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Abstract

Demand for air transportation is expected to continue growing. Within Europe one of the biggest impacts of
this traffic growth, is an increase of air travel delay. As it happened during the summer of 2018, where demand
from aircraft intending to enter an air sector was not complemented with capacity to safely accommodate it.
Incentivised by this event, in this article the problem of predicting a class of measures for demand-capacity
balancing, known as Air Traffic Flow and Capacity Management (ATFCM) regulations, is investigated. A
Random Forest model was trained on public ATFCM notification messages to predict the amount of ATFCM
regulations over different European air sectors for varying prediction horizons. In addition to the predictive
model, in this paper a new way to estimate the maximum prediction horizon is proposed. Using the Hurst
exponent, the time-scale at which random behaviour is initiated is found. Comparison of the proposed
method with the prediction horizon obtained from the largest Lyapunov exponent indicates that the method
is a valid technique for estimating the prediction horizon. By extending the prediction horizon of the model,
it is found that the proposed method can reasonably estimate the prediction horizon above which prediction
accuracy starts to degrade.

Keywords: Air transport, Demand regulations, Tactical phase, Machine learning, Hurst Exponent,
Prediction horizon, Long-range dependence

1. Introduction

According to Eurocontrol’s Statistics and Forecast Service in the most likely scenario by 2040 an increase
of 53% in IFR movements within Europe can be expected [1]. One of the biggest impacts of this increase
in air traffic within Europe, is an increase of air travel delay. An example of this increase of delays was
experienced during the summer months of 2018 [2], where the average arrival and departure delays almost
doubled compared to the same period in 2017. The main reason for the higher delays during summer of 2018
has been attributed to air traffic control (ATC) experiencing unplanned staffing issues [3].

The issue when there are more flights intending to enter an airspace than there is capacity to safely control
these flights, is generally referred to as a demand-capacity imbalance. Air Traffic Flow Management and its
European extension Air Traffic Flow and Capacity Management (ATFCM) has as its primary objective to
plan and implement measures for demand-capacity balancing [4]. The measures can be categorized into three
main classes: (1) Optimization of available capacity; (2) Shifting the demand into other areas; (3) Regulating
the demand. Within the last class only the measures known as ATFCM regulations are considered in this
study. Such a measure involves assigning a pre-departure delay on ground for each flight affected by the
regulation.

Email addresses: a.doutsis@student.tudelft.nl (Author MSc student: A. Doutsis), m.mitici@tudelft.nl (
TU Delft supervisor: M. Mitici), rasoul.sanaei@dlr.de (DLR supervisor: R. Sanaei)
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Incentivised by the delays experienced during the summer months of 2018, the focus of this paper is the
tactical phase of ATFCM operations. Specifically, this study is aimed at bringing forth improvement on pro-
cess planning during this phase by having a better understanding of the evolution of measures for regulating
the demand under an imbalance. This is achieved through a predictive model with which characteristics,
that relate traffic complexity with performance of planned measures over an Area Control Center (ACC) or
Upper Area Control (UAC), are predicted for different forecast horizons.

The above high-level objective is split into two main research objectives. The first objective is to create a
model with which the number of new, changed and cancelled regulations, total activation time and duration
of future regulations can be predicted. The second objective is to research and implement a methodology
with which the maximum prediction horizon for different ACCs/UACs can be estimated.

In recent years, machine learning algorithms have shown very good performance in making predictions.
Extensive research in the available literature indicated that there is a lack of studies that utilize machine
learning to predict the characteristics of European ATFCM regulations. The most similar literature to this
research in the last years consists of [5] and [6].

In [5] Liu and Hansen have investigated the problem of predicting the initiation of a Ground Delay Pro-
gram (GDP) for different forecast horizons. GDPs are the US equivalent to European ATFCM regulations
[7]. By utilizing a logistic regression model together with demand, capacity, flight schedules and weather
data they conclude that increasing the forecast horizon from 1 hour to 4 hours does not lead to significant
increase of the prediction errors.

In [6] Estes et al. investigated the performance of a Random Forest in predicting the average arrival delay
caused by a GDP. They consider all the historical GDPs to have occurred at a single location and they are
weighted based on the similarity of the traffic and weather conditions at the time of occurrence. The authors
found that the Random Forest model together with the weighing scheme resulted in a mean absolute error
(MAE) of 11.6 minutes.

Other authors investigated the application of tree-based machine learning models on the task of arrival
and departure delay prediction without accounting for the cause of the delay. In [8] Thiagarajan et al. in-
vestigated a variety of tree-based models for the task of predicting the value of arrival and departure delays
of flights. As input the authors used US airline on-time-performance data and weather data. They found
that the best results were obtained from the Extra-Trees model and the second best from Random Forests.
Similarly, in [9] Manna et al. utilized Gradient-Boosted trees for predicting arrival and departure delays.
Using as input features the day of week, airline, origin/destination airport and scheduled departure/arrival
times they found a MAE of 7.56 minutes for arrival delay and a MAE of 4.7 minutes for departure delay.

The Network Manager (NM), as the head of the collaborative decision making process in ATFCM has an
overview of the traffic situation over the European ATM Network and utilizing systems such as SIMEX and
PREDICT [4] can run simulations to predict and asses the impact of the future measures for demand-capacity
balancing. However, for these systems to work a holistic overview of the network is needed. That requires
full knowledge on sector demand, forecasted demand and declared capacity. As an external stakeholder of
the system this information is rarely available, as a result of this the predictions will have to utilize other
means than demand and capacity.

The best proxy information that is publicly available consist of the ATFCM Notification Messages
(ANMs). The list of ANMs is publicly available through Eurocontrol’s Network Operation Portal (NOP).
Adding, changing or cancelling planned ATFCM regulations cause the list of ANMs to be updated to reflect
the current situation.

Because of the structuring of European airways and the locations of the busiest airports, some ACCs/UACs
are more active than others from a regulatory point of view. As an example, consider the ACCs/UACs in
FABEC Functional Airspace Block. In these sectors some of the busiest airports are located and at the same
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time the most flown routes pass over these areas. Due to this diversity in regulatory dynamics over different
air sectors there is a need to have a methodology with which the maximum forecast horizon over different
ACCs/UACs can be assessed.

A possible idea for estimating the forecast horizon is to set it equal to the mean return interval of regula-
tions. That is, the average time between the start times of two consecutive regulations. However, Bunde et
al. [10] have proved that the mean return interval does not account for long-range dependant behaviour.

The most well-known continuous-time stochastic process that shows long range dependence, is the self-
similar process of fractional Brownian motion (fBm) and its increment fractional Gaussian noise (fGn) devel-
oped by Mandelbrot and van Ness [11]. In this type of process, the level of dependence is quantified through
the Hurst exponent, named after the British hydrologist Harold Edwin Hurst.

The Hurst exponent H takes values between 0 and 1. When H = 0.5 the increments of the process are
uncorrelated, and the overall process is similar to a random walk [12]. When 0 < H < 0.5 the increments of
the process are negatively correlated, with the anti-correlation getting stronger as H → 0. When 0.5 < H < 1
the process exhibits long range dependence and the increments of the process are positively correlated [12],
with the strength of the correlations increasing as H → 1.

Karagiannis et al. [13] offer an overview of all the methods available to estimate the Hurst exponent.
However, as it can be seen in [12, 14, 15, 16] the rescaled range method is the one most commonly used. This
method is the original procedure proposed by Mandelbrot and Wallis [17].

Wang et al. [16] utilized the rescaled range method to estimate the Hurst exponent of air traffic flow
time series constructed at different time-scales. For the series constructed with the smallest time-scale (10
minutes) they found H = 0.72. As the time-scale was increased they found a decrease of the Hurst exponent,
with H = 0.64 for a time-scale of 30 minutes. They conclude that as the time-scale of observation increases
the process start becoming more chaotic.

Molino-Minero-Re et al. [14] have proposed a method with which the Hurst exponent can be estimated
as a function of time and time-scale, the Time-Scale Local Hurst Exponent (TSLHE). The method is based
on a sliding window with varying width (time-scale). At the end of the process a matrix, whose element Hij

indicates the Hurst exponent at time t = i and at the jth time-scale, is obtained. After averaging the matrix
to remove the time-scale dimension they utilize the average Hurst exponent as a function of time to detect
structural changes in seismic time series.

Qian and Rasheed [18] tested the hypothesis that forecasting time series with Hurst exponent higher than
0.5 leads to lower forecasting errors. After forecasting 30 series with H > 0.6 and 30 series with H ∼ 0.5,
using a neural network, they found that the error metric was lower for the set of series with high Hurst
exponent compared to the other set. As a final step they ran a Student’s t-test with the null hypothesis that
the mean error metric for both sets is equal. The p-value for the test resulted to be 7.029 · 10−10 leading to
rejection of the null hypothesis.

The hypothesis is that the prediction horizon can be estimated from the time-scale at which the incre-
ments of the process become uncorrelated. In this way one aims to find the furthest point in time in the
future, at which the present information has predictive power. As shown in [18], when the Hurst exponent
of the series is bigger than 0.5 the time series can be predicted with lower error rates. From the findings of
[16], it can be expected as the time-scale increases the Hurst exponent decreases. Finally, using the TSLHE
procedure [14] the average Hurst exponent as a function of time-scale can be obtained.

In section 2, the datasets that were used for the purposes of this study are described. Given the two
main objectives of this research the methodology and results sections are split into two sections, respectively.
In section 3, the methodology related to the problem of determining the prediction horizon is given. This
section then is followed by section 4 where the results of the prediction horizon for selected ACCs/UACs are
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given. In section 5 the methods and steps involved in developing the predictive model are discussed. This
is then followed by section 6 where the results of the experiments with the predictive model are given. In
section 7 the results related to both research objectives are discussed and interpreted. After the conclusions
given in section 8, in section 9 potential improvements together with an application of the predictive model
on flight operations are proposed.

2. Dataset description

As it has been discussed in section 1, the data that is used to reach the objectives of the research consists
of the lists of ANMs. ATFCM is applied on four different time horizons. This involves a planning process for
each calendar day, that for the purposes of the ATFCM process will be referred to as ”Day of Operations”
or Dops. During the tactical phase (on Dops) the initial plans are evaluated in real-time and adjustments are
made so that the implemented measures are at the bare minimum to solve the problem [4].

2.1. Tactical ATFCM data

During Dops the list of ANMs is obtained from the Network Operations Portal (NOP). Throughout the
day the regulations are updated as needed to manage the traffic load. A screenshot of the list of ANMs can
be found in Figure 1. Figure 1 starts with the release date and time of the list of regulations. Each time a
regulation is added changed or cancelled the release time is updated. This is then followed by the date and
time a user accesses the list of regulations and the total number of regulations.

Figure 1: Screenshot of ATFCM regulation messages obtained from Network Operations Portal.

The following rows in Figure 1 contain the notification messages for the planned regulations. Each ANM
starts of with the State indicating the state of the regulation. The State field can take any of the following
values: NEW, CHANGED and CANCELED

This is then followed by the relevant FMP. The first 4 letters of which correspond to the ICAO codes
for the ACCs/UACs, giving the geographical location for applicability of the regulation. The Flight level
field indicates within the location of applicability of the regulation which flight levels (FLs) will be regulated.
The Flight level field can take any of the following values:

• All FLs- Indicated by ALL
• Range of FLs - e.g. 045 - 190, flight levels from FL045 to FL190
• Upper boundary - e.g. 200-, all flight levels bellow FL200
• Lower boundary - e.g. 300+, all flight levels above FL300

There are three different times associated with each regulation. Firstly, there is the time that the reg-
ulation was announced to the stakeholders of the system, Published. This field will be referred to for
convenience as PUB. If a regulation is changed or cancelled, this time is also updated. Next there is the
time when a regulation is planned to become effective WEF and also the time up until it is planned to be
in effect UNT. For regulations that are cancelled these field are empty and only the PUB field is available.
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Based on the above regulation times two new fields can be calculated. The duration of the regulation
DUR is obtained from UNT−WEF. For cancelled regulations, because the WEF and UNT fields are
not available the duration is set to zero. The activation time ACT of the regulation can be obtained from
WEF−PUB. The activation time can take any of the following values:

• Cancelled regulations: Zero values
• New regulations: Only positive values
• Changed regulations: Both negative and positive values. A negative value occurs when a regulation is

amended after being in effect

Finally, the last field of interest is the Reason for the regulation. This field can take any of the 14
pre-defined reasons from the Network Manager and they are given in Annex 5 of [19].

Typically, the first regulations of the day are published pre-tactically from the day before Dops. This can
be seen by comparing the PUB fields of the two regulations shown in Figure 1 with the release time of the
list of regulations. As the day progresses the regulations are updated so that the tactical phase objectives
can be reached. This is illustrated in Figure 2. The two time series shown in Figure 2 represent the total
count of non-cancelled regulations in EDUU (Karlsruhe UAC). The blue series is constructed from the list of
regulations released on the morning of 5th of April 2019 and the orange one is constructed from the final list
of regulations collected for that day. As it can be seen from this plot what was planned initially and what
actually happened in the context of regulations deviate considerably.

Figure 2: Time series of the counts of non-cancelled regulations in EDUU. The legend indicates the release time of the list of
regulations.

In order to capture the evolution of the list of ANMs, a system had been set up by the ATFM group
of the DLR Air Transportation Systems. Roughly every ten minutes, this system would access the NOP,
extract the ANMs and store the data in a sheet within an Excel file. Each of these sheets is referred to as a
snapshot of Dops. After pre-processing, which will be discussed in subsection 5.3, this data will be used in
order to train and test the predictive model. In this manner data on the following months were available

• April 2019 - The 6th, 7th, 13th and 14th of the month were missing.
• May 2019 - The 6th and 22nd of the month were missing
• June 2019 - The 19th of the month was missing
• July 2019 - No missing data

As indicated in Figure 2, what is initially planned with what actually happens at the end of the day
differ. In order to have the a view over the actual regulatory situation, besides the 10 minutes snapshots, the
last snapshot of Dops were collected post-operationally. In the NOP a public user has the ability to access
the list of regulations up to 40 days before the current day. This source of data is used for estimation of the
prediction horizon of an ACC/UAC. The reason for this is that it reflects what actually happens on Dops,
while at the same time is not affected by the limitations of the process with which the 10 minute snapshots
are collected. In this way the last snapshots of each of month from March up to and including June 2019
were available, with no missing days.
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3. Methodology - Prediction Horizon

The basis for the proposed method is to use the Hurst exponent as an indicator of predictability of a time
series. By using the algorithm presented by Mollino-Minero-Re et al. [14], one can obtain the Hurst exponent
as a function of time and time-scale. After obtaining this result it is possible to remove the time dimension
through averaging to obtain the average Hurst exponent as function of time-scale. The hypothesis then is
that the time-scale at which the process becomes uncorrelates is also the forecast horizon. In subsection 3.1
the method to estimate the Hurst exponent is described. In subsection 3.2 the verification steps undertaken
to establish the ability of the used method in determining the expected values for the Hurst exponent, are
discussed. In subsection 3.3 and subsection 3.4 the implementation of the Time-Scale Local Hurst Exponent
is discussed. This section is concluded with subsection 3.6 where the procedure for verifying the value of the
maximum prediction horizon is described.

3.1. Rescaled range method

The rescaled range (RS) is a statistic used by the hydrologist Harold Edwin Hurst to study the optimal
sizing of water reservoirs. Consider a time series {Xt} t ∈ 0, 1, 2, ..., N . A new series Yt is created as follows

Yt = Xt −X for t = 0, 1, 2, ..., N (1)

where X is the sample mean of {Xt}. {Yt} describes the deviations of the series Xt from its mean X. Based
on {Yt} another series Zt is created by taking the cumulative sums of Yt, that is

Zt =
t∑

i=0

Yi for t = 0, 1, 2, ..., N (2)

as such Z0 = Y0, Z1 = Y0 + Y1 and so on. Finally the range R is defined as

R(N) = max
0≤t≤N

(Zt)− min
0≤t≤N

(Zt) (3)

In order to standardize the range, Hurst divided it by the standard deviation of {Xt} to form the rescaled
range as

RS(n) =
max0≤t≤N (Zt)−min0≤t≤N (Zt)√

1
N

∑N
i=0(Xi −X)2

(4)

According to Mandelbrot and Wallis [17] the RS statistic shows the following assymptotic relationship

lim
N→∞

RS(n) = cnH (5)

where n is the length of the time series, c is a constant and H is the Hurst exponent. Equation 5 can be
linearized through a logarithmic transformation to obtain Equation 6.

log (RS(n)) = log(c) +H log(n) (6)

Based on Equation 6, the Hurst exponent can be determined by: (1) Calculating the RS for different
values of n; (2) Plot the log (RS(n)) over log (n); (3) Fit a least-squares line over the resulting points and
obtain the value of H from the slope of the fitted line. Typically the first step in the procedure is performed
by splitting the overall series into disjoint sub-series of equal length. This is illustrated in Figure 3. Starting
off with the original series of length n, the RS for this length is calculated. Then the series is split into
two equal halves. On each halve the RS is calculated and the RS for a series length n/2 is obtained from
the average of the two. The process is repeated with three sub-series of equal length and so on up until the
lowest sub-series length is reached. The concepts of range and standard deviation are inapplicable for a single
number, thus the smallest possible sub-series length is two.
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Figure 3: Illustration of the process of calculating the rescaled range of a time series for varying lengths, based on disjoint
intervals of equal length.

3.2. Verification of the Hurst exponent estimation

To verify that the procedure for estimating the Hurst exponent was implemented correctly two experi-
ments were conducted. Since the value of H for a series composed from uncorrelated increments is expected
to be 0.5 [15], for the first experiment synthetic series were generated by sampling a N(0,1) distribution. The
series were constructed for lengths from 25 up to 213. For each series length 100 series were constructed, the
Hurst exponent was estimated on each of them and the results are averaged.

For the second experiment, the performance of the implemented method was checked against series with
varying values for the Hurst exponent. For generating series with different values for H the Python package
”fbm” [20] was used to generate series of fractional Gaussian noise (fGn) and fractional Brownian motion
(fBm). The algorithm used with in it to generate series of fGn has been proposed by Davis and Harte in [21].
A mathematical description of the procedure implemented can be found in [22, p. 15-17]. The fBm process
is obtained by taking the cumulative sum of the fGn series. Similarly to the first experiment, for each value
of the Hurst exponent from 0.05 up to 0.95 with a step of 0.05, 100 such series were generated. The value
of H was estimated with the rescaled range method and the results are averaged in the end. The results of
these verification steps are given in subsection 4.1.

3.3. Time-Scale Local Hurst Exponent (TSLHE)

The procedure for determining the Hurst exponent as function of time and time-scale has been proposed
in [14]. This procedure is based on a sliding window, where the window length WL, represents the time-scale
of observation. By sliding the window one sample at a time the Hurst exponent is estimated within the
sliding window using the rescaled range method. Consider a time series {Xt} t ∈ 1, 2, ..., n.

1. The time-scales WLi i ∈ 1, 2, ..., k at which the series will be analyzed are selected. From a procedural
point of view the maximum time-scale WLk can be bigger than the length of the series {Xt}, however
practically this offers no advantage as such the WLk ≤ n. For the minimum time-scale WL1, the
authors of [14] suggest WL1 ≥ 8. The reason for this is that at this time-scale there are 3 points for
estimation of H.

2. In order to obtain a value of H for each element of the series {Xt}, the series has to be padded. For
the padding strategy the authors of [14] used symmetric reflection of the bWSi/2c initial and end
samples. For the purposes of this research, because of the daily seasonality in the data, it was deemed
more appropriate to apply a circularization strategy. In this way, to create the new padded series
Xpad,m m = 1, 2, ..., n + WLi − 1, at the beginning of {Xt} the last bWLi/2c − 1 observations of
{Xt} are inserted and at the end of {Xt} the first bWLi/2c observations of {Xt} are appended. The
procedure is illustrated in Figure 4
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Figure 4: Circular padding strategy, used in the calculation of the Time-Scale Local Hurst Exponent

3. The sliding window of width WLi is placed at the begining of the padded series. Within this window
H is estimated using the rescaled range method. Then the window is slid one sample forward and
the estimation repeated up until the window reaches the end of the padded series. This is graphically
depicted in Figure 5.

Figure 5: Process of obtaining the Time-Scale Local Hurst Exponent, based on a centered sliding window.

4. At the end of the process a matrix A with dimensions [n, k] is created. Element ai,j of matrix A,
represents the level of correlation/anti-correlation or lack of correlation between the increment i of
original series with the preceding j/2 and succeeding j/2 increments of the original series.

After obtaining the resulting matrix averaging is performed over the rows of this matrix to obtain the
average Hurst exponent as a function of time-scale. The time-scale at which the process shows randomness
(H ∼ 0.5), which will be referred to as TSH , then is used as the forecast horizon.

The six following ACCs/UAC were selected for estimation of the prediction horizon: EDGG (Langen
ACC), EDUU (Karlruhe UAC), LECM (Madrid ACC), LFEE (Reims ACC), LFFF (Paris ACC) and LFMM
(Marseille ACC). These ACCs/UACs were consistently in the top 10 (by number of appearances in the lists
of ANMs) of each month from March to June 2019. For this selection, two sets of time series were created. In
the first set for each ACC/UAC separate time series where created for each of the 4 months (24 series). This
set was used to track how the prediction horizon evolves over the historical data. The results of this step are
given in Figure 9. In the second set one series was created for each ACC/UAC by combining all 4 months
(6 series). This set was used to determine the overall value of the prediction horizon for each ACC/UAC.
These results are given in Figure 8.

All time series were created with a step-size of 15 minutes and by utilizing only the start and end
times of non-cancelled regulations. An essential step before applying the TSLHE method on the series,
consisted of differencing the series once as shown in Equation 7. The reason for this operation consists
on the fact that the created series where found by the Augmented Dickey Fuller (ADF) test and the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to be non-stationary due to the presence of a stochas-
tic trend. As it has been discussed in [13] and as it will be seen in subsection 4.1, the rescaled range method
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results in Hurst Exponents close to and sometimes bigger than one when the input series is non-stationary.

3.4. Singularity of the TSLHE

In the literature that discuss the application of the Hurst exponent, the time series considered are such
that at time t and t + 1 it is highly unlikely to have the same value. Example of this include temperature
time series and stock-market prices, which are subject to constant fluctuations. The time series used in this
research are such that constant values between t and t + 1 are highly likely. An example of this was shown
in Figure 2. As it can be seen in Figure 2 for the most part the series contains flat plateaus of constant values.

When applying the TSLHE method for such a series, it can occur that for a certain time-scale and loca-
tion in the series the rescaled range statistic will have to be applied to a part of the overall series where the
values are constant. This is problematic since, for a series of constant values both the range R and standard
deviation are zero. This results in the rescaled range for this part of the series to be undefined. To mitigate
this issue it was decided that for the purposes of the research it would be most appropriate for such intervals
to correspond to Hurst exponent of 1.

The reasoning behind this lies in the physical interpretation of the Hurst exponent, where 0.5 < H < 1
represents positive correlation between the increments of the series. As H → 1 these correlations become
stronger. A series of constant values can be considered as a singular number and a singular number is always
fully correlated with it self, having a Pearson correlation coefficient of 1.

3.5. Comparison of the prediction horizon with the mean return-interval

In order to verify that the procedure proposed in subsection 3.3 behaves as expected the maximum pre-
diction horizon determined from the TSLHE procedure is compared against the mean return interval. It has
been proven in [10], that the mean return interval is invariant to the long-range dependency of the process.
As such using the mean return interval for the maximum prediction horizon will not account for the true
behaviour of the process. Nevertheless, the mean return interval can be used as an indicator of the dynamics
of the regulations in the area of study. As the rate of regulations (inverse of mean return-interval) increases
the ACC/UAC can be considered more dynamic and unpredictable. As a result of this, a shorter return
interval is expected to correspond to a shorter forecast horizon.

In order to test for this behaviour, after selecting the ACCs/UACs of interest, separate time series where
created for each ACC/UAC for the months of March, April, May and June 2019 using the last list of ANMs.
For each ACC/UAC and month the maximum prediction horizon TSH and the mean return interval were
calculated. To obtain the regulation return intervals the following procedure was done:

1. Starting with the time series of the total count of non-cancelled regulations over an ACC/UAC, {Ct}
for t = 0, 1, ..., n− 1, the first difference was applied to {Ct} to create a new series {∇1Ct′}, where

∇1Ct′ = Ct′ − Ct′−1 for t
′

= 1, 2, ..., n− 1 (7)

2. All positive values in {∇1Ct′} indicate the start of r regulations, with r > 0. The times at which this
values occur are called the arrival times of the regulations.

3. Finally the return intervals are obtained by the time difference between two consecutive arrival times.

3.6. Verification of the prediction horizon

To verify the value obtained for the maximum prediction horizon obtained from the TSLHE method, TSH
is compared to a similar methodology based on the largest Lyapunov exponent (LLE) of a chaotic system.
Consider a deterministic system composed of g states, with g > 0. Such a system is chaotic if, small changes
in the initial conditions lead to an unpredictable evolution of the states. If we consider two initial conditions
of infinitesimally small distance δ0 ∈ Rg, the Lyapunov exponent quantifies the rate of divergence δ(t) ∈ Rg
between the two initial conditions [23]. As it has been shown in [23] the largest Lyapunov exponent can be
estimated from the following relationship, where λ is the LLE
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‖δ(t)‖ ∼= ‖δ0‖ eλt (8)

When the system has a positive LLE then the concept of a prediction horizon TL exists and after it all
predictions degrade [23]. To calculate TL the following relation is given [23]

TL =
1

λ

(
ln

a

|δ0|

)
(9)

where a represents the tolerance for the predictions. As it has been shown in [24] when considering time
series, the tolerance and initial distance can be omitted to obtain the prediction horizon for this series from
the inverse of the LLE, TL = 1/λ. An algorithm to calculate the LLE has originally been proposed by
Rosenstein et al. [25]. The basis of this algorithm is reconstructing the phase space of the dynamical system.
The phase space of the example system is the g-dimensional space that contains all the state vectors indexed
by time.

If the time evolution of the g states of the system are available, the phase space can be reconstructed
perfectly. However, using Takens Embedding Theorem [26] this can also be done by using only a single time
series {Xt} for t = 1, 2, ..., n of the system. This is achieved by selecting an appropriate embedding dimension
d and lag τ then the reconstructed phase space vectors XR,t can be obtain as follows [27]

XR,t =
[
Xt, Xt+τ , Xt+2τ , ..., Xt+(d−1)τ

]
where t = 1, 2, ..., n− (m− 1)τ (10)

To select the appropriate lag τ , the most common method has been proposed by Fraser and Swiney in
[28]. In this method the mutual information (MI) between the original series X(t) and a lagged version of it
by τ is computed using the following equation

MI(τ) =
n∑

i=1

p(Xi, Xi+τ ) log2

[
p(Xi, Xi+τ )

p(Xi)p(Xi+τ )

]
(11)

where p(Xi, Xi+τ ) is the joint probability mass function of {Xt} and {Xt+τ}, p(Xi) and p(Xi+τ ) are the
marignal probability mass functions and the log2 is used to obtain the MI in units of bits. The value of τ to
be used for the reconstruction then is the first local minimum of the curve MI(τ) over τ .

To determine the embedding dimension the method of false nearest neighbors is used [29]. A phase space
that is reconstructed in the optimal dimension d∗ is a one to one mapping of the original phase space. As
such neighbours of the original phase space remain neighbours in the reconstruction. When the embedding
dimension is smaller than d∗, false neighbours will appear in the reconstructed phase space due to projecting
a higher dimensional object to a lower dimension. Within a dimension d the Euclidean distance is computed
for each point XR,i and its nearest neighbor Xn

R,i as follows.

Ri(d) =
∥∥XR,i −Xn

R,i

∥∥2 (12)

The points are considered false neighbors if the following relation holds true

√
Ri(d+ 1)−Ri(d)

Ri(d)
> D (13)

where D is a distance threshold value. The embedding dimension to be used for the reconstruction then is
the first dimension that has a fraction of false nearest neighbors bellow 10%.

Finally, after obtaining the values for d and τ the phase space XR,t is reconstructed. For each point i, in
the reconstructed space, the nearest neighbour to this point i∗ is determined. The condition for two points
to be nearest neighbours is that they should be separated by the mean period of {Xt}. Equation 8 can be
rewritten as follows

ln

( |δi,t|
|δi,0)|

)
= λt (14)
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where δi,t represents the distance between point i and its nearest neighbor i∗ at time t and δi,0 is the
initial distance between the two. By calculating the right hand side of Equation 14 for different values of t
and plotting the results, the LLE can be determines as the slope of the line that best fits the points. In order
to have a reliable estimate for the LLE the right hand side of Equation 14 is calculated for all the pairs (i, i∗)
and the results at a time step t are averaged over all pairs.

4. Results - Prediction Horizon

In this section the results of applying the proposed method for determining the maximum prediction
horizon are given. In subsection 4.1 the results of the verification experiments described in subsection 3.2
are given. In subsection 4.2 the results of the maximum prediction horizon for the six selected ACCs/UACs,
together with the changes of this value over the months in the dataset, are given. Finally the results of the
verification procedure described in subsection 3.6 are given in subsection 4.3

4.1. Rescaled range method verification

In Figure 6, the results of estimating the Hurst exponent of time series of varying length generated from
sampling a N(0,1) distribution are shown. For each series length, 100 series where generated and their esti-
mated Hurst exponents are averaged out to obtain the mean estimated Hurst exponent. As it can be seen
from this figure, for small series length the estimated value of H deviates from the expected value of 0.5. As
the series length increases the value of the Hurst exponent seems to approach the expected value. Based on
these results, to determine the time-scale at which the process start to be random, TSH , a value of H = 0.6
was used as the indicator for the random behaviour.

Figure 6: Results of Monte Carlo simulation for estimation of
the Hurst exponent on series generated from sampling a N(0,1)
distribution.

Figure 7: Results of Monte Carlo simulation for estimation of
the Hurst exponent on fGn and fBm series. All series were
created with a length on 2048 samples.

In Figure 7, the results of estimating the Hurst exponent for fGn and fBm series with varying Hurst
exponent are given. For each value of H from 0.05 to 0.95, 100 fGn and 100 fBm series were created. After
estimating the value of the Hurst exponent on them, through the rescaled range method, the estimated values
are averaged. In Figure 7, the ”Target” line represents the ideal line for the estimations.

As it can be seen from this figure for the fBm series the rescaled range method is always estimating values
of H close to or even bigger than 1. The reason for this behaviour is that fractional Brownian motion, much
like Brownian motion, is a non-stationary process in which the variance of the process is a function of time.
Due to this behaviour of the rescaled range method, a first differencing operation was applied on all input
series, as discussed in subsection 3.3, to make them stationary.

With respect to the fractional Gaussian noise series, it can be seen from Figure 7 that the estimated
values of H deviate from the ideal line. For values of H < 0.75 the rescaled range method overestimated the
value of H, meanwhile for H > 0.75 the values of H are underestimated.
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4.2. Prediction horizon results

In Figure 8, the estimated prediction horizons TSH for each ACC/UAC selected, are given. After comput-
ing the TSLHE matrix for the total count of non-cancelled regulations time series over the six ACCs/UACs
for the course of 4 months, the matrices are averaged to obtain the six curves shown in Figure 8. Using
a threshold value of H = 0.6 to indicate randomness the time-scale when this occurs TSH represents the
maximum prediction horizon. As the time-scale increases the average Hurst exponent of the input series
decreases as it was also observed in [16]. For half of the cases shown in Figure 8, the curve stabilises at a
value of H = 0.5 for time-scales bigger than 16 hours. Meanwhile for the remaining ones for time-scales larger
than 16 hours the curve fluctuates between 0.4 ≤ H ≤ 0.5. The smallest TSH is observed for EDUU, which
is one of the most regulated sectors in Europe, with a value of 4.77 hours. The highest value is observed on
LFMM with TSH = 7.49 hours. For all ACCs/UACs, with the exception of LFFF, the mean return interval
is smaller than TSH . The difference between mean return interval and TSH varies 0.56 hours for LFFF up
to 2.42 hours for EDUU.

Figure 8: Maximum prediction horizon TSH results and the mean return interval of regulations over the course of 4 months for
each of the selected ACCs/UACs

In Figure 9 the time-scale indicating the start of randomness TSH and the mean return interval of the
regulations for each month are given. When the value for TSH is negative in Figure 9, it represents the case
when averaging the TSLHE matrix to obtain the curve of average H over the time-scale all points of the
curve where bellow the threshold for randomness (H = 0.6). For the most part it can be seen the curves of
TSH and mean return interval are changing in a similar manner when going from March to June.

To obtain a better understanding of these results consider Figure 10 and Figure 11. In Figure 10 the
total number of regulations for each ACC considered is given and grouped by month. Looking at this figure
it can be seen that the top three ACC by number of regulations are EDUU, LECM and EDGG. However,
when looking at the value for the TSH , in Figure 8, for LECM it can be noticed that it is considerably higher
when compared to the TSH obtained for EDUU and EDGG. To explain this behaviour consider Figure 11.
In Figure 11 the total amount of time without any active regulations is given. From this figure it can be
seen that in the case of LECM there is a lot of time spent without regulations when we compare it to EDUU
and EDGG. From this discussion it can be inferred that regulations happen more infrequently in LECM, but
when they occur they are characterized by burst of regulations occurring simultaneously. This suggest an
inverse relationship between the frequency of occurrence of regulations and the maximum prediction horizon.
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Figure 9: Maximum prediction horizon TSH and mean return interval over March, April, May and June 2019. Negative value
for TSH indicates that the curve of average Hurst exponent over time-scale was always bellow the threshold of 0.6

Figure 10: Total number of regulations in the selected
ACCs/UACs

Figure 11: Total amount of time in hours spent without
regulations for the selected ACCs/UACs.

4.3. Prediction horizon verification

For verification of the values obtained for the maximum prediction horizon TSH , the case of EDUU was
selected to calculate the prediction horizon TL using the inverse of its largest Lyapunov Exponent. Using the
same time series which was used to generate the results in Figure 8, the phase space of the dynamical system
was reconstructed using the count time series of non-cancelled regulations in EDUU over March, April, May
and June. Using the Matlab function ”phaseSpaceReconstruction()” the embedding dimension d was found
to be d = 2 and the lag τ was found τ = 7.

With these parameters fixed using the function ”lyapunovExponent()” in Matlab, the logarithmic diver-
gence of all points i in the reconstructed phase space and their neighbors i∗ (right hand side of Equation 14)
was computed for values of t = 1, 2, ..., 50. For each time step this logarithmic divergence is averaged over
all pairs (i, i∗) to give the average logarithmic divergence. This function takes as an additional input the
sampling frequency. The inverse of the sampling frequency (step-size) is used to scale the values of the av-
erage log divergence so that when inverting the LLE the result is in units of time. By setting the sampling
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frequency to 1 the inverse of the LLE returns TL in time steps.

The results of this process are shown in Figure 12. The plot shown in Figure 12 starts of with a linear
increasing region of the log divergence, followed by a transitioning region after which it flattens out. In [25]
and [23] the flatting behaviour is attributed to the fact that the divergence of two neighbors can not exceed
the size of the phase space. Following the recommendations of [25], the region between time steps 1 up to
and including 14, where the divergence seems to be linearly increasing, was selected for performing the line
fitting. The slope of this line estimates the LLE of the system. Using the inverse of the value shown in
Figure 12 the prediction horizon TL = 18.49 time steps. Because the time series is created with a step-size
of 15 minutes, TL = 4.62 hours.

Figure 12: Estimation of the largest Lyapunov exponent for the total count of non-cancelled regulations in EDUU

5. Methodology - Predictive Model

In this section the steps taken in the development of the predictive model are described. In subsection 5.1
the workings of the Random Forest algorithm are described. In subsection 5.2 the problem that has to be
solved is defined together and the target predictions are given. Then in subsection 5.3 and subsection 5.4
the steps with which the data is processed to create the input variables to the model are discussed. In
subsection 5.5 and subsection 5.6 the experiments with which the best input variables and hyper-parameters
were selected, are discussed. This section is concluded with subsection 5.7 where the procedure to validate
the result of the maximum prediction is given.

5.1. Random Forests

Based on the literature review it was observed that the majority of papers investigated, utilized Random
Forests or found that ensembles of homogeneous learners outperformed other models in regression problems.
For this reason it was decided to investigate the performance of a Random Forest on the problem at hand.

The elementary working unit of a Random Forest is the Decision Tree. Consider the training input vectors−→xi ∈ Rf where i = 1, 2, ...s, with s the number of training samples and f the features or variables, and the
expected output vector −→yi ∈ Rp where p is the number of target predictions. A decision tree, starting from
its root node, aims to iteratively partition the number of samples s into subsets based on a binary decisions.
This decisions are made by selecting an appropriate feature fj and a threshold value for it tfj and splitting
the training data into left and right sets, Sleft and Sright. In regression problems, the criteria for choosing
the parameters for the decision consist of selecting (fj , tfj ) so that the mean square errors between mean
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expected output and the expected outputs is minimized on both Sleft and Sright [30].

In a Random Forest model, several decision trees are built in parallel through sampling with replacement
(bootstrapping) over the samples s and also over the features f . The end prediction for regression problems
then is determined by averaging the predictions of each individual tree. Averaging contributes to error
reduction through reducing the variance between the elementary decision trees [31]. A further decrease in
variance comes from sampling over the training instances and the feature space reducing the correlation
between individual trees [31]. In order to construct the Random Forest model Pythons Scikit-learn [32]
package was used. Given the prevalent usage of this package in machine learning literature it is assumed that
the implementation of Random Forest Regression has been verified.

5.2. Problem formulation

During the tactical phase of operations, the list of planned regulations are subject to changes throughout
the day in order to meet the objectives of this phase. To obtain an understanding of the behaviour of the
ATFCM regulations in an ACC/UAC during the tactical phase it is wanted to have a model through which
the evolution of this list of ANMs can be predicted. The target predictions that were selected are listed
bellow together with the reasons for selection.

1. Number of NEW, CHANGE and CANCEL regulations - The count of regulations reflects both the
dynamic air traffic situation over the ACC and also the performance of the planned regulations at time
t. At the same time from t to t+ ∆t planned regulations can be subject to changes and cancellations.
Being able to predict the number of new, change and cancelled regulations can offer insights into the
reactivity of the decision being made.

2. Activation time of regulations - The activation time can be considered as an indicator of the way
decisions are being made during the tactical phase of operations. Very high activation times reflect a
very predictable traffic situation in which decisions can be made well ahead of the foreseen imbalance.
Low or even negative activation times on the other hand indicate that the traffic patterns during the
day of operations are complex as such the decisions have to be made on a short notice.

3. Duration of regulations - Longer lasting regulations are expected to affect a bigger number of flights
planning to enter the regulated sector. Depending on the time of the day predicting the duration of
regulations can be useful in determining the impact of the regulations on the induced ATFM delay on
flights.

With these target predictions fixed, the problem statement was defined as follows: Given the list of regulations
planned for an ACC/UAC at time t, predict the number of regulations, their activation time and their duration
at t+ ∆t.

5.3. Data processing

The data that was used for training and testing the Random Forest model consisted of the 10 minute
snapshots of the list of ANMs obtained from NOP. After pre-processing the raw data which involves tran-
sitioning the format shown in Figure 1 into a tabular format where each row corresponds to a regulation
and the columns correspond to the fields discussed in subsection 2.1, the snapshots were filtered to contain
only the regulations over the ACC/UAC under consideration. Unless otherwise stated for all experiments
Karlsruhe UAC (EDUU) was used as it is one of the most active air sectors from a regulatory perspective.

As it was discussed in subsection 2.1, the list of ANMs mainly consists of categorical data with the ex-
ception of regulation duration and activation time, respectively DUR and ACT. Another challenge of the
data is that at different time instances the number of regulations can vary, meanwhile the model has to be
trained on an input vector of a fixed size. As a result of this the fields of an ANM have to be transformed so
that the list of ANMs at time t can be aggregated to an input vector of fixed size.

Given the target predictions stated in subsection 5.2, it was decided that the list of ANMs had to be
aggregated through summation. In this way the grand totals of the target predictions at time t + ∆t
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will be predicted from grand totals of the list at time t. The notation in the following paragraphs is as
follows: Variables in bold represent the variable pre-processing and pre-aggregation; Italicized variables with
a subscript i represent the variable post-processing and pre-aggregation; Finally, when the subscript i is
dropped the variable is the input feature created after processing and summation.

Time related variables. In order to deal with the time related fields of the ANMs such as WEF, UNT,
PUB, the day was discretized into four 6 hour long intervals (00:00 to 06:00, 06:00 to 12:00, 12:00 to 18:00 &
18:00 to 24:00). In this way the continuous time field WEF is converted into 4 binary variables WEF0 6i,
WEF6 12i, WEF12 18i and WEF18 24i. As an example a regulation planned to start at 07:00 will have
WEF6 12i = 1 and the others will be 0. The same is done for UNT and PUB, resulting in 12 new features.

State features. The State field was encoded to form three new binary variables STATE Ni, STATE CHi,
STATE CNLi. As an example if regulation i is a changed regulation STATE CHi = 1 and the rest equal
0

Flight level features. The field Flight level can take many different values, if it were be to be one hot
encoded this would lead to over 100 new features. In order to avoid the massive increase in dimensionality
it was decided to split the airspace into 4 flight level regions. All the last snapshots for each Dops were
inspected to find the highest occurring flight level so that the upper boundary can be set there. From this
analysis it was found that the highest flight level in the regulation data for the whole network was FL395,
with the only exception being LSAG (Geneva ACC) in case of military exercises. For this reason the upper
boundary for the flight level regions was set to FL395. In this way Flight level was transformed into 4
binary variables FL395 295i, FL295 195i, FL195 095i, FL095 000i. As an example if regulation i has FLi
= 200- then, FL295 195i, FL195 095i and FL095 000i will equal to 1 and the remaining equal to 0.

Type variables. The ANM field Reason can take any value between the 14 regulation reasons given in
Annex 5 of [19]. Following a study that had already been conducted by DLR Air Transportation Sys-
tems, it was found that the most appropriate grouping of regulations reasons was to have 6 regulation
reason categories. Thus the field Reason was transformed to the following 6 binary variables ATC CAPi,
AERODROME CAPi, ATC INDUSTRIAL ACTIONi, ATC ROUTEINGSi, WEATHERi andRESTi.
The first five regulation reasons remain ungrouped and all the remaining types are grouped under REST. As
an example if regulation is due to bad weather, WEATHERi will equal 1 and the remaining will equal to 0.

Tactical or pre-tactical regulations. The first regulations in the list of regulations for each day of op-
erations usually are published one day before. Two additional binary variables were created to convey
this information. Based on the PUB field and the release date of the list of regulations PUBDops,i and
PUBDops−1,i were created to indicate whether regulation i was published on the day of operations or on the
day before.

5.4. Feature engineering

Up until this point only the features that are directly available from the regulation list at time t have been
discussed. As mentioned to create the input vector to the model it was decided to perform summation over
the processed features of the list of ANMs at time t. There were two major concerns in performing such a step.

Firstly, in case between two consecutive lists of ANMs at time t and t + c nothing has occurred from
a regulation standpoint, summation over the features discussed so far will lead two identical input vectors.
The problem that arises then is when splitting the overall dataset to create training and testing sets, where
the testing set may overlap with the training set leading to a contamination of the test set with the training
samples. In order to prevent this the following features were created to guarantee uniqueness of the input
vectors even in the case that the regulatory situation does not change in between consecutive snapshots.

Status of the regulations. For each regulation snapshot at time t it can occur that some of the regulations
have already finished, some may be ongoing and some have not started yet. For this reason three new binary
variables were created: FINi, ONGi, TO STARTi. These variables describe if regulation i has finished, is
ongoing, or has not started yet respectively.
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Status related times. The above three status features however are not enough to guarantee uniqueness
between consecutive inputs. For this reason the fields WEF and UNT were combined with the the release
time of the list of ANMs to form four new time variables. For regulations that have finished by the release
time t, T PASTi was created to indicate the time passed in minutes since regulation i finished. For ongoing
regulations at time t, T ELAPi and T REMi were created to describe for regulation i the time elapsed since
its start and the time remaining until it finishes. Finally, for regulations that have not started yet, T TSi
was created to indicate the time until regulation i starts.

Release time variables. Post aggregation of the list of ANMs, 4 more features related to the release
time of the list were added as input variables. These are Curr m, the current month (1-12); Curr d, the
current day (1-31); Curr wd, the current weekday (0:Mon - 6:Sun); Curr h, the current hour (decimal hour).

The variables represented so far are considered as the baseline features, they contain all the information
available from the list of regulations and also guarantee uniqueness of the input vector at all times. An
overview of these input features and their description is given in the first column of Table A.4.

The second point of concern was related to the fact that when the list of regulations is summed to form
the input vector, a loss of information could be induced. To mitigate this problem it was considered to
add additional features that either describe the statistics of the list of regulations pre-aggregation or include
lagged variables that describe the changes in the regulations between t and t− c.

Statistical features. For all the non-binary features described so far it was considered to include statistics,
such as minimum, maximum, mean and standard deviation before the input vector is created. These non-
binary variables include the status related times, duration and activation times of regulations. A summary
of these features can be found in the second column of Table A.4.

Lagged variables. The lagged variables are constructed based on differences i.e what changed now compared
to k hours ago. This was done post aggregation by comparing input vector at time t with the input at time
t− k. A summary of these variables can be found in the third column of Table A.4. The naming convention
chosen for these variables follows the following format: Lk ∆ input var. This can be read as lag k hours
change in the input variable. For the lags it was decided to only utilize 1 hour and 2 hours.

5.5. Feature selection

An overview of all the features available from the data and the ones constructed is given in Table A.4. In
order to determine the best features to be used for the following four experiments were conducted:

1. Using the baseline features from Table A.4 to obtain a baseline estimate of the prediction errors for the
five target variables.

2. Using the baseline features and the statistical variables given in Table A.4.
3. Using the baseline features and the lagged variables from Table A.4.
4. Using all of the features listed in Table A.4

To conduct the experiment the 10 minute snapshots for the months of April and May 2019 were used.
For the prediction horizon ∆t one hour was used. Due to the nature of the data collection process it is
unlikely that for a list of ANMs at time t, there is a corresponding list collected exactly at t + ∆t. For
this reason when mapping the input to their expected output a tolerance on the prediction horizon has to
be considered. In order to have a full utilization of the list of regulations collected over April and May
2019, it was decided to set the prediction horizon tolerance ∆ttol to three hours. In this way the predictions
are done for one hour into the future and no more than the forecast horizon for EDUU found in subsection 4.2.

Thus, for EDUU 2351 input-output pairs were created. For each experiment above, the dataset was
shuffled and 85% of the samples were used for training and 15% for testing. The seed for the random number
generator used for shuffling was fixed so that in each experiment the same training and test sets are used.
The model was constructed using Scikit-learn package [32] and the hyper-parameters of the model were left
to the default values. The performance of each model was evaluated on the test set using root mean square
error (RMSE), mean absolute error (MAE) and coefficient of determination (R2).
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5.6. Tuning the model

After feature selection, the model was tuned to further reduce the prediction errors. The tuning was
performed in two stages, using the same dataset used in subsection 5.5. Firstly, a screening was performed
to determine the most important hyper-parameters and their relevant values so that a parameter grid can
be constructed. Secondly, using the constructed parameter grid a grid-search was performed to find the
optimal hyper-parameter combination. For each combination the error metric to be minimized is evaluated
by applying KFold cross validation, with 10 folds, on the training set. At the end of the process the best
parameter combination is chosen and the model is evaluated on the testing set.

5.7. Validation of the maximum prediction horizon

After having a finalized predictive model, different input datasets where generated by increasing the value
of ∆t from 1 up to 9 hours. The value for the prediction horizon tolerance ∆ttol was fixed to be 0.5 hours.
For each dataset, using the selected features from the feature selection and the optimal hyper-parameters
determined from the grid-search, K-fold validation was used to determine the generalization error of the
models for each ∆t.

In this technique the dataset is split into K sets, the model is trained on K − 1 sets and it is tested on
the remaining set. In the end of the process for each value of ∆t, K models are trained and the test errors
are averaged to give a more pragmatic value of the predictive error of the model. For each ∆t the K-fold
error in terms of RMSE, MAE and R2 is recorded and the results were plotted.

A representative value for the prediction horizon, stemming from the operational data, was obtained
from the value of ∆t above which the K-fold errors would start to increase. This prediction horizon is then
compared with the maximum prediction horizon TSH to establish the validity of the TSLHE procedure in
determining the prediction horizon.

Finally, the consequence of increasing the value of ∆t was that the number of input-output pairs would
decrease. In order to exclude the lack of enough training samples as potential cause of an increase of K-fold
errors, the full dataset of snapshots recorded over the months of April, May, June and July 2019 were used.

6. Results - Predictive Model

In the following subsections the results related to the development of the predictive model are given.
For all the following results the 10 minute snapshots collected during April and May 2019 were used. The
prediction horizon ∆t is set to 1 hour meanwhile the horizon tolerance ∆ttol is 3 hours. Through the mapping
procedure for EDUU, 2351 input output samples are used for all experiments. In order to understand the
values of the performance metrics, statistics on the value to be predicted are given in Figure 13. From
Figure 13, it can be noticed that the number of new regulations is always bigger than 0, indicating that
EDUU had one or more regulations in all the available data. As a consequence of this, the total activation
time and duration are also positive. On the contrary the number of changed and cancelled regulations may
be zero.

6.1. Feature selection results

An overview of all the features available from the data and the ones constructed is given in Table A.4. The
results of the experiments discussed in subsection 5.5 are shown in Table 1. For each experiment the error
metrics of the test set for all target variable are given. In addition to that on the right of each experiment
the percent difference between the experiments error metrics and that of the baseline is given. As it can
be seen from Table A.4 the lowest error metrics are obtained for the model trained only on the baseline
features. In general addition of the statistical features, the lagged features or both simultaneously increases
the prediction errors and decreases the coefficient of determination. As a result of this it can be concluded
that the regulation fields at time t contain all the necessary information for making a prediction at least 1
hour later.
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Figure 13: Box and whiskers plot of the values that are to be predicted from the model.

Baseline features
STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.7333 0.5170 0.4497 168.3672 157.4850
MAE 0.4213 0.2838 0.2396 82.1432 77.0808
R2 0.9692 0.9677 0.9675 0.9941 0.9834

Baseline + statistical features Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.7708 0.5272 0.4812 168.8788 159.3960 RMSE 5.12% 1.98% 7.01% 0.30% 1.21%
MAE 0.4627 0.3039 0.2724 85.4782 79.7869 MAE 9.82% 7.11% 13.69% 4.06% 3.51%
R2 0.9660 0.9665 0.9627 0.9941 0.9830 R2 -0.33% -0.13% -0.49% 0.00% -0.04%

Baseline + lagged features Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.7988 0.5648 0.4895 175.6788 162.9760 RMSE 8.94% 9.25% 8.86% 4.34% 3.49%
MAE 0.4629 0.3152 0.2728 86.3362 80.7517 MAE 9.86% 11.09% 13.86% 5.10% 4.76%
R2 0.9635 0.9615 0.9614 0.9936 0.9822 R2 -0.59% -0.65% -0.62% -0.05% -0.12%

Baseline + statistical + lagged features Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.8030 0.5426 0.5076 173.0005 160.8744 RMSE 9.51% 4.95% 12.88% 2.75% 2.15%
MAE 0.4740 0.3183 0.2823 85.5241 79.6207 MAE 12.50% 12.17% 17.79% 4.12% 3.30%
R2 0.9631 0.9645 0.9585 0.9938 0.9827 R2 -0.63% -0.34% -0.92% -0.03% -0.07%

Table 1: Results of the feature selection experiments. On the top the baseline results are given. For each of the experiments
the error metrics of the test set are shown together with the percent change compared to the baseline.

6.2. Tuning results

Based on the results of the previous section, the 40 baseline features are selected and the hyper-parameters
of the random forest are tuned. The tuning procedure consisted of two stages as it has been discussed in
subsection 5.6.

First stage tuning results. By varying one hyper-parameter at a time while leaving the others at their default
values, the hyper-parameters that would be needed to be tuned where identified. The hyper-parameters that
where selected through this procedure consisted of: the number of estimators (number of trees), maximum
depth of the tree and the maximum amount of features to sample from when selecting the splitting criteria.

Second stage tuning results. After obtaining the parameters to be tuned from the first stage the parame-
ter grid was constructed by setting number of estimators = [10, 50, 150, 200, 250, 300]; maximum depth =
[10, 20, 30, 40] and max features = [′sqrt′,′ log2′, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/10]. An important parameter
in the grid search procedure is the scoring function that has to be minimized. As such the grid search was
performed two times, the first time using MAE as the scoring function and the second time using MSE. For
each time the parameter combination that resulted in the lowest cross-validation error were selected. The
found parameter for both cases are given in Table 2. Both these parameter combinations were tested and
the results are presented in Table B.5. From this table it can be seen that the parameter combination that
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brought the biggest reduction of the prediction error consists of the parameters that were found to minimize
the mean absolute error scoring function.

MAE minimized MSE minimized
No. estimators 250 300
Max depth 30 20
Max features 1/4 1/3

Table 2: Best parameter combinations found from the grid search

Since for the splitting criteria for each tree only a subset of the feature space, namely 1/4 of it, will be used
it was decided to check the performance of bootstrapping of the sample space. It was found that the test set
errors reduced when setting bootstrapping to False (constructing each tree from the full training samples) a
comparison of the models with and without bootstrapping is given in Table B.6. The cross-validation errors
of the final model are shown in Table 3.

Baseline features, MAE minimized, bootstrapping=False KFold(K=10)
STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.5791 0.3752 0.2919 156.6307 115.5600
MAE 0.2743 0.1547 0.1057 61.3711 48.4627
R2 0.9804 0.9854 0.9865 0.9953 0.9913

Table 3: Results of applying KFold validation on the tuned model

6.3. Final model results

After the optimal parameters were found and validated the model was run on this parameters and evalu-
ated on the test set (353 samples). In Figure 15 and Figure 14 the predicted versus the actual values for total
duration and total activation time of the list of regulations at t + ∆t are given, together with the optimal
prediction line. As it can be seen the majority of samples are clustered around the optimal line. Looking at
the ranges of the actual values it can be seen that a small deviation from the optimal line will lead to high
values for the error metrics.

Figure 14: Predicted vs actual total activation time for
the list of regulations at t + ∆t.

Figure 15: Predicted vs actual total duration of the list of
regulations at t + ∆t.

In Figure 16, Figure 17 and Figure 18 the predicted versus actual plot for the total number of new,
changed and cancelled regulations at t + ∆t are given. As it can be seen from these plots and comparing
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them to the previous two it can be noticed that the predicted values have higher dispersion around the
optimal line. This indicates that the problem of predicting these variables is a more difficult problem than
the total activation time and duration.

Figure 16: Predicted vs actual total number of new regu-
lations for the list of regulations at t + ∆t.

Figure 17: Predicted vs actual total number of changed
regulations for the list of regulations at t + ∆t.

In Figure 19 the importance of each feature determined by the Scikit-learn implementation of the Random
Forest is given. As it can be seen the top most important features are total activation time, duration and
number of pre-tactical regulations from the list of regulations at time t. Activation time is an indicator of
the traffic complexity and the way the decisions are being made. At the same time a decreasing number of
pre-tactical regulation further indicates changing traffic conditions and inability of the planned regulations to
cope with the traffic dynamics. Another interesting observation looking at the status related time variables
is that the total time to start of not started regulations is ranked higher than its counterparts for ongoing or
finished regulations. Finally the last 4 features with zero importance are due to the fact that in the dataset
and ACC they never occur. EDUU is an UAC, thus it handles en-route traffic flying at high altitudes.

Figure 18: Predicted vs actual total number of cancelled
regulations for the list of regulations at t + ∆t.

Figure 19: Feature importance determined by the Random For-
est model. Sorted from highest importance to lowest.
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6.4. Validation of the maximum prediction horizon

After finalization of the model by selecting as input features the baseline features given in Table A.4, the
hyper-parameters that minimized MAE shown in Table 2 and setting bootstrapping to False the performance
of the model was checked under increasing prediction horizon ∆t. As it has been discussed in subsection 5.7,
the full dataset of 10 minute snapshots collected over the months of April, May, June, July 2019 was used to
create input-output pairs of varying ∆t. For each ∆t the cross-validation error obtained as the mean error
metrics over K training-testing instances of the model, with K = 10, were recorded.

In Figure 20 and Figure 21, the RMSE for the states of future regulations and RMSE for total activation
time and duration of future regulations respectively are given. In Figure 20 when increasing ∆t the RMSE
in predicting the number of new regulations at t+ ∆t initially decreases only to start increasing again after
∆t = 6 hours. For predicting the number of new changed regulations at t + ∆t, the RMSE seems to be
about constant up to ∆t = 6 hours after which it is increasing. Finally for predicting the number of cancelled
regulations at t+ ∆t, the value of RMSE is increasing after ∆t = 4 hours. In Figure 21 it can be seen that
predicting the total activation time and duration of regulations at t+ ∆t, the prediction for these variables
start to degrade after ∆t = 6 hours

Figure 20: RMSE cross-validation error for the number of
new, change and cancelled regulations target predictions
as a function of prediction horizon ∆t.

Figure 21: RMSE cross-validation error for the total du-
ration and activation target predictions as a function of
prediction horizon ∆t.

In Figure 22 the MAE for the future regulation state variables is given. The behaviour of MAE for these
variables under increasing ∆t seems to behave much like the RMSE for these variables. On the contrary the
MAE for the total activation time and duration, has an initial decrease only to increase again after ∆t = 5
hours for total duration and after ∆t = 6 hours for total activation time.

Finally, in Figure 24 and Figure 25 the behaviour of the prediction accuracy as a function of ∆t is given.
For total activation time and duration there is a clear drop in accuracy after ∆t = 6 hours. For the accuracy
of predicting the future number of changed regulations the prediction accuracy seems to be in line with the
error metrics, degrading after ∆t = 6 hours. The accuracy of predicting number of new regulations seems
to be inline with the behaviour of RMSE and MAE for this variable, initially increasing in accuracy only to
drop after ∆t = 6 hours. For number of cancelled regulations the accuracy drops after ∆t = 4 hours much
like RMSE and MAE.

From these results it can be seen that the prediction horizon above which the predictions start to degrade
is not the same for all target variables. For predicting the the number of cancelled regulations in the future
the maximum prediction horizon consistent with all performance metrics used seems to be around 4 hours.
For the other two regulation state counting variables this occurs at 6 hours. The same prediction horizon of
6 hours is found for the total activation time and duration. These results suggest that the true prediction
horizon for EDUU in the months from April to July 2019 is between 4 and 6 hours.
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Figure 22: MAE cross-validation error for the number of
new, change and cancelled regulations target predictions
as a function of prediction horizon ∆t.

Figure 23: MAE cross-validation error for the total du-
ration and activation target predictions as a function of
prediction horizon ∆t.

Figure 24: Cross-validation coefficient of determination
for the number of new, change and cancelled regulations
target predictions as a function of prediction horizon ∆t.

Figure 25: Cross-validation coefficient of determination
for the total duration and activation target predictions as
a function of prediction horizon ∆t.

7. Discussion

In this study there were two primary objectives. The first objective was to create a predictive model with
which the evolution of ATFCM regulations could be predicted for different forecast horizons. Utilizing a Ran-
dom Forest regression model, with the set of features discussed in subsection 6.1 and the hyper-parameters
given in subsection 6.2, the number of new, changed, cancelled regulations, total activation time and duration
of future regulations were predicted with acceptable error rates.

The largest MAE for the state related variables was 0.27 for number of new regulations, while the smallest
possible actual value for these variables is 0. For the total activation time and duration of future regulations
the MAE was respectively 61.37 and 48.46 minutes, while the minimum actual values in the data for these
target predictions were 601 and 280 minutes. Through tuning the model and setting bootstrapping off an
average reduction of 47.14% in MAE across all five target predictions is achieved. The increase in perfor-
mance by turning off bootstrapping was surprising given the fact that the power of random forest comes from
sampling over the training and feature spaces to obtain de-correlated trees [31]. Omitting bootstrapping
makes the Random Forest similar to an Extra Randomized Trees model. From the literature considering the
problem of predicting arrival/departure delays, the lowest error rates where observed in [8] when utilizing
Extra Randomized Trees.
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When extending the prediction horizon of the model, it was observed that up to a prediction horizon ∆t
the performance of the model depending on the target prediction and error metric would either fluctuate
around a mean value afterwards increasing or initially decrease only to go up again after ∆t. This last be-
haviour is unexpected, where in the case predicting number new regulations increasing the prediction horizon
from 1 hour up to 6 hours led to a 20% decrease of MAE. When the same methodology was applied to LECM
and LFEE ACCs this type of behaviour was not observed for any of the five target predictions. This suggests
that this outcome may be due to the planning process and ATFCM related decisions in EDUU.

The second objective was to research and implement a methodology with which the maximum prediction
horizon for different ACCs/UACs could be estimated. The proposed methodology is based on the Hurst
exponent as an indicator of the predictability of time series of ATFCM regulations in the area of consideration.
In order to estimate the value for the Hurst exponent the rescaled range method is used as described in
subsection 3.1. Through the experiments described in subsection 3.2 and the results of these experiments in
subsection 4.1 it was found that:

1. Using the rescaled range method, the estimated Hurst exponent of randomly generated series with
uncorrelated increments can deviate from its theoretical value of 0.5 as shown in Figure 6.

2. The rescaled range method was not able to estimate the correct Hurst exponent when the input time
series is non-stationary, as indicated from the results in Figure 7 for fractional Brownian motion time
series

3. The rescaled range method can not accurately calculate the Hurst exponent of fractional Gaussian noise
series. However, it is able to provide a reasonable estimate whether for the input time series the process
its increments are negatively/positively correlated or uncorrelated.

With regards to the first finding, for a series length of 1024 samples similar results have been obtained by
Qian and Rasheed in [18]. In relation to the second finding, it was observed from previous authors using the
rescaled range approach for estimating the Hurst exponent on financial time series [18, 15] is applied on the
time series of returns rather than time series of the price. If we consider the price time series {pt} , the return
time series is obtained as rt = pt − pt−1 [15]. As shown in [33], this differencing operation is a common tool
to convert a non-stationary series into a stationary one. Finally for the third finding, similar results have
been obtained in [13] for fGn series with 0.5 ≤ H ≤ 1.

By using the TSLHE procedure proposed in [14], the average Hurst exponent as a function of time-scale
is obtained. The research hypothesis was that the prediction horizon can be obtained as the time-scale at
which the process starts to be random, TSH . By comparing the monthly evolution of TSH with the mean
return interval of regulations, Figure 9, it was observed that the monthly changes in TSH seem to match the
changes in the rate of occurrence of regulations. At the same time, it was observed that in the case of EDUU
and LFMM that for the month of June 2019 a value for TSH could not be determined potentially indicating
the presence of a fully random regime. Based on the findings an inverse relationship is suggested between
the frequency of occurrence of regulations and the value of the maximum prediction horizon. This results
seem to follow the intuition that the more active a system is, it is more beneficial to focus on the short term
predictions and vice-versa.

Verification of proposed method for the maximum prediction horizon TSH , with the prediction horizon
determined from the inverse of the largest Lyapunov exponent TL, resulted in very similar values. For the
case of EDUU it was found TSH = 4.77 and TL = 4.62 hours. TSH aims to find the time-scale at which
the process increments become uncorrelated and random, meanwhile TL aims to find the time at which a
system transitions from deterministic to chaotic and unpredictable. As such it can be concluded that using
the time-scale at which the Hurst exponent indicates lack of correlations, is a valid approach for estimating
the prediction horizon.

Comparing these values for TSH and TL from the value of ∆t above which prediction errors start increas-
ing, which for EDUU was found to be between 4 and 6 hours, it can be seen that both methodologies are
within this range. The process of obtaining TL involves several in between steps such as estimating the em-
bedding dimension and selecting the lag for phase space reconstruction, which require different assumptions
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in selecting these parameters. Furthermore the linear regression region for obtaining the value of LLE is a
subjective choice, based on what looks linear. As such it can be the case that the same methodology applied
on the same series by two different people may result in two different prediction horizons TL. In comparison
the method with which TSH is obtained is a simpler one, requiring only basic knowledge of statistics and
time series analysis and minimal assumptions.

Finally, in relation to value for TSH , this value should not be considered as a cut-off point after which
predictions should not be made. Instead it should be thought as the point in the future after which a trade-off
between prediction accuracy and ability to predict further ahead should be made. As such TSH is only an
estimator of the prediction horizon, the true maximum prediction horizon should be selected based on the
needs of the forecast and the acceptable level of accuracy in the predictions.

8. Conclusions

In this research a model with which characteristics of ATFCM regulations, which relate traffic complexity
with the performance of currently planned regulations, are predicted and a methodology with which the
maximum prediction horizon can be estimated has been proposed. After pre-processing the publicly avail-
able ATFCM notification messages, it was able to train a Random Forest given the list of ANMs at time
t to predict the number of new, changed, cancelled regulations, total activation time and duration of the
regulations at t + ∆t, where ∆t is the prediction horizon. In the case of predicting the future regulations
over Karlsruhe Upper Area Control, it was found that the prediction errors of the aforementioned targets
are stable up to a prediction horizon between 4 and 6 hours after which they start increasing. Given the fact
that the data utilized are publicly available the proposed model offers the opportunity to make predictions
on measures used for demand-capacity balancing without needing data on actual capacities, current demand
and future demand.

Utilizing the Time-Scale Local Hurst Exponent [14], it was able to determine the time-scale at which
the process under study starts becoming random, TSH . Comparing this time-scale with the prediction
horizon obtained from the inverse of the largest Lyapunov exponent [23], it was concluded that the proposed
methodology is a valid estimator of the prediction horizon. The methodology was further validated by
extending the prediction horizon of the predictive model. It was found that the proposed method is able
to give an estimate of the prediction horizon above which the prediction errors start to increase. As such
the proposed methodology can be utilized to estimate the point in time in the future after which a trade off
between predictive accuracy and ability to predict further ahead should be made. In this research the input
time series for which the prediction horizon was estimated consisted of integer time series, much like demand
time series in the fields of manufacturing and maintenance. As a result of this, the proposed method could
potentially be used as a decision support tool in industries that rely on forecasts for their operations, to
determine the prediction horizon based on the operational needs and acceptable level of errors in predictions.

9. Future work

The advantage of the proposed predictive model in this study is that the data utilized to make predictions
on the future ATFCM regulations are publicly available. However, at the same time the data utilized only
reflect the outcome of the process that is to be predicted and does not contain information about the causal
factors that lead to changes in the regulatory situation. As such the first point of improvement would be
inclusion of data such as weather information, flight schedules/trajectories and capacity information so that
a causal understanding of the factors that lead to new, changed and cancelled regulations can be obtained.

For most stakeholders in air transportation it also important to know before hand what the impact of
the planned measures will be in terms of ATFM delay. Thus, the second point of improvement is to utilize
the predictions made by the proposed model as inputs to a second model with which the future impact of
regulations can be predicted. So far the spatial scope of the predicted regulations is only defined by the
geographical location of the ACC/UAC and no consideration is given in predicting which flight levels will
be regulated. Further refinement of the geographic scope to elementary sectors within the ACC/UAC is of
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limited advantage as these sectors are subject to changes under ATFCM measures for capacity optimization.
However substantial value can be obtained by being able to predict within the ACC/UAC the flight levels
that will be regulated.

As a practical application of the proposed model consider an aircraft operator, scheduled for an IFR flight.
At least three hours from the planned departure time the aircraft operator has the ability to modify its flight
plan. If reliable predictions on which ACCs/UACs and which flight levels within them will be regulated and
the expected impact of these regulations for different prediction horizons are available, the aircraft operator
can leverage these predictions in order to modify the original flight plan. Given the above predictions the flight
plan can be posed as an optimization problem with the objective of finding the trajectory that minimizes
ATFM delay on the flight. In this way the operator can reduce operational costs and travel time for its
passengers. From the perspective of the network this optimized trajectory will move this flight into an area
or flight level where a regulation is not expected, therefore offloading the imbalance on the regulated sectors.
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[30] A. Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O’Reilly Media, 2017.

[31] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Vol. 1, Springer series in
statistics New York, 2001.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.

[33] R. J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice, OTexts, 2018.

A. Features considered in feature selection

27



B
a
se
li
n
e
fe
a
tu

re
s

D
e
sc
ri
p
ti
o
n

S
ta

ti
st
ic
a
l
fe
a
tu

re
s

D
e
sc
ri
p
ti
o
n

L
a
g
g
e
d

fe
a
tu

re
s

D
e
sc
ri
p
ti
o
n

1
W

E
F

0
6

N
o.

re
g
s.

st
a
rt

in
g

b
et

w
ee

n
0

a
n
d

6
m

ax
T

P
A

S
T

M
a
x

of
n
on

-z
er

o
T

P
A

S
T
i

L
1
∆

P
U

B
D
o
p
s

C
h
a
n
g
e

in
n
o
.

re
g
s

p
u
b
li
sh

ed
d
u
ri

n
g

D
op

s
(1

h
a
go

)
2

W
E

F
6

12
N

o.
re

g
s.

st
a
rt

in
g

b
et

w
ee

n
6

a
n
d

1
2

m
in

T
P

A
S
T

M
in

of
n
on

-z
er

o
T

P
A

S
T
i

L
1
∆

P
U

B
D
o
p
s
−
1

C
h
a
n
g
e

in
n
o
.

re
g
s

p
u
b
li
sh

ed
d
u
ri

n
g

D
op

s-
1

(1
h

a
go

)
3

W
E

F
1
2

18
N

o.
re

gs
.

st
ar

ti
n
g

b
et

w
ee

n
12

a
n
d

18
av

g
T

P
A

S
T

M
ea

n
of

n
on

-z
er

o
T

P
A

S
T
i

L
1
∆

F
IN

C
h
a
n
ge

in
n
o.

fi
n
is

h
ed

re
g
s.

(1
h

a
go

)
4

W
E

F
18

24
N

o.
re

gs
.

st
ar

ti
n
g

b
et

w
ee

n
18

a
n
d

24
st

d
T

P
A

S
T

S
ta

n
d
.

d
ev

.
of

n
on

-z
er

o
T

P
A

S
T
i

L
1
∆

O
N

G
C

h
a
n
g
e

in
n
o
.

o
n
g
oi

n
g

re
fs

(1
h

ag
o)

5
U

N
T

0
6

”
”

fi
n
is

h
in

g
”

”
”

m
ax

T
E

L
A

P
M

a
x

of
n
on

-z
er

o
T

E
L

A
P
i

L
1
∆

T
O

S
T

A
R

T
C

h
a
n
g
e

in
n
o
.

o
f

re
g
s

to
st

ar
t

(1
h

a
go

)
6

U
N

T
6

1
2

”
”

fi
n
is

h
in

g
”

”
”

m
in

T
E

L
A

P
M

in
of

n
on

-z
er

o
T

E
L

A
P
i

L
1
∆

S
T

A
T

E
N

C
h
an

ge
in

n
o.

of
n
ew

re
g
s.

(1
h

a
go

)
7

U
N

T
12

18
”

”
fi
n
is

h
in

g
”

”
”

av
g

T
E

L
A

P
M

ea
n

of
n
on

-z
er

o
T

E
L

A
P
i

L
1
∆

S
T

A
T

E
C

H
C

h
a
n
g
e

in
n
o

of
ch

an
ge

d
re

g
s.

(1
h

ag
o)

8
U

N
T

18
24

”
”

fi
n
is

h
in

g
”

”
”

st
d

T
E

L
A

P
S
ta

n
d
.

d
ev

.
of

n
on

-z
er

o
T

E
L

A
P
i

L
1
∆

S
T

A
T

E
C

N
L

C
h
a
n
g
e

in
n
o

of
ca

n
ce

ll
ed

re
g
s.

(1
h

ag
o)

9
P

U
B

0
6

”
”

p
u
b
li
sh

ed
”

”
”

m
ax

T
R

E
M

M
a
x

of
n
on

-z
er

o
T

R
E

M
i

L
1
∆

A
C

T
C

h
a
n
g
e

in
to

ta
l

a
ct

iv
a
ti

o
n

ti
m

e
(1

h
ag

o)
10

P
U

B
6

1
2

”
”

p
u
b
li
sh

ed
”

”
”

m
in

T
R

E
M

M
in

of
n
on

-z
er

o
T

R
E

M
i

L
1
∆

D
U

R
C

h
an

ge
in

to
ta

l
d
u
ra

ti
o
n

(1
h

ag
o)

11
P

U
B

12
1
8

”
”

p
u
b
li
sh

ed
”

”
”

av
g

T
R

E
M

M
ea

n
of

n
on

-z
er

o
T

R
E

M
i

L
1
∆

A
T

C
C

A
P

C
h
a
n
g
e

in
n
o
.

o
f

A
T

C
ca

p
a
ci

ty
re

gs
.

(1
h

a
go

)
12

P
U

B
18

2
4

”
”

p
u
b
li
sh

ed
”

”
”

st
d

T
R

E
M

S
ta

n
d
.

d
ev

.
of

n
on

-z
er

o
T

R
E

M
i

L
1
∆

A
E

R
O

D
C

A
P

C
h
a
n
ge

in
n
o.

of
a
er

o
d
ro

m
e

ca
p
a
ci

ty
re

g
s.

(1
h

ag
o)

13
P

U
B

D
o
p
s

N
o
.

re
gs

.
p
u
b
li
sh

ed
on

D
op

s
m

ax
T

T
S

M
ax

of
n
on

-z
er

o
T

T
S
i

L
1
∆

A
T

C
IN

D
A

C
T

C
h
an

ge
in

n
o.

o
f

re
g
s.

fr
om

a
tc

st
ri

ke
s

(1
h

ag
o)

14
P

U
B

D
o
p
s-

1
N

o
.

re
gs

.
p
u
b
li
sh

ed
o
n

D
op

s
-1

m
in

T
T

S
M

in
of

n
on

-z
er

o
T

T
S
i

L
1
∆

A
T

C
R

O
U

T
E

IN
G

C
h
an

ge
in

n
o

.
A

T
C

re
o
u
te

in
g
s

re
g
s.

(1
h

ag
o
)

15
S
T

A
T

E
N

N
o.

o
f

n
ew

re
gs

.
av

g
T

T
S

M
ea

n
of

n
on

-z
er

o
T

T
S
i

L
1
∆

W
E

A
T

H
E

R
C

h
a
n
ge

in
n
o
.

of
w

ea
th

er
re

gs
.

(1
h

a
go

)
16

S
T

A
T

E
C

H
N

o
.

of
ch

an
ge

d
re

gs
st

d
T

T
S

S
ta

n
d
.

d
ev

.
o
f

n
on

-z
er

o
T

T
S
i

L
1
∆

R
E

S
T

C
h
a
n
g
e

in
n
o
.

o
f

re
st

re
g
s.

(1
h

ag
o)

17
S
T

A
T

E
C

N
L

N
o
.

of
ca

n
ce

ll
ed

re
g
s

n
n
eg

A
C

T
N

o.
of

n
eg

ti
ve

ac
ti

va
ti

on
ti

m
es

L
2
∆

P
U

B
D
o
p
s

C
h
a
n
g
e

in
n
o
.

re
g
s

p
u
b
li
sh

ed
d
u
ri

n
g

D
op

s
(2

h
a
go

)
18

A
C

T
T

ot
a
l

ac
ti

va
ti

o
n

ti
m

e
o
f

re
gs

.
(m

in
u
te

s)
m

in
A

C
T

M
in

im
u
m

of
n
on

-z
er

o
a
ct

.
ti

m
es

L
2
∆

P
U

B
D
o
p
s
−
1

C
h
a
n
g
e

in
n
o
.

re
g
s

p
u
b
li
sh

ed
d
u
ri

n
g

D
op

s-
1

(2
h

a
go

)
19

D
U

R
T

o
ta

l
d
u
ra

ti
on

of
re

gs
.

(m
in

u
te

s)
m

in
p

os
A

C
T

M
in

im
u
m

o
f

p
os

it
iv

e
ac

t.
ti

m
es

L
2
∆

F
IN

C
h
a
n
ge

in
n
o.

fi
n
is

h
ed

re
g
s.

(2
h

a
go

)
20

F
L

39
5

N
o.

re
gs

.
b
lo

ck
in

g
F

L
39

5
to

F
L

2
95

av
g

A
C

T
M

ea
n

of
n
o
n
-z

er
o

ac
t.

ti
m

es
L
2
∆

O
N

G
C

h
a
n
g
e

in
n
o
.

o
n
g
oi

n
g

re
fs

(2
h

ag
o)

21
F

L
29

5
N

o.
re

gs
.

b
lo

ck
in

g
F

L
29

5
to

F
L

1
95

st
d

A
C

T
S
ta

n
d

d
ev

.
of

n
on

-z
er

o
ac

t.
ti

m
es

L
2
∆

T
O

S
T

A
R

T
C

h
a
n
g
e

in
n
o
.

o
f

re
g
s

to
st

ar
t

(2
h

a
go

)
22

F
L

19
5

N
o.

re
gs

.
b
lo

ck
in

g
F

L
19

5
to

F
L

0
95

m
ax

D
U

R
M

a
x
im

u
m

o
f

n
on

-z
er

o
d
u
ra

ti
on

s
L
2
∆

S
T

A
T

E
N

C
h
an

ge
in

n
o.

of
n
ew

re
g
s.

(2
h

a
go

)
23

F
L

09
5

N
o.

re
gs

.
b
lo

ck
in

g
F

L
09

5
to

F
L

0
00

m
in

D
U

R
M

in
im

u
m

of
n
on

-z
er

o
d
u
ra

ti
on

s
L
2
∆

S
T

A
T

E
C

H
C

h
a
n
g
e

in
n
o

of
ch

an
ge

d
re

g
s.

(2
h

ag
o)

24
A

T
C

C
A

P
A

C
IT

Y
N

o
.

of
re

g
s.

d
u
e

to
A

T
C

ca
p
ac

it
y

av
g

D
U

R
M

ea
n

of
n
on

-z
er

o
d
u
ra

ti
on

s
L
2
∆

S
T

A
T

E
C

N
L

C
h
a
n
g
e

in
n
o

of
ca

n
ce

ll
ed

re
g
s.

(2
h

ag
o)

25
A

E
R

O
D

R
O

M
E

C
A

P
A

C
IT

Y
N

o.
of

re
gs

.
d
u
e

to
ae

ro
d
ro

m
e

ca
p
a
ci

ty
st

d
D

U
R

S
ta

n
d
.

d
ev

.
of

n
on

-z
er

o
d
u
ra

ti
on

s
L
2
∆

A
C

T
C

h
a
n
g
e

in
to

ta
l

a
ct

iv
a
ti

o
n

ti
m

e
(2

h
ag

o)
26

A
T

C
IN

D
A

C
T

IO
N

N
o.

o
f

re
g
s.

d
u
e

to
A

T
C

st
ri

ke
s

L
2
∆

D
U

R
C

h
an

ge
in

to
ta

l
d
u
ra

ti
o
n

(2
h

ag
o)

27
A

T
C

R
O

U
T

E
IN

G
S

N
o.

o
f

re
g
s.

d
u
e

to
A

T
C

ro
u
te

in
g

L
2
∆

A
T

C
C

A
P

C
h
a
n
g
e

in
n
o
.

o
f

A
T

C
ca

p
a
ci

ty
re

gs
.

(2
h

a
go

)
28

W
E

A
T

H
E

R
N

o.
o
f

re
g
s.

d
u
e

to
w

ea
th

er
L
2
∆

A
E

R
O

D
C

A
P

C
h
a
n
ge

in
n
o.

of
a
er

o
d
ro

m
e

ca
p
a
ci

ty
re

g
s.

(2
h

ag
o)

29
R

E
S
T

N
o.

o
f

re
g
s

d
u
e

to
re

m
ai

n
in

g
re

as
o
n
s

L
2
∆

A
T

C
IN

D
A

C
T

C
h
an

ge
in

n
o.

o
f

re
g
s.

fr
om

a
tc

st
ri

ke
s

(2
h

ag
o)

30
F

IN
N

o.
o
f

re
g
s

th
at

h
av

e
fi
n
is

h
ed

L
2
∆

A
T

C
R

O
U

T
E

IN
G

C
h
an

ge
in

n
o

.
A

T
C

re
o
u
te

in
g
s

re
g
s.

(2
h

ag
o
)

31
O

N
G

N
o
.

of
re

gs
th

a
t

ar
e

on
g
o
in

g
L
2
∆

W
E

A
T

H
E

R
C

h
a
n
ge

in
n
o
.

of
w

ea
th

er
re

gs
.

(2
h

a
go

)
32

T
O

S
T

A
R

T
N

o.
o
f

re
g
s

th
at

h
av

e
n
ot

st
ar

te
d

ye
t

L
2
∆

R
E

S
T

C
h
a
n
g
e

in
n
o
.

o
f

re
st

re
g
s.

(2
h

ag
o)

33
T

P
A

S
T

T
ot

a
l

ti
m

e
p
a
st

fo
r

fi
n
is

h
ed

re
g
s.

34
T

E
L

A
P

T
ot

al
ti

m
e

el
ap

se
d

fo
r

o
n
go

in
g

re
gs

.
35

T
R

E
M

T
ot

al
ti

m
e

re
m

ai
n
in

g
fo

r
on

g
o
in

g
re

g
s.

36
T

T
S

T
ot

al
ti

m
e

to
st

ar
t

fo
r

n
o
t

st
a
rt

ed
re

gs
.

37
C

u
rr

m
C

u
rr

en
t

m
o
n
th

o
f

th
e

y
ea

r
(1

-1
2
)

38
C

u
rr

d
C

u
rr

en
t

d
ay

of
th

e
m

on
th

(1
-3

1)
39

C
u
rr

w
d

C
u
rr

en
t

d
ay

of
th

e
w

ee
k

(0
:M

o
n

-
6:

S
u
n
)

40
C

u
rr

h
C

u
rr

en
t

h
ou

r
o
f

th
e

d
ay

(d
ec

im
a
l

h
o
u
r)

T
a
b

le
A

.4
:

O
v
er

v
ie

w
o
f

th
e

in
p

u
t

fe
a
tu

re
a
n

d
sh

o
rt

d
es

cr
ip

ti
o
n

fo
r

ea
ch

o
f

th
em

28



B. Second stage tuning results

Baseline features
STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.7333 0.5170 0.4497 168.3672 157.4850
MAE 0.4213 0.2838 0.2396 82.1432 77.0808
R2 0.9692 0.9677 0.9675 0.9941 0.9834

Baseline features MAE minimized Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.5940 0.4262 0.3574 148.1839 126.8990 RMSE -18.99% -17.56% -20.53% -11.99% -19.42%
MAE 0.3481 0.2298 0.1839 75.6494 67.5146 MAE -17.37% -19.00% -23.25% -7.91% -12.41%
R2 0.9798 0.9781 0.9794 0.9954 0.9892 R2 1.09% 1.07% 1.24% 0.13% 0.59%

Baseline features MSE minimized Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.6217 0.4278 0.3776 154.3018 132.1854 RMSE -15.22% -17.25% -16.03% -8.35% -16.06%
MAE 0.3623 0.2313 0.1915 74.9772 68.6698 MAE -13.99% -18.48% -20.07% -8.72% -10.91%
R2 0.9779 0.9779 0.9771 0.9951 0.9883 R2 0.89% 1.05% 0.99% 0.09% 0.50%

Table B.5: Test set errors after constructing the models using the optimal parameters from the grid search.

Baseline features, MAE minimized, bootstrapping = True
STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.5940 0.4262 0.3574 148.1839 126.8990
MAE 0.3481 0.2298 0.1839 75.6494 67.5146
R2 0.9798 0.9781 0.9794 0.9954 0.9892

Baseline feature, MAE minimized, bootstrapping = False Percent change compared to baseline
STATE N STATE CH STATE CNL ACT(min) DUR(min) STATE N STATE CH STATE CNL ACT(min) DUR(min)

RMSE 0.5326 0.3661 0.2965 125.7716 109.5088 RMSE -10.34% -14.10% -17.05% -15.12% -13.70%
MAE 0.2542 0.1560 0.1131 53.8917 47.6721 MAE -26.97% -32.14% -38.48% -28.76% -29.39%
R2 0.9838 0.9838 0.9859 0.9967 0.9920 R2 0.40% 0.59% 0.65% 0.13% 0.28%

Table B.6: Effect of bootstrapping of the training instances on the prediction errors.
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1
Introduction

Air transport has never been cheaper and as accessible as it is in the moment[1]. The surge in flights operated
by low cost carriers has made it possible to a bigger percentage of the global population to utilize air trans-
portation. Not only a bigger percentage of the population is flying, but it is also flying more frequently. As
such it can be expected that in the years to come demand for air travel will continue to increase. According
to Eurocontrol’s Statistics and Forecast service in the most likely scenario by 2040 an increase of 53% in IFR
movements within Europe can be expected [39]. In Figure 1.1, the average daily traffic over the course of 5
years from 2013 to 2018 is given[25]. As it can be seen in this figure there is a clear increasing trend in average
daily traffic. In Figure 1.2 the average daily traffic for each month from 2015 to March 2019 is given. The
increasing trend seen in Figure 1.1 causes that for each month the average number of flights to be increasing
on a year to year basis adding to the load of the existing European air traffic system.

Figure 1.1: Average daily traffic from 2013 to 2018 [25]
Figure 1.2: Average daily traffic for the last 5 years [43]

One of the biggest effects of this increase in air traffic is an increase of air travel delay. In Figure 1.3, the av-
erage departure delay per flight for each month from 2014 to 2018 is given, the average is taken over all delay
causes. The situation for arrival delays is similar to departure delays, therefore only the departure statistics
are shown. As it can be seen from Figure 1.3, in general the delay peaks for all five years occur during the
summer months with some exceptions in December. These summer months are associated with the highest
values of average daily traffic as it can be seen in Figure 1.2. Another observation that can be made looking at
Figure 1.3 is that the delay curve for the summer of 2018 has increased considerably compared to the previous
four years. Summer of 2018 has been regarded from Eurocontrol’s Network Manager as a very difficult period
for all stakeholder involved in the air traffic system[5]. The actual delays in this period of the year almost
doubled when compared to the actual delays of the same period in 2017.

The main reason for the increase in air travel delays during the summer months of 2018 has been reported
to be air traffic control (ATC) staffing issues[23]. This lead to a situation where there were more flights than
there was capacity to safely control them. Other reasons that contributed to the increased delays include
weather conditions and air traffic controller (ATCo) strikes [8]. The European air traffic management (ATM)
network is expected to face same order of magnitude delays if not higher in 2019 and this situation will worsen
if the ATM system will not be able to match the air traffic growth [23].

ATM is one of the five building blocks that compose the Air Navigation Services (ANS). In it self it is com-
posed of three sub-blocks. The first one is Airspace Management (ASM). ASM is defined as "the planning

1



2 1. Introduction

Figure 1.3: Average departure delay per flight, from all causes [8]

function with the objective of maximizing the the utilization of available capacity" [40]. The second block is
Air Traffic Services (ATS). ATS in itself is composed of smaller sub-blocks the most notable of which is ATC,
whose objectives are "preventing collisions between aircraft or between aircraft and obstacles and expedit-
ing and maintaining an orderly flow of traffic" [18]. Finally the third block is composed of Air Traffic Flow
Management (ATFM) , which is defined by ICAO as a service whose objective is to contribute to the safety
and efficiency of the traffic flows through ensuring that available capacity is fully utilized and the traffic vol-
ume is such that that it matches the capacities declared[18]. Both ATFM and ASM are aimed at aiding ATC in
meeting its goals. The integration of these blocks in ATM allows for the most efficient usage of airspace and
capacity. A representative diagram of the complete ANS is given in Figure 1.4. Note that in Figure 1.4 ATFM is
referred to as Air Traffic Flow and Capacity Management (ATFCM). ATFCM a term used by Eurocontrol and
the difference between the two terms will be explained in the next sections.

Figure 1.4: Overall composition of Air Navigation Services [27]

From the above discussion it is clear that within Europe one of the biggest bottlenecks that causes delays
is the ATM system and its infrastructure. As such, the purpose of this study is to address this problem and
potentially reduce the impact of this bottleneck. Incentivized by the delays of summer 2018, the research
will be focused on ATFCM. In particular this study is aimed at bringing forth improvement by utilizing the
existing infrastructure and data available. Air transportation is renowned for the amount, type and precision
of datasets that have been collected throughout the years. As a result of this, the envisioned outcome of the
study is to utilize the available datasets to create a model that will assist decision makers in ATM in the tactical
phase of operations by allowing them to make better predictions for the future behaviour of the system.
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In the following section background information on the objectives, stakeholders, measures, areas affected
and phases of air traffic flow management will be given. This section then will be followed by a discussion of
the literature considered for this research. Specifically in chapter 3, the literature related to machine learning
modelling for making predictions in air travel is discussed. In chapter 4, the literature read from the field of
non-linear analysis is treated. This document is concluded in chapter 5, where the research objectives and
questions have been defined together with a preliminary research plan.



2
Air Traffic Flow Management

Taking motivation from the discussion in the previous chapter about the increased delays that occurred dur-
ing the summer months of 2018, the focus of this study is chosen to be ATFM. As it was mentioned in the
previous chapter, the main reason for the increased delays in summer 2018 was due to a situation where the
available ATC capacity was not able to safely control all the demand coming from flights. This issue in the
aviation industry is referred to as a demand-capacity imbalance. The primary objective of ATFM is to plan
and execute measures for demand-capacity balancing (DCB). In the next sections in this chapter, background
information on ATFM is going to be presented.

2.1. ATFM Background
As it was mentioned ATFM has two primary objectives. The first one is to optimize the available capacity and
the second objective is to protect ATC from excessive demand that can not be handled. Capacity in aviation
is defined as the number of flights that can be safely managed in an airspace sector during a time period (typ-
ically the hourly rate). Capacities, for the purpose of ATFM are provided by Air Navigation Service Providers
(ANSP), based on the available workforce and their experience. Demand can be defined as the number of
aircraft that plan to enter an air sector during a given period of time. The demand value is based on the filed
flight plans, before the flight takes place.

Several stakeholders are involved in the ATFM process. The main stakeholders are Aircraft Operators(AOs),
airports and ANSPs. It can often occur that the objectives of these three stakeholders are not aligned. As a
result of this, in order for ATFM to be a successful process the input of each of these stakeholders has to be
taken into account. In order to manage this process and to guarantee transparency and fairness to all the
actors involved the European Commission created the role of Network Manager (NM) and nominated EU-
ROCONTROL for the role. The responsibilities assigned to the NM by the European Commission include
centralized management of the European ATM network and management of rare resources, through a col-
laborative decision making (CDM) process.

In Figure 1.4, it was mentioned that ATFM is referred to ATFCM. Besides the addition of the "C" in the
name for "Capacity", there are significant differences between the two acronyms. The first and most impor-
tant is that ATFCM can be considered as a part of the ATFM process. While ATFM refers to the collaborative
planning and decision making process for ensuring maximum utilization of capacity and safety of traffic
flows, ATFCM refers to the measures to be executed in order to achieve the ATFM high level objectives. An-
other distinction that can be made between the two acronyms is that, while ATFM includes all the 4 main
stakeholders (NM, AOs, airports, ANSPs) for ATFCM the relevant stakeholders are the NM and ANSPs. In par-
ticular an important role from the side of the ANSPs, is that of the Flow Management Position(FMP) . The
FMP aids the NM in its flow management duties as a local expert in a particular area control center(ACC).In
Figure 2.1 the difference between the two acronyms is visually described.

4
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Figure 2.1: Schematic overview of ATFM and constituent processes [7]

2.2. ATFCM Measures
In order to deal with demand-capacity imbalances, the NM together with the affected FMP jointly consider
potential solutions and make a decision on the most suitable to be executed. One of the requirements of this
process is to take into account the needs of all the stakeholders before a measure is implemented. In the next
sections the measures that are considered to resolve demand-capacity issues and their hierarchical order will
be stated.

2.2.1. Optimizing the available capacity
The first measures to be considered are related to optimization of the available capacity. This can come in the
form of sector management, where the configuration of a particular sector is changed either by splitting it into
smaller ones or collapsing smaller sectors to a single one. Another method of optimizing the capacity involves
negotiating extra capacity. This can be achieved through implementation of holding patterns, reducing traffic
complexity or coordinating with military for airspace usage [30].

2.2.2. Shifting the demand into other areas
Once the class of solutions mentioned in subsection 2.2.1 have been exhausted and there still is a capacity
imbalance the Network Managers Operation Center(NMOC) will attempt to shift demand into areas where
capacity is still available. This can involve re-routing of traffic flows or flight level management, where part
of the flows are assigned to fly at different flight levels. Other solutions of this class involve advancing traffic
that is able of departing earlier and tactical interventions of the FMP related to re-routing or change of flight
level

2.2.3. Regulating the demand
After the measures mentioned in subsection 2.2.1 and subsection 2.2.2 have failed to solve the imbalance the
last option available is to regulate the demand. In order to achieve demand regulation there are two main
methods that can be applied. The first one is ground holding, where all the aircraft that meet some criteria
are mandated to stay on ground until further notice. This type of measure is usually implemented in cases of
severe weather conditions, in cases of accidents or to mitigate long periods of in-flight holding. The duration
of this holding period is dependant on the phenomena that caused it, as such the delay induced on affected
flights can not be predicted. The other alternative and the focus of this research is application of ATFCM
regulations. These regulations are applied for a variety of reasons and in general they are classified into 14
different categories. These different reasons for regulating the demand are given in Figure 2.2, where for each
reason the associated total ATFM delay for the month of March 2019 is given.

Once controlled sectors where demand exceeds capacity have been identified, the NM activates ATFCM
regulations for these sectors. Flights that will be entering regulated sectors are assigned a pre-departure delay
on ground, this delay is referred to as ATFM delay. The process of assigning ATFM delays to individual flights
is known as the slot allocation process. For all flights entering the NM area of operations it is mandatory to file
a flight plan. These plans are collected in the Integrated Initial Flight Plan Processing System (IFPS), which
are then fed together with the ANSPs declared capacities to the Enhanced Tactical Flow Management System
(ETFMS). These inputs are then used in the Computer Assisted Slot Allocation (CASA) system.
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Figure 2.2: Reasons for ATFM delays in March 2019 [43]

To explain the slot allocation process consider a flight departing from A and arriving at B, whose trajectory
passes through 5 controlled sectors. For each sector an estimated time over (ETO) is determined, based on
the expected time to enter the sector. Assume that sector three (somewhere in the middle of the trajectory)
and sector five (at the destination) have demand capacity imbalances. Slot times are based on the capacities,
so if the capacity is 30 flights/hour there is an available slot every two minutes to enter the sector. The first
available slots for both regulated sectors are checked and the most penalizing one is chosen. Consider that
the ETO for sector three originally was at 17:18 and the first available slot to enter this sector is 17:22, for
sector five the original ETO was at 17:51 and the first available slot is 17:57. In this case the slot for entering
sector five at 17:57 will be selected as it is most penalizing with a delay of 6 minutes compared to 4 minutes
for the other slot. The result of this that the Estimated Take-off Time (ETOT) of the flight will be pushed by
6 minutes, so that it can enter the regulated sector at the defined slot time. Finally when several flights are
considered for the process the slot allocation is performed in a ’First Planned, First Served’ principle [30].
This principle can be understood as "Flights should arrive over the regulated area in the same order (based
on ETOs) in which they would if there was no regulation".

2.3. ATFM Phases
In order to have an optimal traffic flow over Europe and at the same time take into account the interests of all
the affected stakeholders, ATFM is applied on four different time horizons. This involves a planning process
for each calendar day, that for the purposes of the ATFM process will be referred to as "Day of Operations" or
Dops. In the next paragraphs the different ATFM phases, the activities involved in each of them, the input and
outputs for each phase will be stated. Finally in Figure 2.3 the inputs and outputs of each phase are visually
illustrated.

Strategic Flow Management This phase occurs seven or more days before Dops. The focus of the phase is
on research and planning for identifying major demand-capacity imbalances. All the relevant stakeholders
are involved and aim to share information to ensure that the activities are coordinated. The final output of
the phase is the Network Operation Plan (NOP)

Pre-tactical Flow Management This takes place six day prior to Dops. Coordination continues and the ini-
tial plans are further refined. The focus of the phase is to optimize efficiency and solve imbalances by opti-
mizing available capacity or shifting demand into areas where capacity is available. The output of the phase
is the ATFCM Daily Plan(ADP) , which is published through ATFCM Notification Messages(ANM).

Tactical Flow Management Takes place on Dops. Events are considered in real-time and changes to the
original plans are made as required. This phase is aimed at ensuring that the measures proposed in the
previous two phases are the bare minimum required to solve the imbalance issues. The output of this phase
consists of short term forecasts, analysis of impact and maximization of available capacity.

Post-operational Analysis This takes place the day after Dops. The focus is on analysis of the measures
used, investigation and reporting on the operational processes. All stakeholders during this phase have the
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opportunity to present feedback on the efficiency of the ADP. The output of the phase consists of the best
practices and actions to be avoided that are fed-back to the process for improvement.

Figure 2.3: ATFM phases diagram [13].

2.4. Characteristics of ATFCM regulations
During the tactical phase of operations, ATFCM regulations that are planned to be activated are commu-
nicated to aircraft operators and ANSPs through the ATFCM Notification Messages (ANM). The messages
are publicly avaliable and can be accessed by anyone through the Network Operations Portal 1. A screen-
shot of such a message is given in Figure 2.4. The message starts of with the State indicating whether it is a
NEW,CHANGED or CANCELED ATFCM regulation. This is then followed by the relevant FMP, which in the
case of Figure 2.4 is the Amsterdam ACC. The FMP name implicitly defines the sector that is being regulated.
There are three different times associated with a regulation, the publication time (Published), the start time of
the regulation (WEF) and the stop time (UNT). The duration of the regulation is obtained through subtracting
WEF from UNT and the activation time is obtained from subtracting Published from WEF. Finally the last two
important characteristics of a regulation are the flight level affected and the reason for the regulation which
will be referred to as the type of regulation.

Figure 2.4: Screenshot of ATFCM regulation message

During the post-operational phase, the impact of these regulations is assessed. Besides the characteristics
available in the tactical phase, in the post-operational data for each regulation the number of planned and
actually affected aircraft is given. In addition to that the planned and actual total ATFM delay caused by each
regulation is also given. This data is stored in the NM Interactive Reporting (NMIR) database, however access
to it is restricted to approved users only.

As it was mentioned the envisioned aim of the project is to be able to make predictions on the future state
of the system, during the tactical phase of operations. To achieve this high-level objective the focus will be to
predict the characteristics of future ATFCM regulations based on historical data and a period of observation
during the day of operations.

1https://www.public.nm.eurocontrol.int/PUBPORTAL/gateway/spec/

https://www.public.nm.eurocontrol.int/PUBPORTAL/gateway/spec/
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Machine Learning for Predictions

Machine learning can be loosely defined as a collection of statistical methods that are aimed at learning from
the input data. In classical programming, the programmer after having reviewed the data and determined
the task he wants to achieve creates the set of rules with which the data will be processed. This set of rules
and the data is then used as input and the output of the process is the answer to the task. Meanwhile, in the
machine learning paradigm the data and the expected answers from the data are used as an input and the
output are the rules with which the data has to be processed.

The large amount of data available in the aviation industry makes machine learning a very interesting
approach for automating the process of analyzing this data. It has been proven that machine learning al-
gorithms such as neural networks offer great capabilities in modelling non-linearities in the data. Based on
these advantages, the machine learning approach is deemed appropriate for the purposes of this research
project.

Extensive research in the available literature clearly indicated that there is a lack of studies aimed to pre-
dict the characteristics of European ATFCM regulations. The majority of literature considered in this study
consist of finding a solution to the problem of predicting air travel delays. Most of the papers that will be
discussed in this section focus on prediction of arrival and/or departure delay without much consideration
on the source of the delay. As an exception [6], was aimed specifically to predict the delays caused by Ground
Delay Programs (US equivalent of ATFCM regulations). Finally all the papers reviewed consisted of applying
supervised learning methods in order to make their predictions.

The papers that will be discussed in the following sections are grouped based on the machine learning
methods used. In section 3.1, papers that utilized ensemble learning are discussed and in section 3.2 papers
that utilized neural network architectures are treated. For each paper that will be referenced, the discussion
will start with the purpose of the paper followed by the algorithms and the inputs used in the study and finally
the discussion of each paper is concluded by showing the respective results. In Table 3.1 an overview of the
papers considered in this chapter is given.

3.1. Ensemble Methods
A significant amount of literature studied, as can be seen in Table 3.1, utilized ensemble methods in order
to solve classification or regression problems. Ensemble learning consists of building a learning model on
top or in parallel with other learning models[14]. Such methods typically make use of homogeneous learning
models such as decision trees as was done in [6], [41] and [26]. It is also possible to utilize heterogeneous
learning methods where the output of one learning model is used as input for another model as it was done
in [47] and [21].

3.1.1. Ensembles of heterogeneous learners
Paper 1 - Introduction
In [21] Kim et al. utilize two deep learning models for the task of predicting the delay of flights operating to
and from ten of the major US airports, without making a distinction between arrival or departure delay. In
the first stage of prediction the authors use a deep recurrent neural network (RNN), to predict the class of
daily delay status at one of these airports. The authors hypothesize that the accuracy of a RNN increases with
depth. This daily delay status is defined to be a binary variable indicating if delays are occurring or not at the

8
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airport, based on a threshold value. The thresholds used in [21] were 15 and 30 minutes. In order to create a
deep RNN architecture the authors present four different alternatives, which are listed bellow together with
the authors argumentation for each.

• Deep input-to-hidden - Offers the effect of non-linear dimensionality reduction, allowing for extrac-
tion of the most important features.

• Deep hidden-to-output - Can offer advantage of disentangling the factors of variation in the hidden
states, allowing for an easier prediction

• Deep hidden-to-hidden - Allows the RNN to learn highly non-linear transitions between consecutive
hidden states

• Stack of hidden states - Allows the model to capture state transitions of different time scales.

Paper 1 - Methodology
The final chosen architecture consisted of deep input-to-hidden layer, followed by a stack of Long Short-Term
Memory (LSTM) cells and a hidden-to-output layer, for a visual depiction of the model please refer to [21]. To
train the model on time performance data of commercial airline flights and weather data were obtained. The
data was sorted by airport so that they can be used as input for the first stage. For testing the algorithms the
authors focused on the airport of Atlanta and flights to and from it. All departure and all arrival delays for a
single day were averaged respectively. This average value is the representation of the delay status of a single
day. The weather data was also averaged for a day. Based on the above input the class of delay is computed
and this classification is repeated for consecutive days.

Once the daily delay status is computed it is used as input to a layered neural network that aims to predict
for individual flights if they are delayed or not, based on the same thresholds of 15 and 30 minutes. Other
inputs for this second stage include time information for the flight, delay statuses of the origin and destination
airports and weather data. The authors do not mention how far into the future they predict the delay of the
flights. However since the daily delay status is predicted for the day of operations it can be assumed that this
prediction is performed for all flights scheduled to operate to and from Atlanta on the day of operations.

Paper 1 - Results
The results of the different experiments conducted with the model created in [21] are given in Figure 3.1. For
the deep RNN model two length of sequences were tested. In the first case the input sequence was 7 days
with the delay threshold set at 15 minutes and in the second case the sequence was 9 days with the delay
threshold set two 30 minutes. No reasoning has been given for the selection of these particular combinations
or why the authors did not test all 4 possible combinations. The proposed deep RNN, that has been called
"Combined" in Figure 3.1, is compared to its constituent elements and a shallow model consisting of an LSTM
that is connected to an input and output layer. It can be seen from the left table of Figure 3.1 that deep RNN
architecture indeed improves the accuracy, with the highest accuracy corresponding to the combined model.
Comparison of the two sets of sequence length and threshold indicates that the model performs better on a
longer sequence and higher threshold. With regards to the value of the threshold it is understandable that the
results improve due to larger noise when considering a smaller threshold. However, it is unclear whether the
improved accuracy is due to the longer sequence, the larger threshold or a combination of both.

The results for the experiments conducted in the second stage of the model, namely the layered neural
network, are shown in the right side of Figure 3.1. For this case the topology of the network was varied in
terms of number of layers, number of nodes in each layer, batch sizes and number of epochs. The highest
accuracy was 87.42% with a network containing five hidden layers and trained with the mini-batch gradient
descent algorithm.

Paper 2 - Introduction
In a somewhat divergent manner from the trend of topics considered for this study, in [47] authors of the
paper consider the problem of predicting conflict between a pair of flying aircraft. The problem is a typical
classification problem, with the output being a binary variable indicating conflict or not. The relevance of
this paper with respect to this research project lies in the fact that for the problem of conflict detection it is
very important to have minimal if not any false-negative errors. Similarly for predicting the future occurrence
of ATFCM regulations it is deemed equally important to have minimal false-negatives. In order to solve the
problem the authors, in a similar manner to the paper discussed above, consider a two stage approach. The
proposed model is aimed at increasing classification accuracy and reducing false alarm rate.
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Figure 3.1: Results of the experiments conducted in [21]

Paper 2 - Methodology
In the first stage of the proposed approach the authors consider using four different base classifiers in order to
create a meta-dataset that will be used as input for the second stage. The classifiers considered for this stage
are K-nearest neighbors (KNN), Naive Bayes Classifier (NBC), Back-Propagation Neural Network (BPNN) and
Support Vector Machine (SVM). The outputs of the four base classifiers are respectively: the number of sam-
ples belonging to positive and negative classes, the conditional probability of a conflict, the weight of each
prediction and distance from points to hyperplane.

Once the first stage produces outputs, these are used to train a second stage classifier. The second stage
chosen by the authors is a SVM arguing that SVM offers generalization advantages and avoids getting stuck
on local minima. The SVM utilized in the second stage classification has been modified to output a probabil-
ity of conflict instead of an output ∈ {1,−1}. If this output probability is higher than a threshold then there is
a conflict. The threshold in this paper was chosen to be 50%.

In order to train the model a dataset containing positions and velocities of aircraft, the lookahead times
and in case of turning flights the turning moments and turning angles is used. The dataset is split into three
parts. The first part is used for training the base classifiers. The second dataset is used for testing these base
classifiers. From the test the output of the base classifiers is used to construct a meta-dataset that is used to
train the second stage classifier. Finally the third part of the dataset is used to test the whole ensemble. Due
to the fact that conflicts have a low rate of occurrence, the non-conflict samples predominate in the collected
data. In order to deal with this class imbalance, the authors use the Synthetic Minority Over-Sampling Tech-
nique (SMOTE). Furthermore the authors normalize the magnitude differences between the features through
the use of the Min-Max Normalization technique.

Paper 2 - Results
The results of testing each base classifier individually are shown in Figure 3.2. From the results presented in
Figure 3.2 it can be seen that the base classifiers can reach an accuracy between 80 to 90%. The false alarm
rate (conflict predicted when there was no conflict) ranges between 12 to 20%. Finally the missing alarm rate
(no conflict predicted when there was conflict) is about 10% with the exception of SVM that was able to find all
conflicts. This result makes the SVM particularly suitable for using it in the second stage classification. When
testing the full ensemble on 100 straight segment flights the classification accuracy reported by the authors
is 97% and the false alarm rate is 4.05%. While testing turning segment flights the classification accuracy
dropped to 91% with the false alarm rate at 22.5% and no missing alarm.

Figure 3.2: Results of the base classifiers tested individually in [47]

3.1.2. Ensembles of homogeneous learners
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Paper 1 - Introduction
In [41] the authors consider the problem of predicting departure and arrival delay of commercial flights in
the US. In a similar manner to the papers discussed in subsection 3.1.1, the model proposed in this paper
consists of a staged approach. In the first stage a classification is performed to predict if a flight is going to
be delayed or not. The authors have used the convention utilized by the Bureau of Transportation Statistic
and define a flight to be delayed only if the delay exceeds 15 minutes. If the classification stage predicts that
a flight will be delayed then in the second stage a regression is performed to estimate the value of the delay.
The machine learning models considered for each of the stages are listed bellow.

• Classification:

– Gradient Boosting Classifier
– Random Forest Classifier
– Extra-Trees Classifier
– AdaBoost Classifier

• Regression:

– Extra-Trees Regressor
– Random Forest Regressor
– Gradient Boosting Regressor
– Multilayer Perceptron

Paper 1 - Methodology
In order to train the model a dataset containing 12 features related to the on time performance(OTP) of do-
mestic United States flights over the course of 5 years (2012-2016) was collected. Weather data was also col-
lected for the same periods under consideration. The geographic scope of the data was limited to 15 of the
major US airports. In order to remove irrelevant features the authors performed feature selection using the
Recursive Feature Elimination algorithm. The other procedures for feature selection investigated by the au-
thors include, Univariate Tree-based feature selection and Principal Component Analysis. The result of the
feature selection process was that for prediction of departure delays 9 airline OTP and 12 weather features
were selected. For the arrival delay 12 airline OTP and 24 weather features were selected. The reason for the
higher number of features in arrival delay prediction is reported to be the fact that departure features have
a significant impact on arrival delay. In terms of prediction accuracy feature selection caused only a 0.2%
increase from 91.63% to 91.86%, but in terms of training time there was 56% decrease in time needed from 66
seconds to 37 seconds.

Paper 1 - Results
During training for the classification stage, the authors observed that the dataset was imbalanced. In order
to correct for this imbalance initially the authors reduced the number of airports considered from 15 to 10
so that the ratio of minority to majority was maximised. However it was found that this was not enough to
balance the dataset, as a result of this sampling of the data had to be performed. The sampling techniques
investigated include Random Undersampling, SMOTE and SMOTE + Tomek links. The best performance was
reported to be for SMOTE + Tomek links where the classification accuracy increased from 91,86% to 94% in
the case of the Random Forest Classifier.

For evaluation of performance of the regression stage the mean square error (MSE) was selected as the
metric. To reduce the MSE firstly the features were scaled to account for the variation of scales in the dataset.
Two techniques were investigate for this: Robust Scaler and Standard Scaler. In the case of the Random Forest
the original MSE was 102.18, with application of the Standard Scaler the MSE reduced to 90.34 and with Ro-
bust Scaler the MSE was 76.31. Another step to reduce the errors of the model was hyper-parameter tuning,
which was done through the use of a Grid Search. Finally Selective Training was performed, where instead
of training the model on the entirety of the origins and destinations the model was trained on individual OD
pairs. The results of the paper are given in Figure 3.3. It can be seen from Figure 3.3 that for classification
Gradient Boosting performs the best in both arrival and departure delay classifications. Meanwhile for the
regression stage Extra-Trees offers the best performance. For both classification and regression stages the
results for arrival delay prediction are better than those for departure delay, no explicit explanation has been
stated from the authors for this.
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Figure 3.3: Results of models tested in [41]

Paper 2 - Introduction
In [26] the authors consider the same problem as in the paper discussed above ([41]), so prediction of arrival
and departure delays. In contrast to [41], in [26] the problem has been posed only as a single regression stage
problem utilizing Gradient Boosted Decision Trees. Gradient Boosting is a procedure where starting from an
initial learning unit, a successor unit is employed to improve upon the errors of the predecessor.

Paper 2 - Methodology
The data used in [26] consist of flight delay data over the periods between April 2013 to October 2013. The
dataset covers flights taking place to or from 70 of the busiest airports in the US. Initially 14 features were
present in the dataset, however after applying some exploratory statistics only 8 features were selected as in-
put for the model. The selection criteria for the features to be used is stated by the authors to be the features
that showed the highest correlation factor. The features used as input consist of: day of week, carrier, ori-
gin/destination airport, scheduled departure/arrival time and arrival/departure delay. The last two features
are used as the supervisory signal. In terms of pre-processing the features were normalized on a uniform scale
of 0 to 1 and a mean of 0. In addition, the data was inspected for outliers and such outliers were discarded.
The way this was done was was to consider only points whose delay was in the range between Q1−1,5IQR
and Q3+ 1,5IQR, with Q3 and Q1 being the 75 and 25 percentile respectively and IQR the inter-quartile
range.

Paper 2 - Results
The Gradient Boosted model constructed consisted of the hyper-parameters that are listed bellow. For evalu-
ation of the model three metrics were selected: Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
and Coefficient of Determination (R2). The results of this paper are presented in Figure 3.4. Comparing the
results of Gradinet Boosted model in [41] and [26], the results seem to be in the same order of magnitude for
the arrival delay. The results are considerably different for departure delay with the model of [26] performing
better.

• Max number of leaves per tree was 8
• Min number of samples per leaf node was 10
• Learning rate was 0,05
• Total number of trees was 1000

Paper 3 - Introduction
Finally the last paper considered for this study in the category of models utilizing homogeneous ensembles
consists of [6]. The purpose of this paper is to predict the performance of ground delay programs (GDP).
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Figure 3.4: Results for arrival and departure delay prediction in [26]

GDPs are the US equivalent to the European ATFCM regulations. In essence once a demand capacity imbal-
ance is identified, the A/C relevant to the imbalance are issued a delay on ground by the NMOC in Europe or
Air Traffic Control System Command Center (ATCSCC) in the US [38]. As such [6] has a lot of relevance for the
purposes of this literature study.

The authors of [6] are interested to predict the performance of a planned GDP. In order to quantify this per-
formance they want to predict the average arrival delay and number of cancelled arrivals that will be caused
by this GDP. They aim to achieve this through identifying historical GDPs applied on conditions similar to
the day that the prediction is to be made on. The proposed model in the paper is a variation of Geograph-
ically Weighted Regression (GWR). In GWR a prediction is wanted for a particular location lp . To make this
prediction observations that occurred in surrounding locations li , where li is the i th location around lp , are
taken into account. The basic assumption is that observations that occurred closer to lp are more relevant
than others further away. To achieve this weights are assigned to the observations based on a distance metric
and chosen kernel function. For the purposes of this study the Gaussian kernel as shown bellow was used to
generate the weights.

wi (d ,β) = exp(
−d(lp , li )2

β
) (3.1)

In Equation 3.1, d(lp , li ) is a function evaluating the distance between location of prediction lp and loca-
tion of observation li , β is a parameter called the bandwidth. As β goes to infinity the weights of observations
will tend to 1. In typical GWR the distance function usually implies geographic distance, however for the pur-
poses of [6] this distance metric has been adapted to be related to similarity in traffic and weather conditions
between different days.

Paper 3 - Methodology
The authors have assumed that all GDPs in the considered dataset to have occurred in a single airport. They
utilize the demand and terminal weather to estimate the capacity distribution on the historical days. Com-
parison of the estimated capacity distribution on different days and the day of prediction is used as a measure
of distance between the observations and using Equation 3.1 the weights are assigned. The authors note that
during the day of operations the demand and weather conditions are only forecasted and are not known with
certainty as is the case for the previous historical days.

Target variables & loss functions As it was mentioned, the performance of GDPs is quantified in this paper
through the arrival delay and number of cancelled arrivals. The authors are interested to find the average
values for the above quantities and also the 90th quantiles as a measure of the worst case scenario. As a result
of these two objectives, two different loss functions are considered. For the problem of predicting the average
values of arrival delay and number of cancelled arrivals, the chosen loss function was the absolute error. It is
argued by the authors that the absolute error leads to models that are more robust to outliers. For the problem
of predicting the 90th quantiles the chosen loss function is given as follows.

f (y, ŷ) =
{

(α−1)(y − ŷ) if y < ŷ
α(y − ŷ) if y > ŷ

(3.2)

In Equation 3.2, y is the observation, ŷ is the prediction. Equation 3.2 is said to be minimized when ŷ is
equal to the α-quantile of y . Thus using this function an estimate of the quantile is obtained. The chosen
machine learning models for this study were Random Forest and Gradient Boosted Forest. In both methods
the prediction comes from a collective of decision trees.
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Random forests In Random Forest each tree is constructed independently of the others and randomness
introduced in the learning process with the aim of reducing the variance of predictions. The observation
weights calculated with Equation 3.1 are taken into account in the splitting criteria of the leaf nodes and in
the end prediction once the forest is created. A disadvantage of random forests is that the method does not
easily permit usage of arbitrary loss functions, as such random forest is not considered for the 90th quantile
prediction problem.

Gradient Boosting In Gradient Boosted Forests the trees are built sequentially with each new tree trying to
compensate for the errors of the previous. They allow the usage of any loss function, as such it will be used for
both average value and 90th quantile prediction problems. The authors state that weighing of observations
can be done by including the weights in the splitting criteria of each tree or directly in the loss function.
However it is not clear how the authors implemented the weights.

Comparison models For comparison purposes the two forest methods utilizing the proposed weighing
strategy will be compared to 4 baseline models. The first baseline was taking a weighted average of all the
observation, with the distance measure as described above. The second baseline was using KNN and using
the average of the k observations. Finally the Random Forest and Gradient Boosted Forest were considered
without the weighing scheme proposed. The last two were named the global methods and the proposed ones
with the weighing scheme were named the spatial methods.

The features of the data or the explanatory variables considered for making the prediction consist of the
following:

• Entry time - time GDP was declared and put in effect, measured in minutes after 4:00 am
• Earliest ETA - the earliest arrival time for flights affected by GDP, measured in min after 4:00 am
• Duration - Difference between earliest and latest arrival of flights affected by GDP, in minutes
• Airport Acceptance Rate(AAR) in time period t - A period t is defined as a 15 minute interval starting

from 4:00 am. If during the period t a GDP was planned the AAR was recorded, otherwise it was left
undefined.

• Average AAR - Average AAR in the time interval that GDP was planned
• Number of Core 30 airports - Number of main 30 airports that were affected by GDP
• Ground Stop duration - Duration of the ground Stop that led to GDP. If none then it was set to 0

Validation In order to obtain the most accurate results possible the parameter tuning was performed. For
the Random Forest the only parameter that was tuned was the number of trees in the forest the rest of the
parameters were left to the default scikit-learn parameters. For the Gradient Boosted Forest the number
of trees, maximum depth and learning rate was tuned. Furthermore the parameters for the bandwidth β

and k in KNN had to be tuned. To select these parameters the authors used the leave-one-out validation
technique. The approach consists to fit the model several times to the dataset with each time removing one
of the observations from the data. The resulting model from each fit is used to make a prediction and the loss
is averaged. The parameters that resulted in the lowest average loss were selected.

Parameter tuning For the Random Forest model the number of trees was first tuned for the global variant.
The authors assumed that the value for this parameter would work well also with the spatial model. The
number of trees were steadily increased and the average leave-one-out loss was plotted against this number.
The number of trees to be used was chosen as the point in the resulting plot where the curve became flat. For
the Gradient Boosted Forest a grid search was performed for the global variant of the model. The learning
rate was allowed to take values ∈ {0.2,0.1,0.05,0.01,0.005}, the maximum tree depth was allowed to take each
value between 2-7, the number of trees was varied between 1-300. After the optimal hyper-parameters were
found, the bandwidth in Equation 3.1 was tuned for the spatial variants of the models. The average leave-
one-out loss was recorded for bandwidth values between 0,3 and 10 with a step of 0,05. For the KNN baseline
a similar procedure was performed by recording the average leave-one-out loss while k was varied between 1
to 100.
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Paper 3 - Results
The results of the proposed models for prediction of the average value and 90th quantile of the arrival delay
and number of cancelled arrivals is given in Figure 3.5. As it can be seen from the two top tables of Fig-
ure 3.5 the spatial variants that weigh the observation based on traffic and weather conditions outperform
their global counterparts. For the problem of predicting the average arrival delay the spatial random for-
est performed the best, while for the prediction of average number of cancelled arrivals the spatial gradient
boosted forest model performed the best. In the two bottom tables of Figure 3.5 it can be seen that the gra-
dient boosted models outperformed the baseline methods, but there is only marginal improvement between
the global and spatial variants.

Figure 3.5: Results of the proposed weighted methods and baseline methods in [6]

3.2. Neural network methods
Paper 1 - Introduction
In [20] Khanmohammadi et al. propose a new method for handling categorical input variables for a neural
network. Neural networks are designed to work with numbers and tensors of numbers, as such these type of
variables have to be transformed to be used in a neural network. The most used transformation is encoding.
Encoding can be done through transforming a categorical variable into a single integer. This type of encoding
can be problematic since it implies that a higher number would be connected to a higher importance which
most of the times is not wanted. This problem is solved through one-hot encoding or as it is referred to in
[20] "1-of-N" encoding is used. In one-hot encoding a categorical variable is replaced with a vector mostly
filled with zeros and a one at a particular index. However it is noted by the authors that "1-of-N" encoding
can introduce multicollinearity that can lead to an ill conditioned problem". An additional issue with one-
hot encoding is that the input grows with the number of categories in the nominal variables adding to the
complexity of the model.

Paper 1 - Methodology
The authors propose a multilevel input layer to handle this issue. In a BPNN the input layer is composed of
as many nodes as there are input features. In the proposed method in addition to each node for each input
feature there are also as many nodes as there are categories of each input feature. This concept is illustrated
in Figure 3.6. As it can be seen in Figure 3.6 one of the input features is cargo type and it has 4 different
categories. Each of the nodes of the multilevel input layer is connected to all the nodes in the output layer.
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The nodes in this input layer are binary neurons, they take value of 1 if they are active and 0 otherwise. The
activation of the input nodes is indicative of that particular input being contributing at the end output.

Paper 1 - Results
The proposed architecture was used by the authors to predict the arrival delay of inbound flights at JFK. A
dataset containing all the inbound flights to JFK for January 2012 was collected. The dataset contained around
1100 flights and the following features were used for training. The code of the airport was converted to an
integer between 1 to 53 (total number of origin airports). The values for the delay reasons were normalized
by dividing with the maximum value for each of the reasons and the model was trained for 10000 epochs.
After training the model was tested on prediction of arrival delays for 5 flights. The RMSE of the proposed
model for the normalized delay is reported to be 0.1366, compared to 0.1603 for a BPNN. The run time of the
proposed method was 38% faster than a BPNN, while using 21% more memory than the BPNN. Due to the
fact that the RMSE is reported unit-less it must be the RMSE for prediction of the normalized delay. For this
reason the results of this paper can not be compared with the results of the previous studies.

• Inputs used in [20]

– Day of month: 1-31
– Day of week: 1-7
– Code of origin airport
– Scheduled/Actual departure time
– Scheduled/Actual arrival time at JFK
– Arrival delay
– Reason 1: Carrier delay value
– Reason 2: Weather delay value
– Reason 3: National Air Space delay value
– Reason 4: Security delay value
– Reason 5: Late aircraft delay value

Figure 3.6: Illustration of a multilevel input layer proposed in [20]

Paper 2 - Introduction
In [31] Pamplona et al. utilize layered neural network to predict whether flights will be delayed or not. The
flights considered in this study consisted of the flights between Congahonas airport in Sao Paulo and Santos
Dumont airport in Rio de Janeiro. This route is chosen because it is the air route with the highest frequency
of flights in Brazil. The reference period for creation of the dataset was January of 2017, during which 1560
flights took place between the two airports. A flight within this study is considered to be delayed if it arrives
later than 15 minutes from the scheduled arrival time. The inputs used for this model are listed bellow.

• Inputs in [31]:
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– Airline ID
– Day of the week
– Real departure block - Actual departure time. A block is a one hour interval, there are 17 blocks

starting from 06:00 to 22:00
– Real arrival block - Similar to the above
– Departure delay - Delays are divided into 4 blocks. Block 1 contains delays between 0 to 15 min-

utes, block 2 delays between 15 to 30 minutes, block 3 delays between 30 to 60 minutes and block
4 delays above 60 minutes

Paper 2 - Methodology
In terms of neural network architecture the title of the paper suggests that the multilevel input layer presented
in [20] is used in this study as well. However, within the paper utilization of such an input layer is never dis-
cussed. In order for hyper-parameterization the ranges for the parameters were chosen as follows: 1) epochs
∈ {5,10,100,1500}; 2) batches ∈ 5,10; 3) optimizers RMSProp, Adam; 4) activation functions ReLu, Sigmoid; 5)
number of neurons in hidden layers ∈{1,2,3,4,5,6,7,8,9,10,20,30}; 6) number of hidden layers ∈{0,1,2,3,4,5}.

For selection of the optimal parameters the authors used the Random Search technique. This method is
an alternative to the Grid Search where random sampling in the hyper-parameter space is done. This tech-
nique has been proposed by Bergstra and Bengio in [2], where they show that the Random Search technique
can produce as good models as Grid Search at lower computational times. The parameters chosen with this
technique were in validated through K-Fold validation.

Paper 2 - Results
The result of the hyper-parametrization process was Adams optimizer and 4 hidden layers. The number of
neurons in each layer from the first to fourth were 10,4,10,20. The activation functions in the four hidden
layers were ReLu, ReLu, Sigmoid, ReLu and in the output layer Sigmoid. The number of epochs was 10 and
the batch size also 10. The accuracy of the resulting model was 91% and the resulting confusion matrix is
presented in Figure 3.7.

Figure 3.7: Confusion matrix of the model in [31]

Paper 3 - Introduction
In [11] Gopalakrishnan and Balakrishnan perform a comparative analysis of different machine learning meth-
ods for the task of predicting air traffic delays. They pose three problems on which the different methods will
be compared on. In addition to the performance of the models on the three problems the authors have per-
formed an investigation on the effect of different input feature vectors on the performance of the models. The
three problems considered are listed bellow.

1. Classification of OD pair delays - Will the delay on an OD pair in the next ∆t hours exceed a delay
threshold?

2. Prediction of OD pair delay - What will be the value for the OD pair delay, ∆t hours from now?
3. Prediction of airport delay - Similar to the OD pair delay

Paper 3 - Methodology
Out of the three problems, only the first two will be discussed in this literature study. The reason for this
choice is that the second and third problems differ only slightly in terms of input vectors and the results in
terms of best performing model for both problems are similar in ranking. The authors have defined an OD
pair delay to be "for each hour of the day, the median departure delay of all flights that took off from that
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origin airport to the same destination airport during that hour". Through the OD pair delays the authors con-
struct "delay networks", which are graphs whose nodes are the airports in the US and the edges represent the
OD pair delays. They further use this representation to describe a day of operations as a time series of these
delay networks, one for each hour of the day. In terms of the prediction horizon ∆t they consider 2,4,6 and
24 hours and for the delay threshold they consider 30, 60 and 90 minutes. The potential inputs for the mod-
els considered are listed bellow. They are referred to as potential inputs because the authors select subsets
of these inputs to create different input vectors, for the particular feature vectors that the authors consider
please refer to [11]

• Temporal variables:

– Time of day
– Day of week
– Season - Year is split into seasons based on delay values

• Local delay variables:

– OD-pair delays - Current OD pair delay and also the delay for the past hours
– Delay on adjecent OD pair

• Network delay variables:

– Type of hour (delay mode) - This a variable that has been identified by the authors in a previous
study through clustering of delay networks. An example of this type of variable is "at the current
hour delays are increasing at ATL"

– Type of day - Variable determined by grouping the sequence of delay networks into one of the six
potential categories.

The models that are considered for the three problems posed in this study are given in Figure 3.8. All the
proposed models for delay prediction are of the supervised learning type with the exception of the Markov
Jump Linear System (MJLS). This last model is based on Markovian transitions of the current delay mode
of the delay network. Through knowing the current delay mode and the system transition probabilities the
future delay mode distribution is determined. For specifics of this model please refer to [11] and [12]

Figure 3.8: Models considered in [11]

Paper 3 - Results
For the classification problem with prediction horizon of 2 hours and a threshold of 60 min the highest ac-
curacy is reached for the N1 model with input vector F2 (current OD pair delays and time of the day). It was
found that the neural network methods outperform the classification tree and for the feed-forward network
the input features do not lead to significant changes in accuracy. Choosing the N1 model with the F2 vec-
tor, the authors investigated the effect of different delay thresholds on the prediction accuracy. The average
accuracy for 30 minute threshold is 85% and as the threshold increases the accuracy increases to 97% for a
threshold of 90 minutes.

For the regression problem out of the supervised learning methods considered it was found that the best
performing models are the N2 and RT with input vector F7 (OD pair delays at the current hour, delay on adja-
cent OD pairs and time of day). Comparing the best performing supervised learning methods with the MJLS
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the authors found that MJLS outperforms N2 and RT. Both the mean OD pair delay error and standard devia-
tion of the prediction errors is lower for MJLS compared to N2 and R7. The prediction error for the supervised
models seems to be in accordance with the models that were seen in section 3.1.

Finally the effect of prediction horizon∆t on the prediction accuracy is investigated. For the classification
problem the authors report that the prediction accuracies decrease by less than 1% when∆t is increased from
2 hours to 4,6 or 24 hours. These results seem to be in agreement with the results of [24], where the authors
tried to predict if a GDP would be initiated by using logistic regression for prediction horizons of 1,2,3 and
4 hours. For the regression problem the authors found that the performance of the MJLS model remained
constant when the prediction horizon was increased, while the performance of the generalized regression
neural network and the regression tree severely degraded.
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4
Nonlinear system analysis

In previous chapter it was seen that a commonality of several studies was that they considered making their
predictions on different prediction horizons. In [11] it was found that depending on the chosen supervised
learning model chosen, the prediction performance for the regression problem degrades with increasing pre-
diction horizon. For the classification problem the authors of [11] and [24] also found a reduction in accuracy,
albeit smaller than that of the regression problem. In the following sections of this chapter the theoretical fac-
tors that influence the choice of the prediction horizon will be discussed. The chapter is going to be finalized
with a discussion of machine learning papers that have utilized the non-linear features of time series that are
to be discussed in order to increase prediction accuracy.

4.1. Return intervals
One of the most important parameters to be taken into account when creating stochastic models for model-
ing random events is the return interval of the events under consideration. Other synonyms used for return
interval include return periods or inter-arrival times depending on the field of study. A return interval is de-
fined to be the time between the start or occurrence of two random events. When the events to be modeled
are assumed to occur independently of each other the return intervals r follow the exponential distribution
[3] [36] as

f (r ) = 1

〈r 〉e−
r
〈r 〉 (4.1)

where 〈r 〉 is the mean return interval. In the study of extreme phenomena and rare events one is in partic-
ular interested in determining the return intervals of events that exceed a certain threshold q . Consider as an
example the return intervals of ATFCM regulations that cause a total delay of q or above. Under the assump-
tion that events are uncorrelated with each other, the mean return interval of events exceeding a threshold q ,
Rq is determined as follows [3]

Rq =
(∫ ∞

q
f (x)

)−1

(4.2)

where f (x) is the probability density distribution of the events. The integral in the above expression rep-
resents the probability that a random event X with density distribution f (x) will exceed q , P (X ≥ q). This
probability is a measure of the occurrence rate of the extreme event and the mean return interval of such an
extreme event is the reciprocal of the occurrence rate. Using the exponential distribution for the inter-arrival
times and the Poisson distribution for the counts of events is useful to model systems that appear to have the
memory-less property. That is that a certain probability distribution is independent of its past history. This
property is formulated as follows

P (R > t + s|R > t ) = P (R > s) (4.3)

where R is a random variable with density distribution f (r ). The fact that R has survived up until t is not
in particularly useful to predict if R will survive for t + s, thus the system has forgotten of the past. However,
most physical process do not show the memoryless property. Instead the events are correlated with each-
other and often they are best described by heavy tailed distributions[19].

21
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4.2. Effect of long-range persistence on return intervals
As it was mentioned most natural phenomena have been shown to be correlated and these correlations can
extend to very large time spans. Examples of such phenomena include river flows [16], stock and foreign ex-
change markets [46] [34], temperature records [3] [42] and also air traffic flows [45].

In [3] Bunde et al. analysed the return intervals for time series that show long-range persistence. Long-
range persistence of time series has been defined in [3] and [36] to be present when the autocorrelations of
such series show a power-law decay as

AC F (k) ∼ k−γ ,0 < γ< 1 (4.4)

where AC F is the autocorrelation function, k represents the time lag between observations and γ is is defined
in [36] as the autocorellation exponent. In Figure 4.1 the time series of the volatility (magnitude of fluctua-
tions) of IBM stock on the 10th of May 2002 is given. In this figure examples of return intervals (r1,r2,r3) for
different thresholds are shown. For each threshold value q there are Nq return intervals, r i

q where i = 1, ..., Nq .
In [3] it is stated that for the case where Nq À 1 the following holds.

Nq∑
i=1

r i
q
∼= N (4.5)

Figure 4.1: Illustration of return intervals for different thresholds adapted from [46]

In case the data is shuffled the long range dependencies are destroyed, however the above equation is still
valid. As a result of this, for both correlated and uncorrelated data the mean return interval for a particular
threshold Rq , can be evaluated as follows.

Rq ≡ 1

Nq

Nq∑
i=1

r i
q
∼= N

Nq
(4.6)

Since the mean return interval for events above a certain threshold is unaffected by correlations in the
data, it can be evaluated straight from the tail of the density distribution of the events as shown in Equa-
tion 4.2. The authors of [3] go on further to analyze the distribution of the return intervals in long term
correlated data Pq (r ).

In order to determine the distribution of the return intervals Pq (r ) as a function of correlation exponent
γ, the authors have generated records of length N = 221 for various values of γ by a technique involving the
Fourier transform. For each γ, Pq (r ) was calculated for several thresholds q . In Figure 4.2 the distribution
of the return intervals for the case where γ = 0.4 and q = 2(Rq ' 44) is given shown in the shaded gray plot.
The straight line is the distribution of the return intervals when the data is shuffled, following the Poisson
distribution. A considerable difference between the two distributions can be seen, in the correlated data the
probability of having return intervals well bellow and well above Rq is higher. The authors conclude that the
distribution of return intervals for long term correlated data behaves as follows
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Pq (r ) ∼ e

(
− r

Rq

)γ
(4.7)

Figure 4.2: Distribution of return intervals for long term correlated data (gray shaded plot) and shuffled data (black line) obtained from
[3]

In a final step in [3], the autocorrelation function of the return intervals Cr (s) was evaluated. The results
of this process are shown in Figure 4.3. In Figure 4.3 the results for γ= 0.4, γ= 0.7, q = 1 and q = 2 are shown.
The curves for same values of γ are parallel straight lines, suggesting that the return intervals are also long-
term correlated with the same exponent γ. The slope of the lines in Figure 4.3 reflects the value of γ. It can be
seen from inspection of this figure that for a particular correlation exponent γ increasing the threshold q will
lead to down-ward shift of the autocorrelation curve. This suggests that the behaviour of return intervals for
thresholds that are seen rarely in real-life data can be inferred from the return intervals of thresholds present
in the data.

Figure 4.3: Auto-correlation function of the return intervals for q = 1 (circles) and q=2 (triangles) for γ= 0.4(open symbols) and γ= 0.7
(filled symbols). Obtained from [3]

In [44] Vera-Valdes argues that not taking into consideration the long range dependencies in data can
lead to erroneous forecasts. Modelling long-range correlated data with standard methods will often lead
to underestimations. These standard methods often rely on the applicability of the Central Limit Theorem
(CLT). In [9] Fowler, lists the three conditions for the applicability of the CLT. Of particular importance is
the condition that states that CLT is valid for random variables that have finite mean and variance. As it is
mentioned in [19] and [35] a potential source of these long spanning correlations can be due to variables
originating from heavy-tailed distributions with infinite variance. Fowler[9] gives as an example the case of
the "Long-Term Capital Management" hedge fund and how their wrong assumption on the applicability of
the CLT in 1998 almost brought a collapse in the global financial markets 1

1https://www.investopedia.com/terms/l/longtermcapital.asp -Accessed on May 2019

https://www.investopedia.com/terms/l/longtermcapital.asp
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4.3. Estimation of persistence
The most common technique used to quantify long-range persistence in a time series consists of the estima-
tion of the Hurst exponent. The Hurst exponent H arises in self similar processes and it is a measure of the
global level of persistence of the series [28]. Its value varies between 0 and 1. If H = 0.5 then the time series is
similar to a random walk, if 0 < H < 0.5 the series is anti-persistent (negatively correlated) and if 0.5 < H < 1
the series is persistent (positively correlated)[48]. As H approaches 0 or 1, the anti-persistence and persis-
tence respectively get stronger.

A self similar process is a stochastic process in which the behaviour of the process remains the same
irrespective of scaling in time or space [19]. Consider a stochastic process X (t ), this process is said to be self
similar if the following condition holds

X (at )
d=aH X (t ) (4.8)

where a is a scaling factor such that a > 0, H is the Hurst exponent and the symbol
d= represents equality in

terms of distribution. Furthermore a time series can be second order self-similar, where the autocorrelations
decay hyperbolically, if the following holds [19]

AC F (k) = 0.5
[
(k +1)2H −2k2H + (k −1)2H ]

, 0.5 < H < 1 (4.9)

In [19] Karagiannis et al. perform a comparison of the different available techniques for estimation of the
Hurst exponent. The authors state that calculation of this exponent is not straightforward for two reasons.
The first reason is because it can not be calculated definitively, but only estimated. The second reason is due
to different methods producing different, sometimes conflicting results and its not clear which provides a
better estimation. Hurst estimators can be classified into two main categories, the first one are estimators
operating in the time domain and the second are estimators operating in the frequency domain.

• Time domain estimators - They investigate the power law relationship between a statistic in time series
and the time aggregation of block size m. LRD exist if the statistic plotted versus m is a straight line in a
log-log scale. The slope of the line is an estimate of the Hurst exponent. Types of estimators:

– Rescaled range
– Absolute values
– Variance
– Variance of residuals

• Frequency/Wavelet domain estimators - They examine if a time series’ spectrum of energy follows the
power-law behaviour. Types of estimators:

– Periodogram
– Whittle estimator
– Abry-Veitch estimator

To simulate long range persistence the authors use two types of self-similar processes, fractional Gaus-
sian noise (fGn) and Fractional Auto Regressive Integrated Moving Average (FARIMA). fGn is an increment of
fractional Brownian motion (fBm), that is a random walk process with dependant increments. FARIMA(p,d,q)
is a fractional version of auto-regressive moving average process ARMA(p,q). In these processes p represents
the number of time steps in the past the present observation depends on, q represents the size of the moving
average window and d in the FARIMA process represent the number of differences that will be applied on the
original time series. For a process to be FARIMA d has to be non-integer and for the process to describe a LRD
series 0<d<0.5, in which H=d + 0.5 [19].

Each of the estimators listed was tested against the two different types of long memory series. For each
Hurst value between 0.5 and 1 with a step of 0.1, 100 fGn and 100 FARIMA series were generated. The authors
recorded for each estimation technique the average estimated Hurst exponent over each of the 100 fGn and
100 FARIMA series. The authors of [19] found that there were significant variations in the estimated Hurst ex-
ponent between the different techniques. Frequency domain estimators appeared to be more accurate, with
the Whittle and Periodogram estimators almost estimating exactly the Hurst exponents of the series gener-
ated through fGn. The Abry-Veitch estimator seemed to always over estimate the Hurst exponents, mean-
while time domain estimators failed to report the correct value. For time series generated through FARIMA
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the estimators were generally closer correct values, but none of the estimators managed to estimate the ac-
tual exponents.

To study the estimations sensitivity to the effect of various patterns common to time series such as peri-
odicity, noise and trend, the authors of [19] generated the following time series and the estimators were tested
again. In the following list the estimators together with the results obtained from the authors of [19] are given.

• Cosine + white Gaussian noise - Periodicity can mislead the Whittle, Periodogram, rescaled range and
Abry-Veitch estimators. The estimation depends mainly on amplitude of the cosine function, with the
estimations approaching 1 as the amplitude get larger

• fGn series + white Gaussian noise - Noise on LRD series caused all the estimators to underestimate
the Hurst exponent, with the exception of Whittle and Abry-Veitch estimators. However depending on
signal to noise ratio and Hurst exponents even these estimators can fail

• fGn + cosine function Periodicity on LRD data affected all the estimations. Depending on amplitude
of the cosine, time series estimators underestimate Hurst exponent. Frequency besed methods tend to
over estimate the Hurst exponent.

• Trend - The definition of LRD assumes stationary time series. Non-stationarity causes the Whittle es-
timate to be consistently 0.99, the Periodgram estimates Hurst exponent bigger than 1 and no other
method produces statistically significant estimations.

This analysis indicates that such patterns significantly affect the estimations. No estimator seems to be
consistently robust. However, signal processing techniques could be applied to overcome these limitations.

4.4. Effect of time scale on persistence
As it was mentioned, the Hurst exponent characterizes the global level of long range persistence on a time
series. Under different time-scales it is expected that the morphology of the series will be affected [45]. In [45]
Wang et al. have investigated the effect of different time scales using non-linear analysis. The authors of this
paper have collected all the flights trajectories over the course of a week that pass over a particular waypoint.
The arrival time of each flight to the waypoint was calculated and the time series of flights passing through
this waypoint was created for three different time-scales 10,15 and 30 minutes. The result of this process is
presented in Figure 4.4.

Figure 4.4: Air traffic flow time series at different time scales [45]

It is interesting to see that some of the peaks and valleys in the series occur simultaneously on the three
different time scales. This occurrence is indication that traffic flows are self-similar in nature. Through using
the rescaled range (R/S) method the authors of [45] have estimated the Hurst exponent for the three time
series presented, their results are given in Table 4.1. Looking at this results it can be seen that as the scale gets
bigger the Hurst exponent decreases, as such also the level of correlations in the data.
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Time Scale Hurst exponent
10 min 0.7224
15 min 0.6912
30 min 0.6440

Table 4.1: Results of estimating the Hurst exponent on different time scales [45]

In terms of making predictions it is desirable for the Hurst exponent to be as far away as possible from 0.5.
The higher this value the higher the likelihood that the system will continue on a trend. The lower the value
the higher the likelihood that the system will revert to the mean. As such, aggregating the time series data to
different time scales and estimating the Hurst exponent could provide insights in the process of selecting the
optimal look ahead time for making predictions.

As an alternative approach to time series aggregation the authors of [28] present a technique for applying
a local variant of the Hurst exponent based on different time scales. Besides identifying the long-range per-
sistence of the data the authors state that this technique can be used for identifying anomalies in the time
series. This Time-Scale Local Hurst Exponent (TS-LHE) method is based on the idea of a moving window
with variable size in which the (R/S) method is applied. In the next paragraphs the steps described by the au-
thors of [28] to apply the TS-LHE on time series data will be stated. The process is also visualized in Figure 4.5.

1) Defining the range of moving window size Ws In similarity to the time scale aggregation of [45], the size
of the moving window defines the time scales for which the correlations will be investigated. The minimum
window size Ws,mi n has to be no less than the minimum number of point for applying the R/S technique (4
points). The maximum window size Ws,max for all practical purposes can be set to the number of observations
available in the data N , in which case the global Hurst exponent of the data will be determined.

2) Padding the beginning and the end of the time series The end goal of the process is to have for each
observation in the original series a value of the local Hurst exponent. To achieve this virtual observations of
length L = Ws /2 are added to the beginning and the end of the original series, thus creating a new padded
series of length N +2L.

3) Applying for each window the R/S method For each window size and sample i in the original time series
the TS-LHE is obtained, H(i ,Ws )

4) Sliding the window Starting from the j = L sample of the padded series, the moving window of size Ws

is moved j +1 after applying the R/S. The process is terminated when sample j = N −L is reached. After this
point the process is restarted with a new window size.

After the process has been repeated for all defined window sizes, the result is a matrix with as many rows
as there are observations in the original series and as many columns as the window sizes tested. The matrix
contains the TS-LHE for each sample and observation time scale. The process was tested on a set of synthetic
seismograms. These seismograms are generated from a convolution of randomly distribuited spikes of vary-
ing amplitudes and a Ricker wavelet. In addition, a certain amount of white noise was added to investigate
the effect of noise on the process.

The results of this are given in Figure 4.6. On the left the noise free seismogram is given and on the left
a seismogram with a signal-to-noise ration of 10 dB. The red dots in Figure 4.6 indicate the locations of the
random peaks some of which are heavily attenuated. The plot named CWT represents the continuous wavelet
transform and is used as a comparison technique. Looking at the analysis of the noise free seismogram it can
be seen that the peaks and valleys of the mean TS-LHE for the most part can be used to identify the locations
of the spikes in the seismogram. Comparing the results of the TS-LHE with the CWT it can be seen that TS-
LHE is not affected by the amplitude of the spikes, meanwhile the CWT is amplitude dependant. Looking at
the seismogram with added noise, it can be seen that the CWT is more resistant to noise than the TS-LHE,
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Figure 4.5: Process of applying the TS-LHE method proposed in [28]. Plot A is the original time series, plot B is the padded time series,
plot C represents the result of the process for a certain window size.

however it is affected by the amplitude of the signal. It can be concluded that the TS-LHE technique can be
used to identify changes in the series behaviour and the time scales of highest persistence in the series.

Figure 4.6: Results of applying the TS-LHE technique on synthetic seismograms in [28]

4.5. Recurrence plots
Recurrence analysis is a powerful method that can be used for analysis and identification of hidden patterns
and dependencies in time series [22]. The most common tool to perform recurrence analysis is the recur-
rence plots. Such plots were used in [45] to study the stochasticity and determinism of air traffic flow time
series with different time scales.

Creation of a recurrence plot starts with the reconstruction of the phase space. The phase space rep-
resents the set of states that the system can enter [37]. In [45] the authors used a method called the "C-C
method" for reconstructing the phase space and in [22] the "Packard-Takens" procedure was used. Using the
notation of [22], the reconstruction of the phase space leads to the following

F (t ) = [x(t ), x(t +τ), ..., x(t +mτ)] (4.10)

where F (t ) is the m-dimensional pseudo phase space, x(t ) represents the state of the system at time t and
τ is the delay period. A recurrence plot can be considered as a projection of this phase-space on a two di-
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mensional plane. Consider two different points in the phase trajectory Xi and X j , where i and j are related
to time t . If the distance between these points is bellow a threshold ε, than point (i , j ) on the recurrence
plot is marked. The procedure is repeated for all pairs of points in the phase trajectory. Mathematically the
procedure is formulated as follows

RPi , j =Θ(ε−∥∥Xi −X j
∥∥) (4.11)

where ε is the distance threshold,
∥∥Xi −X j

∥∥ represents the distance and Θ(.) is the Heaviside function.
An example of recurrence plots is given in Figure 4.7. In this figure the two line plots represent time series
generated through Fractional Brownian Motion with Hurst exponents of 0,6 (top) and 0,9 (bottom). The left
recurrence plot corresponds to the time series with H = 0,6 and the right to the series with H=0.9. Comparing
the two recurrence plots it can be seen that for the most persistent series (right plot) the majority of points lie
close to the diagonal, meanwhile as persistence goes down the points start to spread further away from the
diagonal.

In [22] the authors present several metrics with which the topology of the recurrence plot can be analyzed
to extract information on the series predictability. The first measure presented considers the density of points
in a recurrence plot, the recurrence rate RR. The RR is defined as follows and it is probability that a state will
re-occur. In [45] the authors state that the choice of ε should be such that the RR is greater than 1% and it
also should be 15% less than the standard deviation of the pair wise distances in the phase trajectory.

RR = 1

N 2

N∑
i , j=1

RPi , j (4.12)

The second measure is the probability that the system recurs to a neighbourhood of radius κ of a former
point Xi after τ time steps, Pτ. It is formulated as follows

Pτ = 1

N −τ

N−τ∑
i , j=1

Θ(κ−||xi −xi+τ||) (4.13)

The next two measures are related to the presence of diagonal lines in the recurrence plot. The authors
of [45] state that straight diagonal lines in a recurrence plot are an indicator of determinancy. Let P (l ) be
the frequency distribution of lengths of diagonal lines. To quantify the amount determinancy the measure of
determinacy DET , which determines the percentage of points on plot that fall on diagonal lines, is formulated
as follows

DET =
∑N

l=lmi n
lP (l )∑N

i , j=1 Ri , j
(4.14)

where lmi n is the minimum length of a diagonal line. The second measure related to diagonal lines is the
average length of diagonal lines and it is an indicator of the average time of predictability. It is formulated as
follows

L =
∑N

l=lmi n
lP (l )∑N

l=lmi n
P (l )

(4.15)

The next two measures presented in [22] are related to vertical lines in the plot. In [45] the size and num-
ber of vertical lines are stated to be a measure of the stochasticity of the series. Let P (v) be the frequency
distribution of lengths of vertival lines and v the length of vertical lines. Similarly to DET but for vertical lines
the measure of laminarity L AM is defined, as the percentage of plot points on vertical lines. It is stated in [22]
that "LAM value characterizes the presence of fading states (i.e when the motion along the phase trajectory
stops or moves very slowly)" and is formulated as follows

L AM =
∑N

v=vmi n
vP (v)∑N

i , j=1 Ri , j
(4.16)

Similarly to the average length of diagonal lines L, the average length of vertical lines is also utilized. It is
refered to as trapping-time T T and indicates the average time the system can spend in the neighbouhood of
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a particular state. It is defined bellow.

T T =
∑N

l=lmi n
vP (v)∑N

l=lmi n
P (v)

(4.17)

Figure 4.7: Time series and recurrence plot of Fractional Brownian Motion with Hurst exponent of 0,6 (top line plot and left recurrence
plane) and 0,9 (bottom line plot and left recurrence plane). Obtained from [22]

From the discussion above and the measures presented in this section, it can be concluded that using re-
currence plots can be a useful tool for exploratory analysis of the available data. Information such as average
time of predictability can be used to determine the optimal prediction horizon and other measures such as
L AM and DET maybe useful input in the prediction process.

4.6. Applications of non-linear features in machine learning
Paper 1 - Introduction
In [33] Qian and Rasheed hypothesize that forecasting time-series with Hurst exponent higher than 0.5 the
forecasting error will be reduced. In order to perform this forecast they have opted to use a neural network.
As input data they used the Dow-Jones index daily returns for the period between 2nd of January 1930 to 14th

of May 2004. The Hurst exponent is calculated over periods of 1024 days. As training data 30 periods with
large Hurst exponent and 30 periods with Hurst exponent close to 0.5 are selected.

Paper 1 - Methodology
Estimating the Hurst Exponent For estimation of the Hurst exponent, similarly to [45] and [28], the authors
of [33] used the rescaled range method. For creation of the needed sub-periods they considered periods with
lengths 16,32,64,...,1024 days, they note that this method does not perform well with periods less than 10
days. Furthermore it is noted that as a daily return x(t ) they utilize the log difference of the price p(t ), that
is x(t ) = log

(
p(t )−p(t −1)

)
. The reason behind this choice is stated that it is a common method in the

financial domain, however there is a deeper implication with using the difference. As it was seen in [19]
when the Hurst exponent is to be estimated on a non-stationary time series all the methods tested failed to
produce statistically significant results. Taking the difference of a non-stationary time series is a common
transformation to convert the series to a stationary one [17].

Building confidence intervals As a final step the authors want to build the 95% confidence interval for the
Hurst exponent of a time series representing a fully random time series. To achieve this they perform a Monte
Carlo simulation where 10000 series of white noise with length of 1024 are generated. For each of the series
the Hurst exponent is estimated and the results are averaged over all the estimated exponents. The process
is repeated 10 times. The mean Hurst exponent at the end of the process was found to be 0.5454 and the
mean standard deviation was 0.0485, thus the Hurst exponent can be anywhere in the range between 0.4503
and 0.6405 for the series to be a random series. As a result of this 30 periods with Hurst exponent bigger than
0.6405 and 30 periods with Hurst exponent between 0.54 and 0.55 were selected.
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Data preparation In order to predict the next value in the series xi+1 given the time series x1, x2, ..., xi , the
authors have utilized Takens theorem to reconstruct the dynamical system. In this way a time-delay embed-
ded vector Xi = (xi , xi+τ, xi+2τ, ..., xi+(d−1)τ) is constructed, with d being the embedding dimension and τ the
separation. Using the auto-mutual information method the separation was found to be 1 and through the
false nearest neighbours method the embedding dimension was found to be from 3 to 5. The input Xi and
the target xi+1 are both normalized to mean of 0 and standard deviation of 1. Finally to avoid over-fitting the
dataset is split into train, validation and test sets.

Constructing the neural network The authors state that they did not observe an advantage of a deep archi-
tecture and for this reason only one hidden layer was used. For the learning algorithm the backpropagation
with momentum, conjugate gradient method and Levenberg-Marquardt algorithms were tested, with the last
being found to be the most effective. In order to select the number of hidden nodes the authors have utilized
the following heuristic method

(NH N +1) ·NH N + (NH N +1) ·NON = 1.5
√

Nd at a (4.18)

with NH N the number of hidden nodes, NON number of output nodes and Nd at a the length of the input
series. So for a embedding dimension of 3 the above equation results in (3+1)NH N + (NH N +1) = 1.5

p
1024,

which results in NH N = 10. As a loss function the the authors have used the normalized root mean squared
error (NRMSE). NRMSE varies between 0 and 1, being 1 when the predictions are close to the mean of the
target outputs and 0 when all the predictions are correct.

Paper 1 - Results
After training and validation the authors ran the test set and recorded the NRMSE for each of 30 periods with
Hurst exponent bigger than 0.65 and the 30 periods with Hurst exponent between 0.55 and 0.54. It was found
for the periods with high Hurst exponent that the average NRMSE over the 30 periods was 0.9439 and for the
other 30 periods the NRMSE was 0.9731. As a final step a students t-test was ran to test the null hypothesis of
the mean values of the two sets of periods being equal. The t-statistic was found to be 7.369 and the p-value
7.029 ·10−10, indicating that the null hypothesis can be rejected and the chance of equality being negligibly
small. Thus the authors conclude that their initial hypothesis is valid, thus periods of high Hurst exponent
can be forecasted with a lower error.

Paper 2 - Introduction
Non-linear dynamical features such as Hurst exponent, scaling exponent, approximate entropy and corre-
lation dimension have been widely used in the health care industry for analysis and classification of EEG
signals[4]. In [48] Yuan et al. are concerned with the problem of binary - classification of EEG signals. In
particular they are interested to classify if a certain signal is ictal (having a seizure) or intericatal (for pa-
tients suffering from epilepsy this represents the nominal condition). As input features for the classification
problem the authors have investigated three non-linear dynamic features of time-series, namely the Hurst ex-
ponent, the scaling exponent and approximate entropy. Furthermore they consider 3 different classification
algorithms, extreme learning machine (ELM), a backpropagation network and a SVM.

Paper 2 - Methodology
Approximate entropy (ApEn) This is a statistical technique that is used to quantify the regularity of a time
series. In particular this technique is focused in detecting the unpredictability of fluctuations in a time series
[29]. Whereas the Hurst exponent is used in the identification of mean reverison, trending behaviour or
complete randomness ApEn is aimed at identifying if a time series has repetitive patterns of fluctuation. As
such it can be considered as a measure of predictability of a time series. ApEn is a non-negative number, the
larger its value the more irregular the time-series is [48]. The methodology for its calculation is described in
the appendix of [48].

Hurst exponent Without going much into detail as it has been already discussed several times, much like
the other papers discussed in this chapter the authors of [48] have used the rescaled range method and its
asymptotic behaviour to obtain this exponent.
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Scaling exponent The scaling exponent α like the Hurst exponent is a measure of the long term correla-
tions in a time-series. It is obtained through detrended fluctuation analysis (DFA), which is described in the
appendix of [48]. As the name suggests the method is able to work with both stationary and non-stationary
series as any existing trend will be removed. The value of the scaling exponent varies from 0 to 1.5 [32]. Simi-
larly to the Hurst exponent when the scaling exponent is equal to 0.5 it represents a random walk[32]. When
0 < α < 0.5 the series has anti-persistence and when 0.5 < α < 1 the series has persistence. When α > 1 the
correlations exist but are not any more of the power-law type [32].

Machine learning The authors have investigated three different classification algorithms. The first two con-
sist of a single hidden layer feedforward neural network and the third is a SVM. The two networks differ from
each other in the learning algorithm used to tune the weights of the network. In the first case of an ELM
the input weights and biases are selected randomly and the output weights in the end are solved for analyti-
cally. In the case of the backpropagation network all the parameters are tuned simultaneously and iteratively
through a gradient descent. Each of the three non-linear dynamic features are used as seperate inputs to the
three models to assess the performance of each of them individually and they are also combined in the end
to investigate their performance jointly.

Paper 2 - Results
When using only the ApEn as input feature the authors obtained on all the three machine learning models a
classification accuracy of 88%. The ELM required the least amount of time for training and testing followed
by the backpropagation network and the SVM was the slowest. When using the Hurst exponent as a single
input feature the classification accuracy was again 88% for all three models and the run times did not change
from the prior case. When using the scaling exponent as input the accuracy of all three models degraded
slightly with the extreme learning machine having an accuracy of 82% and the remaing two models resulted
in an accuracy of 81.75%. Finally when combing Apen, Hurst and scaling exponent as input features the
classification accuracy was found to be 96% for the ELM, 95.5% for the backpropagation network and 95.25%
for the SVM.

Paper 3 - Introduction
In [15] Hatami et al. consider the task of time series classification. Incentivised by the classification perfor-
mance achieved by convolutional neural nets (CNN) in image and speech classification the authors consider
using such an architecture for classifying time series. In CNNs the input typically consists of an image which
is passed through the different layers of the network and features of different hierarchical order are extracted
from the image. In order to convert a time-series, which is a one dimensional vector, into an image the au-
thors have converted such series to recurrence plots.

Paper 3 - Methodology
Recurrence plots The authors of the paper have utilized recurrence plots to encode time-series information
into an image. As it was explained in section 4.5 the process involves reconstructing the phase space of the
time series and checking for all pairs of states if the distance between them is less than a threshold. The
authors of [15] note that through this thresholding and binarization of the resulting image some information
is lost. To overcome this, creation of the recurrence plot has been modified to contain the distances between
the pairs of states.

CNN for classification of time series In order to perform the classification the authors utilize two convolu-
tional layers each of them followed by max pooling and dropout layers. The last two layers are employed for
increasing the generalization ability of the network and preventing over-fitting. Through these two stages the
most important features of the image are extracted and feature maps of different levels are created. Finally
these feature maps are flattened and passed through a fully connected layer that leads to the output layer
with as many nodes as there are classes to be predicted.

Input data & algorithms for comparison The time series that were used in this research where obtained
from the UCR archive for time series classification. The series in this archive vary in terms of number of
classes from 2 up to 60 classes for some series, in terms of training samples from 16 up to 8926 and length
of time series from 24 up to 2709 observations. For the experiments 20 series from this archive were selected
about a quarter of them are used for binary classification and the rest are multi-label classification problems.



32 4. Nonlinear system analysis

The algorithms considered for comparison included 1NN-DTW (1 nearest neighbour dynamic time wrap-
ping), Fast-Shapelets, Bag of Patterns, SAX-VSM (Symbolic Aggregate Approximation Vector Space Model). In
addition to the above, three algorithms that involve transforming time series into an image are also used for
comparison. For each of the series and algorithms considered the error rates were recorded and comparison
is done on the basis of Number of Wins (Number of times an algorithm had the lowest error rate out of all
considered for the dataset) and Average Rank ( mean of the error rate ranking over all datasets)

Paper 3 - Results
After running all the algorithms and recording the error rates the results are presented in Table 1 of [15].
From this process it was found that proposed methodology yielded the best results both in terms of number
of wins (10/20) and average rank (2.15). On 9 out of 20 tested datasets (6 binary, 3 multi-label classifications)
the proposed solution scored an error rate of 0. On the datasets in which the method did not win the error
rates varied between a minimum of 0.006 to a maximum of 0.29. The authors state that the proposed solution
offers advantages in terms of recurrence plot being able to visualize certain patterns that are not easily seen
otherwise and that the CNN is able to extract features of different levels from the time series.
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In the introduction it was concluded that one of the biggest bottlenecks that hinders the growth of the air
travel within Europe is the ATM system and infrastructure. In particular a big part of this problem stems from
ATFM. Given the lack of research aimed at predicting reactionary ATFCM regulations in Europe, this study
is envisioned to fill this gap and obtain a better understanding of the application and evolution of ATFCM
regulations.

In order to achieve this high level objective in the following section the main objectives and sub-objectives
will be stated. Based on these objectives the main research question and related sub-questions will be for-
mulated. Finally, in order to achieve the research objectives and give an answer to the research questions the
research plan is presented.

5.1. Research objective
As it was seen in the literature study, research in the field of ATFM in the last years has been focused in predic-
tion of air travel delays [6] or the most important factors that lead to a ground delay program [24]. In addition
to that all of this research has been focused in the context of the US ATM system. For this reason the high
level objective of this research is to create a model that will be able to predict the future ATFCM regulations
in Europe. Thus the main objective of this study is:

"To construct a predictive model that, given a list of ATFCM notification messages (ANM) at time t is able to
predict the characteristics such as, duration, time to activation and types of regulations at time t +∆t by using
historical ANMs to train a machine learning model for making predictions."

The second research objective is related to the prediction horizon ∆t and is formulated as follows:

"To develop a methodology with which the maximum prediction horizon for an area control center can be
quantified by using the concept of long-range dependence and in particular the Hurst exponent as an indicator
of the predictability of the process."

5.2. Research question
Based on the research objectives that were defined in the section above the research questions have been
formulated. With respect to the main objective the main research question is formulated as follows

" How can historical ATFCM notification messages be used in a machine learning model to predict for a
certain prediction horizon the duration, time to activation and number of future ATFCM regulations during

the tactical phase of operations for a certain area control centre?"

Following this main research question it can be broken down into the following sub-questions related to
the prediction horizon:

1. How can one determine an appropriate value for the forecast horizon?
2. How can the value for this prediction horizon be verified?
3. How can the value for the prediction horizon be validated ?

Related to the machine learning context of the project the following sub-questions are formulated:

33
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1. How to determine which features from the ATFCM notification messages are the most appropriate to
be used as input variables to the machine learning model?

2. How to evaluate the predictive performance of the machine learning model?
3. How to analyze the impact of different prediction horizons on the output predictions?
4. How can the future predicted regulations be distinguished whether they are new, changed or cancelled

regulations?

5.3. Research planning and management
In Figure 5.1 a Gantt chart detailing the long-term planning of the research is given. The activities planned
have been based on the master thesis timeline of the Aerospace Engineering faculty. For the most part the
task durations have been based also on this suggested timeline. The tasks shown in green represent an opti-
mistic duration, so the shortest amount of time to be done. The orange tasks on the other hand represent a
pessimistic duration. In this way upper and lower bounds for completion of the thesis are provided.

With regards to the tasks after the "Midterm review" their durations are assumed to be the same for both
optimistic and pessimistic scenarios, only the start and end times deffer due to the dependencies on the ini-
tial tasks. In the scenario that the activities planned after handing in the literature review are completed in the
soonest scenario, a two week break is planned such that the midterm review wont have to be on the first day
of the new academic year. Besides that break the plan presented in Figure 5.1 it is assumed that the weekends
are non-working days.

In terms of managing the research project, given its nature and the absence of a clear requirement space, it
is deemed that a mix of agile project management methods together with long-term planning would be most
suited. In this way the milestones and major deadlines are dictated by the long-term plan, while planning the
activities to reach the end goal will be done on a bi-weekly basis.
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