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Abstract

When a team of autonomous mobile robots (MRs) has to perform a mission of a duration that
exceeds their energy capacities, the mission can only be fulfilled if the MRs are resupplied.
Nowadays most MRs are powered by batteries, which can either be recharged, or replaced.
Since it is not necessary that the MRs are battery powered, we will use the general term
refuelling instead of recharging. In general there are two options for MRs to refuel themselves:
by travelling to a fuelling station (FS) that is situated at a fixed location, or rendezvousing
with a mobile fuelling station (MFS). When multiple MRs operate in the same environment,
it is desired that the MRs share the available FSs instead of each MR having its own dedicated
FS. Sharing the FSs will reduce the purchase and maintenance costs, and less space will be
needed for the placement of FSs. The FSs considered during this thesis, can only refuel a single
robot at a time. This raises the need for properly scheduling the refuelling activities, such
that the FSs are shared in an efficient manner, and depletion of the MRs can be prevented.
This thesis presents several methods to schedule the refuelling activities of multiple heteroge-
neous autonomous MRs. The scheduling is focused on the selection of the refuel events, and
the allocation of the FSs as a shared resource. The following problem is considered: For an
environment which contains an arbitrary number of FSs, and MRs, the refuelling activities
should be scheduled in such a way that the overall mission time is minimized. Each mission
entails an assignment of a unique set of waypoints for each MR which have to be visited in
a pre-determined order, in order to complete the mission. The total mission is accomplished
when the last MR is completely refuelled, after visiting its last waypoint. Scheduling the
refuelling activities using a time-based metric is complicated compared to a distance-based
metric. Since a FS can refuel only a single MR at a time, the duration that each MR spends
refuelling, and the ordering in which the MRs are refuelling have to be taken into account.
Furthermore since the MRs share the FSs, each refuel event of one MR can affect all future
refuel events of all other MRs.
Global optimal solutions for this problem can be found by using a centralized approach as
shown in this thesis. However, since all refuel events of all MRs can influence each other, the
complexity increases very quickly when the problem size increases. In order to obtain a global
optimum, all possible refuel events have to be taken into account. Due to the computational
complexity, the problem size that can be solved by this approach is limited. In order to solve
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larger scale problems, a trade-off has been made between computation time and solution
quality. A distributed, and hierarchical architecture are proposed, in order to distribute
the computations and decision making over the robotic team. The core of the distributed
approach is that MRs make individual decisions based on local knowledge. The decision
making of the hierarchical approach is done for individuals or clusters of MRs. Simulation
case studies indicate that these decentralized approaches can be used to solve large scale
problems in real-time, at the cost of a suboptimal solution.
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“There are an endless number of things to discover about robotics. A lot of it is
just too fantastic for people to believe.”
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Chapter 1

Introduction

Since autonomous mobile robots (MRs) evolved, they have an increasing role in modern soci-
ety. Autonomous MRs are well suited for missions in hazardous environments or environments
where it is impossible for human beings to survive, e.g. toxic areas, deep sea, and space. The
operation duration of MRs is limited by their energy capacity. With the evolvement of au-
tonomous MRs, the need for self-sufficiency increased. MRs are self-sufficient if they are able
to autonomously refuel themselves when necessary. Self-sufficient MRs can be deployed to
fulfil all kinds of long-term missions, e.g. persistent labour, patrol missions, or area explo-
ration. Self-sufficient MRs are already part of the society, some examples are: the museum
tour guide ATLAS [2], the vacuum cleaning iRobot Roomba [3], and dog-like Sony Aibo [4].

The first MRs capable of autonomous refuelling, were the tortoises of W. Grey Walter built
in 1950 [5]. Walter’s tortoises were able to move themselves into a lighted recharging hutch.
In 1960 J. Hopkins introduced the Hopkins beast, which was capable of plugging itself into a
wall outlet. Steels [6] built a robotic ecosystem in 1994, where MRs had to compete for energy
with competitors. This work was continued in 1997 by Belpaeme and Birk [7], who introduced
different robotic species into the ecosystem. Besides competing for energy, the different species
had to cooperate to survive. The last two decades self-sufficient MRs gained interest, and
research began to focus on improving the efficiency of individual MRs and robotic teams. The
aim was to maximize the time the MRs spent working [8, 9]. Extension of the operation time
and range of the MRs, has been realized by incorporating mobile fuelling stations (MFSs)
[10, 11]. Strategies have been proposed for coordinating the refuelling activities, in order
to improve the efficiency of MR teams. Kim et al. [12] presented a centralized architecture
to coordinate the refuelling of unmanned aerial vehicles (UAVs), for long-term persistent
mission fulfilment. Hierarchical architectures in the form of a market-based mechanism have
been introduced by Marmol et al. [10], Leonard et al. [13].

A self-sufficient MR performs the basic cycles of work, find fuel, and refuel [14]. In order to
find fuel a MR has to be capable of locating a fuelling station (FS) and navigating towards
it, also called homing behaviour. Several methods can be applied for this purpose, such as
infra-red homing system [15], vision and artificial landmarks [16], virtual pheromones [17],
environment mapping [18], and motion capture systems [19]. Most of the MRs are powered by
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2 Introduction

batteries. These MRs can be resupplied by either replacing [20], or recharging the batteries.
Recharging can be done either via a direct connection [21], or contactless [22]. The battery
voltage slope is often assumed to be linear, in practice this is not the case. Birk [23] proposed
to take the non-linearities into account, by using the voltage slope to determine when a MR
should go for recharge. It is even possible to recharge a MR during operation via a laser beam
[24], although this is not energy efficient. It is beyond the scope of this thesis to elaborate on
these strategies, but it has to be noted that these are important basics of self-sufficient MRs.

This thesis focuses on two major decisions that should be taken, in order for a MR to be self-
sufficient: refuel event selection, and allocation of the FSs as a shared resource. The major
problem is to schedule the refuelling activities of multiple MRs, across multiple FSs, such
that the overall mission time is minimized. The goal of this thesis is to develop and compare
different methods to solve this problem, with the restriction that a FS can only refuel a single
MR at a time. This implies that the MRs should share the available FSs efficiently, in order
to prevent depletion, and accomplish a mission in a minimum amount of time.

1-1 Problem Statement

Consider an environment that contains: a setM of M FSs (indexed by m), and a set K of K
MRs (indexed by k). The FSs are assumed to have an unlimited energy capacity, and ability
to move at a constant velocity vm. The MRs are assumed to move at a constant velocity vk.
Furthermore it is assumed that the MRs only consume energy while moving, at a constant
rate Ėk. The FSs can only refuel a single MR at a time, and with a constant energy donation
rate Ėm. The FSs can be heterogeneous in the sense that they can have different maximum
velocities vm,max, and energy donation rates Ėm. The MRs can be heterogeneous in the sense
that they can have different maximum velocities vk,max, energy consumption rates Ėk, and
energy capacities Ek,max.

Each MR starts the mission at its initial location pk0 and has to visit N waypoints (indexed
by n), in a pre-determined order. The mission of a single MR is fulfilled when it has visited
all waypoints, and is completely refuelled again. Each FS has an initial location pm0. The
FSs can either be mobile, or situated at a fixed location (from now on denoted as: fixed FS),
determined by their maximum velocity vm,max. A FS is fixed if vm,max = 0, and mobile if
vm,max > 0. A MR can be refuelled by a MFS at a rendezvous location fmlk, m ∈M, k ∈ K.
The index l denotes the lth refuelling task of a FS. The rendezvous locations are not known a
priori, and have to be determined in such a way that the time the MRs spend on a refuelling
activity is minimized. A single fuel cycle of a MR consists of: visiting waypoints, transitioning
to a fuel location, and refuelling. Each MR has a maximum initial energy, Ek = Ek,max.
When refuelling, a MR leaves the FS when its energy level reaches its maximum. If a MR
is completely refuelled, it is assumed to be able to visit at least a single waypoint. This
implies that the maximum number of fuel cycles a MR can have, is equal to the number of
waypoints. The mission of the robotic team is accomplished when all MRs reached their final
waypoint, and are completely refuelled. The objective is to minimize the mission completion
time Tmission.

R. Huisman Master of Science Thesis



1-1 Problem Statement 3

Formally we are interested in solving the following problem:

Problem 1. Given:

• M FSs at initial positions pm0, with: maximum velocity vm,max, an unlimited energy
capacity, and possibility to refuel MRs at a rate Ėm.

• K MRs at initial positions pk0, with: on-board energy Ek, energy capacity Ek,max,
energy consumption rate Ėk, and maximum velocity vk,max.

• KN waypoints pkn ∈ R2, k ∈ K, n = 1, · · · , N , to be visited in a consecutive order by
the corresponding MRk.

Determine for each:

• MR a set Ωr of refuel points {pkn}, such that: MRk goes for refuel after visiting waypoint
pkn, and visits waypoint pk(n+1) afterwards.

• MR a set Ωf of rendezvous locations fmlk, such that: MRk goes for refuel at the ren-
dezvous location of FSm, during the lth refuelling task of FSm. In case the FS is mobile,
the rendezvous location becomes a decision variable. Otherwise the rendezvous location
is equal to the location of the fixed FS.

• MR the ordering in which it is allowed to enter a FS (from now on denoted as: refuel
ordering), in case multiple MRs want to enter the same FS during the same timeslot.

Such that:

• Tmission is minimized.

• Ek > 0, ∀k ∈ K, at all times.

An example of a mission is illustrated in Figure 1-1. Here the environment consists of 1 fixed
FS, 1 MFS, and 4 MRs. Each MR is assigned N waypoints which have to be visited in a pre-
determined order. The direct routes of the MRs are indicated by the solid lines, connecting the
waypoints. During operation the MRs have to refuel from time to time, because their energy
capacity is insufficient to visit all waypoints at once. The refuelling activities are indicated by
the dashed lines. In this situation, MR1 will refuel at FS1 after visiting {p11, p12}, to be able
to visit {p13, · · · , p1N} afterwards. MR2 will refuel at FS2 (which is a MFS) at rendezvous
location f212, after visiting {p21, · · · , p24}. MR3 will refuel at FS2, at the rendezvous location
f223 after visiting p31. MR4 will first refuel at FS2 at rendezvous location f234 after visiting
{p41, p42}, and refuel a second time at FS1 after visiting {p43, p44}. In this example it is clear
that FS2 will first refuel MR2, then MR3, and finally MR4. However it is undetermined in
which order FS1 is going to refuel MR1, and MR4. FS1 can refuel these MRs in the order
{MR1,MR4}, or {MR4,MR1}, where the MR which is listed first is the robot that is allowed
to enter the FS as first. This indicates an important aspect of the problem, that besides
selecting the refuel events, and allocation of the FSs, also the refuel ordering has to be taken
into account.
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4 Introduction

Figure 1-1: Example of a mission where 4 MRs have to visit N waypoints in a pre-determined
order, and have the possibility of refuelling at a fixed, and mobile FS.

The mathematical formulation of the problem taken under consideration is given below.
Notations

J - Set of J possible refuel orderings (indexed by j).

L - Set of L refuel tasks for each FS (indexed by l). The value of L is not known a priori,
but is coupled to the decision variable X, which is among others used to select how
often a MR will refuel.

T r
imk - Time it takes MRk to get completely refuelled by FSm during its ith fuel cycle.

Tw
imkj - Time MRk has to wait before it is allowed to enter FSm during its ith fuel cycle,

corresponding to refuel ordering j.

τik - Total time MRk is moving during its ith fuel cycle.

Dik - Distance travelled by MRk during its ith fuel cycle.

Rlmk =
{

1 if FSm is refuelling MRk, during its lth refuelling task.
0 otherwise.

Decision Variables
A binary decision variable X can be used for the selection of the refuel events, and the
allocation of the FSs, as follows:

Xinmk =


1 if MRk goes for refuel at FSm, after visiting waypoint

pkn, during its ith fuel cycle.
0 otherwise.

(1-1)

R. Huisman Master of Science Thesis



1-1 Problem Statement 5

A binary decision variable U can be defined, in order to select from all possible refuel orderings
the ordering that results in a minimum total mission time. U can be defined as follows:

Uj =
{

1 if j corresponds to the chosen refuel ordering.
0 otherwise.

(1-2)

The rendezvous locations of the MFS, have to be determined such that the total time the
MRs spend on a refuelling activity is minimized. Because of this the rendezvous location
fmlk, m ∈M, l ∈ L, k ∈ K is a continuous decision variable.

Constraints

The constraint that guarantees that the amount of energy each MR spends moving in a fuel
cycle is less than its maximum energy, is given as follows:

DikĖk < Ek,max, i = 1, · · · , N, k ∈ K (1-3)

In order to guarantee that each MR travels to a FS after it visited its last waypoint, the
following constraint is given:

M∑
m=1

Xinmk = 1, i ∈ {1, · · · , N}, n = N, k ∈ K (1-4)

Since a FS can only refuel a single MR at a time, the constraint given in (1-5) makes sure
that a FS cannot be used by multiple MRs simultaneously.

K∑
k=1

Rlmk = 1, l ∈ L,m ∈M (1-5)

The following constraint guarantees that from all possible refuel orderings, exactly one is
selected.

J∑
j=1

Uj = 1 (1-6)

Cost Function

The cost function is the total mission time, which can be determined as follows. For each
MR: sum up all travel times from the initial position to the final waypoint; subtract the
travel times between the waypoints that the MR is travelling via a FS; add the travel times
from the waypoints after which is chosen to refuel, to the chosen FSs; add the times the MR
spends waiting, add the times the MR spends refuelling; and add the travel times from the
chosen FSs to the waypoints that has to be visited after the refuel event. The cost function
is given by (1-7).

Tmission =
∑
k∈K

∑
m∈M

∑
n∈N

N∑
i=1

∑
j∈J

( 1
vk

[ ||pkn − pk(n−1)||+

+ (||fmlk − pkn|| − ||pk(n+1) − pkn||+ ||pk(n+1) − fmlk||)Xinmk]+

+ (T r
imk + Tw

imkj Uj)Xinmk

) (1-7)
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6 Introduction

Optimization problem formulation

min
X,f,U

Tmission (1-8a)

s.t. (1-3)-(1-6) (1-8b)

1-2 Problem Analysis

The problem can be divided in the three subproblems listed below, which have to be solved
in order to minimize the overall mission time.

1. Find a set of waypoints after which the MRs should go for refuel, and determine to
which FSs the MRs should go for refuel;

2. Determine the refuel ordering;

3. Find a set of rendezvous locations.

The first subproblem is a path planning problem. If a single vehicle, and a distance-based
metric are considered, the problem is well studied and usually boils down to solve a travelling
salesman problem (TSP). A description of the TSP is among others given by Laporte [25]. In
general the TSP describes the problem of finding the shortest possible route for a travelling
salesman, who has to visit a number of cities exactly once. A generalization of the TSP is
the vehicle routing problem (VRP). The VRP describes the problem of finding the shortest
possible routes for a number of vehicles, which have to visit a number of customers exactly
once. Each route starts and ends at the same location, which is called the depot. A variant of
the VRP is the capacity constrained vehicle routing problem (CVRP), which takes a maximum
capacity of the vehicles into account. A description of the VRP, and CVRP is among others
given by Laporte et al. [26], Laporte and Nobert [27]. Another variant of the VRP is the
multi-depot capacity constrained vehicle routing problem (MDCVRP). This is the CVRP,
with the extension that there are multiple depots. A restriction is that each route has to
start and end at the same depot. The first subproblem is related with the MDCVRP, but has
some major differences. Comparing the first subproblem with the MDCVRP: the MRs, FSs,
and waypoints can be seen as vehicles, depots, and customers respectively. The differences
with the MDCVRP are:

• A MR does not have to start and end a route at the same FS;

• The waypoints are already assigned to each MR, and has to be visited in a pre-
determined order;

• The total mission time is minimized, instead of the total travel distance.

The second subproblem is a combinatorial optimization problem, which involves finding all
permutations between all possible fuel cycles of all MRs, with the constraint that for each
MR, the first fuel cycle should occur before the second fuel cycle, the second fuel cycle should
occur before the third fuel cycle, etc.
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1-2 Problem Analysis 7

The third subproblem is an optimization problem, where the rendezvous locations are the
decision variables. The objective is to minimize the time the MRs spend during a refuel
activity. If the time a MR has to spend refuelling is relative long compared to the time the
MR can be moving in a fuel cycle, it is beneficial if the rendezvous location is close to the
current location of the MR. This prevents the MR from spending a lot of energy to travel
to a rendezvous location, and so decreases the refuel time. On the other hand if the MR can
move a long time during a fuel cycle, and little time is needed to be completely refuelled,
it can be beneficial if the rendezvous location is closer to the current location of the MFS.
Another option is to determine the rendezvous location while taking the locations of a cluster
of MRs into account. In that case the rendezvous location should be chosen such that the
overall time the MRs in the cluster spend on a refuelling activity is minimized.

The objective function of (1-8) is non-linear because of the multiplication between the decision
variables f and X, and U and X. All constraints are linear. The decision variables consists
of continuous (f), and binary variables (X, U). This makes this problem a mixed integer
nonlinear program (MINLP). MINLP problems are NP-hard, and generally very complex to
solve [28, 29]. Some algorithms to solve a MINLP are: outer approximation, branch-and-
bound, extended cutting plane methods, and generalized Bender’s decomposition [30]. There
are a number of optimization solvers which can be used in MATLAB R© to solve these class of
problems. Some of these solvers are listed below.

• The TOMLAB R© solver minlpBB solves large, sparse or dense non-linear programming
problems. minlpBB implements a branch-and-bound algorithm, searching a tree whose
nodes correspond to continuous non-linearly constrained optimization problems.

• The MIDACO solver is suitable for problems with up to several hundreds to some
thousands optimization variables. MIDACO implements a derivative-free, heuristic al-
gorithm that treats the problem as black-box.

• The NOMAD solver from the MATLAB opti toolbox, is a derivative free, global MINLP
solver.

The solutions of the algorithms to solve a MINLP are suboptimal, and it is hard to verify
how far the solutions are from a global optimum.

The goal of this thesis is to develop, and compare several approaches to solve the problem
defined in Section 1-1. Since the problem is NP-hard, the computational cost will grow very
quickly when the problem size increases. In this thesis methods have been developed, which
make it possible to solve this problem for large scale systems, by reducing the computation
time at the cost of a suboptimal solution. Unless the well known P=NP problem [31] is
solved, it is not possible to find a global optimal solution in polynomial runtime for the
original problem definition. We are not striving at solving the P=NP problem. We strive to
solve the problem defined in Section 1-1, and related problems using a (sub)optimal approach,
which solution quality is acceptable compared to the computation time. A global optimal
solution has to be found, which can serve as a benchmark to verify the solution quality of
the different approaches. The problem stated in (1-8) is simplified, by only taking fixed FSs
into account. This combined with the use of max-plus algebra made it possible to formulate
the problem as a mixed integer linear program (MILP). For a MILP problem it is possible
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8 Introduction

to obtain a global optimum. A MILP belongs to the class of NP-complete problems, which
computation time grows very quickly as well when the problem size increases.

There is a wide variety of optimization solvers, which can be used in MATLAB to solve MILP
problems. Some of them are listed below.

• CPLEX R©, an optimization solver from IBM, for integer programming problems, solves
very large [32] linear programming problems using either primal or dual variants of the
simplex method or the barrier interior point method, convex and non-convex quadratic
programming problems, and convex quadratically constrained problems.

• GUROBI R© is a solver for linear programming, quadratic programming, quadratically
constrained programming, mixed integer linear programming, mixed-integer quadratic
programming, and mixed-integer quadratically constrained programming.

• SEDUMI is a toolbox for MATLAB, for solving optimization problems with linear,
quadratic, and semi definiteness constraints [33].

YALMIP is a modelling language for advanced modelling of convex and non-convex opti-
mization problems [34]. YALMIP is implemented as a MATLAB toolbox and can be used
to model convex and non-convex optimization problems. For the computation YALMIP re-
lies on existing optimization solvers. A large variety of optimization solvers can be used in
combination with YALMIP, among others the three solvers listed above.

1-3 Outline

This thesis discusses three different approaches to schedule the refuelling activities of multiple
heterogeneous MRs. Chapter 2 discusses a centralized approach, where a MILP is formulated
to solve a simplified version of the problem stated in (1-8). A MILP is formulated for both
a distance and a time-based metric. A heuristic is discussed, which is proposed to speed
up the computation time. A receding horizon principle is used to solve small scale problems
repeatedly, in order to solve a large scale problem where the MRs have to visit a large number
of waypoints. The performance of the different methods is analysed by performing some
numerical experiments, which will conclude this chapter. Chapter 3 discusses a distributed
approach to solve the problem defined in Section 1-1. This approach is distributed in the sense
that the decisions are made by each MR individually, based on local knowledge. Two different
refuel event selection methods are discussed, which performances are evaluated by simulation
experiments at the end of the chapter. A hierarchical approach to schedule the refuelling
activities of multiple MRs is presented in Chapter 4. This approach is called hierarchical
because the decisions are made for individuals or clusters of MRs, based on local knowledge.
In Chapter 5 a comparison is made between the centralized, distributed and hierarchical
approaches. The performance of the different approaches is evaluated in terms of total mission
time. Furthermore the influence of MFSs on the total mission time is investigated. Finally,
in Chapter 6 the conclusions, and proposals for future research will be given.
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Chapter 2

Centralized Approach

This chapter presents a centralized method in order to solve the problem stated in Section 1-
1. The approach is called centralized, because a central node performs all calculations, and
decision making for all mobile robots (MRs), based on global knowledge. The advantage
of a centralized architecture is that global optimal plans can be formulated which lead to
global optimal solutions. Drawbacks of this architecture are that it is not robust to dynamic
environments, communication failures, and other uncertainties [35]. Furthermore centralized
architectures are highly vulnerable because they have a central point of failure [35, 36]. Cen-
tralized approaches are most suited for problems involving small robot teams [35, 36], and
static environments [36].

Since the problem of Equation (1-8) is a mixed integer nonlinear program (MINLP), the
solutions are suboptimal, and it is hard to verify how far the solution is from a global optimum.
In order to find a global optimal solution, the problem is simplified by assuming that all
fuelling stations (FSs) are situated at a fixed location. This changes the cost function of
Equation (1-7), such that the rendezvous location f is a constant and not a decision variable
anymore. By using max-plus algebra, the multiplication in (1-7) between X and U , could be
transformed into a linear operation. The basics of max-plus algebra, and the exact operations
that were done, are explained in detail in Section 2-2. These changes made it possible to
transform the cost function, such that it consists of all linear terms. Since the constraints of
(1-8) are linear as well, the reformulated problem is a mixed integer linear program (MILP).
A solution for this problem is presented for both a distance, and a time-based metric as
shown in the following sections. The distance, time, and energy values used in this thesis
are expressed in general terms as distance, time, and energy units. One can interpret these
units as desired. If one for instance is interested in distances of e.g. metres, or kilometres,
the distance units can be interpreted in metres, or kilometres respectively.

In recent literature there are some approaches which schedule the refuelling activities of
robotic teams, using a centralized approach. A MILP is formulated by Kim et al. [12], in
order to schedule the refuelling activities of unmanned aerial vehicles (UAVs). Klauco et al.
[1] formulated a mixed integer second order cone program (MISOCP) for a path planning
problem of heterogeneous multi-vehicle systems. The problem they considered is that of a
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10 Centralized Approach

Figure 2-1: Illustration of an optimal path for the heterogeneous vehicle. τi and lj denote the
points where the fast vehicle will leave and enter the carrier respectively. The solid line shows
the trajectory of the carrier and the dashed lines show the trajectory of the fast vehicle - Adapted
from Klauco et al. [1].

vehicle combination, which consists of a slow carrier vehicle with a large operation range, and
a fast vehicle with a short operation range. The combined vehicle starts at an initial position
and has to visit a number of N waypoints in a consecutive order. The objective is to minimize
the mission completion time, while taking the limited operation range of the fast vehicle into
account. Refuelling is assumed to happen instantaneous. The fast vehicle can refuel itself by
rendezvousing with the slow carrier. This means the fast vehicle can leave the slow carrier
to visit some waypoints, return to refuel, and visit waypoints again. This is illustrated in
Figure 2-1. This figure shows that the fast vehicle sometimes leaves the carrier to quickly
visit some waypoints and returns to the carrier again to refuel. Our MILP formulation is
based on the formulation of Klauco et al. [1]. The problem they consider can be translated in
the problem defined in Section 1-1, while only taking fixed FSs into account. The FSs can be
considered as fixed carriers, and the MRs as fast vehicles. The major differences are that in
our case the FSs are fixed, there are multiple FSs and MRs, there is not necessarily an equal
number of FSs and MRs, and the MRs do not necessarily have to return to the same FS.

To the best of our knowledge, we are the first to formulate a MILP in order to schedule the
refuelling activities of multiple MRs, across multiple FSs, using a time-based metric, while
taking the duration that each MR spends refuelling (from now on denoted as: refuel time)
and the refuel ordering into account. Klauco et al. [1] use a time-based metric as well, but
assume that the MR can refuel instantaneously. Due to this assumption, the refuel times do
not have to be taken into account. Furthermore the system they consider consists of a single
mobile fuelling station (MFS) and a single MR. Kim et al. [12] consider a problem where
the refuelling activities of UAVs have to be scheduled for persistent mission fulfilment. A
distance-based metric is used, which makes it unnecessary to take the refuel times and refuel
ordering into account.
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2-1 Distance-Based Metric 11

2-1 Distance-Based Metric

This section discusses the formulation of a MILP to schedule the refuelling activities of multi-
ple heterogeneous MRs, such that the MRs perform a mission while the total travel distance
is minimized. This formulation forms the basis for the final MILP formulation, where the
total mission time is minimized.

2-1-1 MILP Formulation

When using a distance-based metric, and assuming that the FSs are situated at a fixed
location, two decisions have to be made. In order to find an optimal schedule, there has to
be decided after which waypoints, and to which FSs the MRs go for refuel. These decisions
can be made by solving a MILP. The formulation of the MILP is discussed in the rest of this
section for a single FS, and a multiple FSs scenario.

Single Fuelling Station Scenario

A binary decision variable X is defined, in order to determine after which waypoints the MRs
should go for refuel. X is defined as follows:

Xink =


1 if MRk goes for refuel after visiting waypoint pkn, during

its ith fuel cycle.
0 otherwise.

(2-1)

Based on the MISOCP formulation by Klauco et al. [1], the decision variable is a binary
matrix X ∈ {0, 1}N×N×K . Xink is interpreted as follows: during its ith fuel cycle, MRk starts
fully refuelled at the FS, visits waypoints pi, · · · , pn without refuelling, and ends the fuel cycle
completely refuelled at the FS again. There are two important restrictions. The first is that
the MRs start and end a mission at the FS. The second restriction is that when completely
refuelled, a MR should at least be able to visit a single waypoint. This implies that each MR
can have a maximum of N fuel cycles.

For a single MR, which has to visit three waypoints, the structure of X can be given as
follows:

X =

1 0 0
0 0 1
0 0 0


In this example, the first element in the first row is 1, which means the MR starts its first
fuel cycle fully refuelled at the FS, visits waypoint p1, and returns to the FS for refuel. The
last element of the second row is also 1, which means that during the second fuel cycle, the
MR visits waypoints {p2, p3} in a consecutive order, and then returns to the FS again. For
scenarios with K MRs, X is a three-dimensional binary decision matrix, such that the refuel
events can be determined for each MR individually.

In order to calculate the distances travelled by each MR, a matrix D ∈ RN×N×K is created.
D contains all the euclidean distances, the MRs have to cross to visit the waypoints during
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each fuel cycle. An example of a distance matrix for a single MR is given as follows:

D =

6 12 16
0 8 10
0 0 8


D has the same structure as X. The nonzero values of D represent the distances of the routes
that start and end at the FS. During the first fuel cycle the MR has three options, visit:
only p1 (distance is 6), p1 and p2 (distance is 12), or p1, p2, and p3 (distance is 16). During
the second fuel cycle the MR can visit: only p2 (distance is 8), or p2, and p3 (distance is 10).
During the third fuel cycle the MR can only visit p3 (distance is 8).
For scenarios with K MRs, D is a three-dimensional matrix which contains all possible travel
distances for each MR.
In a similar fashion as the distance matrix, an energy consumption matrix Ec ∈ RN×N×K
can be constructed, which contains all amounts of energy that each MR will consume during
all possible routes. It is assumed that a MR only consumes energy while moving, and at a
constant rate. The energy consumption matrix can be calculated by multiplying the distance
matrix with the energy consumption rate, as given by (2-2).

Ec
ink = DinkĖk, i = 1, · · · , N, n ∈ N , k ∈ K (2-2)

The energy consumption matrix will be used to guarantee that all MRs do not travel routes
of longer distances than their energy capacity allows.
The objective is to minimize the accumulated travel distance Dtotal, which can be calculated
by the total sum of the distance matrix multiplied with X. The cost function is given by
(2-3).

Dtotal =
K∑
k=1

N∑
n=1

N∑
i=1

DinkXink (2-3)

A constraint is formulated in (2-4) to guarantee that the MRs do not travel routes that exceed
their energy capacity,

Ec
inkXink ≤ Ek,max, i = 1, · · · , N, n ∈ N , k ∈ K (2-4)

Another constraint is defined, in order to guarantee that each MR visits each waypoint exactly
once. This constraint is given as follows:

w∑
i=1

N∑
n=w

Xink = 1, k ∈ K, w = 1, · · · , N (2-5)

The optimization problem for a single FS scenario, using a distance-based metric can be
formulated as follows:

min
X

Dtotal (2-6a)

s.t. (2-4)-(2-5) (2-6b)

This problem is a linear program (LP) due to the fact that the objective function and con-
straints are linear. Because the decision variable X is binary, this problem is a MILP.
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Multiple Fuelling Stations Scenario

For scenarios with multiple FSs, the MRs have the option to start and end the mission at one
of the FSs. A MR can end a fuel cycle at a different FS, than where it started the fuel cycle.
The MILP formulation defined for the single fuelling station scenario can be extended to a
multiple FSs scenario. When the number of FSs increases, the number of possible FSs where
a MR can start and end a fuel cycle increases quadratically with the number of FSs.

Theorem 2.1. The number of combinations between locations where a mobile robot can start
and end a fuel cycle, increases quadratically with the number of fuelling stations.

Proof. Consider the set M = {1, 2, · · · ,M} of M FSs. For each FSi, i ∈ M, it is possible
that a MR starts a fuel cycle at FSi, and ends the fuel cycle at FSj , j ∈M. Since a MR can
start a fuel cycle at M FSs, and end a fuel cycle at M FSs, the total number of combinations
between the locations where a MR can start and end a fuel cycle is M2.

Based on Theorem 2.1 a set ΩM = {s1, s2 | s1, s2 ∈ M} is defined, which can contain
any possible combination between two elements in M. A second set Q = {c1, c2, · · · , cM2 |
c1, c2, · · · , cM2 ∈ ΩM} is defined, which contains all possible combinations between the ele-
ments inM. The elements in Q are indexed by q.

For a scenario with three fuelling stations, the set Q and the corresponding FSs can be defined
as given in Table 2-1.

Table 2-1: Example of the set Q, which contains all possible combinations between FSs where
a MR can start and end a fuel cycle, for a scenario with 3 FSs.

q 1 2 3 4 5 6 7 8 9
Start at FS 3 2 1 1 1 2 2 3 3
End at FS 3 2 1 3 2 1 3 2 1

A binary decision variable X is defined, in order to determine after which waypoints, and to
which FSs the MRs should go for refuel. X is given as follows:

Xinqk =


1 if MRk starts and ends its ith fuel cycle at the FSs cor-

responding to q, after visiting waypoint pkn.
0 otherwise.

(2-7)

Xinqk is interpreted as follows: during its ith fuel cycle, MRk starts fully refuelled at the
FS corresponding to q, visits waypoints pi, · · · , pn without refuelling, and ends the fuel cycle
completely refuelled at the FS corresponding to q again. X becomes a four-dimensional binary
decision matrix X ∈ {0, 1}N×N×M2×K , because in the multiple fuelling stations scenario the
allocation of the FSs forms an extra decision in comparison to the single FS scenario.

The distance matrix also becomes a four-dimensional matrix D ∈ RN×N×M2×K . Again D
has the same structure as X and contains the distances of all possible routes, for all MRs,
during each fuel cycle.
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The energy consumption matrix becomes a four-dimensional matrix as well Ec ∈ RN×N×M2×K .
This matrix can be calculated again by multiplying the distance matrix with the energy con-
sumption rate, as given by (2-8).

Ec
inqk = DinqkĖk, i = 1, · · · , N, n ∈ N , q ∈ Q, k ∈ K (2-8)

For a multiple FSs scenario the cost function can be calculated as follows:

Dtotal =
K∑
k=1

M2∑
q=1

N∑
n=1

N∑
i=1

DinqkXinqk (2-9)

The constraints of the single FS scenario are applicable to the multiple FSs scenario as
well, when the extended decision, distance, and energy consumption matrices are taken into
account. The constraint that prevents that the amount of energy consumed by a MR during
a fuel cycle is larger than its maximum energy capacity allows, is given as follows:

Ec
inqkXinqk ≤ Ek,max, i = 1, · · · , N, n ∈ N , q ∈ Q, k ∈ K (2-10)

The constraint that guarantees that each waypoint is visited exactly once becomes:

M2∑
q=1

w∑
i=1

N∑
n=w

Xinqk = 1, k ∈ K, w = 1, · · · , N (2-11)

A third constraint has to be formulated, in order to guarantee that if a MR ends a fuel cycle
at a certain FS, it departs the next fuel cycle from the same FS. This is illustrated by the
following example. Consider the scenario of a single MR, which has to visit 3 waypoints, and
has the option of refuelling at two FSs. Consider which the decision matrix X to be as given
below.

X1 =

0 0 0
0 0 0
0 0 0

 , X2 =

0 0 0
0 0 0
0 0 0

 , X3 =

1 0 0
0 0 0
0 0 0

 , X4 =

0 0 0
0 0 1
0 0 0

 .
Here the index of X represents the value of q, the index of the set Q. For this example Q
and the corresponding FSs where a MR can start and end a fuel cycle are defined as given in
Table 2-2. In this example the first element in the first row of X3 is 1. Since the first element

Table 2-2: The set Q, which contains all combinations between FSs where a MR can start and
end a fuel cycle, for a scenario with 2 FSs.

q 1 2 3 4
Start at FS 2 1 1 2
End at FS 2 1 2 1

in the first row is 1, this indicates that the MR visits only the first waypoint during its first
fuel cycle. From Table 2-2 it can be seen that because an element in X3 is 1, the MR starts
this fuel cycle at FS1 and ends the fuel cycle at FS2. Because the MR ends this fuel cycle at
FS2, it has to depart the next fuel cycle from FS2. In the MILP formulation a constraint is
implemented which guarantees that in this case the second row of both X2, and X3 are zero
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rows. Since according to Table 2-2 if one of these rows contained a 1, would mean that the
MR starts this fuel cycle at FS1. This is however impossible, since the MR just got refuelled
by FS2. In this example, the third element of the second row of X4 is 1, which means that
the MR departs the second fuel cycle from FS2, visits the second, and third waypoint, and
ends the fuel cycle at FS1.
Lets introduce the variables Y s

ik, and Y e
ik, which contains for each ith fuel cycle the indices

of the FSs, where MRk starts and ends the fuel cycle respectively. With these variables the
constraint of (2-12) can be formulated. This constraint guarantees that if a MR ends a fuel
cycle at a certain FS, it departs the next fuel cycle from the same FS.

Y s
ik = Y e

(i−1)k, i = 2, · · · , N, k ∈ K (2-12)

With the defined cost function and constraints, the optimization problem for a multiple FSs
scenario, using a distance-based metric can be formulated as follows:

min
X

Dtotal (2-13a)

s.t. (2-10)-(2-12) (2-13b)

2-2 Time-Based Metric

When using a distance-based metric it is possible that MRs will cluster around one FS, while
other FSs are free. This can be prevented by considering a time-based metric. If the objective
is to minimize the total mission time, MRs are more likely to go to other FSs if the closest FS
is occupied. This can increase the total travel distance of the MRs, but results in a more equal
distribution of MRs across the FSs, and faster accomplished missions. Using a time-based
metric introduces extra difficulties. Since a FS can only refuel a single MR at a time, the
duration that a MR actually spends refuelling, and the order in which the robots are allowed
to enter a FS should be taken into account. If a FS is currently occupied, and another MR
wants to refuel at the same FS, it has to wait until the FS comes free again before it can
start refuelling. This implies that the times MRs are waiting until a FS comes free, should
also be taken into account. Due to the fact that the FSs can refuel a single MR at a time,
each refuel event of an individual MR can influence all future refuel events of all MRs. This
implies that all possible actions of all MRs should be considered, in order to obtain a global
optimal solution.

2-2-1 MILP Formulation

The MILP formulation using a time-based metric is build on the basis of the MILP using
a distance-based metric, discussed in Section 2-1. This formulation is extended with: the
translation from travel distances to travel times, refuel times, refuel ordering selection, and
waiting times.

Refuel Ordering Selection

If multiple MRs want to enter the same FS during the same timeslot, the refuel ordering
has to be determined. Consider the scenario of Figure 2-2, where two MRs start completely
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refuelled at the FS, and each MR has to visit two waypoints in a pre-determined order. In
this figure for each MR the shortest possible route is indicated by a dashed line. When using
a distance-based metric, these routes would be the optimal routes if the energy capacity of
each MR is sufficient to visit both waypoints during one fuel cycle. However when using a
time-based metric it is possible that alternative routes will result in a shorter total mission
time. For MRk, k = 1, 2 there are two possible routes:

Figure 2-2: Scenario with 1 FS, and 2 MRs, which both have to visit 2 waypoints.

1. Visit pk1, go to FS1 for refuel, visit pk2, return to FS1 for refuel;

2. Visit pk1, and pk2 in one fuel cycle, return to FS1 for refuel.

Each MR can have a maximum of two fuel cycles. All possible refuel orderings should be
taken into account, in order to find a global optimal solution. The total number of refuel
orderings is denoted by J , and a single refuel ordering is indexed by j. For this example
there are 6 possible refuel orderings, given in Table 2-3. In this table each row represents a
refuel ordering. MRki is interpreted as follows: MRk is allowed to refuel during its ith fuel
cycle if the preceding MR in the row is done refuelling. The first row describes the following
refuel ordering: During its first fuel cycle MR1 is allowed to refuel as soon as it reached the
FS, during its second fuel cycle MR1 is again allowed to refuel as soon as it reaches the FS
(because the preceding MR in the row is MR1 as well), during its first fuel cycle MR2 is
allowed to refuel when MR1 is done refuelling at the end of the second fuel cycle, during its
second fuel cycle MR2 is allowed to refuel as soon as it reaches the FS (because the preceding
MR in the row is MR2 as well). In order to find a global optimal solution, the total mission

Table 2-3: All possible refuel orderings for a scenario of 2 MRs which have to visit 2 waypoints
in a pre-determined order.

MR11 MR12 MR21 MR22
MR11 MR21 MR12 MR22
MR11 MR21 MR22 MR12
MR21 MR11 MR12 MR22
MR21 MR11 MR21 MR12
MR21 MR22 MR11 MR12

time should be calculated for each refuel ordering. The global minimum, can than be found
by selecting the refuel ordering that corresponds to the shortest total mission time.
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In order to determine all valid refuel orderings, the MATLAB function PERMS could be used.
This function returns all permutations of the elements in the input vector. By creating an
input vector which contains all possible refuelling activities MRki, i = 1, · · · , N, k = 1, · · · ,K,
the PERMS function will calculate all permutations. A drawback of using PERMS for this
purpose is that the function also returns all invalid permutations, e.g. a refuel ordering where
MR12 occurs before MR11. This means all invalid combinations should be removed from the
outcome afterwards. Another drawback from the PERMS function is that it can only handle
up to 10 inputs, because the output for 11 inputs takes over 3 GB. In example for a scenario
with 2 MRs, this means that the PERMS function can only calculate the refuel orderings up
to 5 waypoints for each MR.

A recursive function SEQUENCES had been implemented, in order to calculate the refuel or-
derings for larger scenarios and prevent unnecessarily calculated permutations. SEQUENCES
only returns the valid refuel orderings. This function requires an input vector U which con-
tains: all possible refuelling activities of all MRs, the number of MRs K, the number of
waypoints N , and a set S = ∅. S is used to store the refuel ordering. The algorithm of SE-
QUENCES is explained by Algorithm 1. The major difference with the PERMS function is

Algorithm 1 SEQUENCES
1: function SEQUENCES(KN − 1, U, S)
2: for i = 1 to length(U) do
3: insert element i from U in S
4: remove element i from U
5: if S is valid then
6: SEQUENCES(KN − 1, U, S)
7: else
8: reinsert element i from S in U
9: remove element i from S

10: end if
11: end for
12: end function

that after inserting an element in S, SEQUENCES immediately checks if the refuel ordering
is valid. If this is the case SEQUENCES will continue with inserting another element in S,
else all orderings that begin with this invalid combination of elements will be left out. As a
comparison, the output of PERMS for 10 inputs takes over 300 MB, and the output of the
SEQUENCES function for a scenario with 5 MRs, which all have to visit 2 waypoints (this
is the worst case scenario where the number of inputs is 10, and the solution can still be
calculated in reasonable time) the output takes 9 MB. Calculating all valid refuel orderings
can be very computationally complex, because the total number of possible refuel orderings
scales badly when the number of MRs, or waypoints increases.
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Theorem 2.2. All valid combinations of refuel activities for a scenario with K mobile robots
which have a maximum of N fuel cycles, can be calculated in O((KN)!) time.

Proof. The computation time of finding all permutations of KN elements is O((KN)!) [37].
The number of valid combinations of refuel activities is smaller than the number of all per-
mutations, this implies that the computation time of finding all valid combinations of refuel
activities is also O((KN)!).

TheO() notation is used to indicate the computational complexity of a problem. This notation
represents the worst case computation time. If for example a problem with an input n is
defined as O(n!), it means that in the worst case scenario the problem scales with n!.

The possible refuel orderings are always the same, for the same scenarios. Because of this,
the refuel orderings can be pre-calculated and stored in a lookup table. When solving the
MILP for a specific scenario, the possible refuel orderings for this scenario can be loaded from
the lookup table and do not have to be calculated. This can significantly reduce the total
computation time, since the computational complexity of finding all possible refuel orderings
is O((KN)!).

Max-plus algebra

Max-plus algebra is used to select from all possible refuel orderings, the refuel ordering that
results in the minimum total mission time. Here some parts of the basic definition of max-plus
algebra are given as defined by van den Boom et al. [38].

Define:

ε = −∞

Rε = R ∪ {ε}

A binary max-plus decision variable u is defined as:

u ∈ Bε = {0, ε}

The adjoint variable of u is ū, for which counts:

ū =
{

0 if u = ε

ε if u = 0

As the name already suggests, in max-plus algebra there are two possible operations: either
taking the maximum, or perform an addition.
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Optimization Problem Formulation

The same decision variable X as defined in (2-7) is used, in order to determine after which
waypoints the MRs, and to which FSs the MRs should go for refuel.

A binary max-plus decision vector U ∈ BRε is defined as follows:

Uj =
{

0 if j is the selected refuel ordering.
ε otherwise.

(2-14)

In combination with a constraint that guarantees that a single element in U is equal to 0, and
all other elements are equal to ε, U is used as a selection vector to select the refuel ordering
that results in the minimum mission completion time. This will be explained in more detail
later on in this section.

A matrix T ∈ RN×N×M2×K is created, which contains all possible travel times of all MRs. T
has the same structure as D, and can be calculated by dividing the distance matrix by the
corresponding maximum velocity of each MR. The calculation of T is given as follows:

Tinqk = Dinqk

vk,max
, i = 1, · · · , N, n ∈ N , q ∈ Q, k ∈ K (2-15)

A refuel time matrix Γ ∈ RN×N×M2×K is created, in order to determine the amount of time
each MR has to refuel during each fuel cycle. Γ has the same structure as T , and is calculated
as follows:

Γinqk = Ek,max −DinqkĖk

Ėq
, i = 1, · · · , N, n ∈ N , q ∈ Q, k ∈ K (2-16)

Here Ėq is the energy donation rate of the FS where a MR can end a fuel cycle, corresponding
to q, index of the set Q.

A refuel event matrix F ∈ RKN×2×M×J is created, which contains the actual times that the
FSs will start and end a refuelling task. Since the mission of a MR is completed when it is
completely refuelled after visiting its last waypoint, the maximum value in the refuel event
matrix will be equal to the total mission time. F is a four dimensional matrix. The first two
dimensions are used to describe the start, and end times of all refuel events at a single FS. In
order to describe the start, and end times of all refuel events for all FSs, a third dimension is
applied. The fourth dimension is used to describe the start, and end times of all refuel events,
for all refuel orderings. With the use of the decision vector U , the refuel ordering that results
in the shortest total mission time is selected. Consider a scenario of 2MRs, which both have
to visit 2 waypoints, and let the refuel ordering be: {MR11, MR21, MR12, MR22}. For this
scenario the refuel event matrix of FSm, is calculated as follows:

Fm =


max(X1nq1T1nq1) Fm(1,1) + max(X1nq1Γ1nq1)

max(Fm(1,2) , X1nq2T1nq2) Fm(2,1) + max(X1nq2Γ1nq2)
max(Fm(2,2) , Fm(1,2) +X2nq1T2nq1) Fm(3,1) + max(X2nq1Γ2nq1)
max(Fm(3,2) , Fm(2,2) +X2nq2T2nq2) Fm(4,1) + max(X2nq2Γ2nq2)

 , n = 1, · · · , N, q ∈ Q

(2-17)
Each row of Fm indicates a refuel event at FSm. The left and right column correspond to
the start, and end times of a refuel event respectively. The decision variable Xinqk, travel
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time matrix Tinqk, and refuel time matrix Γinqk correspond to the ith fuel cycle of MRk, for
n = 1, · · · , N , and for all q ∈ Q that represent ending a fuel cycle at FSm. It can be seen that
each row of Fm represents the refuel event of the corresponding MR in the refuel ordering.
The first, and second row contain the start and end times of a refuel event during the first
fuel cycle of MR1, and MR2 respectively. The third, and fourth row contain the start and end
times of a possible refuel event during the second fuel cycle of MR1, and MR2 respectively.
If a MR visits both waypoints in a single fuel cycle, the start and end times in Fm that
correspond to a refuel event during its second fuel cycle are both equal to the value in the
second column of the overlying row. Also if a MR goes for refuel at a different FS, the start
and end times in Fm that correspond to a refuelling activity of this MR will be equal to the
value in the second column of the overlying row.

The cost function is the total mission time Tmission, which is given by (2-18).

Tmission = max(max(F ) + Uj), j = 1, · · · , J (2-18)

Here the max() operator is interpreted as the operator that finds the maximum value in a
matrix. Since F contains all refuel events at all FSs, the maximum value in F corresponds
to the time that the last MR is done refuelling during its final fuel cycle. Thus the maximum
value in F corresponds to the mission completion time.

All constraints defined in Section 2-1 for the multiple FSs scenario using a distance-based
metric, are still applicable. For a time-based metric, another constraints has to be defined
to guarantee that from all possible refuel orderings, a single refuel ordering is selected. This
constraint is given by (2-19).

J∑
j=1

Ūj
ε

= 1. (2-19)

Here J is the total number of all possible refuel orderings.

The optimization problem for a multiple FSs scenario using a time-based metric can be
formulated as follows:

min
X,U

Tmission (2-20a)

s.t. (2-10)-(2-12), and (2-19) (2-20b)

Solving this MILP formulation results in a global optimum. Since all possible refuel orderings
are taken into account, the computation time increases extremely quickly when the problem
scale increases. A heuristic and the use of a receding horizon principle are proposed in the
next sections, which make it possible to solve this problem for larger scale scenarios.

Numerical Example

The principle of the MILP formulation is illustrated by a numerical example. Consider the
scenario of Figure 2-3. The illustrated environment contains 2 FSs, and 2 MRs which both
have to visit 2 waypoints. In this figure the paths the MRs can travel are indicated by the
dashed arrows. The distance of each path is given in italics next to the middle of each arrow.
Let vk,max = 1, Ek,max = 45, Ėk = 1.5, ∀k ∈ K, and Ėm = 2, ∀m ∈ M. This means that the
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Figure 2-3: A scenario with 2 FSs, and 2MRs, which both have to visit 2 waypoints.

MRs: travel with a velocity of 1 distance unit per time unit, and when completely refuelled
the MRs can travel 45/1.5 = 30 distance units before their energy level becomes zero. When
refuelling, the energy level of a MR increases with 2 energy units per time unit.
For this example q is defined as given in Table 2-2. The travel time matrix has the following
values:

T11 =
[
30 33
0 20

]
, T21 =

[
20 28
0 22

]
, T31 =

[
25 28
0 21

]
, T41 =

[
25 34
0 21

]
;

T12 =
[
18 28
0 26

]
, T22 =

[
24 28
0 22

]
, T32 =

[
21 31
0 24

]
, T42 =

[
21 27
0 24

]
.

The refuel time matrix contains the following values:

Γ11 =
[
22.5 24.75

0 15

]
,Γ21 =

[
15 21
0 16.5

]
,Γ31 =

[
18.75 21

0 15.75

]
,Γ41 =

[
18.75 25.5

0 15.75

]
;

Γ12 =
[
13.5 21

0 19.5

]
,Γ22 =

[
18 21
0 16.5

]
,Γ32 =

[
15.75 23.25

0 18

]
,Γ42 =

[
15.75 20.25

0 18

]
.

The energy consumption matrix has the following values:

Ec
11 =

[
45 49.5
0 30

]
, Ec

21 =
[
30 42
0 33

]
, Ec

31 =
[
37.5 42

0 31.5

]
, Ec

41 =
[
37.5 51

0 31.5

]
;

Ec
12 =

[
27 42
0 39

]
, Ec

22 =
[
36 42
0 33

]
, Ec

32 =
[
31.5 46.5

0 36

]
, Ec

42 =
[
31.5 40.5

0 36

]
.

Consider the decision matrix X to be:

X11 =
[
0 0
0 0

]
, X21 =

[
1 0
0 0

]
, X31 =

[
0 0
0 1

]
, X41 =

[
0 0
0 0

]
;
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X12 =
[
0 0
0 0

]
, X22 =

[
0 1
0 0

]
, X32 =

[
0 0
0 0

]
, X42 =

[
0 0
0 0

]
.

The first element in the first row of X21, and the second element in the second row of X31 are
1. This means that MR1 will: start its mission at FS1, visit p1, go for refuel at FS1, visit p2,
and end its mission by refuelling at FS2. Since the second element in the first row of X22 is
1, MR2 will: start its mission at FS1, visit {p1,p2}, and end its mission by refuelling at FS1.

For this scenario, there are 6 possible refuel orderings, which are defined in the same way as
in Table 2-3. Let the max-plus binary decision variable U be:

U =
[
ε 0 ε ε ε ε

]
Since the second element of U is 0, the selected refuel ordering is {MR11,MR21,MR12,MR22},
corresponding to the second row of Table 2-3.

For these X, and U , the refuel event matrix F will be:

F1 =


20 35
35 56
56 56
56 56

 , F2 =


0 0
0 0
59 77
77 77

 .
where F1, and F2 contain the actual times of a refuel event at FS1, and FS2 respectively.
Observing F and the refuel ordering, the following can be noticed. MR2 finished its mission
after 56 time units in a single fuel cycle, after refuelling at FS1, and MR1 finished its mission
after 77 time units in two fuel cycles, after refuelling at FS2. The total mission time is 77
time units, which is the maximum of the individual mission completion times.

2-2-2 Heuristic 1: Fixed Refuel Orderings

This heuristic is proposed to speed up the computation time. The total number of all possible
routes and refuel orderings, scales very bad when the problem size increases. Based on insights
gathered from simulations, and results from literature, a heuristic is proposed that reduces
the total number of refuel orderings.

While solving the MILP for different scenarios, and during simulations using the distributed,
and hierarchical approach which will be discussed in the next chapters, a useful insight is
gained. It is observed that refuel orderings such as {MR11, MR12,MR21,MR22}, where one
MR is refuelling twice before another MR is refuelling, rarely occur. Sempé et al. [39] show
that if homogeneous MRs are sharing a single FS without any communication, the MRs will
alternate at the FS in a fixed order.

Based on these insights the following heuristic is defined:

Heuristic 1. Fixed Refuel Orderings

Instead of taking all possible refuel orderings into account, only take the refuel orderings into
account where the refuel events of the MRs occur in a fixed order.
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Applying this heuristic, significantly reduces the total number of refuel orderings. This leads
to a significant reduction of: decision variables in U , and the size of the refuel event matrix
F . For the scenario of 2 MRs, which both have to visit 2 waypoints the refuel orderings that
have to be taken into account are given in Table 2-4. Comparing Table 2-4 with Table 2-
3, it can be seen that the number of refuel orderings that are taken into account reduced
from 6 to 2. According to Theorem 2.2 the computation time of all possible refuel orderings

Table 2-4: All refuel orderings taken into account when using Heuristic 1, for a scenario of 2
MRs which have to visit 2 waypoints in a pre-determined order.

MR11 MR21 MR12 MR22
MR21 MR11 MR12 MR22

is O((KN)!). When computing all refuel orderings taken into account by Heuristic 1, the
number of waypoints is not a limiting factor anymore.

Theorem 2.3. For a scenario with K MRs which have a maximum of N fuel cycles, the refuel
orderings where the refuel events of the MRs alternate in a fixed order, can be calculated in
O(K!) time.

Proof. Since the refuel events of the MRs alternate in a fixed order, a repetitive pattern
occurs. The refuel events of all MRs during the (i+1)th fuel cycle, occur in the same order as
the refuel events during the ith fuel cycle. This implies that if the refuel ordering for the first
fuel cycle of all MRs is determined, the refuel ordering for all N fuel cycles is determined.
Calculating all possible refuel orderings for the first fuel cycle is the same as finding all
permutations between K robots, which can be done in O(K!) time [37].

Since the optimization problem still belongs to the class NP-complete, the computation time
still increases very quickly as the problem scale increases. However with this heuristic the
computation time reduced significantly, and it is possible to find a (sub)optimal solution for
larger scale scenarios, compared to the approach that takes all possible refuel orderings into
account (from now on referred to as: optimal approach). In Section 2-3, the computation
time of the optimal approach and Heuristic 1 is compared.

2-2-3 Solving the Problem Using a Receding Horizon Principle

The problem scale for which the optimal approach can be solved in reasonable time is very
limited. For scenarios with 2 FSs, the maximum number of waypoints for which the optimal
approach can find a solution in reasonable time: is 5, and 2 waypoints, for scenarios with
2, and 3 MRs respectively. When comparing Theorem 2.1 with Theorem 2.2, it can be
observed that the problem scale increases faster when the total number of MRs, or waypoints
increases than when the total number of FSs increases. Since the total number of MRs, and
waypoints seems to be the bottlenecks, it is proposed to solve the MILP using a receding
horizon principle. This principle solves subproblems of the optimization problem repeatedly
for a prediction horizon of W waypoints, such that eventually problems can be solved for an
arbitrary number of N waypoints. The basic algorithm behind the receding horizon principle
works as described in Algorithm 2. Shifting the prediction horizon can be done periodically,
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Algorithm 2
1: while Mission is not completed do
2: Solve optimization problem for W a subset of N waypoints
3: Check X, and statuses of MRs, to determine which event will occur next
4: Corresponding to the time of the next event, update:

• Statuses, positions, and energy levels of all MRs
• Tmission

5: if Event = “waypoint reached” then
6: Shift the prediction horizon for the corresponding MR
7: end if
8: end while

or event driven. For this type of problems it makes no sense to shift the prediction horizon
periodically. If for example the MRs just started a mission, the solution to the optimization
problem will probably not change until an event happens, i.e. a MR reached a waypoint.
Since the solution is more likely to change after an event has happened, here the prediction
horizon is shifted on an event driven basis. The following events trigger a new calculation of
the optimization problem:

• A MR reached a waypoint;

• A MR reached a FS;

• A MR is done refuelling.

Consider the prediction horizon to be 2 waypoints. Initially the optimization problem will be
solved for all MRs, for {p1, p2}. After solving the optimization problem, it is checked which
MR will reach the next event as first (denoted as MRnext). The positions, and energy levels
of all MRs, and total mission time are updated, such that they correspond to the time of
the next event. If the next event is that MRnext reaches a waypoint, the prediction horizon
for MRnext is shifted with 1. Which means the next time the optimization problem will be
solved for: MRnext for {p2, p3}, and for the other MRs for {p1, p2} again. When the next
event is that MRnext reaches a FS, it is checked if the FS is occupied, or if another MR is on
its way to the same FS and is allowed to refuel first. If this is not the case, MRnext starts
refuelling. Otherwise the MR will wait in the queue. When the next event is that MRnext is
done refuelling, it is checked if MRnext has visited all its waypoints. When this is the case,
MRnext completed its mission. Otherwise MRnext will continue visiting waypoints. These
steps are repeated, until all MRs accomplished their mission.

It has to be noted that the previous assumption that each MR starts a mission at a FS, does
not hold for the receding horizon principle. Since events can happen when some MRs are not
located at a FS (e.g. in between two waypoints), the optimization problem should be solvable
with the MRs having arbitrary initial positions. Also the constraint of (2-10) does not hold
anymore, since the MRs are not always completely refuelled when the optimization problem
is solved. The MILP formulation of the optimal approach needs some adjustments, before it
can be used in a receding horizon fashion.

R. Huisman Master of Science Thesis



2-2 Time-Based Metric 25

The first row of the travel distance matrix D as given in Section 2-1, contains all euclidean
distances a MR can travel during the first fuel cycle. Originally the first fuel cycle consisted
of: starting at a FS, visiting waypoint(s), end at a FS. When introducing that a MR can
start at any arbitrary initial position, the first row of D contains all euclidean distances of a
fuel cycle that consists of: starting at an initial position, visiting waypoint(s), end at a FS.
Since the energy consumption, travel time, and refuel time matrices are all build from D, also
the values in the first row of these matrices will change. A drawback from this adjustment is
that a problem that could previously be solved for each MR visiting N waypoints, can now
be solved for N − 1 waypoints. This is illustrated by the following example.

Consider a scenario of 1 FS, and 1 MR which has to visit 2 waypoints in the order {p11, p12}.
This scenario is illustrated in Figure 2-4. The initial position of the MR is indicated with
p10, and a possible route is indicated by the dashed lines. When using the optimal approach,
the MR would start at the FS and the decision matrix X would be N × N . Now if the
MR can have any initial position, an extra decision has to be made. When starting at the
initial position, it has to be determined if the MR visits the next waypoint directly, or travels
via the FS (see the indicated route in Figure 2-4). This causes that the decision matrix X
becomes (N + 1)× (N + 1). Because of this extra decision the number of waypoints for which
a solution can be found in reasonable time will decrease with 1. Since 1 decision variable is

Figure 2-4: Scenario with 1 FS, and 1 MR which is located at an arbitrary initial position, and
has to visit 2 waypoints.

needed to determine if the MR goes directly to the next waypoint or via the FS, this implies
that the prediction horizon should be at least 2 waypoints. If the prediction horizon is set to
1 waypoint, D contains a single element, which is the travel distance from the MR’s current
position to the FS. X will be a single decision variable, and due to the constraint of (2-11)
this variable will always be 1. This means that during the first fuel cycle, the MR will always
travel towards the FS. Now for a second fuel cycle the same scenario arises, only now the
MR is located at the FS. Since X will be 1, the decision will be that the MR should go to
the FS. This means that the MR will be stuck at the FS after the first fuel cycle. This can
be prevented by choosing the prediction horizon to be at least 2 waypoints. In that case the
MR always has the choice of either going to the FS, or to the next waypoint. Furthermore to
prevent that a MR stays at a FS when being completely refuelled, a constraint is defined in
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(2-21), that guarantees that a MR always travels to the next waypoint after a refuel event.

M2∑
q=1

Xinqk = 0, i = 1, n = 1,∀k ∈ K | Ek = Ek,max (2-21)

Since the optimization problem is solved each time an event occurs, the MRs do not always
start with a maximum energy level. The constraint of (2-10) has to be adjusted such that
the amount of energy consumed by a MR during a fuel cycle is not allowed to be larger than
its current energy level, given by (2-22).

Ec
inqkXinqk ≤ Ek, i = 1, · · · , N, n ∈ N , q ∈ Q, k ∈ K (2-22)

Here Ek is the current energy level of MRk.

The following optimization problem is solved, when using the receding horizon principle:

min
X,U

Tmission (2-23a)

s.t. (2-11), (2-12), (2-19), (2-21), and (2-22) (2-23b)

In the next section simulation results are presented, and a comparison is made between the
optimal approach, Heuristic 1, and the receding horizon principle.

2-3 Simulation Results and Discussion

The problems were solved using GUROBI on a laptop computer running on a Windowsr 8.1
Enterprise 64 bits operating system, with Intel(R)Core(TM)i7 CPU Q720, 1.6 GHz and 4.00
GB RAM.

2-3-1 Simulation Setup

Two different environments were created. In the first environment the waypoints are chosen
such that the mission can be seen as a patrol mission, where the MRs have to patrol a certain
area. The second environment contains randomly placed waypoints.

Both environments contained:

• 2 FSs: {FS1,FS2}, located at (5, 5), and (5, 1) respectively. The properties of the FSs
were:

– vm,max = 0, ∀m ∈M;
– Ėm =∈ {1, 2}, m ∈M.

• 3 MRs, with the following properties:

– Ek,max ∈ {15, 20, 25, 30}, k ∈ K;
– vk,max ∈ {1, 2, 3}, k ∈ K;
– Ėk = 1, ∀k ∈ K.
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2-3-2 Simulation 1: Patrol Mission

The first mission that is simulated can be seen as a patrol mission, where the environment
contains 2 FSs, and 3 MRs which have to visit two waypoints in a pre-determined order, such
that a certain area will be patrolled. The patrol mission is illustrated in Figure 2-5. The
distances between two waypoints is 10 distance units and are shown in italics. In total 30

Figure 2-5: Patrol mission, environment with 2 FSs, and 3 MRs which all have to visit 2
waypoints, placed at a fixed distance from each other.

trials were performed, where the energy levels of the MRs varied between 15-30 energy units
in intervals of 5. The velocities of the MRs were varied between 1-3 distance units per time
unit, in intervals of 1. The energy donation rates of the FSs were varied between 1, and 2
energy units per time unit. The prediction horizon of the receding horizon principle was set
to 2 waypoints. Table 2-5 shows the average total mission time for the optimal approach,
Heuristic 1, and receding horizon principle. From this table it can be observed that Heuristic 1

Table 2-5: Average mission times of all centralized approaches, for the patrol mission.

Optimal approach Heuristic 1 Receding horizon
Tmission 37.64 38.04 40.43

performs very well during the patrol mission. On average Heuristic 1 takes 0.4 times units
more than the optimal approach, which is equal to an increase of 1.1 %. The total mission
time of the receding horizon principle takes on average 2.79 time units more than the optimal
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approach, which is an increase of 7.4 %. That Heuristic 1 outperforms the receding horizon
principle, is not surprising. Heuristic 1 schedules the refuelling activities of all MRs, for
the whole mission. The receding horizon principle schedules the refuelling activities for all
MRs, up to the prediction horizon. Since the prediction horizon was set to 2 waypoints, it
means that the refuel activities are scheduled while looking one waypoint ahead. Since the
receding horizon principle schedules the refuel activities based on less knowledge compared
to Heuristic 1, it makes sense that its solution quality is worse.
One trial is highlighted to illustrate which actions of Heuristic 1, and the receding horizon
principle can lead to a suboptimal solution. For the scenario with Ek,max = {20, 25, 15}, and
vk,max = {3, 1, 2}, for MRk, k = {1, 2, 3} respectively, and Ėm = {2, 1}, for FSm,m = {1, 2}
respectively, the total mission time of all three approaches were different. The refuel orderings
chosen by the approaches are given in Table 2-6. It can be observed that the refuel ordering of
each approach is different, which possibly influences the total mission time. Table 2-7 shows all

Table 2-6: Comparison of the refuel ordering, chosen by the optimal approach, Heuristic 1, and
the receding horizon principle.

Refuel ordering
Optimal approach MR31, MR32,MR21,MR22,MR11,MR12

Heuristic 1 MR11, MR31,MR21,MR12,MR32,MR22
Receding horizon MR11, MR31,MR12,MR32,MR21,MR22

routes, and arrival, wait, and end times of each fuel cycle, of all MRs, for all three approaches.
This table shows that MR2 takes the same route for all approaches. Each approach found
a different route for MR1. The routes of MR3 are the same for the optimal approach, and
the receding horizon principle. When observing Tables 2-6 and 2-7, the following conclusions
can be drawn. The route found by the optimal approach, is chosen in such a way that none
of the MRs has to wait when reaching a FS. Every time a MR reaches a FS, the MR that
was previously using it already left. The routes found by Heuristic 1 makes MR3 wait twice,
because MR1 is already using the FS. The first fuel cycle MR3 only has to wait 0.2 time units,
the second fuel cycle however MR3 has to wait 4.38 time units. The reason why the receding
horizon principle takes longer, is that the routes are chosen in such a way that only FS1 is
used for refuelling. This causes that during its second fuel cycle MR1 has to wait 3.07 time
units because MR3 is using FS1. In turn MR3 has to wait 3.29 time units during its second
fuel cycle, until MR1 is done refuelling. Eventually MR2 can start refuelling after waiting
2.82 time units on MR3.

2-3-3 Simulation 2: Randomly Placed Waypoints

During the second simulation a mission is considered where the environment contains again
two FSs, and 3 MRs which have to visit 2 waypoints. The waypoints are randomly placed
in an area of 10× 10 distance units, with the restriction that the euclidean distance between
two consecutive waypoints should be at least 7.5 distance units. FS1, and FS2 are located
at the coordinates (5,5), and (5,1) respectively. The same trials were performed as during
Simulation 1. In total 30 trials were performed, where the energy levels of the MRs varied
between 15-30 energy units in intervals of 5. The velocities of the MRs were varied between
1-3 distance units per time unit, with intervals of 1. The energy donation rates of the FSs
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Table 2-7: Comparison of the routes, found by the optimal approach, Heuristic 1, and the
receding horizon principle.

MR Fuel
cycle

Start
location

Visited
waypoint(s)

End
location

Arrival
time

Wait
time

End
time

Optimal
approach

1 1 FS1 p1, p2 FS2 6.35 - 25.30
2 - - - - - -

2 1 FS2 p1, p2 FS1 22.17 - 33.26
2 - - - - - -

3 1 FS1 p1 FS1 7.07 - 14.14
2 FS1 p2 FS1 17.92 - 21.69

Heuristic 1

1 1 FS1 p1 FS1 2.50 - 6.29
2 FS1 p2 FS2 10.35 22.52

2 1 FS2 p1, p2 FS1 22.17 - 33.26
2 - - - - - -

3 1 FS2 p1 FS1 6.09 0.20 12.38
2 FS1 p2 FS2 18.14 4.38 34.07

Receding
horizon

1 1 FS1 p1 FS1 2.52 - 6.29
2 FS1 p2 FS1 11.07 3.07 21.21

2 1 FS2 p1, p2 FS1 22.17 2.82 36.07
2 - - - - - -

3 1 FS1 p1 FS1 7.07 - 14.14
2 FS1 p2 FS1 17.92 3.29 24.99

were varied between 1, and 2, energy units per time unit. Table 2-8 shows the average total
mission time for the optimal approach, Heuristic 1, and receding horizon principle. From this
table it can be observed that Heuristic 1 performs again very well. On average Heuristic 1
takes 0.14 times units more than the optimal approach, which is equal to an increase of 0.5 %.
The total mission time of the receding horizon principle takes on average 2.99 time units more
than the optimal approach, which is an increase of 9.9 %. Again Heuristic 1 outperforms the
receding horizon principle.

Table 2-8: Average mission times of all centralized approaches, for the mission with randomly
placed waypoints.

Optimal approach Heuristic 1 Receding horizon
Tmission 30.18 30.32 33.17

2-3-4 Comparison Between Optimal Approach, Heuristic 1, and Receding Hori-
zon Principle

The average total mission times, taken over the patrol mission, and the mission with randomly
placed waypoints are given in Table 2-9. The mean error of Heuristic 1, and the receding
horizon principle with respect to the optimal approach is denoted as µ, and given in percent-
age. From this table it can be observed that on average the solution found by Heuristic 1 is
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0.8 % from the optimum. Compared to the receding horizon principle which solution is on
average 8.4 % from the optimum, the solution quality of Heuristic 1 is very high.

Table 2-9: Average mission times of all centralized approaches, calculated over the patrol mission,
and mission with randomly placed waypoints.

Optimal approach Heuristic 1 Receding horizon
Tmission Tmission µ Tmission µ

33.91 34.18 0.8 % 36.76 8.4 %

Simulations were performed with an increasing problem scale, in order to evaluate computa-
tion times, and the problem size that can be solved in reasonable time for both the optimal
approach, and Heuristic 1. Here reasonable time is defined as two hours. In Table 2-10 the
computation times are presented for a scenario with 2 FSs, and a changing number of MRs,
and waypoints. It can be observed that the computation time of Heuristic 1 is significantly
smaller compared to the optimal approach. A second important observation can be made
about the size of the problems that can be solved in reasonable time. It can be seen that for
a scenario with 2 MRs, problems can be solved up to 5, and 16 waypoints, by the optimal
approach and Heuristic 1 respectively. For a scenario with 3 MRs, problems can be solved
up to 2, and 8 waypoints, by the optimal approach and Heuristic 1 respectively. This is an
enormous improvement of Heuristic 1. Of course there is always a trade-off, which is here
computation time versus solution quality. Heuristic 1 is lots faster, compared to the optimal
approach, but the solution is on average 0.8 % from the optimum as shown in Table 2-9.
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Table 2-10: Comparison of the computation times, between Heuristic 1, and the optimal ap-
proach, for a scenario with 2 FSs.

# MRs # Waypoints Optimal approach Heuristic 1
2 1 0.03 s 0.03 s
2 2 0.11 s 0.08 s
2 3 1.75 s 0.21 s
2 4 54.26 s 0.42 s
2 5 6068.3 s 1.72 s
2 6 N/A 1.93 s
2 7 N/A 4.36 s
2 8 N/A 11.49 s
2 9 N/A 11.17 s
2 10 N/A 11.17 s
2 11 N/A 80.75 s
2 12 N/A 102.29 s
2 13 N/A 85.29 s
2 14 N/A 175.85 s
2 15 N/A 653.94 s
2 16 N/A 914.91 s
2 17 N/A N/A
3 1 0.34 s 0.09 s
3 2 31.04 s 0.74 s
3 3 N/A 5.85 s
3 4 N/A 11.00 s
3 5 N/A 23.12 s
3 6 N/A 59.62 s
3 7 N/A 242.81 s
3 8 N/A 3560.6 s
3 9 N/A N/A

The # sign stands for ‘total number of’, i.e. # waypoints means ‘total number of waypoints’.

2-4 Conclusion

In this chapter a centralized approach is discussed to schedule the refuelling activities of
multiple heterogeneous MRs. In Section 2-1 a MILP was formulated for fixed FSs scenarios,
using a distance-based metric. This formulation formed the basis for the final formulation
where a time-based metric is considered.

Section 2-2 presents the formulation of the MILP for fixed FSs scenarios, using a time-based
metric. By solving this MILP global optimal solutions were found. Since the computation
time increases very quickly when the problem size increases, a solution can only be found in
reasonable time for very small scale scenarios. A heuristic has been proposed, in order to speed
up the computation time. A significant reduced computation time was observed, and the size
of the problems that can be solved in reasonable time increased tremendously. On average

Master of Science Thesis R. Huisman



32 Centralized Approach

the solution of this heuristic turned out to be close to the optimal solution. The size of the
problems that can be solved in reasonable time is among others limited by the total number
of waypoints. In order to find a solution for problems with a large number of waypoints, a
receding horizon principle was proposed. When using this principle, the optimization problem
is repeatedly solved for a number of waypoints that is equal to the prediction horizon. The
solution quality of the receding horizon principle is suboptimal, and is worse compared to the
heuristic.

Simulation results are presented and discussed in Section 2-3. The performances of the cen-
tralized approaches were also compared in terms of the total mission time. The optimal
approach, and the heuristic were compared based on the computation time, and the size of
the problems that can be solved in reasonable time. Which method is best suited, depends
on the scenario, and the performance requirements. In general there is a trade-off between
the solution quality, and the computation time.

The main contributions of this chapter are: the formulation of a MILP for scheduling the
refuelling activities of multiple MRs across multiple FSs using a time-based metric, and
the implementation of the receding horizon principle. When using a time-based metric, the
duration each MR spends refuelling and order in which the robots are allowed to enter a FS
have to taken into account. This is often neglected in literature. The next chapter will discuss
a distributed approach to schedule the refuelling activities.
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Chapter 3

Distributed Approach

In this chapter a distributed approach is discussed, in order to solve the problem formulated
in Section 1-1. The presented approach is called distributed, because the mobile robots (MRs)
make individual decisions based on local knowledge. There is only limited communication
between the fuelling stations (FSs), and the MRs. FSs are not able to communicate with other
FSs, and MRs are not able to communicate with other MRs. Advantages of a distributed
architecture are that it is typically very fast [36], adaptive, and robust to failures [35, 36]. A
disadvantage of this architecture is that the solutions are suboptimal [35, 36]. A distributed
architecture is best suited for scenarios where large robotic teams, perform relative simple
tasks, with no requirements for efficiency [36].

3-1 Refuel Event Selection

In recent literature there are several methods presented to select when a MR should go
for refuel, when using a distributed architecture. The basic method makes use of a fixed
threshold on the energy level [40, 41]. An extension of this strategy works with an adaptive
energy threshold value [8]. Several other methods are proposed, such as self calibration [42],
time discounted labour [9], opportunism [39], and motives and artificial emotions [43]. In this
section the fixed, and adaptive threshold methods are discussed, which have been implemented
for the proposed distributed approach.

3-1-1 Fixed Threshold

This strategy makes use of a fixed threshold Eγ on the energy level of the MRs. Each MR
will go for refuel when its energy level drops below the threshold: E < Eγ . The threshold
value has to be chosen carefully, in order to guarantee that the MRs do not deplete. If the
threshold value is chosen too high, the MRs can become inefficient because they spent a lot
of time on travelling to and from the FSs. The threshold value should be chosen such that
the MR can always cross the largest possible distance to a FS, if it has to be guaranteed that
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the MRs do not run out of energy. Consider an environment A, with a single fixed fuelling
station FSm. The threshold value Eγk

of MRk for this example can be calculated as follows:

Eγk
= Ėk

√
(max(xA)− xm)2 + (max(yA)− ym)2, (3-1)

where max(xA), and max(yA) determine the values of the x, and y locations respectively, cor-
responding to the point in A that is located at the farthest possible distance from FSm. This
implies that it is not desired to use one threshold value for all environments. The threshold
value should be determined every time the environment changes, in order to guarantee that
a MR does not run out of energy, and to obtain a certain efficiency level.

3-1-2 Adaptive Threshold

This method is an extension of the fixed threshold strategy. Wawerla and Vaughan [9] pro-
posed this strategy for a single FS scenario as follows. Each time a MR reaches a waypoint,
it calculates if its energy level is sufficient to reach the next waypoint, and the FS afterwards.
If the energy level is sufficient, the MR will go to the next waypoint directly. Otherwise the
MR will travel via the FS. Since the problem considered in this thesis consists of multiple
FSs, this strategy can not be applied directly. Here an adjustment to this adaptive threshold
strategy, such that it can be applied to scenarios with multiple FSs is proposed as follows.
Each time a MR reaches a waypoint it calculates if its energy level is sufficient to reach the
next waypoint, and the closest fixed FS afterwards. If the energy level is sufficient, the MR
will go to the next waypoint directly. Otherwise the MR will travel via the closest FS. This
strategy requires the locations of the fixed FSs to be known by the MRs. This can be realized
by communication between the FSs, and the MRs. Here the locations of the fixed FSs are
communicated as follows: every time a MR reaches a waypoint it broadcasts a “Waypoint”
message, and the fixed FSs will respond by sending their positions.

When a MRk reaches a new waypoint pi, the energy threshold is calculated as given by (3-2).

Eγ = Ėk
(√

(xc − xpi)2 + (yc − ypi)2 +
√

(xc − xpi+1)2 + (yc − ypi+1)2
)

(3-2)

Here xc, yc, xpi , and ypi are the x, and y positions of the closest FS, and waypoint pi respec-
tively.

The benefits of the fixed, and adaptive threshold methods are that they are not computa-
tionally complex, and relative easy to implement. Furthermore when implemented carefully,
these methods can be used to guarantee that the MRs do not deplete. The advantage of
using an adaptive threshold instead of a fixed threshold, is that the efficiency (in terms of
total travel distance) of the MR is larger. Wawerla and Vaughan [9] already showed this for a
single FS, and single MR scenario. A drawback of the adaptive threshold method is that the
communication demands are higher compared to the fixed threshold strategy. Simulations
were performed to evaluate if the adaptive threshold strategy is also beneficial in terms of to-
tal mission time, compared to a fixed threshold, for scenarios with multiple FSs, and multiple
MRs. The simulation results are presented in Section 3-4.
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3-2 Fuelling Station Allocation

When a MR is in need of refuel, it has to be assigned to a FS. The FS should be chosen in such
a way that eventually the total mission time is minimized. For a distributed architecture, the
FS allocation principle is proposed as follows. When a MR is in need of refuel, it broadcasts
an “Energy Low” message together with its: location, maximum velocity, next waypoint
location, energy level, maximum energy level, and energy consumption rate. Based on this
information a FSs receiving the message, will calculate how long it will take for the MR to
reach the FS and the next waypoint afterwards. This travel time is indicated as T t and is
calculated for MRk, and FSm as follows:

T t
km =

(√
(xm − xk)2 + (ym − yk)2 +

√
(xm − xpk,next)2 + (ym − ypk,next)2

)
/vk,max, (3-3)

where xm, ym, xk, yk, xpk,next , and ypk,next are the x, and y positions of FSm, MRk, and the
next waypoint of MRk respectively. Besides these values, the FS also calculates:

Ef
km - The amount of energy MRk needs to reach FSm, from its current position;

Ep
km - The amount of energy MRk needs to reach the next waypoint, from the location of

FSm.

These energy values are calculated as given by (3-4), and (3-5).

Ef
km = Ėk

√
(xm − xk)2 + (ym − yk)2 (3-4)

Ep
km = Ėk

√
(xm − xpk,next)2 + (ym − ypk,next)2 (3-5)

The FSs send the value of T t to the MR, which will compare all received travel times.
Since the objective is to minimize the total mission time, the MR always travels to the FS
corresponding to the shortest travel time. If this FS is occupied, the MR enters the queue
and sends a “Wait” message to inform the FS that it is waiting for refuel. If multiple MRs
are waiting, the robots are allowed to enter the FS on a first come first served basis. There
are two scenarios in which it is undesired for MRk to go for refuel at FSm:

• Ef
km > Ek, the current energy level of MRk is insufficient to reach FSm;

• Ep
km > Ek,max, the maximum energy level of MRk is insufficient to reach the next

waypoint, from the location of FSm.

In the former case, the MR will deplete when it tries to reach the FS. In the latter case there
is the risk of the MR travelling between the FS and the next waypoint without reaching it.
If one of these scenarios arises, the travel time is set to infinity T t = ∞. The FSs for which
at least one of these scenarios occurs, are defined as unreachable FSs. Since the travel time
towards the unreachable FSs is set to infinity, the MR will always travel to a FS for which
none of the undesired scenarios occurred. This can cause situations where some FSs are free,
while there are multiple MRs waiting for another FS to become free. At least depletion of the
MRs is prevented. One could still think of problems where it can occur that all of the FSs,
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are unreachable. Consider a single FS, single MR scenario, where the MR starts its mission at
the FS, and the first waypoint cannot be reached by the MR with a maximum initial energy
level. This will cause the MR to deplete, since it can never reach the first waypoint. This
problem is infeasible, since there is no valid solution. If for a certain problem definition a
situation occurs, where one of the MRs gets depleted, the problem is infeasible. In that case
one should reconsider the threshold value (in case of using a fixed threshold), the placement
of the FSs, the energy capacity of the MR, or the locations of the waypoints.

3-3 Mobile Fuelling Stations

The operation time and range of the MRs can be increased by using mobile fuelling sta-
tions (MFSs). When minimizing the total mission time, the use of MFSs has a number of
advantages. Since the MFS can move towards the MRs, a MR can:

• Reach the refuel location faster;

• Save energy, such that it takes less time to be completely refuelled.

The only difference between a fixed FS, and a MFS is its maximum velocity. If vm,max = 0,
the FS is fixed, and if vm,max > 0 the FS is mobile.

3-3-1 Rendezvous Strategy

In order for the MFS to be able to refuel a MR, they should meet at a rendezvous location.
The rendezvous locations are defined in Chapter 1 as fmlk, m ∈M, k ∈ K. Here l is the index
of the lth refuelling task of the FS. In recent literature there are several methods proposed for
a MR to rendezvous with a MFS. Drenner and Papanikolopoulos [44] propose a method to
relocate the position of a FS to maximize the longevity of a cluster of MRs. The position of
the FSs is adjusted such that the average travel distance of all MRs in the cluster is minimized.
Marmol et al. [10] propose a rendezvous strategy to minimize the total travel distance of an
individual MR. If a MR is in need of refuel, the FS calculates a rendezvous location such
that the travel distance of that single MR is minimized. The locations of the other MRs are
not taken into account. This strategy has proven to be beneficial. The rendezvous strategy
proposed in this section is inspired by the method of Marmol et al. [10]. Instead of choosing
the rendezvous locations such that the travel distance of an individual MR is minimized, the
rendezvous locations are determined in such a way that the total travel time of the MR is
minimized. The rendezvous strategy is discussed below.
As soon as FSm receives an “Energy Low” message from MRk it determines a rendezvous
location fmlk, by minimizing T t

mlk. This is the total time it takes before both the FSs and the
MR will arrive at fmlk plus the time the MR needs to travel to the next waypoint location
afterwards. T t

mlk is calculated as follows:

T t
mlk =max

(√
(xm − xfmlk

)2 + (ym − yfmlk
)2/vm,max,

,
√

(xk − xfmlk
)2 + (yk − yfmlk

)2/vk,max
)
+

+
√

(xfmlk
− xpk,next)2 + (yfmlk

− ypk,next)2 /vk,max,

(3-6)
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where xm, ym, xk, yk, xfmlk
, yfmlk

, xpk,next , and ypk,next are the x, and y positions of FSm, MRk,
fmlk, and the next waypoint of MRk respectively.

The rendezvous location is determined by solving an optimization problem, such that T t
mlk is

minimized. The decision variables are the x and y positions of the rendezvous location: xfmlk
,

and yfmlk
. With these decision variables, the optimization problem is formulated as follows:

min
x,y

T t (3-7)

This is an unconstrained convex optimization problem, since the objective function consists
of only convex terms. There are several optimization solvers which can be used to solve these
problems, for instance the state of the art solvers include CPLEX and GUROBI.

After determining the rendezvous location, the FS sends the value of T t to the MR that had
send the “Energy Low” message. The MR will compare all received travel times, and will go
for refuel at the FS corresponding to the shortest travel time. The MR will send a “Coming”
message to the chosen FS, and will travel towards the rendezvous location. If the FS is not
occupied at the moment, it will travel towards the rendezvous location after receiving the
“Coming” message. Refuelling will start as soon as both the FS and the MR reached the
rendezvous location. In case the FS is occupied, it saves a list with all rendezvous locations of
the MRs that had send a “Coming” message. In that case the FS will visit these rendezvous
locations on a first comes first served basis.

3-3-2 Reformulation of the Distributed Approach

Simulation case studies involving a MFS, showed two remarkable results. It was observed
that sometimes the total mission time is shorter, for scenarios with two fixed FSs, compared
with scenarios with one fixed, and one mobile FS. Another observation was that the total
mission time increased, when the velocity of the MFS increased. Both observations are counter
intuitive. It was expected that the use of MFSs would decrease the total mission time. Since
the MFSs are able to move towards the MRs, the MRs should: need less time to refuel, and
reach a refuel location faster. During the simulations, a logical phenomena was observed. The
faster a FS can travel, the closer the calculated rendezvous location will be to the current
location of a MR. This implies the calculated rendezvous location is often closer to the MR’s
current location, than the location of the fixed FS. Since the MRs always go to the FS that
corresponds to the shortest travel time, the rendezvous location of the MFS is often picked
as the best refuel option. This causes a lot of times a large number of MRs are waiting for
the MFS to reach the rendezvous location, while it is currently refuelling another MR. In the
meanwhile the fixed FS is often unused because the most of the MRs chose to refuel at the
MFS. Because the MFS is dominating the fixed FS, the waiting times of the MRs increases,
which results in a larger total mission time. A method to prevent that a MFS is dominant
over the fixed FSs, is to take the following times into account:

• T r
mlk - Time MRk needs to be completely refuelled by FSm, at rendezvous location fmlk;

• T o
mk - Time FSm currently needs to completely refuel MRk;

• Tw
mk - Time MRk currently has to wait in the queue, when choosing to refuel at FSm.
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The calculation of T r
mlk is given by (3-8).

T r
mlk =

Ek,max − (Ek − Ėk
√

(xk − xfmlk
)2 + (yk − yfmlk

)2)
Ėm

(3-8)

The optimization problem of the rendezvous strategy is extended with T r. The rendezvous
location now also depends on the energy donation rate of the FS. If the FS has a small energy
donation rate, it is beneficial if the rendezvous location is chosen close to the current location
of the MR, such that the MR saves energy, and needs less time to refuel. On the other hand
if the FS has a large energy donation rate, but a slow maximum velocity, it is beneficial if
the rendezvous location is chosen close to the current location of the FS. By including T r

in the optimization problem, the rendezvous location is optimized in terms of velocities of
both the FS, and MR, and the energy donation, and consumption rates of the FS, and MR
respectively. The optimization problem is given by (3-9). Again this is an unconstrained
convex optimization problem, since the objective function consists of all convex terms.

min
x,y

T t + T r (3-9)

The times T o
mk, and Tw

mk do not depend on the MR that had just send the “Energy Low”
message, but on the MR that is currently using the FS, and the MRs that are waiting in the
queue respectively. The calculation of these times requires the current energy levels of the
involved MRs have to be exchanged with the FS. The MRs in the queue have to communicate
with the FS to send their energy levels. For the MR that is currently using the FS, this can
either be done by communication, or by the FS measuring the energy level. T o

mk, and Tw
mk

are calculated as given in (3-10), and (3-11).

T o
mk = (Ek,max − Ek)

Ėm
, (3-10)

where the index k represents the MR that is currently using FSm.

Tw
mk =

W∑
k=1

(Ek,max − Ek)
Ėm

, (3-11)

where W is the total number of MRs that are waiting, and the index k indicates the MRs in
the queue.

Instead of only sending the travel time to the MR that had send the “Energy Low” message,
the FSs now send the total time value T, which is calculated as follows:

Tmlk = T t
mlk + T r

mlk + T o
mk + Tw

mk, m ∈M, l ∈ L, k ∈ K (3-12)

The MR will compare all received T values, and goes for refuel at the FS corresponding to
the lowest value. Since the waiting times are taken into account, the MRs will often choose to
refuel at a different FS, if the waiting time of the MFS is too long. In this way it is prevented
that MFSs dominate the fixed FSs, and the fixed FSs stay unused. The simulation results
that initiated this reformulation are presented in the next section.
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3-4 Simulation Results and Discussion

Several simulations were performed, in order to evaluate: the performance of the fixed, and
adaptive threshold methods, and the benefits of MFSs. Simulations were performed on a
laptop computer running on a Windowsr 8.1 Enterprise 64 bits operating system, with In-
tel(R)Core(TM)i7 CPU Q720, 1.6 GHz and 4.00 GB RAM. The optimization problem of
(3-7) has been formulated using YALMIP and is solved by GUROBI. It takes GUROBI
around 9.5ms to solve this problem.

3-4-1 Simulation Environment

A simulation environment is created using object oriented programming in MATLAB. An
object is created for each MR, and FS.
Each MR object has the following properties:

• Position (x, and y position);

• Maximum velocity;

• Energy capacity;

• Energy consumption constant (determines the amount of energy units the MR will
consume per travel distance);

• Status (Visiting Waypoints, Going for Refuel, Waiting, Refuelling).

Each MRk has the following inputs:

• Initial position (x, and y position);

• Set of N waypoints {pk1, pk2, · · · , pkN};

• Communication input.

Each MR also has a communication output.
Each FS object has the following unique properties:

• Position (x, and y position);

• Maximum velocity;

• Energy donation rate;

• Status(Free, Occupied, Refuelling, Moving).

Each FS has the following inputs:

• Initial position (x, and y position);

• Communication input.

Each FS also has a communication output.
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3-4-2 Simulation Setup

Five different environments were created, where 10, 20, 30, 40, and 50 waypoints were ran-
domly placed in an area of 10 × 10 distance units, with the restriction that the euclidean
distance between two consecutive waypoints should be at least 7.5 distance units.

All environments contained:

• 2 FSs: {FS1,FS2}, initially located at (5, 5), and (5, 1) respectively. The properties of
the FSs were:

– vm,max = 0, for m = 1, and vm,max ∈ {0, 1, 3}, for m = 2;
– Ėm = 1, ∀m ∈M.

• 6 MRs: {MR1,MR2,MR3,MR4,MR5,MR6}, initially located at (5, 5), (5, 5), (5, 5), (5, 1), (5, 1),
and (5, 1) respectively. The properties of the MRs were:

– Emax = {20, 20, 25, 25, 30, 30}, for {MR1,MR2,MR3,MR4,MR5,MR6} respectively;
– vmax = {1, 1, 2, 2, 3, 3}, for {MR1,MR2,MR3,MR4,MR5,MR6} respectively;
– Ėk = 1, ∀k ∈ K.

Simulation 1: Fixed Threshold

During this simulation, the performance of the fixed threshold strategy was evaluated in terms
of total mission time. For all 5 environments, trials were run for three different velocities for
FS2: v2,max =∈ {0, 1, 3}. In total 15 trials were run. The threshold value was calculated
using (3-1), and was set to 7.1 energy units for all MRs. This means that the MRs went for
refuel as soon as their energy level reached 7.1 energy units. With this threshold value none
of the MRs ran out of energy, as expected. The results of this simulation are presented in
Figure 3-1. The total mission times are indicated for each trial, with a red plus, blue circle,
and black asterisk, for the velocities of FS2, v2,max = 0, 1, and 3 respectively. For convenience,
the markers are connected with a line in the corresponding color. It is not guaranteed that in
between two markers the total mission time is equal to the time indicated by the line, since no
simulations were run for those points. Nevertheless there can be observed a trend. Figure 3-1
shows the two remarkable results that are already discussed in Section 3-3. It can be observed
that sometimes the total mission time is shorter, for scenarios with two fixed FSs, compared
to scenarios where FS2 is mobile. Another observation is that the mission time of all trials is
larger when v2,max = 3, compared to v2,max = 1. In order to get some more insight Figures 3-2
and 3-3 show the total travel distances during these trials of all MRs, and FS2 respectively.
It can be observed that the previous noted positive effects of a MFS are still there: Since FS2
is travelling towards the MRs, the total travel distance of the MRs is reduced. This implies
that the travel time, and refuel time is reduced. Because FS2 is dominating FS1, the waiting
times of the MRs increased which increases the total mission time. Apparently the waiting
times increased more than the travel, and refuel times reduced. Because of this the total
mission time increased, when a MFS was applied.

The adjustments to prevent that a MFS dominates the fixed FSs, are already discussed in
Section 3-3. With these adjustments, the same trials were repeated. The total mission times
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Figure 3-1: Total mission time given for a scenario with 2 FSs, and 6 MRs, which have to visit
randomly placed waypoints, using a fixed threshold strategy.

Figure 3-2: Total travel distance of all MRs given for a scenario with 2 FSs, and 6 MRs, which
have to visit randomly placed waypoints, using a fixed threshold strategy.

of all trials are shown in Figure 3-4. From this figure it can be observed that the use of MFSs
is beneficial in terms of total mission time, if the waiting times are taken into account. During
all trials where FS2 was mobile, the total mission time was shorter compared with scenarios
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Figure 3-3: Total travel distance of FS2 given for a scenario with 2 FSs, and 6 MRs, which have
to visit randomly placed waypoints, using a fixed threshold strategy.

Figure 3-4: Total mission time given for a scenario with 2 FSs, and 6 MRs, which have to visit
randomly placed waypoints, using a fixed threshold strategy. The waiting times are taken into
account.

where both FSs were fixed. These simulation results clearly indicate the difference between
the use of a distance, and a time-based metric. A reduction of the total travel distance does
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not guarantee a reduced total mission time, and can even lead to an increased total mission
time.

Simulation 2: Adaptive Threshold

The same trials were run as discussed for the fixed threshold, only now for the adaptive
threshold strategy. Since during Simulation 3-4-2 it turned out that the use of MFSs is only
beneficial in terms of total mission time if the waiting times are taken into account, these
are taken into account during these trials as well. The results are presented in Figure 3-5.
This figure shows that it is often beneficial to make use of MFSs, except for the scenario

Figure 3-5: Simulation results for the adaptive threshold strategy, for a scenario with 2 FSs, and
6 MRs, which have to visit randomly placed waypoints.

with 40 randomly placed waypoints. It is interesting to observe that the use of a MFS is less
beneficial for the adaptive threshold strategy compared to the fixed threshold. This can be
caused by the property that a MR calculates if it is able to reach the next waypoint, and
the closest fixed FS afterwards, when reaching a waypoint. When there are two fixed FSs
there is more often a fixed FS available that can be reached after visiting the next waypoint,
compared with scenarios with a single fixed FS. Another drawback of not taking the MFSs
into account during the calculation of the threshold, is that the adaptive threshold cannot be
used for scenarios with only MFSs. The decision to let the MRs only calculate if the closest
fixed FS can be reached, is made to guarantee that the MRs do not deplete. If the MFSs
are taken into account, it is possible that a MR determined that it can reach a MFS after
visiting the next waypoint. While the MR is travelling towards the next waypoint, the MFS
can move to a different location which corresponding rendezvous location cannot be reached
by the MR. This can cause MRs running out of energy.
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Comparison Between Fixed, and Adaptive Threshold

A comparison between the total mission times of Figures 3-4 and 3-5 for each velocity of FS2
is shown in Figure 3-6. Wawerla and Vaughan [9], already showed that the adaptive threshold

Figure 3-6: Comparison between the fixed, and adaptive threshold strategy, for a scenario with
2 FSs, and 6 MRs, which have to visit randomly placed waypoints.

outperforms the fixed threshold strategy for scenarios with a single FS, using a distance-based
metric. The results of Figure 3-6 indicate that the adaptive threshold also outperforms the
fixed threshold strategy for scenarios with multiple fixed FSs, using a time-based metric. For
the scenarios with one fixed, and one mobile FS the adaptive threshold seems to perform
slightly better compared to the fixed threshold. During some trials, the fixed threshold even
performed a little better. As discussed before this can occur because the rendezvous locations
of the MFSs are not taken into account when calculating the adaptive threshold value. It is
expected that the adaptive threshold will also significantly outperform the fixed threshold for
scenarios with MFSs, if their rendezvous locations are taken into account.

3-5 Conclusion

This chapter discussed a distributed approach for scheduling the refuelling activities of mul-
tiple heterogeneous MRs. The approach is called distributed, because each MR makes indi-
vidual decisions based on local knowledge.

In Section 3-1 two refuel event selection methods are discussed, which make use of a fixed, and
adaptive threshold. These strategies have the advantages that they are not computationally
complex, and relative easy to implement. When carefully implemented, these methods can
guarantee that the MRs do not run out of energy.

Section 3-2 presents the fuelling station allocation strategy. The calculations of this approach
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are distributed over the robotic team. This has the advantage that this strategy is not
computational demanding.

Then Section 3-3 introduces the use of MFSs, in order to increase the operation time and
range of the MRs. A rendezvous strategy has been discussed, which is used to find an optimal
rendezvous location for a single MFS, and a single MR.

Finally in Section 3-4 simulation results are presented, and discussed. The performances
of the refuel event selection methods were compared, based on total mission time. Also
the benefits of MFSs were evaluated. The adaptive threshold method outperforms the fixed
threshold, for scenarios with only fixed FSs. For scenarios with one fixed and one mobile FS,
the performance of the adaptive threshold seems to be slightly better than the fixed threshold.
This difference can be explained by the fact that the rendezvous locations of the MFSs are
not taken into account by the adaptive threshold method. When these rendezvous locations
are taken into account, it is expected that the total mission time will be reduced.

The main contributions of this chapter are: the implementation of the adaptive threshold for
multiple FSs scenarios, and the implementation of MFSs. The combination between fixed and
mobile FSs is seldom found in literature. Marmol et al. [10] address this combination, but in
their approach each MR has an own fixed FS at a home base. This makes it unnecessary for
the MRs to share the FSs. The next chapter discusses a hierarchical approach to schedule
the refuelling activities.
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Chapter 4

Hierarchical Approach

This chapter discusses a hierarchical approach, in order to solve the problem stated in Sec-
tion 1-1. The approach is called hierarchical, because decisions are made for individuals or
clusters of mobile robots (MRs), based on local knowledge. There is communication possible
between the fuelling stations (FSs) and the MRs, and the MRs are able to communicate with
each other. This architecture is in the middle of a centralized and distributed architecture.
The solutions of a hierarchical approach are suboptimal, but in general better compared to
distributed approaches. A hierarchical approach can distribute a lot of the planning and
execution over the robotic team, thereby it retains the benefits of distributed approaches re-
garding to speed, flexibility, and robustness [35, 36]. Nevertheless hierarchical approaches also
have their downsides. In scenarios where fully centralized methods are feasible, hierarchical
approaches can produce poorer solutions and be more complex to implement. In scenarios
were distributed approaches are sufficient, hierarchical approaches can be too complex to
implement and have higher communication, and computation demands [36]. In literature hi-
erarchical approaches in the form of a market based approach, are proposed for coordinating
the refuelling activities of MRs by Leonard et al. [13], Marmol et al. [10].

The refuel events of the hierarchical approach are selected in the same way as in Chapter 3. A
fixed, and adaptive threshold strategy were implemented. The hierarchical approach does not
affect the refuel event selection. The main difference between the hierarchical, and distributed
approach is that the FSs are reallocated, when multiple MRs want to refuel at the same FS.

4-1 Fuelling Station Allocation

The main principle of the FS allocation is the same as for the distributed approach. As soon
as a MR becomes in need of refuel, it broadcasts an “Energy Low” message together with its:
location, maximum velocity, next waypoint location, energy level, maximum energy level, and
energy consumption rate. Based on this information the FSs that received the “Energy Low”
message calculate the total time of the refuel event T, and send this value to the MR. T is
calculated in the same way as given by (3-12). The mobile fuelling stations (MFSs) calculate
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a rendezvous location after receiving the “Energy Low” message. This is done in the same
way as discussed in Section 3-3. The optimization problem that is solved to determine the
rendezvous location is given by (3-9). The FS allocation becomes different, when multiple
MRs want to refuel at the same FS during the same timeslot. This is explained in the following
subsections.

4-1-1 Maximum Bipartite Matching

The hierarchical approach is mainly used to resolve conflicts arising when multiple MRs are
willing to refuel at the same FSs at the same time. One such situation occurs when multiple
MRs travel towards the same FS at the same time (from now on denoted as common interest
MRs). This is illustrated by the following example.

Consider MR1 is travelling towards FS1. Now consider that MR2 reaches a low energy value
and broadcasts the “Energy Low” message, before MR1 has sent the “Close” message. FS1
will respond to the “Energy Low” message of MR2 by sending:

T12 = T t
12 + T r

12 + T o
1 + Tw

1

Here the indices 1, and 2 indicate FS1, and MR2 respectively. When calculating T12, FS1
does not take into account the amount of time that it takes to refuel MR1. This time should
be considered, since MR1 is already travelling towards the FS. This implies that T12 is in
principle too low, which can result in inefficient situations. MR2 compares all received total
times, and will travel towards the FS corresponding to the lowest value. Consider FS1 has
sent the lowest value. If no further action is taken, both MRs go to FS1, and at least one of
the MR will end waiting in the queue. This can lead to a longer total mission time, in case
there is another FS that is not occupied at the moment.

In practice, the time it takes to refuel a MR will often be much greater than the time it
takes the MR to travel from its current location to a FS. This implies that in the scenario
described above, in order to minimize the total mission time it often will be beneficial for
MR1, or MR2 to refuel at a different FS instead of refuelling at FS1 and waiting for the other
MR to be refuelled first. This issue has been addressed by Leonard et al. [13], who assign each
common interest MR to a different FS, by using the auction algorithm of Bertsekas [45]. The
principle of assigning each common interest MR to a different FS is applied here as well. A
maximum bipartite matching algorithm is used instead of the auction algorithm of Bertsekas
[45]. Maximum bipartite matching can be used to match uneven numbers of FSs, and MRs.
When using the auction algorithm, only even numbers of FSs, and MRs can be matched. This
algorithm can be used, but it has to be adjusted such that it can be used to match uneven
numbers of FSs, and MRs. Since a maximum bipartite matching algorithm does not need
any adjustments, such an algorithm is used here. The maximum bipartite marching principle
is explained below.

The problem is to assign each common interest MR to a FS, such that the accumulated time
spent on the refuelling activities is minimized. In graph theory this problem is known as
the matching problem (TMP). In TMP a matching M of a graph G = (V,E) is a subset of
the edges, such that none of the edges share the same node. TMP can also be considered
for bipartite graphs, where the vertices can be divided into two independent sets U and V .
Maximum bipartite matching is based on graph theory and involves matching the elements
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in a bipartite graph, such that the total benefit is maximized. An example of a bipartite
graph is shown in Figure 4-1. In this figure there are 5 applicants and 4 jobs which have to
be assigned to the applicants. Each job can be assigned to a single applicant, which can lead
to the result that some applicants end up with no job. An assignment between applicant i
and job j has a reward Rij . The objective is to assign all jobs to the applicants, such that
the accumulated rewards are maximized. The BIPARTITE_MATCHING function written

Figure 4-1: Bipartite graph with 5 applicants and 4 jobs, which have to be assigned to the
applicants.

for MATLAB, by Gleich and Wang [46] is used. For the interested reader this algorithm and
a detailed description about TMP can be found in [47]. According to Papadimitriou and
Steiglitz [47], the computational complexity of the maximum bipartite matching algorithm is
O(min(|U |, |V |) × |E|). Here U , and V are the independent sets, and E is the set of edges
of the bipartite graph. Here the ‘| |’ operator means: ‘number of elements in the set’. The
number of edges increases rapidly when the number of elements in U , or V increases. The
total number of edges can be found by taking all possible combinations between the elements
in U , and V . According to Theorem 2.2 this can be done in O((|U | × |V |)!) time. In case
of assigning FSs to MRs, the two independent sets of the bipartite graph are: all common
interest MRs, and all FSs. When matching K MRs to M FSs, the computational complexity
is O(min(K,M) × (KM)!). Note that this is the same as O((KM)!). This indicates TMP
scales badly when the problem size increases. For the simulations performed during this
thesis no scenarios with more than 6 MRs, and 2 FSs were considered. Since these are
relative small numbers, the computation time of the maximum bipartite matching algorithm
was not a limiting factor. For scenarios with a very large number of MRs, or FSs, this
computation time can be a bottleneck. Computations on a laptop computer running on a
Windowsr 8.1 Enterprise 64 bits operating system, with Intel(R)Core(TM)i7 CPU Q720, 1.6
GHz and 4.00 GB RAM, where performed to check which problem size can be solved by the
BIPARTITE_MATCHING function in 1 s. It turned out that matching 325 MRs to 325 FSs
took around 0.98 s. However in real life scenarios there will often be less FSs than MRs. When
matching 725 MRs to 250 FSs, it took 0.99 s. This ratio between FSs and MRs seems feasible
in practice [39]. It is very unlikely that all MRs in an environment are going to the same FS
at the same time. Considering the worst case scenario it would mean that if the MRs have
the same computational power as the laptop computer used here, the maximum bipartite
matching algorithm could in practice be applied to a swarm of 750 MRs, if the computation
time of 1 s is acceptable.
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The BIPARTITE_MATCHING function requires a matrix that contains the rewards of all
possible matchings between the applicants, and the jobs as an input. The output of this
function is the assignment of jobs to applicants, that maximizes the accumulated rewards.
Translating the example of matching the jobs to applicants, to a matching between FSs and
common interest MRs, the FSs can be seen as jobs, and the MRs as applicants. When using
a maximum bipartite algorithm for assigning the FSs to MRs, the goal is to minimize the
accumulated time spent on the refuelling activities. Going back to the initial example, this is
realized as follows. When MR2 decides to travel to FS1, it will broadcast a “Coming” message
together with the unique ID number of FS1. If MR1 receives this message, it will respond by
sending its: position, maximum velocity, energy level, energy consumption rate, maximum
energy capacity, and next waypoint location to MR2. Based on this information, and the
information sent by the FSs, MR2 constructs a matrix Tmatch. This matrix contains all total
times of a refuel event for each possible combination between {MR1, MR2}, and {FS1, FS2}.
Tmatch for this example has the form as given in Table 4-1.

Table 4-1: Matrix that contains the total times of a refuel event for all combinations between
{MR1, MR2}, and {FS1, FS2}.

FS1 FS2
MR1 T11 T12
MR2 T21 T22

Here T11 means the the total time of the refuel event if MR1 is assigned to refuel at FS1. The
values of T are calculated as given by (3-12).

When matching MRk, and FSm the same two undesired scenarios can arise as discussed in
Section 3-2:

• Ef
km > Ek, the energy level of MRk is insufficient to reach FSm;

• Ep
km > Ek,max, the maximum energy level of MRk is insufficient to reach the next

waypoint from the location of FSm.

Again when one of these conditions holds, Tmk = ∞, in order to prevent these undesired
situations.

The maximum bipartite matching algorithm maximizes the rewards for assigning FSs to
MRs. In order to obtain a result that minimizes instead of maximizes the refuel time, Tmatch
is transformed as follows:

T̃match = max(Tmatch)− Tmatch (4-1)

This transformation makes the maximum value of Tmatch zero in T̃match, and the smaller values
of Tmatch positive values in T̃match. The positive values can now be seen as positive rewards.
The smaller the value in Tmatch, the larger this value will be in T̃match. MR2 uses T̃match as
an input to the BIPARTITE_MATCHING algorithm. After running this algorithm, MR2
sends MR1 the location of the FS that is assigned to it. Each MR will travel towards the FS,
determined by the maximum bipartite matching algorithm.

For situations where there are more than two common interest MRs, all MRs that are already
travelling towards the FS respond to the “Coming” message of the last MR that decides to
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travel to the FS. The last MR creates a Tmatch matrix that contains the total refuel times for
all combinations, between all common interest MRs, and all FSs. This matrix has the form
as indicated in Table 4-2. Where the index C indicates the total number of common interest
MRs. Using this matrix as an input to the BIPARTITE_MATCHING algorithm, the last
MR determines a maximum matching between the FSs and all common interest MRs. After
running the maximum bipartite matching algorithm, the last MR will broadcast which MR
is assigned to which FS, and each MR will travel to its assigned FS.

Table 4-2: Matrix that contains the total times of a refuel event, for all combinations between
common interest MRs, and all FSs.

FS1 FS2 · · · FSM
MR1 T11 T12 · · · T1M
MR2 T21 T22 · · · T2M
...

...
... · · ·

...
MRC TC1 TC2 · · · TCM

It is possible that there are more common interest MRs than FSs. In that case some of the
MRs are not assigned to a FS when the maximum bipartite matching is performed. In order
to guarantee that each common interest MR will eventually be assigned to a FS, every time
the maximum bipartite matching algorithm is executed, it is checked if there are unassigned
common interest MRs. If this is the case the previously assigned MRs are removed from
the Tmatch matrix, and the algorithm is executed again. This sequence is repeated until all
common interest MRs are assigned to a FS.

4-1-2 Queue Ordering

A queue ordering algorithm has been developed, in order to reduce the time that the last MR
of the queue will reach its next waypoint. In the distributed approach, the MRs in a queue
are allowed to enter the FS on a first come first served basis. Sometimes it is beneficial if the
MRs in the queue enter the FS in a different order than first come first served. The queue
ordering algorithm proposed here is explained by the following example. Consider MRk to
enter the queue of FSm. MRk sends a “Wait” message to the FS, together with its: location,
maximum velocity, next waypoint location, energy level, and maximum energy level. Based
on this information FSm calculates:

• T r
mk - The time it takes MRk to be completely refuelled by FSm.

• T p
mk - The time it takes MRk to travel from FSm to its next waypoint.

T r
mk is calculated as given by (3-8). The index l of T r

mlk is omitted here, since the rendezvous
locations are equal to the current positions of the MRs. T p

mk is calculated as follows:

T p
mk =

√
(xm − xpk,next)2 + (ym − ypk,next)2 /vk,max (4-2)

When a second MR (let this be MR1) enters the queue, the same procedure is followed. Now
the FS determines the refuel ordering of the MRs in the queue, by calculating the times that
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both MRs will reach their next waypoint for all possible refuel orderings. In this example the
possible refuel orderings are: {MRk,MR1}, and {MR1,MRk}.

The time that MRk reaches its next waypoint, for the refuel ordering where MRk is listed
first can be calculated as follows:

Tpk,next = T r
mk + T p

mk (4-3)

For the refuel ordering where MRk is listed last, Tpk,next , can be calculated as follows:

Tpk,next = T r
m1 + T r

mk + T p
mk (4-4)

Tpk,next is calculated for each MR, in each possible refuel ordering. The refuel ordering that
corresponds to the shortest time that the last MR will arrive at its next waypoint, is selected
as queue order. This time value is denoted as Torder, and its calculation for the considered
example is given by (4-5).

Torder = min[max(T r
mk + T p

mk, T
r
mk + T r

m1 + T p
m1),

,max(T r
m1 + T r

mk + T p
mk, T

r
m1 + T p

m1)]
(4-5)

It can occur that multiple refuel orderings, share the value of Torder. In these cases from these
refuel orderings, the ordering is selected that leads to the minimum accumulated time it takes
all MRs in the queue to reach the next waypoint.

Now consider a third MR (let this be MR2) is entering the queue. The refuel ordering
is determined in a similar way, as discussed before. Consider the previous determined refuel
ordering between MRk and MR1 to be {MR1,MRk}. Now the optimal ordering between MRk,
MR1, and MR2 is determined by inserting the T r

m2, and T
p
m2 values at all possible places in the

existing ordering. This means the FS calculates the times all MRs reach their next waypoint
for the following orderings: {MR2, MR1,MRk}, {MR1, MR2,MRk}, and {MR1, MRk,MR2}.
From these refuel orderings, again the ordering that corresponds to Torder is selected. As
soon as the FS has determined the queue ordering and it is not occupied anymore, it sends a
message to the first MR in the queue order, to inform that this MR is now allowed to enter
the FS.

Another scenario is possible. It can occur that multiple MRs are entering the queue simul-
taneously. In these cases the refuel ordering is determined by first determining the ordering
between two MRs. Then the ordering is determined between three MRs, by inserting its T r,
and T p values at all possible places in the existing ordering. This process is repeated until
the ordering is determined for all MRs that entered the queue simultaneously. Since each MR
is inserted in an optimal schedule, the final refuel ordering is optimal. The runtime of this
approach is O(n2) [10], where n stands for the total number of MRs in the queue. If the queue
becomes very large, it could take a long time before the optimal ordering is determined. In
practice this is however very unlikely, because the ratio between FSs and MRs has to be at
least 0.33, in order to prevent all MRs from running out of energy [41]. This means that for
every 3 MRs in a swarm, there should be at least 1 FS. This makes it unlikely that very large
queues will arise, when the FSs are well distributed among the robotic swarm. Of course the
ratio between FSs and MRs that should be considered to keep all MRs vivid, depends on the
energy donation rates of the FSs, and the energy capacities and energy consumption rates of
the MRs. This ratio should be reconsidered for each different setup.
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The following aspect has to be noted about the queue ordering algorithm. Since in this thesis
it is assumed that the MRs only consume energy while moving, changing the queue order
does not cause MRs running out of energy. However when the MRs do consume energy
while standing still, this should be taken into account in the queue ordering algorithm. This
algorithm can cause a MR to be always last in the queue, every time a new MR enters the
queue. In that case it is possible that MRs deplete, when they consume energy while waiting.

Numerical Example

The queue ordering algorithm is explained by means of a numerical example. Consider the
scenario of Figure 4-2. Here MR1, MR2, and MR3 are waiting in the queue of FS1, since
it is currently occupied by MR4. Next to each MR in the queue in italics T r is shown.
MR1, MR2, and MR3 need 10, 15, and 20 time units respectively before being completely
refuelled. Furthermore for each MR in the queue, the next waypoint is shown. The dashed
lines represent the routes from the FS to the next waypoints. In italics T p of each route is
indicated. MR1, MR2, and MR3 need 10, 15, and 20 time units respectively to travel from FS1
to their next waypoint. Consider that all MRs entered the queue simultaneously. Now FS1

Figure 4-2: Example of a scenario where 3 MRs are waiting in the queue of FS1.

will first calculate the optimal refuel ordering between MR1, and MR2. Using Equations (4-3)
and (4-4), Tpk,next can be calculated for each MR. These values are given in Table 4-3.

Table 4-3: Values of Tpk,next , calculated for MR1, and MR2, for each possible refuel ordering.

Ordering MR1 MR2
MR1,MR2 20 40
MR2,MR1 35 30

From Table 4-3 it can be observed that the time the last MR will arrive at it next waypoint
is minimal for the refuel ordering {MR2,MR1}. Since this order results in a single minimum,
this will be the order in which MR1, and MR2 are allowed to enter FS1. Now to determine
when MR3 is allowed to enter the FS, MR3 is inserted in all possible positions in the existing
optimal order. The possible refuel orderings and corresponding Tpk,next of each MR are given
in Table 4-4. From Table 4-4 it can be observed that the following orderings lead to a
minimal time that the last MR will arrive at its next waypoint: {MR3,MR2,MR1}, and
{MR2,MR3,MR1}. For both refuel orderings the last MR will arrive after 55 time units at
its next waypoint. In this case the final refuel ordering is selected based on the accumulated
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Table 4-4: Values of Tpk,next , calculated for MR1, MR2, and MR3 for the existing optimal schedule.

Ordering MR1 MR2 MR3 Accumulated Tpk,next

MR3,MR2,MR1 55 50 40 145
MR2,MR3,MR1 55 30 55 140
MR2,MR1,MR3 45 30 65 140

Tpk,next . Since the accumulated Tpk,next has the lowest value for the ordering {MR2,MR3,MR1},
this will be the chosen queue order.

4-2 Conclusion

This chapter discussed a hierarchical approach to schedule the refuelling activities of multiple
MRs. This approach is called hierarchical, since the decision making is done for individuals,
or clusters of MRs, based on local knowledge. The refuel event selection methods are the
same as implemented for the distributed approach.

Section 4-1 discusses the FS allocation principle. This is the part where the hierarchical
approach differs from the distributed. The hierarchical approach reallocates the FSs, when
multiple MRs want to refuel at the same FS during the same timeslot. A queue ordering
algorithm has been proposed, in order to determine the ordering in which the MRs in a queue
are allowed to enter a FS. The ordering is determined in such a way, that the time the last
MR in the queue will arrive at its next waypoint is minimized. Since these decisions are
made for clusters of robots, it is expected that the hierarchical approach will outperform the
distributed approach.

The main contributions of this chapter are: the use of a bipartite matching algorithm to assign
FSs to MRs with common refuelling interests, and the formulation of the queue ordering
algorithm. The next chapter will discuss simulations that were performed to compare the
centralized, distributed, and hierarchical approaches.
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Chapter 5

Comparison between Centralized,
Distributed and Hierarchical

Approaches

This chapter describes a comparison between all approaches described in Chapters 2–4. The
performance of the approaches is compared in terms of total mission time. For the comparison,
the same two missions as discussed in Section 2-3 are used: the patrol mission, and the mission
with two randomly placed waypoints for each mobile robot (MR). Furthermore the simulation
results of the distributed, and hierarchical approaches are compared based on the simulations
of the missions with 10-50 randomly placed waypoints, which are discussed in Section 3-4. A
short recap on the different approaches is given below.
The centralized approach makes use of a central node to perform all calculations, and decision
making for all MRs, based on global knowledge. The advantage of a generalized architecture is
that global optimal plans can be formulated which lead to global optimal solutions. Drawbacks
of this architecture are that it is not robust to dynamic environments, communication failures,
and other uncertainties Furthermore centralized architectures are highly vulnerable because
they have a central point of failure. These approaches are most suited for problems involving
small robotic teams and static environments.
The calculations and decision making of the distributed approach, are distributed over the
robotic team. Each MR makes individual decisions based on local knowledge. There is only
limited communication between the fuelling stations (FSs), and the MRs. FSs are not able
to communicate with other FSs, and MRs are not able to communicate with other MRs.
Advantages of a distributed architecture is that it is typically very fast, adaptive, and robust
to failures. Due to the distributed nature, the solutions are suboptimal. A distributed
architecture is best suited for scenarios where large robotic teams, perform relative simple
tasks, with no requirements for efficiency.
The hierarchical approach also distributes the calculations and decision making over the
robotic team. The difference with the distributed approach is that the MRs can communi-
cate with each other, and decisions are made for individuals, or clusters of MRs, based on
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local knowledge. This architecture is in the middle of a centralized and distributed architec-
ture. The solutions are often suboptimal, but in general better compared with distributed
approaches. Since the computations and decision making is distributed over the robotic team,
hierarchical approaches retain the benefits of distributed approaches regarding to: speed, flex-
ibility, and robustness.

Based on the properties of the different approaches, it is expected that the solution quality
of the: centralized approach will be the best, hierarchical approach will be second best, and
distributed approach will be the worst.

5-1 Simulation Results and Discussion

The patrol mission, and the mission with 2 FSs, and 3 MR which have to visit 2 randomly
placed waypoints, which are described in Section 2-3 are used to evaluate the performance of
all different approaches. For each mission, and each approach the same trials were performed
as given in Section 2-3. In total for each approach, and each mission 30 trials were performed,
where the energy levels of the MRs varied between 15-30 energy units in intervals of 5. The
velocities of the MRs were varied between 1-3 distance units per time unit, in intervals of 1.
The energy donation rates of the FSs were varied between 1, and 2 energy units per time
unit. When using the fixed threshold method during the patrol mission, the threshold value
was chosen to be 5.8 energy units. This value is calculated using Equation (3-1), such that
the location with (x,y) coordinates (5,3) can be reached from the farthest possible waypoint.
The location (5,3) is chosen, because this point is in the middle of the two FSs.

Table 5-1 shows the average total mission times, over 30 trials, for each mission, and all
approaches. In all tables shown in this chapter the notations Fixed, and Adaptive or used
to indicate the fixed, and adaptive threshold method respectively. In order to get a clearer

Table 5-1: Average mission times of all approaches, for the patrol mission, and the mission 2
with randomly placed waypoints for each MR.

Mission Optimal
approach Heuristic 1 Receding

horizon
Distributed Hierarchical

Fixed Adaptive Fixed Adaptive
Patrol 37.64 38.04 40.43 46.17 44.91 48.39 45.33
Random 30.18 30.32 33.17 43.10 36.79 43.06 38.30

view, the average total mission times over both missions are calculated. The mean error
between the optimum, and the other approaches are calculated and given in Table 5-2 in
percentages. The comparison between the optimal approach, Heuristic 1, and the receding
horizon principle, is already given in Section 2-3 and is therefore omitted here. From Tables 5-
1 and 5-2 some interesting results can be observed. A surprising result is that the distributed
approach outperforms the hierarchical approach. During the simulations, the following was
observed regarding the hierarchical approach. In the first fuel cycle of the MRs it often
occurred that the three MRs were going for refuel at approximate the same moment. In the
observed scenarios, two MRs were going to the same FS (these are common interest MRs), and
the third went to the other FS. One of the common interest MRs ran the bipartite matching
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Table 5-2: Mean errors of all approaches w.r.t. the optimal approach, calculated over the average
mission times of the patrol mission, and mission with 2 randomly placed waypoints for each MR.

Optimal
approach Heuristic 1 Receding

horizon
Distributed Hierarchical

Fixed Adaptive Fixed Adaptive
- 0.8% 8.4 % 31.6% 20.7% 34.8 % 23.6%

algorithm, and assigned one of the common interest MRs to the other FS. In this case this
decision is inefficient, since another MR was already travelling to the other FS. Now still one
MR ended up in the queue. The MR which FS got reassigned, travelled a longer distance.
This increased its travel, and refuel time. So for these kind of scenarios, the choice to assign
each common interest MR to a different FS can lead to an increase of the total mission time.
After the first fuel cycle, the MRs alternate more regularly at the FSs. This was also shown
by Sempé et al. [39]. Due to this effect, the MRs become more evenly distributed across
the FSs. In that case it makes sense to assign each common interest MR to a different FS.
Since the two missions considered here were relative short, the hierarchical approach had not
enough time to compensate for the inefficient decision made in the beginning. Furthermore
it can be noticed that the receding horizon principle outperforms the decentralized methods.
This is not surprising, since the decisions made by the receding horizon principle are based on
knowledge about all MRs, instead of individuals, or clusters of MRs. In general the decisions
made by the receding horizon principle are based on more knowledge about the environment,
compared to the decentralized approaches.

In order to verify if the previous drawn conclusions also hold for some larger scale scenar-
ios, simulations were performed using Heuristic 1, the receding horizon principle, and the
decentralized methods for scenarios with 7 randomly placed waypoints for each MR. The
waypoints were randomly placed in an area of 10×10 distance units, with the restriction that
the euclidean distance between two consecutive waypoints should be at least 7.5 distance
units. The setup was similar to the simulation with 2 randomly placed waypoints for each
MR. The environment contained:

• 2 FSs: {FS1,FS2}, located at (5, 5), and (5, 1) respectively. The properties of the FSs
were:

– vm,max = 0, ∀m ∈M;
– Ėm = 1 for m = 1, and Ėm ∈ {1, 2} for m = 2.

• 3 MRs, which initial locations were chosen corresponding to the solution of Heuristic 1.
The energy consumption rates of the MRs were:

– Ėk = 1, ∀k ∈ K.

The maximum energy values of the MRs were varied between 15-30, in intervals of 5 energy
units. The velocities of the MRs varied between 1-3, in intervals of 1 distance unit per time
unit. When using a fixed threshold, the threshold value was set to 7.1 energy units, which
is calculated in the same way as explained in Section 3-4. In total 10 trials were performed.
The average mission times are presented in Table 5-3. From this table it can be observed
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that the average total mission time is the smallest, when using Heuristic 1. Since the opti-
mum cannot be calculated in reasonable time for this problem size, the mean errors of the
other approaches with respect to Heuristic 1 were calculated. These values are shown in
percentages in Table 5-4. Comparing this table to Table 5-2, some interesting observations
can be made. First, the performance of the hierarchical approach improved compared to the
distributed approach. When a fixed threshold was used the distributed approach performed
slightly better, but when an adaptive threshold was applied, the hierarchical approach out-
performed the distributed approach. This indicates that the conclusion can be correct that
due to an inefficient decision made by the hierarchical approach during the first fuel cycle
of the MRs, the distributed approach outperforms the hierarchical for scenarios with a very
small number of waypoints. Secondly it can be observed that the mean error between the
decentralized approaches using an adaptive threshold, and Heuristic 1 are much smaller. As
a third observation, the average solution quality of the receding horizon principle became a
little worse. These differences can be caused by the problem size considered in Table 5-2.
It is possible, that scenarios where 2 waypoints are assigned to each MR are too small to
draw conclusions about the suboptimality of the decentralized approaches, and the receding
horizon principle. Unfortunately it is not possible to use Heuristic 1 for the same scenarios
involving a much larger number of waypoints. Otherwise it would be interesting to compare
the performances of the decentralized approaches, and the receding horizon principle with the
heuristic for even larger problem sizes. It is expected that the mean error of the suboptimal
approaches eventually will converge. It is surprising to see that on average the performance
of the hierarchical approach using an adaptive threshold is better compared to the receding
horizon principle for the mission with 7 randomly placed waypoints. The distributed ap-
proach using an adaptive threshold only performed 2.2 % worse compared to the receding
horizon principle. Unfortunately due to the computational complexity of the receding horizon
principle we did not perform simulations for scenarios with more than 7 waypoints for each
MR. The trials described here took around 3-4 hours. It would be interesting to compare the
performance of the receding horizon principle with the decentralized methods for scenarios
with even larger number of waypoints.

Table 5-3: Average mission times for the mission with 7 randomly placed waypoints for each
MR.

Heuristic 1 Receding
horizon

Distributed Hierarchical

Fixed Adaptive Fixed Adaptive
121.3 134.7 160.8 137.5 161.0 134.6

Table 5-4: Mean errors w.r.t. Heuristic 1, calculated over the average mission times of the
mission with 7 randomly placed waypoints for each MR.

Heuristic 1 Receding
horizon

Distributed Hierarchical

Fixed Adaptive Fixed Adaptive
- 11.1 % 32.6% 13.3% 32.7% 10.9%

The distributed and hierarchical approaches were also compared for larger simulations, up
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to 50 waypoints. The same simulations were performed using the hierarchical approach as
discussed in Section 3-4 using the distributed approach. The simulation setup was exactly the
same. Five different environments were created, where 10, 20, 30, 40, and 50 waypoints were
randomly placed in an area of 10× 10 distance units, with the restriction that the euclidean
distance between two consecutive waypoints should be at least 7.5 distance units. The same
trials were performed as discussed in Section 3-4, with varying velocities, and energy capacities
of the MRs, and varying velocities, and energy donation rates of the FSs. Figure 5-1 shows the
result for the distributed, and hierarchical approach, when a fixed, and adaptive threshold was
applied. The fixed threshold value was chosen to be 7.1 energy units, equal to the threshold
value of the simulations described in Section 3-4. This figure shows that most of the times
the hierarchical approach performs better compared to the distributed approach. This was
already expected, for scenarios with a larger number of waypoints. Since after the first fuel
cycle the MRs alternate more regularly at the FSs, the MRs become more evenly distributed
over the FSs. In that case the hierarchical approach turns out to be beneficial. Since the fuel
cycles of the MRs are not synchronised, still situations can arise where it is inefficient to assign
each common interest MR to a different FS. If these situation occur often, the hierarchical
approach can perform worse compared to the distributed approach. This can explain why
in the left figure of Figure 5-1, the distributed approach performed better compared to the
hierarchical approach, for 30 waypoints.

Figure 5-1: Comparison between distributed, and hierarchical approach, for scenarios with 2 FSs,
and 6 MRs, which have to visit randomly placed waypoints.

The average total mission times over the 10-50 waypoints are calculated, in order to draw
an overall conclusion. These values are summarized in Table 5-5. The mean error of the
distributed approach is calculated with respect to the hierarchical approach. These values
are denoted by µ and given in percentages. On average the hierarchical approach performed
better compared to the distributed approach. These results indicate that the previous drawn
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conclusion is correct. For scenarios with a small number of waypoints, the hierarchical ap-
proach often leads to an inefficient decision during the first fuel cycle. For small scale scenarios,
the overall mission time is too short for the hierarchical approach to become beneficial again.
However for larger scale scenarios it is indicated that on average the hierarchical approach
performs better compared to the distributed approach.

Table 5-5: Average mission times for the distributed, and hierarchical approaches, for scenarios
with 2 FSs, and 6 MRs, which have to visit 10-50 randomly placed waypoints.

Distributed Hierarchical
Tmission µ Tmission

Fixed 1008.3 3.6 % 973.6
Adaptive 943.9 3.0% 916.2

As already discussed in Chapters 3 and 4, the benefits of having a mobile fuelling sta-
tion (MFS) were larger when a fixed threshold was applied, instead of an adaptive threshold.
Table 5-6 shows the average total mission times calculated over both decentralized methods,
and over all trials, with FS2 being fixed, and mobile. On average the total mission times of
the scenarios with 2 fixed FSs was 14.3%, and 5.7% longer when using a fixed, and adap-
tive threshold respectively, compared with the scenarios with 1 fixed and 1 mobile FS. As
explained before, the difference between the fixed, and adaptive threshold can be caused by
not taking into account the rendezvous location of the MFSs during the calculation of the
adaptive threshold value.

Table 5-6: Comparison between scenarios with 2 fixed FSs, and 1 fixed and 1 mobile FS, for
scenarios with 6 MRs, which have to visit 10-50 randomly placed waypoints.

FS2 fixed FS2 mobile
Tmission µ Tmission

Fixed 1080.9 14.3% 945.9
Adaptive 964.7 5.7% 912.7

5-2 Conclusion

This chapter presented the simulation results of all approaches presented in Chapters 2–4. The
performance of the different approaches were compared based on total mission time. The solu-
tion quality of Heuristic 1 is on average 0.8% from the optimal value. It can be concluded that
Heuristic 1 outperforms all other suboptimal approaches. Based on the experiment results
the receding horizon principle performed better compared to the decentralized approaches,
for scenarios with a small number of waypoints. It is likely that the problem size considered
during these simulations where too small, to draw a conclusion about the suboptimality of
these approaches. For scenarios with a larger number of waypoints the solution quality of the
receding horizon principle decreased. Surprisingly the solution quality of the decentralized ap-
proaches using an adaptive threshold increases tremendously for these scenarios. On average
for these scenarios the hierarchical approach using an adaptive threshold performed slightly
better, and the distributed approach using an adaptive threshold performed little worse com-
pared to the receding horizon principle. In general the solution quality of the decentralized
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approaches is better when an adaptive threshold is applied compared to a fixed threshold. For
use in practice the decentralized approaches with an adaptive threshold are recommended for
scenarios with a large number of waypoints, instead of the receding horizon principle. This
recommendation is based on the following two reasons: the computational complexity of the
decentralized methods is much lower, and their solution quality does not differ a lot compared
to the receding horizon principle. Furthermore there are general reasons why a decentralized
approach is favoured above a centralized approach, regarding to: robustness, flexibility, and
adaptability. For small scale scenarios the distributed approach outperforms the hierarchical
approach. This is most likely due to an inefficient decision made by the hierarchical approach
during the first fuel cycle of the MRs. For larger scale scenarios, on average the hierarchical
approach performs better compared to the distributed approach. There is no overall best
approach, which should be used in all kind of scenarios. Which approach one should use de-
pends on several factors, such as problem scale, efficiency requirements, and communication
possibilities. In general one can formulate the following recommendations. For small problem
sizes with high efficiency requirements, an off-line schedule can be found using the optimal
approach, or Heuristic 1. For dynamic environments or large scale problems, the distributed,
or hierarchical approach, using an adaptive threshold leads to reasonable results.
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Chapter 6

Conclusions

6-1 Summary

This thesis presented several methods to schedule the refuelling activities of multiple het-
erogeneous autonomous mobile robots (MRs). The objective was to schedule the refuelling
activities in such a way that the overall mission time was minimized. The scheduling was
focused on the selection of the refuel events, and the allocation of the fuelling stations (FSs) as
a shared resource. A general contribution is that for all proposed approaches, heterogeneous
MRs, and FSs were considered.

In particular a centralized, distributed, and hierarchical approach have been presented in order
to schedule the refuelling activities. The centralized approach which is discussed in Chapter 2
solves a mixed integer linear program (MILP) that results in global optimal schedules. To
the best of our knowledge we are the first to formulate a MILP in order to schedule the
refuelling activities of multiple MRs, across multiple FSs, using a time-based metric. This
is the greatest contribution of the presented centralized approach. All possible refuel events
have to be taken into account, in order to obtain a global optimal solution. Since the number
of refuel events grows very fast when the problem size increases, the computation time grows
very quickly as well. A heuristic has been proposed which only takes fixed refuel orderings
into account, in order to speed up the computation time. The solution quality of this heuristic
had proven to be close to the optimal value. A significant reduction in computation time has
been noticed, and the size of the problems that can be solved in reasonable time increased
tremendously. One factor that leads to a fast increasing computation time, is the total number
of waypoints. In order to solve problems with a large number of waypoints, the problem
was solved using a receding horizon principle. This principle solves subproblems, with the
number of waypoints being equal to the prediction horizon. By repeatedly solving these
subproblems, and shifting the prediction horizon, larger scale problems can be solved. The
main contributions of the centralized approach are: the formulation of a MILP to solve type of
scheduling problems under consideration using a time-based-metric, and the implementation
of the receding horizon principle.
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Chapter 3 presented a distributed approach, where each MR made individual decisions based
on local knowledge. Two refuel event selection methods have been discussed. These methods
make use of a fixed, and adaptive threshold on the energy level of a MR. As expected the
simulation results show that the adaptive threshold method outperforms the fixed threshold.
In order to increase the operation range and time of the MRs, mobile fuelling stations (MFSs)
were introduced. A rendezvous strategy has been proposed to determine a location where a
MFS and a MR can rendezvous, such that the time the MR spends on the refuelling activity
is minimized. During simulations it was confirmed that the use of MFSs leads to a reduced
total mission time. The main contributions of the distributed approach presented here is the
implementation of the MFSs, which need to be shared together with the fixed FSs in order
to refuel the MRs in an efficient manner.

A hierarchical approach was proposed in Chapter 4. Here the decisions are made for individ-
uals or clusters of MRs, based on local knowledge. This approach reallocates the FSs, in case
multiple MRs want to refuel at the same FS during the same timeslot. For this purpose a
maximum bipartite matching algorithm [46] has been used. In order to reduce the common
time spent on refuelling activities by the MRs which are waiting in a queue of a FS, a queue
ordering algorithm has been proposed. The contributions of the hierarchical approach are:
the use of a bipartite matching algorithm in order to reallocate the FSs when multiple MRs
have common refuelling interests, and the implementation of the queue ordering algorithm.

A comparison has been made between all presented approaches in Chapter 5. A variety of
simulations were discussed, and the approaches were compared based on the total mission
time. Since the problem size that can be solved using the centralized approaches is limited,
the comparison with these approaches was only done for small scale systems. The largest
problem scenario for which an optimal solution can be found in reasonable time is: 2 fixed
FSs, and 3 MRs which all have to visit 2 waypoints. This indicates an important limitation of
the optimal approach. The proposed heuristic improved the computation time significantly,
but is still very computationally complex. The solvable problem size stays limited. In gen-
eral for type of scheduling problems under consideration, the centralized approaches are not
recommended for large scale scenarios. For scenarios with a large number of waypoints, the
receding horizon principle could be used, although it takes a long time until a solution is
found. The receding horizon principle outperforms the decentralized approaches for scenarios
with a very small number of waypoints. However when the number of waypoints increases
the performance of the decentralized approaches using an adaptive threshold, seems to im-
prove compared to the receding horizon principle. For scenarios with 7 randomly placed
waypoints for each MR, on average the hierarchical approach performed slightly better, and
the distributed approach performed little worse compared to the receding horizon principle.
Unfortunately the computational complexity of the receding horizon was too large, to per-
form simulations for scenarios with a much larger number of waypoints. For scenarios with
a small number of waypoints the hierarchical approach seems to perform worse compared to
the distributed approach. This is most likely caused by an inefficient decision made by the
hierarchical approach, during the first fuel cycle of the MRs. The distributed and hierarchical
approach were also compared for scenarios with 2FSs, and 6 MRs which had to visit up to
50 randomly placed waypoints. For these scenarios the solution quality of the hierarchical
approach improved, compared to the distributed approach. When the number of waypoints
increases, the hierarchical approach has the time to compensate for the inefficient decision
made in the beginning. On average the hierarchical approach performed 3% to 3.6 % better
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than the distributed approach, depending on the refuel event selection method. Since the
decentralized approaches are less computationally complex, for large scale systems they are
favoured above the centralized approaches. For some problem scales, a centralized approach
cannot even find a solution in reasonable time. Each approach has its pros and cons, and
therefore it is hard to determine which approach is the best. In general one can formulate the
following recommendations. For small problem sizes, with high efficiency requirements, an
off-line schedule can be found using the optimal approach, or the proposed heuristic. For dy-
namic environments or large scale problems, the distributed, or hierarchical approach, using
an adaptive threshold can be used to obtain reasonable results in real time.

This work resulted in some contributions to the existing field of autonomous refuelling of MRs.
The developed methods can be applied for scheduling the refuelling activities of individuals,
or multiple MRs. The proposed scheduling methods can be used to refuel MRs during a large
variety of missions, e.g. work in hazardous environments, persistent labour, or planetary
exploration. Another application one could think of in the near future is scheduling the
refuelling activities of self-driving cars.

6-2 Future Work

A major contribution can be made by reducing the computational complexity of the MILP
formulation. This would make it possible to find optimal solutions in reasonable time for
larger scale problems. A reformulation of the MILP might be needed, or possibly there are
some relaxations that can be used. The bottlenecks of the MILP formulation are the number
of MRs, and the number of waypoints.

The MILP formulation does not allow the FSs to be mobile. A reformulation can be con-
sidered to include this option. Klauco et al. [1] describe a mixed integer second order cone
program (MISOCP) formulation for a heterogeneous multi-vehicle, which can be interpreted
as a system that consists of a single MFS and a single MR. The decision of where the MFSs,
and MRs rendezvous is part of the formulation. With the MILP formulation proposed in this
thesis, combined with the MISOCP formulation of Klauco et al. [1], it should be possible to
include the option of FSs to be mobile as well. It is important to note that this will increase
the computation time.

Solving the centralized approach with the receding horizon principle, made it possible to solve
refuelling problems for an arbitrary number of waypoints. Since the number of MRs is still
a limiting factor, a contribution can be made here. A proposed method to realize that this
approach can also be used for an arbitrary number of MRs is given as follows. Instead of
solving the optimization problem for all MRs at once, solve the problem first for {MR1,MR2}.
Subsequently solve the problem for {MR2,MR3}, · · · ,{MRK ,MR1}. Here K denotes the total
number of MRs. From these pairwise solutions the optimal solution should be chosen. Note
that this can be very complex, since each refuel event of one MR can influence the refuel
events of all other MRs.

An open topic which is not addressed during this thesis is to determine the duration of a
refuel event. The work presented here, assumed that a MR always stays at a FS, until it
is completely refuelled. Possibly the total mission time can be reduced, if different refuel
durations are taken into account. There is little literature that addresses the refuel duration
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of MRs. Wawerla and Vaughan [9] propose a time discounted labour approach. The refuel
duration with respect to the total energy of a group of MRs was considered by Michaud and
Robichaud [48].

The problem under consideration entails an assignment of a unique set of waypoints to each
MR. As future work problems can be considered, where the mission entails a set of waypoints
assigned to the whole robotic team instead of individuals. In that case the waypoints should
be assigned to the MRs, such that the overall mission time is minimized. These type of
problems are also known as: task allocation for multi-robot exploration [49], a variant of the
multiple travelling salesman problem (MTSP) [50].

It is expected that the performance of approaches where an adaptive threshold strategy is
applied can be increased, when the rendezvous locations of the MFSs are taken into account
during the calculation of the threshold value. This would be a nice contribution. A method
to realize this is proposed as follows. Every time a MR reaches a waypoint, it has to send a
message to the FSs, which calculate a rendezvous location when receiving this message. This
rendezvous location has to be send back to the MR, which in turn calculates if the closest
rendezvous location can be reached after visiting the next waypoint.

Another improvement of the hierarchical approach can be made by reconsidering the policy
that if multiple MRs are travelling towards, the same FS, each MR is assigned to a different
FS. During the simulations it turned out that this policy sometimes leads to an inefficient
FS allocation. Instead of always reallocating the FSs, the outcome of the bipartite matching
algorithm should be compared with the result of the initial FS allocation. In case the outcome
of the bipartite matching algorithm is better, the FSs should be reallocated. Otherwise, it is
beneficial to leave the FS allocation as it was originally.

In order to prevent MRs from becoming useless when depleted, a nice contribution would
be if MFSs are able to revive MRs that ran out of energy. This can be realized as follows:
When almost out of energy, and not able to reach a FS, MRs should be able to broadcast
an “Emergency” signal. MFSs receiving this messages, have to decide which MFS will travel
towards the MR to revive it. A similar principle is discussed in [51].

It is assumed that the FSs have an unlimited amount of energy. With this assumption the
necessity for the MFSs to refuel themselves is neglected. As an extension of the current
problem, one could take the energy capacity, and refuelling needs of the MFSs into account.
The following items should be taken into consideration:

• The energy level of the MFSs should decrease when it is: moving, and refuelling a MR.
In the latter case the energy level of the MFS should decrease with an amount equal to
its energy donation rate (if energy losses are neglected).

• The MFSs should be able to refuel either at a fixed FS, or possibly at another MFS as
well.

• The MFSs should share the available resources with the MRs.

Another possibility is to think of MFSs with different energy capacities, such that MFSs with
smaller energy capacities can refuel at MFSs with larger energy capacities.
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Glossary

List of Acronyms

CVRP capacity constrained vehicle routing problem

FL fuel location

FS fuelling station

LP linear program

MDCVRP multi-depot capacity constrained vehicle routing problem

MFS mobile fuelling station

MILP mixed integer linear program

MINLP mixed integer nonlinear program

MISOCP mixed integer second order cone program

MR mobile robot

MTSP multiple travelling salesman problem

RL rendezvous location

TMP the matching problem

TSP travelling salesman problem

UAV unmanned aerial vehicle

VRP vehicle routing problem

WP waypoint
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72 Glossary

List of Symbols
D distance matrix, which contains all possible travel distances
E energy level
Ec Energy consumption matrix
Ė energy rate
ε −∞
f fuel location
F refuelling event matrix
Γ refuel time matrix
J set of possible refuel orderings
J total number of possible refuel orderings
K set of mobile robots
K total number of mobile robots
L set of refuelling tasks for an individual fuelling station
L total number of refuelling tasks of an individual fuelling station
M set of fuelling stations
M total number of fuelling stations
N total number of waypoints for an individual MR
ΩM set that can contain any possible combination between two elements inM
p waypoint location
Q set that contains all possible combinations between the elements inM
R rendezvous location
τ total time a mobile robot is moving during a fuel cycle
T Total time of a refuelling event
T time matrix, which contains all possible travel times
T o time a FS will be occupied until a MR is refuelled
Tw time a MR has to wait in the queue of a FS
T r time it takes a mobile robot to be completely refuelled during a refuelling activity
T t travel time
U max-plus decision variable
v velocity
X binary decision variable
Y e set of locations where the mobile robots ended a fuel cycle
Y s set of locations where the mobile robots started a fuel cycle
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