definition 2.17 with only temporal signals:

xt(k) = A ⊗ (B ⊗′ (C · xt(k − 1))) (2-24)

Then we can substitute the system inside Definition 2.18:

A ⊗ (B ⊗′ (C · (xt(k − 1) + h · 1)))
= A ⊗ (B ⊗′ (C · xt(k − 1) + C · h · 1)) (2-25)

To prove equality, we use the fact that an max-min-plus (MMP) system is always homogeneous
[8]. An MMP system is defined as follows:

Definition 2.20. (Max-min-plus (MMP) system, [16, 17]). An MMP system is described
by expressions in which three kind of operations are used: maximization, minimization and
addition. Therefore, an MMP function can be described as [17]:

fMMP := xi|α| max(fk, fl)| min(fk, fl)|fk + fl (2-26)

with α ∈ R and fk, fl are MMP functions over the set R. The notation "|" means "or" and is
a recursive definition. Note that the difference with an MMPS function defined in Definition
2.6 is the scaling operation. The MMP functions can be written in a matrix format following
[16]:

x(k) = A ⊗ (B ⊗′ x(k − 1)) (2-27)

with A ∈ Rn×m, B ∈ Rm×p, x ∈ Rn and k ∈ Z+.
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2-4 Analysis of MMPS systems 15

An MMP system is an explicit MMPS system with no scaling such that C is an identity
matrix. Therefore, the inequality for an MMP system is equal to:

A ⊗ (B ⊗′ (x(k − 1) + h · 1)) = A ⊗ (B ⊗′ x(k − 1)) + h · 1 (2-28)

Combining equations Eq. (2-25) and Eq. (2-28). An MMPS system with only temporal signals
is homogeneous if the following equality applies:

A ⊗ (B ⊗′ (C · xt(k − 1) + C · h · 1))
= A ⊗ (B ⊗′ (C · xt(k − 1))) + C · h · 1 (2-29)

Therefore, the system is homogeneous when:∑
j

[C]ij = 1, ∀i (2-30)

In other words, when the sum of all scaling factors of matrix C in a row is equal to 1. However,
as earlier described, states of MMPS systems can exist of both temporal and quantity signals.
To define time-invariance in this situation, we introduce partly additive homogeneous systems:

Definition 2.21. (Partial additive homogeneity, [9]). Consider the systems:

xt(k) = ft(xt(k − 1), xq(k − 1))
xq(k) = fq(xt(k − 1), xq(k − 1)) (2-31)

where ft and fq are mappings, the state xt corresponds to the time for event k and xq for the
quantity of event k. This system is partly additive homogeneous if for any real number h(

ft(xt(k) + h, xq(k))
fq(xt(k) + h, xq(k))

)
=
(

ft(xt(k), xq(k)) + h
fq(xt(k), xq(k))

)
(2-32)

Previously we defined that an explicit MMPS system with only temporal signals is homoge-
neous if all scaling factors in a row sum up to 1 in the C matrix. For defining time-invariance
in MMPS with temporal and quantity signal states, we are using the canonical form of Defi-
nition 2.17. The equality for temporal states from Eq. (2-29) is extended to the following two
equalities:

At ⊗ (Bt ⊗′ (C11 · (xt(k − 1) + h · 1) + C12 · xq(k − 1)))
= At ⊗ (Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1))) + h · 1

Aq ⊗ (Bq ⊗′ (C21 · (xt(k − 1) + h · 1) + C22 · xq(k − 1)))
= Aq ⊗ (Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1))) (2-33)

Again using the fact that an MMP systems is always homogeneous [8]. The equalities can be
written as:
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16 Max-min-plus-scaling (MMPS) discrete-event systems

At ⊗ (Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1) + C11 · h · 1))
= At ⊗ (Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1))) + C11 · h · 1

Aq ⊗ (Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1) + C21 · h · 1))
= Aq ⊗ (Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1))) (2-34)

Therefore, it is required that C11 · h · 1 = h · 1 and C21 · h · 1 = 0 which result in the following
requirement for the C matrix:

nt∑
s=1

[C11]rs = 1, ∀r and
nq∑

s=1
[C21]rs = 0, ∀r (2-35)

In other words for the scaling factors in each row of the C11 matrix should sum up to 1 and
for C21 to 0. For the other two entries in the C matrix there are no restrictions to satisfy
time-invariance. The proof is gathered from [9].

Next, the monotonicity of MMPS systems is analyzed based on the findings in [8]. For a
system to be called monotone the following must hold:

if x ≤ y then f(x) ≤ f(y) (2-36)

An MMPS system with only temporal signals is monotonic if and only if [C]ij ≥ 0 ∀i, j. To
prove this, we use the fact that an MMP system is monotonic [18]:

A ⊗ (B ⊗′ x(k − 1)) ≤ A ⊗ (B ⊗′ y(k − 1))
when x(k − 1) ≤ y(k − 1) (2-37)

This means an MMPS system with only temporal signals is monotonic if:

A ⊗ (B ⊗′ (C · xt(k − 1))) ≤ A ⊗ (B ⊗′ (C · yt(k − 1)))
when xt(k − 1) ≤ yt(k − 1) (2-38)

This is true if:

C · xt(k − 1) ≤ C · yt(k − 1)
when xt(k − 1) ≤ yt(k − 1) (2-39)

Equation 2-39 satisfies iff [C]ij ≥ 0 ∀i, j. The proof is gathered from [8] and based on MMPS
systems with only temporal signals. The analysis of monotonicity for MMPS with both
temporal and quantity signals is outside the scope of this research.

Finally, the non-expansive property will be discussed based on the findings in [8]. For this
property, it is assumed that the system is already time-invariant. Then a system is non-
expansive in the ℓ-norm if:
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2-4 Analysis of MMPS systems 17

||f(x) − f(y)||ℓ ≤ ||x − y||ℓ (2-40)

We use that an MMP system is non-expansive, the proof is outside of this research and can
be found in [18]. Then a time-invariant MMPS system is non-expansive if |[C]ij | ≤ 1 ∀i, j.
This can be shown by using the property that an MMP system is non-expansive such that:

||A ⊗ (B ⊗′ x(k − 1) − A ⊗ (B ⊗′ y(k − 1))|| ≤ ||x(k − 1) − y(k − 1)||
||A ⊗ (B ⊗′ (x(k − 1) − y(k − 1)))|| ≤ ||x(k − 1) − y(k − 1)|| (2-41)

In dioid algebra, the operations + and − are distributive over ⊗, ⊗′. Then for the infinity
norm, an MMPS is non-expansive if:

A ⊗ (B ⊗′ (C · (x(k − 1) − y(k − 1))))|| ≤ ||x(k − 1) − y(k − 1)|| (2-42)

Let w(k − 1) = x(k − 1) − y(k − 1) and by using 2-41 we can simply to:

||C · w(k − 1)|| ≤ ||w(k − 1)|| (2-43)

Assume that |[C]ij | ≤ 1. Then ∀i:

∑
j

cijwj(k − 1) ≤ max(|wj(k − 1)|) (2-44)

This inequality only applies for |[C]ij | ≤ 1 because for any |[C]ij | > 1 the inequality is violated.
This proof only applies to MMPS systems with only temporal signals. Non-expansiveness of
MMPS systems with both temporal and quantity signal states are outside the scope of this
research.

2-4-2 Requirements for implicit MMPS systems

For implicit systems, we are only evaluating the property of time-invariance. This property
is crucial for MMPS systems because time shifts should not influence the dynamics of the
systems. We use the implicit ABCD canonical form of Definition 2.17. Following [19], an
implicit MMPS systems is time-invariant when:

∑
j=1:nt

([C11]ij) +
∑

j=1:nt

([D11]ij) = 1, ∀i

∑
j=1:nt

([C21]ij) +
∑

j=1:nt

([D21]ij) = 0, ∀i (2-45)

The proof is provided in [19] and is an extension of the situation with explicit systems de-
scribed in Section 2-4-1. The requirements for monotonicity and non-expansiveness of implicit
MMPS systems are outside the scope of this research.
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18 Max-min-plus-scaling (MMPS) discrete-event systems

2-4-3 Stability of MMPS systems

For evaluating the stability of an MMPS systems, we are mainly focusing on defining eigen-
values, eigenvectors and boundedness of the MMPS systems. The introduction of eigenvalues
and eigenvectors of MMPS systems is an extended version of Definition 2.5. The vectors 1
and 0 are defined as the unit and zero vectors of appropriate dimensions.

Definition 2.22. (Additive eigenvalue and eigenvector, [19]). The time-invariant DE system:

x(k) = f(p(k)), x ∈ Rn

f : Rn −→ Rn (2-46)

has an additive eigenvalue if there exists a real number λ ∈ R and a vector v ∈ Rn such that

f(v) = v + λ · s

s = [1T
nt

, 0T
nq

]T (2-47)

where nt and nq are the number of temporal and quantity signal states. The scalar λ is then
called an eigenvalue and the vector v is called an eigenvector.

Time-invariant explicit MMPS systems can be linearized following an algorithm introduced in
[8], this computation will be used later. First, the linearized MMPS system has multiplicative
eigenvalues and eigenvectors which can be defined as:

Definition 2.23. (Multiplicative eigenvalue and eigenvector, [19]). The normalized time-
invariant DE system:

x̃(k) = M · x̃(k − 1), x̃ ∈ Rn and M ∈ Rn×n (2-48)

has an multiplicative eigenvalue if there exists a real number µ ∈ R and a vector w ̸= 0 ∈ Rn

such that

M · w = µ · w (2-49)

The scalar µ is then called an eigenvalue and the vector w is called an eigenvector.

For the remainder of this research, the additive eigenvalue and eigenvector will also be referred
to as the growth rate and fixed-point. The multiplicative eigenvalue and eigenvector will be
referred to as the eigenvalue and eigenvector.

For defining internal stability of an MMPS system, we are introducing the max-plus Hilbert’s
projective norm:

Definition 2.24. (Max-plus Hilbert projective norm, [2]). The max-plus Hilbert projective
norm of a vector x ∈ Rn in max-plus algebra is defined as:

∥x∥P = max
i∈n (xi) − min

j∈n (xj) (2-50)
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This norm looks at the maximal difference between vectors and therefore evaluates if the
states do not diverge. Following [9], we define a time-invariant MMPS system with multiple
growth rates in a normalized form.

Definition 2.25. (Normalized MMPS system, [9]). An MMPS system in normalized form
can be written as:

x̃θ(k) = Ãθ ⊗ (B̃θ ⊗′ (C · x̃θ(k − 1))) (2-51)

for θ ∈ {1, . . . , S} with S the amount of growth rates. The matrices have structure Ãθ ∈
Rn×m,B̃θ ∈ Rm×p and C ∈ Rp×n. The normalization process can be found in [9].

The normalized matrices consist of both a temporal and quantity part when working with
MMPS systems that include both types of signals. The normalized matrices have the form:

Ãθ =
[

Ãtθ ε

ε Ãqθ

]
, B̃θ =

[
B̃tθ ⊤
⊤ B̃qθ

]
(2-52)

For all future definitions, the types of signals can be split in temporal and quantity but for
simplicity we use the combined state vector which results in the combined matrices Ãθ and
B̃θ. Next, we define a region Ωθ that contains all vectors x ∈ Rn such that:

Ãθ ⊗ (B̃θ ⊗′ (C · x(k))) = GAθ
· GBθ

· C · x(k) (2-53)

The "G" matrices are footprint matrices and are defined as:

Definition 2.26. (Footprint matrices, [9]). The footprint are composed by looking at the
entries of the normalized system matrices.

[GAθ
]ij =


1 if

[
Ãθ

]
ij

= 0

0 if
[
Ãθ

]
ij

< 0
, [GBθ

]jl =


1 if

[
B̃θ

]
jl

= 0

0 if
[
B̃θ

]
jl

> 0
(2-54)

These footprint matrices define the location of zero’s in the normalized matrix. They can
be used to define a linear programming (LP) problem to find a possible growth rate and a
corresponding equilibrium point [9]. The footprint matrices can also be used to reformulate
a normalized MMPS system as a linear system in plus-times algebra.

Definition 2.27. (Normalized MMPS system as linear system, [9]). For all x̃θ(k) ∈ Ωθ and
k a positive integer we get:

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = GAθ

· GBθ
· C (2-55)
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20 Max-min-plus-scaling (MMPS) discrete-event systems

Based on the preservation of properties of the M matrix, the matrix will have at least one
eigenvector equal to one [9]. Then, following [20], an autonomous DE system is max-plus
bounded buffer stable if for every initial state, x0 ∈ Rn, there exist a bound M(x0) ∈ R such
that the states are bounded in Hilbert’s projective norm.

Furthermore, we use a notion from [21] that the system is stable when the system matrix Mθ

has eigenvalues less than or equal to one and all Jordan blocks corresponding to magnitude
one are 1 × 1. When an eigenvalue is larger than 1 or there are Jordan blocks of not size 1 × 1
corresponding to magnitude 1, the system is unstable. Note that stable linearized systems in
this case means that states are not growing but are also not necessarily equal to 0, because
of the existence of eigenvalues of magnitude 1. Applying Hilbert’s projective norm results in
boundedness of state vector ||x̃θ||P since:

||xθ||P = ||x̃θ + xeθ + λθ · k · 1||P
= ||x̃θ + xeθ||P ≤ ||x̃θ||P + ||xeθ||P (2-56)

where xeθ is the equilibrium point of the original autonomous MMPS systems when the growth
rate is λθ. Hence, the MMPS system is max-plus bounded buffer stable at the temporal growth
rate λθ in the region Ωθ [9].

Finally, we define a special type of MMPS systems called topical systems. A system is topical
when it is time-invariant, monotonic and non-expansive. Following [8], topical systems have
1 eigenvalue which is unique. Also, this eigenvalue is always stable. For this reason, it is
worthwhile to analyse MMPS systems based on these three properties.
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Chapter 3

Adding inputs to MMPS systems

The current state of the art concerning max-min-plus-scaling (MMPS) systems primarily con-
sists of research focused on autonomous systems. Autonomous systems operate independently,
without external influences. To date, no mathematical foundation has been established for
incorporating inputs into MMPS systems. This chapter proposes an MMPS framework that
includes inputs. Section 3-1 introduces the addition of input signals to continuous-time sys-
tems. Section 3-2 extends the ABCD canonical form by incorporating input signals into the
MMPS system creating the ABCDE canonical form. Furthermore, the algebraic properties
of MMPS systems, discussed in Section 2-4, are re-analyzed for the newly defined ABCDE
canonical form. Section 3-3 presents three input strategies that cover all possible methods
of adding input signals to MMPS system equations. Each input strategy is expressed in the
ABCDE canonical form, with examples demonstrating how input signals can be included in
the system equations.

3-1 Input signals in continuous time systems

In this section, a very general introduction of adding inputs to systems in conventional algebra
is discussed. The information in this section is based on [22]. The most general description
of a continuous time (CT) control system is given by the following equations:

ẋ = f(t, x, u)
y = h(t, x, u) (3-1)

where f and h are functions of time t, states x and inputs u. The outputs are denoted by
y. We speak of an autonomous system when the functions are time-invariant and without
control resulting in the form:

ẋ = f(x) (3-2)

In autonomous form, you can only look into the behaviour of your system unable to influence
it. However, this notation is in CT format. It is already discussed in Section 2-1 that MMPS
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22 Adding inputs to MMPS systems

systems are discrete event (DE) systems. The notation of an autonomous, DE system is given
by:

x(k + 1) = f(x(k)) (3-3)

with k the event counter. The autonomous system can be expanded to a form where the
system can be influenced. Input signal u(k) is added such that:

x(k + 1) = f(x(k), u(k)) (3-4)

This form accommodates both linear and non-linear functions. In special cases, where the
DE system is time-invariant and is a linear combination of states and inputs. The DE system
can be written into the commonly used state space form:

x(k + 1) = A · x(k) + B · u(k)
y(k) = C · x(k) + D · u(k) (3-5)

This form has some resemblance to the ABCD canonical form used in MMPS systems because
of the linear combination of states and matrices. The linear state-space form is taken as
inspiration for an ABCD canonical form with additional input entries. In the next subsection,
this form will be introduced.

3-2 General framework for MMPS systems with input signals

To define a general form accommodating input signals, we expand upon Definition 2.17 of
Section 2-3-2 introducing the ABCD canonical form. For now, we assume that the input
signal only consists of u(k). Later, when looking into closed-loop control, also u(k −1) will be
added. We define the ABCDE canonical form where also input signals can be implemented
inside the system:

Definition 3.1. (Implicit ABCDE Canonical form). The ABCD canonical form of Defini-
tion 2.17 will be extended with an additional input matrix (E) multiplied with input vectors.
The input vector will also consist of both temporal and quantity input signals.

[
xt(k)
xq(k)

]
=
[

At ε

ε Aq

]
︸ ︷︷ ︸

A

⊗ (
[

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′(
[

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11 D12
D21 D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]
+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]
)) (3-6)
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3-2 General framework for MMPS systems with input signals 23

For the remainder of this chapter, we will be working with explicit MMPS systems and
therefore, D = 0.

By employing this general form, various types of inputs can be integrated into the system.
In the next section, we will evaluate different methods for incorporating input signals into
MMPS systems. However, before modeling these systems, we must define requirements for
the E matrix to ensure that the properties discussed in Section 2-4 are preserved.

3-2-1 Analysis of MMPS systems with input signals

The three properties from Section 2-4 will be validated on the newly defined ABCDE canonical
form in Definition 3-6. The analysis will focus on the explicit case where D = 0, as this
allows for evaluating the influence of the input matrix E. Thus, analyzing explicit systems is
considered sufficient for this research. The three properties under discussion are monotonicity,
non-expansiveness, and time-invariance. The vectors 1 and 0 are defined as the unit and zero
vectors of appropriate dimensions.

The first property to be discussed is monotonicity. Lemma 2 in [8] establishes the monotonicity
of the autonomous MMPS system. This lemma can be extended to show that an MMPS
system with additional inputs remains monotonic if:

A ⊗ (B ⊗′ (C · x1(k − 1) + E · u(k))) ≤ A ⊗ (B ⊗′ (C · x2(k − 1) + E · u(k)))
when x1(k − 1) ≤ x2(k − 1) (3-7)

Assuming equal inputs are applied to both systems, and given that max-min-plus (MMP)
systems are inherently monotonic [18], the inequality simplifies to:

C · x1(k − 1) + E · u(k) ≤ C · x2(k − 1) + E · u(k)
when x1(k − 1) ≤ x2(k − 1) (3-8)

Generally, the additional inputs have no influence on the monotonicity of the systems. The
system will be monotone if all entries of C satisfy [C]i,j ≥ 0. Next, Lemma 3 in [8] evaluates
the non-expansiveness property. A similar situation arises where the system is non-expansive
when:

||A ⊗ (B ⊗′ ((C · x1(k − 1) + E · u(k)) − (C · x2(k − 1) + E · u(k))))||
≤ ||x1(k − 1) − x2(k − 1)||

||A ⊗ (B ⊗′ (C · (x1(k − 1) − x2(k − 1))))||
≤ ||x1(k − 1) − x2(k − 1)|| (3-9)

The additional inputs are omitted in the equations, resulting in the same inequality as in [8].
Therefore, when assuming equal inputs in both systems, the non-expansiveness of the system
is independent of the input structure. The system is non-expansive when: |[C]i,j | ≤ 1.
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24 Adding inputs to MMPS systems

For time-invariance, we need to delve deeper into the equations of the system. As per [8], we
understand that an autonomous MMPS system is time-invariant when:

A ⊗ (B ⊗′ (C · (x(k − 1) + h · 1))) = A ⊗ (B ⊗′ (C · x(k − 1))) + h · 1 (3-10)

for any h ∈ R. This accounts for a system with only temporal signals. However, MMPS
system can consist of both temporal and quantity signals. We define a vector: s = [1T

nt
, 0T

nq
]T

where nt the amount of temporal signals and nq the amount of quantity signals. The system
is time-invariant when it is partly additive homogeneous, such that for some h ∈ R:

A ⊗ (B ⊗′ (C · (x(k − 1) + h · s)))
=A ⊗ (B ⊗′ (C · x(k − 1))) + h · s (3-11)

For now, we assume that the input vector is not a function of previous states. In that case,
extending the equations from Eq. (3-11) with inputs and using Eq. (3-10), we derive that the
system is time-invariant for some h ∈ R when:

A ⊗ (B ⊗′ (C · (x(k − 1) + hs) + E · (u(k) + h · s)))
=A ⊗ (B ⊗′ (C · x(k − 1)) + E · u(k))) + (C + E) · h · s (3-12)

From this equation we know that time-invariance applies when: (C+E)·h·s = h·s. Therefore,
the system is time-invariant when:

∑
j=1:nt

[C11]ij +
∑

l=1:nut

[E11]il = 1 ∀i

∑
j=1:nt

[C21]ij +
∑

l=1:nut

[E21]il = 0 ∀i (3-13)

The other entries of the C and E matrices have no requirements. With this information, we
start to explore the design of different input strategies. These strategies can be implemented
through various uses of the input matrix (E). An overview of the input strategies is provided
in the next section.

3-3 Input strategies for MMPS systems

In this section, three types of techniques to include input signals in MMPS systems will be
discussed. Generally, the explicit form of the MMPS system with inputs from Definition 3.1
will be used. The input strategies will be divided based on mathematical differences. When
discussing input strategies we speak of two types of inputs; temporal and quantity signal
inputs. Temporal signal inputs can be identified by its growing nature, quantity signal inputs
are bounded. Three different input strategies will be covered by using schematic overviews,
system equations and multiple examples.
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3-3 Input strategies for MMPS systems 25

3-3-1 Introduction of input strategy 1

The first input strategy discussed, covers the situation that inputs already exist in the original
system equations. A schematic representation can be found in Figure 3-1

Figure 3-1: Schematic overview for input strategy 1

The schematic overview consists of a machine (M) with production time (d1). For the entering
lane of products, we use the sequential processing operation. Writing out the system equations
from Figure 3-1 gives:

x1(k) = max(x2(k − 1), u(k))
x2(k) = x1(k) + d1 (3-14)

The starting time of the machine (x1(k)) is dependent on the previous finishing time (x2(k−1))
and the input stream (u(k)). The input can be used to force the machine to start working
on the new cycle. In the example of Figure 3-1 all states and inputs are temporal signals.
However, it is also possible that there is a similar combination of quantity signals states with
quantity signal inputs. Cross combinations of different types of signals are not likely using
this input strategy because it will change the nature of the states; a temporal signal state
will become bounded when being influenced by a quantity signal input and a quantity signal
state will be growing when being subjected to a temporal signal input.
The general structure of input strategy 1 is defined as follows:

Definition 3.2. (General definition of input strategy 1). We use the explicit canonical form
of Definition 3.1:[

xt(k)
xq(k)

]
=
[

At ε

ε Aq

]
︸ ︷︷ ︸

A

⊗(
[

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′(
[

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]
))

(3-15)

Because input strategy 1 covers the situation that input signals are existing in the original
system equations. No additional augmentation of system matrices is necessary. However, it
is important to preserve time-invariance such that Eq. (3-13) applies.

To further illustrate the design approach of input strategy 1, the system from Figure 3-1 will
be used as an example.
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26 Adding inputs to MMPS systems

Example 3.1. Production unit example for input strategy 1

Consider the production unit from Figure 3-1 with u representing the time instant at which a
system will be fed a product for the k-th time. Then x1 denotes the time instance at which the
machine starts for the k-th time, and x2 represents the time the machine finishes. Therefore,
both states are temporal signals. The production time (d1) is replaced with a state dependant
production time (d1(k)). The corresponding formulas for the production unit are:

x1(k) = max(x2(k − 1), u(k))
x2(k) = x1(k) + d1(k)
d1(k) = α · (x1(k) − x1(k − 1)) (3-16)

The scaling factor α is a variable dependent on the production machine. Rewriting the system
equations in explicit form, we obtain the MMPS system:

x1(k) = max(x2(k − 1), u(k))
x2(k) = max( − α · x1(k − 1) + (1 + α) · x2(k − 1), −α · x1(k − 1) + x2(k − 1) + α · u(k),

− α · x1(k − 1) + α · x2(k − 1) + u(k), −α · x1(k − 1) + (1 + α) · u(k)) (3-17)

These system equations can be incorporated into the general MMPS system structure. All
scaling factors multiplied with states will be placed in the C11 matrix, and all scaling factors
multiplied with inputs will be placed in the E11 matrix. We obtain the following matrices:

C = C11 =



0 1
0 0

−α 1 + α
−α 1
−α α
−α 0


, E = E11 =



0
1
0
α
1

1 + α


(3-18)

It is evident that the requirement for time-invariance from Eq. (3-13) holds because:
∑

i([C11]1i+
[E11]1i) = 1 for all rows, independent of the value assigned to α. The final MMPS system
can be formed by implementing C11 as the C matrix and E11 as the E matrix because this
system only has temporal signal states and inputs. For the production unit example, the A
and B matrices have no additional information and can be modeled as:

A =
[

0 0 ε ε ε ε
ε ε 0 0 0 0

]
, B =



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0


(3-19)
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3-3 Input strategies for MMPS systems 27

Conclusively, this input strategy can be used to model MMPS systems that have already
input signals inside its system equations. In the next chapter, control will be applied on this
input strategy to evaluate the execution of this design.

3-3-2 Introduction of input strategy 2

The second input strategy covers situations where the input signal is used to influence an
MMPS system after the scaling step of the system equations. Therefore, the input will
be added during either the maximization or minimization step. A schematic overview of a
situation is given in Figure 3-2.

Figure 3-2: Schematic overview for input strategy 2

The schematic overview consists of a machine (M) with production time (d1). After produc-
tion the product will go through a control device (C) to create state x2. The input is used
for influencing purposes. The system equation from Figure 3-2 is as follows:

x2(k) = min(x1(k) + d1, u(k)) (3-20)

In this case, whenever the production unit is too slow, the control device can implement
an additional input to let the whole machine continue. This could be useful if there is a
malfunction in the machine. This additional input can also be placed in the maximization
step, in that case, it will slow down the system.

The input signal can be either a temporal and quantity signal. However, cross combinations
of states with different types of input signals is again not likely when using this input strategy
for the same reason as input strategy 1. Input strategy 2 will result in an expansion of the
A, B and C system matrices. The general structure is defined as follows:

Definition 3.3. (General definition of input strategy 2). For this input strategy, we distin-
guish two situations. First, where an additional input is added during the minimization step
also referred to as the competition operation. An input using competition is able to force the
system to a lower value or to upper bound the system. The matrix structure is defined as:

x(k) = A ⊗ (
[

B Bu

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (3-21)

The additional part of the B matrix (Bu) applies the input in the system equations. The
augmentation of C and E makes sure that the input is fed through the system unaffected.
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Similarly, additional inputs can be added during the maximization step also referred to as the
synchronization operation. Which can be used to lower bound the system or force the system
to increase its growth rate. The matrix structure is defined as:

x(k) =
[

A Au

]
⊗ (
[

B ⊤
⊤ BI

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (3-22)

The additional part of the A matrix (Au) adds the input to the maximization. The augmenta-
tion of B with an identity matrix (BI) feeds through the input unaffected. Note that identity
in max-plus is equal to zero’s on the diagonal.

To further illustrate input strategy 2, an example will be used.

Example 3.2. Numerical example for input strategy 2

A possible system equation when evaluating input strategy 2 could be:

x(k) = max(x(k − 1) + 6, u(k)) (3-23)

The system equation can be modeled in the structure of Eq. (3-22) as follows:

x(k) =
[

6 0
]

︸ ︷︷ ︸
A

⊗(
[

0 ⊤
⊤ 0

]
︸ ︷︷ ︸

B

⊗′(
[

1
0

]
︸ ︷︷ ︸

C

·x(k − 1) +
[

0
1

]
︸ ︷︷ ︸

E

·u(k))) (3-24)

In this case, both the C and E matrices gain an additional row, which consequently causes
the A and B matrices to expand as well. The zero entry in the A matrix introduces the input
to the system, while the augmentation of the B matrix allows the input to pass through to
the maximization step unaffected.

3-3-3 Introduction of input strategy 3

Input Strategy 3 addresses a scenario where inputs are introduced directly during the scaling
step of an MMPS system. A schematic representation of this strategy is provided in Figure 3-
3.

Figure 3-3: Schematic overview for input strategy 3
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3-3 Input strategies for MMPS systems 29

The primary distinction between Input Strategy 2 and Input Strategy 3 lies in where the
input signal is added to the system. In the previous strategy, inputs were incorporated after
the scaling phase, additional to the maximization or minimization.

In Input Strategy 3, as shown in Figure 3-3, inputs are added during the production phase,
modifying the production time directly. For instance, with a machine (M) that has a pro-
duction time of d1, the input production time is represented by uτ (k). The system equation
can be expressed as follows:

x2(k) = x1(k) + d1 + uτ (k) (3-25)

It’s important to note that uτ can take negative values as long as the combined production
time: d1+uτ (k), remains positive. Since the input is added during scaling, it must be bounded
to avoid exponential behaviour. Therefore, the input should either represent a time difference
or a quantity signal. Time differences help maintain the system’s time-invariance, preventing
exponential growth during scaling. A time difference is defined as follows:

Definition 3.4. (Time difference). In cases where direct temporal signal inputs would vio-
late time-invariance and cause exponential behavior, time differences must be used. For time
differences, the input matrix E must satisfy the following conditions:

∑
i

([E11]li) = 0 ∀l∑
r

([E21]tr) = 0 ∀t (3-26)

Additionally, there must be at least two input signals, as having fewer would result in a total
input of zero. These requirements ensure that the input remains bounded.

By combining the concept of time differences with the requirement for bounded inputs, we
can define the structure of Input Strategy 3:

Definition 3.5. (General definition of input strategy 3). Using the explicit canonical form
from Definition 3.1, the system can be described as follows:[

xt(k)
xq(k)

]
=
[

At ε

ε Aq

]
︸ ︷︷ ︸

A

⊗(
[

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′(
[

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]
))

(3-27)

Input signals are categorized into two types:

1. Temporal signal inputs, which must satisfy the time difference requirements.
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30 Adding inputs to MMPS systems

2. Quantity signal inputs, which do not impose time-invariance constraints as they are
inherently bounded.

To better illustrate this, consider the following example:

Example 3.3. Numerical example for input strategy 3

The implementation of this input strategy can be achieved either by designing specific input
signals, which can be either time differences or quantity signals, or by utilizing state feedback.
The concept of state feedback will be introduced in Section 5-1. For now, we will add a
quantity signal input to the system depicted in Figure 3-3.

If the input signal uτ (k) represents a quantity signal, the system equations can be written as:

x2(k) = x1(k) + d1 + uτ (k)
uτ (k) = uq(k) (3-28)

In cases where d1 is not controllable, it becomes part of either the A or B matrix, resulting
in the following MMPS system:

x2(k) = x1(k) + d1 + uq(k)

x2(k) =
[

0
]

︸ ︷︷ ︸
A

⊗ (
[

d1
]

︸ ︷︷ ︸
B

⊗′(
[

1
]

︸ ︷︷ ︸
D

·x1(k) +
[

1
]

︸ ︷︷ ︸
E

·uq(k))) (3-29)

Since this input consists solely of quantity signals, the system remains time-invariant.

3-3-4 Overview and comparison of all the input strategies

In this section, a clear overview will be provided for all possible input structures that MMPS
systems can have. In the previous sections, three strategies are discussed that can be distin-
guished based on their mathematical differences:

• Input Strategy 1: Inputs are inside the original system equations

• Input Strategy 2: Inputs are added during the maximization or minimization step

• Input Strategy 3: Inputs are added during the scaling step

The schematic overviews of all three situations are visualized in Figure 3-4.

The three strategies can be characterized from left to right by system equations of the form:
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Figure 3-4: Schematic Overview All Input Strategies

Summary of input strategy 1

• System equation:

x(k) = max(x(k − 1), u(k))

• Matrix structure:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · u(k)))

• Input matrix (E) part of original system equations

Summary of input Strategy 2

• System equation:

x(k) = max(x(k − 1), u(k))

• Matrix structures:

x(k) = A ⊗ (
[

B Bu

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k)))

x(k) =
[

A Au

]
⊗ (
[

B ⊤
⊤ BI

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (3-30)

• Input matrix (E) free to choose as long as time-invariance property preserved

Summary of input strategy 3

• System equation:

x(k) = x(k − 1) + u(k)

• Matrix structure:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · u(k)))

• Input matrix (E) free to choose as long as time-invariance property preserved

Finally, for each input strategy it is discussed which type of signal can be combined with which
type of state. The overview of possible combinations is summarized in Table 3-1, Table 3-2
and Table 3-3.
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Table 3-1: Input-state combinations input strategy 1

Temporal signal input Quantity signal input
Temporal signal state Possible Not possible
Quantity signal state Not possible Possible

Table 3-2: Input-state combinations input strategy 2

Temporal signal input Quantity signal input
Temporal signal state Possible Not possible
Quantity signal state Not possible Possible

Table 3-3: Input-state combinations input strategy 3

Temporal signal input Quantity signal input
Temporal signal state Possible* Possible
Quantity signal state Possible* Possible

*Only possible if time difference is added to the system.
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Chapter 4

Open-loop control of explicit MMPS
systems

In the previous chapter, input strategies for implementing input signals in max-min-plus-
scaling (MMPS) systems were introduced. When these inputs are used to influence the
system, it is referred to as control. This chapter focuses solely on explicit MMPS systems,
meaning that for the ABCDE canonical form, D = 0. The structure of this chapter is as
follows: Section 4-1 introduces the concept of open-loop control and explores the relationship
between classical control and control for MMPS systems. The subsequent Sections 4-2, 4-3
and 4-4 apply open-loop control to the input strategies presented in Section 3-3.

4-1 Introduction to open-loop control

In conventional plus-times algebra, time-invariant discrete-time systems can be written in the
following form:

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k)) (4-1)

The functions f and h can be either linear or nonlinear functions. The resulting set of system
equations is also called a process. The process can be controlled by designing the input to
reach specific values. When the input is a sequence of values that are not designed based on
information of the process, it is called open-loop control. An open-loop system is schematically
visualised in Figure 4-1.
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Figure 4-1: Schematic overview of an open-loop control system

This section will cover open-loop control techniques applied on explicit MMPS systems based
on the input strategies described in Section 3-3. When looking at open-loop control of MMPS
systems, we see that an explicit MMPS system can be described in a similar way compared to
conventional algebra. In Figure 4-2 a schematic overview is given of the input-output relation
in MMPS systems:

Figure 4-2: Schematic overview of an explicit MMPS system with input signals

where q−1 represents a time delay as x(k − 1) is used to generate the next event. Figure 4-2
consists of a similar input-output structure as Figure 4-1. Therefore, we can make the same
overview of the process in an MMPS system. The schematic is given in Figure 4-3.

Figure 4-3: Schematic overview of an open-loop MMPS system

In the following sections, control is applied on MMPS systems with designs following the
input structures of Section 3-3.
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4-2 Open-loop control using input strategy 1

Input strategy 1 covers the situation where input signals are not additional but already part
of the system equations of the MMPS systems, the system can not run autonomously. To
evaluate the effect of applying control, we look at the same example as in Section 3-3-1.

Example 4.1. Open-loop control of a production system using input strategy 1

The production system is schematically visualized in Figure 4-4.

Figure 4-4: Schematic overview of a production system

In Figure 4-4, the output is defined as x2. The machine (M) starts at x1 and the machine
will work for a state-dependent time (d1(k)). The implicit MMPS system is defined by the
following set of equations:

x1(k) = max(x2(k − 1), u(k))
x2(k) = x1(k) + d1(k)
d1(k) = α · (x1(k) − x1(k − 1)) (4-2)

Substitution of the states provides the following explicit MMPS system:

[
x1(k)
x2(k)

]
=
[

0 0 ε ε ε ε
ε ε 0 0 0 0

]
︸ ︷︷ ︸

A

⊗ (



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0


︸ ︷︷ ︸

B

⊗′(



0 1
0 0

−α 1 + α
−α 1
−α α
−α 0


︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]
+



0
1
0
α
1

1 + α


︸ ︷︷ ︸

E

·
[

u(k)
]
))

(4-3)

The production unit is simulated with a scaling factor of α = 0.8 and a dynamic input signal.
The simulation can be found in Figure 4-5.
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Figure 4-5: Open-loop control of a production system using input strategy 1

The system finds in both situations a stable equilibrium because the growth rate and differ-
ence between states is constant. When the input shifts, it takes some time to find its new
equilibrium because of the scaling factor (α).

When designing this input structure on different systems, a similar approach can be used.
The scaling factors of the inputs have to be placed inside the right entry of the input matrix
and time-invariance must be ensured such that Eq. (3-13) holds.

4-3 Open-loop control using input strategy 2

The second control technique discussed involves input strategy 2, where an input is added
during the maximization or minimization step. These inputs can either guide the system to
specific values or impose boundaries. This section will focus on the latter.

By imposing boundaries on the MMPS system, it is able to withstand unwanted behaviour
because the bounds control the system in a way that the states will remain within certain
limits. As already described in Section 3-3-2, the system matrices need to be augmented to
add inputs using this strategy. The extent to which the system matrices must be expanded
depends on the type of boundary. In this section, we define two types of bounds which also
can be combined, namely:

Imposing boundaries on the MMPS system can effectively eliminate unwanted behaviors by
ensuring that the system states remain within defined limits. As discussed in Section 3-3-2,
the system matrices must be augmented to incorporate this input strategy, with the extent
of augmentation depending on the type of boundary applied. In this section, we define two
primary types of boundaries, which can also be combined:

• Control input utilized as a maximal boundary

• Control input utilized as a minimal boundary
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• A combination of control inputs serving as both maximal and minimal boundaries

The following subsections will explore each of these three possibilities in detail.

4-3-1 Control input utilized as a maximal boundary

Introducing an input as a maximal boundary ensures that, in the event of a sudden increase
in the system’s growth rate during a cycle, the system will be constrained by a maximum
growth rate. This situation can arise, for example, in a production system facing a bottleneck,
where imposing a maximum limit helps manage the process flow and maintain operations.
The following definition is provided to place maximal bounds on MMPS systems:

Definition 4.1. (Input signal utilized as a maximal boundary). The matrix structure from
the competition operation of Definition 3.3 will be used:

x(k) = A ⊗ (
[

B Bu

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (4-4)

Two situations are defined, adding a bound to the temporal and to the quantity signals states.
For temporal signal states, the input entries will be placed in the E11 part of the E matrix
and Bu will have a non-infinity value in the row where the input signal must be applied.

Similarly, for maximal boundaries on quantity signals, the input entries are placed inside
the E22 part of the E matrix and the Bu matrix has a non-infinity entry in the row where the
input signal must be applied.

Generally, the non-infinity values of the Bu matrix are equal to 0 to have no further effect on
the input signals.

When writing out the system equations of Eq. (4-4), we obtain the following set of equations:

x(k) = A ⊗ (min(z1(k) + B, z2(k) + Bu))
z1(k) = C · x(k − 1)
z2(k) = E · u(k) (4-5)

The maximal bound is established because, when z1 increases significantly, it causes z2 to
dominate the minimization. This effectively creates an upper bound on the system.
It is important to note that after the minimization step, the state will still be influenced by
the values of A. Therefore, if the input acts as a strong boundary, it is necessary to subtract
the maximum value of A since the maximum of each state is given by:

max(x(k)) = E · u(k) + min(Bu) + max(A) (4-6)

In the next section, we will discuss the use of inputs to impose minimal bounds.
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4-3-2 Control input utilized as a minimal boundary

In situations where the growth rate significantly decreases during an event cycle in the simu-
lation, a minimal boundary can be implemented to bound the system. The minimal boundary
is added during the maximization step and will therefore be placed in the A matrix instead of
the B matrix. The general definition of adding minimal temporal signal bounds is as follows:

Definition 4.2. (Input signal utilized as a minimal boundary). The matrix structure from
the synchronization operation of Definition 3.3 will be used:

x(k) =
[

A Au

]
⊗ (
[

B ⊤
⊤ BI

]
⊗′ (

[
C
0

]
x(k − 1) +

[
0
E

]
u(k))) (4-7)

Two situations are defined, adding a minimal bound to the temporal and to the quantity sig-
nals states. For temporal signal states, the input entries will be placed in the E11 part of the
E matrix. The identity matrix augmented inside B will consist of some zero’s to pass on the
input signals unaffected. Finally, Au will have a non-infinity value in the row where the input
must be applied.

Similarly, for minimal boundaries on quantity signals, the input entries are placed inside
the E22 part of the E matrix, the BI matrix will consist of zero’s on the diagonal and the
non-infinity entries of the Au matrix need to be in the rows where the inputs must be applied.

Generally, the non-infinity values of the Au matrix will be equal to 0 to have no further
effects on the input signals.

When writing out the system equations of Eq. (4-7), we obtain the following set of equations:

x(k) = max(y1(k) + A, y2(k) + Au)
y1(k) = C · x(k − 1) + B

y2(k) = E · u(k) + BI (4-8)

This configuration establishes a minimal boundary because, if y1 becomes small, y2 will
dominate the maximization, effectively serving as a lower bound for the system. The minimal
values in this system can then be expressed as:

min(x(k)) = E · u(k) + max(Au) + min(BI) (4-9)

As long as the non-infinity entries in Au and BI are defined zero, the minimum will be
unaffected. In the next subsection, we will combine both discussed bounds and evaluate an
example.
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4-3-3 Control inputs utilized as maximal and minimal boundaries

It is possible to incorporate both maximal and minimal boundaries within the same system
for both temporal and quantity signal states. We combine Definition 4.1 and Definition 4.2
to get the following:

Definition 4.3. (Input signals utilized as a maximal and minimal boundary). Several input
signals are used to compute both maximal and minimal boundaries. The matrix structure for
the competition and synchronization property are combined as follows:

x(k) =
[

A Au

]
⊗ (
[

B Bu

⊤ BI

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (4-10)

The Au and Bu entries apply the bounds in the correct location. The augmentation of the
remaining matrices is used to pass on information unaffected.

The structure of applying both types of bounds to the system will be illustrated in an example.

Example 4.2. Open-loop control of a numerical example using input strategy 2

We define the following MMPS system with two temporal and one quantity state:

 xt1(k)
xt2(k)
xq(k)

 =

 4 2 ε
1 3 ε

ε ε 6


︸ ︷︷ ︸

A

⊗(

 4 1 ⊤
2 4 ⊤
⊤ ⊤ 5


︸ ︷︷ ︸

B

⊗′

 −0.75 1.75 4
−0.75 1.75 0.2458

−4 4 0.1


︸ ︷︷ ︸

C

·

 xt1(k − 1)
xt2(k − 1)
xq(k − 1)

))

(4-11)

The MMPS system will be augmented and two additional temporal and quantity input signals
will be added. The additional matrices are defined as follows:

Au =

 0 ε
0 ε

ε 0

 , Bu =

 0 ⊤ ⊤ ⊤
0 ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤

 , BI =
[

⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ 0

]
, E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(4-12)

which can be used to model the MMPS system with maximal and minimal bounds on both
its temporal and quantity signal states:

x(k) =
[

A Au

]
⊗ (
[

B Bu

⊤ BI

]
⊗′ (

[
C
0

]
· x(k − 1) +

[
0
E

]
· u(k))) (4-13)

The following input signals are used as bounds for the system:
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ut1(k) = 17 + ut1(k − 1)
ut2(k) = 10 + ut2(k − 1)
uq1(k) = 20
uq2(k) = 0 (4-14)

The input signals consist of two temporal input signals that continuously increase and two
quantity input signals that remain constant. To visualize the boundaries in a simulation,
disturbance signals are introduced to the system. The ut,dist values are added to the temporal
signal states for a period of k, while the uq,dist values are added to the quantity signal state
for one event cycle. The disturbance signals are defined as follows:

ut,dist(k) = 20, for k = {5, . . . , 9}
ut,dist(k) = −10, for k = {16, . . . , 22}
uq,dist(k) = 50, for k = 25
uq,dist(k) = −40, for k = 35 (4-15)

In Figure 4-6, two systems are simulated. The system from Eq. (4-11) and the disturbances
from Eq. (4-15) as the dotted lines and the bounded system from Eq. (4-13) with input and
disturbance signals from Eq. (4-14) and Eq. (4-15) in straight lines.

(a) Temporal signal states (b) Quantity signal states

Figure 4-6: Open-loop control of a numerical example using input strategy 2

Note that, as clarified in Section 4-3-1, the bounded system can exceed the upper bound.
This occurs due to the addition of the entries from the A matrix after the minimization
step. Furthermore, it can be observed that the system is effectively bounded because the
unbounded systems significantly exceed the limits defined by umin and umax.
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4-4 Open-loop control using input strategy 3

The third input strategy adds input signals during the scaling step. The design of open-loop
control using input strategy 3 will be evaluated based on an example.

Example 4.3. Open-loop control of a production system using input strategy 3

Suppose we have an MMPS system with the schematic overview of the production system
visualized in Figure 4-7.

Figure 4-7: Schematic overview of a production system for input strategy 3

The system has two machines (M1 and M2) with its own respective production times (τ).
Both machines can be influenced by an input signal (uτ (k)). The control device (C) uses the
competition operation resulting in the system equation:

x3(k) = min(x1(k) + τ1 + uτ1(k), x2(k) + τ2 + uτ2(k)) (4-16)

This system is implicit but can be made explicit by the following substitutions:

x1(k) = x1(k − 1) + 3
x2(k) = x2(k − 1) + 4 (4-17)

The scalars are used to add a small delay in between starting times of the machines. Combine
Eq. (4-16) and Eq. (4-17) to obtain an open-loop MMPS system:
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 x1(k)
x2(k)
x3(k)

 =

 0 ε ε
ε 0 ε
ε ε 0


︸ ︷︷ ︸

A

⊗(

 2 ⊤ ⊤ ⊤
⊤ 3 ⊤ ⊤
⊤ ⊤ 3 + τ2 2 + τ1


︸ ︷︷ ︸

B

⊗′

(


1 0 0
0 1 0
1 0 0
0 1 0


︸ ︷︷ ︸

C

·

 x1(k − 1)
x2(k − 1)
x3(k − 1)

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

E

·
[

uτ1(k)
uτ2(k)

]
)) (4-18)

The input solely consists of quantity signals, ensuring that time invariance is not violated.
The production times are chosen as τ1 = 3 and τ2 = 2. The initial conditions are set
to x0 = [10, 0]T , indicating that the first machine experiences a delay at the start. The
simulation for varying input signals is visualized in Figure 4-8.

Figure 4-8: Open-loop control of a production system using input strategy 3

In the simulation of Figure 4-8, it can be observed that the input value influences the output
of the system (x3). Both positive and negative input changes affect the output. Additionally,
it is possible to apply a constant input; in this case, the growth rate of the system will change
for as long as the input is applied.
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Chapter 5

Closed-loop control of explicit MMPS
systems

In the previous chapter, open-loop control was introduced and applied to all the input strate-
gies discussed in Section 3-3. Open-loop control refers to a scenario where the system is
influenced by an input that does not depend on the system’s own states or processes. While
this method can be effective in some cases, it is limited by its inability to adapt to real-time
changes within the system. It is possible to design an input strategy that utilizes real-time
information from the system’s processes, leading to the concept of closed-loop control, where
the system’s output is continuously monitored and used to adjust the input accordingly. This
chapter focuses solely on explicit max-min-plus-scaling (MMPS) systems, meaning that for
the ABCDE canonical form, D = 0. Section 5-1 provides a general introduction to closed-
loop control. The subsequent Sections 5-2, 5-3, and 5-4 apply closed-loop control to the input
strategies presented in Section 3-3. Finally, Section 5-5 demonstrates how closed-loop control
can be used to stabilize an initially unstable MMPS system.

5-1 Introduction to closed-loop control

An open-loop control system consists of a process with an input stream u(k) and an output
stream y(k). When applying closed-loop control, the input is replaced by a formula including
information of the system. For this to work, information about the state values must be
available. This can be obtained through sensors or other equipment. If state information is
unavailable, an observer can estimate the states, but this requires the system to be observable.
Observability theory is beyond the scope of this research; interested readers can refer to [23]
and [24]. For this work, we assume full state information is available.

A substitution used for the input stream when applying closed-loop control are state feedback
functions. A state feedback function, without an additional reference signal, can be described
by the following form [24]:
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u(k) = −K · x(k) (5-1)

This function is also referred to as a controller. The state feedback gain (K) can be designed
to affect some states differently than others. A schematic overview of the new process and
controller setup can be found in Figure 5-1.

Figure 5-1: Schematic overview of a closed-loop control system

Compared to the schematic overview in Figure 4-1, the input is now replaced with a state
feedback function, making the system closed-loop. Similarly, MMPS systems can also be
converted to closed-loop configurations. A controller can be designed to utilize information
from previous states; such a controller can generally be defined as follows:

u(k) = fu(x(k − 1)) (5-2)

Here, we denote fu as a function containing the previous state. This function may also include
a multiplication matrix (K) similar to Figure 5-1, or a reference value (r(k)). The closed-loop
MMPS system is schematically represented in Figure 5-2.

Figure 5-2: Schematic overview of a closed-loop explicit MMPS system

The function used for the controller depends on the specific goals of the system. However,
we can define a very general form of the input function that encompasses all situations.
Therefore, we use the following function for the input:

u(k) = G ⊗ (H ⊗′ (K · x(k − 1) + L · u(k − 1) + R · r(k))) (5-3)

where G ∈ Rn×m, H ∈ Rm×p, K ∈ Rp×nx ,L ∈ Rp×nu ,R ∈ Rp×r, x ∈ Rnx ,u ∈ Rnu ,k ∈ Z+

and r ∈ Rr. The vector r(k) represents a reference signal and K is a state feedback matrix.
Using this equation, we can define a general closed-loop MMPS system that is implicit in
u(k).
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Definition 5.1. (General closed-loop structure of an explicit MMPS system). The following
matrix structure is defined for a closed-loop MMPS system that is implicit in u(k):

[
x(k)
u(k)

]
=
[

A ε
ε G

]
⊗ (
[

B ⊤
⊤ H

]
⊗′ (

[
C E 0 0
K 0 L R

]
·


x(k − 1)

u(k)
u(k − 1)

r(k)

)) (5-4)

In the next sections, closed-loop control is applied on the three defined input strategies dis-
cussed in Section 3-3.

5-2 Closed-loop control using input strategy 1

For evaluating closed-loop control of an MMPS system using input strategy 1, we are again
using the production system of Example 4.1 and the schematic overview of Figure 4-4.

Example 5.1. Closed-loop control of a production system using input strategy 1

Recall from Eq. (4-3) that the production system is modeled as an MMPS system in the
following manner:

[
x1(k)
x2(k)

]
=
[

0 0 ε ε ε ε
ε ε 0 0 0 0

]
︸ ︷︷ ︸

A

⊗(



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0


︸ ︷︷ ︸

B

⊗′

(



0 1
0 0

−α 1 + α
−α 1
−α α
−α 0


︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]
+



0
1
0
α
1

1 + α


︸ ︷︷ ︸

E

· [u(k)]))

(5-5)

The production unit is dependent on a growing input signal. Therefore, from Eq. (5-3), we
are going to design an input signal that uses both a feedback matrix (K) and a reference
signal (r(k)). The previous input will not be used inside this controller such that L = 0.
Combining Definition 5.1 and the input signal from Eq. (5-3) with G = H = 0. A closed-loop
system using input strategy 1 is obtained:
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x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · K · x(k − 1) + E · R · r(k))) (5-6)

For the production system of Eq. (5-5), this results in the following closed-loop system:

[
x1(k)
x2(k)

]
= A ⊗ (B ⊗′ (



0 1
0 0

−α 1 + α
−α 1
−α α
−α 0


︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]
+



0
K
0

K · α
K

K · (1 + α)


︸ ︷︷ ︸

E·K

·x1(k − 1) +



0
R
0

R · α
R

R · (1 + α)


︸ ︷︷ ︸

E·R

·r(k))) (5-7)

The system matrices A and B are unaffected by the substitution. The system should preserve
the time-invariance property, since x1 and x2 are both temporal signals, all rows of the
combined matrix C + E · K should equal 1. This is the case for K = 1. For this system,
we design the reference signal as bounded variables and therefore it will not influence time-
invariance. The system is simulated with a varying reference value r(k) and can be found in
Figure 5-3.

Figure 5-3: Closed-loop control of a production system using input strategy 1
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The example of Figure 5-3 covers a situation where the original input was already in the
original system equations. Therefore, the system corresponds to input strategy 1. Closed-
loop control is applied by using a state feedback controller, the system remains stable and
the reference value can be used to speed up or slow down the system. In the next section,
closed-loop control will be evaluated on input strategy 2.

5-3 Closed-loop control using input strategy 2

To apply closed-loop control using input strategy 2, a controller similar to 4-3 can be employed.
In Section 3-3-2, it was explained that input strategy 2 can be used either to steer the system
toward specific values or to impose bounds on it. This section will focus on the latter case,
where the closed-loop MMPS systems become bounded due to the inputs signals.

By combining the matrix structure from input strategy 2 with the closed-loop framework
from Definition 5.1, we can establish a similar framework for input strategy 2 that creates
state-dependent boundaries. These boundaries are advantageous because they do not need
to be predefined, allowing the system to adapt more effectively to changes during operation.
For instance, the growth rate of an MMPS system may fluctuate over several events before
returning to its original rate. If boundaries are set for only one growth rate, this could lead to
issues. State-dependent boundaries resolve this by keeping the system’s variations between
events within limits. A general structure for implementing state-dependent boundaries is
defined as follows:

Definition 5.2. (State-dependent boundaries for MMPS systems). Combining the structure
of adding boundaries to MMPS systems of Definition 4.3 with the structure of the general
closed-loop MMPS system of Definition 5.1, we obtain a general structure that creates state-
dependent boundaries on MMPS systems:

[
x(k)
u(k)

]
=
[

A Au

ε 0

]
⊗ (

 B Bu ⊤
⊤ BI ⊤
⊤ ⊤ 0

⊗′ (

 C 0 0 0
0 E 0 0
K 0 L R

 ·


x(k − 1)

u(k)
u(k − 1)

r(k)

)) (5-8)

Substitution and defining that L = 0 makes the system explicit in u(k). The final structure
to create state-dependent boundaries is given by:

x(k) =
[

A Au

]
⊗ (
[

B Bu

⊤ BI

]
⊗′ (

[
C 0

E · K E · R

]
·
[

x(k − 1)
r(k)

]
)) (5-9)

The reference values r(k) can be used to define the bounds and need to be bounded values itself
to preserve time-invariance.

To further illustrate the introduction of state-dependent bounds, Example 4.2 will be re-used
to evaluate closed-loop control using input strategy 2.

Example 5.2. Closed-loop control of a numerical example using input strategy 2
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Recall from Eq. (4-11) that the MMPS system used in Example 4.2 can be described as
follows:

 xt1(k)
xt2(k)
xq(k)

 =

 4 2 ε
1 3 ε

ε ε 6


︸ ︷︷ ︸

A

⊗(

 4 1 ⊤
2 4 ⊤
⊤ ⊤ 5


︸ ︷︷ ︸

B

⊗′

 −0.75 1.75 4
−0.75 1.75 0.2458

−4 4 0.1


︸ ︷︷ ︸

C

·

 xt1(k − 1)
xt2(k − 1)
xq(k − 1)

))

(5-10)

State-dependent bounds will be imposed on both temporal signal states. The quantity signal
states will be bounded in the same way as in Example 4.2. The following set of matrices are
used to design the closed-loop system of Eq. (5-9):

Au =

 0 ε ε
ε 0 ε

ε ε 0

 , Bu =

 0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤

 , BI =

 ⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0

 ,

E · K =



1 0 0
0 1 0
1 0 0
0 1 0
0 0 0
0 0 0


, E · R =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(5-11)

The state-dependent bounds on the temporal signal states and the bounds on the quantity
signal states are all placed on the system by defining bounded values for the reference signal:

r(k) =
[

λt,up λt,down λq,up λq,down

]T
(5-12)

with λt,up = 20, λt,down = 2, λq,up = 20, λq,down = 0.

Through the closed-loop structure, the maximal difference per event cycle (k) in the temporal
signal stats will be bounded between 2 and 20. The quantity signal states are bounded between
0 and 20. Again, note that the absolute upper bounds are higher because of the additional
entries in A. Similar to Section 4-3, the system will be influenced by some disturbance signals
to illustrate the effect of the bounds on the system. The disturbance signals are defined as
follows:

ut,dist(k) = 20, for k = {5, . . . , 9}
ut,dist(k) = −10, for k = {16, . . . , 22}
uq,dist(k) = 50, for k = 25
uq,dist(k) = −40, for k = 35 (5-13)
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5-4 Closed-loop control using input strategy 3 49

In Figure 5-4, the dotted lines illustrate the disturbed unbounded system, while the straight
lines represent the disturbed bounded system. The bounded system does not exceed its
bounded growth rate while the disturbed system crosses them. The quantity signal state
also remains within bounds for the bounded system. Therefore, it can be concluded that the
framework with adding state-dependent boundaries is applied correctly.

(a) Temporal signal states (b) Quantity signal states

Figure 5-4: Closed-loop control of a numerical example using input strategy 2

5-4 Closed-loop control using input strategy 3

For applying closed-loop control using input strategy 3, we have to design a controller that
uses time differences in the feedback scheme. Therefore, we have to carefully consider the
requirements set for time-differences defined in Definition 3.4. A general structure for closed-
loop control using input strategy 3 can be defined as follows:

Definition 5.3. (General structure of closed-loop control using input strategy 3). The general
closed-loop structure for an explicit MMPS system defined in Definition 5.1 will be used:

[
x(k)
u(k)

]
=
[

A ε
ε 0

]
⊗ (
[

B ⊤
⊤ 0

]
⊗′ (

[
C E 0 0
K 0 L R

]
·


x(k − 1)

u(k)
u(k − 1)

r(k)

)) (5-14)

For ensuring time differences are added to the system, the state feedback matrix must be de-
signed such that:

∑
j=1:nt

[K]ij = 0, ∀i (5-15)

Often, using strategy 3, the reference matrix R will be zero. Furthermore, the previous input
is not part of the new input such that: L = 0. After substitution of the input, making the
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system explicit in u(k), the general structure for closed-loop control using input strategy 3 is
defined as:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · K · x(k − 1))) (5-16)

The application of closed-loop control using input strategy 3 will be further illustrated using
an example.

Example 5.3. Closed-loop control of a production system using input strategy 3

The production system that will be evaluated in this example is visualized in Figure 5-5.

Figure 5-5: Schematic overview of a production system for input strategy 3

The output (x2(k)) of the system is defined by the following system equation:

x2(k) = x1(k) + d1 + uτ (k) (5-17)

The following closed-loop controller is designed that uses state feedback and preserves time-
invariance following Eq. (5-15):

uτ (k) =
[

−α α
]

︸ ︷︷ ︸
K

·
[

x1(k − 1)
x2(k − 1)

]
(5-18)

The controller adjusts the time interval between the previous start and finish times of the
machine. The system equation in Eq. (5-17) can be made explicit with the substitution
x1(k) = x1(k−1)+3, indicating that the machine will start three time units after its previous
starting time. The controller in Eq. (5-18) is applied to the output. By modeling the system
equations within the closed-loop structure defined in Definition 5.3, we obtain:

[
x1(k)
x2(k)

]
=
[

5 ε
ε 5 + τ

]
︸ ︷︷ ︸

A

⊗(
[

0 ⊤
⊤ 0

]
︸ ︷︷ ︸

B

⊗′(
[

1 0
1 0

]
︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]

+
[

0 0
−α α

]
︸ ︷︷ ︸

E·K

·
[

x1(k − 1)
x2(k − 1)

]
)) (5-19)
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The system will be simulated with a production time of τ = 3 and two different values for α.
The simulation is visualized in Figure 5-6. It can be observed that the controller adjusts the
difference between x1 and x2, yet the systems remain stable in both cases. The state x1 is
identical for both systems, as it is independent of α. For more complex systems, closed-loop
control using input strategy 3 proves to be highly beneficial. This will be verified in the next
chapter, where closed-loop systems will be optimized to achieve specific objectives. In the
following section, we first examine the possibility of stabilizing an unstable MMPS system.

Figure 5-6: Simulation closed-loop control of MMPS system using input strategy 3

5-5 Stabilize an unstable explicit MMPS system

Recall, from Section 2-4-3, the definition of stability in an MMPS system. Definition 2.27,
describes the formulation of a normalized MMPS system that can be written as:

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = GAθ

· GBθ
· C (5-20)

Following [21], an MMPS system is stable if all eigenvalues of Mθ are less than or equal to one
and all Jordan blocks corresponding to magnitude one are 1 × 1. In the following example,
we will show that the autonomous system is unstable and that the controller has a stabilizing
effect.
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52 Closed-loop control of explicit MMPS systems

Example 5.4. Stabilize an unstable production system using closed-loop control

Figure 5-7: Schematic overview production system

The schematic representation of the production systems is visualized in Figure 5-7. The
system consists of a machine (M), two temporal signal states (x(k)), an input signal (u(k))
that feeds the system for the k-th time and an event-depending processing time (d(k)). For
the first state, we use the sequential processing operation such that:

x1(k) = max(x2(k − 1), u(k)) (5-21)

To make the system autonomous, we assume that the input is fed every τ time units.

u(k) = x1(k − 1) + τ (5-22)

The event-depending processing time (d(k)) increases linearly with the difference between the
present starting time (x(k)) and the previous starting time (x1(k−1)), with a minimum value
dmin and a maximum value dmax:

d(k) = min(max(α(x1(k) − x1(k − 1)), dmin), dmax) (5-23)

where α ∈ R. Finally, the finishing time is defined using processing:

x2(k) = x1(k) + d(k) (5-24)

This is an MMPS system that can be modeled in explicit disjunctive form. The substitutions
required to reach this form are straightforward and are assumed negligible to document in
detail. The explicit MMPS system can be written as:
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[
x1(k)
x2(k)

]
=
[

ε ε ε ε 0 0
0 0 0 0 dmin τ + dmin

]
︸ ︷︷ ︸

A

⊗ (



0 dmax ⊤ ⊤
⊤ α · τ ⊤ ⊤
⊤ ⊤ τ τ + dmax
⊤ ⊤ ⊤ α · τ
⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ 0


︸ ︷︷ ︸

B

⊗′(


−α 1 + α
0 1

1 − α α
1 0


︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]
)) (5-25)

when the system is modeled with the following parameters: α = 1, τ = 1.5, dmax = 10, and
dmin = 2, two unstable growth rates emerge: θ1 = 2 and θ2 = 10 using the algorithm from [9].
Several footprint matrices associated with both growth rates contain multiple zeros in their
normalized forms, causing these matrices to have more than one entry equal to "1." According
to [19], this suggests that the footprint matrices may define two distinct linearized regions
within the system. The specific footprint matrices corresponding to each growth rate are as
follows:

for θ1 : GA1 =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
, GA2 =

[
0 0 0 0 1 0
0 0 0 0 1 0

]
, GB =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


(5-26)

for θ2 : GA =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
, GB1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


, GB2 =



0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


,

GB3 =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 1


, GB4 =



0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 1


(5-27)

Each growth rate has multiple footprint matrices, this means that the system consists of
multiple regions with each a different growth rate. The initial state of the system decides
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which growth rate the system follows. This unstable behavior can also be recognized in the
linearized system of Eq. (5-20). Using the algorithm of [9], the multiplicative eigenvalues of
both growth rates are computed: µθ1 = µθ2 = [0.382, 2.618]T . Based on the definition of
stability from [21], the autonomous system has two unstable growth rates.
The unstable behavior can be verified with a simulation of the autonomous system using
different initial state values. In Figure 5-8, the autonomous system is simulated for three
different initial states, each resulting in different growth rates.

Figure 5-8: Simulation autonomous production system from multiple initial conditions

To stabilize the system, the next step is to create a closed-loop system. We are going to
implement the closed-loop structure of input strategy 3 from Definition 5.3, where:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · u(k)))
u(k) = K · x(k − 1) (5-28)

We must define matrices E and K such that they have a stabilizing purpose. The goal is to
achieve the same growth rate for different initial conditions. The following controller will be
used:

u(k) = β · (x2(k − 1) − x1(k − 1)) (5-29)

This controller scales the difference between the previous finishing and starting times of the
system. The input is added to the previous finishing time, resulting in the following matrices:

E =


0
1
0
0

 , K =
[

−β β
]

(5-30)
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A scaling factor: β = 0.75 results in a closed-loop system with a single growth rate. Namely,
λ = 3.5. The new footprint matrices are as follows:

GAλ
=
[

0 0 0 0 1 0
0 0 0 0 1 0

]
, GBλ

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


(5-31)

By implementing this controller, the multiplicative eigenvalues of M have become: µ = [0, 1]T
making the growth rate λ = 3.5 a stable one.

To verify the stability of the closed-loop system, it is simulated again with the same initial
conditions as shown in Figure 5-8. The results of the simulation can be found in Figure 5-9,
where all the different initial conditions lead to the system following the stable growth rate
λ = 3.5.

Figure 5-9: Simulation closed-loop production system from mulitple initial conditions

The controller used in this example is designed through human tuning. In the next chapter,
an algorithm will be developed to optimize the feedback matrices to achieve several objectives.
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Chapter 6

Optimization-based closed-loop
control of explicit MMPS systems

In the previous chapter, the effects of applying closed-loop control across all input strategies is
discussed. This chapter extends closed-loop control of explicit max-min-plus-scaling (MMPS)
systems by defining feedback matrices using an optimization-based method. Section 6-1
introduces optimization-based control, detailing the closed-loop form that will be utilized,
along with the optimization goals and the optimization algorithm. Additionally, the concept
of regions in MMPS systems is introduced. Section 6-2 defines a method to identify the
boundaries between regions, which can be used to either constrain the system within a region
or force it to switch between regions. Section 6-3 applies optimization-based control with the
objective of minimizing the system’s closed-loop growth rate. Section 6-4 optimizes closed-
loop control to minimize the difference between the output and a reference signal. Finally,
Section 6-5 presents an optimization of the closed-loop structure that forces the system to
switch between stable growth rates.

6-1 Introduction to optimization-based closed-loop control

In this section, we will introduce several key concepts that will be utilized in the subse-
quent sections, where an optimization-based control approach is applied to MMPS systems
to achieve various objectives.

For this chapter, we will employ the general closed-loop structure outlined in Definition 5.1,
setting the matrices G and H to zero. This results in the following matrix structure:

[
x(k)
u(k)

]
=
[

A ε
ε 0

]
⊗ (
[

B ⊤
⊤ 0

]
⊗′ (

[
C E 0 0
K 0 L R

]
·


x(k − 1)

u(k)
u(k − 1)

r(k)

)) (6-1)
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The input functions of all algorithms defined in this chapter will be independent of their
previous inputs, resulting in L = 0. Furthermore, no reference signal will be incorporated
into the closed-loop form, so R = 0. After substitution, the explicit closed-loop system utilized
in this chapter is expressed as:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · K · x(k − 1))) (6-2)

The time-invariance property must be carefully considered, ensuring that the following con-
dition holds at all times:

∑
j=1:nt

[C11]ij + [E11]ij · [K]ij = 1, ∀i

∑
j=1:nq

[C21]ij + [E21]ij · [K]ij = 0, ∀i (6-3)

Next, we will discuss the concept of a region within an MMPS. In Section 2-4-3, we introduced
the idea of a topical system. Topical systems are characterized as monotonic, time-invariant,
and non-expansive. However, it is important to note that not all MMPS systems qualify as
topical; non-topical systems may exhibit multiple stable or unstable growth rates.

When analyzing optimal closed-loop control, it is essential to examine the region in which a
specific growth rate applies. This region within an MMPS system can be defined as follows:

Definition 6.1. (Region of an MMPS system). An autonomous MMPS system in a stable
configuration exhibits a constant growth rate. This growth rate is determined by the multiplica-
tion in the scaling step, combined with the addition of constant factors from the maximization
and minimization steps. The state evolution for a stable autonomous MMPS system can be
expressed as follows:

x(k) = xss + C · x(k − 1)
xss = [A]ij + [B]ij (6-4)

where xss is the steady-state column vector containing the constant values derived from the
A and B matrices. The region of an MMPS system is defined as the multidimensional plane
within which the system evolves according to the above equations, provided it is not influenced
by control mechanisms that would cause it to exit this region.

When optimizing the closed-loop structure of an MMPS system for specific objectives, our
goal is to ensure that the system either remains within its initial region or is forced to switch to
a different region. The conditions for achieving this objective can be determined by examining
the boundaries of the regions in MMPS systems. These boundaries can be established through
the definition of inequalities, which will be further elaborated in the next section.

Additionally, we define three optimization goals for closed-loop MMPS systems. These goals
will be stated initially and then explained in greater detail:
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1. Minimize the closed-loop growth rate.

2. Follow a reference signal.

3. Change between stable growth rates.

First, we discuss minimizing the closed-loop growth rate. In physical applications of MMPS
systems, such as manufacturing, it may be desirable for a machine to operate as efficiently as
possible. This can be achieved by minimizing the system’s growth rate.
Second, we consider tracking a reference signal. For instance, in a manufacturing system,
information about product demand may be available. When demand is low, production time
should decrease accordingly; conversely, if demand increases, the system should respond to
speed up the production process to minimize the difference between the number of products
produced and the demand.
Third, we address the goal of switching between stable growth rates. As mentioned earlier,
a system may exhibit multiple growth rates. In some cases, it is advantageous to design a
closed-loop controller that enables the system to switch between these rates.
Finally, to solve the optimization problems, we will utilize the fmincon function in MATLAB,
which is designed to find minima for constrained problems. Due to the non-linearity in the
state evolution, we require a solver that accommodates non-linear functions. The fmincon
function will be employed in combination with the Sequential Quadratic Programming (SQP)
algorithm, which effectively handles inequality constraints. SQP solves a series of quadratic
sub-problems that approximate the original non-linear problem [25]. This method is iterative
and optimizes the variables in each iteration.
A downside of SQP is its sensitivity to the initial guess, which may lead to local optima
rather than global optima. However, given the scale of the examples used in this research,
this should not pose a significant issue.

6-2 Find boundaries of MMPS systems

As previously defined in Definition 6.1, autonomous MMPS systems in a stable configuration
exhibit a constant state evolution. The equations that characterize this state evolution are
referred to as the dominant equations of that region, defined as follows:

Definition 6.2. (Dominant Equations). Suppose we have an MMPS system of the form:

x(k) = A ⊗ (B ⊗ (C · x(k − 1))) (6-5)

Under stable conditions, where the growth rate is constant, the state will evolve based on
specific entries from the A and B matrices. These entries, combined with the scaled states,
form the dominant equations. As long as the system remains in the same stable configuration,
these equations will dictate the state evolution. They can be expressed as:

x = ai,j + bi,j + z (6-6)

where x = [x1, x2, . . . , xn]T is the state vector and z = [z1, z2, . . . , zn]T is a vector of the scaled
states, with z = C · x. The values ai,j and bi,j represent the dominant entries in the A and B
matrices.
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The set of dominant equations corresponds to a multidimensional plane, referred to as the
region defined in Definition 6.1. This region can be either stable or unstable. A stable region
implies that when the states of the MMPS system lie within it, they will eventually converge
to the set of dominant equations, evolving according to the associated growth rate. In stable
conditions, this region is invariant, meaning the system will not exit it without external
influence. Conversely, if the states of an MMPS system are situated in an unstable region,
they will converge, within a finite number of steps, to a stable region.
It is essential for the system to exhibit at least two growth rates when determining the bounds
of a region. To identify the set of dominant equations corresponding to a specific growth rate,
we utilize structure matrices. To find the structure matrices, we employ the normalized
system matrices Ã and B̃ as defined in [9] and in Equation 5-20. A structure matrix enables
us to efficiently find the dominant values of the A and B matrices and is defined as follows:

Definition 6.3. (Structure matrices). The structure matrices filter out the non-zero values
of the normalized system matrices such that:

[FAθ
]ij =


0 if

[
Ãθ

]
ij

= 0

ε if
[
Ãθ

]
ij

̸= 0
, [FBθ

]jl =


0 if

[
B̃θ

]
jl

= 0

⊤ if
[
B̃θ

]
jl

̸= 0
(6-7)

The structure matrices have entries equal to zero at the positions of the dominant values. This
characteristic is advantageous because, when combined with the original system matrices, it
yields a matrix containing only the essential data needed to derive the dominant equations.
This resulting matrix is referred to as the dominant entry matrix and is defined as follows:

Definition 6.4. (Dominant entry matrices). The structure matrix F for each stable growth
rate is added to the original system matrices via matrix addition:

ZAθ
= FAθ

+ A

ZBθ
= FBθ

+ B (6-8)

This operation is possible because the structure matrix always has the same dimensions as its
corresponding system matrix. The resulting matrix Z is called the dominant entry matrix.

When deriving the boundaries, we encounter two possible objectives: either to remain within
the initial region or to transition to a different region. The following two definitions establish
the inequalities required for each of these situations.

Definition 6.5. (Inequalities for staying within the initial region). Consider an MMPS
system with an initial growth rate λ1. To ensure the system remains within this initial region,
we define λ1 as the desired growth rate and denote the alternative growth rates by λN , where
λN = [λ2, . . . , λn]. The partial solutions corresponding to each growth rate are given by:

xθ = ZAθ
⊗ (ZBθ

⊗′ z)
yθ = ZBθ

⊗′ z (6-9)

where θ = [λ1, λN ]. The system equations that must hold for remaining within the initial
region can be expressed as:

min(yλ1 , yλN
) = yλ1

max(xλ1 , xλN
) = xλ1 (6-10)
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This leads to the following set of inequalities for ensuring that the system stays within the
initial region:

ZBλN
⊗′ z > ZBλ1

⊗′ z

ZAλ1
⊗ (ZBλ1

⊗′ z) > ZAλN
⊗ (ZBλ1

⊗′ z) (6-11)

Definition 6.6. (Inequalities for switching between regions). Consider an MMPS system
where we wish to transition from an initial growth rate, λ1, to a new growth rate, λ2. The
partial solutions associated with each region’s growth rate are defined as:

xθ = ZAθ
⊗ (ZBθ

⊗′ z)
yθ = ZBθ

⊗′ z (6-12)

where θ = [λ1, λ2]. To successfully switch from the region associated with λ1 to that of λ2, the
following system equalities must apply:

min(yλ1 , yλ2) = yλ2 ,

max(xλ1 , xλ2) = xλ2 . (6-13)

Consequently, this yields the set of inequalities necessary for the region change:

ZBλ1
⊗′ z > ZBλ2

⊗′ z

ZAλ2
⊗ (ZBλ2

⊗′ z) > ZAλ1
⊗ (ZBλ2

⊗′ z) (6-14)

To further illustrate the application of the algorithm, consider the following example, where
we derive the inequalities required to force an MMPS system to switch regions.

Example 6.1. Derive inequalities to switch region for an MMPS system

The following explicit MMPS system with three temporal signal states will be used:

 x1(k)
x2(k)
x3(k)

 =

 1 3 4
4 5 1
4 5 2


︸ ︷︷ ︸

A

⊗(

 1 3 4
4 5 1
4 5 2


︸ ︷︷ ︸

B

⊗′(

 −0.4 1.4 0
0.8 0.8 −0.6

−0.4 −0.4 1.8


︸ ︷︷ ︸

C

·

 x1(k − 1)
x2(k − 1)
x3(k − 1)

))

(6-15)

The system’s growth rates, derived using the algorithm from [9], are: λ = {5.4, 4.8, 6}. Of
these, only two are stable: λ1 = 5.4 and λ2 = 4.8. The corresponding structure matrices for
these stable growth rates are as follows:

FA,λ1 =

 0 ε ε
0 ε ε
ε ε 0

 , FB,λ1 =

 ⊤ ⊤ 0
⊤ ⊤ 0
⊤ ⊤ 0


FA,λ2 =

 ε ε 0
0 ε ε
ε ε 0

 , FB,λ2 =

 0 ⊤ ⊤
0 ⊤ ⊤
0 ⊤ ⊤

 (6-16)
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The dominant entry matrices can be computed by using matrix addition: ZA = FA + A and
ZB = FB + B. This results in the matrices:

ZA,λ1 =

 5 ε ε
5 ε ε
ε ε 5

 , ZB,λ1 =

 ⊤ ⊤ 4
⊤ ⊤ 1
⊤ ⊤ 2


ZA,λ2 =

 ε ε 5
5 ε ε
ε ε 5

 , ZB,λ2 =

 1 ⊤ ⊤
4 ⊤ ⊤
4 ⊤ ⊤

 (6-17)

From this set of matrices, we can produce the set of inequalities using Definition 6.6. After
simulating the system, it is shown that λ2 is the initial growth rate. Therefore, we want to
transition from λ2 to λ1. This results in the following set of inequalities:

z1 + 1 > z3 + 4
z1 + 4 > z3 + 1
z1 + 4 > z3 + 2
z3 + 9 > z3 + 7
z3 + 9 > z3 + 4
z3 + 7 > z3 + 4 (6-18)

Upon examination, it becomes evident that certain inequalities are redundant or overlap with
others. Consequently, this set of inequalities can be reduced to:

z1 + 1 > z3 + 4 (6-19)

When this inequality is satisfied, all other inequalities will also hold.

6-3 Control objective: Minimize growth rate

In this section, an algorithm will be introduced such that the growth rate of a closed-loop
MMPS system can be minimized. The explicit closed-loop system of Eq. (6-2) will be used.

When the MMPS system has multiple growth rates, it is essential to define inequalities that
ensure the system remains within its initial region. These inequalities are derived using the
algorithm outlined in Definition 6.5. They will be expressed as a set of linear equations of
the following form:

Az · z(k) + b > 0 (6-20)

S.R. Daams Master of Science Thesis



6-3 Control objective: Minimize growth rate 63

where:

z(k) = C · x(k − 1) + E · K · x(k − 1) (6-21)

In this context, Az contains values equal to −1 or 1 corresponding to the sign of the entries in
z = [z1, . . . , zn]T , with n representing the number of z values, and b is a vector of remaining
scalars.

The objective of the optimization problem is to minimize the growth rate by optimizing the
state feedback matrix K. The objective function is defined as the sum of the absolute state
differences between events:

∥x(k) − x(k − 1)∥1 (6-22)

Several equality and inequality constraints must be combined into a comprehensive constraint
function. Firstly, the system should follow the state evolution as described by:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + E · K · x(k − 1))) (6-23)

Secondly, if there exists more than one stable eigenvalue, it is essential to ensure that the
system remains within its initial stable region. This is represented by the constraint:

Az · (C + E · K) · x(k) + b > 0 (6-24)

Furthermore, to maintain time-invariance, the following equality constraint is added:

∑
j

[K]ij = 0 ∀i (6-25)

In some cases, it may be necessary to establish bounds on the values of the feedback matrix.
This can be accomplished with the following two constraints:

[K]ij ≤ M ∀i, j

[K]ij ≥ −M ∀i, j (6-26)

Lastly, we require that the system is always growing and we need to ensure that all states and
inputs remain positive. The complete optimization problem is summarized in the following
definition:
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Definition 6.7. (Algorithm for minimizing the growth rate of an MMPS system). The op-
timization problem of minimizing the growth rate can be achieved by applying the following
algorithm:

min
K

∥x(k) − x(k − 1)∥1

subject to: x(k) = A ⊗ (B ⊗′ ((C + E · K) · x(k − 1)))
Az · (C + E · K) · x(k) + b > 0∑

j

[K]ij = 0 ∀i

[K]ij ≤ M ∀i, j

[K]ij ≥ −M ∀i, j

x(k) − x(k − 1) ≥ 0
u(k) ≥ 0
x(k) ≥ 0 (6-27)

The optimization problem computes the optimal state feedback matrix K to minimize the
closed-loop growth rate.

The algorithm will be validated through an example. The example demonstrates minimiz-
ing the closed-loop growth rate of the initially unstable production system and discussed in
Section 5-5.

Example 6.2. Minimize the closed-loop growth rate of an unstable production system

In Section 5-5, an unstable MMPS system was stabilized through the design of a state feedback
controller. However, this controller was tuned manually, resulting in a suboptimal solution.
In this example, the optimal feedback matrix is computed that minimizes the closed-loop
growth rate while also stabilizing the system.

The same system matrices and parameters are employed as in Eq. (5-25). Recall that the
autonomous system configured using these parameters has two unstable growth rates: θ1 = 2
and θ2 = 10. The optimal feedback matrix that minimizes the closed-loop growth rate of the
production system is derived using the algorithm outlined in Definition 6.7.

The bounds on the feedback matrix, denoted as M , are set sufficiently large to ensure they
do not influence the optimization process. We will use the same set of initial state values as
those presented in Section 5-5. The combinations of initial conditions with their corresponding
growth rates are as follows:

x01 =
[

0
0

]
, with: λ1 = 3.5

x02 =
[

2
8

]
, with: λ2 = 6

x03 =
[

4
6

]
, with: λ3 = 2.5 (6-28)
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By optimizing the closed-loop structures using the algorithm, the following feedback matrices
are obtained, with the matrix E at each time step being a diagonal matrix of size 4 × 4:

K1 =


−0.001 0.001
−0.065 0.065
−0.003 0.003
−0.003 0.003

 , K2 =


0 0

−0.15 0.15
−0.096 0.096
−0.004 0.004

 , K3 =


0 0
0 0

−0.004 0.004
−0.002 0.002

 (6-29)

The state evolution is structured in a closed-loop configuration as defined in 6-23. For each
closed-loop system, the corresponding autonomous system is also simulated to evaluate the
differences in behavior. The simulations for the three systems are presented in Figure 6-1,
Figure 6-2, and Figure 6-3.

(a) States: x(k) (b) Inputs: u(k)

Figure 6-1: Simulation autonomous and closed-loop production system from x0 = [0, 0]T

In Figure 6-1, it can be observed that the closed-loop system exhibits a lower growth rate
than the open-loop system when starting from the initial condition x0 = 0. Figure 6-2 shows
a similar scenario, but the difference in growth rates is even more pronounced, with larger
input signals and a greater number of input signals utilized compared to the first situation.
Finally, Figure 6-3 indicates that the closed-loop growth rate remains the same as the initial
growth rate, with only small positive inputs that do not significantly affect the growth rate.
This suggests that the initial growth rate for x0 = [4, 6]T is already the minimal growth rate.
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(a) States: x(k) (b) Inputs: u(k)

Figure 6-2: Simulation autonomous and closed-loop production system from x0 = [2, 8]T

(a) States: x(k) (b) Inputs: u(k)

Figure 6-3: Simulation autonomous and closed-loop production system from x0 = [4, 6]T

6-4 Control objective: Follow reference signal

In this section, we introduce an algorithm aimed at minimizing the distance between the
system’s states and an external reference signal. This algorithm is similar to the one used for
minimizing the closed-loop growth rate, as defined in Definition 6.7. For the state evolution,
we will employ the explicit closed-loop system format given in Eq. (6-2).

The primary distinction between this approach and the previous one lies in the definition of
the objective function. In this case, the goal is to minimize the absolute difference between
the system states and the external reference signal r(k). We define the objective function as
follows:
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∥x(k) − r(k)∥1 (6-30)

The constraints will be identical to those outlined in Section 6-3. It is important to note
that this optimization occurs offline, enabling the computation of the optimal state feedback
matrix K based on prior knowledge of the reference signal. While there are methods to
calculate the optimal input at each step of the simulation, this topic falls outside the scope
of the current research. The algorithm for optimizing the feedback matrix to minimize the
difference between the states and the reference signal is defined as follows:

Definition 6.8. (Algorithm for minimizing the difference between states and reference signal).
The optimization problem of minimizing the difference between states and reference signals
can be achieved by applying the following algorithm:

min
K

∥x(k) − r(k)∥1

subject to: x(k) = A ⊗ (B ⊗′ ((C + E · K) · x(k − 1)))
Az · (C + E · K) · x(k) + b > 0∑

j

[K]ij = 0 ∀i

[K]ij ≤ M ∀i, j

[K]ij ≥ −M ∀i, j

x(k) − x(k − 1) ≥ 0
u(k) ≥ 0
x(k) ≥ 0 (6-31)

The optimization problem computes the optimal state feedback matrix K to minimize the
difference between the states and an external reference signal r(k).

The algorithm will be validated through an example.

Example 6.3. Minimize the difference between the states and an external reference signal
for a numerical example of an MMPS system

Suppose we have the following explicit MMPS system:

 x1(k)
x2(k)
x3(k)

 =

 5 3 5
5 1 1
1 4 5


︸ ︷︷ ︸

A

⊗(

 1 3 4
4 5 1
4 5 2


︸ ︷︷ ︸

B

⊗′(

 0.2 0.8 0
0.5 0.4 0.1
0.1 0.4 0.5


︸ ︷︷ ︸

C

·

 x1(k − 1)
x2(k − 1)
x3(k − 1)

)) (6-32)

The autonomous MMPS system has a growth rate equal to λ = 6.3. As the system is topical
and possesses only one growth rate, we do not need to worry about the system leaving its initial
region. During optimization, we assume that the state feedback matrix K is unbounded. The
following optimal closed-loop structure is obtained using the algorithm of Definition 6.8:
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E =

 1 0 0
0 1 0
0 0 1

 , K =

 0.21 −0.43 0.21
0.26 −0.52 0.26
0.32 −0.64 0.31

 (6-33)

A simulation of the reference signal and closed-loop state evolution can be found in Figure 6-
4. The reference signal varies over time, and consequently, the optimized feedback matrix is
designed to keep the difference between the states and the reference minimal. The closed-loop
growth rate is equal to λ = 7.5. In Figure 6-4(b), it is evident that while the average difference
between states and the reference varies, it generally remains low.

(b) xi,CL(k) and r(k) (b) u(k) and
∑

xi,CL(k) − r(k)

Figure 6-4: Simulation reference signal and closed-loop system

6-5 Control objective: Switch stable growth rates

In this section, the goal shifts from maintaining the same region as the initial autonomous
system to actively steering the system into a different region through closed-loop control. To
achieve this, we will utilize the explicit closed-loop system format provided in Eq. (6-2) for
the state evolution.

The set of inequalities that triggers the system to switch its growth rates is defined accord-
ing to Definition 6.6. These inequalities are formulated as linear equations in the following
manner:

Az · z(k) > b

(6-34)

where:
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z(k) = (C + E · K) · x(k − 1) (6-35)

Using the set of inequalities, we can determine ∆z for each inequality, representing the min-
imum distance required between z-values to trigger the system to switch. Subsequently, we
can calculate ∆u using the following formula:

∆z = ∆zinitial + ∆u

∆z > b (6-36)

The initial value (∆zinitial) will be obtained from the autonomous system. ∆zinitial represents
the initial difference between z values so that we do not introduce more difference than nec-
essary. ∆u is the difference we need to add to realize the switch in growth rate, implemented
using the control structure such that:

∆u = E · u(k) (6-37)

We are going to use state feedback for the controller, where u(k) is a function of the previous
states: u(k) = K · x(k − 1).

The last step is determining where to place the inputs in the E matrix. It is important to
note that, after the addition of the input, the z-values first undergo minimization. Because
of this, the following problem could occur:

∆z = z1 − z3 > 5 z1
z2
z3

 =

 z3 + 6
z2
z3

 but z2 < z1, z3

min(bi,j + z1, bi,j + z2, bi,j + z3) = bi,j + z2 (6-38)

This means that while the inequalities hold, the value z2, which was previously irrelevant,
has now become dominant. To resolve this issue, we check if the inequality ensures that the
correct state becomes dominant. The positive z-term will be equal to 1 in the temporary
input matrix Etemp. We then check if the following equality applies:

y = B ⊗′ (ztemp + ∆z · Etemp) = ZB ⊗′ ztemp = ycheck (6-39)

Here, ztemp is a vector containing a solution for a random event in the simulation of the
autonomous system, and ZB is the dominant entry matrix corresponding to the desired growth
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rate. If the equality holds, it ensures that no other state will become dominant when using
the input matrix Etemp. Otherwise, we need to adjust the input matrix.

One way to address this issue is by adding the input to all states except the one that needs to
become dominant. However, this approach requires more controllable states, and in physical
situations, not all states may be controllable. Therefore, in some cases, it might be impossible
to switch between stable growth rates.

An example will be used to validate the approach to switch between the stable growth rates
of an MMPS system.

Example 6.4. Switch between stable growth rates of a numerical example of an MMPS system

The same explicit MMPS system with three temporal signal states will be used as in Example
6.1. The MMPS system is defined in Eq. (6-15).

In Example 6.1, it is derived that only one inequality is able to force the system to switch
growth rates. The only required inequality is:

z1 + 1 > z3 + 4 (6-40)

Rewriting the inequality in the linear format of 6-34 results in the following:

[
1 0 −1

]
︸ ︷︷ ︸

Az

·

 z1
z2
z3

 > 3 = b (6-41)

Therefore, according to Eq. (6-36), ∆z should be larger than 3. The next step is to find ∆u
using Eq. (6-36). The autonomous MMPS system is simulated to find the initial differences
between z1 and z3, which is equal to: ∆zinitial,13 = −5.4. Resulting in the inequality for ∆u:

∆u > b − ∆zinitial,13

∆u > 8.4 (6-42)

For the derivation of the E matrix, we have to check if the additional input will not affect
the minimal solution in an undesired way, as previously discussed. The equality of Eq. (6-39)
is verified. Unfortunately, we find that y ̸= ycheck, which means we have to extend the input
matrix to:

E =

 1
1
0

 (6-43)
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For the addition of the input signals that will execute the switch in growth rate, the difference
between x1 and x2 will be used. This result in the following state feedback structure:

u(k) =
[

β −β 0
]

︸ ︷︷ ︸
K

·

 x1(k − 1)
x2(k − 1)
x3(k − 1)

 (6-44)

Following Eq. (6-42), the input added through the controller should be at least equal to 8.4.
Therefore, the scaling factor β can be calculated by:

β = ∆u

∆xinitial
+ tolerance (6-45)

where ∆xinitial is the stationary difference in states that are multiplied by β, and a small
tolerance is added to ensure that the value will be larger than the exact boundary. In this
example, β is equal to 2.801, providing the state feedback matrix:

K =
[

2.801 −2.801 0
]

(6-46)

In Figure 6-5(a), we visualize the simulation results for both the autonomous and closed-loop
systems. At event k = 10, control is introduced, forcing the system to transition from its
initial growth rate of λ2 = 4.8 to a new growth rate of λ1 = 5.4. Figure 6-5(b) presents
the Hilbert projective norm for both systems, demonstrating that the system reaches a new
equilibrium at exactly k = 10.

(a) States: x(k) (b) Projective norm: ∥x∥P
Figure 6-5: Simulation autonomous and closed-loop system
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Chapter 7

Model predictive control (MPC) for
max-plus linear (MPL) systems

In this chapter, we evaluate max-plus linear (MPL) systems instead of max-min-plus-scaling
(MMPS) systems. MPL systems represent a simplified form of MMPS systems because they
are linear in max-plus algebra. The state evolution of MPL systems is defined in Definition
2.4. Section 7-1 provides an introduction to the optimization-based control method that will
be used to control MPL systems: model predictive control (MPC). Section 7-2 defines the
MPC algorithm applied to control MPL systems. The application of MPC for MPL systems
is further discussed through an example.

7-1 Introduction to model predictive control (MPC)

In this section, a short introduction to MPC for time-driven systems is provided. In the next
section, we are going to make the relation between time-driven and MPL systems because
there are many similarities. This section is based on [22] where more extensive research on
MPC can be found.

Consider a state space system in conventional algebra of the form:

x(k) = A · x(k − 1) + B · u(k)
y(k) = C · x(k) (7-1)

where the state is denoted by x ∈ Rn, the input u ∈ Rnu and the output y ∈ Rny with nu the
amount of inputs and ny the amount of outputs.

Generally, an MPC controller predicts the optimal control input (u∗) at each time step (t)
over a finite horizon Np : ut, ut+1, . . . , ut+Np−1. The first input of the optimal input sequence
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will be applied to the system: u∗
t , afterwards the horizon shifts one time step, such that the

new optimal input sequence will be computed for t + 1, . . . , t + Np.
The optimal control sequence is computed by minimizing a cost function over prediction
window (Np) subject to some constraints [26]. The structure of the cost function differs in
research, we are going to evaluate the form discussed in [13] where the cost function is defined
as:

J(k) = Jout(k) + β · Jin(k) (7-2)

where Jout reflects the reference tracking error, Jin represents the control effort, and β is
a non-negative weight parameter. Various options for reference tracking errors and control
efforts can be found in [13].
Typically, the MPC input is held constant from a certain point onward in the prediction
horizon, such that u∗(k + j) = u∗(k + Nc − 1) for j = Nc, . . . , Np − 1, where Nc denotes
the control horizon. This strategy reduces computational complexity and generally yields a
smoother control signal [27].
Due to the linearity in equation Eq. (7-1), future output values can be computed by recursively
substituting the equations. In matrix notation, this can be expressed as:

ỹ(k) = C̃ · x(k − 1) + D̃ · ũ(k) (7-3)

with vectors:

ỹ(k) =

 ŷ(k | k)
...

ŷ(k + Np − 1 | k)

 , ũ(k) =

 u(k)
...

u(k + Np − 1)

 , r̃(k) =

 r(k)
...

r(k + Np)

 (7-4)

and state prediction matrices:

C̃ =


C · A
C · A2

...
C · ANp

 , D̃ =


C · B 0 . . . 0

C · A · B C · B . . . 0
...

... . . . ...
C · ANp−1 · B C · ANp−2 · B . . . C · B

 (7-5)

Additional to optimizing a cost function, MPC is able to implement constraint in the opti-
mization problem. The linear constraint is typically depicted by:

E(k) · ũ(k) + F (k) · ỹ(k) + G(k) · r̃(k) ≤ h(k) (7-6)

where E(k) ∈ Rl×nuNp , F (k) ∈ Rl×nyNp , G(k) ∈ Rl×nyNp and h(k) ∈ Rl for some integer l.
Minimizing the cost criterion subject to the linear constraint and the control horizon results
in a convex quadratic optimization problem, which can be solved very efficiently [27].
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7-2 Model predictive control (MPC) for max-plus linear (MPL)
systems

The MPL system defined in Definition 2.4 and the linear state space system of Eq. (7-1)
are very similar. The plus-times algebra is changed with max-plus algebra but the system
remains linear. Therefore, we can derive state expectations in a similar way.

Suppose we have an MPL system with horizon Np, we define the following vectors:

ỹ(k) =

 ŷ(k | k)
...

ŷ(k + Np − 1 | k)

 , ũ(k) =

 u(k)
...

u(k + Np − 1)

 , r̃(k) =

 r(k)
...

r(k + Np)

 (7-7)

with ũ the optimized input sequence, ỹ the estimated output and r̃ the desired reference
signal. Again, we define an estimated output function of:

ỹ(k) = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) (7-8)

with C̃ and D̃, the prediction matrices:

C̃ =


C ⊗ A

C ⊗ A⊗2

...
C ⊗ A⊗Np

 , D̃ =


C ⊗ B ε . . . ε

C ⊗ A ⊗ B C ⊗ B . . . ε
...

... . . . ...
C ⊗ A⊗Np−1 ⊗ B C ⊗ A⊗Np−2 ⊗ B . . . C ⊗ B

 (7-9)

In this section, we will utilize the standard MPC problem as defined in [27], which is formu-
lated as follows:

Definition 7.1. (Standard MPC problem for MPL systems, [27]).

min
ũ(k),ỹ(k)

J(k) = min
ũ(k),ỹ(k)

Jout(k) + β · Jin(k)

subject to: ỹ(k) = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k)
E(k) · ũ(k) + F (k) · ỹ(k) + G(k) · r̃(k) ≤ h(k)
∆u(k + j) ≥ 0 for j = 0, . . . , Nc − 1
∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (7-10)

where Jout represents the tracking error and Jin the input effort with scaling factor β. The
first constraint represents the state prediction. The second is the general constraint. The final
2 make sure inputs are growing and applies the control horizon cut-off to the system.
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The cost function that will be used in this section is gathered from [27]. The cost function
where ny is the amount of outputs and nu the amount of inputs is defined as:

Jout(k) =
Np−1∑
j=0

ny∑
i=1

max(yi(k + j | k) − ri(k + j), 0) =
nyNp∑
i=1

max(ỹi(k) − r̃i(k), 0)

Jin(k) =
Np−1∑
j=0

nu∑
i=1

(ri(k + j) − ui(k + j)) =
nuNp∑
i=1

(r̃i(k) − ũi(k)) (7-11)

In the context of a manufacturing system, this cost function represents a strategy where raw
materials are introduced into the system as late as possible, thereby ensuring that the internal
buffer levels are kept as low as possible.
In the MPL-MPC problem that we will evaluate, we assume it to be unconstrained. Thus,
the second constraint from Definition 7.1 is omitted. This allows for the analytical derivation
of a closed-loop expression for the unconstrained MPL-MPC problem.
To express the tracking error Jout as a function of ũ, we substitute the tracking error from
Eq. (7-11) along with the output expectation formula from Eq. (7-3). This yields the following
result [28]:

Jout(ũ(k)) =
Np−1∑
i=0

max((C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k))i − r̃i(k), 0) (7-12)

This tracking error is a convex function of ũ(k). The reference term r̃(k) has been added in
Jin to obtain a bounded objective function of Jin. It has no influence on the optimization.
Then we define the optimal solution of the MPL-MPC problem based on Lemma 1 of [28]

Lemma 7.1. Assume β < 1/Np, and define:

ũ(k) = [u(k − 1), u(k − 1), . . . , u(k − 1)]T

z̃(k) = [zT (k | k), zT (k + 1 | k), . . . , zT (k + Np − 1 | k)]T

= C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) ⊕ r̃(k) (7-13)

and consider the optimization problem:

ũ∗(k) = arg max
ũ(k)

Np∑
l=1

ũl(k), (7-14)

subject to:

D̃j ⊗ ũ(k) ≤ z(k + j | k), for j = 0, . . . , Np − 1
u(k + j) ≥ u(k + j − 1), for j = 0, . . . , Np − 1 (7-15)

where D̃j denotes the jth row of D̃. Then ũ∗ is the optimal solution of the original MPL-MPC
problem. The proof of this lemma is outside the scope of this research and can be found in
[28].
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Based on this optimization problem with constraints, we define the second lemma that derives
the optimal input sequence [28].

Lemma 7.2. Optimal input sequence for MPL-MPC problem

u∗(k + j | k) =


min

i

(
z(k + i | k) − D̃ij

)
for j = Np − 1

min
(

min
i

(
z(k + i | k) − D̃ij

)
, u∗(k + j + 1 | k)

)
for j = 1, . . . , Np − 2

(7-16)

Then ũ(k) is the optimal solution. Again, the proof is assumed to be outside the scope of this
research but can be found in [28].

The optimal solution can be written as a min-plus expression [27].

ũ∗(k) = (−D̃T ) ⊗′ z̃(k) ⊗′ S ⊗′ ũ∗(k) (7-17)

where:

S =


⊤ 0 . . . ⊤
... . . . . . . ...
... . . . 0
⊤ . . . ⊤

 (7-18)

This expression is implicit; we can make it explicit by applying the min-plus Kleene star
product to S. The Kleene star product operation is detailed in [10]. The explicit expression
for the optimal input is defined as follows:

ũ∗(k) = S∗ ⊗′ (−D̃T ) ⊗′ z̃(k)
z̃(k) = [zT (k | k), zT (k + 1 | k), . . . , zT (k + Np − 1 | k)]T

= C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) ⊕ r̃(k) (7-19)

where:

S∗ = E′ ⊗′ S ⊗′ S⊗′2 ⊗ · · · =


⊤ 0 . . . 0
... . . . . . . ...
... . . . 0
⊤ . . . ⊤

 (7-20)

The resulting controller can be formulated as an MMPS function by substituting z̃(k) inside
the optimal input equation and by defining system matrices H̄ and Ḡ.

Master of Science Thesis S.R. Daams



78 Model predictive control (MPC) for max-plus linear (MPL) systems

Definition 7.2. (Optimal input sequence as an MMPS function, [27]). After substitution of
z̃, we get:

ũ∗(k) = 0̄ ⊗′ (−D̃T ) ⊗′ (C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ 0̄ ⊗ u(k − 1) ⊕ r̃(k)) (7-21)

This can be written as a conjunctive MMPS function as:

ũ∗(k) = H̄ ⊗′ (Ḡ ⊗ (
[

K̄ L̄ R̄
]

·

 x(k − 1)
u(k − 1)

r̃(k)

))

with: H̄ = 0̄ ⊗′ (−D̃T )
Ḡ = [C̃, D̃ ⊗ 0̄T , d⊗(0)]

K̄ =

 K
0
0

 , L̄ =

 0
L
0

 , R̄ =

 0
0
R

 (7-22)

The zero vector, 0̄ = [0, . . . , 0], is a zero row vector of length Np. The diagonal matrix, d⊗(0),
has size Np × Np with zeros on the diagonal providing information of future reference values
to the minimization problem.

The controller itself is a conjunctive MMPS function, which means that the closed-loop system
itself is an MMPS system that can be defined by:

Definition 7.3. (Implicit closed-loop conjunctive MMPS system). The following MPL system
with conjunctive MMPS controller:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k)

ũ∗(k) = H̄ ⊗′ (Ḡ ⊗ (
[

K̄ L̄ R̄
]

·

 x(k − 1)
u(k − 1)

r̃(k)

)) (7-23)

Can be written in the general implicit closed-loop form:

[
x(k)
u(k)

]
=
[

I⊗′ ⊤
⊤ H̄

]
⊗′ (

[
A B ε

ε ε Ḡ

]
⊗

 I 0 0 0
0 I 0 0
K̄ 0 L̄ R̄

 ·


x(k − 1)

u(k)
u(k − 1)

r̃(k)

) (7-24)

The MPL-MPC problem defined in this section will be validated through an example.

Example 7.1. Closed-loop control of an MPL system by solving the MPL-MPC problem

The simple manufacturing system from [29] will be evaluated. The manufacturing system is
schematically represented in Figure 7-1.
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Figure 7-1: Simple Manufacturing System

The system consists of three production machines: M1, M2 and M3. The raw material will be
fed to the system through machines M1 and M2, then processed and send to M3 where the
product is assembled. The processing times (d) and transportation times (t) are depicted in
Figure 7-1. Other transportation and set-up times are assumed negligible. The system can
be modelled as a MPL system in the following way:

x(k) =

 11 ε ε
ε 12 ε
23 24 7


︸ ︷︷ ︸

A

⊗ x(k − 1) ⊕

 2
0
14


︸ ︷︷ ︸

B

⊗ u(k)

y(k) =
[

ε ε 7
]

︸ ︷︷ ︸
C

⊗ x(k) (7-25)

The input u(k) represent the time at which a batch of raw material is fed to the system,
xi(k) the time at which a machine Mi starts working and y(k) the time at which a finished
products leaves the system. The goal is to define an optimal input sequence that minimizes
the differences between output and reference signal r(k). The reference signal might represent
a change in demand of the product. A lower growth rate represents more demand and vice
versa.

The following closed-loop problem will be solved using the matrices Ḡ and H̄, as defined in
Definition 7.1, which include the state prediction matrices C̃ and D̃. We obtain:

[
x(k)
u(k)

]
=
[

I⊗′ ⊤
⊤ H̄

]
⊗′ (

[
A B ε

ε ε Ḡ

]
⊗


I 0 0 0
0 I 0 0
I 0 0 0
0 0 I 0
0 0 0 I

 ·


x(k − 1)

u(k)
u(k − 1)

r̃(k)

) (7-26)

The closed-loop system will be evaluated for two different prediction horizons: Np such that
the effect of the MPC controller can be verified. The simulation of the reference signal and
two closed-loop systems with Np = 2 and Np = 6 is visualized in Figure 7-2.
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Figure 7-2: Simulation reference signal and closed-loop systems

In Figure 7-2, the closed-loop system effectively tracks the reference, but when demand in-
creases, the manufacturing system reaches its minimum production time. A system with a
longer prediction horizon can anticipate demand increases, allowing it to accelerate before
the demand spike occurs. Consequently, the difference between the reference and output is
smaller for higher horizons. This is illustrated in Figure 7-3, which shows the output-reference
difference for both closed-loop systems. The better performance on this aspect can be verified
in the total sum of the error which for both system is equal to:

Np = 2 :
30∑

k=1
∥y(k) − r(k)∥ = 110, Np = 6 :

30∑
k=1

∥y(k) − r(k)∥ = 70 (7-27)

Figure 7-3: Difference reference signal and output closed-loop systems

S.R. Daams Master of Science Thesis



Chapter 8

Case study: Urban railway system

In this chapter, the real life example of the urban railway system (URS) will be evaluated that
is first introduced as max-plus linear parameter varying system in [30] and afterwards adopted
in [31, 32]. However, all these researches used the max-plus linear parameter varying formats.
The URS as max-min-plus-scaling (MMPS) was first introduced in [33] and afterwards also
used and extended in [7, 19]. Section 8-1 introduces the URS with all its parameters and
system equations. Also, based on [19], the URS is modeled in the implicit ABCD canonical
form. In Section 8-2, the system is simulated without control for both a stable and unstable
configuration. Section 8-3 defines an optimization problem to control the URS. This section
covers multiple steps including the addition of control inputs, making the system closed-loop
and defining the optimization problem. Section 8-4 uses the optimization problem to apply
optimization-based closed-loop control on the URS to minimize the amount of passengers
waiting at the train stations. Also, the stability of the closed-loop system is evaluated.
Finally, Section 8-5 givens an analysis on the eigenvalues and eigenvectors of the URS.

8-1 Introduction of the urban railway system

This section introduces the urban railway system (URS), which is modeled as a partially
homogeneous discrete-event (DE) max-min-plus-scaling (MMPS) system. The description of
the URS is based on the model presented in [19]. The parameters of the URS model used
throughout this chapter are summarized in Table 8-1. There, the four entries of the state of
an URS are described as well. Namely, the arrival time (aj(k)), the departure time (dj(k)),
the amount of passengers in the train (ρj(k)) and the amount of passengers at a station after
a train leaves (σj(k)). The first two are identified as temporal signal states and the latter two
as quantity signal states. The state vector for station j and train k is defined as:

xj(k) = [aj(k), dj(k), ρj(k), σj(k)]T (8-1)
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Table 8-1: List of model parameters used in the URS

Description Parameter
Trains k
Stations j
Arrival time at station j of train k aj(k)
Departure time at station j of train k dj(k)
Number of passengers in train k when leaving station j ρj(k)
Number of passengers at station j when train k leaves σj(k)
Maximum capacity of the trains ρmax

Running time between consecutive stations τr

Speed of passengers arriving at station e
Passenger boarding speed b
Passenger disembarking speed f
Fraction of passengers disembarking at each station β
Headway time τH

For each simulation, Train 0 and Station 1 are initialized independently from the other trains
and stations. This initialization process is based on a set of specific parameters, defined in
Table 8-2.

Table 8-2: List of parameters initializing the URS

Description Parameter
Difference in arrival times of consecutive trains at station 1 τ̄
Dwell time at station 1 τd

Departure time at station j of train 0 d̄j

Number of passengers in train 0 when leaving station j ρ̄j

Number of passengers at station j when train 0 leaves σ̄j

The derivation of the system equations of the URS is outside of the scope of this research but
interested readers can have a look at [33]. The definition of the system equations are split in
three parts: the evolution of station 1, the evolution of train 0 and the evolution of the other
trains and stations. The evolution of station 1 is defined by the following set of equations:

a1(k) = a1(k − 1) + τ̄

d1(k) = a1(k) + τd

ρ1(k) = ρ1(k − 1)
σ1(k) = 0 (8-2)

The evolution of a train is based on the previous one. Therefore, to define the values of train
1, we need an initialization of train 0. The evolution of train 0 is defined as follows:
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aj(0) = 0
dj(0) = d̄j

ρj(0) = ρ̄j

σj(0) = σ̄j (8-3)

Finally, we have the evolution of the remaining trains and stations. The state evolution for
j > 1 and k > 0 is defined as follows:

aj(k) = max(dj−1(k) + τr, dj(k − 1) + τH)
dj(k) = min(µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1) + (1 − µ1)dj(k − 1), γ1 + aj(k) + γ2ρj−1(k))

ρj(k) = (1 − β)ρj−1(k) + b(dj(k) − aj(k) − β

f
ρj−1(k))

σj(k) = σj(k − 1) + e(dj(k) − dj(k − 1)) − b(dj(k) − aj(k) − β

f
ρj−1(k)) (8-4)

where µ1 = b
b−e , µ2 = b

b−e
β
f , µ3 = 1

b−e , γ1 = 1
b ρmax and γ2 = β

f − 1−β
b . The system equations

will be modeled as an implicit MMPS system in the ABCD canonical form of Definition 2.17
based on the findings in [19]. The definition of the system matrices is separated in two steps.
The system matrices corresponding to station 1 and the other stations. The system matrices
for station 1, based on the system equations of Eq. (8-2) are defined as follows:

Ā1 =


0 ε ε ε ε
ε ε 0 ε ε

ε ε ε 0 ε
ε ε ε ε 0

 , B̄1 =


τ̄ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ τd ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0



C̄1 =



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, D̄1 =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


(8-5)

The system matrices of the other stations, based on the system equations in Eq. (8-4) are
defined as follows:

Āj =


τr τH ε ε ε
ε ε 0 ε ε

ε ε ε 0 ε
ε ε ε ε 0

 , B̄j


0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 γ1 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0
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C̄j =



0 0 0 0
0 1 0 0
0 (1 − µ1) 0 µ3
0 0 0 0
0 0 0 0
0 −e 0 1


, D̄j,c =



0 0 0 0
0 0 0 0
µ1 0 0 0
1 0 0 0

−b b 0 0
b e − b 0 0


, D̄j,p =



0 1 0 0
0 0 0 0
0 0 µ2 0
0 0 γ2 0
0 0 −bγ2 0
0 0 bβ

f 0


(8-6)

The D matrix is split in two parts: the matrix Dj,c contains information of the current station,
for example: aj(k). The Dj,p contains information of the previous station, for example:
aj−1(k). All provided system matrices in Eq. (8-5) and Eq. (8-6) can be combined in one big
set of system matrices:

Ā =


Ā1 ε . . . ε

ε Ā2
...

... . . . ε

ε . . . ε ĀJ

 , B̄ =


B̄1 ⊤ . . . ⊤

⊤ B̄2
...

... . . . ⊤
⊤ . . . ⊤ B̄J

 ,

C̄ =


C̄1 0 . . . 0

0 C̄2
...

0 . . . . . . 0
0 . . . 0 C̄J

 , D̄ =


D̄1,c 0 . . . 0

D̄2,p D̄2,c
...

0 . . . . . . 0
0 . . . D̄J,p D̄J,c

 (8-7)

The states of the URS evolve according to the following formula:

xj(k) = Ā ⊗ (B̄ ⊗ (C̄ · x(k − 1) + D̄ · x(k))) (8-8)

In this chapter, also the stability of the URS will be discussed and this will follow the criteria
defined in Section 2-4-3, where an MMPS system is considered max-plus bounded buffer stable
if, for any initial state x0 ∈ Rn, the system’s states remain bounded in Hilbert’s projective
norm as described in Definition 2.24. However, for the URS, we aim to demonstrate the
stability of only a specific simulation corresponding to a set of initial conditions. Thus, the
analysis will focus on whether the temporal signal states in the simulation are bounded in
Hilbert’s projective norm. Additionally, the quantity signal states should remain bounded in
the infinity norm to prevent unbounded growth in the system.

The Hilbert’s projective norm defined in Definition 2.24 calculates the absolute difference
between temporal states, in case of the URS, the norm will be calculated using:

∥x∥P = dj(k) − aj(k), k ∈ Z+ (8-9)
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As the departure time of a train k at station j is always larger than the arrival time, no absolute
value is necessary. This difference is also referred to as the dwell time at a station. The
boundedness of the quantity signal states will be verified using the infinity norm calculated
as follows:

∥xi(k)∥∞ = max(x1,2(k)), k ∈ Z+

x1 = [ρ1, ρ2, . . . , ρj ]T

x2 = [σ1, σ2, . . . , σj ]T (8-10)

If both states result in bounded values, we speak of a stable simulation of the URS. Further-
more, to assess the system’s performance, we will evaluate the number of passengers waiting
at station j when train k arrives, denoted as pwait

j (k). This value will be used as an objective
function in Section 8-3-5. For now, it is introduced to analyze the performance of the URS.
The number of waiting passengers is calculated as follows:

pwait
j (k) = e · (aj(k) − dj(k − 1)) + σj(k − 1) (8-11)

This expression accounts for both the number of passengers arriving at station j between
the arrival times of two consecutive trains and the number of passengers left behind by the
previous train at station j.

8-2 Simulation of an autonomous URS

In this section, two simulations of the autonomous URS will be evaluated. In both cases, the
train schedule of the URS evolves based on the situation where no control is applied. The
difference in the two simulations origins in the initial conditions. The parameters of Table
8-1 are in both simulations equal to the following values:

ρmax = 150, τr = 180, e = 0.5, b = 2, f = 2, β = 0.5, τH = 30 (8-12)

The initial conditions of the two simulations include both a stable and an unstable configu-
ration.

8-2-1 Simulation of the autonomous URS using stable initial conditions

For the stable configuration, we define the parameters of Table 8-2 as follows:

τd = 0, τ̄ = 120, d̄j = 240, ρ̄j = 120, σ̄j = 0 (8-13)
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These parameters result in the following system equations for the evolution in station 1 and
train 0:

For j = 1: a1(k) = a1(k − 1) + 120 For k = 0: aj(0) = 0
d1(k) = a1(k) + 0 dj(0) = (j − 1) · 240
ρ1(k) = 120 ρj(0) = 120
σ1(k) = 0 σj(0) = 0 (8-14)

In Figure 8-1, the simulation of the autonomous URS with stable initial conditions is visu-
alized. Figure 8-1(a) shows the place-time evolution of all the trains. The evolution is a
combination of arrival times, dwell times and departure times. It can be seen that for the
stable initial conditions, the difference between the trains remains constant over all the sta-
tions. Figure 8-1(b) shows the amount of people waiting at station j when train k arrives,
which directly finds an equilibrium. Figure 8-1(c) shows the amount of people in the train
and Figure 8-1(d), the amount of passengers at station j after train k leaves. Both states
remain constant for all trains and stations.

(a) aj(k), τdwell,j(k) and dj(k) (b) pwait
j (k)
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(c) ρj(k) (d) σj(k)

Figure 8-1: States and objective for the autonomous URS simulated from stable initial conditions

To verify the stability of this system, the Hilbert’s projective norm of the temporal signal
states following Eq. (8-9) and the infinity norm of the quantity signal states following Eq. (8-
10) is derived. In Figure 8-2(a), the Hilbert’s projective norm is visualized for all trains.
There can be verified that the system’s temporal states remain bounded. In Figure 8-2(b), the
infinity norm of the quantity signal states is visualized, they also remain bounded. Therefore,
it can be concluded that the initial conditions of Eq. (8-14) result in a stable simulation of
the autonomous URS.

(a) ∥x∥P (b) ∥xi(k)∥∞

Figure 8-2: Hilbert’s projective norm and infinity norm for the simulation of the autonomous
URS from stable initial conditions

8-2-2 Simulation of the autonomous URS using unstable initial conditions

For the unstable configuration, we define the parameters of Table 8-2 as follows:
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τd = 0, τ̄ = 120, d̄j = 240, ρ̄j = 120, σ̄j = 10 (8-15)

These parameters result in the following system equations for the evolution in station 1 and
train 0:

For j = 1: a1(k) = a1(k − 1) + 120 For k = 0: aj(0) = 0
d1(k) = a1(k) + 0 dj(0) = (j − 1) · 240
ρ1(k) = 120 ρj(0) = 120
σ1(k) = 0 σj(0) = 10 (8-16)

In Figure 8-3, the simulation of the autonomous URS with unstable initial conditions is
visualized. Figure 8-3(a) shows the place-time evolution of all the trains. It can be seen
that the difference between consecutive trains remains not constant. Figure 8-3(b) shows the
amount of people waiting at station j when train k arrives, which is increasing for each train
over time. Figure 8-3(c) shows the amount of people in the train, which quickly reaches its
maximum for some of the trains. Figure 8-3(d)s shows the amount of passengers at station
j after train k leaves, which, similar to Figure 8-3(b), keeps increasing the more stations a
train passes.

(a) aj(k), τdwell,j(k) and dj(k) (b) pwait
j (k)
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(c) ρj(k) (d) σj(k)

Figure 8-3: States and objective for the autonomous URS simulated from unstable initial condi-
tions

The stability will again be evaluated based on the boundedness of the states. In Figure 8-4(a),
the Hilbert’s projective norm is visualized for all trains. There can be seen that the Hilbert’s
projective norm finds an equilibrium over time which is bounded. In Figure 8-4(b), the infinity
norm of the quantity signal states is visualized, there can be seen that the norm for amount
of passengers in the train is maximized for the whole simulation, which is bounded by its
maximum. However, the amount of passengers at station j after train k leaves (σj(k)) will
increase unbounded. The simulation is executed for twelve stations, and the introduction of
more stations results in an unbounded increase of the infinity norm. This can also be verified
in Figure 8-3(d) where the value increases unbounded by adding more stations. Therefore,
it can be concluded that the unstable initial conditions from Eq. (8-16) result in an unstable
simulation of the autonomous URS.

(a) ∥x∥P (b) ∥xi(k)∥∞

Figure 8-4: Hilbert’s projective norm and infinity norm for the simulation of the autonomous
URS from unstable initial conditions
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When evaluating the difference between initial conditions, the origin of the instability can be
recognized. The σ̄j value is not zero for the unstable initial conditions. This value affects
the number of people waiting at station j when train 1 arrives. Causing train 1 to reach its
maximum capacity after a few stations.

In Figure 8-3(b), the amount of passengers waiting at the station keeps increasing over time
under the unstable initial conditions. In the next section, the goal is to define an optimization
problem to minimize the passengers waiting at a station while also stabilizing the simulation
of the URS.

8-3 Defining an optimization problem for the URS

In this section, an optimization problem will be defined for the URS that minimizes the
amount of passengers waiting at a station when a train arrives. The optimization problem
will be defined in several steps. First, the implementation of control to the URS will be
discussed. Also, the URS in ABCD canonical form of Eq. (8-8) will be extended with an
input matrix. Second, the open-loop URS with input signals will be made closed-loop by
using state feedback. Then, the objective and constraint function will be defined. Finally,
the optimization problem will be presented and the selection of an optimization algorithm is
discussed.

8-3-1 Adding input signals to the URS

The addition of input signals is based on [33]. The input signals will be used to influence the
states of the system. The system equations for the URS are the same as depicted in Eq. (8-4).

The URS is a scheduling problem. Therefore, we are able to implement a control effort on
the traveling speeds of the trains [33]. In previous cases, it was assumed that the running
time between stations (τr) is equal in all situations. However, within boundaries, a train can
speed up or slow down on a trajectory between two stations. This results in a new equation
for the arrival time:

aj(k) = max(dj−1(k) + τr + u1,j(k), dj(k − 1) + τh) (8-17)

The control effort u1,j(k) will be introduced as a quantity signal input because it is added
to a temporal signal: dj−1(k). The input will be a bounded variable that only slight in- or
decreases the time of train between two stations: τr + u1,j(k). Hence a quantity signal.

Let us also introduce a second input u2,j(k); this input can decrease or increase the headway
time τH between consecutive trains. The second input is added to the arrival time in the
following manner:

aj(k) = max(dj−1(k) + τr + u1,j(k), dj(k − 1) + τh + u2,j(k)) (8-18)
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The second input is also a quantity signal for the same reason as the first input. The input
is added to a temporal signal, in this case the departure time of the previous train at station
j: dj(k − 1). The input is used to influence the headway time so again can only slightly in-
or decrease that: τh + u2,j(k). Hence also a quantity signal.

Both input signals being quantity signals means that the addition of both inputs does not
affect time-invariance. Because we found in Section 3-2-1 that only temporal signal inputs
influence time-invariance.

The new function for the arrival times and the implementation of the input signals will be
used to make the system closed-loop. This is discussed in the next subsection.

8-3-2 Deriving a closed-loop URS using state feedback

Recall from Definition 3.1 that we can write an implicit open-loop system in the following
form:

x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + D · x(k) + E · u(k))) (8-19)

The input values are designed as quantity signals which means there is no requirement for
time-invariance. For the first input we design a closed-loop function that scales the dwell time
at the previous station:

uj,1(k) = α1 · (dj−1(k) − aj−1(k)) (8-20)

This means that if the dwell time at the previous station is large, the train was waiting for a
long period at the previous station and will increase its speed to arrive faster at the following
station. In that case, α1 will be negative. Oppositely, if the dwell-time is small because the
station are almost empty. In that case, the train can slow down such that it will not be ahead
of schedule, resulting in a positive α1. The second input will be scaling the headway time
between two trains following the function:

uj,2(k) = α2 · (dj(k − 1) − dj−1(k)) (8-21)

The input scales the difference in departure times for a train k − 1 at station j and the next
train k at a previous station j − 1 calculating the headway time. Depending on the sign of
u2,j(k) the trains will be pushed closer or away of each other. In matrix format, we can write
the state feedback functions in the following way:

[
uj,1(k)
uj,2(k)

]
=
[

−α1 α1 0
0 −α2 α2

]
·

 aj−1(k)
dj−1(k)

dj(k − 1)

 (8-22)
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However, the state matrix exists of both explicit and implicit state values. Which means
that in the closed-loop system both additional values to the C and D matrix are needed.
Therefore, we define two separate input functions:

uj,1(k) = K1 · xj(k − 1)
uj,2(k) = K2 · xj(k) (8-23)

The total closed-loop system of the URS can be described as follows:

 xj(k)
uj,1(k)
uj,2(k)

 =

 Ā ε ε
ε 0 ε
ε ε 0

⊗ (

 B̄ ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0

⊗′ (

 C̄j D̄j Ē1 Ē2
K1 0 0 0
0 K2 0 0

 ·


xj(k − 1)

xj(k)
uj,1(k)
uj,2(k)


(8-24)

Final step is to derive the input matrices Ē1, Ē2 and the size of the state feedback matrices
K1 and K2. The feedback will applied for j > 1 such that the initialization of station 1
remains unaffected. Then, the total closed-loop matrices for the scaling: C̄CL and D̄CL are
defined as:

C̄CL =


C̄1 0 . . . 0

0 C̄2 + E1 · K1
...

0 . . . . . . 0
0 . . . 0 C̄J + E1 · K1



D̄CL =


D̄1,c 0 . . . 0

D̄2,p + E2 · K2 D̄2,c
...

0 . . . . . . 0
0 . . . D̄J,p + E2 · K2 D̄J,c

 (8-25)

with for each state the input and feedback matrices defined as:

E1 =



0
1
0
0
0
0


, K1 =

[
0 α2 0 0

]
, E2 =



1 0
0 1
0 0
0 0
0 0
0 0


, K2 =

[
−α1 α1 0 0

0 −α2 0 0

]
(8-26)

Note that in 8-25, the top left part of C̄CL has no input because of the initialization and that
the control in the D̄CL is added to the lower triangular part of the matrix. Therefore, we can
define the total input matrices: Ē1, Ē2 in the following way:
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Ē1 =


0 0 . . . 0

0 E1
...

0 . . . . . . 0
0 . . . 0 E1

 , Ē2 =


0 0 . . . 0

E2 0
...

0 . . . . . . 0
0 . . . E2 0

 (8-27)

The Ā and B̄ matrices remain unaffected because the input signals are only during the scaling
step, corresponding to input strategy 3 of Section 3-3. The URS is a an implicit closed-loop
system following the state evolution:

x(k) = Ā ⊗ (B̄ ⊗′ (C̄CL · x(k − 1) + D̄CL · x(k))) (8-28)

8-3-3 Definition of the objective function

The goal is to find the optimal values of K1 and K2 that minimize passenger waiting times.
To achieve this, an objective function needs to be carefully defined. The objective function,
which was presented in Eq. (8-11), involves minimizing the amount of passengers waiting
at each station. This waiting is determined by the incoming flow of passengers e and the
passengers left behind by the previous train, represented by σj(k − 1).

In addition to minimizing the waiting time, we introduce a penalty on the control effort. The
purpose of this penalty is to prevent the optimization from selecting excessively large control
inputs, which could lead to impractical or inefficient solutions. The total objective function,
incorporating both passenger waiting and control effort, is defined as:

J(k) = ∥pwait
j (k)∥1 + β1∥u1,j(k)∥1 + β2∥u2,j(k)∥1

pwait
j (k) = e · (aj(k) − dj(k − 1)) + σj(k − 1) (8-29)

The objective function is a linear problem and we are using the 1-norm because we want to
minimize the total values of the waiting passengers and control effort. The values β1 and
β2 are weight parameters which scale the importance of the number of passengers waiting
compared to minimizing the control efforts.

8-3-4 Definition of the constraints

In this subsection, the physical limitations of the URS will be formulated as constraint func-
tions such that the simulation of the closed-loop system will remain realistic.

The first constraint entails the maximum capacity (ρmax) of the trains in the URS. The
maximum capacity is already implemented in the system equations of the URS and therefore
no additional constraint are necessary.

The second constraint entails non-negativity of the states. The temporal signal states includ-
ing arrival and departure time and the quantity signal states based on number of people can
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both never be negative. Furthermore, the arrival and departure times are real values while
the amount of passengers should be integer values. Therefore, the following constraints will
be added to the system:

aj(k), dj(k), ρj(k), σj(k) ≥ 0
aj(k), dj(k) ∈ R
ρj(k), σj(k) ∈ Z+ (8-30)

Next, the number of people waiting at a station calculated in the objective function should
also be a non-negative integer value such that:

pwait
j (k) ≥ 0

pwait
j (k) ∈ Z+ (8-31)

Furthermore, there is a limitation on the speed of the train and we do not want two trains to
collide and therefore we introduce bounds on the running and headway times of the trains.
Also, the running and headway times should be real values:

τ lb
r ≤ τr + u1,j(k) ≤ τub

r

τ lb
H ≤ τH + u2,j(k) ≤ τub

H

u1,j(k), u2,j(k) ∈ R (8-32)

The minimization of the passengers waiting could result in trains having a very small dwell
time: dj(k) − aj(k), the time a train waits at a certain station. To give passengers the
opportunity to enter the train, we add a lower bound on the dwell time using the following
constraint function:

τdwell,min ≤ aj(k) − dj(k) (8-33)

Finally, we might want to bound the values of the feedback matrices to also prevent the
optimization from selecting excessively large control signals. Therefore, we add the constraint:

∥[K1,2]ij∥ ≤ M ∀i, j (8-34)

with M ∈ R.
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8-3-5 Summary of the optimization problem

An optimization problem for the URS to minimize the amount of passengers waiting at
station j when train k arrives can be computed by combing all information in this section.
The optimization problem is defined as follows:

Definition 8.1. (Optimization algorithm for the URS). The optimal feedback matrices K1
and K2 for minimizing the amount of passengers waiting at a station j when train k arrives
for the URS are derived by minimizing:

min
K1,K2

∥pwait
j (k)∥1 + β1∥u1,j(k)∥1 + β2∥u2,j(k)∥1

subject to x(k) = Ā ⊗ (B̄ ⊗ (C̄CL · x(k − 1) + D̄CL · x(k)))
τ lb

r ≤ τr + u1,j(k) ≤ τub
r

τ lb
H ≤ τH + u2,j(k) ≤ τub

H

τdwell,min ≤ aj(k) − dj(k)
[K1,2]ij ≤ M ∀i, j

[K1,2]ij ≥ −M ∀i, j

0 ≤ aj(k), dj(k), ρj(k), σj(k), pwait
j (k)

ρj(k),σj(k), pwait
j (k) ∈ Z+

(8-35)

When using the optimization problem, the set of parameters defined in Table 8-3 must be
initialized to obtain a realistic optimum.

Table 8-3: Parameters for the optimization problem

Description Parameter
Initial guess optimization variable 1 α1,0
Initial guess optimization variable 2 α2,0
Scaling factor objective function 1 β1
Scaling factor objective function 2 β2
Minimum dwell time τdwell,min

Lower bound on running time between consecutive stations τ lb
r

Upper bound on running time between consecutive stations τub
r

Lower bound on headway time between consecutive trains τ lb
H

Upper bound on headway time between consecutive trains τub
H

Bound on state feedback matrices M

This optimization problem for the minimization of the amount of passengers waiting will find
the optimal values for the state feedback matrices. The problem will be solved using the
genetic algorithm (GA). The GA is used instead of the Sequential Quadratic Programming
(SQP) algorithm because the objective function contains an integer variable.

The standard SQP algorithm does not support integer optimization. Following [25], we can
instead use heuristic research techniques. Downside to this is that there is no guaranteed con-
vergence to a global optimum but on average results are good. Therefore, for the optimization
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of the URS the genetic algorithm will be used. More information on genetic algorithms can
be found in [34]. The initial values for the optimization problem in Table 8-3 can be varied
to search for different local optima.

8-4 Minimize passengers waiting for the URS

In this section, we are going to apply optimization-based closed-loop control on the URS
using the algorithm defined in Definition 8-3. The same unstable initial conditions will be
used as for Section 8-2-2. Therefore, the evolution of station 1 and train 0 will be the same
as defined in 8-16. In Section 8-2-2 is defined that using these initial conditions to simulate
an autonomous URS results in an unstable simulation.

The optimal closed-loop solution for minimizing the amount of passengers waiting is obtained
by using the following initialization of the optimization problem:

α1,0 = α2,0 = 0, β1 = β2 = 0.01, τdwell,min = 30,

τ lb
r = 160, τub

r = 230, τ lb
H = 20, τub

H = 80, M = 1 (8-36)

Using MATLAB, an optimal solution for the feedback matrices K1 and K2 are computed and
equal to:

K1 =
[

0 0.1715 0 0
]

, K2 =
[

0.2822 −0.2822 0 0
0 −0.1715 0 0

]
(8-37)

In Figure 8-5, the states of the closed-loop URS and the amount of passengers waiting is
visualized. In Figure 8-5(a) can be seen that the distance between trains differ and so there
is control effort on the states. Figure 8-5 (b) shows that the amount of passengers waiting
becomes constant over time, in comparison to the autonomous system with unstable condi-
tions where the passengers waiting increased unbounded. Figure 8-5(c) shows that also the
amount of passengers in the train over time becomes a constant value and remains well under
its maximum capacity. Furthermore, Figure 8-5(d) shows that never any passengers are left
behind at the station.
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(a) aj(k), τdwell,j(k) and dj(k) (b) pwait
j (k)

(c) ρj(k) (d) σj(k)

Figure 8-5: Closed-loop simulation of the URS for unstable initial conditions, for J = 12 and
K = 4

In Figure 8-6(a) the running time between consecutive stations is visualized to evaluate the
effect of the first input signal. The running time is calculated using the formula:

τr,j(k) = aj(k) − dj−1(k) = τr + u1,j(k) (8-38)

In Figure 8-6(a), note that the running time between stations 1 and 2 for a train k is placed
at station 2. Furthermore, we can verify that the bounds on the running time, defined in
Table 8-3, are validated. Figure 8-6 (b) visualizes the effect of the second input signal, the
headway time, calculated using the formula:

τH,j(k) = τH + u2,j(k) (8-39)

The headway is increased due to positive input values but they remain well within the defined
bounds of Table 8-3.
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(a) τr,j (b) τH,j

Figure 8-6: Running and headway time of the closed-loop URS

The stability of the closed-loop URS will again be evaluated based on the boundedness of the
states. In Figure 8-7(a), the Hilbert’s projective norm is visualized for all trains. There can
be seen that the Hilbert’s projective norm finds an equilibrium over time which is bounded.
In Figure 8-7(b), the infinity norm of the quantity signal states are bounded, similar to the
autonomous URS with stable initial conditions. The amount of passengers in the trains never
reach their maximum and therefore there will be no passengers left behind at a station as
well. It can be concluded that the closed-loop structure stabilizes the simulation of the URS
for the unstable initial conditions.

(a) ∥x∥P (b) ∥xi(k)∥∞

Figure 8-7: Hilbert’s projective norm and infinity norm for the simulation of the autonomous
URS from unstable initial conditions

Finally, the objective can evaluated in 8-5(b), the amount of passengers waiting at the station
is settling at 35 persons for train 1 and the remaining trains converge to 26 passengers. This
is even less than the amount of passengers waiting for the autonomous URS with stable initial

S.R. Daams Master of Science Thesis



8-5 Eigenvalues and eigenvectors of the urban railway system 99

conditions. Therefore, it can be concluded that the solution of the optimization problem in
Definition 8-3 results in an improved performance.

8-5 Eigenvalues and eigenvectors of the urban railway system

This chapter finishes with an analysis of the URS related to the eigenvalues and eigenvectors
of the autonomous and closed-loop system. The definition of eigenvalues and eigenvectors in
MMPS systems can be found in Definition 2.22.

An eigenvector of the URS is defined as follows:

vj =
[

aj dj ρj σj

]T
(8-40)

where j is the number of stations. For the computation of the eigenvalues and eigenvectors,
the power algorithm will be used. The power algorithm in this research is based on the findings
in [35]. Recall from Definition 2.22 that any time-invariant discrete event (DE) system has an
additive eigenvalue and eigenvector if there exists a real number λ ∈ R and a vector v ∈ Rn

such that:

f(v) = v + λ · s

s = [1T
nt

, 0T
nq

]T (8-41)

Then, given a finite initial condition, we say that a system, after a number of steps, ends
up in a periodic behavior, if there exist integers p, q with p > q ≥ 0 and c ∈ R such that:
x(p) = x(q) + c. In this case, the average weight or the eigenvalue is defined by: λ = c

p−q
[35]. The eigenvalues and eigenvectors always have to be finite. Combining the information
we can define the power algorithm used in this section for computing the eigenvalues and
eigenvectors of the URS.

Definition 8.2. Power Algorithm for computing eigenvalues and eigenvectors of DE systems
[35]
The algorithm is based on two assumptions. First, for any initial state x(0), the system ends
up in a periodical behavior. Second, every periodic behavior has the same average weight.
Then, the eigenvalues and eigenvectors can be computed using the following algorithm:

1. Take an Arbitrary initial value x(0)

2. Iterate the DE system until there are integers p, q with p > q ≥ 0 and a real number c
such that x(p) = x(q) + c

3. Define the eigenvalue: λ = c
p−q

4. Define a candidate eigenvector: v =
⊗p−q

j=1(λ⊗(p−q−j) ⊗ x(q + j − 1))
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5. If f(v) = λ + v then v is a correct eigenvector and the algorithm can stop. If not follow
the next step

6. Take x(0) = v as new initial state and restart the state evolution until for some r it
holds that x(r+1) = λ+x(r) then x(r) is an eigenvector of the system for the eigenvalue
λ

First, the eigenvalue and eigenvector of the URS using the stable initial conditions that
are used in Section 8-2-1 will be computed. Figure 8-1 shows periodic behavior and in
Section 8-2-1 is defined that the simulation is stable. The URS has two temporal values that
should be growing entities and two quantity signal values that should remain bounded. The
eigenvalue and eigenvector of the autonomous systems with stable initial conditions denoted
with subscript stable calculated through the algorithm of Definition 8.2 provides the following
values:

λstable = 120
vstable = [300, 360, 120, 0, 540, 600, 120, 0, 780, 840, 120, 0]T

= [0, 60, 120, 0, 240, 300, 120, 0, 480, 540, 120, 0]T (8-42)

The eigenvector is in line with Eq. (8-40) and Eq. (8-41). The four states are recurring in the
vector and s has a recurring structure: s = [1, 1, 0, 0]T for each station. The URS is simulated
for three stations and therefore the eigenvector has twelve values; four values for each station.

Next, we are going to evaluate the eigenvalues and eigenvectors of the autonomous URS
with unstable initial conditions. In Section 8-2-2 was verified that the unstable conditions
result in an unstable simulation. However, this does not mean that the whole system itself is
inherently unstable. To derive the eigenvalue of the system, we have to find if the unstable
initial conditions, over time, result in a constant state evolution. In Figure 8-8, the difference
in arrival and departure times for train k between two stations is simulated. The differences
are computed such that the ∆aj(k) = aj(k) − aj−1(k).

In Figure 8-8 can be seen, for stations 5, 6 and 7, that the system settles at a constant
difference over time and therefore the eigenvalue of the unstable initial conditions is equal to:
λunstable = 120. Increasing the station number still results in convergence to the eigenvalue.
However it will take more trains passing before it converges.

For a candidate eigenvector following the algorithm defined in Definition 8.2, we have to look
into the region where the eigenvalue is active. Only in that region, an eigenvector can be
found such that the step of the power algorithm in Definition 8.2 holds. An example of such
eigenvector is:

λunstable = 120
vunstable = [1740, 1800, 120, 0, 1980, 2040, 120, 0, 2220, 2280, 120, 0]T

= [0, 60, 120, 0, 240, 300, 120, 0, 480, 540, 120, 0]T (8-43)
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(a) aj(k) − aj−1(k) (b) dj(k) − dj−1(k)

Figure 8-8: Difference in arrival and departure times between stations

This is the same eigenvector as Eq. (8-42) which makes sense because the system itself is not
unstable, its initial conditions make it unstable and result in an unbounded growth of the
quantity signal states.

Finally, we are going to evaluate the eigenvalues and eigenvectors of the closed-loop URS and
discuss if the closed-loop structure alters them. First, we are again verifying if the system
will converge to an eigenvalue.

(a) aj(k) − aj−1(k) (b) dj(k) − dj−1(k)

Figure 8-9: Difference in arrival and departure times between stations, closed-loop system

In Figure 8-9 can be seen that the difference in arrival and departure times for train k between
two stations converges to the same eigenvalue as for the autonomous systems: λCL = 120.

For a candidate eigenvector, we take the same approach as for the autonomous URS with
unstable initial conditions. We look at the region where the eigenvalue is active. An example
of such eigenvector is:
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λCL = 120
vCL = [4595.2, 4648.4, 106, 0, 4836.1, 4889.2, 106, 0, 5075.7, 5128.7, 106, 0]T

= [0, 53.2, 106, 0, 240.9, 294, 106, 0, 480.5, 533.5]T (8-44)

This is a different eigenvector compared to the autonomous URS systems. The difference
is due to the change in constant running and dwell time of the system in its new found
equilibrium. From Figure 8-6, the equilibrium values for the running and dwell time can be
derived. In Figure 8-6(a), all running times, except train 1, go to an equilibrium value of:
τr,j = 186, 7 and in Figure 8-6(b) the dwell time, except train 1, finds an equilibrium value
of: τdwell,j = 53.3. This values are similar to the evolution of the temporal states of vunstable,
except for some rounding errors. Finally, the new equilibrium value of the passengers in the
train can be found in 8-5(c) and is equal to: ρj(k) = 106.

It can be concluded that the closed-loop structure does not affect the eigenvalue of the URS
but does change the eigenvector of the system.
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Chapter 9

Conclusions and contributions

In this chapter, we will reflect on the work done in this thesis and evaluate the research
questions stated in Section 1-2. The conclusions will be separated in three parts based on the
three main research questions. Section 9-1 covers the first set of research question relating the
topic of integrating input signals in max-min-plus-scaling (MMPS) systems in a systematic
way. Section 9-2 discusses the implementation of both open-loop and closed-loop control to
MMPS systems. Section 9-3 discussed the results on the research done to achieve several
control objectives using closed-loop control on MMPS systems. Finally, Section 9-4 gives an
overview of the contributions this thesis provides to the field of System and Control.

9-1 On the integration of input signals for MMPS systems

After giving a thorough introduction to the field of dioid algebra and MMPS systems, the
foundation was built to investigate the possibilities to include input signals inside the system
equations of MMPS systems. The first research questions from Section 1-2 were states as:

• How can input signals be systematically integrated in MMPS systems, considering both
temporal and quantity-based signals?

1. How can the existing ABCD canonical form be extended to accommodate input
signals?

2. What constraints must be applied to the input structure to preserve key properties,
such as time-invariance and stability?

For the first research sub-question, inspiration is drawn from the linear state space system
in conventional algebra. An additional input matrix (E) and input vector are added to the
ABCD canonical form for MMPS systems. The input matrix is added inside the scaling step
of the process of MMPS systems. By doing this, we are able to accommodate inputs anywhere
in the system. However, before analysing the different types of input structures. An analysis
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is done on the newly formed ABCDE canonical form were properties such as time-invariance,
monotonicity and non-expansiveness are evaluated. This analysis provides constraints for the
input matrix (E) in combination with the type of input signal added to the system such that
these properties are preserved, answering the second sub-question.

After finding an MMPS model that accommodates input signals and an analysis is done
to define the constraints on the system to preserve properties, the main question could be
answered. It could be concluded that there are three distinctive ways of adding input signals to
the MMPS systems. These three input strategies can be distinguished based on differences in
their mathematical foundation. Finally, a summary is provided with a systematic overview for
each input strategy providing typical system equations, constraints on the input matrix and
the possibility of which type of input signal could be added through the strategy, answering
the first main research question.

9-2 On the implementation of control for MMPS systems

After identifying three input strategies that can used to implement input signals to MMPS
system. The next step was to use these strategies to apply control on the MMPS systems.
The second set of research questions defined in Section 1-2 were stated as:

• What is a systematic approach to implementing control strategies in MMPS systems?

1. What are the effects and limitations of using open-loop control in MMPS systems?
2. What are the effects and limitations of using closed-loop control in MMPS systems?

For first research sub-question, open-loop control is generally introduced and all three input
strategies were evaluated by applying open-loop control. For each input strategies the effects
of control is evaluated based on the findings in the matrix format and the examples provided
in each section.

For the second research sub-question, open-loop control is extended to closed-loop control
where the principle of state feedback is introduced. A general state feedback function for
MMPS systems is defined that accommodates all types of controllers. This newly defined
feedback function was implemented in the three input strategies again providing a systematic
approach for each strategy on the matrix format of the closed-loop systems. Each closed-loop
system was evaluated by using examples finding the effects and limitations for closed-loop
control on each input strategy, answering research question 2.

9-3 On control objectives for closed-loop MMPS systems

In the previous research question of this thesis, we developed a systematic framework of
implementing closed-loop control on MMPS distinguishing three input strategies. Next, this
framework is used to reach several control objectives for MMPS systems. The final set of
research questions defined in Section 1-2 were stated as:
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• How can closed-loop control strategies be employed to regulate the dynamic behavior
of MMPS systems?

1. What specific objectives are pursued by implementing closed-loop control in MMPS
systems?

2. What methods and criteria are most effective for designing and optimizing closed-
loop controllers for MMPS systems?

3. How can closed-loop control mechanisms be tailored and applied to improve per-
formance in urban railway systems?

For answering the first research sub-question, control objectives are defined for optimization-
based control methods. An MMPS system, in most cases, represents the cycle of a product or
machine through a process. Often, the lower the growth rate, the faster the system operates.
Therefore, the first goal is to minimize the growth rate of the MMPS system under certain
circumstances. Secondly, it might be desirable to closely follow a reference signal that changes
over time and find the most efficient path over time. Therefore, the second research goal
includes minimizing the difference between outputs and reference signal. Finally, some MMPS
systems consist of multiple regions. It might be desirable to switch from one to another stable
region to follow another stable growth rate over time. Concluding the final research goal.

The research goals will be reached by implementing optimization based closed-loop controllers
and answering research sub-question 2. To obtain this, an optimization algorithm is defined
that consists of a cost function that is based on the research goal and a set of constraints ensur-
ing properties of MMPS systems are preserved. This algorithm is successfully implemented
on examples to reach all of the defined research goals, finding solutions that are optimal.
Afterwards, a well-known optimisation based-control method is introduced and applied on
max-plus linear (MPL) systems. The optimal input constructed is an MMPS system making
the total system a closed-loop MMPS system that is able to optimize its input based on future
reference values.

Finally, all knowledge gathered from this thesis is combined in evaluating the case study of
the urban railway system (URS), answering research sub-question 3. The URS is simulated
for a stable and unstable initial condition. An optimization algorithm is computed and an
objective to minimize the amount of passengers waiting at a station before a train arrives is
defined. Using closed-loop control, an optimal feedback matrix is computed that minimizes
the objective. Also, this closed-loop structure is able to let the unstable initial conditions
converge a lot faster to an equilibrium compared to the autonomous case and is able to
stabilize the system.

9-4 Contributions

This thesis is a contribution to the field of systems and control and more specifically discrete
event and max-min-plus-scaling systems through the following results:

• A schematic way is described to implement input signals in MMPS systems by defining
the ABCDE canonical form
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• Distinguishing three input strategies of adding input signal to MMPS systems based on
mathematical differences

• Introducing the concept of open-loop and closed-loop control on MMPS systems

• Defining the concept of regions in MMPS systems and computing an algorithm that
finds the boundaries between regions

• Creating optimization-based closed-loop control algorithms to reach several objectives
such as minimizing the closed-loop growth rate, minimizing the difference between out-
put and reference signal and forcing the system to switch between stable regions

• Applying an optimization-based control technique to improve the performance of the
URS
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Chapter 10

Recommendations for future work

This chapter presents several recommendations for future work, building on the findings and
methodologies explored in this thesis. Each suggestion aims to deepen the understanding
of max-min-plus-scaling (MMPS) systems, broaden their potential applications, or enhance
the methodological approaches within this field. Additionally, specific recommendations are
provided to improve the closed-loop structure of the urban railway system (URS).

• Establish requirements for monotonicity and non-expansiveness of explicit
MMPS with both temporal and quantity signals

This thesis defines requirements for monotonicity and non-expansiveness of explicit MMPS
systems with only temporal signals. Future work could investigate whether similar require-
ments can be established for systems incorporating both temporal and quantity signals.

• Define monotonicity and non-expansiveness requirements for implicit MMPS
systems

While monotonicity and non-expansiveness are well-defined for explicit MMPS systems, simi-
lar definitions for implicit systems remain unexplored. Examining these properties in implicit
MMPS systems would be very useful. Particularly in the situation where implicit systems are
time-invariant, monotonic and non-expansive, also known as topical. Then the system has
always exactly one growth rate.

• Analyse closed-loop eigenvalues and eigenvectors in MMPS systems

The algorithm that computes eigenvalues and eigenvectors for autonomous MMPS systems
can also be used to study the closed-loop systems. See if the addition of feedback matrices or
reference signals in the closed-loop system matrices affect the eigenvalues and eigenvectors.
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• Reformulate the optimization problem as a linear programming problem
(LPP)

MMPS systems can be represented by linear equations, enabling reformulation of the opti-
mization problem as a linear programming problem (LPP). This reformulation could eliminate
the need for complex algorithms like Sequential Quadratic Programming (SQP) or genetic
algorithm (GA), simplifying solution approaches and enhancing computational efficiency.

• Experiment with alternative input signals in the URS

In this thesis, two specific input signals were introduced to control the URS. Future work
could explore additional input signals at various points in the URS system equations, leading
to alternative closed-loop structures. Potentially, improving the performance of the URS.

• Conduct simulations with variable parameters

The initial conditions of the URS were modified in this study, yet the impact of varying
parameters, such as passenger arrival rates at different stations, remains an area for future
exploration. This would better simulate real-world conditions, where station dynamics vary
significantly.

• Develop more real-world examples of MMPS systems

Currently, few real-world applications of MMPS systems exist in the literature. Creating
practical examples could not only fill this gap but also offer new tools for problem-solving and
decision-making processes. Applications could include transportation systems, production
scheduling, or queuing networks, where MMPS modelling could offer a distinctive advantage.
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Appendix A

Mathematical properties

In this Appendix, mathematical properties regarding dioid algebra can be found. These math-
ematical properties can be used to define similarities between dioid and plus-times algebra.
Furthermore, several properties of max and min operators are discussed, which can be used
to rewrite MMPS system from one to another canonical form.

A-1 Algebraic properties of dioid algebra

In Section XX, the definition was already discussed, where a dioid uses two operations namely
addition (⊕) and multiplication (⊗). This algebra has a lot of properties that also account
in plus-times algebra. The properties are described in max-plus algebra but also apply for
min-plus. The properties are gathered from [10].

Associativity

If the same operator is used twice or more after one another, the order does not matter.

∀a, b, c ∈ Rε : a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

∀a, b, c ∈ Rε : a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (A-1)

Commutativity

Changing the order of the operation will not change the result.

∀a, b ∈ Rε : a ⊕ b = b ⊕ a and a ⊗ b = b ⊗ a. (A-2)
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Distributivity of ⊗ over ⊕

When the ⊗ operator is used on ⊕ operations, all elements in the ⊕ operation will be multiplied
by the value relating to ⊗.

∀a, b, c ∈ Rε : a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c). (A-3)

Existence of a zero element

∀a ∈ Rε : a ⊕ ε = ε ⊕ a = a. (A-4)

Existence of a unit element

∀a ∈ Rε : a ⊗ e = e ⊗ a = a. (A-5)

The zero is absorbing for ⊗

The zero is absorbing in combination with the ⊗ operator.

∀a ∈ Rε : a ⊗ ε = ε ⊗ a = ε. (A-6)

Idempotency of ⊕

The continuous use of the ⊕ operation on the same element will not change the previous
result.

∀a ∈ Rε : a ⊕ a = a. (A-7)

The final property is particularly important. This means that in dioid systems information
can not be obtained using inverse equations. For example when you have:

∀a, b ∈ Rε : a ⊕ b = b. (A-8)

The information of a is lost in the process and can not be obtained by just the information
of b.

A-2 Properties of max and min operators

The properties in this appendix are based on information from [12]. Let α, β, γ, δ ∈ R. Since
minimization is distributive with respect to maximization we have that:

min(α, max(β, γ)) = max(min(α, β), min(α, γ)) (A-9)

and thus,

min(max(α, β), max(γ, δ)) = max(min(α, γ), min(α, δ), min(β, γ), min(β, δ))
max(min(α, β), min(γ, δ)) = min(max(α, γ), max(α, δ), max(β, γ), max(β, δ)) (A-10)
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Furthermore, addition is distributive with respect to minimization and maximization. Which
gives that:

min(α, β) + min(γ, δ) = min(α + γ, α + δ, β + γ, β + δ)
max(α, β) + max(γ, δ) = max(α + γ, α + δ, β + γ, β + δ) (A-11)

To switch between just the min and max operators we can use that:

max(α, β) = − min(−α, −β) (A-12)

Finally, if we have a positive ρ ∈ R, then:

ρ · max(α, β) = max(ρ · α, ρ · β)
ρ · min(α, β) = min(ρ · α, ρ · β) (A-13)
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Glossary

List of Acronyms

CT continuous time
DE discrete event
DT discrete time
GA genetic algorithm
LP linear programming
ME Mechanical Engineering
MMP max-min-plus
MMPS max-min-plus-scaling
MPC model predictive control
MPL max-plus linear
SQP Sequential Quadratic Programming
URS urban railway system

List of Symbols

Nc Control horizon
Np Prediction horizon
∆ Difference operator, ∆x1,2 = x1 − x2

λ Additive eigenvalue or growth rate
P Max-plus Hilbert projective norm
R Set of real numbers
R⊤ Set of real numbers including ⊤
Rε Set of real numbers including ε

Z+ Set of positive Integers
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R Either R,Rε or R⊤

µ Multiplicative eigenvalue
⊕ Max-plus addition operator ("o-plus")
⊕′ Min-plus addition operator ("o-plus-prime")
⊗ Max-plus multiplication operator ("o-times")
⊗′ Min-plus multiplication operator ("o-times-prime")
⊤ Min-plus zero element, ε = ∞
ε Max-plus zero element, ε = −∞
nq Amount of quantity signals
nt Amount of temporal signals
v Additive eigenvector or fixed-point
w Multiplicative eigenvector
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