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Abstract

Cardiovascular diseases are the leading cause of death in the developed world. Prevent-
ing these deaths, require long term monitoring and manual inspection of ECG signals,
which is a very time consuming process. Consequently, a wearable system that can
automatically categorize beats is essential.
Neuromorphic machines have been introduced relatively recently in the science com-
munity. The aim of these machines is to emulate the brain. Their low power design
makes them an optimal choice for a low power wearable ECG classifier.
As features are crucial in any machine learning system, this thesis aims at proposing an
energy efficient feature extraction algorithm for ECG arrhythmia classification using
neuromorphic machines. The feature extraction algorithm proposed in this thesis con-
sists of the merger of a low power feature detection and a feature selection algorithm.
Also, different network configurations have been investigated to achieve classification
using an LSM architecture. The resulting system can accurately cluster seven beat
types, has an overall classification rate of 95.5%, and consumes an estimate of 803.62
nW.
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Introduction 1
Cardiovascular diseases are the leading cause of death in the developed world, ac-
counting for more than 30% of the deaths [9]. In order to prevent these deaths long
term electrocardiography (ECG) monitoring is required. Following the monitoring,
cardiologists need to examine the acquired ECG signals manually and find the sick
beats. This is a very time consuming job and some of the diseases might even require
immediate action when detected. Thus, a wearable device that can cluster the beats
is essential.

Neuromorphic systems have been introduced in 1990 by Carver Mead [10]. Neu-
romorphic systems aim to achieve brain emulation by imitating biologically plausible
models of neurons, synapses and learning algorithms. The appeal of neuromorphic
systems comes from their low power promise and the feasibility of implementing such a
system. Therefore, they are an excellent candidate for the classification task at hand.

The nervous system consists of billions of neurons, which communicate through
electrical and chemical spikes. Together they form what is called a Spiking Neural
Network (SNN). The neurons are not directly connected to each other, their connection
is achieved by synapses, which convert their electrical spikes into chemical spikes to
transfer them to the other neurons that they are connected to. Perhaps the most
important functionality of a synapse is the learning. Learning is realized in the
synapses by a mechanism commonly-named synaptic plasticity. An anatomical model
of a neuron and a synapse can be seen in Figure 1.1

The most basic learning algorithms that govern or explain the synaptic plasticity
are based on Hebbian learning, which was introduced by Donald Hebb in 1949 [11].
It was then further developed in time and rules such as Anti-Hebbian learning was
introduced by various people such as [12], [13], [14].

1.1 Problem Statement

The main problem at hand is choosing the correct features when classifying ECG
data. The aim is to create a wearable device that can cluster different beat types.
Consequently, due to the large number of potential diseases, each with its own
characteristic features, and due to each person having a distinct characteristic ECG
signal, complexity of the problem is significant. It is also worth mentioning that, the
features that work best for classifying varies even from learning model to learning
model [15].
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Figure 1.1: Anatomical Neuron and Synapse

Another problem noted is related to the character of ECG signals, namely the fact
that they vary from person to person [16]. In addition, there is a very limited number
of sick beats in the databases. These two problems emphasize the importance of using
an unsupervised learning method.

1.2 Approach

Classification problem consists of many steps, the process flow to achieve classification
can be seen in Figure 1.2.

First of all as mentioned in the problem statement using the right set of features is
essential in classification. Thus, the main goal is to find a suitable feature extraction
algorithm that is compatible with an SNN. Using as many features as possible is not
always the optimal solution both in terms of power and accuracy. In order to achieve
a good trade-off between power and accuracy, a feature selection algorithm is a must.
The main goal in selecting and modifying algorithms for both feature detection and se-
lection is to find algorithms that are very low power and still achieve acceptable results.

In order to achieve this goal various algorithms have been examined in terms of their
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Figure 1.2: Flow Diagram of the Approach to the Classification Problem

power-efficiency, and they have been implemented and tested to see their performance.
The next step is to classify the features. This consists of two steps: first the en-
coding of the features into spikes and then configuring the network for the classification.

1.3 Goals

The main goals of the thesis are:

• Proposing a low-power feature extraction algorithm to be used jointly with a
neuromorphic machine.

• Designing a wearable low-power one-lead ECG signal global arrhythmia classifier.

1.4 Contributions

The main contributions of this thesis are:

• Providing a low power feature extraction algorithm (feature detection and selec-
tion) for ECG signals that would allow for the best accuracy-power trade-off for
classification using neuromorphic circuits.

• Providing a better understanding of different configurations that are required by
LSM neuromorphic circuit architecture, for it to be able to classify ECG signals
given that, the features are encoded using population offset coding.

1.5 Thesis Outline

In Chapter 2 of the thesis a background on ECG signals and arrhythmias, feature ex-
traction, spike encoding, and classification will be provided. Chapter 3 will go over
the analysis of feature extraction in two parts, first feature detection and then feature
selection. Chapter 4 gives the details on the configurations of the network, achieved
classification results, analysis of the results and possible improvements to the classifi-
cation system. Finally, the conclusion and future work is presented in Chapter 5. More
detailed information on the biological background and the simulation model can be
found in Appendix A.
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Background 2
This chapter aims at giving a brief introduction to ECG signals and the classification
process for ECG signals. The elaborations will focus on explaining how the system
works, giving examples of the state of the art solutions and the restrictions set by the
problem.

2.1 ECG Signals and Arrhythmia

Electrocardiography (ECG) measures electrical activity on the heart using the po-
tential difference between different leads placed on the body. A typical healthy ECG
heartbeat can be seen in Figure 2.1. An ECG beat consists of four typical complexes:
P, QRS, T, and U. The U wave cannot be distinguished most of the time, thus it is
generally not illustrated. The P wave indicates the contraction of the atrial rooms
of the heart, the QRS complex shows the contraction of the ventricular rooms and
finally the T wave is the relaxation of the ventricular rooms. The shape and size
of these waves vary based on the lead that the signal is being observed from. As
a result different features can be seen from different leads, which makes diagnosing
certain diseases easier from certain leads. However, most of the arrhythmias can
be distinguished from the modified lead two (ML-II lead), which can be seen in
Figure 2.2. Moreover the aim of this thesis is to design a system that can potentially
be implemented as a wearable device. This factor limits us to use only a three lead
ECG instead of a hospital level 12 lead ECG. Using three leads means that we can
still have multiple channels, however due to the lack of data from such a recording
only the ML-II lead is used in this thesis.

We can also see some of the typical features in Figure 2.1 that are examined
on an ECG signal to detect abnormalities. Arrhythmias as their name suggest are
usually abnormalities in the rhythm of the heart (i.e. heart rate). An example of
an arrhythmia can be seen in Figure 2.3. Making use of features other than the
heart rate, help differentiate between a regular beat and a sick beat, and also assist
in differentiating between different beat types. Existing beat types in the MIT-BIH
Arrhythmia database [17] can be seen in Table 2.1.

All the features have a pre-determined normal range in an ECG signal. How-
ever, there are differences between each person’s normals, so these pre-determined
ranges are not always useful. Instead machine learning is a promising tool to
overcome the problems caused by differences that emerge in different people. On
top of this, another problem, which we encountered with ECG signals is that there
are not enough labeled beats for training as it is a very time consuming job for
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Figure 2.1: ECG Signal and Typical Features

Figure 2.2: Placement of 3-lead ECG. Looking at the potential difference from the right
shoulder to the left hip gives the ML-II signal.

cardiologists. This problem combined with the above one causes significant difficul-
ties to classification tools. In order to solve these issues in unison we need a system
that utilizes unsupervised machine learning. This has been strongly emphasized in [18].
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Figure 2.3: Premature Ventricular Contraction Beat Among Regular Beats

Table 2.1: Arrhythmia Types and Their Respective Annotations in MIT-BIH Database

Annotation Meaning

N Normal Beat

L Left Bundle Branch Block Beat

R Right Bundle Branch Block Beat

A Atrial Premature Beat

a Aberrated Atrial Premature Beat

J Nodal (junctional) Premature Beat

S Supraventricular Premature Beat

V Premature Ventricular Contraction

F Fusion of Ventricular and Normal Beat

! Ventricular Flutter Wave

e Atrial Escape Beat

j Nodal (junctional) Escape Beat

E Ventricular Escape Beat

/ Paced Beat

f Fusion of Paced and Normal Beat

Q Unclassifiable Beat

| Isolated QRS-like Artifact

2.2 Feature Detection

Feature detection in ECG signals mainly focuses on the signal from the ML-II lead.
The main property of this signal is (as can be seen from Figure 2.1) that the R waves
are quite large and dominant. Thus, the algorithms mainly focus on first detecting the
QRS complex and then finding the P and the T waves accordingly. All the algorithms
have the same steps behind them. They subject the ECG signal to various filters
(which is called preprocessing) both to suppress noise and to accentuate the QRS
complex. The resulting signal then, goes through an adaptive thresholding phase to

7



Figure 2.4: Flow Diagram for Feature Detection

find the QRS complexes. Finally if the algorithm supports it, the P and T waves are
searched in small windows around the QRS complex. This section aims at exploring
some of the possible algorithms for feature detection and comparing them with respect
to the goal of this thesis.

2.2.1 Methods and Algorithms

In this section, four distinct feature detection algorithms for ECG will be investigated.
ECG feature detection is divided in to two sections most of the time: QRS detection,
and P and T wave detection. The following sections will go through some of the
possible algorithms developed to detect these features, and will go into further detail
in the implemented algorithms.

2.2.1.1 QRS Detection1

Most papers focus on the QRS detection of ECG signals, since they are much easier
to locate due to the high amplitude R spike in the ML-II lead of an ECG as can be
seen from Figure 2.1. Most algorithms depend on preprocessing the signal to obtain a
cleaner signal with less noise, transforming the signal in a way that would emphasize
the QRS complex, and finally using an adaptive thresholding method to find the QRS
complex locations. A flow diagram for this process can be seen in Figure 2.4.

An exception to this method can be [19], which uses the energy of the signal to
locate the QRS complex (making use of the high amplitude R peak). The algorithms
to be explored in this subsection include [1], [8], and [20]. In this thesis, all these
algorithms have been implemented and their accuracies and complexities compared.
Since the source codes for these algorithms were not available, except for [8] and even
for that one the provided code had to be altered, several additions have been made to
all of them, which will be explained throughout this section. As a result of the added
complexity, [21] has not been implemented. It was not worth for the small gain in
accuracy in the case of a hardware implementation, .

In [8] a mathematical expression is used that calculates the length of a line within
a given window. This transformation is called curve length transform. Since the QRS
complex has a spike, the window that contains the spike has a much higher value than
the others. The shape of the signal after transformation can be seen in Figure 2.5.
After this transformation, an adaptive thresholding algorithm looks for the QRS
complexes and the first threshold is found with the help of a training phase that goes

1The implementation work in this subsection has been done in collaboration with my colleague Johan Mes.
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Figure 2.5: ECG Signal and Its Curve Length Transform

through the first 8 seconds of the data to find a reasonable threshold.

The oldest of the evaluated algorithms is [1]. For preprocessing, it subjects the signal
to a low pass and a high pass filter cascaded to achieve a bandpass filter. The filter is
necessary as it suppresses the muscle noise, 60 Hz interference from the power line, and
baseline wander present in ECG signals. The desired pass band for the filter is 5-15
Hz for this algorithm. As it is a very old algorithm and the sampling frequency they
used (250 Hz) is different than the one the current database has (360 Hz) a new filter
has been designed in MATLAB to fit the requirements. This has considerably (about
50% less error) improved the results compared to using the old filter. Following this,
the signal is passed through a derivative filter, this helps accentuate the QRS complex
since it has a high slope spike in it. Also the output of this filter is used in the literature
to find the onset and end points as well, such as in [22]. Then, the signal is squared to
remove the negative parts and finally passed through moving-window integration. An
example of the resulting signal after each stage can be seen in Figure 2.6.

The size of the window needs to be set as the largest possible QRS. If the window
is too small there might be multiple peaks, and if it is too wide it might merge with
the T wave. It has been found empirically in [1] to be 150 ms wide. Following this
transform, an adaptive thresholding takes place to find the QRS locations, also a
search-back principle is employed when a QRS has not been found in 1.66 times the
local average heart rate, the threshold is halved and it goes through the area again.
Since a way to find the onset and end points has not been described in detail in [1] the
method that has been used in [8] has been adapted to this one. Due to the similarity
of the resulting shapes after the transformation it works just as well as it does with [8].
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Figure 2.6: ECG Signal and Outputs of Each Stage in [1] Algorithm

Wavelet transforms are used in [20]. Wavelet transforms are a mathematical
transform to represent any signal as a combination of multiple wavelets. Different
transform levels of an actual ECG can be seen in Figure 2.7. The peaks that can be
seen in Figure 2.7 are called the modulus maxima points of a signal. Distinct shapes
are obtained in the wavelet domain, for each different shape in the time domain. The
algorithm uses an adaptive thresholding algorithm to find the possible QRS complexes
in the wavelet domain. It then eliminates the unlikely candidates and marks the QRS
complexes. The algorithm starts by looking at the modulus maxima points on the
fourth level and goes down from there. One of the reasons for this is that larger scales
have fewer modulus maxima points and that helps with the calculation time and the
other reason is that higher scales greatly suppress the high frequency noise components
and prevents them from creating modulus maxima points. After the modulus maxima
points are found using again an adaptive thresholding process, the ones that actually
represent QRS complexes have been selected by elimination of isolated and redundant
modulus maxima points. Then the R peak is located at the zero-crossing point of a
positive maximum-negative minimum modulus maxima pair. The onsets and ends are
looked for in level two of the transform, which is a modification taken from [21]. The
onsets are the points where the first modulus maximum point of the QRS complex
meets the baseline, and the end points are where the last modulus maximum point
meets the baseline.
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Figure 2.7: All detail levels of the wavelet transform of an ECG Signal

2.2.1.2 P and T Wave Detection

P and T wave detection is a more arduous task compared to QRS complex detection
mostly due to their low amplitude. On top of that, it is also more difficult to find
the onset and end points due to their much smaller slope in comparison with the QRS
complex. There is currently no database available that properly annotates these waves.
Only the QT database [23] annotates 30 P and T waves for each patient and the
accuracies of the algorithms have been given based on that.

Due to the lack of a proper database to test the implementations, the values pre-
sented in the papers have been used for evaluation. Based on [24], [20] performs better
than [22] and the method proposed in [24] is slightly better than even [20]. In [22],
[1] is used for the QRS detection and then the output of the derivative filter from [1]
again for finding P and T waves. On the other hand, [20] as discussed above uses the
wavelet transform for detection, however assuming the QRS complexes have already
been found the detection for P and T waves is not as complex as the QRS detection.
Finally, [24] uses what is called a multiscale morphological derivative for detection of
wave boundaries.
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Table 2.2: Average Accuracy over All Patients in MIT-BIH on Finding Beats for the Imple-
mentation of All Three Algorithms

Evaluation [8] [1] [20]

Average Beat Count 2289 2267 2266

True Positives 2261 2247 2215
False Positives 28 20 51
False Negatives 23 37 69

True Positive Rate 98.98% 98.48% 96.92%
Positive Predictive Value 98.73% 99.13% 97.58%

2.2.2 Comparisons

The main problem encountered is the evaluation of these methods. The most com-
monly used database to evaluate the performance of these algorithms is MIT-BIH
Arrhythmia Database [17]. However, that database only has annotations around the
R peak, which limits our evaluation to finding beats. The only database, as far as
we are aware of that contains onset and end points, as well for the complexes, is the
QT database [23]. As previously mentioned, even that database only contains manual
annotations for only around 30 beats per patient. Thus, the algorithms were evaluated
on the MIT-BIH database only on their capabilities at finding beats, and the results
can be seen in Table 2.2. The achieved results are slightly worse than the ones reported
in the papers due to the absence of the actual source code for the given algorithms.

Following this, a complexity comparison between the algorithms has been made
to evaluate their power consumption. The results can be seen in Table 2.3. It can
be seen that [1] has the most complex transform, whereas [20] has the most complex
detection algorithm. On the other hand, [8] is relatively simple transform and a simple
detection algorithm. Considering the accuracies obtained from the implementations as
well, [8] proves to be the most suitable algorithm for the purpose of this thesis. It is
worth mentioning that the accuracy percentages achieved by [20] and [21] are superior
to [8] in the papers, however the added complexity prevents them from being a viable
candidate for a wearable system.

2.2.3 Conclusion

Spiking neural network that will be used for classification causes no restrictions to the
feature detection algorithms. Considering all the data in this section the adaptation
of [8] achieves the best results in terms of QRS complex detection. Moreover,
it is also the least complex one of the algorithms. For P and T wave detection
[20] will be used as it is not as complex when only applied to the P and T wave
detection and it achieves good results. The combination of [8] and [20] has actually
been proposed in [3] as well, and has been implemented in [25]. This implementa-
tion uses 65 nm technology, has an area of 0.03416 mm2, and consumes a mere 642 nW.
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Table 2.3: Complexity Comparison of QRS Detection Algorithms (L is the length of the sig-
nal). “Transform” shows the number of operations required for each algorithm, to transform
the signal to their respective domain. “Learning” indicates the required number of steps for
[8] to learn a threshold. Finally, “Detection” shows the number of operations required in
each iteration (sample) during the detection phase. “If Not Beat” is used to indicate the
number of operations required if the sample being examined is detected as non-beat sample
and conversely for “If Beat”. “If Beat” requires more operations since it requires finding the
onset and end points.

[8] [1] [20]

Transform Transform Transform

Add 61L 67L 16L
Mul/Div 7L+1 71L 24L
Square L L -

Square root L - -

For Each Sample Learning Learning Learning

Add 4 - -
Min 2 - -

Compare 5 - -
Mul/Div 2 - -

For Each Sample Detection Detection Detection

If not Beat If not Beat If not Beat

Add 1 - 4
Min 2 - 1

Compare 1 3 7
Abs - - 2

RMS over - - 720

If Beat If Beat If Beat

Add 622 615 799
Min - 7 9

Compare 629 631 1009
Mul/Div 28 18 5

Abs - - 319
Sort - 1 3

RMS over - - 54000

2.3 Feature Selection

Having the onset, end and peak points of P, QRS and T complexes, we can obtain
tens of signal features. However, not all of these features would be necessary to detect
the beat types we are interested in. Since the aim is to create a global classifier,
we are aiming to detect all the beats in Table 2.1. Furthermore, most diseases have
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Figure 2.8: Choices to Be Made for Feature Selection

very few indicators and using too many features will make them look more and
more similar to healthy beats. The fact that they have only one feature that is
different than healthy beats and ten features that are the same as healthy beats might
lead to misclassification. In addition, using fewer features lowers training time and
network size, as well as allowing lower power consumption. The literature covering
this topic is limited for ECG signals, except for [18], existing classification methods in
Section 2.4 focus on fewer disease groups which allows them to use a much lower and
select feature count. This section will go over various choices that need to be made
to decide on a feature selection method and will explore methods that fit these decisions.

2.3.1 Feature Selection Choices

Feature selection itself is a vast field of research since it is a very important part of
machine learning. However, there are certain choices that need to be made to find a
fitting feature selection algorithm for our system. The different options we have can
be seen in Figure 2.8.

The first option we have is to whether use a supervised or an unsupervised feature
selection algorithm. Just as in machine learning for supervised feature selection the
input data to the system have labels. Supervised feature selection algorithms are
embedded and wrapper methods as those are the ones that use the classifier as part
of the feature selection process. Most supervised algorithms use a greedy approach to
find the feature set that gives the best classification results with the given classifier.
As most other greedy approaches this approach gives exceptional results yet is an
expensive method. It gives the smallest possible feature set that achieves the best
results. However, as mentioned having labeled heartbeats is not a realistic case and
the feature set that works for one patient might not work for another one. If we look
into our specific case, we have said that we want to achieve unsupervised classification
ergo we need an unsupervised feature selection algorithm.

The next choice to make would be whether to have an on-chip or an off-chip
feature selection. The advantage of having an off-chip feature selection algorithm is
the available computing power at our disposal. As mentioned before ECG signals are
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rather unique throughout the population. Just as each individual people will not have
the same set of diseases, diseases may and will appear differently in different patients.
This problem requires the feature selection method to be adaptive to each situation.
Thus, an off-chip algorithm would require the data to be sent to a computer for feature
detection during operation. However, data transmission is a very power consuming
task. The other option in this case is to use an on-chip feature selection algorithm and
this thesis will focus on that solution.

The final choice is the run time of the feature selection algorithm. An online
feature selection has many benefits over a non-online one, especially for the case of an
ECG, since what is normal for an ECG signal can change in time. The only downside
of course is the increased computational requirement. It has been shown that an
online feature selection algorithm can be used efficiently for ECG classification in [18].
However the nature of our classification system does not allow online feature selection.
Classification in spiking neural networks is based on learning certain patterns for each
distinct input data. However, an online feature selection algorithm will cause the
input data set to change. This will completely change the results of the classifier and
it would need to be retrained for the new feature set so that it can learn the new
patterns. Thus, the use of spiking neural networks restrict us to non-online feature
selection.

2.3.2 Methods and Algorithms

There are three main methods for feature selection: Filter, Embedded and Wrapper
methods [26]. Filter methods rely on the intrinsic statistical properties of the given
feature set. This can be looking at the correlations within the data using a correlation
matrix or creating a new orthogonal basis for the feature set using Principal Com-
ponent Analysis (PCA) or using Independent Component Analysis (ICA) to again
create a reduced feature set. Embedded and wrapper methods on the other hand
use the output of the learning machine (classifier) and try to optimize the output of
this machine with various feature sets. As a result embedded and wrapper methods
usually have better results, yet they are computationally more expensive. The main
difference between these two methods is that embedded methods have an added metric
or penalty in the learning process.

In the end it is decided to use a non-online, on-chip, unsupervised method for
feature selection. Having this in mind, we can still select between all types of
feature selection algorithms, namely filter, embedded and wrapper methods. When
dealing with unsupervised feature selection embedded and wrapper methods still
use the classifier output to update their feature set. Due to the absence of labeled
data, they do this by using a pre-determined metric that shows them how good the
output clusters are. However, taking into account that we are experimenting with an
unexplored, abstruse classification method, filtering methods are a more reasonable
choice. Fitting these criteria, two different methods have been explored: Principal
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Component Analysis (PCA) and Correlation Matrix.

2.3.3 Conclusion

Due to the restriction of the problem at hand and restrictions caused by the neuromor-
phic machine, it is decided to use a non-online, on-chip, unsupervised filtering method
for feature selection.

2.4 Encoding and Classification

The final step in the classification is encoding and the classifier. This section investi-
gates various encoding methods for spiking neural networks and shows the state of the
art classifiers for ECG classification. For the classification simulations the simulator in
[27] has been used. A short introduction to neuromorphic machines and the simulator
can also be found in Appendix A.

2.4.1 Encoding Algorithms

Two main methods of encoding are rate based coding and time based coding. As
their names suggest the rate based coding creates a stream of spikes with different
rates based on the input amplitude. Whereas time based coding employs the added
flexibility of a spiking neural network and encodes the data based on the spike time.
Since learning in spiking neural networks is also based on spike times this method
can be practiced. Two algorithms implemented in [27] that employ these schemes are
respectively BSA [28] and population offset coding [2]. Based on [27] population offset
coding can be used efficiently in spiking neural networks. Therefore, this method has
been used.

Population offset coding, as described in [2], employs an encoding based on
receptive field arrays. This allows a continuously valued input variable to be encoded
using a population of neurons. The neurons in the population display overlapping
sensitivity profiles. In this work Gaussian activation functions have been used. In this
encoding scheme, highly stimulated neurons fire first, whereas the less stimulated ones
fire later. Their stimulation profile is as mentioned before determined by a Gaussian
activation function and this function determines each neuron’s receptive fields. Each
input stream is normalized and then based on the number of input neurons assigned
for each input, receptive fields are set. An example of an encoding can be seen in
Figure 2.9. In this thesis, a five neuron resolution for each input has been used.

2.4.2 Classification Methods

This section discusses the various ECG classification methods in the literature. Most
of these classifiers focus on a small number of beat classes as non-global classifier
usually score better than global ones since they can be optimized for a smaller number
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Figure 2.9: Population offset encoding [2]. The value a is encoded such that, first neuron five
fires, then four, six, three, and seven in that order.

Table 2.4: State of the Art Comparison
Accuracy Learning Features Disease Power Tech. Area Supply

[30] 98.9% Supervised 18 2 NA NA NA NA

[31] 86% Supervised 10 Prediction 2.78µW 65nm 0.112mm2 1V

[32] ∼99% Unsupervised 3+Beat 2 NA NA NA NA

[33] NA Supervised 7+Beat 5 Classes NA NA NA NA

[34] 98.5% Unsupervised 12 16 NA NA NA NA

[35] 97.25% NA Beat 3 5.967µW 0.18µm 2.465mm2 1.2V

[36] 87% Supervised 3 4 112.7µW 65nm NA NA

[37] 9̃9% Unsupervised 9 2 NA NA NA NA

[38] 97% Unsupervised 5 3 NA NA NA NA

[39] 97% Supervised 6 4 NA NA NA NA

[29] 98.41% Supervised NA 4 NA NA NA NA

of items [29]. A comparison of various methods can be seen in Table 2.4.

First of all it can be seen from Table 2.4 that only one of the classifiers actually
is a global classifier, since only [34] is used to classify 16 types of diseases. This is
important since this thesis also aims for global classification. All the other classifiers
are focused on a small number of beats types. As a result, non of them have an
embedded feature selection process, which is novel to this work. On the other hand,
[34] uses what is called a Hermite function to transform the ECG signal and feeds these
coefficients to an SOM. The shortcomings of this method are mainly the difficulty of
implementing Hermite functions, and the need to use data from two separate leads.

Some other most common shortcomings in this list are the algorithms being
supervised, and the fact that most of these are not designed for wearable systems and
they count on the brute processing power of a computer using samples from the beats
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and complicated classifiers.

2.4.3 Conclusion

In order to make use of the timing in the network, population offset coding has been
decided to be used for encoding. Though unconventional, spiking neural networks are
very promising for classification tasks in the future, thus further research should be
done in this area. In addition their low power promise makes them an excellent choice
as a classifier for our problem.

2.5 Conclusion

This chapter introduces ECG signals and arrhythmias, feature detection for ECG
signals, the restrictions imposed on feature selection by the ECG problem and the
spiking neural network. Finally, it offers a brief introduction to the encoding scheme
used in the simulator and compares existing ECG classifiers in the literature.

The most optimal solution for feature detection is chosen to be a combination of
[8] and [20], which was also proposed in [3]. Feature selection choices have limited
the solution to be a low power on-chip filtering method. Finally, population offset
encoding has been introduced. The following chapter will provide in depth analysis for
the implementation of feature detection and selection algorithms. This will be followed
by the network configuration and results of classification.
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Feature Extraction
Implementation 3
This chapter elaborates the work done on feature extraction. In the course of research
and experimentation for feature detection and selection various designs have been
explored. This chapter will give a deep analysis of the feature detection algorithm and
the implementation of the feature selection algorithm. The main factors leading to the
decisions have been low power consumption and accuracy. A block diagram showing
the overview of feature extraction can be seen in Figure 3.1.

3.1 Feature Detection

In this section, the feature detection algorithm is divided in two parts: QRS detection,
and P and T wave detection. The following sections will go through in detail the
algorithm’s implementations.

3.1.1 QRS Detection

As mentioned in Chapter 2, four algorithms have been implemented and tested to
reach a decision. The optimal choice for QRS detection has been decided to be a
slightly modified version of [8]. This subsection will go through the details of the
algorithm and provide example results for the feature detection scheme.

Preprocessing: As with most other algorithms, the first step is preprocessing. For
this purpose only a low-pass filter is used, this was due to the complexity of designing a
high-pass filter with a cutoff frequency as low as 5 Hz. The low-pass filter was designed
using the filter design tool of MATLAB. Unlike [8] and [1] an FIR filter has been used.
Greatest advantage of an FIR filter over an IIR is the linear phase response. The filters
used in [8] and [1] also have linear phase responses, however due to its simplicity it has

Figure 3.1: Feature Extraction Block Diagram
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Figure 3.2: Magnitude and Phase Response of The Low-Pass Filter

been decided to use an FIR filter when starting a new. The filter used has a cutoff fre-
quency at 10 Hz and the stop band frequency starts at 60 Hz (in order to suppress the
noise from the power line) and has a stop band attenuation of 40 dB. The magnitude
and phase response of the filter can be seen in Figure 3.2. Unlike the filters in [8] and
[1] it has been designed for a sampling frequency of 360 Hz since that is the frequency
at which the database is sampled. As a consequence, with respect to the original filter
used in [8] it results in around 50% less errors. In addition, the resulting filter has
11 coefficients, which is less than the filter used in [8] (13) as well, so it is more efficient.

Signal Transformation: The following step is the transformation of the signal.
A mathematical expression that calculates the length of a line within a given window
is used in [8]. This transformation is called curve length transform. Since the QRS
complex has a spike, the window that contains the spike has a much higher value than
the others. Curve length transform for discrete signals is described as:

L(w, i) =
i∑

k=i−w

√
∆t2 + ∆y2

k (3.1)

where w is the window length, i is the index, ∆t shows the sampling period,
and ∆yk = yk − yk−1. As mentioned in Chapter 2, the shape of the signal after
transformation can be seen in Figure 2.5. The window size is suggested to be as
wide as the widest QRS complex. If the window size selected is smaller than a QRS
complex, that QRS complex will create multiple peaks after the transformation. If
the converse is done, a very large window will result in the subsequent T wave to be
involved in the window and the transformation will reach its maximum point later
than it is supposed to. As a result, the end point of the QRS could be misdetermined.
In [8] a window as wide as 125 ms is recommended, however, [1] recommends a 150 ms
one. Our experiments have shown that a 150 ms window gives better results overall
for both algorithms. However, 125 ms does give better results for some patients,
since [8] has not been tested in the whole dataset their window size choice might be
more appropriate for their select data. The relationship between the signal after the
transformation and the actual QRS complex can be seen in Figure 3.3.
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Figure 3.3: Onset and End Points Representation on CLT

QRS Detection: After this transformation an adaptive thresholding algorithm
looks for the QRS complexes, and the first threshold is found with the help of a
training phase that goes through the first 8 seconds of the data to find a reasonable
threshold. After it finds a complex, it looks for the points at which the transform meets
the baseline and the point at which it reaches its maximum point. The pseudocode for
the training can be seen in Algorithm 1 and the QRS detection algorithm can be seen
in Algorithm 2.

The values in the algorithm that are used to adjust the thresholds are based on the
amplitude of the curve length transformed signal. Since a different filter has been used
those values are different than [8]. For finding the onset of the QRS complex [8] only
looks at five samples being less than Lonset, whereas the conducted experiments have
shown that using 25 samples gives a more robust result. The eyeClosing parameter
has been set for power saving concerns. After each QRS 250 ms of the signal is
skipped since there cannot be another QRS in that duration. Finally, if the algorithm
cannot find a QRS complex for 2.5 seconds it reduces the threshold before continuing.
A look-back procedure has been implemented in this stage to find the missing QRS
complexes. However, it has been concluded that the added complexity was too much
for the gain from this modification.

A good and a bad example of onset and end detections can be seen in Figure 3.4
and Figure 3.5. All the other evaluated algorithms also have this problem, but we are
focusing on [8]. In all the observed cases the misplacement of the end point occurred
on these wide signals. Three methods have been implemented to overcome this issue,
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Algorithm 1 Training for Initial Threshold Calculation

1: Parameters :
2: sfreq← sampling frequency
3: learnTime← 8 ∗ sfreq
4: adjustThreshold← 10
5: thresholdMaxDiv← 3
6: eyeClosing← round(sfreq ∗ 0.25)
7: QRSheightThresh← 0.002
8: minThresh← 0.01
9: notFoundStep← 0.01

10: timer← 0
11: Texpected← sfreq ∗ 2.5
12: flatRange← 25
13: QRSoffset← 5
14: InitialValues :
15: thresh← 0
16: i← 1
17: Tlower← Average of transformSignal
18: Tupper← Tlower*thresholdMaxDiv
19: procedure Initial Training
20: while i < learnT ime do
21: thresh← 2 ∗ T lower
22: if transformSignal(i) > thresh then
23: Lmax← Maximum value of transformSignal from i to i+ eyeClosing/2
24: Lmin← Minimum value of transformSignal from i− eyeClosing/2 to i
25: if Lmax > Lmin+QRSheightThresh then
26: Tupper ← Tupper + (Lmax− Tupper)/adjustThrehsold
27: thresh← Tupper/thresholdMaxDiv

28: i← i+ 1

29: thresh← T lower

however, they all failed. The first method was to increase the window size for the
summation and also to change the eyeClosing value, which has made the results
better for specific patients but made it worse for others. The next approach was based
on a stable baseline. If the end point was detected at a much lower signal level than
the onset, the end point will be moved forward until they were around the same level.
This gave perfect results for patients with little or no baseline wander but, caused
trouble in patients with a lot of baseline wander. The final method was based on
the assumption that when we see this morphology the QRS width will be set as the
maximum assumed QRS width, thus the end point would be moved forward only when
the QRS width was equal to the maximum. However, in most cases that was not true
so the problem could not be solved.
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Algorithm 2 QRS Detection Algorithm

1: procedure QRS Detection
2: while i < Signal Length do
3: if transformSignal(i) > thresh then
4: Lmax← Maximum value of transformSignal from i to i+ eyeClosing/2
5: Lmin← Minimum value of transformSignal from i− eyeClosing/2 to i
6: timer ← 0
7: if Lmax > Lmin+QRSheightThresh then
8: Lonset← Lmax/100
9: loop with j from i− eyeClosing/2 to i

10: if transformSignal(j to j + flatRange) < Lonset then
11: QRSonsetPoint← j −QRSoffset
12: loop with j from i to i+ eyeClosing/2
13: if transformSignal(j) > Lmax− (Lmax− Lmin)/25 then
14: QRSend← j +QRSoffset

15: i← i+ eyeClosing
16: Tupper ← Tupper + (Lmax− Tupper)/adjustThrehsold
17: thresh← Tupper/thresholdMaxDiv

18: timer ← timer + 1
19: if timer > Texpected and Tupper > minThresh then
20: Tupper ← Tupper − notFoundStep
21: thresh← Tupper/thresholdMaxDiv

22: i← i+ 1
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Figure 3.4: Good Example of a QRS Onset (α)
and End (Ω) Detection
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Figure 3.5: Bad Example of a QRS Onset (α)
and End (Ω) Detection

3.1.2 P and T Wave Detection

As mentioned in Chapter 2, it is decided to use the wavelet transform method based
on [20], for P and T wave detection. Having found the QRS peaks, the P and T waves
are only searched where they are expected to be, respectively in small windows before
and after the QRS. Thus, the wavelet transform is only applied to those small windows
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Figure 3.6: Wavelet Transform as Cascaded Filters. Each level consists of a low pass and a
high pass filter. The output of the high pass filter a level is that detail levels response, and
the output of the low pass filter is transfered to the next stage.

around the QRS complex instead of the whole signal. Window widths have been tried
to be determined using online medical resources for an average window size for both P
and T waves. However, it has been found that, again due to the fickleness of an ECG
signals these values do not hold most of the time. Thus they have been determined
empirically. For the P wave the window size is (heartrate)/4, where heartrate is in
samples and the maximum window size is 410 ms (150 samples). For the T wave on
the other hand the window size is (heartrate)/1.9, where heartrate is in samples and
the maximum window size is 555 ms (200 samples). Thus, wavelet transform is applied
only on these small areas. The wavelet transform can be mathematically defined as:

f(x) ∗Ψs(x) =
1

s

∫ ∞
−∞

f(t)Ψ(
x− t
s

)dt (3.2)

where s is a scaling factor so Ψs(x) = 1
s
Ψ(x

s
), which is the dilation of a basic wavelet

ψ(x). When s is selected as 2j, where j ∈ Z (integral set), the wavelet transform is
called dyadic. In which case, the fast wavelet transform (Mallat algorithm) [40] can be
used, which can be represented as a cascaded filter bank as shown in Figure 3.6.

The complexity of the algorithm is much reduced when QRS complexes are already
located and only the P and the T waves are searched. The algorithm searches for the
peaks that can be seen in Figure 2.7; these peaks are called the modulus maxima points
of a signal. While for QRS detection the algorithm goes through all the detail levels
of the signal, for P and T wave detection only the fourth level is searched. For higher
accuracy, if it cannot be found on the fourth level the next one can also be searched.
However, this has not been implemented as a method of power conservation. One of
the reasons to start looking from a higher level and going down is that, larger scales
have fewer modulus maxima points and that helps with the calculation time and the
other reason is that higher scales greatly suppress the high frequency noise components
and prevents them from creating modulus maxima points. After the modulus maxima
points are found using again an adaptive thresholding process, the ones that actually
represent P and T waves have been selected by elimination of isolated and redundant
modulus maxima points. According to [20] the algorithm also supports detecting the
morphology of these waves. It does this based on the number and order of negative
and positive modulus maxima points that represent the wave. This may have worked
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in the small manually annotated database, however it has been found that it causes
many false positives and mistaken onset and end points for the waves. Thus, for the
sake of higher accuracy for the majority of the signals it has been assumed that these
waves have a positively directed bump shape (the normal shape). This limits the
choice of the modulus maxima points to the maximum positive modulus maxima and
the negative modulus maxima that comes after it. In case the distance between those
points is too much, more than the maximum width of a P wave and a T wave (55
samples, 153 ms) it is assumed that there is no wave. In case of other morphologies,
the detection algorithm would either fail to detect the wave at all, or detect a wider
or a narrower wave complex, which should be enough for the classification of different
types of beats. After finding the onsets and end points the peak is found at the
zero-crossing point of a positive maximum-negative minimum modulus maxima pair.
The pseudocode for this algorithm can be seen in Algorithm 3. The same algorithm
can be used for each wave.

Algorithm 3 Locating P or T waves using discrete wavelet transform, PMM is positive
modulus maximum point NMM is negative modulus maximum point

1: Parameters :
2: maxPwindow← 417ms
3: Pwindow← (QRSonset−min(HeartRate/4,maxPwindow) to QRSonset)
4: maxPwave← 153ms
5: PonsetThresh← 0.5
6: PendThresh← 0.9
7: Variables :
8: dwtSignal← Discrete Wavelet Transform of Signal
9: PsearchWindow← dwtSignal(Pwindow)

10: procedure Modify PsearchWindow
11: wt← PsearchWindow
12: PsearchWindow = wt− (max(wt)− (max(wt)−min(wt))/2)

13: mm← Modulus maxima points in PsearchWindow
14: procedure Remove Non-Possible Zero-Crossings
15: if ((mm(i + 1) − mm(i) < maxPwave)&&(mm(i + 2) − mm(i + 1) <

maxPwave))&&sign(mm(i+ 1)) == + then mm(i) = Deleted

16: if mm(i+ 1)−mm(i) > maxPwave then mm(i) = Deleted

17: procedure Detect Onset, End and Peak
18: peak ← zero-crossing between the modulus maxima
19: start← point before PMM < PonsetThresh ∗ PMM
20: end← point after NMM < PendThresh ∗NMM

Algorithm 3 consists of three procedures. One of the most important modifications
made to [20], while trying to optimize it was to modify the wavelet transform such
that the maximum positive maximum modulus peak would have the same amplitude
as the minimum negative maximum modulus peak. Meaning that if the maximum
point of the wavelet transform had a higher amplitude than the minimum point, the
signal was moved lower so that they would have the same amplitude and vice versa.
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This assured that both peaks that represent a signal are above the noise level for the
same noise multiplier. Otherwise, due to the shape of the signal, sometimes one of the
peaks are multiple times larger than the other important peak, which pushes us to set
different threshold for the negative and the positive part. In some cases the wavelet
transform is all-positive or all-negative which, prevents finding any useful modulus
maxima pair at all. Therefore, this modification has considerably improved the results.
However, no numbers can be provided since there is no way to actually test it due to
the lack of a database. Based on empirical testing on various patients showed up to
80% improvement in detection rates.

The next procedure in the algorithm removes the modulus maxima points, which
cannot be representing a P or T wave. The first if condition is used to eliminate a
certain morphology trait, while at the same time allowing the wave to be detected
still. The second if condition on the other hand removes a point if it is too far from
another modulus maxima point so it cannot actually be representing a wave.
Finally, the third procedure is for finding the onset, end and peaks of the waves. For
the T wave the onset threshold is 0.05 and the end threshold is 0.4. These values were
taken from [20]. An illustration of the annotations of the algorithm can be seen in
Figure 3.7.

The main problem that could not be solved was caused by the errs in the QRS
end detection as mentioned in Subsection 3.1.1. An example of this can be seen in
Figure 3.8. It can be seen the early detection of the QRS end causes a large peak in
the wavelet transform that prevents finding the actually important peaks. In the first
beat in Figure 3.8 this completely prevented the algorithm from finding a peak while in
the second one it found a wrong place. Various methods have been tried to overcome
this problem, however the problem could not be solved in the end. These methods
were mainly based on removing the beginning or the end of the signal in case they had
significantly higher amplitude than the mean of the signal.

3.2 Feature Selection

This section will focus on the extracted features from the detected ECG points of
interest, the features that help us differentiate between different diseases, and finally
about the feature selection algorithms that helps reduce this feature set.

3.2.1 Feature Set

Having detected the important points on the signal, the next most important step is to
figure out the most important features to differentiate arrhythmias. In order to do this,
we have consulted cardiologists, and websites such as [41] and [42]. Numerous features
from all the papers studied have also been taken into consideration while coming up
with the feature set. The existing arrhythmias in the MIT-BIH database have been
listed in Chapter 2. All the picked features are useful in differentiating between various
diseases. The resulting complete feature set is as follows:
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Figure 3.7: Annotations on the ECG Signal
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Figure 3.8: Annotations Mistake Using [3]. The dashed line shows the wavelet transform for
the windows.

• Heart Rate: The time between the R peaks of the current and the previous beat

• QRS Width: The time from the onset of the QRS complex to the end of the QRS
complex

• R Voltage: The voltage level of the R peak
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• QR Width: The time from the onset of the QRS complex to the R peak

• RS Width: The time from the R peak to the end of the QRS complex

• P Exists: Binary value showing whether the P wave exists

• PR Interval: The time from the onset of the P wave to the onset of the QRS
complex

• PR Segment: The time between the end of the P wave to the onset of the QRS
complex

• P Voltage: The voltage level of the P peak

• P Width: The time between the onset and the end of the P wave

• T Exists: Binary value showing whether the T wave exists

• PT Interval: The time between the onset of the P wave and the end of the T wave

• QT Interval: The time between the onset of the QRS complex and the end of the
T wave

• ST Segment: The time between the end of the QRS complex and the onset of the
T wave

• ST Interval: The time between the end of the QRS complex and the end of the
T wave

• T Voltage: The voltage level of the T peak

• T Width: The time between the onset and the end of the T wave

• Previous Heart Rate: The time between the preceding beats R peaks

• PP: The time between the P peaks of the current and the previous beat

• Previous PP: The time between the preceding beats P peaks

• QRS Lowest Voltage: The lowest voltage level of the QRS complex

One more feature that has been found to be important for some diseases, towards
the end of this work was the subsequent RR distance. It is recommended that this be
considered for future implementations, however, it has not been tested in this work.
After deciding on the feature set, a small program to test the differences between the
means of these values for different diseases has been implemented. The goal was to
examine whether there were or not, some useful features in distinguishing between
two diseases. The program showed that while some features are more important than
others, all the features were useful in different cases.

In case there was a problem with the detection of P or T waves all the values that
are related to either one of them were set to a certain value. The initial method was
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to set them to zero. However, this has caused many problems with classification due
to the encoding method. As mentioned in Chapter 2, in population offset encoding,
before the values are encoded into spikes they are normalized. However, when we set
some values to zero, the small important changes become unnoticeable. For example,
for some patients the heart rate is around 400 samples, and a sick beat is around 350
but, when if this is scaled based on 0-400 rather than 350-400 the difference between
350 and 400 becomes negligible. Another problem with the beats are some outliers.
These are the cases when the signal is very noisy or sometimes there is a connection
problem and a beat has not been detected for a while, we again receive exceptionally
unlikely values for the features. This again causes problems in the scaling of the data.
In order to overcome these problems a two-stage algorithm was developed. First the
outliers were determined and set to an average value, and in the next step all the zeros
were set to the min value within the observation set of those features. They were set
to the min value instead of an average value because, it was assumed that it is more
likely for something like that to happen in an unhealthy beat. The pseudocode for this
algorithm can be see in Algorithm 4.

Algorithm 4 Handling the Outliers in the Observations

1: Parameters :
2: observations← all observations of a feature
3: thresh← 0.8
4: procedure Fixing the Outliers
5: outliers ← observations > (1 + thresh) ∗ mean(observations) && observations <

(1− thresh) ∗mean(0observations)
6: outliers← mean(observations)

7: procedure Fixing the Misdetections
8: misdetecitons← All the zeros in the detection
9: misdetections← min(observations)

3.2.2 Algorithms

Based on the analysis in Chapter 2 the most reasonable choice for feature selection
is an unsupervised, on-chip, non-online filtering method. Based on these limitations
two algorithms have been implemented: Principal Component Analysis (PCA) and
Correlation Matrix.

PCA: PCA is a statistical analysis tool. It is an orthogonal transformation that
is used to convert a correlated set of observations to a set of linearly uncorrelated set
of values. Computing PCA is done through first calculating the covariance matrix
of the observations matrix, then the eigenvectors and eigenvalues of this matrix are
calculated. The eigenvectors form the orthogonal basis for our data. The cumulative
energy content of each eigenvalue is calculated, and using this value a set of eigenvectors
are selected as the new orthogonal basis to be used, such that more than 90% of the
correlation in our data is explained. This algorithm can be seen in Algorithm 5.
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Figure 3.9: Explained Variance vs. Number of PCA Components Used for Patient 100

Algorithm 5 Computing PCA

1: Parameters :
2: features← matrix of all observations of all features
3: procedure PCA Calculation
4: u← mean value of each feature through all observations
5: B ← deviations of each observation from the mean
6: C (Covarience Matrix) = 1

n−1B
∗ ⊗B

7: V ← Eigenvectors of C
8: D ← Eigenvalues of C
9: Sort V and D such that D is decreasing

10: gj =
∑j

k=1Dk for j = 1, ..., p Cumulative Energy Content
11: Select L components such that gL

gp
> 0.9

An example of a graph about explanation of correlation values with each component
can be seen in Figure 3.9. In Figure 3.9 we can see that choosing approximately 8
principal components provides sufficient accuracy. This can be interpreted from the
graph as after 8 components, each component only adds approximately 1% to the
explanation of the variance and 90% of the variance is already explained. This plot
also varies from patient to patient, however 8 components are a good approximation
for each patient. However, the transform still needs to be implemented for each
patient. In addition using the same number of features (or components in this case)
for each patient is beneficial since it means we can use the same network.

Correlation Matrix: Correlation matrix of a feature set can be calculated in
many different ways. However, an easy way is to calculate the standardized random
values (feature observations) and calculate the covariance matrix of that. Pseudo code
for this algorithm can be seen in Algorithm 6. Correlation matrix shows the correlation
between different features in the observations. As common sense suggests, we do not
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Figure 3.10: Correlation Matrix of Patient 100

require highly correlated data or we can use them for higher robustness in some cases.
In looking at a correlation matrix, one also needs to check what are called probability
values (p-values). A p-value shows how likely it is to get that correlation in a randomly
generated set. Thus, if the p-value is higher than a certain number (say 0.05) the
correlation value can be disregarded. Fortunately for our observations that was never
the case. If the correlation value is above 80% we have disregarded one of the features
that are correlated to one another. Between those two features, if one of the features
are correlated to more than one feature, we have kept that feature that is correlated to
more features, since that meant that we could eliminate at least one more feature if we
kept that one. In other words, the feature that is correlated to most features is kept.
The final decision made for eliminating a feature was the trustworthiness of a feature.
For example, since it was possible to test the QRS detection, the QRS related futures
are trustworthier than P or T wave related features. Thus, if a P or T wave related
feature was correlated to a QRS related feature, it made more sense to keep the QRS
related feature. An example of a correlation matrix can be seen in Figure 3.10.

Algorithm 6 Computing the Correlation Matrix

1: Parameters :
2: features← matrix of all observations of all features
3: procedure Correlation Matrix Calculation
4: features← Standardize Features
5: u← mean value of each feature through all observations
6: B ← deviations of each observation from the mean
7: C (Covarience Matrix) = 1

n−1B
∗ ⊗B

8: Remove one of the features that are correlated more than 80% or 0.8

Figure 3.10 shows the correlation matrix as a heat map, the features that are highly
correlated have a red hue where as the ones that have no correlation are white and the
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ones that are negatively correlated are blue.

Due to the added complexity of PCA and the superior results achieved by the
correlation matrix feature set in the classification, correlation matrix has been selected
to be used for feature selection.

3.3 Conclusion

This chapter has explained the details of feature detection and selection algorithms
used on the ECG signals for this thesis. It has been found that the feature detection
algorithms are far from perfect, while due to the restrictions of our problem we are
forced to make the hardest and less effective choices for feature selection. In the end, a
combination of curve length transform and wavelet transform have been implemented
for feature detection and correlation matrix have been used for feature selection. The
following chapters will go in to the details of network configurations and results, and
finally, conclude this thesis.
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Network Configuration and
Results 4
This chapter explains the approach taken in configuring the networks and then
introduces silhouette coefficients, which are used to evaluate the results. Finally, it
gives the results of the classification with explanations of the problems faced and offers
possible solutions to overcome these problems.

4.1 Approach

A brief introduction to neuromorphic circuits and the simulation tool used in this
thesis can be found in Appendix A. In principle, a neuromorphic circuit emulates the
functions of a human brain. It consists of neurons and synapses, and communication
between neurons is established based on spikes. The learning process is managed based
on spike arrival times to neurons. The main logic behind it is that if two neurons
fire consecutively, there should be a correlation between them and the weight of the
connection between them will be changed based on the timing of both the spikes.
When a certain input pattern is shown to the network repeatedly, the network learns a
path and associates it with the respective input pattern. After certain paths have been
created in the network, it responds to each distinct input pattern in a unique way.

Among the most common architectures for neuromorphic networks Feed-forward
[43], Self Organizing Map (SOM) [44], Liquid State Machine (LSM) [45] have been
considered for use. Feed-forward networks consist of three parts: Input layer, hidden
layers, and output layer. There can be any number of hidden layers in a feed-forward
network. As its name suggests, the data flow in a feed-forward network is only forward.
The data (or spikes in our case) from the input layer is fed to the first hidden layer, the
one from the first hidden layer to the second hidden layer and so on until the output
layer. An SOM network on the other hand consists of two layers: Input layer, and
SOM pool. The SOM pool is also used to determine the output. In an SOM network
the first layer is fully connected to the pool, and the pool is fully connected within
itself. The connections in the pool are arranged in a special manner, every neuron
is connected with decreasing weights to its neighbors up to a predetermined range
(spatially). Neurons further away from this distance are inhibited. As a result, based
on the initial weights of the inputs a different part of the SOM pool fires and the rest
are inhibited. Finally, the LSM architecture mainly uses two layers of neurons. The
first layer consists of the input neurons, and the second layer is a pool of neurons that
are randomly connected among each other. As a result of this connection pattern,
each distinct input pattern results in a different order of firing at the LSM pool. An
illustration of an LSM network can be seen in Figure 4.1. Consequently, the inputs
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Figure 4.1: Liquid State Machine Architecture

are coded in the time to spike values of the pool neurons. All these architectures can
be obtained by changing the configuration parameters of the simulation tool ([27]).

SOM structure is inherently adapted for clustering. However, the aim of this thesis
is to create a global clustering scheme, and such a scheme would require a relatively
large SOM pool (assuming 9 neurons per cluster, and none overlapping clusters,
would result in at least 153 neurons in the pool to cluster all 17 beat types in the
database). Such a network causes memory problems in the simulation and also is not
necessary as the LSM offers a much more eloquent solution. Since the input is coded
in the firing time of the neurons in the pool more clusters can be obtained using a
smaller network. Another advantage of LSM networks is their recurrent connections
(connections creating loops and allowing a neuron to fire more than once). This
architecture type allows the processing of temporal data. One of the goals of this
thesis was to compare the results achieved with different architectures. However,
as mentioned before the required SOM architecture causes memory problems in the
simulator, and a generalized configuration that works on all patients could not be
found for the Feed-forward network to complete the tests. As a result this work focuses
on the LSM architecture.

As mentioned before, the end goal in a neuromorphic structure is to have a unique
path for distinct input patterns, and a unique firing pattern for LSM architecture.
Achieving this goal requires delicate adjustments in the parameters. Otherwise, due
to the nature of this architecture all the neurons might spike at the same time or
maybe non of them will. The first step in the most appropriate and generalizable
approach has been found to be making the connections between the first and the
second layer more sparse, which would provide the opportunity for different input
patterns to trigger different parts of the pool first and increase the number of clusters.
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The next step was to add a randomized delay matrix to the connections, which
makes sure that the time difference to spike between neurons increases and sometimes
even prevents some neurons from firing because they have discharged due to the
added delay. This makes the classification task in the end easier as the distinction
between the patterns has increased. The final adjustment to the configurations was
to lower the weight distributions both from first to second layer and the ones within
the pool. This alteration is also used to prevent the network from becoming an
all-pass network. One observation in the network was that, initializing the pool as
a fully connected pool resulted in the best results, and the pool became sparser
after the training. It is also worth mentioning that a pool of 25 neurons was used
due to memory constraints but a greater pool size might be beneficial in cluster-
ing. As mentioned before, LSM architecture tends to have a recurrent pattern of
firing in the pool, which is interpreted as ”naturally” handling time varying inputs.
However, this behavior leaves very little control over the process and it becomes
harder to interpret the results. Taking also into consideration that the duration
between two beats is considerably larger than the working frequency of the network
(approximately 1000 times), it is difficult to leverage this property. Therefore, a re-
fractory period was selected for the neurons such that, during the testing, when all the
connections are strong enough, each neuron would only fire once for each input pattern.

There are also certain things in the network that should be assured for correct
operation. One of them is to ascertain that the membrane voltage of each neuron
reaches its resting value before feeding each input pattern. Another important thing
to make sure is that the depression in the network is strong enough such that a stable
state can be reached that is not an all-pass network.

The output spike patterns have been clustered based on the spike time difference
in the pool. This clustering is done by various methods, which will be explored
in Section 4.3. As in other unsupervised cases such as [34], the clusters have been
evaluated based on the dominant beat in a cluster. That is if a beat type is in a cluster
that it is not the dominant beat type in, that means it is in a bad cluster.

4.2 Silhouette Coefficients

After conducting a few experiments, it has been found that a metric to evaluate the
clusters was necessary. The metric should help in determining whether more clusters
are required, whether the clustering methods are resulting in strong clusters, and
finally, they should be indicating whether the problem is with the network or the
futures are not good enough for clustering.

A common approach that provides information about all these methods is called
a silhouette coefficient [46]. Silhouette coefficients can be defined by the following
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equation:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(4.1)

where a(i) is the average distance of beat i to all the other beats in its cluster, and
b(i) is the minimum of the average distances of beat i to all the other beats in other
clusters. Thus, the smaller the a(i) value the better as it would show similarity of the
beat to its own cluster and the larger the b(i) value the better as it would show the
dissimilarity to other clusters. It can be seen from (4.1) that:

−1 6 s(i) 6 1 (4.2)

A value that is closer to 1 shows that a beat belongs to its cluster, whereas a value
that is close to -1 shows that the beat fits some other cluster more, and a value that is
close to 0 shows that the beat is fits in to at least two clusters well so it is right on the
edge.

In this algorithm any means can be used to calculate the distance between the
elements of a cluster. In this thesis Manhattan distance has been used to calculate
this distance. For each experiment the silhouette coefficients have been calculated
both based on the selected features and the spike times of the pool for each beat.
This provides us with two separate silhouette values and it can show us whether the
problem lies in the features or the output of the network. Another way to use the
silhouette coefficient is to determine the number of necessary clusters. Having high
silhouette values for the clusters would show that the clusters are very strong and
there is no need to create further clusters.

4.3 Clustering Methods for the Output

In order to cluster distinct output patterns of the spiking neural network automatically,
five different clustering methods have been used. The strongest silhouette coefficients
have been achieved using sequential clustering, so all the clustering methods will be
mentioned and more detail will be provided on the sequential clustering method.
An additional method that has been used is automatic clustering, which creates the
clusters based on the annotations of the beats. This shows how the network affects
the silhouette coefficients for perfect clustering and also helps us see whether the beat
types are distinct enough to be clustered.

The five approaches used for clustering are as follows: Mean difference clustering,
Otsu clustering [47], K-means clustering [48], minimum difference clustering, and se-
quential clustering.

Mean difference method uses the mean of the sum of absolute value of spike timing
differences between a beat and all the rest of the beats for clustering. It starts by
calculating the sum of absolute spike timing differences for every output neuron between
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the first beat and the rest of the beats. Next, a multiple of the mean of these values is
used to establish a cluster and the beats in that cluster are removed from the database
and the process is iterated repeatedly until there are no beats left to cluster.

Otsu clustering method uses the famous Otsu’s method for clustering. Otsu’s
method is mainly used for finding a threshold to create black and white images from
gray scale images using a histogram-based method. The histogram for this method is
also based on the sum of absolute spike timing differences for every output neuron be-
tween the first beat and the rest of the beats. The method was first done based on just
the difference of every beat to the first beat. However, it has been concluded that this
might not always give the best results; so two iterative versions have been developed.
The first one just picked the first threshold value that Otsu’s algorithm created and
then removed those beats from the database and iterated again until the desired num-
ber of clusters were reached. The other method selected the cluster, created after each
iteration that had the lowest variance and iterated again by removing that cluster from
the database. However, contrary to my expectations the iterative methods resulted in
weaker clusters.

K-means clustering algorithm uses the K-means++ algorithm that is implemented
in MATLAB. K-means algorithm is based on finding cluster centers to minimize the
intra-class variance. The spike times of the output neurons are directly inputted for
this algorithm.

Minimum difference method uses the minimum of the sum of absolute value of spike
timing differences between a beat and all the rest of the beats for clustering. It starts
by calculating the sum of absolute spike timing differences for every output neuron
between the first beat and the rest of the beats. Then a multiple of the minimum of
these values is used to establish a cluster and the beats in that cluster are removed
from the database and the process is iterated repeatedly until there are no beats left
to cluster.

Some of these four methods gave good results for some conditions, but they were
not working in every case. An alternative solution was to use a sequential clustering
method, which gave better results than all the other algorithms based on the silhouette
coefficients and also is a good candidate for implementation in a real world system
since it is a sequential system and does not need all the beats to be detected to start
classification. The pseudocode for this algorithm can be seen in Algorithm 7. Since
we have all the data at hand and we have a limited amount of data the algorithm is
implemented in that fashion with for loops, but it is easy to convert it to a sequential
version. It is also worth mentioning that the iterative version of this algorithm gives
really good results, however the non iterative version can also be used in most cases
and this can be set by the parameters.

The sequential algorithm also uses the sum of absolute spike timing differences for
every output neuron. In this algorithm this value is calculated between the new coming
beat and the average of each cluster. Then these differences are compared to the set
limit, which decreases by a percentage at each iteration. Finally, the beat is inserted
in one of the existing clusters if it is deemed similar enough; otherwise a new cluster is
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Algorithm 7 Sequential Clustering for Spike Times

1: Parameters :
2: seqDiff← The initial difference between values to seperate clusters
3: seqItPercentage← The percentage by which the threshold is lowered every iteration
4: iterationCount← number of iterations
5: Inputs :
6: spikeTimes← Spike times for a beat
7: beatCount← Number of beats
8: procedure Clustering
9: Put the first beat in a cluster

10: currentClusterCount← 1
11: for i = 1 to iterationCount do
12: for j = 2 to beatCount do
13: for c = 1 to currentClusterCount do
14: diffs = sum(abs(spikeT imes(j)−mean(spikeT imes(Clusters(c)))))

15: possible← Clusters that have diffs < (seqDiff ∗ seqItPercentagei−1)
16: Remove beat j from the clusters if it is already there
17: if possible is empty then
18: Create new cluster for beat j
19: else
20: Add to the cluster that has the least difference

created for the beat. Based on the silhouette coefficients this algorithm resulted in the
strongest clusters.

4.4 Results

As mentioned in Section 4.1, LSM architecture has been used to obtain the classifi-
cation results. As the feature set varies form patient to patient, the input size also
varies from patient to patient. Ergo the network has to be slightly modified for each
patient. The results are presented in three stages in this section, due to the nature of
the problem. There are two steps in the algorithm that directly affect the results we
achieve: feature detection and classification. This is because if the feature detection
algorithm could not detect certain beats, the classification of those beats automatically
fails when we look at the whole system.

In Table 4.1 we can see the detection rate, and the percentage of missed beats
from the database due to detection. It can be seen that there are problems with
detecting certain beat types, namely aberrated atrial premature beats, fusion of
paced and normal beats, unclassifiable beats, isolated QRS-like artifacts, and lastly
ventricular flutter waves. It is normal and good to have missed QRS like artifacts
since they are not actually heart beats and it is understandable to have missed the
unclassifiable beats as they are also disfigured. Also ventricular flutter wave doesnt
have the characteristic QRS shape, which makes it hard to detect and all the regular
detection algorithms ignore it due to that. However, since it is quite important there
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Table 4.1: Detection Accuracy per Beat Type

Beat Type Undetected Beat Percentage

Normal Beat 3.44

Left Bundle Branch Block Beat 0.19

Right Bundle Branch Block Beat 1.42

Atrial Premature Beat 0.24

Aberrated Atrial Premature Beat 54

Nodal (junctional) Premature Beat 0

Supraventricular Premature Beat 0

Premature Ventricular Contraction 3.87

Fusion of Ventricular and Normal Beat 2.49

Atrial Escape Beat 0

Nodal (junctional) Escape Beat 2.62

Ventricular Escape Beat 1.89

Paced Beat 0.08

Fusion of Paced and Normal Beat 15.38

Unclassifiable Beat 53.3

Isolated QRS-like Artifact 69.7

Ventricular Flutter Wave 46.61

are algorithms just to detect them and even with low detection rate they have been
included in this study. Aberrated atrial premature beats and fusion of paced and
normal beats on the other hand should have been detected, their low percentages can
be attributed to low amplitude of their peaks in those cases.

In terms of classification, the results of the clustering of detected beats can be seen
in Table 4.2. As mentioned before [34] is the only paper that aims for global classifica-
tion such as this research. Thus, this work can truly be compared to only [34]. Just as
[34], in order to evaluate the clustering, the clustering of each beat has been evaluated
good or bad on whether they are the dominant beat type in a cluster. In overall
classification of the beats [34] is 3% (95.5% this work and 98.5% [34]) more accurate
compared to this work. However, this work is designed with the constraint of being
able to be adapted to a wearable device, whereas the work in [34] uses an additional
step to create an orthogonal basis for the ECG signal using Hermite functions, which
is a very compute intensive method and no hardware implementations were found in
literature. In addition, they are using data from two leads one of which would only
be available in a hospital level 12-lead ECG machine. Another shortcoming of [34]
is that they achieve these results with a fixed number of 25 clusters, whereas the re-
sults of these thesis were achieved using an average of 15 clusters and a maximum of 25.

Comparing the results from Table 4.2 to [34], we see that they also fail at detecting
atrial escape beats, and supraventricular premature beats, and the results achieved
for junctional premature beats are almost the same. For beat types such as normal
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Table 4.2: Clustering accuracy with number of beats dominant and non-dominant in their
clusters

Beat Type Dominant Non-Dominant Accuracy

Normal Beat 71146 1072 98.52%

Left Bundle Branch Block Beat 7880 180 97.77%

Right Bundle Branch Block Beat 6809 347 93.8%

Atrial Premature Beat 1809 731 71.22%

Aberrated Atrial Premature Beat 15 54 21.74%

Nodal (junctional) Premature Beat 44 39 53.01%

Supraventricular Premature Beat 0 2 0%

Premature Ventricular Contraction 6110 738 89.22%

Fusion of Ventricular and Normal Beat 69 714 8.81%

Atrial Escape Beat 0 16 0%

Nodal (junctional) Escape Beat 16 207 7.17%

Ventricular Escape Beat 2 102 1.92%

Paced Beat 3580 37 98.98%

Fusion of Paced and Normal Beat 101 119 45.91%

Unclassifiable Beat 1 6 14.29%

Isolated QRS-like Artifact 3 37 7.5%

Ventricular Flutter Wave 216 36 85.71%

beats, left and right bundle branch blocks, ventricular premature beats and paced
beats the results of [34] are slightly better. In case of atrial premature beats, [34]
achieves almost perfect results. The shortcoming of our method results from problems
with feature detection in this case. One of the most important features of an atrial
premature beat is a small PR interval, however the same value is given to all the P
related features of different beats, if the P wave is not detected. As a result, due to
undetected or actually missing P waves of atrial premature beats, they are sometimes
grouped with other beats that have P wave detection problems. When we compare the
other diseases they only achieve good results in the classification of fusion of normal
and paced beats, the rest of the classification accuracies are better than this work,
yet also not good enough. Ventricular escape beats are also clustered better in [34],
and in this work they have been clustered with sub par accuracy. However, that is
due to them being put in the same cluster as ventricular flutter waves in this work. If
ventricular flutter waves had been ignored as they were in [34], around 80% accuracy
would have been achieved for their clustering as well, which is in fact better than [34].
The reason ventricular flutter waves were not ignored in this work, even though they
were not well detected, was their importance and good result have been achieved in
clustering them if not for detection. Ventricular flutter waves can lead to ventricular
fibrillation, which leads to death without urgent treatment.

As the thesis focuses on the whole system the results of the whole system can be seen
in Table 4.3. Of course the results are slightly worse due to missed beats in detection.
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Table 4.3: Clustering Accuracy Over the Whole Database

Beat Type Accuracy in Percentage

Normal Beat 95.13

Left Bundle Branch Block Beat 97.56

Right Bundle Branch Block Beat 93.8

Atrial Premature Beat 71.05

Aberrated Atrial Premature Beat 10

Nodal (junctional) Premature Beat 53.01

Supraventricular Premature Beat 0

Premature Ventricular Contraction 85.77

Fusion of Ventricular and Normal Beat 8.59

Atrial Escape Beat 0

Nodal (junctional) Escape Beat 6.99

Ventricular Escape Beat 1.87

Paced Beat 98.9

Fusion of Paced and Normal Beat 38.85

Unclassifiable Beat 6.67

Isolated QRS-like Artifact 2.27

Ventricular Flutter Wave 45.76

An estimate power value could be provided using the per spike energy values from
the synapses in [49], and the neurons in [50]. Assuming the worst-case scenario that
two beats need to be clustered each second, there is an average of 200 spikes fired by
neurons every second and an average of 3000 synapses that pass the spikes. Even taking
into account tSTDP this adds upto 111.62 nW. Adding the 692 nW from [25], which
has a very similar feature detection as the one used in this thesis as mentioned before,
we achieve 803.62 nW. This is a mere 13% of the best implemented classifier found in
literature which matches the detected signals to its database for classification, and can
only classify between 3 disease types [35]. In [35] 0.18 µm technology is used, has an
area of 2.465 mm2, and consumes 5.967 µW.

4.5 Analysis of Results

This section gives an analysis over the results giving specific examples over some
patients. Based on the silhouette coefficients the problem was sometimes in the
classification and sometimes in the detection phase. However, it has been found by
manual inspection that feature selection was using all the required features for each case.

In some cases it has been observed that the final clustering of a beat had high (0.9)
silhouette coefficients based on the time to spike values and low (0.1) or even negative
silhouette coefficients based on the features. This shows that while the features of
the beat we are looking at does not actually fit in its cluster, after passing through
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the network it has been fitted into that cluster. More research needs to be done to
properly configure the network. Manual inspection has even shown that in some cases
beats that clearly had many different features ended up in the same cluster.

Another observation was that the initial silhouette clusters, when all the same
beats were assigned to their own cluster automatically, had relatively low values (0.4)
based on their features. This is partly due to feature detection, as when the P and T
waves are not detected properly, every beat gets the same values. This results in many
beats in different clusters having the same value for certain features. It was expected
that, when the silhouette coefficients based on the time to spike values were calculated,
they would be higher than the values calculated for the features. The neuromorphic
network was expected to properly separate different beat types further away from each
other. However, this was rarely the case, in reality the silhouette coefficients remained
quite close and sometimes even less.

While this all indicate that more research needs to be done on the configurations
of a neuromorphic machine, it has also been found that the problems with feature
detection also had a big impact. It has been mentioned that the failure of detecting
P and T waves result in many features being the same among different beat types.
However, even if that was not the case, there would still be problems in classification.
For example the most relevant feature of an atrial premature contraction is the short
PR interval, however if the P wave is not detected it can be mistaken for many other
diseases. For example in patient 105, there are many premature ventricular contraction
beats, however even though they are almost all in the same cluster, there are more
normal beats in the cluster. This patient also has too many detections that are not
actually beats, which shows that it has a very noisy signal. Looking at the cluster
containing the premature ventricular contraction beats (which do not have P waves
generally), all the normal beats in that cluster had a problem with P wave detection,
most likely due to the noisy signal. Patient 114 also has the same problem where all
the premature atrial contractions are put in the same cluster as premature ventricular
contractions due to the undetected P waves. It is worth mentioning that a missing P
wave is by no means the only difference between a premature ventricular and atrial
contraction. However, when the P wave is missing, the only difference between them
becomes the QRS width, which is not always enough for the network to differentiate
between them.

One other problem faced during the testing was rhythm change in patient 201.
The rhythm change resulted in regular heartbeats going from approximately 400 to
250 samples. As a result all the arrhythmias with faster heart rates resulted with a
similar heart rate to regular heartbeats after the rhythm change and vice versa. Since
heart rate is the most reliable feature obtained this has resulted in wrongly clustering
approximately 80% of premature atrial contractions, 15% of premature ventricular
contractions 90% of atrial escape beats and all the other beat types this patient has.

Another important observation is the fact that one of the best results was achieved
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from patient 119. Undoubtedly the main reason for this is the amount of each beat
type in this patient. The patient has 444 premature ventricular contractions and 1543
regular beats, as a result of this the network sees both the possible combinations for
enough times. This is not the case for most patients and most beat types, as most
of the time there are only a couple examples of some beat types in a patient, which
makes clustering quite difficult.

4.6 Possible Improvements for Clustering

Based on the analysis of the results from the tests and their reasons, various methods
can be proposed to improve the results for clustering. The two most important steps
to be taken are to first get a better understanding of the required configurations of
a neuromorphic circuit and the following step is to design a better feature detec-
tion algorithm for ECG feature detection. However, the main obstacle in doing this
is to have a well annotated database to evaluate the results and learn from the mistakes.

One of the greatest difficulties with any neural network is to find an optimal initial
configuration. Especially in an unsupervised network the initial connections are very
important since the learning is also based on them. In this work random initialization
has been used, and it has been observed that modifying the random seed resulted in
much variations in the overall clustering. A promising approach to finding an optimal
initialization for a neural network is a genetic algorithm based on [51], which will
greatly improve the results.

Another option is to change the network to a multiple step version. Even though
this would complicate the design considerable by adding extra pools and configuring
them, its effectiveness has been tested on patient 116. Only the heart rate has
been used for the first layer and only one of the sick beats was clustered in the
normal beats cluster and only one of the normal beats was clustered in the sick beats
cluster. When this method seems promising, also considering the fact that only a
photoplethysmogram (PPG) sensor could be used to detect heart rate for the first
stage of classification, not all the diseases could be differentiated with heart rate such
as fused beats, junctional beats, paced beats and so on. This makes picking which
feature to use in the first level a problem.

In order to overcome the problem with rhythm change the only method is to retrain
the network or have continuous learning capability. However, the problem with that is,
if we continue learning while in operation, our cluster centers will evolve over time and
we will not be able to interpret the results anymore. Thus, a more straight forward
option is to retrain the network in a less frequent basis, which is neither a good nor a
sustainable approach.

A final method to improve the clustering would be to use a semi-supervised
approach in training the network for certain diseases. This might help eliminate the
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inefficacy of the classifier when there is a very low beat type count, or when two
different beat types are quite similar to each other.

4.7 Conclusion

This chapter has explained the logic behind the evaluated network configurations and
given the classification results of the system with an estimated power consumption.
Even though good results have been obtained in some beat types, there is still much
more that can be improved and the ultra-low power design of neuromorphic circuits
provides a very promising solution. The following chapter will conclude this thesis and
offer some alternatives for future work.
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Conclusion 5
5.1 Conclusion

In this thesis a novel ultra-low power ECG beat type classification for arrhythmia
detection has been proposed and simulated. In this system, a slightly modified
version of an already implemented feature detection has been used and it has been
incorporated with an unsupervised feature selection algorithm. The clustering of the
beats has been achieved using a neuromorphic machine.

Considering the shortcomings introduced by the system being a global classifier
and the aim to design a low power wearable system, it has achieved remarkable results
compared to the literature. The system as a whole is estimated to consume less than
1 µW and has an overall clustering accuracy of 95.5%. In addition to 6 other well
clustered beat types it can also cluster the detected ventricular flutter waves with
85% accuracy, which are crucial since they can lead to ventricular fibrillation and death.

In summary, this thesis provides the preliminary work for a very promising design
for wearable ECG classification in the future.

5.2 Future Work

As mentioned throughout the thesis, there are some clear steps that the clustering
would benefit from. Since neuromorphic computing is a newly flourishing research
area, work in the understanding of this system will help improve the results for this
system.

Another important topic for future research would be to use different feature
selection methods such as embedded feature selection, which uses the classifier as part
of the feature selection process. As a result optimal features for a given classifier can
be selected. However, this research would also benefit from a better understanding of
neuromorphic machines.

Research on using multiple leads for classification will also help improve the results
and will provide insight into sensor fusion in neuromorphic machines. However, both
this, and developments in feature detection algorithms require a new database to be
developed.

It has been mentioned that the existing feature detection algorithms have proved
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Figure 5.1: ECG Signal Spike Encoding

insufficient. Moreover, taking into consideration that the most power consuming part
of the system is the feature detection, a neuromorphic design for feature detection is
proposed. This proposal offers an interesting potential research topic, however it has
not been researched further in this thesis.

This encoding scheme is inspired by [52], which uses spike encoding to detect speech
edges. The ultra-low power design of spiking systems makes it a good candidate for
speech edge detection in mobile systems. The element they have used is very much
like an integrate and fire neuron, with the exception of increasing its threshold after
each spike. This has been done to follow the noise and prevent misinterpreting noise
with speech. In case there is a signal with a high slope, the threshold does not increase
quickly enough and multiple spikes occur. This, is used to understand the presence of
speech.

This logic could just as well be applied to an ECG signal. An example can be seen
in Figure 5.1. For this implementation, it is decided that if there are 6 consecutive
spikes at any point in time, there is a QRS complex there. When tried on the MIT BIH
database this simple method achieves 94.77% true positive rate and 97.23% positive
predictive value, when we remove the patients without the ML-II leads (since the other
leads do not have the same characteristic QRS complex the algorithm is not optimized
for that, therefore the data with other leads have been removed). These results are
achieved without any other optimization or noise level adaptive thresholding. Thus
it is possible to improve on them. However, this algorithm only gives us information
about the presence of a beat and nothing about the onset and end points of the QRS
complex at its current stage.
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Of course the added benefit of this algorithm is that it encodes the ECG signal
directly into spikes, which of course should be the end goal, to remove all the
conventional circuits. When the classifier is more advanced with small modifications
to this algorithm, a direct use of it without any other feature detection might be
possible, since the frequency of the spikes also gives valuable data of the shape of the
QRS complex as well. If the sampling is increased, such values could be picked for
the capacitor (which determines the threshold in this algorithm) that, the threshold
can also follow the downward slope of the QRS complex, without also spiking at every
noise component.
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G. Castellanos-Domı́nguez, “Weighted-pca for unsupervised classification of car-
diac arrhythmias,” in Engineering in Medicine and Biology Society (EMBC), 2010
Annual International Conference of the IEEE, pp. 1906–1909, IEEE, 2010.

[19] S. Mukhopadhyay and G. Ray, “A new interpretation of nonlinear energy operator
and its efficacy in spike detection,” IEEE Transactions on Biomedical Engineering,
vol. 45, no. 2, pp. 180–187, 1998.

[20] C. Li, C. Zheng, and C. Tai, “Detection of ecg characteristic points using wavelet
transforms,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 1, pp. 21–
28, 1995.

[21] J. P. Mart́ınez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A wavelet-
based ecg delineator: evaluation on standard databases,” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 4, pp. 570–581, 2004.
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A
This chapter aims at giving a brief introduction to neuromorphic circuits, their biolog-
ical background and the simulator model used in this thesis.

A.1 Neuromorphic Machine

As mentioned before neuromorphic machines have been introduced by [10]. They aim
to emulate the brain behavior and thus, consist of so-called neurons, synapses and
learn based on synaptic plasticity algorithms. This section will explore the biological
phenomenon and some models used in literature to emulate this system. Then the
simulation model of a neuromorphic model that has been created by Johan Mes and
used in this thesis will be discussed [27].

A.1.1 Neuron

Neurons are the basic functional units of the brain. They are in charge of signal
processing and transmission, which is done by both electrical and chemical signals.

Neurons consist of three main parts, namely soma, dendrites and axon. These
parts can be seen in Figure 1.1. Soma is the body of the neuron and holds the nucleus.
The small branches coming out of the soma are called the dendrites, they are used to
receive the signals coming from other neighboring neurons. Long branch coming out
of the neuron is called the axon. When the inputs coming from the dendrites are large
enough the neuron is stimulated and an electrical spike is created, which is carried
through the axon to other neurons.

The activation of a neuron is based on the inputs it receives from the dendrites.
There can be two types of currents coming from the dendrites: excitatory currents and
inhibitory currents. These currents can respectively induce potentiation and excitation
of the membrane voltage. When the membrane voltage is higher than a certain thresh-
old the neuron fires. Whereas in some cases one stimulus is enough to fire a neuron, in
most cases multiple neurons act together to fire a neuron. The created pulse, when the
membrane voltage passes the threshold voltage is irrespective of the difference between
the threshold voltage and the stimulating signals. The created pulse once the threshold
is surpassed always has the same height and it is called a spike. After the firing the
neuron enters a resting phase called refractory period which has even lower potential
than its resting state. These phenomenon can be better explained in Figure A.1 and
Figure A.2.

There have been many mathematical models explored in literature and they will be
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Figure A.1: Elaboration of Action Potentials [4]. Point 1 shows where the neuron cell is in
its resting state and starts to get excited. In point 2 the membrane potential crosses the
threshold and the cell spikes (depolarizes). It reaches its peak value on point 3 and starts
to repolarize. Point 4 shows the refractory period, the hyperpolarized state of the cell and
finally on 5 the cell returns to its original resting state.

Figure A.2: Signal Summation in Neurons [4]. The jumps in the figure represent excitatory
inputs to the cell where the membrane potential increases and conversely the drops represent
inhibitory inputs to the cell, which decrease the membrane potential. The neuron accumulates
these signals, charges and discharges, until enough stimuli has been acquired to pass the
threshold voltage and it spikes.

discussed in section A.1.3.1.
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Figure A.3: Synapse structure

A.1.2 Synapse

Synapse is an abstract concept that defines the gap between the end of a neuron’s axon
and the end of another neuron’s dendrite, which can also be seen in Figure 1.1. Its
biological application is to prevent a short circuit between the neurons. If the neurons
were directly connected one created pulse would go through the whole network and
depolarize everything. Thus, the synapse comes into play in order to prevent this.

The electrical signal of a spike is converted to a chemical signal when being
transfered to another neuron. This transfer is achieved by using the elements called
neurotransmitters. When action potential reaches an axon terminal, the neurotrans-
mitters that are stored in small bags called synaptic vesicles are released into the
synaptic cleft. Neurotransmitters diffuse towards the dendrites and bind to their
corresponding receptors on dendrite terminals. This process allows the ions created by
the action potential to flow in between and create action potentials in the postsynaptic
neurons. This process can be better observed in Figure A.3.

The learning process in the brain is attributed to the synapse. In each connection
between neurons (each synapse), there are ”synaptic weights”. This concept is what
learning is based on. The weights of each synapse vary in time and this adaptation
actualizes learning. This weight adaptation is called synaptic plasticity. The most basic
logic behind the weight adaptation has been introduced by Donald Hebb [11]. Even
before we knew anything about plasticity Hebb postulated that if a neuron contributes
to another neurons firing the connection between them will get stronger over time.
This idea has been further improved over time and mathematical models have been
developed, which will be discussed in section A.1.3.2.
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A.1.3 Models

This section will discuss the various mathematical models created to realize and un-
derstand neurons and synaptic plasticity.

A.1.3.1 Neuron Models

The most detailed neuron model has been created by Hodgkin and Huxley in 1952
[53]. The model is extremely detailed and gives a perfect representation of the spike
response of a neuron. However, the details come with a price and the model is too
complicated to simulate large networks.

Two other methods have been widely utilized that are more simplified and can
be used in simulating large networks. These two models are known as the Izhikevich
[54] and the leaky integrate and fire (which was first proposed in [55] and since then
small changes have been made) neuron models. Izhikevich model is purely based on
mathematics; it is a simplified version of the Hodgkin-Huxley model and can create a
realistic spiking behavior. The leaky integrate and fire neuron on the other hand is a
simple RC circuit. Therefore, the membrane voltage is defined by the linear differential
equation of this circuit and there is a threshold for spiking.

A.1.3.2 Synaptic Plasticity Models

As mentioned before learning in the brain is achieved by synaptic plasticity. Further-
more, it is essential for us to know the details behind the learning since, it helps us
make sense of the system and configure it accordingly. Hebb was basically correct in
the working principle of the system, when two neurons fire consecutively the strength
of the connection between them changes based on the timing of those spikes. The
spike that comes from the neuron before the synapse is named pre-spike, on the other
hand the one that occurs on the neuron after the synapse is called a post-spike. Thus,
the naming is a location based naming rather than a temporal one. If the pre-spike
comes to the synapse before the post spike the connection weight is increased, but
if the adverse happens the weight is decreased. Continues repetition of one of these
events causes long term effects which are called Long Term Potentiation (LTP) and
Long Term Depression (LTD) respectfully.

Further studies have mathematically modeled this behavior on neurons [6], [56]. It
is named Pair-based Spike Timing Dependent Plasticity (PSTDP). In Figure A.4 the
phenomenon can be seen. Two constants affect this behavior namely τ the time coeffi-
cient that determines the time window and A the amplitude coefficient that determines
the change in weight. The expression for PSTDP can be seen in the following equations:

∆w+ = A+ ∗ e−∆t/τ+ ∆t > 0 (A.1)

∆w− = −A− ∗ e∆t/τ− ∆t < 0 (A.2)
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Figure A.4: PSTDP Learning Window Schematic [5]. The circles on the graph represent the
experimental data of the percentage change of excitatory post synaptic current at 20-30 min
after repetitive stimulation of pre and post-spikes at 1 Hz [6]. An exponential curve fitting
on this data is also shown.

where ∆t is the time difference between the pre and post spikes. τ+ and τ− are as
mentioned time constants for potentiation and depression respectively, whereas A+ and
A− represent the maximum amplitudes for the weights in both ends. These parameters
determine the area under the weight update curve. For stable learning the area under
the depression curve should be greater than the one under the potentiation curve. In
the antagonistic case the network becomes an all pass network as a result of all the
connections being highly potentiated.

Studies have further shown that when the stimulation frequency was increased
PSTDP couldn’t predict the weight change correctly. When we use a higher frequency
the second pre-spike arrives too soon and is in the depression window or vice versa,
however experiments have shown the contrary. As a result a new model had to be
developed for such a case. This method is called Triplet-based STDP (TSTDP). The
following equations are used to express the rule:

∆w+ = e−∆t1/τ+ ∗ (A2
+ + A3

+ ∗ e−∆t2/τy) (A.3)

∆w− = −e∆t1/τ− ∗ (A2
− + A3

− ∗ e−∆t3/τx) (A.4)

where τ+,τ−,τx and τy are again the time constant coefficients. However, in this
case whether there will be potentiation or depression is slightly more complicated,
Figure A.5 clarifies this situation.
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Figure A.5: TSTDP time constant coefficient interpretation. A2
− and A2

+ are the pair STDP
cases as can be seen. In the case of triplets though, for depression the presence of a pre-spike
gives an additional contribution just as for potentiation the presence of an additional post-
spike gives a contribution. For the third spike to be included the τx shouldn’t be much larger
than τ− or for potentiation τy shouldn’t be much larger than τ+ [7].

A.1.4 Simulation Model

A simulation model has been created by Johan Mes [27] to emulate a spiking neural
network. This section will briefly go over some of the decisions made over the creation
of this simulation tool, and available configuration options for the created network.

The simulator uses integrate and fire model for the neurons. The leading factors
that lead to this choice were the nonlinear behavior of the integrate and fire neuron and
its mathematical simplicity. The Hodgkin-Huxley model is unnecessarily complicated
for such a task even though it can model a biological neuron very well. The Izhikevich
model on the other hand can model a neuron better than an integrate and fire model
in terms of spike shape yet it fails to exhibit a nonlinear response (i.e. its spiking
frequency increases linearly based on the input strength). Thus, it causes problems for
nonlinear classification.

TSTDP is being used as the learning rule in the simulator. Mainly due to its use
in high frequency spiking. TSTDP functioning in high frequency allows the overall
simulation time to drop. In a network that is slow enough PSTDP should be enough,
which might be considered in the hardware implementation, since one of the drawbacks
of TSTDP is its complexity. However, the simulation duration is quite important not
just because a computer simulation takes much longer than a hardware implementation
would, but also as the simulation duration gets longer we need to store more points
in the simulation which causes memory problems. It is worth mentioning that since
TSTDP is just an extension of PSTDP, by changing input configurations it is possible
to simulate PSTDP as well.

The most important configurations for the simulator can be grouped into three
categories: Network Structure, Input/Output, and Basics. The network structure is
completely modifiable in the simulator. It is possible to change the neuron count,
sparsity of connections between the neurons, weight limits and distributions in
synapses, delay limits and distributions of synapses. Finally it is also possible to
customize the network architecture (Feed-forward [43], Self Organizing Map (SOM)
[44], Liquid State Machine (LSM) [45] and more custom networks), and add different
types of feedbacks to the network. In the Input/Output section other than the input,
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what we can configure are the sampling frequency from the input, input encoding style,
input training time, number of epochs for input training. Finally, we can also change
the basic settings of the whole network, such as the capacitances and resistances of
neurons to have a control over discharge time, and we can change the parameters of
the learning, as mentioned before. This helps us use triplet or pair based STDP, it is
also possible to change the areas under the curves of depression and potentiation.
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