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I identify a fundamental difference between classical and quantum dynamics in the linear response
regime by showing that the latter is, in general, contextual. This allows me to provide an example of a
quantum engine whose favorable power output scaling unavoidably requires nonclassical effects in the
form of contextuality. Furthermore, I describe contextual advantages for local metrology. Given the
ubiquity of linear response theory, I anticipate that these tools will allow one to certify the nonclassicality of
a wide array of quantum phenomena.
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Linear response theory describes the reaction of a
quantum system to a small perturbation. The theory finds
countless applications in many fields of quantum physics,
including molecular, atomic, and nuclear physics, quantum
optics, and statistical mechanics. In this Letter, I present a
general test to certify whether the linear response of a
quantum system necessarily requires contextuality.
Using these results, I identify quantum signatures in the

power of a heat engine. In the context of quantum thermo-
dynamics, the issue of identifying truly quantum signatures
has been a long-standing problem in the field. Several
theoretical claims have been made that quantum coherence
can offer improvements over certain incoherent thermo-
dynamic engines and refrigerators (e.g., Refs. [1–10],
and references therein), followed by recent experimental
effort [11]. However, similar signatures can be observed in
classical engines as well [12,13]. Hence, such claims should
be backed by a no-go theorem that (i) defines a precise
notion of nonclassicality and (ii) shows that this notion leads
to statistical predictions incompatible with the corresponding
quantum statistics.
Here, I adopt a stringent notion of nonclassicality,

namely, generalized contextuality [14]. I prove that the
power output of a two-stroke quantum engine in the weak
coupling regime cannot be achieved in any noncontextual
model reproducing the operational features of the quantum
experiment [15]. As a second application, I turn to local
metrology and consider the archetypal example of phase
estimation using a qubit system. I show that, given the
phenomenology of the phase estimation experiment, a
nonzero Fisher information is incompatible with all
classical (noncontextual) models. This complements a
recent result showing that certain features of postselected
metrology are nonclassical [17], but in my case I do not
have to consider any postselection.

The tools developed here, applicable as they are to any
quantum system in the linear response regime, can find
applications in the identification of genuine quantum
signatures in a wide range of different platforms.
Noncontextual ontological models.—Great care needs to

be taken when claiming that the performance of a device
requires nonclassicality. For example, Ref. [12] shows that
a short-time cooling enhancement, which in quantum
theory is attributed to the presence of quantum coherence,
also occurs in classical models where a set of oscillators
undergoes Hamiltonian evolution. Here, I want to identify
signatures in the dynamics of a quantum system which
unavoidably signal that quantum effects are at play.
Formally, I will identify phenomena which cannot occur
within any noncontextual ontological model (OM). Let me
describe in detail this broad class of models [18].
We may start from the operational description of

preparations, transformations, and measurements, under-
stood as sets of laboratory instructions according to which
these operations are performed. To each, we associate the
corresponding physical description in the OM, as summa-
rized in Table I below:
(1) To every preparation procedure P, one assigns a

probability distribution μPðλÞ over some (measurable) set
of physical states λ. For example, if P involves leaving the
system alone for a long time and λ ¼ ðx1;…; xN;
p1;…; pNÞ are phase space points, μPðλÞ may be a thermal
distribution.
(2) A transformation procedure T is described by an

update rule giving the probability that any final state λ0 is
reached, given that the initial state was λ. I denote this
transition probability by T Tðλ0jλÞ. For example, T Tðλ0jλÞ
may be generated by a rate equation among a discrete set
of λ’s, as in the classical model described in Ref. [13].
Or, in Hamiltonian dynamics, λ ¼ ðx; pÞ and, after time t,
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T T ½x0;p0jxð0Þ;pð0Þ� ¼ δ½x0−xðtÞ�δ½p0−pðtÞ�, where xðtÞ;
pðtÞ is the solution of Hamilton’s equations with initial
conditions xð0Þ; pð0Þ.
(3) A measurement procedure M with outcomes k is

associated to a response function ξMðkjλ0Þ, giving the
probability that an outcome k is returned by M if the
physical state is λ0. For example, in classical mechanics, if
M is a measurement of the energy E of a single particle
of mass m and momentum p in a potential VðxÞ,
ξMðEjx; pÞ ¼ δfE − ½ðp2=2mÞ þ VðxÞ�g. In a general OM,
ξMðkjλ0Þ may be nondeterministic.
Let p½kjTðPÞ;M� be the statistics collected in an experi-

ment where P is prepared, a transformation T is applied,
and, finally, a measurement M with outcomes k is
performed. The OM predicts

p½kjTðPÞ;M� ¼
Z

dλdλ0μPðλÞT Tðλ0jλÞξMðkjλ0Þ; ð1Þ

as naturally follows from the propagation of probabilities.
Hamiltonian mechanics is just a member of a class of OM.
Since arbitrary operational statistics, quantum or other-

wise, can be reproduced by an appropriate OM, here we
consider the subclass of OMs that are noncontextual [19].
An OM is noncontextual, in the generalized sense intro-
duced by Spekkens [14,20], when it has the property of
assigning identical physical descriptions to operationally
indistinguishable procedures. Specifically, two prepara-
tions P and P0 are operationally indistinguishable (denoted
P ≃op P0) when pðkjP;MÞ≡ pðkjP0;MÞ for every mea-
surement procedureM. This means no experiment is able to
distinguish between P and P0. A noncontextual model
requires

P ≃op P0 ⇒ μPðλÞ ¼ μP0 ðλÞ ∀ λ: ð2Þ

The same has to hold for operationally equivalent mea-
surements and transformations: If we define M ≃op M0
as pðkjP; MÞ ≡ pðkjP; M0Þ ∀ P and T ≃op T 0 as
p½kjTðPÞ;M�≡ p½kjT 0ðPÞ;M�∀P;M, a noncontextual
OM is one for which

M ≃op M0 ⇒ ξMðkjλÞ ¼ ξM0 ðkjλÞ ∀ k; λ; ð3Þ

T ≃op T 0 ⇒ T Tðλ0jλÞ ¼ T T 0 ðλ0jλÞ ∀ λ; λ0: ð4Þ

Noncontextuality, in the general form presented here, can
be understood as an extension of the original Kochen-
Speckers notion ([18], Appendix C). One can easily see that
classical Hamiltonian dynamics is a class of noncontextual
OM (see Supplemental Material, Sec. A [21]). Non-
contextual models include as special cases the classical
models previously considered in the literature: e.g., discrete
models with jump probabilities generated by rate equations
[13]; Hamiltonian dynamics obtained via classical limit
[12]; quantum mechanics in a fixed basis obtained via
dephasing in the energy basis [5]. Other examples include
Spekken’s toy model [22] or Hamiltonian mechanics with
an uncertainty principle (the latter is equivalent to Gaussian
quantum mechanics [23]). These examples show that
noncontextual OMs allow one to reproduce features nor-
mally attributed to quantum measurement disturbance,
superposition, and entanglement.
In this Letter, I will hence adopt the same stringent

notion of quantum signature used to analyze several
quantum information primitives [17,24–27]: a set of
operational features that unavoidably require contextuality.
Quantum linear response.—Consider a quantum state

jψðtÞi in a finite-dimensional Hilbert space evolving
according to the Schrödinger equation under a time-
dependent perturbation VðtÞ:

iℏ
d
dt

jψðtÞi ¼ ½H0 þ gVðtÞ�jψðtÞi: ð5Þ

I develop my considerations here for pure states, but the
extension to mixed states by linearity is straightforward.
We are interested in the change of expectation value of
an observable O ¼ P

k okjokihokj due to the perturbation
(for technical convenience, without loss of generality,
I shift O so that ok ≥ 0). It is convenient to work in the
interaction picture (label “I”), OIðtÞ ¼ eiH0t=ℏOe−iH0t=ℏ,
jψ IðtÞi ¼ eiH0t=ℏjψðtÞi ≔ UIðtÞjψð0Þi, and study

hΔOIiQt ≔ hψ IðtÞjOIðtÞjψ IðtÞi−hψ Ið0ÞjOIðtÞjψ Ið0Þi; ð6Þ

where “Q” stands for “quantum.” Operationally, this
corresponds to

hΔOIit ≔
X
k

okp½kjTtðPÞ;Mt� −
X
k

okpðkjP;MtÞ; ð7Þ

where P, Tt, and Mt are the preparation, transformation,
and measurement procedures described in quantum

TABLE I. An operational theory and its description within an ontological model.

Operational description OM description

P preparation procedure μPðλÞ probability distribution
T transformation procedure T Tðλ0jλÞ transition probabilities
M (with outcomes k) measurement procedure ξMðkjλ0Þ response function
p½kjTðPÞ;M� operational statistics R

dλdλ0μPðλÞT Tðλ0jλÞξMðkjλ0Þ
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mechanics by initial state jψð0Þi, unitary dynamics UIðtÞ,
and measurement of the observable OIðtÞ, respectively.
From Dyson’s series,

UIðtÞ ¼ 1 −
ig
ℏ

Z
t

0

dt0VIðt0Þ þOðg2Þ; ð8Þ

where VIðtÞ ¼ eiH0t=ℏVðtÞe−iH0t=ℏ. Quantum linear
response gives

hΔOiQt ¼ ig
ℏ

Z
t

0

dt0hψð0Þj½VIðt0Þ; OIðtÞ�jψð0Þi þOðg2Þ:

ð9Þ
The most important aspect of this formula is that one can
have a response of OðgÞ if there are no pairwise commu-
tations among jψð0Þihψð0Þj, OIðtÞ, and

R
dt0VIðt0Þ.

Another crucial fact is encoded in the following channel
equality [28]. Suppose that for g small enough

1

2
U t þ

1

2
U†
t ¼ ð1 − p̃dÞI þ p̃dCt; ð10Þ

where U tð·Þ ≔ UIðtÞð·ÞU†
I ðtÞ, I is the identity channel, Ct

is some other channel, and p̃d ¼ Oðg2Þ as g → 0. I will
later give tools to verify if a quantum experiment under
consideration admits this decomposition in linear response.
For now, it suffices to say that in the case of a single qubit
this decomposition holds for every nontrivial perturbation.
Equation (10) underlies the fact that the transformation

Tt (represented by Ut in quantum mechanics) can be
reversed, to first order in g, by convex combination with
another transformation T�

t [represented by U†
I ðtÞ in quan-

tum mechanics]. In particular, tossing a fair coin and
performing either Tt or T�

t is operationally indistinguish-
able from doing nothing with probability 1 −Oðg2Þ. These
facts can be summarized as

1

2
Tt þ

1

2
T�
t ≃op ð1 − pdÞT id þ pdT 0

t; ð11Þ

where T id denotes the “do-nothing” operation and T 0
t

denotes some other transformation. As we will see, this
approximate “reversibility by mixing” or “stochastic
reversibility” tells us that the perturbation Tt cannot be
“too far” from the do-nothing operation in any noncontex-
tual model. I stress that Eq. (11) will be required, not
Eq. (10). Crucially, Eq. (11) does not assume the dynamics
Tt is reversible. This means my results are applicable
beyond exactly unitary dynamics. For example, if
Tt ¼ ð1 − sÞU t þ sD, with D depolarizing noise
[DðρÞ ¼ 1=d for all ρ], s ∈ ½0; 1�, and U t satisfying
Eq. (10), then Eq. (11) holds with pd ¼ p̃d þ sð1 − p̃dÞ.
I now prove the weakness encoded operationally in

Eq. (11), together with the observation of a OðgÞ response
of a quantum system, can occur only in the presence of
contextuality.

Main theorem.—From Eqs. (1) and (7), an OM predicts
that hΔOIit equals

X
k

ok

�Z
dλdλ0μPðλÞT Tt

ðλ0jλÞξMt
ðkjλ0Þ

−
Z

dλμPðλÞξMt
ðkjλÞ

�
: ð12Þ

In other words, when the initial state jψð0Þi is prepared, a λ
is sampled with probability μPðλÞ; when the unitary UIðtÞ
is performed, the state is updated to λ0 with probability
T Tt

ðλ0jλÞ; and, finally, a measurement of the observable
OIðtÞ returns outcome ok with probability ξMt

ðkjλ0Þ. Then
Theorem 1: Noncontextual bound on linear response.—

Suppose the operational equivalence in Eq. (11) is
observed. Then in any noncontextual OM

jhΔOiNCt j ≤ 4pdomax; ð13Þ

where omax is the largest eigenvalue of O.
For the proof, see Supplemental Material, Sec. B [21].

The only remaining idealization in Theorem 1 is
that Eq. (11) holds exactly, which will not be the case
for generic noise. Luckily, this can be circumvented by
deploying the array of techniques developed in Ref. [29]. In
summary, the experimentally realized channels may satisfy
Eq. (11) only approximately (see Supplemental Material,
Sec. E [21]).
Let us now discuss the claim of the theorem. Of course,

in general, one can have a classical linear response ofOðgÞ.
What the main theorem proves is that a OðgÞ response,
together with the phenomenology described in Eq. (11),
cannot be reproduced by classical models. This is because
Eq. (11) forces noncontextual models to have a response at
most of Oðg2Þ. A central question is then whether Eq. (11)
will be observed in a quantum experiment for g small
enough. The next lemma gives a sufficient condition.
Lemma 2: Operational condition test.—Fix t > 0 and

suppose there exists C > 0 such that the following matrix is
positive definite:

J̃kj ¼ 1 −
ckj
C

; ckj ¼ ðαk − αjÞ2; ð14Þ

where αk are the eigenvalues of
R
t
0 VIðt0Þdt0. Then Eq. (10)

holds for g small enough.
For the proof, see Supplemental Material, Sec. C [21].

Note that to construct J̃ we need only to use linear response
operators. For example, in the case of a single qubit

J̃ ¼
�

1 1 − c01
C

1 − c01
C 1

�
;

which has eigenvalues x1 ¼ c01=C and x2 ¼ 2 − c01=C.
Hence, for C large enough, one has J̃ > 0 for any
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nondegenerate perturbation (α0 ≠ α1). For a qutrit, there
are nontrivial counterexamples to J̃ > 0, so one needs
to perform the test for the specific scheme under
consideration.
The above gives a general method to identify quantum

signatures (certified against arbitrary noncontextual
models) in arbitrary quantum systems in the linear regime:
(1) Compute whether J̃ > 0. If that is the case, by

carrying out the experiment, one will be able to verify
Eq. (11) (using the tools of Supplemental Material, Sec. E
[21], to deal with noise and imperfections).
(2) Check whether the response in Eq. (7) is of OðgÞ.
When the two conditions above are satisfied, Theorem 1

returns a proof of contextuality for g small enough. This
algorithm provides a powerful tool to identify quantum
signatures. Here, I apply these considerations to quantum
thermodynamics and metrology.
A contextual advantage in a quantum engine.—What is

the role played by nonclassicality on the performance of
thermodynamic devices? Conversely, what is the “thermo-
dynamics of nonclassical properties” required for the
understanding of quantum devices in which thermal
effects cannot be neglected? The contextuality framework
offers the opportunity to rigorously investigate both ques-
tions [30,31].
Despite recent theoretical and experimental advances, and

a large number of proposals for quantum mechanical heat
engines, a central outstanding question remains: Are there
thermodynamic machines whose performance unavoidably
requires quantum effects? The standard comparison with a
“stochastic engine” obtained by simple dephasing of
the quantum protocol [3–5,8–10] is insufficient to tackle
this question. The elementary example discussed in
Supplemental Material, Sec. D [21], shows that, in and
by itself, the dephasing criterion is not a good notion of
nonclassicality. I alternatively suggest to take contextuality
as one’s notion of nonclassicality and provide an upper
bound on the power output of any noncontextual engine.
This shows that quantum engines display a power output
advantage over every noncontextual counterpart [32].
A heat engine is a machine that works between two baths

at different temperatures and whose aim is to extract work
from the heat flow between the two baths. It is useful to
study the functioning of an engine as a sequence of
“strokes,” in which only some of the elements are involved.
While the reasoning is applicable to more general models
[5], I focus here on the two-stroke engine:
(1) The first stroke couples subsets of energy levels of the

system to a hot and a cold bath to generate a nonequili-
brium steady state ρð0Þ.
(2) The second stroke is a unitary driving to implement

work extraction.
We will assume that ρð0Þ is a two-level system, as in

Ref. [11]. Consider the work extraction process over a
unitary cycle lasting an amount of time τ:

HðtÞ ¼ H0 þ gVðtÞ; Vð0Þ ¼ VðτÞ ¼ 0: ð15Þ

IfUðtÞ is the unitary process generated byHðtÞ from time 0
to t, the work W extracted over the cycle is

WQ ¼ Tr½ρð0ÞH0� − Tr½UðτÞρð0ÞU†ðτÞH0�
¼ Tr½ρð0ÞH0� − Tr½UIðτÞρð0ÞU†

I ðτÞH0�: ð16Þ

Equation (9) returns

WQ ¼ 2gτ
ℏ

ImTr½ρð0ÞXH0� þOðg2Þ; ð17Þ

where we set X ≔ ð1=τÞ R τ
0 VIðtÞdt (for an interesting

relation to the so-called anomalous weak values, see
Supplemental Material, Sec. F [21]). Division by τ gives
the power of the unitary stroke, which can be OðgÞ in the
coupling strength. Furthermore, as already noted, the
operational equivalence of Eq. (11) is satisfied generically
by the unitary driving, since ρð0Þ is a qubit system. Hence,
setting Emax ¼ maxi Ei, Theorem 1 applies. In every non-
contextual model, Eq. (13) holds:

W ≤ 4Emaxpd ≔ WNC: ð18Þ

Hence, W ≤ Oðg2Þ as g → 0 in any noncontextual model,
and the same holds for power. Since we can have
WQ > WNC for g small enough, a quantum advantage in
the power output of the work stroke emerges in the weak
coupling limit. In fact, the bound relies only on setting a
finite upper bound on the maximum energy Emax the
noncontextual model can access and not on how it
represents H0, VðtÞ, etc. A gap will emerge at sufficiently
small g (or at sufficiently short pulses for fixed g).
The quantum advantage is exhibited in the difference

between the OðgÞ scaling possible in quantum mechanics
as compared with the Oðg2Þ bound of any noncontextual
model. This proves that the gap analyzed on the basis of the
dephasing criterion in Refs. [5,10,11,33] signals a true
separation between classical and quantum thermodynam-
ics. Specifically, in the presence of the phenomenology
featured in the quantum experiment, the gap unavoidably
requires nonclassicality in the form of contextuality.
A contextual advantage in local metrology.—Local

metrology is a paradigm to study the ultimate limits of
parameter estimation. We look here at the archetypal
case of phase estimation, where the relevant parameter
is the phase η in the dynamics Uη ¼ e−iHη for some
observable H. An initial qubit state jψð0Þi is prepared,
undergoes the dynamics Uη, and is measured according to
some arbitrary positive operator-valued measure Mx
(Mx ≥ 0,

P
x Mx ¼ 1). After N trials, there exists a

measurement such that the error (variance) VarðηÞ in
the estimated phase scales as O½1=ð4NΔH2Þ�, where
ΔH2 ≔ hψð0ÞjH2jψð0Þi − ½hψð0ÞjHjψð0Þi�2. This is finite
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only if the state is a (nontrivial) superposition of eigenstates
of H; otherwise, VarðηÞ ¼ þ∞. Hence, dephasing trivially
prevents sensing in this scheme. But what about other
noncontextual models, which as already discussed can be
much more complex than quantum mechanics plus dephas-
ing? Here I show VarðηÞ ¼ þ∞ in every noncontextual
model reproducing the operational phenomenology of
quantum sensing.
Let pðxjηÞ be the probability of getting outcome x from a

measurement M when the true value of the parameter is η.
So pðxjηÞ ¼ p½xjTηðPÞ;M� if P, Tη, and M are the
operational descriptions of preparation, transformation,
and measurement procedures, represented in quantum
theory by jψð0Þi, Uη, and fMxg, respectively. Recall that
an estimator η̂ðx1; x2;…Þ maps the measurement outcomes
ðx1; x2;…Þ to a guess η for the unknown parameter. For
independent observations, the variance of any unbiased
estimator is lower bounded by 1=ðNFP;M

η Þ, with FP;M
η the

Fisher information

FP;M
η ¼

X
x

pðxjηÞ
� ∂
∂η lnpðxjηÞ

�
2

: ð19Þ

The best strategy involves optimizing over all allowed
preparations P and measurements M, where for simplicity
we will assume x runs over a bounded, while possibly
extremely large, set of indexes. In any OM, from Eq. (1),

pðxjηÞ ¼
Z

dλdλ0μPðλÞT Tη
ðλ0jλÞξMðxjλ0Þ; ð20Þ

where μPðλÞ, T Tη
ðλ0jλÞ, and ξMðxjλ0Þ are the OM descrip-

tions of P, Tη, and M, respectively. Using the relation
pðxjηþ δÞ ¼ p½xjTδðPηÞ;M�, where Pη ¼ TηðPÞ, and the
fact that Eq. (11) is satisfied with pd ¼ Oðδ2Þ, we can
prove

FP;M
η ¼ 0 ð21Þ

for any P and any measurement M with a finite number of
outcomes and pðxjηÞ ≠ 0 (see Supplemental Material,
Sec. G [21]). Hence, VarðηÞ ¼ þ∞, as anticipated. This
again is a consequence of the weakness of linear response
in noncontextual models.
Outlook.—I proved that the linear response of quantum

systems driven by small external perturbations has a scaling
that unavoidably requires nonclassicality. While the quan-
tum response can scale linearly in the strength of the
perturbation parameter g, noncontextual models reproduc-
ing the operational phenomenology in Eq. (11) respond
only quadratically. [Curiously, one can note that, since
classical models display a quadratic response in the pres-
ence of the operational equivalence in Eq. (11), a phenome-
non such as the quantum Zeno effect is naturally expected
on the basis of the assumption of noncontextuality—see
Supplemental Material, Sec. H [21] ].

TheOðgÞ vsOðg2Þ gap is a certifiable quantum signature
highlighting a central dynamical differences between non-
contextual models and quantum mechanics. I gave readily
applicable tools to analyze arbitrary linear response experi-
ments. As an application, I showed that the improved
performance in the power output of a quantum engine
necessarily requires nonclassical effects in the form of
contextuality.
Building up on this work, it will be desirable to use the

tools introduced here to reanalyze in detail the experimental
heat engine signature of Ref. [11], as well as to develop
flexible certification tools applicable to larger-scale sys-
tems and based on more compelling operational constraints
than “stochastic reversibility.” While I presented an exam-
ple of a performance boost unavoidably connected to
contextuality, this does not settle the question of the
superiority of quantum engines as practical devices. The
latter requires discussing issues of scalability, control,
and efficiency in the implementation of basic operations.
One can also envision this work as a first result in the
“thermodynamics of contextuality,” meaning how a central
property signaling the departure from classical reality
interacts with actual thermodynamic processes at the
operational level.
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(CERCA program and SGR 875), ERC Grant EQEC
No. 682726.

*lostaglio@protonmail.com
[1] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and

A. Svidzinsky, Proc. Natl. Acad. Sci. U.S.A. 108, 15097
(2011).

[2] N. Killoran, S. F. Huelga, and M. B. Plenio, J. Chem. Phys.
143, 155102 (2015).

[3] J. B. Brask and N. Brunner, Phys. Rev. E 92, 062101 (2015).
[4] M. T. Mitchison, M. P. Woods, J. Prior, and M. Huber,

New J. Phys. 17, 115013 (2015).
[5] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044

(2015).
[6] A. Ü. C. Hardal, N. Aslan, C. M. Wilson, and Ö. E.

Müstecaplıoğlu, Phys. Rev. E 96, 062120 (2017).
[7] K. E. Dorfman, D. Xu, and J. Cao, Phys. Rev. E 97, 042120

(2018).

PHYSICAL REVIEW LETTERS 125, 230603 (2020)

230603-5

https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1063/1.4932307
https://doi.org/10.1063/1.4932307
https://doi.org/10.1103/PhysRevE.92.062101
https://doi.org/10.1088/1367-2630/17/11/115013
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevE.96.062120
https://doi.org/10.1103/PhysRevE.97.042120
https://doi.org/10.1103/PhysRevE.97.042120


[8] A. Levy and D. Gelbwaser-Klimovsky, in Thermodynamics in
the Quantum Regime (Springer, NewYork, 2018), pp. 87–126,
https://doi.org/10.1007/978-3-319-99046-0_4.

[9] P. A. Camati, J. F. G. Santos, and R. M. Serra, Phys. Rev. A
99, 062103 (2019).

[10] R. Dann and R. Kosloff, New J. Phys. 22, 013055 (2020).
[11] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K.

T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R.
Uzdin, and E. Poem, Phys. Rev. Lett. 122, 110601 (2019).

[12] S. Nimmrichter, J. Dai, A. Roulet, and V. Scarani, Quantum
1, 37 (2017).

[13] J. O. González, J. P. Palao, D. Alonso, and L. A. Correa,
Phys. Rev. E 99, 062102 (2019).

[14] R. W. Spekkens, Phys. Rev. A 71, 052108 (2005).
[15] Operational here refers to statements that can be, in principle,

verified from the conditional probabilities of observing certain
outcomes for given input measurements, without relying on a
detailed model of the inner workings of the devices at hand.
The terminology refers to the “black-box” approach success-
fully applied in quantum foundations [14], device-independent
quantum cryptography, and self-testing [16].

[16] I. Šupić and J. Bowles, Quantum 4, 337 (2020).
[17] D. R. Arvidsson-Shukur, N. Y. Halpern, H. V. Lepage, A. A.

Lasek, C. H. Barnes, and S. Lloyd, Nat. Commun. 11, 3775
(2020).

[18] M. Leifer, Quanta 3, 67 (2014).
[19] Another property that is typically required is locality, but

since here we are not dealing with spacelike separated
systems such an assumption is inconsequential.

[20] R. W. Spekkens, arXiv:1909.04628.
[21] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.230603 for further
discussions and technical proofs.

[22] R. W. Spekkens, Phys. Rev. A 75, 032110 (2007).
[23] S. D. Bartlett, T. Rudolph, and R.W. Spekkens, Phys. Rev.

A 86, 012103 (2012).
[24] D. Schmid and R.W. Spekkens, Phys. Rev. X 8, 011015

(2018).
[25] D. Saha, P. Horodecki, and M. Pawłowski, New J. Phys. 21,

093057 (2019).
[26] M. Lostaglio and G. Senno, Quantum 4, 258 (2020).
[27] A. Tavakoli and R. Uola, Phys. Rev. Research 2, 013011

(2020).
[28] A channel is a completely positive and trace-preserving

map, describing the most general quantum evolution of a
system.

[29] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and
R.W. Spekkens, Nat. Commun. 7, 11780 (2016).

[30] K. V. Hovhannisyan and A. Imparato, New J. Phys. 21,
052001 (2019).

[31] A. Levy and M. Lostaglio, PRX Quantum 1, 010309 (2020).
[32] The dephasing criterion claims an advantage when the

quantum protocol outperforms its dephased version. Note
that the dephased protocol is a special case of a non-
contextual model, so my proposed criterion is more
demanding than the dephasing criterion.

[33] L. P. García-Pintos, A. Hamma, and A. Del Campo, Phys.
Rev. Lett. 125, 040601 (2020).

PHYSICAL REVIEW LETTERS 125, 230603 (2020)

230603-6

https://doi.org/10.1007/978-3-319-99046-0_4
https://doi.org/10.1007/978-3-319-99046-0_4
https://doi.org/10.1007/978-3-319-99046-0_4
https://doi.org/10.1103/PhysRevA.99.062103
https://doi.org/10.1103/PhysRevA.99.062103
https://doi.org/10.1088/1367-2630/ab6876
https://doi.org/10.1103/PhysRevLett.122.110601
https://doi.org/10.22331/q-2017-12-11-37
https://doi.org/10.22331/q-2017-12-11-37
https://doi.org/10.1103/PhysRevE.99.062102
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1038/s41467-020-17559-w
https://doi.org/10.1038/s41467-020-17559-w
https://doi.org/10.12743/quanta.v3i1.22
https://arXiv.org/abs/1909.04628
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.230603
https://doi.org/10.1103/PhysRevA.75.032110
https://doi.org/10.1103/PhysRevA.86.012103
https://doi.org/10.1103/PhysRevA.86.012103
https://doi.org/10.1103/PhysRevX.8.011015
https://doi.org/10.1103/PhysRevX.8.011015
https://doi.org/10.1088/1367-2630/ab4149
https://doi.org/10.1088/1367-2630/ab4149
https://doi.org/10.22331/q-2020-04-27-258
https://doi.org/10.1103/PhysRevResearch.2.013011
https://doi.org/10.1103/PhysRevResearch.2.013011
https://doi.org/10.1038/ncomms11780
https://doi.org/10.1088/1367-2630/ab1731
https://doi.org/10.1088/1367-2630/ab1731
https://doi.org/10.1103/PRXQuantum.1.010309
https://doi.org/10.1103/PhysRevLett.125.040601
https://doi.org/10.1103/PhysRevLett.125.040601

