Delft University of Technology

Software Engineering Research Group
Technical Report Series

Analyzing the Change-Proneness of
Service-Oriented Systems from an
Industrial Perspective

Daniele Romano

Report TUD-SERG-2013-001

%
TUDelft SE



TUD-SERG-2013-001

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 35th International Conference on Software Engi-
neering, 2013.

(© copyright 2013, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



SE

Analyzing the Change-Proneness of Service-Oriented Systems from an Industrial Perspective

Analyzing the Change-Proneness of
Service-Oriented Systems from an Industrial
Perspective

Daniele Romano
Software Engineering Research Group
Delft University of Technology
Delft, The Netherlands
daniele.romano @tudelft.nl

Abstract—Antipatterns and code smells have been widely
proved to affect the change-proneness of software components.
However, there is a lack of studies that propose indicators of
changes for service-oriented systems. Like any other software
systems, such systems evolve to address functional and non func-
tional requirements. In this research, we investigate the change-
proneness of service-oriented systems from the perspective of
software engineers.

Based on the feedback from our industrial partners we
investigate which indicators can be used to highlight change-
prone application programming interfaces (APIs) and service
interfaces in order to improve their reusability and response time.
The output of this PhD research will assist software engineers
in designing stable APIs and reusable services with adequate
response time.

Index Terms—Service-oriented systems, web services, WSDL,
metrics, Antipatterns, change-proneness

I. RESEARCH CONTEXT

Several years of research on software maintenance have
produced numerous approaches to identify and predict change-
prone components in a software system. Among others, source
code metrics and heuristics to detect antipatterns and code
smells have been widely validated as indicators of changes.
However, these indicators have been mainly proposed and
validated for object-oriented systems. There is still the need
to define and validate indicators of changes for systems
implemented in other programming paradigms such as the
service-oriented one.

In recent years there has been a tendency to adopt Service-
Oriented Architectures (SOAs) in companies and government
organizations for two main reasons. First, SOAs allow compa-
nies to organize and use distributed capabilities (i.e., services)
that may be under the control of different organizations or
different departments within the same organization [1]. Sec-
ond, organizations benefit from the loose coupling between
clients and services. However, clients and services are still
coupled and changes in the services can impact negatively
their clients and entire systems. The dependencies removed in
SOAs are the dependencies between clients and the underlying
technologies used to implement services. Clients and services
are still coupled through function coupling and data structure

TUD-SERG-2013-001

coupling [2]. In fact, clients depend 1) on the functionalities
implemented by services (i.e., function coupling) and 2) on the
data structures that a service’s instance receives and returns
(i.e., data structure coupling) and that are specified in its
interface. For this reason service interfaces are considered
contracts between clients and service providers and they
should remain as stable as possible. However, like any other
software component, services evolve to satisfy functional and
non functional requirements. To the best of our knowledge
there are no studies that show the impact of badly designed
service interfaces on the change-proneness of service-oriented
systems. As a matter of fact software engineers encounter
difficulties in designing the right interfaces for their services.

In this PhD research we investigate the change-proneness
of service-oriented systems from the perspective of software
engineers. Thanks to the precious input from our industrial
partners we focus on the main problems software engineers
face while designing a service-oriented system that can affect
the change-proneness.

In particular, we investigate two main scenarios that can
cause changes. First, changes in the implementation logic can
cause changes in the service interfaces, especially when legacy
APIs are made available through service interfaces. Second,
service interfaces can be refactored to improve two quality
attributes, namely reusability and response time. Non reusable
interfaces are more prone to change when new clients need
existing functionalities but they request different interfaces.
Response time is the main concern in designing XML based
interfaces (e.g., WSDL interfaces). After publishing these
interfaces they can undergo changes to improve their response
time.

In this paper we propose a research approach (Section II) to
investigate indicators of changes (e.g., heuristics and software
metrics) that highlight: 1) change-prone APIs (track T1) and 2)
service interfaces likely to be changed to improve reusability
and response time (tracks T2 and T3).

The main goal of this research is to assist software engineers
in designing stable APIs and reusable services with adequate
response time. The three main research questions are:

o Which (existing) quality indicators can be used to high-

1



Analyzing the Change-Proneness of Service-Oriented Systems from an Industrial Perspective

light the change-prone parts of an API?

o Which quality indicators can be used for highlighting
change-prone service interfaces?

o To what extent can these quality indicators be used to
improve the reusability and response time of services?

II. RESEARCH APPROACH

This research is divided in three tracks that are presented
in the following subsections.

T1. Analysis of the Change-Proneness of APIs. Each
service is implemented by an implementation logic that is
hidden to service clients through its interface. Changes to
the implementation logic can be propagated and affect the
service interface. Among all the software units composing the
implementation logic, APIs are likely to be mapped directly
into service interfaces. This scenario happens especially when
a legacy API is made available through a service interface. For
this reason, in the first track we analyze the change-proneness
of APIs, where we refer to API as the set of public methods
declared in a software unit. To perform this study we use
existing techniques to mine software repositories and to extract
changes performed in the APIs. We then analyze whether
there is a correlation between the amount of changes an AP/
undergoes and the values of source code metrics and/or the
presence of antipatterns and code smells. The outcome of this
study will consist in a set of quality indicators (e.g., heuristics
and software metrics) that can highlight change-prone APIs
and assist software engineers to design stable APIs. In our
context, these indicators are particularly useful to check the
stability of APIs when they are exposed as service interfaces.

T2. Analysis of the Change-Proneness of Service Inter-
faces. The second track consists in investigating the change-
proneness of service interfaces through the analysis of their
evolution. This analysis can help us in identifying bad design
practices that can increase the probability that a service inter-
face will be changed in the future. Among all the changes a
service interface undergoes we focus on the changes performed
to improve reusability and response time.

To perform this study we detect and extract changes per-
formed in the interfaces. This task is performed by a tool
that compares two subsequent versions of a service interface
and extracts changes taking into account the syntax of the
interface specification. In this way we can extract the type of
a change performed in the interface. Knowing the type of a
change is particularly useful for two reasons. First, we can see
which element is affected by the change and how it changes.
Second, we can classify the changes depending on the impact
they can have on the clients. In fact, changes can be divided
into breaking changes and non-breaking changes depending on
whether service client developers need to update their code or
not [2].

Once we are able to extract and classify changes we
investigate heuristics and software metrics that can be used
as indicators of low reusable service interfaces with inade-
quate response time. Similar to T1, we then investigate the

2

SE

correlation between them and the changes performed in the
service interfaces.

We start measuring and investigating the impact of coupling
and SOA antipatterns on change-proneness. As already de-
scribed in Section I, even though services are loosely coupled
they are still coupled through function and data structure cou-
pling. We believe that coupling can be a good quality indicator
in service-oriented systems like it has been already proved for
systems implemented in other programming paradigms. We
expect that a service with a higher incoming and outgoing cou-
pling can show a higher response time. However, measuring
coupling in service-oriented systems is more challenging than
for systems implemented in other paradigms. This is mainly
due to the dynamic and distributed nature of service-oriented
systems.

Besides coupling, we plan to analyze other attributes that
can affect change-proneness such as granularity, cohesion and
duplication. We believe that designing a service interface with
the right granularity is a challenging step. On the one hand the
data types encoding should be designed for different clients
to improve service’s reusability. On the other hand the data
types encoding can affect the response time of a service.

Furthermore, we believe that a service interface should be
cohesive to prevent changes in the future. A low cohesive in-
terface can affect the comprehension of the interface resulting
in a lower reusability. Moreover, an interface with different
responsabilities can be a bottleneck that can affect response
time because of the different clients invoking it.

Finally, duplication of service operations can be risky simi-
larly to code clones, widely studied in the software engineering
community. Duplicated entities can impact the comprehension
and, hence, the reusability.

To analyze the impact of these attributes on change-
proneness we plan to start analyzing existing antipatterns
defined in literature. Based on our findings we will refine them
and propose new antipatterns.

The outcome of this study will consist in a set of heuristics
and metrics that can assist software engineers in designing
service interfaces that are reusable, show an adequate response
time, and are less change-prone.

T3. Services Categorization. An important step to under-
stand why service interfaces change over time is understanding
their purpose. In this track we extend our research in T2
taking into account the service typologies. We study and
define heuristics to classify service interfaces into different
typologies, as suggested by Krafzig et al. [3]. We expect
that some service typologies change less frequently and for
different reasons than others. For instance, the interface of
a service that is meant to bridge a technological gap would
change only when the bridged technologies change. On the
other hand, the interface of a service that provides search
functionalities can change every time that the search criterion
changes.

To automatically classify services we can analyze two
sources of information. First, we analyze the documentations

TUD-SERG-2013-001



SE

that are usually available in natural language and published
on websites. For instance, Google Maps web services are
documented on their website.! The second source of infor-
mation consists of the service interface that is composed of:
1) method declarations, 2) data types needed to invoke the
methods and to retrieve the results, and 3) comments to ease
the comprehension of a service interface. To obtain relevant
information from these two sources we plan to use information
retrieval techniques, widely used in the software engineering
community for similar purposes.

Similar to T2, the outcome of this track will consist in a
refined set of heuristics and metrics to assist software engi-
neers in designing reusable service interfaces with adequate
response time. However, the heuristics and metrics investigated
in this track are validated taking into account the service
typologies, obtaining specific sets of heuristics and metrics
for each different typology of service.

III. VALIDATION STRATEGY

The research questions of each track will be addressed using
the mixed-methods approach [4] which is a combination of
quantitative and qualitative methods. In each track we plan to
perform empirical studies with open and industrial software
projects using statistics, machine learning, and information re-
trieval techniques, similar to those that have been already used
in [5], [6]. The results will be validated with questionnaire
data gathered in academic and in industrial environments. In
addition to questionnaires, we plan to perform interviews and
case studies with industrial software engineers.

IV. PROGRESS

My PhD research started in November 2010 under the super-
vision of Prof. Dr. Martin Pinzger and in collaboration with the
Software Improvement Group? and KPMG® IT departments
located in Amsterdam. We initially set up this research project
meeting our industrial partners to understand the problems
they face in designing service-oriented systems. Based on their
inputs and on our research interests we decided to start the
project focusing on tracks T1 and, partially, on track T2.

A. TI: Analysis of the Change-Proneness of APls

To analyze the change-proneness of APIs we performed
two analyses aimed at validating source code metrics and the
presence of antipatterns as indicators of changes in APIs.

In our first work [5] we analyzed the change-proneness
of Java interfaces. We mined the source code repositories
of 10 Java open source projects extracting the fine-grained
source code changes performed in Java interfaces. We then
correlated the number of changes with the values of source
code metrics measured in the interfaces. Among all the metrics
analyzed, the Interface Usage Cohesion (IUC) metric [7]
showed the best correlations and improved the performance

Uhttps://developers.google.com/maps/documentation/webservices/
Zhttp://www.sig.eu/en/

3http://www.kpmg.com/nl/en/pages/default.aspx

TUD-SERG-2013-001

Analyzing the Change-Proneness of Service-Oriented Systems from an Industrial Perspective

of prediction models for classifying change- and not change-
prone interfaces.

In our second work [6] we analyzed the change-proneness
of Java classes affected by antipatterns. We extracted the fine-
grained source code changes from the source code reposi-
tories of 16 Java open source projects. We then analyzed
the correlation between different types of changes and dif-
ferent antipatterns affecting Java classes. The results showed
that classes participating in the ComplexClass, SpaghettiCode
and SwissArmyKnife antipatterns are more likely to undergo
changes in their APIs.

B. T2: Analysis of the Change-Proneness of Service Interfaces

In the second track of our project (T2) we investigate the
change-proneness of service interfaces, in a similar way to
which it is done in the first track (T1) to analyze change-prone
Java APIs. To perform this analysis we need two important
information: 1) the changes between the different versions of
a service interface, and 2) the dependencies between services
to compute the coupling and antipatterns defined for service
interfaces.

To extract changes we developed a tool called WSDLDiff
that extracts fine-grained changes from subsequent versions
of WSDL interfaces. Differently to existing XML differencing
tools, WSDLDiff takes into account the syntax of the WSDL
specification. This allows us to extract information about
the element changed in the WSDL and the type of change
performed. A first analysis showed the relevance of using
fine-grained changes in analyzing the evolution of WSDL
interfaces. We decided to focus on WSDL interfaces because
the service-oriented systems developed or maintained by our
industrial partners are mainly composed of WSDL interfaces.
The details of our WSDLDIff can be found in [8].

To extract the dependencies among services we developed
an approach based on vector clocks [9]. Vector clocks have
been originally conceived to order events in a distributed
environment. In our work we use this technique to extract
dynamic dependencies among services deployed in an enter-
prise. Our approach has been implemented into the Apache
CXF framework using the Pipes and Filters pattern. We use
this pattern because it is widely used in the most popular
web service frameworks and Enterprise Service Buses (ESB),
making our approach portable to other SOA platforms (e.g.,
Apache Axis2 and Mule ESB).

C. Current and Future Work

Currently we are working on further investigating track T1
and T2, while track T3 will be investigated in the near future.

Concerning track T1, we are extending our previous work
[5], [6]. We are analyzing which source code metrics can be
used as indicators of changes in APIs exposed by concrete
Java classes, similar to what we have already done for Java
interfaces [5]. Moreover, we plan to extend our dataset to
investigate the change-proneness of APIs that are mapped to
service interfaces. To conclude T1 we will perform a qualita-
tive analysis aimed at validating our results with questionnaire
data gathered in both academia and industrial environments.

3



Analyzing the Change-Proneness of Service-Oriented Systems from an Industrial Perspective SE

Concerning track T2, we are analyzing the change prone-
ness of public available web services, like the services ana-
lyzed in our previous study [8]. We are mainly interested in
investigating the impact of service cohesion and granularity
on the change-proneness. As part of this analysis we are
integrating existing techniques into our WSDLDIiff tool to
classify changes based on their impact on existing clients.
As next step we plan to visit our industrial partners to
analyze their industrial service-oriented systems. This allows
us to further investigate track T2 taking into account the
dependencies among services.

Having access to industrial systems will allow us to perform
the research on track T3. In track T3 we plan to define
heuristics and techniques to classify the services according
to their purpose. This is useful to refine the results achieved
in the track T2.

V. RELATED WORK

In literature many studies propose quality indicators for
service-oriented systems. However, these indicators have been
poorly validated mainly because of the lack of availability of
such systems. Furthermore, to the best of our knowledge, there
are no studies that propose quality indicators to estimate the
change-proneness of service-oriented systems.

Perepletchikov et al. defined a set of cohesion and coupling
metrics for service-oriented systems. In [7] they analyzed
cohesion in the context of SOA and they proposed four
different types of cohesion metrics for measuring analyzability.
Furthermore, they proposed three different coupling measures
for SOA [10] and they showed their impact on maintainability.

The most recent work on SOA antipatterns has been pro-
posed by Moha et al. in 2012 [11]. They proposed an approach
to specify and detect an extensive set of SOA antipatterns that
encompass concepts like granularity, cohesion and duplica-
tion. Their tool is capable to detect the most popular SOA
antipatterns defined in literature. Besides these antipatterns,
they specified three more antipatterns, namely: bottleneck
service, service chain and data service. Bottleneck service is
a service used by many services and it is affected by a high
incoming and outgoing coupling that can affect response time.
Service chain appears when a business task is achieved by a
long chain of consecutive services invocations. Data service
is a service that performs simple information retrieval or data
access operations that can affect the cohesion.

In 2012 Rotem-Gal-Oz [12] defined the knot antipattern as
set of low cohesive services which are tightly coupled. This
antipattern can cause low usability and high response time.

The sand pile defined by Krél et al. [13] appears when many
fine-grained services share common data that may be available
through a service affected by the data service antipattern.

Cherbakov et al. proposed the duplicate service antipattern
[14] that affect services sharing similar methods and that can
cause maintainability issues.

In 2003 Dudney et al. [15] defined a set of antipatterns
for J2EE applications. Among these we plan to investigate
the multi service, tiny service and chatty service antipatterns.

4

The multi service is a service that provides different business
operations that are low cohesive and can affect availability
and response time. Tiny services are small services with few
methods that are used together. This antipattern can affect
the reusability of such services. Finally the chatty service
antipattern affects services that communicate with each other
with small data. This antipattern can affect the response time.

VI. CONTRIBUTIONS

The expected contributions of this PhD research can be

summarized as follows:

o A set of validated quality indicators, comprising metrics,
heuristics, and techniques and tools, to highlight the
change-prone parts of an API;

o A set of validated quality indicators, comprising metrics,
heuristics, and techniques and tools to highlight change-
prone service interfaces;

o Design guidelines, heuristics, techniques, and tools to
assist software engineers in designing reusable services
with adequate response time.

The tools will be publicly available allowing other re-

searchers to perform analyses based on the evolution of
service-oriented systems.

ACKNOWLEDGMENT

This work has been partially funded by the NWO-Jacquard
program within the ReSOS project.

REFERENCES

[1] P. F. Brown and R. M. B. A. Hamilton, “Reference model for service
oriented architecture 1.0,” 2006.

[2] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Pearson Education, 2011.

[3] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2004.

[4] J. Creswell and V. Clark, Designing and Conducting Mixed Methods
Research. SAGE Publications, 2010.

[5] D. Romano and M. Pinzger, “Using source code metrics to predict
change-prone java interfaces,” in /ICSM, 2011, pp. 303-312.

[6] D. Romano, P. Raila, M. Pinzger, and F. Khombh, “Analyzing the impact
of antipatterns on change-proneness using fine-grained source code
changes,” in WCRE, 2012, pp. 437-446.

[71 M. Perepletchikov, C. Ryan, and Z. Tari, “The impact of service cohesion
on the analyzability of service-oriented software,” IEEE T. Services
Computing, vol. 3, no. 2, pp. 89-103, 2010.

[8] D. Romano and M. Pinzger, “Analyzing the evolution of web services
using fine-grained changes,” in ICWS, 2012, pp. 392-399.

[9] D. Romano, M. Pinzger, and E. Bouwers, “Extracting dynamic depen-

dencies between web services using vector clocks,” in SOCA, 2011, pp.

1-8.

M. Perepletchikov and C. Ryan, “A controlled experiment for evalu-

ating the impact of coupling on the maintainability of service-oriented

software,” IEEE Trans. Software Eng., vol. 37, no. 4, pp. 449-465, 2011.

N. Moha, E. Palma, M. Nayrolles, B. Joyen Conseil, Y.-G. Yann-Gael,

Guéhéneuc, B. Baudry, and J.-M. Jézéquel, “Specification and Detection

of SOA Antipatterns,” in International Conference on Service Oriented

Computing, Shanghai, Chine, Nov. 2012.

A. Rotem-Gal-Oz, SOA Patterns, 1st ed. Manning Pubblications, 2012.

J. Kral and M. Zemlicka, “The most important service-oriented antipat-

terns,” in ICSEA, 2007, p. 29.

L. Cherbakov, M. Ibrahim, and J. Ang, “Soa antipatterns: the obstacles to

the adoption and successful realization of service-oriented architecture.”

B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE

Antipatterns, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,

2002.

[10]

[11]

(12]
[13]

[14]

[15]

TUD-SERG-2013-001






TUD-SERG-2013-001 S Ec
ISSN 1872-5392



