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As predicted by Gordon E. Moore in 1975, the number of transistors
has doubled every two years over the last decades. This technol-
ogy scaling led to a higher performance of Integrated Circuits (ICs)
like processors, but have also made these devices more susceptible to
Single Event Effects (SEEs). SEEs are caused by transistors chang-
ing state unintended due to particles disposing significant amounts
of energy when they hit an IC. In this thesis, the design, imple-
mentation, and verification of a fault tolerant RISC-V processor,
which can detect two errors and correct one error, is presented. The
RISC-V Instruction Set Architecture (ISA) is an open-source archi-
tecture which defines all interactions between the software and hard-
ware. Two designs, the ECC-based and Hybrid design, are presented
which both use Error Correction Codes (ECC) and N-Modular Re-
dundancy (NMR) for adding fault tolerance to the softcore. Ham-
ming Single Error Correction, Double Error Detection (SECDED)
codes were selected as the ECC coding scheme. The hybrid design,
which uses NMR in the pipeline and ECC for memory elements, is
chosen for implementation, because it has a lower complexity, less
Single Points of Failure (SPOFs) and a higher estimated clock fre-
quency. The design’s fault tolerance is verified with fault injection

through saboteurs, which are placed at predefined locations in the design. The test architecture for the
design consists of a verification suite, a simulation-based environment using ModelSim and an on-board test
environment using a Spartan-6 Field Programmable Gate Array (FPGA). The verification tests showed
that the hybrid design can mitigate all injected single and double faults, without having a single failure
occurring. The design did not meet the clock frequency and resource utilization targets set by Technolution
B.V. because of long delay paths and large decoders. The design, however, allows for improvements like
the insertion of extra pipeline stages and parallel decoding and data processing.
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Abstract

As predicted by Gordon E. Moore in 1975, the number of transistors has doubled every
two years over the last decades. This technology scaling led to a higher performance of Inte-
grated Circuits (ICs) like processors, but have also made these devices more susceptible to Single
Event Effects (SEEs). SEEs are caused by transistors changing state unintended due to particles
disposing significant amounts of energy when they hit an IC. In this thesis, the design, imple-
mentation, and verification of a fault tolerant RISC-V processor, which can detect two errors and
correct one error, is presented. The RISC-V Instruction Set Architecture (ISA) is an open-source
architecture which defines all interactions between the software and hardware. Two designs, the
ECC-based and Hybrid design, are presented which both use Error Correction Codes (ECC) and
N-Modular Redundancy (NMR) for adding fault tolerance to the softcore. Hamming Single Error
Correction, Double Error Detection (SECDED) codes were selected as the ECC coding scheme.
The hybrid design, which uses NMR in the pipeline and ECC for memory elements, is chosen
for implementation, because it has a lower complexity, less Single Points of Failure (SPOFs) and
a higher estimated clock frequency. The design’s fault tolerance is verified with fault injection
through saboteurs, which are placed at predefined locations in the design. The test architecture
for the design consists of a verification suite, a simulation-based environment using ModelSim
and an on-board test environment using a Spartan-6 Field Programmable Gate Array (FPGA).
The verification tests showed that the hybrid design can mitigate all injected single and double
faults, without having a single failure occurring. The design did not meet the clock frequency
and resource utilization targets set by Technolution B.V. because of long delay paths and large
decoders. The design, however, allows for improvements like the insertion of extra pipeline stages
and parallel decoding and data processing.
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Introduction 1
In 1965 Gordon E. Moore, one of the co-founders of Intel, predicted that by 1975 65,000
components would be included in a single silicon chip [13]. Over the years the extrapola-
tion of this prediction has become known as Moore’s Law: the number of transistors on a
single chip will double approximately every two years [14]. Although this may seem like
a very bold statement, industry and science have proved that this law is a self-fulfilling
prophecy. This increase resulted in massive advances in computational power of devices
using integrated circuits, but also a large decrease in power consumption, as the size of
each transistor became smaller and smaller and circuits could operate at lower supply
voltages. These advances did, however, come with disadvantages: smaller transistors
will fail sooner due to higher wear and tear and integrated circuits became susceptible
to soft errors or Single Event Effects (SEEs).

Soft errors are caused by transistors changing state unintended due to particles dis-
posing significant amounts of energy when they hit an Integrated Circuit (IC). Because
the transistors became smaller and smaller the amount of energy required to induce such
state changes also became smaller. These effects were first reported in 1975 for ICs used
in satellites in space where large amounts of radiation are present [15]. Initially, these
effects could be avoided by using older technology with larger transistors in space equip-
ment. However, over the years the transistor sizes have shrunk so much, that nowadays
soft errors are also experienced at normal flight altitudes for civilian aviation [16] and
even at ground level [17]. Applications like respiratory support devices, heart rate moni-
tors, and other live supporting equipment in hospitals can make life-threatening mistakes
due to a single transistor accidentally changing its state. However, also equipment used
for access control in buildings like smart cards could be influenced by soft errors, result-
ing in potential security breaches. Using older technology for such applications is not
an option, as the demands for more computational power and lower power consumption
are rising. Therefore, other solutions are required to solve this problem.

Traditionally, Central Processing Units (CPUs) are used for most applications as
the development of software is relatively cheap. For most applications the performance
of a modern CPU is sufficient, but for more computationally intensive applications like
radar or data security applications, this is not enough. Such applications use a lot of
Digital Signal Processing and cryptography algorithms, which cannot complete their
tasks in real-time when executed on a CPU. These applications typically use a Field
Programmable Gate Array (FPGA), a reconfigurable chip used for designing dedicated
hardware for computationally intensive tasks. The dedicated hardware blocks used in
FPGAs can perform these very intensive tasks much faster than a CPU, but are more
expensive to develop than software. These specialized designs often include a softcore, a
small CPU, which can perform simple tasks which do not require more expensive hard-
ware blocks. Applications used in high safety or security critical environments could use

1
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FPGAs instead of CPUs if these are better suited for the requirements of the applica-
tion. If such an FPGA design includes a softcore, it should, however, be able to handle
soft errors, as mistakes are not allowed. But how could a softcore be modified so it can
handle soft errors?

Today, there are multiple softcores available on the market, developed by open source
communities or (large) companies. The softcores developed by companies are often
proprietary and can only be used when expensive licenses are acquired. Most of these
softcores are not suited for handling soft errors, so dedicated solutions need to be added
to the design. However, most companies do not provide the source files of the design
and do not allow modification of their design. Open source softcores provide more
possibilities for modification as the source files of the design are available, but often lack
the support of a software ecosystem which severely limits the usability of these softcores
in any application.

In the last few years, a new open source initiative emerged: the RISC-V Instruction
Set Architecture (ISA). An ISA is the architecture which defines all interactions be-
tween the software and the hardware of a processor including available data types and
instructions. The community provides a complete specification of the ISA along with
an extensive software ecosystem, which can be used for software development. The only
thing left to design for individual members of the community is the processor itself. This
gives the freedom to design a softcore with all kinds of extra features required for spe-
cific applications. The open source RISC-V ISA provided Technolution B.V. with the
opportunity to design a softcore which can handle soft errors for future opportunities in
the high safety and security critical domain. This thesis will describe how this softcore
was designed, implemented, and verified and which solutions were used to handle soft
errors.

1.1 Problem statement, Thesis objectives & Methodology

The starting point of this thesis is the baseline implementation of the softcore made by
Technolution B.V., which uses the classic five-stage Reduced Instruction Set Computer
(RISC) pipeline [18] and is implemented in the Very High Speed Integrated Circuit
Hardware Description Language (VHDL). The to be developed variant of this softcore
is targeted at high safety and high-security applications, so the correct execution flow
should not be influenced by an SEE without such errors being detected. The problem
statement can be formulated as:

How can an RISC-V softcore using a classic five-stage RISC pipeline be ex-
tended such that a maximum of two concurrent Single Event Effects in the
pipeline or in data or address words cannot influence the correct execution
flow of the processor without being detected in a modular and efficient way?

Based on the problem statement the thesis objectives can be formulated as:

1. To design a modular and efficient solution for detecting and correcting errors in
the pipeline and in data or address words in an RISC-V softcore.
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2. To implement the design as a proof of concept on a Xilinx Spartan-6 while taking
platform independence into account.

3. To verify the implemented solution and thus prove its correctness.

4. To provide possible options for improving the designed solution.

To find a solution for the proposed problem statement and to achieve the thesis
objectives, a research methodology is defined. This methodology will be used to structure
the work in this thesis:

• Study the possible causes of Single Event Effects in softcores.

• Study existing solutions for detection and correction of Single Event Effects in
processors.

• Design possible solutions for the target system based on existing solutions found
in literature.

• Implement the most suitable solution found for the existing RISC-V softcore in a
modular and efficient manner.

• Test the implemented solution comprehensively and thus prove the correctness of
the implemented solution.

• Analyze the results of the implementation and compare these with the baseline.

• Draw conclusions based on the results from both the implementation and verifica-
tion phase

• Provide possible options for future development of the implemented solution.

1.2 Thesis Outline

This thesis is structured as follows:
In Chapter 2 the background for this thesis will be presented. Both natural and

human-induced causes of Single Event Effects and their effects in softcores will be inves-
tigated. Based on these causes different solutions for mitigating these effects in softcores
will be studied as these will provide the basis for the designs made in this thesis. These
solutions will be investigated for the two major regions in a processor: the pipeline and
the memory elements, as different solutions are available for these regions. Lastly, meth-
ods for verifying these solutions will be investigated as such methods need to be used to
verify the implemented design.

In Chapter 3 the RISC-V softcore and Instruction Set Architecture, which form the
basis for the project, will be introduced. Based on the problem statement, the targeted
fault model will be defined along with the design criteria for which each design will be
evaluated. The design options found in Chapter 2 will then be evaluated for these design
criteria and a selection of the most suitable options for the design process will be made.
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With the selected design options, two designs based on two different concepts will be
made. These designs will be evaluated for each of the design criteria which will result
in a design choice for the implementation. This evaluation will also include a design
cost estimate based on the cost of the baseline implementation and some basic block
implementations. Finally, the method for verifying the selected design will be presented
based on the presented literature.

In Chapter 4 the implementation for selected parts of the design will be described.
These selected parts are the most important parts of selected design, which will largely
define the capabilities and the cost of the implemented design. The block implementation
descriptions will include the block design, unit test, and the cost estimates. Furthermore,
the changes to the System on Chip (SoC) like the addition of extra register blocks will
be described. The memory mapping used by the SoC during verification will also be
discussed.

In Chapter 5 the result of the verification of the design will be discussed. Firstly, the
test architecture used will be presented, which includes the locations for fault injection,
the test applications used and the test cases. The test results will include the instruction
coverage of the test applications, which provide an insight into the comprehensiveness of
the test suite, and the fault injection results. Besides the test results, the results from
synthesis will also be presented as these provide an indication of the cost of the design
and its efficiency.

In Chapter 6 the thesis will be summarized, the main contributions will be listed,
and possible options for future improvements to the design will be presented.



Fault Tolerance in softcores 2
In the current IC technology Single Event Effects (SEEs) caused by strikes of particles are
regularly occurring. As these SEEs can influence the functionality of a chip or the result
of the computation, there is a need for fault tolerance in mission critical applications, like
control in space and avionics or medical appliances at ground level. In this chapter, the
source of SEEs will be investigated along with the resulting effects. Known techniques for
dealing with these effects will be presented and evaluated for detection and correction
capabilities, efficiency and overhead. This study will finish with a short overview of
techniques which can be used for verification of the error mitigation capability. But
first, the RISC-V ISA will be introduced.

2.1 RISC-V Instruction Set Architecture

The RISC-V Instruction Set Architecture was originally developed by researchers from
the Computer Science Division at the Electrical Engineering and Computer Science
department of the University of California, Berkeley. The initial purpose of the ISA was
to support computer architecture research and education as proprietary ISAs are often
not suitable for those purposes. Nowadays, the ISA is also aiming to become a standard
open source architecture used by industry for their implementations and is therefore now
governed by the RISC-V Foundation. Some of the goals of the current RISC-V ISA are
[19]:

• A completely open ISA that is freely available.

• A real ISA suitable for direct native hardware implementation.

• An ISA that avoids “over-architecting” for a particular microarchitecture style or
implementation technology, but always allows efficient implementation in any of
these.

• An ISA separated into a small base integer ISA and optional standard extensions
while also supporting extensive user-level ISA extensions and specialized variants.

• An ISA supporting both 32-bit and 64-bit address space variants.

• An ISA with support for highly parallel multicore or manycore implementations,
including heterogeneous multiprocessors.

The original developers from Berkeley could have used a commercial ISA for their
purposes, as these often have a large and widely supported software ecosystem and come
with large amounts of documentation and tutorials. The developers, however, decided

5
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against this, based on the following disadvantages [19] which outweigh the mentioned
advantages:

• Commercial ISAs are proprietary.

• Commercial ISAs are only popular in certain market domains.

• Commercial ISAs come and go.

• Popular commercial ISAs are complex.

• Commercial ISAs are not enough to bring up applications.

• Popular commercial ISAs were not designed for extensibility.

• A modified commercial ISA is a new ISA.

As mentioned in the goals of the ISA, it contains a small base integer ISA, which can
be extended with additional extension, both standard as defined in the user-level specifi-
cation[19] or user-defined. The 32-bit base integer instruction set is called RV32I and its
64-bit brother is called RV64I. The standard extensions as defined by the specification
are:

• M: integer multiplication and division

• A: atomic instructions

• F: single-precision floating-point

• D: double-precision floating-point

• Q: quad-precision floating-point

For stable software development additional targets, called RV32G and RV64G, are
defined, which are a combination of the base instruction set (RV32I or RV64I) plus
selected standard extensions (IMAFD1). Some other standard extensions are mentioned
in the user-level specification but are still under development at the time of writing.

The RISC-V ISA in general uses a load/store architecture which divides instructions
into two separate classes: memory access instructions and ALU operations. In the RV32I
instruction set the memory access instructions are the load and store instructions which
have versions for byte, half word, and word data accesses. The ALU operations for
RV32I are basic logic, arithmetic, branch, jump and timing instructions.

1I stands for the base integer instruction set
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2.2 Single Event Effects

SEEs are caused by particles disposing significant amounts of energy when they hit an
IC. These particles can originate from different sources [20]:

• Cosmic radiation consisting of large amounts of high energy particles which can
liberate nuclei when colliding with molecules in the IC.

• Atmospheric interactions with cosmic radiation creating highly energized particles.

• Particles (small traces of uranium and thorium) in the packaging materials emitting
alpha particles while decaying.

• Boron-10 isotopes, used in polysilicon doping, substrate doping, and borophospho-
silicate glass, creating alpha particles when struck by low energy neutrons.

There are two ways in which high-energy particles can cause SEEs in an IC: direct
or indirect ionization [21]. When an inciding particle has enough energetic charge, the
particle can free up electron-hole pairs in the semiconductor material along its path.
When the particle has lost all of its energy, it will come to rest. The amount of energy
deposited is denoted by the Linear Energy Transfer (LET) which is the energy loss per
unit path length of a particle as it passes through a material [21]. If the charge of a
group of freed electron-hole pairs is high enough in the right place (typically around PN
junctions) it will cause unwanted effects in the device. These effects can be categorized
as follows [20][21]:

• Single Event Upset (SEU): a change in the state of a memory element. The
susceptibility to SEUs depends on the type of memory element (Static Random
Access Memory (SRAM), Flash etc).

• Single Event Transient (SET) a voltage pulse in combinatorial circuits which
can result in erroneous data values propagating through the circuit.

• Single Event Functional Interrupt (SEFI) an effect which triggers the FPGA
to (temporarily) lose functionality.

• Single Event Multiple Bit Upset (SEMBU): a single particle strike which
causes more than one error in the FPGA.

• Single Event Latchup (SEL): a short circuit which disrupts the functioning of
the FPGA and could lead to the destruction of the FPGA. An SEL can only be
solved by power cycling the device.

SEUs were first reported to have happened in a satellite in 1975 in [15]. These effects
were initially tackled by using radiation hardened hardware, but during the 1990s the
number of manufacturers who offered such devices rapidly decreased. This was due to
the higher costs of such devices and the fact that such devices did not use state-of-the-
art technology. The sensitivity to SEEs was increased significantly as the feature size
decreased. This resulted in SEEs not only happening in space but also in avionics [16]
and on ground level [17]. This created the necessity to implement fault tolerance in
mission-critical devices on the ground level as well as in space.
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2.3 Fault Attacks

Besides SEEs caused by physical causes SEEs can also be caused on purpose. Fault
attacks are used by attackers to disturb the functioning of a processor or retrieve secret
information. Fault attacks are mostly used for cryptography applications and can be
induced by the following sources [22] [23]:

• Glitch attacks: Glitches in the supply voltage or the external clock can disturb
the correct execution of the processor. Glitches in the supply voltage can cause
the processor to misinterpret or skip instructions whereas glitches in the clock can
cause data misreads or instruction misses.

• Temperature based attacks: By using an IC outside of the specified operating
temperature range the functionality might be disabled.

• Light attacks: White light can induce currents because electric circuits are sen-
sitive to photoelectric effects. Lasers can induce similar currents, but due to the
directionality of a laser, these current can be targeted at specific areas of the circuit.

• Radiation attacks: X-rays and ion beams can also induce currents in the circuits
and have the advantage that the packaging does not have to be removed for being
effective, whereas this is needed for white light and lasers.

• Magnetic attacks: Magnetic pulses can create local currents on the surface of
the component, which can generate a fault.

When launching a fault attack, there are two major issues the attacker needs to deal
with: the time and place the fault occurs. The fault needs to happen at the right time
in the execution flow for it to have the right effect. The execution flow of the processor
can be monitored by using side channel information like the power consumption, and
the magnetic radiations or events like writes to external memory.

When the fault occurs at the right time, it also has to occur at the right place in
the chip. Glitch attacks, variations in the supply voltage or external clock, are coarse
techniques because they perturb the whole chip. Temperature magnetic, white light and
X-ray based attacks can be directed to specific areas of the circuit, but the directionality
of these sources can be limited, so the surrounding areas in the circuit could also be
affected by these attacks. Laser and ion beams sources have a higher degree of direc-
tionality and can, therefore, be targeted at small areas of the circuit and thus have the
best result when a fault in a specific component is needed.

Fault attacks can target different parts of a softcore: the inputs, memory banks, the
data path or the control path. Furthermore, the precision of the induced fault attacks
can range from single bits to complete words [24]. For all these combinations of targets
and precision, the effects of a fault on the execution of processor will be different. FPGAs
mostly use SRAM or Flash cells to store data from the core and the configuration data.
[25] describes a light attack on SRAM cells which can be used to flip a single transistor
or reverse engineer the memory address map. [26] improves this type of attack by using
a laser instead of white light from a flashlight, which enables the attacker to prevent
memory updates by exposing the memory control logic.
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2.4 Impact of faults

When an SEE occurs in a softcore, it could affect the execution flow of the processor.
Depending on the location and time of the SEE, the impact of the SEE will differ ranging
from no effects on the correct execution flow to a failing execution flow. In analyzing
the impact of an SEE, the terms fault, error, and failure are often used [27]:

• Fault: the cause of a malfunction.

• Error: the system state due to a fault which may cause a failure.

• Failure: the undesired effect observed in the system’s delivered service.

An SEE is classified as a fault and often creates an error, but not all errors will cause
a failure. Four scenarios are possible when an error is present in the system:

• Correctable error: The error is detected and corrected and will not cause a
failure.

• Detectable error: The error is detected, but cannot be corrected. Uncorrectable
errors can cause a failure depending on the system handling of this type of errors.

• Silent error: The error is masked by logic. These errors are not detected nor
corrected and do not cause a failure.

• Undetectable error: The error is not detected nor corrected and causes a failure.

2.5 Forms of Redundancy

Fault tolerance can be provided by adding redundancy to a system, so the system will
be able to mitigate the effects caused by a fault. Redundancy is defined as having more
of a resource than is minimally necessary to do the job at hand [28]. The different forms
of redundancy in a system can be divided into four main categories [28]:

• Hardware redundancy: incorporating extra hardware into the design to either
detect or correct the effects of a failure in the system.

– Static hardware redundancy: the form of hardware redundancy aimed at
immediate masking of a failure.

– Dynamic redundancy: the activation of spare components for replacing a
currently active component which has produced a failure

– Hybrid hardware redundancy: the combination of static and dynamic hard-
ware redundancy

• Information redundancy: application of error detection and correction codes
for the protection of information in memory or data communication systems.
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• Time redundancy: re-execution of the same program on the same hardware for
detection of transient faults.

• Software redundancy: using several different independent versions of a program
for dealing with faults in the software.

Software redundancy will not be used in this thesis because this form only provides
protection against software faults whereas SEEs are hardware faults. The applicability
of time redundancy for a softcore is also somewhat limited because it can only compen-
sate for transient faults. SEUs in the processor memory or the configuration memory
cannot be mitigated with this form of redundancy. Some form of scrubbing (checking of
configuration memory) or reconfiguration can be used to compensate for configuration
errors, but this will not solve all limitations. Both hardware and information redundancy
can be used effectively in softcores because they can mitigate both SEUs and SETs. But
just like with time redundancy, information redundancy cannot compensate for config-
uration errors. In some implementation options, hardware redundancy can mitigate the
effects of configuration errors, because a component has multiple instantiations within
the system.

Depending on the form and level of redundancy applied, faults can be detected or
corrected. With detection, a fault is only detected and the processor has to be restarted
or rolled back to a previous state and restart execution for mitigation of the fault. If
correction is possible, the erroneous result can be corrected so the processor can continue
with the correct result and no restart or rollback is required. For correction, a higher
level of redundancy is required than for detection, because the processor needs to know
what kind of error has occurred. Some levels of redundancy combine error correction
and detection capabilities into one system which can correct x errors and detect y where
x < y.

Using redundancy ensures that the systems will maintain its functionality, but it
will induce a penalty or overhead. In Table 2.1 the impact of the different forms of
redundancy on the area and performance of a softcore are listed.

Table 2.1: The impact of redundancy on the area and performance of a softcore.

Redundancy Area Performance

Hardware high low
Information medium medium
Time low high
Software low high

2.6 Redundancy in the Pipeline

In a processor, most of the data is manipulated in the pipeline. If an SEE occurs in the
pipeline, it should be intercepted before the result is committed to the register file or
memory or a jump or branch is taken.



2.6. REDUNDANCY IN THE PIPELINE 11

2.6.1 Triple Modular Redundancy

Triple Modular Redundancy (TMR) is a technique providing hardware redundancy by
executing the same process in three different modules [29]. Once the modules are finished
a majority voter will decide which outcome is the correct result. In Table 2.2 an example
of the single bit majority voting procedure for TMR is presented. TMR can correct one
error for single bit signals and possible detect two errors if the for multi-bit signals if the
majority voting procedure is not applied per bit but per word.

Table 2.2: The single bit majority voting procedure for TMR.

Input Output

000 0
001 0
011 1
111 1

One of the main drawbacks of this method is that the pipeline is triplicated which
results in an area overhead of more than three times the size of the original pipeline.
Furthermore, the error correction and detection capabilities are somewhat limited. More
pipelines could be added to increase these capabilities, but this will result in a larger
area overhead.

Figure 2.1: The TMR cell used in the modified ARM® Cortex®-R4 CPU [1].

There are techniques which optimize the overhead of TMR by applying it selectively
in the pipeline. [1] describes a solution for the ARM® Cortex®-R4 CPU where all
sequential cells are replaced by special TMR cells, consisting of three D-flip-flops and a
majority voter to cancel the effects of an SEU (depicted in Fig. 2.1). To prevent SETs
from propagating, delay elements are used to delay the input of Flip Flop (FF) two and
three, so the SET will have faded out when these flip-flops sample the input. The choice
of delay for these delay cells is critical for the robustness and efficiency of this solution.
A short delay might result in a limited capability of detecting and canceling out SETs,
but a large delay will result in a high clock frequency overhead. The frequency overhead
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is caused by the fact that the minimum path delay of any combinatorial circuit should
be larger than the delay of 2 delay elements. In the described implementation in 65 nm
GP technology, the CPU clock frequency is 31%. The dynamic power overhead is 2.04x,
and the area overhead is 2x which is considerably less than the overhead of a standard
TMR implementation. The overhead could be further reduced if the cache sizes would
be increased; the used cache size is 16 KB.

2.6.1.1 Selective TMR

For the implementation in [1] the designer has to implement the TMR himself, but there
are also techniques available which can automatically identify the circuits which are
sensitive to SEEs and implement the needed TMR for these circuits.

In [30] an algorithm for applying TMR to selected parts of the circuit, called Selective
Triple Modular Redundancy (STMR), is described. The algorithm identifies the sensitive
subcircuits based on the input signal probabilities which are propagated through the
circuit. A subcircuit is marked sensitive if an SEU occurring in this circuit has a high
probability of affecting one of the circuit outputs. For all sensitive circuits TMR is
applied. If the output of a triplicated subcircuit is connected to only one other subcircuit
a majority voter will be inserted to accumulate the results of the triplicated circuit. This
algorithm ensures that only those gates which really need redundancy are triplicated,
which results in a saving of about one third of area overhead compared to traditional
TMR. However, STMR cannot guarantee that no single error will propagate through
the circuit because the appliance of TMR is based on signal probabilities. It should
also be noted that in some cases the result of the STMR algorithm will be the same
as for traditional TMR, because of the choice of parameters and signal probabilities.
But the largest limitation of the algorithm described is that it can only be applied to
combinatorial circuits and not to sequential circuits which are also present in a processor
pipeline.

In [31] another methodology for inserting STMR, which is applied to flip-flops instead
of combinatorial circuits, is described. This methodology uses a graph-partitioning like
algorithm, which are NP-complete, for partitioning the registers into two graphs: one
for sensitive register, which are triplicated, and one for non-sensitive registers. These
partitions are then optimized based on the cost function and reliability constraints, which
are defined as the maximum percentage of wrong cycles allowed in each output of the
target design. For reducing the runtime performance of the algorithm, optimizations are
applied to the choice of the initial partition, so less candidate solutions in the search
space have to be explored, before the optimal solution is found. The FFs for the initial
partition are selected based on five parameters [31]:

• Fan in: the number of FFs which influence the state of the analyzed flip-flop.
• Fan out: the number of FFs which are affected by the state of the analyzed

flip-flop.
• Influence on output paths: the number of primary outputs which are affected

by the analyzed FF.
• Proximity to outputs: proximity of the evaluated FF to the outputs which are

affected by it.



2.6. REDUNDANCY IN THE PIPELINE 13

• Feedback loops: the output signal of a FF is fed back to its input, directly or
through several previous stages.

The results show that the applied optimizations do result in a significant saving in
run-time, because the number of explored partial solutions is reduced. The results also
show that the algorithm can find a solution, which satisfies the reliability constraints.
But if no wrong cycles are allowed the algorithm cannot find a solution which is better
than TMR, so this algorithm is only useful when some errors are allowed.

2.6.2 Lockstep

So far only methods which triplicate hardware have been discussed, but duplication of
hardware, called Dual Modular Redundancy (DMR), is also a feasible option for error
detection. Error correction is not possible with DMR because the level of redundancy is
too low.

Figure 2.2: The DMR architecture using two embedded PowerPC cores as proposed in [2].

[2] describes a solution which uses DMR for providing fault tolerance for two em-
bedded PowerPC cores in a Xilinx Virtex II Pro FPGA (depicted in Fig. 2.2). The two
PowerPC cores (PPC0 and PPC1) are both running the same program and are interrupted
at predefined points for a consistency check. Locksteps can be defined by milestones in
the program like data memory transactions. Large execution cycles, the time spanned
by a lockstep, will reduce the performance penalty of the consistency checks, but can
result in more damage caused by a fault. If a consistency check fails, the program needs
to be brought back to a consistent state without faults. The processor can restart the
program or load a previously saved checkpoint which did not contain faults from a safe
(fault-immune) storage. The context is defined as the set of information needed to un-
equivocally define the state of a processor-based system. When the consistency check
fails, a rollback operation is executed which should bring the processors back to a fault-
free state. Initial results in [2] showed that the architecture is not affected by most
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injected faults (around 97%). The faults that did result in wrong results were faults
inserted in one execution cycle, but only manifested themselves in the next execution
cycle and were thus saved in a context.

To eliminate the effects of faults which are saved in a context, further improvements
were made in [32]. The main improvement is that several contexts are saved in the safe
storage, so multiple rollback operations can be performed to bring the processor back to a
fault-free state. However, saving more contexts is expensive, because safe storage blocks
will typically consume more area than normal storage blocks. Therefore, a trade-off
should be made, between the number of contexts to be saved and how often checkpoints
are inserted. Checkpoints do not necessarily have to be inserted after every lockstep, but
could also have multiple locksteps in between, so an execution cycle will span a larger
portion of the execution flow. The first results in [32] showed that none of the faults
resulted in not being detected and causing erroneous results, so the previously noticed
problem was solved. The only faults remaining undetected are faults which cause both
processors to produce the same erroneous result. The percentage of these faults varies
with the interval between context savings: the smaller the interval, the higher the error
rate. For 100.0% context savings the overhead is 8.6 times and for 16.7% context savings
the overhead is still 5.6.

The large execution time overhead is caused mostly by the saving of the context which
includes the whole data segments of an application. To reduce this overhead, the Write
History Table (WHT in Fig. 2.2) was inserted in the architecture. The WHT contains all
address-value pairs changed in an execution cycle. When the WHT is full, a consistency
check is performed, and the data in the WHT is saved in a data segment mirror area
instead of copying the whole data segment to the safe storage with the context. When
the consistency check fails, the WHT is flushed, the context is rolled back, and the data
segment is restored from the data segment mirror area. The results in [32] showed that
for applications with large data segments the usage of a WHT increases the number of
cycles per write compared to the architecture without WHT. For applications with small
data segments, this improvement does not work.

2.6.3 DIVA

Figure 2.3: The dynamic implementation verification architecture for an out-of-order super-
scalar processor. [3]
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Apart from TMR and lockstep, there are other techniques which can provide hard-
ware redundancy without replicating the pipeline or elements of the pipeline. In [4] a
processor architecture with a built-in checker unit is proposed based on the Dynamic
Implementation Verification Architecture (DIVA) concept which was proposed in [3].
DIVA is an architecture which uses a dedicated checker for checking the results of a
superscalar, out-of-order processor before the commit stage (depicted in Fig. 2.3). In
[3] a DIVA checker is inserted to provide functional and electrical verification for the
DIVA core by performing the calculation or fetch for the second time. The improved
reliability of the checker is achieved by using a much simpler design for the DIVA checker
than for the DIVA core and by using larger transistors for the checker so that it will
be more resistant to SEEs. This should guarantee that the checker is 100% reliable and
thus will always be able to correct all faults of the core and introduce no other faults.
This approach is feasible for a complex processor implemented in an Application Specific
Integrated Circuit (ASIC), but for a lightweight processor implemented on an FPGA,
this approach does not provide the needed fault tolerance.

Therefore, a modified DIVA architecture was proposed in [4] which does not assume
that the checker is fully reliable and uses a standard RISC pipelined processor instead
of a complex out-of-order superscalar processor. When an error occurs, the pipeline
is flushed and restarted at the instruction causing the fault instead of committing the
result of the checker. As the memory is now protected by Error Correction Codes
(ECC), there is no need to re-execute memory loads and stores, which eliminates memory
contention between the core and the checker. In the provided example based on the
LEON3 processor, the checker is inserted in the pipeline, by adding an extra ALU in the
Exception stage and an extra stage for comparing the results of the Execute stage and the
extra ALU (depicted in Fig. 2.4). This implementation provides hardware redundancy
and a limited form of time redundancy. The results show that for an error rate of 10% the
modified DIVA architecture has a 70% execution time overhead. In error free operation
the performance overhead is 0% due to the forwarding paths added from the checker
unit.

2.6.4 Error Correction Codes

In memories Error Correction Codes (ECC) are often used to provide protection against
SEEs. But these codes can also be used to provide fault tolerance in processor pipelines
as shown in this survey [33].

2.6.4.1 Fault Tolerant RISC (FT-RISC)

In [5] an implementation of a fault tolerant RISC processor using Single Error Cor-
rection, Double Error Detection (SECDED) Hamming codes is discussed (depicted in
Fig. 2.5). Hamming codes are often used for protecting memories, but the extra bits
are discarded once the data or instruction is used in the pipeline. This processor uses
this data to perform error detection and correction in parallel to the computations in
the normal datapath. The data fetched from the register file is first processed by the
checker/correction units CCA and CCB to check if no faults are present in the data. The
main Arithmetic Logic Unit (ALU) calculates the result of the instruction, while the
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Figure 2.4: The modified DIVA architecture based on the LEON3 processor with the extra
ALU and Compare stage. [4] RA = Register Access stage, XC = Exception stage, IM = Memory
stage, CP = Compare stage

auxiliary ALU calculates the parity of the carry information from the input, PCY , and
the parity of the AND operation on the two input operands, PAB. The parity ALU then
calculates the parity information for the ALU result, PR, based on the ALU inputs and
not the ALU result. If the ALU result does not comply with the parity information, the
result will be corrected in case of a single error or the processor will be interrupted in
case of a double error.

This architecture has the advantage that it can detect two errors and correct one
error, whereas some of the other solutions presented here do not have this capability. The
results in [5] show that the fault coverage of faults occurring in the information hardware
is very high (mostly 100% for single error correction and double error detection). Only
faults occurring in the checker hardware might escape detection, but this could be solved
by using modular redundancy. The required area for this architecture is most likely less
than the area required for TMR, but [5] does not provide any data to support this claim.
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Figure 2.5: The self-checking and correcting 32 bit datapath of the fault tolerant RISC processor
architecture [5].

2.6.4.2 Dependable embedded processor core

[6] describes another core which uses a (39,32) Hamming code to protect the data in the
core. This core is MIPS32 compatible and has a five stage pipeline (depicted in Fig. 2.6).
The pipeline registers are protected by an ECC encoder placed before the register bank
to generate the parity information and an ECC decoder placed after the register bank
to decode the data in the register bank (depicted in Fig. 2.7). If the calculation of this
syndrome is too expensive, a byte parity check is used, where the encoder and decoder
are placed at the same location as the ECC encoder and decoder. The register file is
also protected by encoders and decoders. These encoders and decoders could be used
per word, but this would double the size of the register file. To reduce the area overhead
only one encoder for the write port and three decoders for the read port could be used.
This can only be done if the probability of two consecutive soft errors in the same word
is very small (depicted in Fig. 2.8) This solution does only provide protection against
SEUs in the register banks between the pipeline stages and in the register file. SEFIs
will not be mitigated because the parity information is calculated based on the input of
the register bank or register file. For the target device, a ProASIC3E 1500-Std, an area
overhead of 40% and a frequency overhead of 33% were measured. No results on the
verification of the proposed architecture were presented.
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Figure 2.6: The five stage dependable embedded processor core architecture. [6]

Figure 2.7: A pipeline register with encoder
and decoder for the dependable embedded pro-
cessor core. [6]

Figure 2.8: The register file of the depend-
able embedded core with one encoder for the
write port and three encoders for the three
read ports. [6]

2.6.4.3 Multi-Residue Codes

The FT RISC core [5] and the Dependable Embedded Processor core [6] both use linear
parity codes for protecting the memory elements and the ALU. [7] describes a solu-
tion which uses multi-residue codes instead of linear parity codes for protecting the
ALU. Linear parity codes often only detect single-bit or double-bit faults in one of the
operands and not a double bit fault occurring in both operands which can be induced by
a fault attack. Multi-residue codes provide several advantages over linear parity codes
because the smallest operational distance (minimum weight for an undetected error for
a given code under a given operation) is three instead of two. Furthermore, they are
not affected by the carry corruption problem for instance (residue codes are described
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in Section 2.7.2.6).

The presented solution in [7] uses a (48, 32) multi-residue code for protecting the ALU
and the register file (depicted in Fig. 2.9). The encoder and checker unit is implemented
in two cycles for reducing the area overhead, although this will induce extra performance
overhead. The extra combinatorial circuits needed for the Residue ALU and the encoder
and checker introduce more area (74%) and timing (46%) overhead compared to a DMR
ALU. But when the register file is included, the use of multi-residue codes gives an
area saving of 16 % compared to the DMR solution. Linear parity codes do not support
multiplication natively, but multi-residue codes do. In this implementation, the multi-
plication is implemented in two cycles. When comparing the DMR ALU with multiplier
against the full multi-residue code ALU, the last solution saves 24% area and has an
only 9% longer critical path.

Figure 2.9: The optimized multi-residue code ALU. [7]

2.6.5 Watchdog

Another type of solution for providing fault tolerance in processors is the watchdog
processor. A watchdog processor is a small and simple coprocessor used to perform
concurrent system-level error detection by monitoring the behavior of the main processor
[8] (depicted in Fig. 2.10). This error detection is performed in two phases: the setup
phase and the checking phase. In the setup phase, the watchdog processor receives
information about the processor and the process(es) running on the processor that need
to be checked. In the check phase, the watchdog monitors the execution of the processor
by collecting information and comparing it to the information received during the setup
phase. If the collected and provided information do not match, the watchdog will notify
the processor that an error has occurred and that it should restart the execution at a
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point where the fault did not yet occur. The provided information for checking can be
about memory access behavior, the control flow, or signals and the reasonableness of
results. The architecture of the original processor does not have to be modified, the
area overhead is relatively small compared to replication, and the error detection can be
performed in parallel with the processor execution, which are clear advantages of this
solution.

Main Memory

Main processor
Watchdog

Data bus

Address bus

Figure 2.10: The watchdog processor architecture [8].

In [34] an implementation of a watchdog processor for detecting transient faults in the
Motorola M6804 is presented. The watchdog processor and the processor are connected
to each other through the system bus. The memory is protected by the internal memory
of the watchdog processor which stores shadow variables of the most critical variables. A
variable is defined as critical when it can produce wrong results when affected by a fault
without causing the program to terminate incorrectly. The control flow is protected
by comparing signatures of the executed Branch Free Blocks with a golden signature
which is calculated off-line. In this particular implementation, a signature scheme based
on regular expressions is used. The bus is protected by performing Automatic Repeat
Requests (ARR) to check if the transmitted value is the same in different transmissions.

Although this implementation has several advantages like no changes to the processor
architecture and concurrent error detection, there are also some disadvantages. The
internal memory of the watchdog is limited so not all variables can be shadowed and
thus not all variables can be monitored precisely. More internal memory will mean
more susceptibility to memory faults, and a higher area overhead whereas less memory
will mean less susceptibility and less overhead. Furthermore, the ARR will induce a
significant performance penalty, because the time-consuming transactions have to be
performed several times. The results also show that for large durations of the fault (more
than 150 ps) the percentage of undetected errors rises significantly, so this solution is
limited in the fault tolerance it can deliver.

The referred implementation showed that there are some disadvantages of using that
particular watchdog processor, but there are more disadvantages for watchdog proces-
sors in general. In the setup phase information about the processor and the process
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have to be provided for the checking phase. This information will have to be generated
at compile time because the monitored processor cannot be used for this, as it is un-
reliable. So compiler support for watchdog architectures is required. Furthermore, the
process’s execution flow needs to be known beforehand, because the compiler needs to
generate signatures. For some processes, this will be possible, but for processes which are
controlling other components and thus are I/O dependent this can become complicated.

2.6.6 Time redundancy

So far all techniques described provided some form of hardware redundancy, but time
redundancy can also provide a feasible solution for mitigating SETs because these effects
are temporary.

2.6.6.1 DMT

In [35] the DMT architecture is presented which uses time redundancy. The DMT
architecture uses two successive executions of the task code, called virtual channels, on
a single physical channel to detect transient errors. Two dissociated datasets are used
to prevent SEUs in the memory from affecting the execution of both virtual channels.
Only the main results of the virtual channels are compared to keep the overhead as
small as possible. This architecture is mainly implemented in software, so the only
hardware support is the CESAM component, which provides memory protection. As
this architecture only provides for duplication of the task execution, it can only detect
faults and not correct any faults. If a fault is detected, the processor can skip the iteration
and continue to the next iteration if this does not affect the operation of the system. The
system is rolled back if the application cannot miss the result of the current iteration.
The recovery phase is also executed in duplex because it is not known which virtual
channel contains the fault. The reported protection against transient faults is above
98% when the kernel is also protected. But this protection comes at a cost: for a single-
task application the performance penalty is four times and for multi-task applications,
the penalty is three times.

2.6.6.2 Time shifted latching

[36] describes another time redundant solution which uses different moments in time for
latching data. Two possible options for implementing the transient fault detection are
depicted in Fig. 2.11. In the first option the output signal of the combinatorial circuit is
delayed by a factor δ and in the second option, two different clock domains are used. All
transient effects which are smaller than δ will be detected in which case the processor
can be stalled to deal with the problem. This solution does not induce a performance
penalty because the output of the output latch can be forwarded to the next circuit as
soon as the data is latched. This will not interfere with the latching of data by the extra
latch, as the output signal of the combinatorial circuit will not change for some time,
because of propagation delays. This does, however, impose a constraint on the value of
δ, which should be smaller than the minimum propagation delay of the combinatorial
circuit. This solution can also be used for controlling the clock frequency because it can
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Figure 2.11: Transient fault detection implementation using a latch and a comparator [9].

detect timing issues. If the longest path in the combinatorial circuit is not frequently
exercised, the frequency can be increased to speed up the circuit. If the longest path is
used, the frequency can be temporarily lowered to allow the path to complete after which
the frequency can be increased again. The implementation made in [9] shows that this
solution can be implemented with a small area overhead and that indeed no performance
penalty is induced. Furthermore, the detector was able to detect all timing issues and
almost all soft errors.

In [37] another implementation of the time redundant solution is presented. This
paper also shows that the proposed implementation is effective at detecting errors as this
implementation introduces no more errors. Furthermore, it also shows some interesting
results about the pulse width at different energy levels of the particles. In the used 0.25
micron technology the pulse width is below 540 ps for 5 MeV of LET, between 540 and
800 ps for 14 MeV and between 800 and 1000 ps for 30 MeV .

2.6.7 Comparison

In Table 2.3 the different solutions found in literature are listed and compared with each
other. Based on the found solutions and their comparison five implementation options
for providing redundancy in the pipeline can be defined:

• N-Modular Redundancy (NMR): N cores running in parallel, where checks
will be performed on every data transaction.

• Lockstep: two cores running in parallel, where checks are performed at every
clock cycle between the corresponding stages of the processor.

• Error Correction Codes (ECC): single core using ECC to protect FF banks
and registers and prediction of the check bits to protect the ALU.

• Watchdog: a separate core which checks the execution of the main core based on
information provided by the compiler.
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• Time redundancy: code is executed N-times on a single core to check for faults
and if possible correct them.

T
a
b

le
2
.3

:
C

om
p

ar
is

on
of

th
e

so
lu

ti
on

s
fo

r
a
d

d
in

g
re

d
u

n
d

a
n

cy
to

th
e

p
ro

ce
ss

o
r

p
ip

el
in

e.
If

n
o

re
su

lt
is

li
st

ed
,

th
e

co
rr

es
p

on
d

in
g

li
te

ra
tu

re
d

id
n

ot
re

p
o
rt

th
es

e
n
u

m
b

er
s.

T
y
p

es
T

ol
er

an
ce

O
ve

rh
ea

d
S

o
lu

ti
on

S
E

U
S

E
T

S
E

M
B

U
S

E
L

E
C

E
D

D
et

.
A

re
a

F
re

q
.

P
er

f.

T
M

R
X

X
1

1
-

3x
-

-
F

F
on

ly
T

M
R

X
X

1
1

-
2x

31
%

-
S

T
M

R
X

X
1

1
-

≤
3x

-
-

L
o
ck

st
ep

X
X

0
1

97
%

-
-

-
Im

p
ro

ve
d

L
o
ck

st
ep

X
X

0
1

10
0%

>
5

-
D

IV
A

X
X

0
1

-
-

-
<

14
%

M
o
d

ifi
ed

D
IV

A
X

X
0

1
10

0%
-

-
70

%
F

T
-R

IS
C

X
X

X
1

2
10

0%
-

-
-

D
ep

en
d

a
b

le
em

b
ed

d
ed

co
re

X
X

1
2

-
-

-
-

M
u

lt
i-

re
si

d
u

e
A

L
U

X
X

X
-

3
-

-
-

-
W

at
ch

d
o
g

X
X

X
0

1
10

0%
-

-
-

D
M

T
X

X
X

0
1

98
%

-
-

3-
4

T
im

e
sh

if
te

d
la

tc
h

in
g

X
X

0
1

10
0%

-
-

-



24 CHAPTER 2. FAULT TOLERANCE IN SOFTCORES

2.7 Redundancy in Memory cells

Besides the pipeline, the processor also includes several memory cells, like the register
file, instruction memory, and data memory. These cells, which are often implemented
in Dynamic Random Access Memory (DRAM), SRAM or FFs, can also be affected by
SEEs and therefore need to be protected. There are two basic methods for providing
fault tolerance for memories: modular redundancy or Error Correction Codes (ECC).

2.7.1 Modular Redundancy

Dual Modular Redundancy (DMR) and Triple Modular Redundancy (TMR), which
were introduced in Section 2.6, can also be applied to memory cells. In this case, the
individual FF or register is duplicated or triplicated and provided with some comparison
logic. For DMR only error detection can be implemented, because the memory cells
are only duplicated, and the provided redundancy is thus limited. TMR can correct n
upsets per n-bit word if the voting logic is implemented per bit. But TMR memory
needs three times more storage cells than a regular memory plus some extra logic cells
for the majority voter, so the area penalty is considerable. [38] showed that for single
registers TMR is a feasible solution regarding the area overhead compared to a Hamming
code implementation. But for register files and embedded memories, Hamming code is
the better option regarding the area consumption although the encoder and decoder
introduce a performance penalty due to the extra delay on the critical path.

2.7.2 Error Correction Codes

Error Correction Codes (ECC) are all based on the principal of adding extra symbols to
a data word to form a code word. These symbols are based on the symbols in the data
word and thus provide redundancy such that errors in the data word can be detected or
corrected [39]. There are two main categories of error correction codes:

• Block codes: These codes are applied to information on a block-by-block basis.
The different blocks are independent of each other.

• Convolutional codes: These codes use the current input information as well as
the previous inputs and outputs.

For the memory cells in a softcore, the used symbols are bits and only block codes can
be applied. Convolutional codes are difficult/impossible to use because the values in the
register file and data memory are (mostly) independent of each other and instructions
can also be considered independent from each other although there is some form of
dependency between consecutive instructions.

In this section the (n, k, dmin) notation for ECC properties will be used. The needed
variables are defined as:

• n: the length of the code word

• k: the length of the data word
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• m: the length of the check word

• dmin: the minimum Hamming distance

The Hamming distance dH and the minimum Hamming distance dmin are defined as
[39]:

dH(x1,x2) = |i : x1,i 6= x2,i, 0 ≤ i ≤ n| =
n−1∑
i=0

x1,i ⊕ x2,i (2.1)

dmin = min
x1,x2∈C

(dH(x1,x2)|x1 6= x2) (2.2)

where x1 and x2 are two binary vectors representing a code word. An ECC with a
minimum Hamming distance of dmin can correct bdmin−1

2 c and detect dmin − 1 errors.
If words are treated as vectors, the code vector can be calculated by multiplying the
data vector with the generator matrix G, where the rows of G form the basis of the
k-dimensional vector subspace of the binary linear (n, k, dmin) code. There also exists a
parity check matrix H such that GHT = 0, which can be used to check received code
words. If the code word v is valid, Eq. (2.3) should hold.

vHT = 0 (2.3)

A received code word r can be defined as:

r = v + e (2.4)

where e is the error vector. The error syndrome s can be used as an indication of the
location of the error in some ECCs and is a linear transformation of the error vector:

s = rHT = eHT (2.5)

2.7.2.1 Hamming codes

One of the most well known and also one of the first error correction codes are Hamming
codes introduced in 1950 by Richard Hamming [40]. In his paper Hamming introduced
three different error correction codes:

• Single Error Detection (SED) codes: A single parity bit is added at the end
of the data word, which makes the number of 1’s in the code word even. If the
number of 1’s is uneven, an error has occurred.

• Single Error Correction (SEC) Codes: An m-bit data word is mixed with a
k-bit parity word into an n-bit code word, where m and n satisfy the inequality:

2m ≤ 2n

n+ 1
(2.6)
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The parity bits are placed at the positions with an index equal to a power of two,
and the rest of the positions are used for the symbols of the data word. Parity bit
x contains the result of the parity check of all positions in the code which have
a 1 at the position x of the binary index. At the decoder, the parity checks for
every parity bit are repeated and checked against the value of the parity bit. If
the result of the parity check and the parity bit do not match, a 1 is written. Else
a 0 is written to the corresponding position of the checking number. A non-zero
checking number indicates the position of the error.

• Single Error Correction, Double Error Detection (SECDED) Codes: An
extension of the SEC code with an extra parity bit for an even parity check. The
SECDED code check can indicate three different cases:

– The parity checks are satisfied, so no error has occurred.

– The checking number is not zero, and the last parity check fails, so a single
error has occurred.

– The checking number is not zero, and the last parity check is satisfied, so a
double error has occurred.

All these codes are optimal linear block codes because the redundancy needed to
correct a single error for a given block length is minimal. For a 32-bit data word the
size of a SEC code word has to be 38 to satisfy Eq. (2.6), so a SECDED code word has
to be 39 bits long. As described in [5] and [7] the parity bits of the input operators of
arithmetic operations can also be used to predict the parity bits of the arithmetic result
when using Hamming codes.

Besides single error correction and double error detection, Hamming codes can also
detect a limited amount of double and triple errors. This is because a (39,32) Hamming
code is a shortened ECC because not all syndromes are needed for SECDED capabilities.
In [41] a technique for reordering the bits in the code word is proposed in order to increase
the probability of detecting double and triple adjacent errors. This technique maps as
much double and triple adjacent errors as possible to the remaining error syndromes.
For a (39,32) Hamming code a double and triple adjacent error detection probability of
57% can be achieved. Applying this technique will help protect the memory elements
against Multiple Bit Upsets (MBUs) which can be caused by a single inciding particle
due to the small feature sizes used today [42] [43].

2.7.2.2 Hsiao codes

Although Hamming codes are optimal, the encoding and decoding procedures are not
optimal. A more optimal implementation of Hamming codes exists: Hsiao codes. These
codes use the same principles as Hamming codes, but the generator and parity check
matrices are constructed in a different way. For the parity check matrix the following
constraints should be met [44]:
• There are no all-0 columns.
• Every column is distinct.
• Every column contains an odd number of 1’s (odd-weight)
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These constraints ensure that the number of 1’s in the matrices is minimal, and thus
the number of logic levels in the encoder and decoder is reduced.

2.7.2.3 Golay codes

Another optimal linear block code is the Golay code [45], which can correct up to three
errors. There are two versions of binary Golay codes: the perfect (23, 12, 7) code and
the extended (24, 12, 8) code. A (23, 12, 7) Golay code can be converted to a (24, 12,
8) Golay code by appending an overall parity bit at the end of the code word. In [45]
the generator matrix is given which can be used for encoding and for generating the
parity check matrix. The encoder and decoder can be easily implemented as Lookup
Tables (LUTs). The encoder contains a LUT with 4096 entries containing the code
words for all possible data words. The decoder contains a LUT with all correctable error
vectors which uses the error syndrome as it’s index. The error syndrome is calculated
by multiplying the read code word with the parity check matrix. The correct code word
can be calculated by bit-wise XORing the read code word with the error vector.

Although the Golay code has a good error correction capability and can be imple-
mented easily, the applicability for softcores is limited, because a data word size of 12
is not used very often. Word sizes of 8, 16, 32 or 64 are more common in processor
architectures, but these sizes cannot be easily encoded with a Golay code. Therefore
Golay code is not a suitable option for providing fault tolerance in processors.

2.7.2.4 Cyclic Redundancy Check codes

Cycles codes are a special class of linear codes, which can be efficiently implemented in
hardware using shift registers and combinatorial logic elements, based on their polyno-
mial representation. A linear block code is cyclic if and only if every cyclic shift of a
code word is another code word [39]. The code words are represented by polynomials of
the form in Eq. (2.7) in modulo 2 arithmetic.

v(x) =
∑

vi ∗ xi (2.7)

Cyclic Redundancy Check (CRC) codes are well known cyclic codes used for error
detection in data storage. A data word is encoded into a code word by performing a
polynomial division with a generator polynomial g(x) and attaching the remainder of
this division to the data word. Decoding involves the same polynomial division, but now
with the remainder attached to the data word. If the remainder of this division is zero
no detectable errors have occurred and otherwise, an error is detected. The number of
check bits m should satisfy n ≤ 2m − 1, where m is also the order of g(x). The choice
of the generator polynomial g(x) will define the capabilities of the CRC code. If error
correction is also possible with the chosen g(x), the remainder will indicate what error
has occurred. The corresponding error function e(x) can be found in a LUT where the
index is the remainder of the division in the decoder [46].
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2.7.2.5 BCH codes

In Section 2.7.2.1 Hamming codes where discussed, which are also cyclic codes with the
generator polynomial g(X) = 1 + X + X3. BCH codes are a more generalized form
of Hamming codes which can correct any error pattern t as long as the order of g(X)
satisfies t < 2m−1 where m is the length of the data word [47]. The generator polynomial
g(X) of a BCH code is defined as:

g(X) = LCM (Φ1(X),Φ3(X), ...,Φ2t−1(X)) (2.8)

where LCM is the least common multiple and Φi(X) is the minimal polynomial of
some elements αj , which are primitive elements of the Galois Field GF (2m) [47]. BCH
codes can be encoded by multiplying the code polynomial with the generator polynomial
and decoded by solving the key equation:

σ(X)S(X) = −W (X) + µ(X)X2t (2.9)

where:

• σ(X): the error-location polynomial
• S(X): the error syndrome polynomial
• W (X): the error evaluation polynomial (for binary BCH codes the error values are

always one)

The key equation can be solved by several computational intensive algorithms like the
Berklekamp-Massey algorithm and the Euclidian algorithm which often result in multi-
cycle decoding procedures. Therefore, these algorithms are not very suitable for im-
plementation in a memory element or pipeline. In [48] a parallel BCH code design is
presented. In this design, single cycle encoders and decoders using the generator and
parity check matrices for BCH codes are studied. This approach will induce an area
and latency penalty, but these penalties are still acceptable for processors compared to
multi-cycle algorithms.

2.7.2.6 Residue codes

Apart from linear codes, there are also non-linear ECC like residue codes. In residue
codes, the check word consists of the residue of a modulo operations which is performed
on the data word [49]. In multi-residue codes. several moduli are used to generate a
concatenated check word. The number of residues and the chosen moduli define the
error detection and correction capability of the code. In [50] an error detection variant
of residue codes is proposed with three as the used modulo. This code can detect all
single errors and about two-thirds of all other types of double errors. In [51] a bi-residue
code is proposed which can correct all single errors. If an error occurs in the code word,
a syndrome (|e|A, |e|B) is generated which can be used for finding and correcting the
error. If an error occurs in only one of the residues, this will have no effect on the correct
operation of the processor and can be corrected by regenerating the residue from the
data word. The cost of the processor proposed in [51] is not greater than duplicating the
original processor. The proposed codes in [50] and [51] do however use 1’s complement



2.7. REDUNDANCY IN MEMORY CELLS 29

logic, which limits the applicability in today’s processor which mostly use 2’s complement
logic.

In [7] multi-residue codes are introduced. These codes use multiple moduli and thus
the check word consists of multiple residues. The most suitable moduli with the desired
dmin can be found by performing an exhaustive search. In the provided example in
the paper a (48,32) multi-residue code is proposed with moduli {5,7,17,31} which gives
dmin = 4.

2.7.3 Comparison

Table 2.4: Comparison of the different techniques used for adding fault tolerance to memory
elements.

Type n k dmin ED EC

NMR
2k 32 1 0
3k 32 1 1
nk 32 bn2 c dn2 e − 1

Hamming
SED 33 32 2 1 0
SEC 38 32 3 1 1
SECDED 39 32 4 2 1

Hsiao SECDED 39 32 4 2 1

Golay
23 12 7 6 3
24 12 8 7 3

CRC n ≤ 2m − 1 32

BCH

SEC 38 32 3 1 1
SECDED 39 32 4 2 1
DEC 44 32 5 2 2
DECTED 45 32 6 3 2
TEC 49 32 7 3 3
TECQED 50 32 8 4 3
QED 56 32 9 4 4
QEDPED 57 32 10 5 4
PED 59 32 11 5 5
PEDSED 60 32 12 6 5

Residue codes 48 32 4 3 1

In Table 2.4 the different solutions found in literature are listed and compared with
each other. Because the word size of 32-bits used in the RISC-V core, Golay codes
will not further be evaluated. Based on the found solutions and their comparison five
implementation options for providing redundancy in memory elements can be defined:

• NMR: N-times replication of the data in memory elements.

• Hamming: Addition of several parity bits to the data word for error checking up
to SECDED
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• Hsiao: Addition of several parity bits to the data word for error checking up to
SECDED in a more efficient order as Hamming.

• CRC: Addition of the remainder of a polynomial division with a generator poly-
nomial.

• BCH: Linear transformation of a data word to a code word with a generator
matrix based on a generator polynomial.

• Residue: Addition of the remainders after division operations to the data word.

2.8 Fault injection

When fault tolerance is added to a softcore, it should be tested and verified that the
core can detect and handle faults in the intended manner. Fault injection is one of the
techniques that can be used to perform this verification. According to [52] fault injection
is defined as:

Fault injection is the validation of the dependability of Fault Tolerant Systems
which consists in the accomplishment of controlled experiments where the
observation of the system’s behavior in presence of faults is induced explicitly
by the written introduction (injection) of faults in the systems.

There are three main categories of fault injection techniques, which can be used for
experiments with a softcore [52][53]:

• Hardware-based Fault Injection (HWFI) inducing faults by means of disturb-
ing the systems with physical phenomena, such as heavy ion radiation or electro-
magnetic interference, or external system parameters through pin-level injection.

• Software-based Fault Injection (SWFI) emulating faults at the software level
by modifying data or by changing the software’s functionality.

• Simulation-based Fault Injection (SFI) inducing faults by applying logical
values to signals or memory elements in the system through simulator commands.

HWFI is the most realistic fault injection category, as some of these techniques are
accelerated variants of phenomena which could occur during normal operation. However,
these techniques are often very expensive to use and can have poor controllability as it
is very difficult to induce a specific fault at a specific location in the system with for
instance a radiation source. SWFI is less expensive than HWFI because there is no
need for additional hardware and modifying software can be done at low cost. There are
however limitations to SWFI techniques as the software can only use software accessible
resources for fault emulation. Resources, where faults can occur which are not accessible
for software, can therefore not be emulated, which limits the coverage of these techniques.
SFI techniques provide a lower-cost alternative for HWFI. Simulator commands, such as
the force command in ModelSim, can be used to induce a faulty value on a particular
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signal, but the simulated model can also be modified. Modification of the simulated
model can, however, come at a considerable cost and simulation times are typically very
large, which limits the usability of such tests.

The techniques investigated in this thesis are all SFI techniques as such techniques
provide the best possibilities for verification of the fault tolerance of the core at acceptable
costs. Automatic tools also exist for fault injection experiments [53], but most of these
tools are proprietary or have a limited scoop which might not make them suitable for fault
tolerance techniques other than their target. One example of such a tool is described in
[54] which can be used to evaluate systems which use TMR for fault tolerance. This tool
analyzes the design in the early design phase and identifies which resources are susceptible
to SEUs. This tool is however not a replacement for fault injection or radiation testing
as pointed out by the authors.

2.8.1 Saboteur

A saboteur is a module, which can be added to the simulated model, which can modify
the value or timing characteristics of a signal or signal vector [55]. The saboteur will only
introduce faults when activated and lets signals pass unaltered during normal operation
of the system. This technique can be used in simulation, but with the right provisions, it
could also be used on an FPGA in order to decrease the test execution times. Different
types of saboteurs can be identified [52][55]:

• Serial Simple Saboteur: placed between the driver and receiver of a signal which
will modify the value of the signal.

• Serial Complex Saboteur: placed between the drivers and receivers of two
signals which will modify the value of the signal.

• Parallel Saboteur: added as an additional driver to a resolved signal. A modified
resolution function could also be used for this purpose.

2.8.2 Mutant

Another type of module which can be used for fault injection through modification of
the simulated model is a mutant. A mutant is modification or replacement of an original
component, which will behave normal while being in-active and will exhibit different
behavior when activated. A mutant can be created in different ways [55]:

• Adding one or more saboteurs to the components description

• Mutating a component’s structural description by replacing or modifying subcom-
ponents

• Changing the component’s behavioral description by modifying operator resolu-
tion functions, exchanging variables or other more complex modification for more
complex fault models
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2.9 Conclusion

In this chapter, the open-source RISC-V ISA used by the softcore made by Technolution
B.V. was introduced. SEEs can be introduced by both natural causes due to the in-
teraction between particles and human-induced causes, which are targeted at disrupting
system functionality or retrieval of secret information. The effects of SEEs can be miti-
gated by adding redundancy to a system. Different forms of redundancy can be divided
into four categories: hardware, information, time, and software.

Based on the information found in literature, five implementation options for adding
fault tolerance to the pipeline were identified: NMR, lockstep, ECC, the watchdog and
time redundancy. For adding fault tolerance to memory elements, six implementation
options were identified in literature: NMR, Hamming codes, Hsiao codes, CRC codes,
BCH codes and Residue codes.

For verification of the added fault tolerance, fault injection can be used. By injecting
faults, the behavior of the system in the presence of faults can be observed and verified.
Fault injection can be hardware-based, software-based or simulation-based. A saboteur
or a mutant can be used for simulation-based fault injection.
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In Chapter 2 possible solutions for mitigating errors due to SEEs in both the pipeline and
memory elements were studied. From this study, five implementations options for the
pipeline and six implementation options for the memory elements were defined, which
will be evaluated in Section 3.3. This evaluation will be done based on the fault model
and design criteria which will be defined in Section 3.2. Based on this evaluation two
designs were made: the ECC-based design discussed in Section 3.4 and the hybrid design
discussed in Section 3.5. For both designs some optional design features will be presented
in Section 3.6. In Section 3.7 the two designs will be evaluated against the design criteria
and a choice for implementation will be made. Finally, the design of the test architecture
will be discussed in Section 3.8. But first, the baseline core used for this thesis will be
introduced.

3.1 Baseline softcore

The starting point for this thesis is the baseline implementation of the RISC-V softcore
developed by Technolution B.V., which implements the user-level RV32I instruction set.
This version of the softcore does not include any privileged instruction set features like
interrupts.

3.1.1 Pipeline
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Figure 3.1: The block diagram of the RISC-V core and instruction and data memory.
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In Fig. 3.1 the block diagram of the RISC-V pipeline is depicted. The softcore uses
the classic five stage RISC pipeline[18]:

• Fetch stage: fetches the next instruction and stalls the pipeline, when the instruc-
tion memory is not able to provide the requested instruction in the clock cycle after
the request.

• Decode stage: decodes the instruction received from the instruction memory and
sends the register addresses to the register file. The register addresses are placed
at a fixed position in all instruction formats, so these addresses do not have to be
decoded, but can be routed to the register file immediately.

• Execute stage: calculates the result for all ALU operations based on the register
values specified and/or the immediate value provided by the instruction. The exe-
cute stage also calculates the jump address in case of a jump or branch instruction.

• Memory stage: performs memory accesses in case of a store or load instruction.
The absolute address to be accessed is calculated by the ALU in the execute stage.
The memory stage will also stall the pipeline if the data memory does not complete
the transactions within one clock cycle.

• Writeback stage: writes the value calculated by the ALU or the received data
from the data memory to the register file.

The program counter is incremented by four, or set to the jump address if the execute
stage signals that a jump should be performed. The address is incremented with four
because the address is a byte address and not a word address. If a jump or branch
instruction is performed, the program counter will be updated when this instruction
is in the memory stage. The program counter could also be updated in the writeback
stage, but the current implementation reduces the number of flushes required for a jump.
The pipeline also includes a hazard detection unit for the detection of data and control
hazards. If a hazard is detected the hazard detection unit will stall or flush one or more
stages depending on the type and location of the hazard.

3.1.2 System on Chip

Fig. 3.2 shows the block diagram of the RISC-V System on Chip (SoC), a system con-
taining the RISC-V core and other peripherals required for operation of the core on an
FPGA. The SoC includes a separate instruction and data memory so the system can
therefore be classified as a Harvard architecture. Using the Harvard architecture gives
the ability to fetch instructions in parallel with accessing data in the data memory. The
SoC also includes a Universal Asynchronous Receiver/Transmitter (UART) module for
basic communication with systems outside the SoC and control registers which can be
used to control and monitor the core.

All SoC peripherals can be accessed through Ethernet and the tl reg bus, a propri-
etary bus developed by Technolution B.V. The softcore can access the instruction and
data memory through the tl data bus, a modified version of the tl reg bus, which
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Figure 3.2: The block diagram of the RISC-V System on Chip.

allows the next transaction to be started before the acknowledgment of the previous
transaction is received. The tl reg bus does not allow such overlapping transactions
and is therefore not suitable to serve as a bus between a memory and the core as this
will always induce a minimal stall of one clock cycle. If the memory sends the ac-
knowledgment of the transactions in the clock cycle after the request was received, the
softcore will not stall. The waveforms in Fig. 3.3 show the timing behavior of both the
tl data bus and tl reg bus.
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Figure 3.3: Timing behavior for transactions on the tl data bus (left) and tl reg bus (right).
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3.1.3 Design cost estimate

For both designs, a design cost estimate will be made, based on the synthesis result for
the baseline softcore as reported by Xilinx® Synthesis Technology (XST) for a Xilinx
Spartan-6 FPGA. These results were retrieved by running XST for the complete softcore
and for individual components with the project settings as reported in Table A.2. Along
with these results, the synthesis results of some preliminary block implementations will
be used in the design cost estimates. In Table 3.1 the synthesis result for the baseline
softcore are presented (for the more detailed synthesis results, see Table A.3). These
results only provide an indication of the actual resource usage, path delays of different
components and the maximum attainable clock frequency for the softcore. The synthesis
process might apply additional optimizations due to the interaction between components
in the final design, which are not applied during synthesis of individual components. The
mapping process might also apply further optimizations which will change the resource
usage, corresponding path delays, and maximum clock frequency.

Table 3.1: The synthesis results for the baseline softcore for the Xilinx Spartan-6 FPGA.

Resource Value

LUT 1732
Registers 835
fmax 87.7 (MHz)

3.1.4 Benchmark

Table 3.2: The Dhrystone benchmark result for 2,000,000 runs for the baseline softcore.

Baseline

f (MHz) 83.3
CPI 2.24
Dhrystones/s 82590
Dhrystones/(s*MHz) 991.48
DMIPS/MHz 0.56

In Table 3.2 the Dhrystone benchmark for the baseline softcore is presented. Dhrys-
tone is a small synthetic benchmark mimicking computational loads with mathematical
and other operations using only integer operations [56]. The execution flow of the bench-
mark is checked by performing 20 tests after all runs are executed, which also makes it
suitable for testing during fault injection as a correct execution flow can be verified. It
is a small benchmark which can be easily ported to other platforms and architectures
because it fits in L1 cache amongst other things. Although the small size is considered
as a weakness, in the case of the RISC-V softcore it is an advantage as the memories in
the SoC are effectively L1 caches. Another major weakness of the Dhrystone benchmark
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is that compilers can heavily optimize its execution and thus improve the benchmark
results. Due to the ease of implementation of the Dhrystone benchmark and the large
number of checks, it was decided to use the Dhrystone as the basic benchmark for the
RISC-V softcore.

-O2, -ffreestanding, and -nostdlib were used as specific compiler flags for com-
piling the Dhrystone benchmark. For some basic functions like printf and memcpy a
dedicated library stdlib.c was used, which is targeted at the RISC-V SoC. The Dhry-
stone benchmark will perform 2,000,000 runs, as the execution time should be at least
20 seconds for the result to be reproducible.

3.2 Fault Model & Design criteria

Building a framework which can mitigate all types of SEEs, would require an immense
effort and not be cost efficient. Therefore a fault model based on the problem statement
in Section 1.1 is defined which should be targeted by the fault tolerant design. This fault
model defines what type of faults can occur in specified locations and at which moments
in time. In Fig. 3.4 the location and types of faults which will be targeted by the design
are defined. These faults can occur at any moment in time when the core is active i.e.
when the both the soft and hard reset signals are low and the enable signal is high.
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Figure 3.4: The block diagram including the fault model of the RISC-V core and instruction
and data memory.

Besides the fault model, several design criteria are defined which will be used to
evaluate the implementation options found in Chapter 2 and the designs made in this
chapter. The design criteria along with their targets are listed in Table 3.3.

3.3 Design Options

In Tables 3.4 and 3.5 the score matrices for the implementation options for both the
pipeline and the memory are given. The implementation options are evaluated against
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Table 3.3: List of design criteria along with their intended targets.

Design criterion Description Target

Error Detection ED Number of concurrent detectable er-
rors in a 32-bit word

2

Error Correction EC Number of concurrent correctable
errors in a 32-bit word

1

Clock frequency CLK Clock frequency reduction 50 %
Resource Utilization RU Increase in the utilization of re-

sources
4.5x

Cycles Per Instruction CPI Cycles Per Instruction increase 20%
Software transparency ST Number of modifications required

to run software applications on the
fault tolerant core

Minimal

Complexity COM Increased complexity of the fault
tolerant core compared to the base-
line

= baseline

Single Points of Failure SPOF Points in the pipeline or in address
or data words where a fault will
cause a failure

0

RISC-V compliance RISC-V Compliance with the RISC-V ISA
specification

RV32I

each other and the baseline design of the softcore.

Table 3.4: Score matrix for the implementation options for the pipeline

Solution ED EC CLK RU CPI ST COM SPOF RISC-V

NMR ++ + + −− + + + + +
Lockstep + − + − + + − + +
ECC ++ + − − + + − + +
Watchdog o − + o − − − −− +
TR o o + + −− − + − +

Table 3.4 shows that NMR is the best option (for the pipeline) based on the design
criteria. However, it does have one main drawback: the resource utilization will rise very
significantly compared to the baseline design because the baseline is replicated N times.
ECC provides a reasonable alternative to NMR as it has the same error detection and
correction capabilities and uses fewer resources. This does, however, come at the price
of reduced clock frequency, as encoders and decoders will be added to the critical path.
The other implementation options in this comparison are less favorable as these have
more drawbacks than positives.

Table 3.5 shows that NMR again is a suitable option for memory elements, but this
time it has a few more drawbacks other than the resource utilization. For mitigation of
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Table 3.5: Score matrix for the implementation options for the memory elements

Solution ED EC CLK RU CPI ST COM SPOF RISC-V

NMR ++ + + −− − + −− − +
Hamming + + − ++ + + ++ + +
Hsiao + + − ++ + + ++ + +
CRC ++ − −− + + + + + +
BCH ++ ++ −− + + + − + +
Residue + + − o + + − + +

errors in the replicated memories, an extensive memory synchronization mechanisms is
required, which will cause the Cycles Per Instruction (CPI) to decrease and will introduce
a Single Point of Failure (SPOF) as it will be difficult to protect this mechanism. The
ECC options do not require memory synchronization, as they use only a single memory
for storing code words. This reduces the complexity of the memory architecture and
saves a significant amount of area.

The score matrix in Table 3.5 also shows that Hamming and Hsiao codes are (almost)
the same, the only difference being the lack of check prediction for Hsiao codes. It
should, however, be noted that Hsiao code comes with slightly more efficient encoders
and decoders, as this is a more optimized version of Hamming codes. BCH codes provide
more extensive error detection and correction capabilities than Hamming and Hsiao
codes, but this comes at the cost of a higher resource utilization and most importantly
a larger reduction in clock frequency due to larger encoders and decoders. When more
error detection and correction capabilities are requested, BCH codes can be used, but
with the current design criteria, Hamming or Hsiao codes will suffice.

Based on these design options, two design were made: the ECC-based design and the
hybrid design. Both designs use NMR and ECC to add redundancy to the core, but the
major difference between these designs is how and where they apply these techniques.

3.4 ECC-based design

The ECC-based design uses Error Correction Codes as much as possible, as this option is
the most viable for implementation in memory elements and is also a reasonable option
for implementation in the pipeline. By using ECC as much as possible, there is a good
possibility of eliminating the drawbacks of using ECC in the pipeline. Furthermore, it
is expected that using ECC in the pipeline will result in a lower resource usage than
NMR. NMR would result in a resource usage increase of more than 400% for SECDED
capabilities, as the complete pipeline has to be replicated four times and majority voters
have to be added. If ECC cannot be used, the design will use NMR to provide the
required redundancy. This means that the border of the protection domains will be at
a low level in the processor. A protection domain is an area of the core, which uses one
particular technology for providing redundancy.
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3.4.1 Design features

Hamming codes will be used as ECC, as these codes can provide the required SECDED
functionality and also provide the option of using check prediction for the ALU. Hsiao
codes do provide more optimal encoders and decoders, but the possibility of using check
prediction was not mentioned in the studied literature. The Hamming codes will be used
to protect all memory elements (instruction & data memory, register file and FF banks)
and buses. This will reduce the added cost of the extended memories and eliminates the
need for memory synchronization while still providing the required redundancy. In the
implementation, Hamming SECDED codes will be used, but they can be easily replaced
by other variants of Hamming codes or other ECC codes.

Faults on the address field of buses/connections between the pipeline and memory
elements will be detected and corrected by protecting the addresses with ECC. After
decoding of the address in a memory element, no checks will be available to check if
the correct word was read from or written to the register file or the memories. The
implications of providing protection for such operations are complicated and not taken
into account in this design. Possible solutions for this problem will be presented as future
work.

Whenever an arithmetic operation has to be performed on one or more code words,
check prediction should be used for predicting the check bits of the results of the op-
eration. The check prediction should only use the two check words and the type of
operation to be performed as its inputs and thus calculates the new check word with an
operation independent of the operation on the data words. The predicted check word
and data word will be checked by a decoder before storing to avoid fault propagation.
Check prediction is available for the following instructions:

• basic arithmetic: add, addi, auipc, sub

• bitwise operations: and, andi, or, ori, xor, xori

• Unconditional jumps: j, jal, jalr

• Load/store: lb, lbu, lh, lhu, lw, sb, sh, sw

Operations for which no check prediction is available should be executed N times in
parallel and the final result should be determined through a majority voting procedure.
In principal, N should be equal to the Hamming distance (for SECDED: four) in order
to provide the required redundancy. If the extra resource utilization is too large for N
equal to the Hamming distance, this may be reduced, but this decision should be made
on a per-application basis and should therefore be separately configurable.

All non-arithmetic operations/components, which cannot be protected with ECC or
Check Prediction (CP) will be protected with NMR. Majority voters will determine the
correct outcome based on the replicated results and signal if an error was detected and
if possible corrected. Again, N should be equal to the Hamming distance, but if resource
utilization becomes too large, this can be adjusted on a per-application basis. If multiple
arithmetic components are cascaded without FF banks in between, no majority voter
is required between these components, as this will introduce SPOFs and increases the
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critical path latency unnecessarily. Single bit control signals should also be replicated
N-times whenever possible to reduce SPOFs.

3.4.2 Design diagrams
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Figure 3.5: The block diagram of the fault tolerant ECC-based RISC-V core.

In Fig. 3.5 the block diagram of the ECC-based design is shown. The complete
block diagrams of the ECC-based design can be found in Appendix B. On the top-level
there are not many changes to the design, but for each stage/component the protection
techniques are listed in this overview.

Execute stage example

As an example of the internal changes in this design, Figures 3.7 and 3.6 show the execute
stages of the baseline and ECC-based design. The baseline execute stage is a relatively
straightforward stage, with an ALU, an adder for the jump address, two multiplexers for
selection of the ALU inputs and a FF bank. The execute stage of the ECC-based design
is much more complex than the baseline execute stage, as it involves several encoders,
decoders, a voter and check prediction circuitry. The ALU inputs supplied by the register
file, instruction decoder and the stored program counter value, have to be decoded for
avoiding fault propagation. The register values might have been stored for a longer time
frame and have a higher risk of containing errors than a value stored in a FF bank.
These values could be checked after the operation, but this will make it more difficult to
correct the error, as it has been processed by an arithmetic unit. The check predictor
will predict the check word for selected ALU operations, which are then checked by a
checker, which is effectively a decoder. For ALU operations which do not have check
prediction, the ALU replicator, which contains N-1 reduced ALUs, will calculate the
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expected value N-1 times. The majority voter will vote the result of NMR protected
operations, which is encoded by the encoder before latching. The jump address adder is
accompanied by a address check predictor, as check prediction is available for addition.
The combination of the calculated jump address and predicted check word for the new
jump address is again checked by a checker before latching.

Fig. 3.7 also shows another problem of this design besides the increased complexity:
the new Execute stage contains four SPOFs (marked in red in the diagram). These
SPOFs are: the multiplexers for alu input a and alu input b, the multiplexer for
alu output and the signal alu output voted which is not replicated or protected with
ECC.

3.4.3 Design cost estimate

Based on the design features and the block diagrams made, a design cost estimate was
made for evaluation of the design. The design cost estimate for the ECC-based design
is shown in Table 3.6 (for the more detailed estimate, see Table B.1). The design cost
estimate shows that the increase in resource usage for this design is almost the same as
for a simple NMR design (four times the baseline core). The goal of this design was to
reduce the resource increase by using ECC instead of NMR in the pipeline. However,
these results show that this effect is very minimal and comes with a major drawback: a
tripled critical path latency.

Table 3.6: The design cost estimate for the ECC-based design using SECDED Hamming code
and N = 4. The relative value is calculated versus the baseline softcore.

Resource Absolute Relative

LUT 7659 442%
Registers 1812 217%
fmax 29.3 (MHz) 33%

3.4.4 Design summary

Based on the design description and the cost estimate, the ECC-based design can be
summarized as:

• A large number of encoders and decoders is required due to the large number of
switches between protection domains.

• Every switch between a protection domain introduces a SPOF. At least 24 SPOFs
in the pipeline and register file were identified in the block diagrams.

• The complexity of the design is high due to protection domain switches on a low
level, i.e. inside the pipeline stage.

• The pipeline stages of the baseline softcore cannot be reused, which will reduce
maintainability of the fault tolerant variant of the softcore.
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• The resource utilization of the design is not much lower than for a simple NMR
design. This is caused by the large number of encoders and especially decoders
required for the design.

• The estimated clock frequency is three times smaller than the clock frequency of
the baseline. This is caused by the large path delay of the decoders.

3.5 Hybrid design

The aim of the hybrid design is to minimize the number of changes between the protection
domains and thus minimize the number of Single Point of Failure. This can be achieved
by placing the complete pipeline in the NMR domain and not dividing the pipeline stages
internally between both domains. The register file and memories will be placed in the
ECC domain, as this is much more cost efficient and simple than using NMR memories.
By creating an overlap between the protection domains, the number of SPOFs should
also be significantly reduced. This new design might have a larger resource usage, but if
the goals for this design are reached this can be acceptable.

3.5.1 Design features

The hybrid design will contain two protection domains: one protected with ECC and
the other domain with NMR. The instruction memory, data memory, the register file
and the program counter will be placed in the ECC domain, and the pipeline stages,
and the hazard control are placed in the NMR domain. The ECC domain will again use
a SECDED Hamming code for SECDED error capabilities. The instruction memory,
register file, and program counter will be encoded per 32-bit word. The data memory
will be encoded per byte because the RISC-V requires half word and byte word data
accesses. In the implementation, Hamming SECDED codes will be used, but they can
be easily replaced by other variants of Hamming codes or other ECC codes.

There will be five crossings from the NMR domain to the ECC domain and four
crossings from the ECC to the NMR domain as listed in Table 3.7. On each crossing
from the NMR domain to the ECC domain (except for the stats record), the data will
first be encoded into the ECC domain, before the data is voted out of the NMR domain.
By placing the encoder before the majority voter and thus replicating it N times, the
chance of an error occurring in the encoder will not remain undetected. On each crossing
from the ECC domain to the NMR domain, all pipelines will be provided with the same
encoded data, which each pipeline then decodes. By providing each pipeline with a
decoder, the chance of a fault in the decoder remaining undetected is reduced. Such
faults might still not be noticed if it results in an undetectable error or is hidden by the
operations applied to it. A silent fault is a fault which does not result in an error when
used as an input for a logic operation. This concept of overlapping domains, illustrated
in Fig. 3.8, will eliminate possible SPOFs.

By placing the memories and the register file in the ECC domain the need for mem-
ory synchronization between duplicated memories or register files is eliminated. Such
synchronization would be needed when a fault would occur in the register file or one
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Figure 3.8: Illustration of the overlapping protection domains used for protecting domain
crossings in the hybrid design.

Table 3.7: The crossing between the NMR and ECC domain in the hybrid design.

NMR to ECC ECC to NMR

Program counter in Program counter out
Instruction bus request Instruction bus response
Registers in Registers out
Data bus request Data bus response
Stats

of the memories. This choice also allows for a fine-grained comparison of results being
committed by the pipelines and thus early error detection. Furthermore, the resource
usage is decreased by not replicating these elements, but only extending them with a
few extra bits.

Faults can remain undetected and also accumulate in the register file for a long period
if the register is not used. This can be avoided by periodically launching a trap, which
will induce the scrubbing of the register file. This scrubbing is automatically induced
when a trap is launched, as the register file needs to be saved to the stack for usage
after the trap finishes and thus each register value will pass through two decoders. The
baseline softcore does not support traps yet, but this could be a useful feature once traps
are implemented.

Faults on the address field of buses/connections between the pipeline and memory
elements will be detected and corrected by protecting the addresses with ECC. After
decoding of the address in a memory element, no checks will be available to check if
the correct word was read from or written to the register file or the memories. The
implications of providing protection for such operations are complicated and not taken
into account in this design. Possible solutions for this problem will be presented as future
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work.
Scrubbing of words in the data memory could also be done by loading these words

into the register file and immediately afterwards writing them back to the data memory.
If large sections of the data memory need to be scrubbed this can become very costly and
a more dedicated scrubbing unit, which works in parallel to the core, might be required.
It should be noted that scrubbing of memory elements is only required when the fault
rate of a particular application is very high as it is rather costly and only gives improved
performance if enough faults can accumulate in a relatively short amount of time.

3.5.2 Program Counter

By placing the program counter in the ECC domain and not in the NMR domain, the
replicated pipelines can be kept synchronized at all times and a single pipeline cannot get
completely out of sync because its program counter is incorrect. The program counter
block also contains logic for calculating the new program counter value. For adding fault
tolerance to this design, two solutions are available: using Check Prediction (CP) or
N-Modular Redundancy (NMR).
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Figure 3.9: Block diagram of the program counter using check prediction.

PR = PA ⊕ PB ⊕ PCY (3.1)

In Fig. 3.9 the block diagram for the program counter using CP is depicted. The
check word for addition can be calculated with Eq. (3.1), where PR is the check word
for the result, PA the check word for input A, PB the check word for input B and PCY

the check word generated from the carries of the addition operation [5]. PCY could be
generated by the adder used for the addition operation, but the check prediction has
to be independent of the operation generating the data word, so a separate carry chain
should be used for generating these parity bits.

Fig. 3.10 depicts the block diagram for the NMR program counter. This program
counter replicates the increment calculation and the selection of the new program counter
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Figure 3.10: Block diagram for the NMR Program Counter.

value N times. The new program counter value is then encoded into the ECC domain and
voted before being latched. The FF storing the program counter value is not replicated,
as this would give synchronization problems if one of the FFs would latch a different
value. The inputs to the new program counter calculation are not voted by the core
when leaving the pipeline, as it would not make sense to vote a signal first and then
replicate it. It might take longer for an error to be detected, but it is not expected that
this will cause problems, as the majority voter is more resilient against errors than a
decoder due to per bit voting.

Based on the block diagrams presented it is expected that the CP program counter
uses fewer resources than the NMR program counter. The CP program counter, how-
ever, contains a SPOF at the multiplexer switching between the old program counter, the
incremented program counter, and the jump address. This SPOF could be removed by
placing the multiplexer in the NMR domain, but this would reduce the resource utiliza-
tion advantage of the CP program counter over the NMR program counter. Furthermore,
without the SPOF fix, the CP program counter would require a majority voter on its
input, which would diminish the resource utilization advantage of this version even more.
Because of the SPOF in the CP program counter and the resource utilization advantage
which is not so clear, it was decided to select the NMR program counter for the hybrid
design. The NMR version is expected to be more resilient to errors induced by faults in
the pipeline.

3.5.3 Design diagrams

In Fig. 3.11 the block diagram of the hybrid design is shown, which illustrates the design
features described. In the ECC-based design, the pipeline stages were modified as the
redundancy was added at a low level. In the hybrid design the pipeline stages only
required minimal modifications like some default values for additional bus signals, but
in general, the pipeline stages remained the same. So for the execute stage of the hybrid
design, the design from the baseline softcore as shown in Fig. 3.6 could be reused.

Besides the advantage of reusing already existing designs, this also prevents an in-
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Figure 3.11: The block diagram of the fault tolerant hybrid RISC-V core.

crease of the complexity of the design. The critical paths in the hybrid design will be
larger than for the baseline design, as most stages have encoders and majority voters
on some of the outputs and decoders on some of the inputs. These critical paths can,
however, be split by placing FF banks between the stage and the checking circuitry.
Using extra FF banks will mean more stages being used in the pipeline and thus more
stalls being induced for hazards and more flushes being induced on jumps, but this could
be a good solution for solving the reduced clock frequency problem.

3.5.4 Design cost estimate

Based on the design features and the block diagrams made a design cost estimate was
made for evaluation of the hybrid design. The design cost estimate for the hybrid design
is shown in Table 3.8 (for the more detailed estimate, see Table C.1). The design cost
estimate shows that the resource utilization is more than five times larger than for the
baseline softcore. This large increase is caused by the pipeline being replicated four
times and by the addition of encoders, decoders, and majority voters. The estimated
maximum clock frequency is also much smaller than the baseline, but at 44% it is not
too far off from the target for this design criterion. As mentioned before, the maximum
clock frequency could also be increased by adding additional stages to the pipeline for
decoding, but this will come at the cost of a higher CPI.
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Table 3.8: The design cost estimate for the hybrid design using SECDED Hamming code and
N = 4. The relative value is calculated versus the baseline softcore.

Resource Absolute Relative

LUT 9391 542%
Registers 3826 458%
fmax 38.6(MHz) 44%

3.5.5 Design summary

Based on the design description and the cost estimate, the hybrid design can be sum-
marized as:

• The number of domain crossings is limited by only switching between protection
domains while transferring data to and from the pipeline.

• The number of required encoders, decoders and majority voters is limited by only
having nine protection domain crossings.

• The complexity of the design is relatively low. The original stages can be reused
and only a few basic building blocks have to be added to the structural description
of the core.

• Resource utilization of the design is higher than four times the baseline design plus
majority voters, due to the encoders and decoders. However, the overall increase
is still acceptable as this eliminates a lot of SPOFs.

• The estimated clock frequency is only slightly lower than the target clock frequency.

3.6 Optional design features

Besides the main features of the ECC-based and hybrid design, there are also some
optional features, which can be implemented, but are not instrumental to the designs:

• For identification of fault attacks a watchdog can be added to the design. The
watchdog monitors all checking circuitry which can indicate the occurrence of a
fault. When these checkers indicate too many errors within a short time frame, the
watchdog can stop the core and thus make it impossible for the attacker to force
certain behavior of the core. The designer of the core can define the checking con-
ditions and other parameters used by the watchdog. These conditions include the
maximum number of concurrent errors, the maximum number of consecutive errors
allowed and the minimum interval between errors. If these checking conditions are
violated, the watchdog stops the processor. The watchdog is protected with NMR,
so attackers cannot disable the core by purposely attacking the watchdog.
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• For partial Double Adjacent Error Detection (DAED) and Triple Adjacent Error
Detection (TAED) capabilities the implementation of the used Hamming codes can
be optimized by adjusting the bit placement of the code. [41]

• For more extended error detection and correction capabilities, the used Hamming
code can be replaced by BCH codes.

• For the mitigation of SEFIs configuration memory scrubbing can be implemented.
This does, however, require a per-device-type implementation as the implemen-
tation of configuration memory differs between devices and some manufacturers
already provide solutions for this problem with some devices.

• If the watchdog has stopped the processor because of a violation of the checking
conditions and configuration memory scrubbing is implemented, the processor will
be restarted after the wait interval has expired. This will enable the scrubber to
solve any configuration errors caused by the attack.

3.7 Design selection
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Figure 3.12: Design cost estimate comparison for SECDED ECC and NMR (Hamming distance
= 4).

In Section 3.4 and Section 3.5 two designs for a fault tolerant RISC-V softcore were
presented. For both designs, design cost estimates based on synthesis results from the
baseline core and some preliminary block implementations were made. In Fig. 3.12 these
design cost estimates for SECDED error capabilities are compared to the design cost of
the baseline design.

For this thesis only one design should be implemented, so a choice has to be made
between the two presented designs. Table 3.9 depicts the comparison of the ECC-based
and hybrid design for each of the design criteria. The CPI of the hybrid design could
remain the same as for the ECC-based design, but if extra pipeline stages are added to
the design, the CPI might be lowered.
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Table 3.9: Design criteria evaluation for both designs

Criterion ECC-based Hybrid

ED + +
EC + +
CLK −− −
RU − −−
CPI + +/−
ST + +
COM − +
SPOF − +
RISC-V + +

The ECC-based design performs worse than the hybrid design for complexity and
SPOFs, because of the low level domain switches and the non-overlapping protection
domains. This SPOF problem could be solved by letting the protection domains overlap
by moving the encoders into the NMR domain, so the majority voters will vote data,
which is already encoded. This solution will increase the resource utilization even more,
so this will reduce the slight advantage of the ECC-based design for this design criterion.

Based on this design comparison, it was decided to implement the hybrid design for
this thesis, as it performs better for most design criteria. The only criteria for which
it performs worse than the ECC-based design is resource utilization, but this is partly
caused by solutions for problems involving other design criteria like the overlapping
protection domains. Furthermore, this design also gives more possibilities for future
improvement and has better maintainability, which are also important factors for the
usability of the fault tolerant softcore for Technolution B.V.

3.8 Verification design

The goal of the fault tolerant design is to prevent faults from influencing the correct
execution flow of the design without being detected by adding redundancy to the design.
The hybrid design should contain enough redundancy to mitigate most errors, but this
has to be verified by testing the design. This verification can be performed by injecting
faults into the design and check if the processor is still able to successfully execute its
assigned task and if it detected the error at the expected location.

3.8.1 Test design criteria

In Section 2.8 some techniques for fault injection were investigated, which can be used
for the fault injection architecture for this design. Several design criteria can be defined
for evaluating these techniques:

• Design modifications: some techniques require modifications of the design,
whereas other techniques do not. Modifying the design might introduce new bugs
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or hide bugs in the design, so fault injection techniques requiring no modifications
are preferred.

• Modification level: fault injection techniques can require modifications at dif-
ferent levels of the design. In this evaluation a difference will be made between low
level (inside basic building blocks like pipeline stages) and high level (in structural
descriptions of components).

• Simulation time: if fault injection is used in simulation this can result in larger
simulation times. As fault injection testing requires a comprehensive test suite,
long simulation times are not preferred.

• On board: some techniques are not suited for usage on a real FPGA, as these can
only be applied in for instance a simulator. On board testing can be executed much
faster, than testing in simulation, so for large test suites this can save large amounts
of time. Furthermore, simulation based testing might not catch all problems in the
design, as it is an approximation of real life. On board testing will provide better
verification of the design, as this gives a much better approximation of real life.

• Resource coverage: a comprehensive validation of the added redundancy re-
quires all resource being tested during fault injection testing. Therefore techniques
covering more resources are preferred.

3.8.2 Test design options

In Table 3.10 the applicable fault injection techniques are evaluated for each of the
design criteria for fault injection. Hardware based fault injection is not considered, as
the required resources for this technique are not available for this project.

Table 3.10: Evaluation of the fault injection techniques for each of the design criteria for fault
injection.

Criterion Software based Simulation based Saboteur Mutant

Design modifications No No Yes Yes
Modification level n/a n/a High & Low Low
Simulation time Medium Low High Low
On board Yes No Yes Yes
Resource coverage Low High High High

Saboteurs provide a versatile solutions for fault injection, as it can be used in all
places in the design and depending on the location of the saboteur does not require
major modifications to the design. Simulation times for saboteur based fault injection
testing will, however, increase, as the simulator needs to simulate more components.
Testing times can be reduced by only performing basic fault injection testing in simula-
tion and performing the full fault injection testing on the FPGA where execution times
are much lower. Mutants provide the same versatility as saboteurs, but also have the
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same problem as saboteur regarding testing times. Mutants, however, require modifi-
cations of components and basic building blocks, which might introduce new bugs or
hide existing bugs. Saboteurs can achieve the same effects as the result of fault injection
should be a fault propagating through the design. Whether the fault was created inside
a building block or on its output, is of less importance.

Based on this evaluation the saboteur was selected as the basic technique for the
fault injection architecture. The saboteur provides a versatile solution requiring minimal
modifications for fault injection which can be used both in simulation and on an FPGA.
In simulation, only basic testing of the fault injection architecture will be performed,
and the comprehensive test suite will only be run on the FPGA.

3.8.3 Fault injection locations

The locations for fault injection should be chosen such that all faults mentioned in
the fault model are tested. But testing all possible locations where faults can occur
according to the fault model, might result in too many locations to be tested and very
long test execution times. This can be solved by randomly selecting the locations for
fault injection, but this can create concerns over the coverage of such a framework,
which is as good as the random number generator. Fixed injection locations can result
in more confidence in the test coverage, but could be more limited than random fault
injection. So, the fault injection architecture should cover as many faults as possible with
a minimum number of locations. Another advantage of using fixed locations is that test
can be reproduced if they fail as the locations are not randomly generated. The saboteurs
in the hybrid design can be divided into two categories: saboteur mimicking faults just
before decoders and majority voters and thus mimicking the propagation of faults to
these components and saboteurs injecting faults at the outputs of large components
where faults are likely to occur.

Faults injected by saboteurs placed before the decoders and majority voters mimic
faults originating from other locations where according to the fault model a fault could
have occurred. In Table 3.11 these saboteurs are listed along with the type of fault and
location from which these originate.

Besides these basic fault injection locations, saboteurs have to be placed at the out-
puts of those components in the pipelines where a fault is most likely to occur. All the
saboteurs listed in Table 3.11 are outside or on the edges of the pipelines and placed in
front of a decoder or majority voter (except for the program counter input saboteur).
Therefore, the injected faults will be detected immediately by one or more detectors
depending on the location of the inserted fault. In real life operation induced faults can
also remain silent and thus not be detected by a decoder or majority voter. Moreover, a
single fault can also trigger more decoders and voters at once than the already defined
saboteurs can. Therefore, extra saboteurs should be inserted into the pipeline, for fault
injection on the outputs of components which are very susceptible to faults or can have
a major impact on the softcore execution.

The susceptibility of components to faults can be determined by calculating the
Failure In Time (FIT) rate for each component. The effective FIT rate, defined as
the number of failures to be expected in 109 hours (approximately 114,155 years) of
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Table 3.11: The basic locations of the saboteurs mimicking faults from the fault model.

Fault type
Saboteur location SEU SEMBU SET Fault origin

Instruction memory input X tl data bus req majority
voter or interconnect

Instruction memory output X X Instruction memory
Data memory input X tl data bus req majority

voter or interconnect
Data memory output X X Data memory
Register file input X risc v registers in major-

ity voter or interconnect
Register file output X X Register file
Program counter input X X X Pipeline logic or FF
Program counter output X X Program counter register
Stats output X X X Pipeline logic or FF

service, is the measure used to indicate the likeliness of failures occurring in a system.
For Xilinx FPGAs the FIT rate can be calculated with Eq. (3.2) where s is the size
of either Configuration Random Access Memory (CRAM) or Block Random Access
Memory (BRAM) in Megabits and DV F is the Device Vulnerability Factor (DVF).

FITeff = DV F ∗ (sCRAM ∗ FITCRAM ) + sBRAM ∗ FITBRAM (3.2)

The DVF is the number of faults in the configuration bits actually creating a soft
functional error, which according to [10] is 5% for a typical design and 10% in a worst case
scenario. In the Device Reliability Report from Xilinx [10] the FIT rates per Megabit of
CRAM and BRAM for the Spartan-6 are provided (listed in Table 3.12). The CRAM
usage can be calculated with the estimated resource usage per resource type which are
provided by [11] and listed in Table 3.13. With the mapping results for the baseline
softcore listed in Table A.4 and the data from Xilinx, the FIT rates can be calculated.
The results of this calculation are presented in Fig. 3.13. A DVF of 10% was used for
these calculations.

Table 3.12: The FIT rates per Megabit of
CRAM and BRAM for the Xilinx Spartan-6[10]

FIT/Mb
Type CRAM BRAM

Thermal Neutrons 21 83
Alpha particles 88 172
Real Time Soft Error
Rate per Event

177 370

Table 3.13: Estimated CRAM usage per
resource type for the Spartan-6 [11].

Resource type CRAM (b)

Logic Slice 1166
BRAM (18 Kb) 4698
BRAM (9 Kb) 2349
I/O Block 2850

Based on the results presented in Table A.4 and Fig. 3.13 it was decided to place
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Figure 3.13: Results of the effective FIT rate calculations for selected components.

saboteurs on the outputs of the Decode and Execute stages and Hazard Control. The
results show that the Decode and Execute stages are the biggest components and thus
are the most susceptible to faults. On top of this, these stages also have an important
role in the functioning of the processor, as faults in the Decode stage will cause the
processor to execute erroneous instructions and faults in the Execute stage will cause
erroneous calculation results to be used and stored. Hazard Control is also included as
a fault injection location, as this component will stall the pipeline unnecessarily when a
fault occurs. This will cause a pipeline to get out of sync and will create a lot of errors.
By applying fault injection on the Hazard Control, it can be verified if the design can
withstand such a large disturbance in its system. All the fault injection locations are
included in the top-level diagram in Fig. 3.14 as red interconnections.

3.9 Conclusion

In this chapter, the baseline design of the RISC-V softcore, implementing the RV32I
instruction set and a classic five-stage RISC pipeline, was presented. The presented
fault model defines at which locations in the softcore and at which moments SEUs and
SETs can occur in softcore. The set of design criteria used for evaluation of the design
options and the fault tolerant designs include error detection/correction capabilities,
resource utilization, and complexity amongst others.

Two fault tolerant designs were made, both using NMR and ECC. The ECC-based
design uses ECC for protection whenever possible, both in the pipeline and in memory
elements, in an effort to save resources. Only for combinatorial elements which ECC
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cannot protect NMR is used. The low-level switches between the ECC and NMR domain
result in a significant number of SPOFs and a high complexity of the ECC-based design.
The hybrid design uses NMR to protect the pipelines and ECC to protect memory
elements. This design has a limited amount of switches between protection domains and
by letting the domains overlap, possible SPOFs are avoided.

After evaluation of both designs for all the design criteria, the hybrid design was
chosen for implementation, because of its better performance for all design criteria except
resource utilization. The redundancy of the design will be tested by using fault injection
through saboteurs, which will be inserted into the design. In simulation, the basic fault
injection architecture will be tested and on the FPGA a more comprehensive test suite
will be used to test the fault tolerance.



Implementation of a fault
tolerant RISC-V softcore 4
In Chapter 3 two designs were presented: the ECC and hybrid design. The hybrid design
was selected for implementation based on the evaluation of both designs for the design
criteria. This design can be implemented in two steps. First, the missing building blocks
need to be designed, implemented, and tested. These blocks are the Hamming encoder
& decoder, the majority voter, and the saboteur Once, these blocks are available, the
structural changes to the core and SoC level can be made.

In this chapter the design, implementation and unit test of the missing basic building
blocks will be described in Sections 4.2 till 4.4. The implementation of the structural
changes in the softcore itself will not be discussed extensively as these changes largely
follow from the block diagram in Fig. 3.11. In Section 4.5 the changes to the SoC required
for incorporation of the fault tolerant core and the memory mapping of this new SoC
will be discussed.

4.1 ECC specifications

In the hybrid design, ECC will be used to protect the memory elements and most
buses and interconnect records originating from the domain crossings as defined in Ta-
ble 3.7. The tl data bus will be used for communication between the pipelines and
the instruction memory, data memory, and other SoC peripherals. For communica-
tion between the pipelines and the register file two interconnect record types were de-
fined: risc v registers in and risc v registers out. For communication between
the pipelines and the program counter the interconnect record types risc v pc in and
risc v pc out were defined. In Table 4.1 the fields of the bus and interconnect record
types are defined along with their width and whether the field is protected with ECC or
not. If a field is protected with ECC an extra field containing the check bits with the
suffix check is added to the record type. The ECC coding scheme uses a systematic
form where data and check bits are placed in two separate parts of the code. In the
interleaved format the check bits would be placed at the bits of the code word for which
the index is a power of two.

The tl data bus req and tl data bus resp records are used for both the instruction
and data memory, which use different encodings. The instruction memory uses standard
word encoding, where the data memory uses byte encoding to enable the byte accesses
required by the RISC-V ISA. The check words for the four bytes in the data word are
stored in concatenated form. To accommodate the larger, concatenated check word for
byte encoding an extra field, data check byte, was added to the tl data bus records.

Not all fields of the records mentioned in Table 4.1 will be protected with ECC. Most
of these fields are control bits, which were not specifically targeted by this design. It
should, however, be fairly easy to add protection for these bits by adding a check word

57



58 CHAPTER 4. IMPLEMENTATION

Table 4.1: Record types used in the RISC-V softcore, which are (partly) protected with ECC

Record Field k ECC

tl data bus req write 1
read 1
byte en 4
data 32 X
address 32 X

tl data bus resp ack 1
nack 1
data 32 X

risc v pc in jump 1
fetch stall 1
memory stall 1
hazard stall 1
jump address 32 X

risc v pc out pc address 32 X
risc v registers in r enable 1

w enable 1
rs1 address 5 X
rs2 address 5 X
rd address 5 X
rd data 32 X

risc v registers out rs1 data 32 X
rs2 data 32 X

for a single bit data word. Checking whether the correct operation was executed, based
on the control bits value, however, is much more difficult and is not considered in this
thesis.

In Table 4.2 the specifications for the Hamming ECC coding for different data widths
is presented. The main requirement for the FT softcore is the SECDED error capability,
which corresponds to a Hamming distance of four. The check widths for lower Hamming
distances are also mentioned as these encodings should be easily interchangeable with
the SECDED encoding.

Table 4.2: The specifications for Hamming-based ECC coding for different word sizes and dmin.

data width
Redundancy 5 8 32

dmin ED EC n m n m n m

1 0 0 5 0 8 0 32 0
2 1 0 6 5 9 1 33 1
3 1 1 9 4 12 4 38 6
4 2 1 10 5 13 5 39 7
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4.2 Hamming encoder & decoder

The basic components for the ECC protection domain are the encoder and decoder, which
can transfer data to and from the domain. In this section, the generic block design of
the encoder and decoder will be described. This basic block will be used to construct
record specific encoders and decoders, which are structural architectures containing en-
coders/decoders for all fields in the record. In the case of the tl data bus encoders,
and decoders, a generic will be available to switch between word and byte encoding for
the data field. This section will also describe the unit test and timing/area estimates for
these components.

4.2.1 Block design

In Fig. 4.1 the block design for the Hamming encoder is presented. This encoder provides
a Hamming code word in systematic from on its two outputs data out and check out

based on the input data in. The check generator uses an algorithm which is based on
the interleaved form of the Hamming code word for generating the check bits. This is
a relatively simple algorithm which could be implemented for all possible bit widths of
data in. This algorithm could also be replaced by a table indicating which data bits
should be XORed for which check bits [57]. Using a table might enable the synthesizer
to generate a more efficient implementation of the encoder, but it limits the usability of
the encoder to the length of the table.

Check 
generator

check_out

Encoder

data_in

data_out

Figure 4.1: The block diagram for the Hamming encoder.

In Fig. 4.2 the block diagram for the detection only Hamming decoder is depicted.
This decoder can detect errors for a specified Hamming distance for any combination of
data and check words of valid length. If the decoder detects an error, it will set the output
data and check word to the std logic value X and will assert the error detected flag.

In Fig. 4.3 the block diagram for the full Hamming decoder is depicted. This de-
coder can detect and if possible correct errors for a specified Hamming distance for any
combination of data and check words of valid length. When a correctable error is de-
tected, the error will be corrected and the corrected data or check word will be placed
on the output along with the valid data or check word and the error detected and
error corrected flags will be asserted. When a non-correctable error is detected, the
decoder will behave the same as the detection only decoder and the error corrected

flag will be de-asserted.
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Figure 4.2: The block diagram for the detection only Hamming decoder.
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Figure 4.3: The block diagram for the correction Hamming decoder.

4.2.2 Unit test

The implementations of the Hamming encoder and decoder were tested with a unit test
bench. The unit test bench uses a test harness (depicted in Fig. 4.4), which can be
configured for fault tolerance level and bit width. The source provides the encoder with
input data along with a mask used for fault injection through the XOR port. Sink 1
sends the code word produced by the encoder along with the input data back to the
test bench for checking. The test bench sends all possible input values for the given
bit width to the test harness through the source. When output data is received, the
test bench checks if the values received are in the right order and for selected values, it
checks whether the calculated values are correct. These selected values were calculated
by hand to ensure correctness of these values. Sink 2 sends the decoded data back to the
test bench for checking along with input data. The test bench also checks the data from
sink 2 for the right order of receipt and against the selected values. The test bench will
also take into account if faults were injected and if the decoder detected or corrected the
faults depending on the number of faults injected. In Table 4.3 the tests performed by
the unit test bench along with the configuration and the result are listed.
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Figure 4.4: The simplified block diagram for the test harness used by the unit test bench for
the Hamming encoder and decoder.

Table 4.3: List of the tests performed in the unit test bench for the Hamming encoder and
decoder.

test Redundancy k Faults Result

1 SED 8 1 pass
2 SED 10 0 pass
3 SEC 8 1 pass
4 SEC 10 0 pass
5 DED 8 2 pass
6 DED 10 0 pass
7 SECDED 8 2 pass
8 SECDED 10 0 pass
9 TED 8 3 pass
10 TED 10 0 pass

4.2.3 Design cost estimate

In Tables 4.4 and 4.5 the design cost estimates for the Hamming encoder and decoder as
used in the implementation of the hybrid design are listed. These design cost estimates
differ from the estimates used for the design cost estimates made during design, as
the implementation of the encoder and decoder was refactored during implementation
from an interleaved format to a systematic format. These design cost estimates show
that especially the decoder consumes a lot of resources for error correction and has a
long critical path. This supports the observation made during the design phase that
especially the decoders in both designs are responsible for the large decrease in clock
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frequency. If only error detection is required, the resource usage and the critical path
can be significantly reduced.

Table 4.4: Design cost estimate for the Hamming encoder with L the number of LUTs and and
tcomb the maximum combinational path delay.

SED SEC/DED SECDED/TED
k L tcomb (ns) L tcomb (ns) L tcomb (ns)

5 1 0.7 3 0.5 4 0.5
8 2 1.4 4 0.7 5 0.7
32 7 2.1 19 2.1 23 2.1

Table 4.5: Design cost estimate for the Hamming decoder with L the number of LUTs and
tcomb the maximum combinational path delay.

SED SEC DED SECDED TED
k L tcomb (ns) L tcomb (ns) L tcomb (ns) L tcomb (ns) L tcomb (ns)

5 1 0.7 14 2.4 3 2.1 29 4.8 5 1.9
8 2 1.5 18 2.4 5 1.9 38 5.0 8 2.9
32 7 3.3 90 5.8 21 3.5 129 10.3 26 4.5

4.3 Majority voter

The pipeline will be replicated several times based on the requested redundancy level
(four times for SECDED). All the data which leaves the NMR domain to the ECC
domain needs to be accumulated before it can be processed by components in the ECC
domain. This accumulation is done by the majority voter, which will determine which
value, zero or one, has the majority in the provided signals. If no majority can be
determined, the output values will be set to zero and the voter will signal an uncorrectable
error being detected. In this section, the block design will be discussed, along with the
unit test and the design cost estimate.

4.3.1 Block design

Fig. 4.5 depicts the block diagram for the majority voter for an N-bit vector. The
majority voter can handle any number of M vectors of N bits each, but these vectors
need to be provided to the majority voter as one concatenated std logic vector due to
limitations of VHDL-93. The router will split the input vector into separate vectors for
each bit position in the original input vectors. The Data logic will calculate the output
value for each of these separate vectors, the ED logic will determine if any errors are
present in the vector and the EC logic will determine if these errors can be corrected by
the voter. If an uncorrectable error is detected in any of the bits, data out will be set to
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Figure 4.5: The block diagram for the majority voter.

the default value of 0 by the output multiplexer. The majority voter can also be used in
a detection-only mode in which the voter will set data out to 0 for every detected error.
Table 4.6 list some binary examples for the bitwise majority voting procedure applied in
the majority voter.

Table 4.6: Binary examples for the bitwise majority voting procedure for SECDED applied in
the majority voter.

Example Inputs Output ED EC

No errors 101 101 101 101 101 0 0
One single bit error 101 101 101 100 101 1 1
Two single bit errors 111 101 101 100 101 1 1
One double bit error 101 101 100 100 000 0 1

Applying the majority voting procedure on a per bit basis means a significantly higher
level of redundancy is used compared to the redundancy in ECC protected code words.
For SEC the input vectors may contain multiple errors as long as these errors are not
in the same bit position. A SEC code word decoded by a decoder may only contain one
error if it is to be correctable. However, using extra redundancy for the majority voter
is justified, as a pipeline containing a fault is likely to produce a completely different
outcome than the other pipelines. This is especially the case when the fault occurred in
a control signal in the pipeline which forced the pipeline to manifest different behavior
than the other pipelines.

4.3.2 Unit test

The majority voter was also tested with a unit test bench using the test harness de-
picted in Fig. 4.6. The test bench uses different harnesses with different settings for the
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redundancy and the bit width. Table 4.7 contains a complete listing of the tests along
with the test results. Each test harness is fed with all possible combinations of input
values for the used bit width and the number of faults injected by the test bench. The
number of injected faults is changed by setting one or more of the original input vectors
to 0, simulating a pipeline which produces completely erroneous results. The test bench
checks if the received results are in order and are matching with what was expected.

TL stream bus 
source BFM

Majority 
voter

TL Stream bus sink 
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Clock and Reset 
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clock

reset

Figure 4.6: The block diagram for test harness used by the unit test bench for the majority
voter.

Table 4.7: List of the tests performed in the unit test bench for the majority voter with n as
the bit width.

Test Redundancy dmin n Result

1 SECDED 4 1 pass
2 SED 2 6 pass
3 SEC 3 6 pass
4 DED 3 6 pass
5 SECDED 4 6 pass
6 TED 4 6 pass
7 SECDED 4 8 pass

4.3.3 Design cost estimate

In Table 4.8 the design cost estimate for the final implementation of the majority voter
is listed. This estimate was not used for the design cost estimates of the ECC-based and
hybrid design in Chapter 3. The design cost estimate shows that some configurations of
the majority voter can be mapped better to the FPGA fabric than other configurations.
The resource usage will increase if the bit width is increased, but a smaller majority voter
might have a higher latency than a larger majority voter. It might be advantageous to
combine several signals into one std logic vector for voting, for saving resources and
reducing the critical path. But in the final implementation of the hybrid design, the
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synthesizer might apply other optimizations due to the cascade of the majority voter
with other components, which eliminate these resource mapping effects. Furthermore,
other devices might not be affected by these effects, so such optimizations should only
be applied when they are required for achieving certain performance requirements. As
this design should be platform independent, such optimizations were not used in this
implementation.

Table 4.8: Design cost estimate for the majority voter with L the number of LUTs and tcomb the
maximum combinational path delay.

SED SEC DED SECDED TED
k L tcomb (ns) L tcomb (ns) L tcomb (ns) L tcomb (ns) L tcomb (ns)

1 2 0.4 2 0.5 2 0.5 3 0.5 2 0.5
4 6 2.7 7 2.6 7 3.9 15 4.5 10 4.8
5 7 3.0 9 2.7 9 4.0 19 5.6 14 6.0
8 12 4.6 18 2.9 17 4.6 49 5.5 22 7.9
20 27 3.0 40 1.6 40 3.4 113 6.1 40 3.4
32 43 3.3 64 1.9 64 3.9 184 7.3 64 3.9

4.4 Saboteur

In Section 3.8 fault injection was selected as the verification method for the hybrid
design. Saboteurs will be used to inject faults into signals in the design. The locations
were saboteurs will be inserted into the design were defined in Section 3.8.3. In this
section, the block design, the unit test, and the design cost estimate for the saboteur
will be discussed.

4.4.1 Block design

Fig. 4.7 depicts the block diagram of the basic design for the saboteur, which can be
configured for any possible bit width of the input signal. The faulty signal will be
created by XORing the input signal with a mask with the same width as the input. The
saboteur is fitted with a 16-bit counter, which is compared with the condition. If there
is a match between the counter and the condition, the faulty signal will be placed on the
output by the multiplexer and the counter will be reset. The saboteur will only inject
faults when the core is enabled as indicated by the core enable signal and when the
saboteur is enabled as indicated by the enable signal. By using a counter for periodic
injection, the saboteur can insert multiple faults in a test run, without the need for
interaction with the tester during the run itself. Along with the fixed injection locations,
this makes the fault injection test completely reproducible as the fault injection pattern
is based on only a few parameters in a deterministic manner.

The mask, condition and enable signals are coming from an external register block,
the saboteur registers, used for controlling all saboteurs in the core. The fault inserted
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Figure 4.7: The block diagram of the saboteur.

flag is connected to a counter in the saboteur registers and will be asserted each time a
fault is injected. The counter will count the number of times a fault is inserted during
a test run. The counter cannot differentiate between the injection of a single, double or
multiple fault injection into a single word, because fault inserted is a 1-bit signal. The
information stored in the saboteur registers can be used after the test run for verifying
the results of the test run. The saboteur registers can be accessed (both read and write)
by the test environment running on an external system through the Ethernet connection.
Using these saboteur registers gives the test environment complete control over the fault
injection pattern used for each test.

The basic saboteur described before will be used in larger record saboteurs which can
be inserted on the tl data bus and other record types used in the softcore. These record
saboteurs contain saboteurs for all fields of the record, which can be completely enabled
or disabled with one generic g fault injection enable. Most record types contain
different kind of fields (control, address, data), for which fault injection can be enabled
or disabled as well through separate generics. In the tl data bus request and response
saboteur, there is also a generic available for switching between word and byte encoding
for the data field. These generics are used on top of the enable signals provided by the
saboteur registers and the core enable signal, to speed up simulation by completely
bypassing the saboteur if requested. These generics will also help in reducing the size of
the generated core by not including some saboteurs in the design or completely disabling
fault injection.

4.4.2 Unit test

The saboteur was also tested with a unit test bench using the test harness depicted in
Fig. 4.8. Table 4.9 lists all test performed by the unit test bench along with the test
results. Each test harness is fed with all possible combinations of input values for the
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used bit width. Test 3 is also fed with all possible combinations of input masks containing
a single error for each possible input value. The testbench checks if the received results
are in order and are matching with what was expected.
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Figure 4.8: The block diagram for test harness used by the unit test bench for the saboteur.

Table 4.9: List of the tests performed in the unit test bench for the saboteur with n as the bit
width.

Test n Condition enable Results

1 6 0x0000 0 pass
2 8 0x0000 0 pass
3 6 0x0004 1 pass

4.4.3 Design cost estimate

In Table 4.10 the design cost estimate for the saboteur is listed. The LUT resource
utilization for a single saboteur might be not so large, but there are 14 record saboteurs
present in the hybrid design, each containing several saboteurs for the different fields
in the record. Therefore, it should be expected that the fault injection core uses much
more LUTs than the fault tolerant core. The period (and thus the fmax) of the saboteur
is small enough not to affect the overall clock frequency of the design. The path delays
of the in- and output, however, are considerable when taking into account that these
delays will be added to already long paths. Therefore, it can be expected that the fault
injection core will also run at a lower frequency than the fault tolerant core.

4.5 System on Chip

In Fig. 4.9 the block diagram for the fault tolerant SoC incorporating the fault tolerant
softcore based on the hybrid design is depicted. Compared to the baseline SoC, three
components were added: an encoder for the tl data bus resp from the bridge between
the tl reg bus and the tl data bus, the error counters, and the saboteur registers.
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Table 4.10: Design cost estimate for the saboteur.

Path delays (ns)
k LUTs Registers tperiod tinput toutput tcomb fmax(MHz)

1 40 16 3.6 2.6 3.9 2.8 274.1
4 44 16 3.7 2.7 4.1 3.0 268.4
5 45 16 3.7 2.7 4.1 3.1 266.9
7 47 16 3.8 2.7 4.1 3.1 263.6
8 48 16 3.8 2.8 4.2 3.1 262.1
20 63 16 4.0 3.0 4.2 3.2 248.9
32 78 16 4.2 3.2 4.4 3.4 237.1
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Figure 4.9: The block diagram of the fault tolerant RISC-V System on Chip.

Furthermore, the instruction and data memory were replaced with the fault tolerant
variants.

4.5.1 Memory mapping

In Table 4.11 the memory mapping of the tl reg bus of the fault tolerant RISC-V SoC
used for testing is listed. This memory mapping describes the regions which can be
used by the core and the test environment to run programs and check the results of
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the programs after execution. The memory mapping can be easily adjusted with the
Register Definition Language (RDL), a proprietary tool developed by Technolution B.V.
to define memory mappings and register blocks. The RDL structure of the fault tolerant
RISC-V SoC contains several map files, which define the different memory regions used
and multiple register files defining the register blocks. Based on these files the RDL
compiler will generate VHDL, C and Python files, with constants, records, objects, etc.
which can be used to access components connected to the tl reg bus. This enables the
user to adjust the memory mapping by changing one value in one RDL file, without
having to adjust addresses and mappings in several locations in the SoC and the test
environment.

Table 4.11: The memory mapping of the fault tolerant RISC-V core.

Region Start Size

Instruction memory 0x00000000 0x4000
Data memory 0x08000000 0x4000
UART 0x10000000 0x1000
Control registers 0x10001000 0x1000
Error counters 0x10002000 0x2000
Saboteur registers 0x10004000 0x2000
External registers 0x10100000 0x100000

Every region in the memory mapping is connected to a module with a different
function:

• Instruction memory: memory containing all executable instructions.

• Data memory: memory containing all data elements used by the core to execute
a program.

• UART: component for asynchronous serial communication with the outside world
through printf and scanf function calls.

• Control registers: register block containing the soft reset and enable registers
amongst others used for controlling the softcore. The control registers also contain
soft reset and enable status registers, which indicate if the core is executing or has
stopped.

• Error counters: register block containing counters for the number of errors de-
tected by the decoders and majority voters. Every checker has a counter, so the
exact location and number of errors are available after an execution run. The error
counters can be reset with the soft reset.

• Saboteur registers: register block containing control registers and counters for
all saboteurs in the softcore. The control registers include the condition, mask
and enable signals for every saboteur. Every saboteur has a counter, so the exact
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location and number of injected faults are available after an execution run. The
saboteur registers can be reset with the soft reset.

• External registers: register block for components outside the SoC environment,
which need to communicate with the core.

All regions listed in Table 4.11 can be accessed by the test environment through the
Ethernet connection and the tl reg bus. The softcore has two tl data busses: one
connected to the instruction memory and one connected to the data memory. The second
tl data bus used for accessing the data memory is also connected to the bridge between
the tl data bus and the tl reg bus. Through this bridge the softcore can access all
peripherals connected to the tl reg bus like the UART which is used by printf and
scanf function calls. The bridge also allows the softcore to disable itself by clearing the
enable flag in the control registers. This can create a deadlock situation, but it is a very
useful feature when testing. The enable flag from the control registers is also connected
to the enable status flag in the same register block. Once the enable flag is cleared by
the softcore because it has finished execution, the test environment can see this if it is
polling the enable status flag in a busy waiting loop. The test environment can then
proceed with checking the test results, clear the softcore and peripherals through the
soft reset, and start a new run.

The saboteur registers are only used when the core is tested and do not have to be
included in a final implementation. Therefore, the saboteur registers are only added to
the design when the g fault injection enable generic is true. When this generic is
false, the saboteur register will be replaced with a tl reg bus dummy, which will provide
a positive or negative acknowledgment for every read or write request to this memory
region depending on the configuration of the dummy.

4.5.2 Control registers

The control register block contains the following registers:

• reset control: contains the soft reset and core enable control flags, for resetting
and enabling the core.

• core status: contains the soft reset, core enable, and core stopped status flags.

• Several counter registers for gathering statistics on the software execution like the
number of cycles, instructions, stalls, and hazards.

The control flags are read/write registers which can be accessed by every master on
the tl reg bus, in this case, the test environment and the softcore itself. The core itself
also has write permissions on these control flags so it can disable itself once it has finished
execution of a test application. The status flags indicate to the test environment what
the actual value of the reset and enable flags seen by the core are. This is necessary, as
the reset control flag is ORed with the hard reset and the enable control flag is ANDed
with the hard enable and the core stopped flag. The core stopped flag is asserted if the
core detects an uncorrectable error and cannot continue execution. The core stopped flag



4.5. SYSTEM ON CHIP 71

is also included a status flag in the control register block so that the test environment
can check the cause of a failed execution. The status flags are read-only.

4.5.3 Error Counters
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Figure 4.10: The structure of the Error counters register block.

The error counters will count the number of detected errors by each decoder and
majority voter. These error counts will be compared with the number of injected faults
to see if all faults were detected or if faults remained silent depending on the scenario.
These error counters can also be accessed (both read and write) by the test environment
through the Ethernet connection. When a counter is written by the test environment,
the counter will be reset. The structure of the error counters is depicted in Fig. 4.10.

4.5.4 Saboteur registers

The saboteur registers will control the saboteurs in the softcore and count the number
of times a fault is injected. For each record saboteur, a register set is included in the
register block. Each register set contains:

• condition: condition used by the saboteur timer to count the interval between
consecutive fault injections.

• mask: mask used for fault injection for each field of a record.

• enable: enable register containing an enable bit for each of the fields of a record.
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Figure 4.11: The structure of the saboteur register block.

• field: x counters (one for each field in the record) which count the number of
injected faults for each field. field is the name of the field of the record.

All fields can be read and written through the tl reg bus. If one of the field

counters is written, the counter will be reset. The structure of the saboteur registers is
depicted in Fig. 4.11.

4.6 Conclusion

In this chapter, the implementation details of the hybrid design were presented. The
specification of the used Hamming code was presented along with a list of all the signals
which will be protected with ECC. Furthermore, the design, unit test and cost estimates
for the basic building blocks, the Hamming encoder, and decoder, and the majority
voter were presented. The cost estimates showed that the latency of these basic building
blocks are very high compared to the latency of the different pipeline stages. This is
one of the main causes why the clock frequency of the fault tolerant design is reduced.
Finally, the fault tolerant RISC-V SoC and the memory mapping used for testing were
presented. The SoC contains a register block for controlling the softcore, a saboteur
register block used for controlling and monitoring the saboteurs, and error counters used
for monitoring the checking circuitry. The data from these register blocks can be used
to check if all inserted faults were detected during fault injection verification.



Verification of a fault tolerant
RISC-V softcore 5
In Chapter 3 and Chapter 4 the design and implementation of a fault tolerant RISC-V
softcore were discussed. This core should be able to correct the effects of any single
fault and detect any double fault occurring in the pipeline, a data word, or an address
word. It must be verified that the implemented solutions provide the softcore with these
capabilities. For this purpose, a verification design was made in Section 3.8, which
defines at which locations faults should be injected into the design to verify the fault
tolerance. With the verification design in mind, a test architecture was build to control
the verification design and perform automated verification. In this chapter the test
architecture used will be explained in Section 5.1 and the results of this verification
process will be presented in Section 5.2. Furthermore, the benchmarks of the different
SoCs will be presented in Section 5.3. The resource utilization of the softcore on the
Xilinx Spartan-6 will be presented in Section 5.4. The timing analysis performed for the
proof of concept will be presented in Section 5.5. The resource utilization and timing
results are then compared with the design estimates in Section 5.6 and with the design
criteria in Section 5.7.

5.1 Test architecture

For performing the verification of the fault tolerance, a test architecture is required. The
test architecture for this design contains the following components:

• Test applications to be executed by the test architecture during verification.

• A simulation-based test environment using ModelSim for verification of the basic
functionality.

• An on-board test environment using Python to control the test execution on the
Xilinx Spartan-6 FPGA for verification of the fault tolerance.

In this section each of these components will be discussed.

5.1.1 Test applications

In each test, a number of test applications should be executed on the softcore, while spe-
cific properties of the softcore are tested. These properties can be the basic functionality
of the softcore or mitigation capabilities of the softcore during fault injection. For the
suite of test applications the following requirements can be defined:

• Verify if each instruction of the RV32I instruction set is properly implemented and
executed.

73
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• Execute all implemented instructions multiple times.

• Verify if the execution flow of test program was correct by checking results in data
memory or checking the received data on the UART transmission line.

Based on these requirements, four test applications were selected for the verification
suite:

• Basic SoC test: a small test program executing some often used instructions
(addi, jal, sw), which tests basic functionality of the softcore. The test stores two
values in memory, which can be checked for correct execution after the test finished.
This test is used for quick debugging, as the execution time of this program is very
small.

• RISC-V ISA verification set: a verification set provided by the RISC-V com-
munity [58] which tests the compliance of the hardware implementation with the
specification with unit tests (one per instruction). After each unit test, a result
code is stored in memory. If this result code is one, the test was successful. Any
other code indicates a failure, where the result code points to the specific test
causing the failure. The test strategy used by these unit test was developed at UC
Berkeley and ICSI during the Torrent-0 vector microprocessor project [59].

• Hello World: a unit test for the UART transmission capability. When suc-
cessfully executed, the test environment should receive two strings on the UART
transmission line. The UART receipt capability was not tested as this required a
busy waiting loop or interrupt.

• Dhrystone: a synthetic benchmark [56] used for executing a long program on the
softcore while performing fault injection. The Dhrystone benchmark contains 20
checks on both integer and string variables which will indicate successful execution.

For each of these tests checking conditions are defined, which indicate success or
failure after test execution is finished. For each test application except the basic SoC
test, the instruction coverage was determined by counting the number of instruction
reaching the write back stage with an extra register block in the standard SoC. The
instruction coverages for the individual applications and the verification suite are listed
in Table E.1. The instruction coverage for most instructions is reasonably well to very
good. Some instructions are executed more than others, but the ISA verification set
ensures most instructions are executed. The only exceptions to this are the timing
instructions and sltu. Writing a good test for the timing instructions is difficult, as this
is very much dependent on the handling of data and control hazards by the softcore. For
the sltu (and the sltiu) instruction, a unit test is missing in the ISA verification set.

Besides the applications of the verification suite, one other application will be used
for benchmarking the processor: CoreMark [60]. This benchmark is maintained by the
Embedded Microprocessor Benchmark Consortium (EEMBC) and is aimed at replacing
the Dhrystone benchmark. Like Dhrystone, CoreMark tests how much iterations the
processor can perform within one second and presents a single number which can be
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used to compare processors. Where Dhrystone is a synthetic benchmark, CoreMark uses
real algorithms like list processing, matrix multiplication, and CRC. The instruction
coverage of CoreMark is also listed in Table E.1.

5.1.2 Simulation-based test environment

The basic functionality of the softcore will be tested in the simulation-based test envi-
ronment using ModelSim as the simulator. The simulation-based test environment also
uses the Self Checking Test Bench (SCTB) test environment of Technolution B.V. for
automated verification. The SCTB consists of:

• Test harnesses containing the Module Under Test (MUT) and the required Bus
Functional Models (BFMs).

• Test cases using one of the available harnesses.

• A makefile containing a list of all available test cases plus a definition of the re-
gression tests.

Clock and 
Reset BFM

TL reg bus 
master 

BFM

RISC-V SoC

UART BFM

clock

reset

Tx Rx

RISC-V 
SoC harness

master
_req

master_resp

Figure 5.1: The block diagram of the test harness used for verification of the fault tolerant
RISC-V softcore.

A BFM is a non-synthesizable model written in VHDL, which simulates the behavior
of other components on a bus or any other functionality normally performed by other
components on which the MUT relies. Each test case tests a part of the functionality of
the MUT by issuing commands to the BFM to apply certain stimuli to the MUT and
checking the results produced by the MUT. Based on the performed checks the test case
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will return a pass or fail result to the test environment. If all test cases in the regression
test pass, the regression test will also pass. Fig. 5.1 depicts a block diagram of the test
harness for the fault tolerant RISC-V softcore containing three BFMs for the clock and
reset, the tl reg bus and the UART connection.

For all test applications except the Dhrystone benchmark, a test case was made
and included in the regression test. This regression test can be used for functional
verification of the softcore in simulation and allows the designer to eliminate most bugs
before starting on-board testing. A basic SoC test SCTB is also used for testing the fault
injection architecture described in Section 3.8. This does not include all possible fault
injection tests, but only one fault injection test on the address line of the instruction bus
request in the softcore. During on-board testing the basic SoC test SCTB was also used
to replicate failures of on-board test cases, as the ModelSim simulator provides more
information for debugging than the on-board test environment.

5.1.3 On-board test environment

The on-board test environment will be used to perform functional and fault tolerance
verification on an FPGA. A Xilinx Spartan-6 XC6SLX100 FPGA on the Trenz Electronic
Gigabee TE0600 micro module will be used in the on-board test setup. The test execution
on the softcore will be managed by the test controller running on a computer. There are
three connections available between the computer and the Gigabee (depicted in Fig. 5.2):

• JTAG programming cable used to program the FPGA.

• An Ethernet connection for accessing the memories and register blocks connected
to the tl reg bus in the SoC.

• A UART connection for sending application print output to the computer.

PC

Gigabee

USB – JTAG USB – TTL

programming cable UART

Ethernet

Figure 5.2: The on-board test environment.

Functional verification is performed in both test environments, as it is an important
step in the verification process. The simulation-based functional verification is used to
find most bugs, where the on-board functional verification is used to find any bugs not
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found in simulation and other bugs which were introduced by the Xilinx toolchain. Fault
tolerance verification is performed in two steps: first, the basic fault injection test case
used in simulation is replicated on the FPGA after which all fault injection tests are
executed. By performing the basic fault injection test case first, it is possible to verify
if the results produced on-board match the results in simulation. If these results match,
the fault injection architecture is working properly. Some specific bugs might remain
undetected, but the basic functionality is as expected.

The test controller is implemented in Python and uses the PyART module of Tech-
nolution. The PyART module is used to perform automated verification of the MUT on
the FPGA. The PyART module consists of the following objects:

• An initialization script: all required objects for a test.

• A test runner: searches the specified directory for test cases, expands the parameter
lists in the test cases, and executes the test cases.

• A reporter: generates a report and an error log for each test run based on the
information passed by the test runner.

• Multiple test cases: each test case tests certain functionality of the MUT by ap-
plying stimuli to the MUT and checking the results produced by the MUT.

Each test case should contain the following methods which are called by the test
runner:

• setup: initialization function defining parameters lists, used for iteration expansion
of the testcase, and other parameters.

• startup: initialization function called at the start of each iteration of the test case.

• shutdown: function called at the end of each iteration of the test case for cleanup
after the test case run.

• testx y: test function defining a test, where x is the three digit number of the test
and y is the name of the test.

For each parameter in a parameters list, an iteration of the test case will be created
by the test runner so that the test cases can be executed multiple times for different
parameters. New test cases can be defined by inheriting the class PyARTCase, which
defines these methods except the test methods. The new test cases should define the
required tests to be executed and should overload the standard methods if the test case
requires initialization or cleanup. Besides these standard methods, a test case class may
also include other helper methods, which implement functionality used by all tests.

Each test case uses the GigabeeFT class for all interactions with the FGPA.
GigabeeFT contains the tl reg bus Ethernet client object used for sending and receiving
information to and from the SoC and several helper methods for:

• Clearing memories and register blocks.
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• Writing applications to the instruction memory.

• Starting the softcore and wait until the softcore has finished execution.

• Reading (and if requested dump to log file) memories and register blocks. For
register blocks, the data is returned in a dictionary.

• Generating register dictionaries with default values.

• Comparing register dictionaries.

The dictionary compare function is used to compare the read register values with the
expected register values, which are generated by setting elements of a register dictionary
with default values to the expected values. The GigabeeFT class uses an object of the
RiscVFtSocMapping class, which can be used to access the memories and register blocks
without knowing the absolute address of these components. The RiscVFtSocMapping

class and all its subclasses are generated from the RDL source files by the RDL compiler.
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Figure 5.3: UML diagram of the test classes used by the on-board verification suite.
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In Fig. 5.3 the UML diagram of the test classes used by the functional and fault
tolerance verification suite is depicted. The RiscvTestCase implements the tests per-
formed by every test case and all common methods for the different test classes like test
case initialization and shutdown. Most subclasses of RiscvTestCase are fault injection
test cases for record types on which fault injection should be performed according to
the verification design in Section 3.8. Fault injection test cases will configure the fault
injection through the saboteur registers and also indicate where the errors are expected
to be detected/corrected. Test cases for record types are executed multiple times, one
time for each record field, by adding a PyARTParameterList as attribute to the test case
class. The parameter lists will be expanded by the PyART module before the test case
is executed. If a fault injection test case is performed at the pipeline level, an additional
parameters list is added to the test case, so every pipeline is tested as well. Besides the
functional verification test case and the fault injection test cases for record types, there is
one separate test case, RiscvBaseFaultInjectionTestCase, which performs basic fault
injection testing on the instruction bus request for both single and double faults with the
base SoC test application. In Table 5.1 the test cases included in the RISC-V on-board
test suite are listed.

Table 5.1: List of all test cases from the on-board test environment

Basic verification

Faults Case Description

0 100 Functional verification of the softcore
1/2 200 Fault injection verification

Fault injection test cases

Level Faults Case Injection location

SoC 1
201 Instruction memory output
202 Data memory output

Core 1

210 Instruction memory input
211 Data memory input
212 Program counter output
213 Registers input
214 Registers output

Pipeline interface 1

220 Program counter input
221 Instruction bus request output
222 Register majority voter input
223 Data bus request output
224 Statistics output

Pipeline 1
230 Execute stage output
231 Decode stage output
232 Hazard control output

SoC 2
301 Instruction memory output
302 Data memory output

Core 2

310 Instruction memory input
311 Data memory input
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312 Program counter output
313 Registers input
314 Register output

Pipeline interface 2

320 Program counter input
321 Instruction bus request output
322 Register majority voter input
323 Data bus request output
324 Statistics output

5.2 Verification results

In Section 5.1 the simulation-based and on-board test environments were described. In
this section, the results of the verification suite from the on-board test environment will
be presented. The results of the verification suite from the simulation-based environment
will not be presented explicitly because all test cases in this suite passed before the
verification from the on-board test environment was used. Furthermore, the benchmark
results of the Dhrystone benchmark will be presented.

5.2.1 Verification suite

When presenting the results from verification suite, the terms fault, error, and failure
will be used, which are defined in Section 2.4. When presenting the results, the errors
will be categorized based on the scenarios presented in Section 2.4. In literature like [2]
and [55], comparable definitions are used, so this should make it possible to compare the
presented design with other designs in the future.

During fault injection, both single and double faults were injected. When a single
error is detected, the error will be corrected, and the softcore continues execution and
successfully completes the test application. In the case of a double error, the error cannot
be corrected, and the the softcore will be stopped. The condition was set to inject one
fault every four cycles (= 200 (ns)), which is a very high fault rate and can be considered
as a stress condition. This stress condition might not be very representative for SEEs
due to natural causes, but a disruptive fault attack might cause such a high fault rate.
If the fault tolerant softcore can survive this high fault rate, it can be expected that it
will also survive much lower fault rates. The Dhrystone benchmark used only 200 runs
to reduce test execution times. For benchmarking the number of runs should be higher,
as the Dhrystone should run for at least 20 seconds for the results to be reproducible.

5.2.1.1 Single fault injection

In Fig. 5.4 the results from the single fault injection test cases 200 till 224 are pre-
sented. While running these test cases about 32 million single faults were injected by
the saboteurs, but no fault was able to cause a failure. Almost all errors were detected
and corrected by either a decoder or a majority voter. Most of the faults were injected
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Figure 5.4: The results from the single fault injection test cases 200-224

directly in front of a majority voter or decoder, so all resulting errors were detected im-
mediately. The only exception to this are faults injected on the program counter input,
where the error can be masked by the program counter logic.
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Figure 5.5: The error distribution for fault injection on the program counter input.

In Fig. 5.5 the fault injection results of the program counter input test case are
presented. The percentage of silent errors depends on which input signal of the program
counter the fault is injected. A fault on the jump signal almost never remains silent,
because this signal determines if the jump address is forwarded to the majority voter by
the multiplexer or not. A fault in the jump address on the other hand often remains
silent, because it has to coincide with a jump for it to be detected or corrected by the
majority voter.



82 CHAPTER 5. VERIFICATION

5.2.1.2 Pipeline fault injection

The results from single fault injection in the pipeline are presented separately because the
pipeline under injection is almost completely disabled due to the stress condition used.
Faults inserted on the injection locations inside the pipeline are likely to cause multiple
errors due to the importance of the signals being injected for the overall functionality
of the softcore. In combination with the stress condition, this results in a massive
amount of errors being corrected by the majority voters (a ratio of 32 between errors and
faults was observed for the hazard control output test case). In the used fault injection
architecture, it is not possible to trace every injected fault and determine which errors
were caused by which faults. Furthermore, it is also not possible to measure the error
manifestation latency, the latency between fault injection and error detection/correction,
as only aggregated data is available after an execution run. Therefore, it is difficult to
present percentages for detected, corrected and silent errors. Instead, the distribution of
the corrected errors over the different majority voters can be presented, as this gives a
clear insight into the impact of a fault in different signals.
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Figure 5.6: The error distribution for single fault injection inside the pipeline.

In Fig. 5.6 the distribution of errors for single fault injection inside the pipeline is
presented. In this chart, the error distributions for all fields tested in a test case are
combined into a single distribution. Although there are some minor differences between
the different test cases, the overall trend is pretty much the same: the registers are the
most likely place where errors will occur when faults are injected into the pipeline. This
is not surprising, as the majority of instructions use only register operands. The data
bus is also influenced by faults inside the pipeline, as the address and data fields in the
data bus request are provided by the execute stage and the read and write flags are
provided by the decode stage. The program counter and the instruction bus are not very
susceptible to the faults injected into the pipeline during verification, as only around
10% of the errors are detected here. In the case of the program counter errors remaining
silent are also influencing its share in the error distribution. The stats category in the
error distribution is an output which contains several flags used inside the pipeline like
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hazard stall, fetch stall, memory stall, and jump. This output can be used for analysis of
the program execution flow, but also provides some insight into the effects of faults inside
the pipeline, as these flags indicate the behavior of the pipeline. Lastly, it is important
to note, that the error distribution presented here, is dependent on the test applications
and fault injection locations used. Other test applications and fault injection locations
might result in another distribution of the errors over the majority voters.
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Figure 5.7: Distribution of errors for single fault injection on the Execute Stage output for each
signal.

Fig. 5.7 presents the error distribution for fault injection in output signals of the
execute stage. This distribution gives more insight into the effects of faults in different
signals. Faults in the ALU output will cause errors on the register data input, as most
ALU results are stored in the register file, and on the data bus address and byte enable
signal. For load and store instructions the address is calculated by the ALU, so 5% of
the errors are detected at the address and address check word each. Furthermore, 13% of
the errors is detected at the byte enable field of the data bus request. One would expect
the share of the byte enable field to be the same as for the address, but the address is
only placed on the data bus by a multiplexer when a request has to be performed. For
the byte enable such a multiplexer is not used, causing a larger share of errors being
corrected in the byte enable signal. As expected, faults in the jump address are only
detected and corrected by the program counter, as this is the only component using this
address. Faults on the ALU branch signal are spread over different majority voters and
show the same trend as identified in Fig. 5.6.

Fig. 5.8 presents the error distribution for fault injection into output signals of the
decode stage. Only the output of the instruction decoder was targeted in this test case,
as this decoder provides all control signals for the consecutive stages. The fields of the
instruction decoder output mentioned are:

• Funct3: second operation selector provided by the instruction
• DmemWrite: flag indicating write access to memory
• DmemRead: flag indicating load access to memory
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Figure 5.8: The error distribution for single fault injection on the Decode Stage output for each
signal.

• RegRdSrc: selector signal for the value written back to register file
• RegRdAddress: address of the destination register
• RegRs1Address: address of the first source register
• RegRs2Address: address of the second source register
• AluOperation: type of operation performed by the ALU
• AluInputASelect: input selector signal for the first input of the ALU
• AluInputBSelect: input selector signal for the second input of the ALU
• ImmediateValue: immediate value provided by instruction
• Jump: flag for selection of jump address send to program counter (ALU output or

jump address calculated separately)
• Branch: flag indicating if a branch instruction is performed or not

Most fields show the same pattern identified in Fig. 5.6, the only exceptions being
Funct3, RegRdSrc and ImmediateValue. In the RISC-V instruction format, the Funct3
field is used as the second indicator for the operation type. If a fault occurred in the
Funct3 field before the instruction decoder, this would have much larger consequences.
After the decode stage, the Funct3 field is only used by the data maskers in the memory
stage and writeback. These maskers make half word, and byte accesses possible, so these
errors are mostly identified at the data bus majority voter and for a small amount at the
registers. The registers’ share is much smaller because most faults in the Funct3 field
are masked by the destination register data multiplexer, which only selects the erroneous
data from the masker for load instructions. The RegRdSrc field is the selector used by the
destination register data multiplexer, so faults injected on this field are only detected at
the registers input majority voter. The ImmediateValue contains the immediate value
generated by the instruction decoder based on the immediate value provided by the
instruction. This value is used for calculating the jump address or address offsets and
as input for arithmetic operations. Therefore, faults in this value are mostly detected at
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the registers, but also at the data bus majority voter and the program counter.

5.2.1.3 Double fault injection
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Figure 5.9: The results of the double fault injection test cases 200-224

In Fig. 5.9 the results from the double fault injection test cases 300 till 324 are
presented. While running these test cases around 48,000 double faults were injected by
the saboteurs, but no fault was able to cause a failure. The number of faults injected
for double faults is much lower than for single fault injection because for most tests only
one fault is injected. As soon as this fault is detected the softcore is stopped, so no more
faults can be injected. Again the only exception to this is case 220 which injects faults
on the program counter input.

Because faults can remain silent in the program counter, the condition needed to be
increased to one fault every two cycles. With a lower condition all injected faults could
remain silent, which in principal is not much of a problem if this only happens in a few test
cases. But due to implementation details of the verification framework, it was decided to
increase the condition so in all test cases a double error would be detected. Again, there
is a difference between the injected signals. For most input signals, the double error
is detected immediately after injection, but for the jump address, it can take a while
before a double error is detected. Therefore, a lot more faults need to be injected into
these signals, which causes the high number of silent errors in the accumulated results
for double fault injection on the program counter input.

5.2.1.4 Result overview

In Table 5.2 the full results (pass/fail) of the verification suite are listed. In this table, the
number of saboteurs activated for each test case and the maximum number of detectors
triggered is also listed. If a test passes, no failures were detected and the number of
injected faults and detected/corrected errors are as expected.
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Table 5.2: The full results of the verification suite along with the number of saboteurs activated
per test, S, and the maximum number of detectors triggered per test case, D.

Case Case name S D Result

100 Functional 0 0 pass
200 Fault injection 1 1 pass

201 IMEM out 1 4 pass
202 DMEM out 1 4 pass

210 IMEM in 1 1 pass
211 DMEM in 1 1 pass
212 PC out 1 4 pass
213 Reg in 1 1 pass
214 Reg out 1 4 pass

220 PC in 1 1/2 pass
221 IBUS out 1 1 pass
222 Reg in MV 1 1 pass
223 DBUS out 1 1 pass
224 Stats out 1 1 pass

230 Execute 1 31 pass
231 Decode 1 31 pass
232 Hazard 1 31 pass

Case Case name S D Result

301 IMEM out 1 4 pass
302 DMEM out 1 4 pass

310 IMEM in 1 1 pass
311 DMEM in 1 1 pass
312 PC out 1 4 pass
313 Reg in 1 1 pass
314 Reg out 1 4 pass

320 PC in 2 1/2 pass
321 IBUS out 2 1 pass
322 Reg in MV 2 1 pass
323 DBUS out 2 1 pass
324 Stats out 2 1 pass

Although no SPOFs were found during verification, there could be SPOFs remaining
which were not found by the current verification suite. During design and implementa-
tion, two SPOFs were noticed, but not solved as these SPOFs were not covered by the
problem statement.

One of the objectives of this thesis was to prevent any fault in the pipeline or in
data or address words from causing a failure. This was achieved by using NMR in the
pipeline and ECC in memory elements, but there are also control signals connecting the
pipeline with the memories and the register file. These control signals are not protected,
so a SET on the interconnect used by these signals could cause a failure. The risk could
be reduced by replicating the control signals and applying a majority vote as close as
possible to the location where it is used. This does however not guarantee that the
correct operation will be executed because a fault could still occur after the majority
vote. Therefore, other techniques for checking the type of operation performed should
be applied.

Besides the control signal SPOF, another SPOF is still remaining in the instruction
and data memory. Due to the implementation of the tl data bus, the address passed
to the memories are not absolute, but relative to the base address of the memory on the
bus. The check word is calculated for the absolute address, so it will not match with the
relative address and cause the decoder to fail. To solve this, the address offset is added
the relative address before decoding in the memory and subtracted after decoding. If a
fault is introduced in the addition, the decoder could detect this if the total number of
faults is still lower than the maximum detection capacity. But if a fault is introduced
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in the subtraction, it will not be detected and cause a failure. Implementations using
another bus protocol (or caches) might not have to deal with this problem, so therefore
no structural solution was implemented for this problem.

The coverage of the current verification suite and thus its ability to find other un-
noticed SPOFs could be improved by adding additional test applications to it, which
can improve the overall coverage by either exercising all instructions or by exercising
a particular instruction which is not already exercised enough by the verification suite.
The fault injection coverage could also be improved by adding a random fault injection
method to the verification suite, which can inject faults into locations not already covered
by the saboteurs.

5.3 Benchmark

In this section the benchmark results for both the Dhrystone and CoreMark benchmarks
will be discussed.

5.3.1 Dhrystone

Table 5.3: The Dhrystone benchmark results for the three different cores.

SoC f (MHz) Time (s) CPI Dhrystones/s DMIPS/MHz

STD 83.3 24.2 2.23 83084 0.57
FT 35.7 56.2 2.23 35607 0.57
FI 20.0 100.3 2.23 19940 0.57

In Table 5.3 the results from running the Dhrystone benchmark on three different
versions of the softcore are presented. The three versions are:

• Standard (STD) softcore: the baseline softcore introduced in Section 3.1

• Fault Tolerant (FT) softcore: the fault tolerant softcore using the hybrid design
described in Section 3.5 with SECDED error capabilities

• Fault Injection (FI) softcore: the fault injection softcore using the hybrid
design with SECDED error capabilities and the verification design described in
Section 3.8

The Dhrystone benchmark was executed for 2,000,000 runs so that the execution time
would be at least 20 seconds. The results show that the performance of the benchmark
per MHz of clock frequency did not decrease due to the addition of fault tolerance. This
performance number is largely based on the handling of data and control hazards by the
softcore. This behavior was not changed by the addition of fault tolerance. But as the
clock frequency decreased the execution time increased, so the number of Dhrystones
executed per second also decreased significantly.
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The CPI of 2.24 is relatively high for a softcore, as for each data or control hazard
three pipeline stall are induced. The cost of data hazards could be reduced by imple-
menting register forwarding, where the result of a calculation is forwarded to the next
instruction using it, without first committing it to the register file. The cost of control
hazards could be reduced by predicting the outcome of a branch operation and continue
with fetching instructions based on the prediction. If the prediction is incorrect, several
stages of the pipeline need to be flushed, but if the prediction rate is sufficient, this
will result in a lower CPI. Although these solutions can significantly improve the core
performance, the implementation of these solutions in the fault tolerant core should be
done carefully, so no new SPOFs are introduced. Keeping the pipelines in sync might
be a challenge when using these techniques.

5.3.2 CoreMark

Table 5.4: The parameters used for generating the CoreMark results.

Parameter Value

Version 1.0
Compiler GCC 5.2.0
Compiler flags -m32 -marc=RV32I -O2
Data allocation STACK
Seeds 0x0, 0x0, 0x66
Size 2000
Instruction memory size 64 kB
Data memory size 64 kB

Table 5.5: The CoreMark benchmark results for two cores.

SoC f (MHz) CPI CoreMark CoreMark/MHz

STD 62.5 2.46 34.29 0.55
FT 25.0 2.46 13.72 0.55

In Table 5.4 the settings used for running the CoreMark benchmark are listed. In
Table 5.5 the results from running the CoreMark benchmark on the STD and FT SoC are
presented. CoreMark was not run on the FI SoC as the Dhrystone benchmark showed
that this SoC has roughly the same characteristics as the FT SoC when it comes to
software execution.

As expected, the CoreMark can perform less iterations per second on the FT SoC
than on the STD SoC, because of the lower clock frequency. The CPI is not affected by
the added fault tolerance but is slightly higher than for the Dhrystone. This is caused
by the higher number of data and control hazards induced by CoreMark. For lowering
the CPI the same solutions as mentioned in Section 5.3.1 could be applied.
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5.4 Resource utilization

Besides the results from the on-board verification suite, the on-board test environment
also provided the resource utilization for the hybrid design, which will be presented in
this section. These results will be presented for three different version of the softcore
mentioned in Section 5.3. The parameters used to retrieve the results for theses softcores
are listed in Table E.2. Besides the parameters for the SoCs, additional settings for the
Xilinx ISE tooling were used, which are listed in Table E.3.

Table 5.6: The absolute resource utilization of the RISC-V SoCs after synthesis.

Absolute RU
Resource STD FT FI

Slice Registers 4546 13223 29508
Slice LUTs 5844 21510 45123
block RAM 19 27 27
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Figure 5.10: The relative resource utilization of the of the RISC-V SoCs after synthesis.

In Table 5.6 and Fig. 5.10 the absolute and relative resource utilization of the baseline,
fault tolerant and fault injection RISC-V SoC after synthesis are presented. The FT SoC
uses considerably more registers and LUTs than the STD Soc, which is as expected. The
pipeline uses a lot of registers and LUTs and is replicated four times, so this accounts for
this large increase. The block RAM increase is very limited because of the application
of ECC instead of NMR for the memories. As FPGAs have a limited amount of BRAMs
available, which are also distributed over several columns in the FPGA, this usage should
be kept as low as possible. Overall, the resource utilization increase for the FT SoC
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remains below 400%, so it remains below target.
The FI SoC uses about two times more registers and LUTs than the FT SoC. In this

core, a lot of saboteurs are added to the core, which each contain some logic implemented
in LUTs and a 16-bit counter using LUTs and registers. Furthermore, the large saboteur
register block is added to the SoC, which consumes a lot of resources because of the high
number of registers required for controlling the saboteurs. Overall, the fault injection
core uses a lot more resources, but as this version will only be used for verification of the
fault tolerant design, this is not so much of a problem. In applications, only the baseline
or the fault tolerant SoC will be used, depending on the requirements for fault tolerance.

Table 5.7: The resource utilization of the RISC-V SoCs after mapping.

Absolute RU
Resource STD FT FI

Slice Registers 4534 13145 23496
Slice LUTs 5155 19487 42059
Slices 1894 6459 12231
RAM16BWER 17 23 23
RAM8BWER 3 7 7
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Figure 5.11: The relative resource utilization of the RISC-V SoCs after mapping.

In Table 5.7 and Fig. 5.11 the absolute and relative resource utilization of the three
RISC-V SoCs after mapping are presented. These results show the same trends identified
in the resource utilization after synthesis, which also applies for the slices. The increased
usage of RAMB16BWER and RAMB8BWER is caused by the addition of ECC check
words to the data words stored in the instruction and data memories. RAMB16BWER
and RAMB8BWER are the block RAM library primitives of the Spartan-6, which are
used as the basic building blocks for all block RAM configurations [61]. Some of the
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check words can be stored in RAMB16BWER blocks, which are also used to store the
data words. For storing the check words for the bytes in the data words in the data
memory, the mapper also uses RAMB8BWER blocks. As these blocks are not used in
the STD SoC, the increase of the utilization of these blocks is also larger.

5.5 Timing results

During the design phase, several long paths could already be identified based on the
critical paths of the baseline design. The design cost estimate also showed that the
expected clock frequency was much lower than the baseline design due to these long
paths. The long paths identified during design are marked in red in the diagram in
Fig. 5.12 as paths one till four.
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Figure 5.12: The long delay paths in the fault tolerant hybrid RISC-V core identified during
design.

The length of the first two paths is only increased by the addition of an extra decoder,
so these paths are likely to double. The length of the last two paths is increased much
more dramatically, as one majority voter, one encoder, and two decoders are added to the
path. These paths could be quadrupled by the addition of these components according
to the design cost estimates for these components in Chapter 4. The actual path length
might be lower because the tooling might be able to reduce the delay path of the logic.
Nevertheless, it is not a very good indication when considering the clock frequency target
of 50%.
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For the implemented SoC design, three timing constraint were implemented: two
for the Ethernet converter and one for the SoC. The SoC timing constraint is listed in
Listing 5.1.

Listing 5.1: The SoC clock timing constraint

NET ”CLOCK 125M” TNM NET = ”CLOCK 125M” ;
TIMESPEC TS CLOCK 125M =

PERIOD ”CLOCK 125M” 125 MHz HIGH 50 % PRIORITY 1 ;

This timing constraint specifies an input clock of 125 MHz with a 50% duty cycle, for
which the tooling should do a high effort to achieve it. The constraints for the Ethernet
core have priorities 1 and 100, where a lower number means a higher effort. The input
clock of 125 MHz is converted to the desired clock frequency by the Phase Locked
Loop (PLL). The tooling will therefore also generate a new timing constraint for the
SoC, based on the division and multiplication parameters set for the PLL ADV module. It
is important to note, that for this design no timing constraints were implemented for any
specific component. One of the thesis objectives was to implement the design as a proof of
concept on an FPGA and if possible optimize its performance without making the design
platform dependent. Timing constraints are often platform dependent optimizations, so
it was not an objective of this thesis to implement these.

Table 5.8: The timing results for the RISC-V softcores on the Xilinx Spartan-6.

STD FT FI

tperiod (ns) 11.6 27.7 48.8
fmax (MHz) 86.0 36.1 20.5
fmax comparison 42% 24%

Table 5.8 presents the timing results of the three different SoCs on the Xilinx Spartan-
6. As expected from the design phase, the fault tolerant SoC runs at a lower frequency
than the standard core. Furthermore, the target of the clock frequency design criterion
was not met. This is largely due to the addition of encoders, decoders and majority
voters to the critical paths of the design. By optimizing these components the clock
frequency could be brought closer to the intended target. Furthermore, the critical paths
can be split by the addition of extra stages to the pipeline if the component delay path
remains too long. Paths one and two could be split by adding a stage between the Fetch
and Decode stage for decoding the instruction bus response. Path three could be split
by inserting a stage between the Decode and Execute stage for decoding the supplied
register data. Path four could be split by inserting a stage between the Memory stage
and the Write back stage for decoding the data bus response. This will, however, result
in a lower CPI, as more stages have to be stalled for data hazards or flushed for control
hazards.

During timing analysis additional long paths were found in the design, two of which
are marked in the diagram in Fig. 5.12 as paths five and six. The other paths included
SoC components, so they could not be marked in the diagram, but are listed in Table 5.9.
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Table 5.9: Some additional long paths identified during the timing analysis.

PC out ⇒ Reg block DMEM ⇒ Reg block

1 Program counter FF Data memory output
2 Program counter out decoder Data bus response decoder
3 Instruction bus request encoder Write back stage multiplexer
4 Instruction bus request voter Registers in encoder
5 Instruction memory decoder Registers in majority voter
6 Control register block Registers in decoder
7 Control register block

Reg bridge ⇒ Reg file Reg bridge ⇒ DMEM

1 Reg2data bridge Reg2data bridge
2 Data bus response encoder Data bus response encoder
3 Data bus response decoder Data bus response decoder
4 Data memory masker Memory stage interface logic
5 Write back stage multiplexer Data bus request voter
6 Registers in encoder Data memory decoder
7 Registers in majority voter Data memory input
8 Registers input decoder
9 Register file input

In this list two paths from the core to the register block are mentioned: the error
and saboteur flags connecting the detectors and saboteurs to the counters in the register
block. Furthermore, the error flags are also used to check for the detection of uncor-
rectable errors in which case the core should be stopped. The counters do not have to
be updated in the same cycle, and if the core is stopped one cycle later, this should
not be much of a problem. Therefore, a FF bank was placed between the core and the
register block to delay these flags by one cycle so that this path can be reduced. The
Reg2Data bridge to Data Memory path is also shortened by placing a FF bank after
the Reg2Data bridge. This will induce an extra memory stall for each access to the SoC
peripherals, but accesses to peripherals are rare in the current verification suite. If the
core regularly accesses the SoC peripherals, it might be better to remove the FF bank
especially considering that this insertion only reduces the path by a few nanoseconds.

5.6 Comparison with Design Estimates

In Chapter 3 the design cost estimates were made for the baseline softcore and the hybrid
design. These design estimates only included the pipeline, so they cannot be compared
with the resource utilizations presented in Section 5.4. Xilinx ISE provides the Module
Level Utilization (MLU) view, which shows the resource utilization per component. From
this view, the resource utilization of the core of the fault tolerant core, which is equivalent
to the pipeline of the baseline, can be extracted. In Table 5.10 the design cost estimates
and the resource utilization extracted from the MLU are presented. Table 5.10 also
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Table 5.10: Absolute comparison of the cost estimates with the realization retrieved from the
Module Level Utilization (MLU) view.

Estimate Realization
Baseline Hybrid STD FT FI

Lookup Tables 1732 9391 1353 8059 16415
Registers 835 3826 899 3329 7353
Slices 696 4437 8262
fmax (MHz) 87.7 38.6 86 36.1 20.5

includes the clock frequencies from the design cost estimates and the timing analysis
reported in Section 5.5.
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Figure 5.13: Relative comparison of the RISC-V cores retrieved from the Module Level Uti-
lization (MLU) view with the STD core set at 100%.

In Fig. 5.13 the three RISC-V cores are compared against each other, where the STD
core is set to 100%. The target for the resource utilization criterion is not met for both
the LUTs and the slices. The utilization for both resource types is about 150% above
the target. The target was set to the resource utilization expected for a standard NMR
solution using SECDED which includes a four time replication plus a majority voter.
The utilization above target is largely due to the addition of encoder and decoders to the
pipeline and thus replicating these as well. If the encoders and decoders would not have
been replicated, the utilization could be lowered, but this would introduce SPOFs on
the domain crossings. With the current design, the resource utilization could be lowered
by using more efficient encoders and decoders. However, it is not likely that the design
target will be met by this improvement, as the extra resource utilization is inherent to
the design.

In Fig. 5.14 the three RISC-V cores are compared with the design cost estimate of
the hybrid design. As the synthesis tool does not report the slice utilization, the slices
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Figure 5.14: Relative comparison of the FT and FT RISC-V cores retrieved from the Module
Level Utilization (MLU) view with the hybrid design cost estimate.

are not mentioned in this comparison. This comparison shows that the FT core uses less
LUTs and Registers than estimated. This proves that the resource utilization estimates
were accurate, and no unexpected utilization of resources was introduced during the
implementation of the design. The FI core uses more resources than the estimates, as
this core includes a large number of saboteurs which were not included in the design cost
estimate. Although the resource utilization estimates are accurate, the clock frequency
was lower than estimated. Estimating the clock frequency of a design is much more
difficult than estimating the resource usage because there might be unexpected critical
paths in the design which were not anticipated. During the timing analysis, several of
such unanticipated paths were also identified and if possible solved. Although the clock
frequency is lower than estimated, there are still possibilities left for improving the clock
frequency, which will be listed in Section 6.3.

5.7 Design Criteria Evaluation

In Table 5.11 the design criteria are listed with their targets and what was achieved for
these criteria.

In Section 5.2 it was proven that the hybrid design met the design criteria:

• ED: the FT SoC passed all double fault injection test cases.

• EC: the FT SoC passed all single fault injection test cases.

• CPI: the CPI FT SoC is the same as for the STD SoC.

• SPOF: the fault injection test cases all passed without failures, so no SPOFs were
discovered in the targeted areas.

• RISC-V: the FT SoC passed the unit tests, provided by the RISC-V community,
which test specification compliance.
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Table 5.11: List of design criteria along with their intended targets.

Design criterion Target Achieved

Error Detection ED 2 2
Error Correction EC 1 1
Clock frequency CLK 50% 42%
Resource Utilization RU 4.5x 6.5x
Cycles Per Instruction CPI 20% 0%
Software transparency ST Minimal yes
Complexity COM = baseline yes
Single Points of Failure SPOF 0 yes
RISC-V compliance RISC-V RV32I yes

In Sections 5.4 and 5.5 it was shown that the hybrid design did not meet the design
criteria:

• CLK: the clock frequency is lower, due to long paths inherent to the design.

• RU: the resource utilization is higher, due to the replication of encoders and
decoders for avoiding SPOFs.

In this chapter no prove was delivered that the design met the COM and ST design
criteria. During the design phase described in Chapter 3 it was already shown that
the hybrid design had a lower complexity than the ECC-based design, so therefore this
criterion can be considered to be met. No modifications to the software were required to
run applications on the FT SoC on the FPGA. For simulation of the FT SoC, an extra
tool was required, which generated the Hamming check words for the data stored in the
instruction and data memory for each application, which was implemented in a small
Python script. Therefore, we can also list the ST design criterion as achieved.

5.8 Conclusion

In this chapter, the test architecture consisting of a set of test applications (called the
verification suite), a simulation-based test environment using ModelSim, and an on-board
test environment using a Spartan-6 FPGA were described. Both test environments are
used to test the basic functionality of the design. The on-board test environment is
also used to perform fault injection tests, which are controlled by a Python application
running on a separate PC. During fault injection testing no failures were detected so
that the design can mitigate all injected faults. In some test cases, some errors remained
silent, due to hiding by the logic. Faults injected into the pipeline caused large numbers
of errors on the outputs of the pipeline, most of which were detected/corrected by the
registers in and data bus request majority voter.

The results of implementing the design on the FPGA were also presented and an-
alyzed in this chapter. For the fault tolerant SoC the resource utilization target was
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met, but for the fault tolerant core the targets were not met due to the replication of
encoders and decoders. Furthermore, the clock frequency target was also not met, due
to the long paths inherent to the design. Some of these paths were already identified
during design, but some additional paths were also found during the timing analysis.
The resource utilization and clock frequency targets were the only targets not met by
the hybrid design.
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Conclusion 6
In this chapter conclusions will be drawn based on the work presented in this thesis. First,
the work in this thesis will be summarized in Section 6.1. Then, the main contributions
will be presented. The problem statement and objectives of this thesis will also be re-
examined to check if they were met by the work in this thesis. Lastly, the future work
will be presented in Section 6.3.

6.1 Summary

In Chapter 2 the open-source RISC-V ISA used by the softcore made by Technolution
B.V. was introduced. SEEs can be introduced by both natural causes due to the in-
teraction between particles and human-induced causes, which are targeted at disrupting
system functionality or retrieval of secret information. The effects of SEEs can be miti-
gated by adding redundancy to a system. Different forms of redundancy can be divided
into four categories: hardware, information, time, and software.

Based on the information found in literature, five implementation options for adding
fault tolerance to the pipeline were identified: NMR, lockstep, ECC, the watchdog and
time redundancy. For adding fault tolerance to memory elements, six implementation
options were identified in literature: NMR, Hamming codes, Hsiao codes, CRC codes,
BCH codes and Residue codes.

For verification of the added fault tolerance, fault injection can be used. By injecting
faults, the behavior of the system in the presence of faults can be observed and verified.
Fault injection can be hardware-based, software-based or simulation-based. A saboteur
or a mutant can be used for simulation-based fault injection.

In Chapter 3 the baseline design of the RISC-V softcore, implementing the RV32I
instruction set and a classic five-stage RISC pipeline, was presented. The presented fault
model defines at which locations in the softcore and at which moments SEUs and SETs
can occur in softcore. The set of design criteria used for evaluation of the design options
and the fault tolerant designs include error detection/correction capabilities, resource
utilization, and complexity amongst others.

Two fault tolerant designs were made, both using NMR and ECC. The ECC-based
design uses ECC for protection whenever possible, both in the pipeline and in memory
elements, in an effort to save resources. Only for combinatorial elements which ECC
cannot protect NMR is used. The low-level switches between the ECC and NMR domain
result in a significant number of SPOFs and a high complexity of the ECC-based design.
The hybrid design uses NMR to protect the pipelines and ECC to protect memory
elements. This design has a limited amount of switches between protection domains and
by letting the domains overlap, possible SPOFs are avoided.

99
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After evaluation of both designs for all the design criteria, the hybrid design was
chosen for implementation, because of its better performance for all design criteria except
resource utilization. The redundancy of the design will be tested by using fault injection
through saboteurs, which will be inserted into the design. In simulation, the basic fault
injection architecture will be tested and on the FPGA a more comprehensive test suite
will be used to test the fault tolerance.

In Chapter 4 the implementation details of the hybrid design were presented. The
specification of the used Hamming code was presented along with a list of all the signals
which will be protected with ECC. Furthermore, the design, unit test and cost estimates
for the basic building blocks, the Hamming encoder, and decoder, and the majority
voter were presented. The cost estimates showed that the latency of these basic building
blocks are very high compared to the latency of the different pipeline stages. This is
one of the main causes why the clock frequency of the fault tolerant design is reduced.
Finally, the fault tolerant RISC-V SoC and the memory mapping used for testing were
presented. The SoC contains a register block for controlling the softcore, a saboteur
register block used for controlling and monitoring the saboteurs, and error counters used
for monitoring the checking circuitry. The data from these register blocks can be used
to check if all inserted faults were detected during fault injection verification.

In Chapter 5 the test architecture consisting of a set of test applications (called the
verification suite), a simulation-based test environment using ModelSim, and an on-board
test environment using a Spartan-6 FPGA were described. Both test environments are
used to test the basic functionality of the design. The on-board test environment is
also used to perform fault injection tests, which are controlled by a Python application
running on a separate PC. During fault injection testing no failures were detected so
that the design can mitigate all injected faults. In some test cases, some errors remained
silent, due to hiding by the logic. Faults injected into the pipeline caused large numbers
of errors on the outputs of the pipeline, most of which were detected/corrected by the
registers in and data bus request majority voter.

The results of implementing the design on the FPGA were also presented and an-
alyzed in this chapter. For the fault tolerant SoC the resource utilization target was
met, but for the fault tolerant core the targets were not met due to the replication of
encoders and decoders. Furthermore, the clock frequency target was also not met, due
to the long paths inherent to the design. Some of these paths were already identified
during design, but some additional paths were also found during the timing analysis.
The resource utilization and clock frequency targets were the only targets not met by
the hybrid design.
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6.2 Main contributions

In Section 1.1 the problem statement for this thesis was formulated as:

How can an RISC-V softcore using a classic five-stage RISC pipeline be ex-
tended such that a maximum of two concurrent Single Event Effects in the
pipeline or in data or address words cannot influence the correct execution
flow of the processor without being detected in a modular and efficient way?

Based on the evaluation of the design criteria in Section 5.7 we can conclude that the
hybrid design proposed in Section 3.5 and implemented as a proof of concept can indeed
mitigate the effects of one or two (concurrent) Single Event Effects in the pipeline, data
words, or address words. During testing, none of the injected errors was able to cause a
failure for the used test applications. The design allowed for a modular implementation
which reused as much components from the baseline as possible. Only a few additional
components, like the Hamming encoder and decoder and the majority voters, needed to
be added to the design, but especially the Hamming encoders and decoders can be easily
replaced by other encoders and decoders using a different ECC technique. It was tried to
make the implementation as efficient as possible without losing platform independence
out of sight, but the proof of concept failed to meet the resource utilization target. This
was due to measures taken to reduce the number of Single Points of Failure (SPOFs),
which resulted in a high number of encoders and decoders in the design. Another point
where the design failed in terms of efficiency is the clock frequency of the design, which
was also below the target due to long paths through decoders and voters. Possible
solutions for these problems will be presented in Section 6.3.

In Section 1.1 several thesis objectives were proposed, which were also met by the
work of this thesis. As mentioned before, the hybrid design is a modular design which
can detect and correct errors, where the basic building blocks can be replaced easily.
This design was implemented on the Xilinx Spartan-6, as described in Chapter 4, where
platform independence was taken into account. Therefore, all basic components were
implemented with behavioral descriptions and structural descriptions using no platform
specific building blocks, except for some peripherals like the PLL in the top level entity
containing the SoC. The efficiency of the implemented design did not meet the targets,
but possible solutions to improve the efficiency of the design will be presented in Sec-
tion 6.3. Besides the functional design, a verification design was also made to verify the
functionality of the design. This verification design included several test applications and
a fault injection method used to verify the fault tolerance of the design. No failures were
detected during verification, which proves the correctness of the design. However, the
verification design is always limited by the quality and coverage of the test method. In
order to improve the confidence in the design, the verification design should be improved
for which possible solutions will be presented in Section 6.3.

The main contributions of this thesis can be summarized as:

1. Created a design concept for a fault tolerant RISC-V processor using a classic five-
stage RISC pipeline which can detect and correct a number of errors depending on
the configuration.
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2. Created an implementation of the design concept, which can detect two concurrent
errors and correct a single error, thus proving the feasibility of the design concept.

3. Created a verification design for the design concept, which proves the correctness
of the design and which can be extended to improve the confidence of the design.

4. Provided possible solutions for improving the proof of concept and the design
concept itself.

6.3 Future work

One of the thesis objectives is to present possible solutions for improving the design con-
cept and its proof of concept. In this section, these improvements will be presented. The
improvements can be divided into four categories: resource utilization, clock frequency,
fault tolerance, and verification improvements.

6.3.1 Resource utilization

In Section 3.2 a design target of 4.5 was set for the resource utilization increase. This
target was not met by the implemented proof of concept, because of the large number
of encoders and decoders present in the pipeline. The resource utilization could be
improved by applying one or more of the improvements below:

• Basic building blocks optimization:
The current implementation was compared to an implementation provided by Xil-
inx, which was comparable in terms of combinatorial path delay and resource
utilization to the used implementation. Other algorithms might give better perfor-
mance, so the current implementation should be reviewed for performance improve-
ments. The majority voter block was not compared to other implementations. The
logic functions for the majority voting procedure might be optimized by applying
logic optimizations which can reduce the resource utilization and the combinatorial
path delay.

• Different ECC coding scheme:
The Hamming coding scheme is known for not being optimal in terms of resource
utilization when implemented in hardware as Hsiao codes require a less complicated
XOR tree structure. By using a less complicated XOR tree structure, the number
of XORs required for the encoder and decoders can be reduced.

• Error detection only:
The cost estimates in Section 4.2 showed that detection only decoders are much
more efficient in terms of resource utilization. If error correction is not required,
the resource utilization per decoder could be lowered by 80%, resulting in LUT
savings of about 15% for Triple Error Detection (TED) or 60% for Double Error
Detection (DED).
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When applying resource utilization improvements, there is one important thing to
keep in mind: a lower resource utilization could result in a longer critical path. Depend-
ing on the application a trade-off should be made between the functional, timing and
resource utilization requirements, which suits the applications needs.

6.3.2 Clock frequency

In Section 3.2 a design target of 50% was set for the clock frequency reduction. This
target was not met by the implemented proof of concept, because of the long paths
through encoders and decoders present in the design. The clock frequency could be
improved by applying one or more of the improvements below:

• Basic building blocks optimization:
The current implementation of the Hamming encoders and decoders have been
compared to an implementation provided by Xilinx. This comparison showed that
the implementation is most likely not far off the most efficient implementation,
but more detailed analysis might reveal possibilities for improvement. Another
algorithm for calculating the Hamming codes or the majority vote might also result
in better performance.

• Different ECC coding scheme:
The Hamming coding scheme is known for not being optimal in terms of combi-
natorial path delay when implemented in hardware as Hsiao codes require a less
complicated XOR tree structure. By using a less complicated XOR tree structure,
the delay of the encoder and decoders can be reduced.

• Error detection only:
The cost estimates in Section 4.2 showed that detection only decoders are much
more efficient in terms of combinatorial path delay. If error correction is not re-
quired, the critical path delay could be lowered by at least 5 ns, resulting in a clock
frequency increase of about 8 MHz.

• Pipeline stage insertion:
Several long delay paths can be split up by adding extra stages specifically for
decoding to the pipeline. The following stages could be added to the pipeline:

– Between the Fetch and Decode stage for decoding of the instruction bus re-
sponse.

– Between the Decode and Execute stage for decoding of the source register
values.

– Between the Memory and Write back stage for decoding of the data bus
response.

Although these extra stages will increase the clock frequency, the CPI will be
lowered by these insertions as for each hazard; two more stages need to be stalled
or flushed.

• Parallel decoding and processing of data:
Most long paths include one or more decoders. The hybrid design uses a systematic
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format for the code word, so there is no real need for decoding the code word before
processing besides error correction. Therefore, the processing of the data could be
performed in parallel with the decoding operation. If no error is detected, which
will be the case in the majority of operations, the processor can proceed. If a
correctable error is detected, the pipeline needs to be stalled for one cycle so the
data processing operation can be executed with the corrected data. This could
reduce some long paths up to 50% and thus would result in a major improvement
of the clock frequency. The only drawback of this improvement is that it will affect
the CPI, as the pipeline needs to be stalled for one cycle every time a correctable
error is detected. The effect of this performance penalty will be dependent on the
environment in which the softcore will be used.

6.3.3 Fault Tolerance

Although the hybrid design can mitigate a lot of different errors, faults could still occur at
some places where they can lead to a failure. Furthermore, the softcore will be killed once
a non-correctable error is detected and the design is also not able to solve problems in the
configuration memory. These fault tolerance problems can be solved by implementing
one or more of the improvements listed below:

• Control signal protection:
Control signals leaving the pipeline are not protected, so faults induced on these
signals can cause failures. Additional protection in the form of ECC or replication
of the control signals can be used to provide the required fault tolerance on the
interconnect. By placing the decoder or majority voter as close as possible to the
location where the control signal is used, the chance of inducing a fault on the
remaining interconnect can be kept as small as possible. Checking if the right
operation was performed is much more difficult as these control signals are mostly
used to control memories or registers. NMR could be used to prevent incorrect
operations, but NMR was not used for memories due to synchronization problems
between replicated memories.

• Read value protection:
In the memories components (instruction memory, data memory, and registers)
the address value is first decoded before the value is read from the actual memory.
Between the decoder and memory, a fault could be induced, which will remain
undetected. This can be avoided by storing the check word of the address along
with the data and check word of the data. After a value is read, a decoder can
determine if the address check word, matches with the address data word used for
the read operation. If the address data word used and the address check word read
do not match, the read operation needs to be restarted by the pipelines. This can
be indicated to the pipelines by sending a nack with a distinctive error code. The
decoder does not need to perform correction, which saves resources and path delay.
The address data word used needs to be latched for one cycle so that the decoder
can produce false negatives due to faults induced in the FF.
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• Write value protection:
In the memory components, there is no check if the value to be written is actually
written or written to the right address. Therefore failures could be induced by
influencing the writing process. Fault tolerance can be added to this write process
by reading the written value in the cycle after the write operation and performing
checks on the read values. The written data and check word need to be latched for
one cycle by a separate FF bank so that they will be available in the next cycle for
these cycles. The following pairs of data and check words need to be decoded:

– The latched data word and the read data check word
– The read data word and the latched data check word
– The latched address data word and the read address check word

The last pair is used for providing read value protection, as write value protection
can only be implemented with read value protection also being available. Faults
might be induced in the latched data, so false negatives can occur when using write
value protection.

• Roll back on non-correctable error detection:
If a non-correctable error is detected in a correction able or detection only softcore,
it will be killed as there is no possibility to do something about the error other than
to stop and let the user handle the situation. In many applications like medical
applications this might not be an option, so a mechanism needs to be implemented
which can revert the core to an error-free state. Rollback is a well-documented
method for reverting a system to an error-free state, by saving the context of a
system at specified points in time as described in [2] and [32]. Saving contexts
can be a very expensive method because a large storage which is not susceptible
to faults, is required and the actual saving operation takes considerable time. If
rollback is not required for uncorrectable errors occurring in the memories, a much
simpler rollback mechanism for reversing the pipeline and recently committed val-
ues can be used. If a uncorrectable error is detected in the pipeline the previous
pipeline stages need to be flushed, the program counter needs to be rolled back to
the correct address, and the recently committed values in the registers and mem-
ories need to be reverted. Reverting recently committed values can be performed
by delaying the actual commit by a few cycles and placing these values in a First
In First Out (FIFO) buffer. The values in the buffer should be available for read
and write operations, but reverting these commits can be done easily by flushing
the buffer. Rolling back the program counter is a much more difficult task, as this
might involve jumps. Therefore, a FIFO buffer containing the last six program
counter values should be added so that the program counter can be restored to the
right value.

• Configuration memory scrubbing:
The hybrid design does not have any features for dealing with SEFIs, but depend-
ing on the type of the FPGA the softcore might still experience such effects. One
method to handle SEFIs is implementing configuration memory scrubbing, where
the configuration memory is periodically checked for errors and corrected if neces-
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sary. Most FPGA manufacturers provide device specific solutions for configuration
memory scrubbing, so it is best to implement this on a per-device basis using the
solution provided by the manufacturer.

• Higher detection/correction capability:
If more errors need to be detected or corrected, the fault tolerance of the design
needs to be increased. Increasing the fault tolerance of the pipeline can be done,
by increasing the number of replicated pipelines. Traditional Hamming codes are
limited to SECDED, so another coding scheme, like BCH codes, is required to
provide increased fault tolerance for the memory elements. Other coding schemes
might result in a decreased clock frequency and increased resource utilization.

6.3.4 Verification

The verification tests described in Section 5.2 proved the correctness of the design, but
the coverage might be too limited to give enough confidence to this claim of correctness.
The confidence in the design could be improved by applying one or more improvements
listed below:

• Test application suite extension:
The coverage of some instructions by the test application suite is limited. This
coverage should be increased by adding additional applications which test all in-
structions, or by adding applications targeted at those specific instructions.

• Random fault injection:
In this thesis fault injection at fixed locations at fixed intervals was chosen because
of the confidence which can be gained from this method of injection, besides the
advantages of controllability and reproducibility. However, this fixation of fault
injection might miss bugs, so fault injection at random locations and at random
times is a good addition to the verification suite.
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Baseline RISC-V softcore A
A.1 Synthesis settings

In table Table A.2 the XST used for making the design cost estimates were used. The
complete core was synthesized, but also most individual components like the stages as
the resource usage, and the path delays of these components were required for making
the estimates. The path delays and period are listed in Table A.1.

Table A.1: The definitions of the path delays as reported by XST [12]

Delay type Description Symbol

Minimum period The minimum period from any syn-
chronous element to another.

tperiod

Minimum input arrival time before
clock

The minimum path from an input
pad to any synchronous element.

tinput

Maximum output required time after
clock

The maximum path from any syn-
chronous element to an output pad.

toutput

Maximum combinational path delay tcomb

Table A.2: The project settings for the synthesis project used for gathering prelimininary
synthesis results.

Setting Value

ISE Version 14

Design properties

Family Spartan 6
Device XC6SLX100
Package FGG676
Speed -2
VHDL standard VHDL-93

XST process properties
Resource sharing False
Register duplication False
Equivalent Register Removal False
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A.2 Detailed synthesis and mapping results

Table A.3: The synthesis results for the baseline softcore.

Resources Path delays (ns)
Component LUT Registers tinput toutput tperiod
Fetch stage 72 68 2.4 2.2 2.5
Decode stage 332 436 3.5 12.4 1.6
Execute stage 660 202 - 10.6 0.5
Memory stage 99 139 1.7 0.8 3.6
Writeback stage 173 32 3.5 2.3 0.5
Hazard Control 19 6 - 0.5 4.5
Registers 130 64 1.9 3.2 0.5

ALU 463 0 6.6 - -
Instruction decoder 186 0 10.6 - -

Total 1732 835 11.4 8.6 7.6

Table A.4: Mapping results for the baseline core

Component Slices Registers LUTs BRAM

RISC-V SoC 1323 1941 2803 17
Instruction memory 116 90 213 9
Data memory 129 88 219 8
Pipeline 683 898 1383 0
Fetch stage 34 68 29 0
Decode stage 217 510 418 0
Execute stage 262 142 560 0
Memory stage 55 76 68 0
Writeback stage 66 32 155 0
Registers 33 64 130 0
Hazard control 13 6 20 0



ECC-based design diagrams B
B.1 Design diagrams

For reasons of company confidentiality the full design diagrams of the ECC-based design
are not included in the public version of this thesis.
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B.2 Full Design Cost Estimate

Table B.1: The detailed design cost estimate for the ECC-based design using SECDED Ham-
ming code and N = 4.

Resources Path delays (ns)
Component LUT Registers tinput toutput tperiod
Fetch stage 383 304 11.4 2.5 0.0
Decode stage 2391 443 27.9 1.6 34.2
Execute stage 1988 230 33.4 0.5 0.0
Memory stage 904 640 15.9 3.6 1.7
Writeback stage 776 39 17.4 0.5 26.3
Hazard control 282 6 14.8 4.5 0.0
Registers 532 78 14.6 0.5 1.9

Total ECC-based 7659 1812 33.4 4.5 34.2
Total baseline 1732 835 11.4 8.6 7.6

Comparison 442% 217% 293% 52% 448%



Hybrid design diagrams C
C.1 Design diagrams

For reasons of company confidentiality the full design diagrams of the hybrid design are
not included in the public version of this thesis.
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C.2 Full Design Cost Estimate

Table C.1: The detailed design cost estimate for the Hybrid design using SECDED Hamming
code and N = 4.

Resources Path delays (ns)
Component LUT Registers tinput toutput tperiod
Fetch stage 760 304 13.5 2.5 0.0
Decode stage 1740 1744 23.8 1.6 3.5
Execute stage 3400 808 22.0 0.5 0.0
Memory stage 752 640 2.9 0.0 1.7
Writeback stage 2116 156 10.5 0.0 0.0
Hazard control 76 24 0.5 4.5 0.0
Registers 218 78 9.4 0.5 1.9
Core 266 0 2.1 0.0 0.0

Total 9391 3826 23.8 4.5 3.5
Total baseline 1732 835 11.4 8.6 7.6

Comparison 542% 458% 209% 52% 46%



Implementation D
D.1 Block Algorithms

For reasons of company confidentiality the algorithms used in the Hamming encoder,
and decoder, and the majority voter are not included in the public version of this thesis.
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Verification results E
Table E.1: The instruction coverage for the applications used during verification.

Instruction
RISC-V

tests
Hello
World

Dhrystone CoreMark
Verification

suite
Total

nop 12091 22963 426522 1083664366 461576 1084125942
add 89 26 5943 58928305 6058 58934363
addi 5798 108 27650 93058670 33556 93092226
and 41 0 2648 4569 2689 7258
andi 19 2506 30821 23203660 33346 23237006
auipc 240 2 2 14 244 258
beq 39 742 5292 23341408 6073 23347481
bge 45 0 3090 72786322 3135 72789457
bgeu 45 0 482 353608 527 354135
blt 39 0 613 1711652 652 1712304
bltu 39 0 2058 5126165 2097 5128262
bne 1485 1818 35800 104453039 39103 104492142
jal 43 18 6552 13984550 6613 13991163
jalr 9 18 5710 11809651 5737 11815388
lb 57 0 0 183000 57 183057
lbu 24 28 2359 9236436 2411 9238847
lh 58 0 0 17271037 58 17271095
lhu 24 0 0 694884 24 694908
lui 1114 23 4926 1177419 6063 1183482
lw 59 15063 187040 30644672 202162 30846834
or 41 0 6382 2812797 6423 2819220
ori 19 0 0 28161 19 28180
rd cycle 0 0 2 2 2 4
rd cycleh 0 0 0 0 0 0
rd instret 0 0 2 2 2 4
rd instreth 0 0 0 0 0 0
rd time 0 0 2 2 2 4
rd timeh 0 0 0 0 0 0
sb 35 0 1047 93449 1082 94531
sh 35 0 0 1430662 35 1430697
sll 57 2 2 204 61 265
slli 67 3 6380 153246127 6450 153252577
slt 52 0 0 1296000 52 1296052
slti 29 0 0 0 29 29
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sltiu 1 0 616 26 617 643
sltu 0 0 0 1863 0 1863
sra 57 0 0 0 57 57
srai 33 0 0 7606437 33 7606470
srl 57 0 0 251 57 308
srli 30 0 4340 88292266 4370 88296636
sub 53 0 886 649898 939 650837
sw 182 292 15998 14350586 16472 14367058
xor 41 0 0 7100005 41 7100046
xori 19 0 1616 685 1635 2320

E.1 Parameters

The clock multiply parameter in Table E.2 is used for the generic CLKFBOUT MULT of
the PLL ADV module of the Xilinx Spartan-6, which is the Phased Locked Loop used by
the top-level architecture for generating the clock signal. The clock divide parameters
Table E.2 is used for the generic CLKOUT0 DIVIDE of the PLL ADV module.

Table E.2: The parameters used by the three different RISC-V SoCs for generating the synthesis
results on a Xilinx Spartan-6.

Parameter STD FT FI

Clock multiply 8 8 8
Clock divide 12 28 50
UART frequency (MHz) 83.3 35.7 20.0
IMEM size (kB) 16 16 16
DMEM size (kB) 16 16 16
g fault injection enable false false true
g inst count enable false false false
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Table E.3: The parameters used by Xilinx ISE for generating the synthesis results for the
RISC-V softcores on a Xilinx Spartan-6.

Process Setting Value

Synthesis

Optimization Goal Speed
Optimization Effort High
Register Balancing No
Register Duplication False
Resource Sharing False

Map
Global Optimization Speed
Combinatorial Logic Optimization True
Equivalent Register Removal True

Place & Route Place & Route Effort Level (Overall) High
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