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Abstract The Indian Regional Navigation Satellite System
(IRNSS) has recently (May 2016) become fully operational.
In this contribution, for the fully operational IRNSS as a
stand-alone system and also in combination with GPS, we
provide a first assessment of L5 integer ambiguity resolution
and positioning performance. While our empirical analyses
are based on the data collected by two JAVAD receivers at
Curtin University, Perth, Australia, our formal analyses are
carried out for various onshore locations within the IRNSS
service area. We study the noise characteristics (carrier-to-
noise density, measurement precision, time correlation), the
integer ambiguity resolution performance (success rates and
ambiguity dilution of precision), and the positioning perfor-
mance (ambiguity float and ambiguity fixed). The results
show that our empirical outcomes are consistent with their
formal counterparts and that the GPS L5-data have a lower
noise level than that of IRNSS L5-data, particularly in case
of the code data. The underlying model in our assessments
varies from stand-alone IRNSS (L5) to IRNSS + GPS
(L5), from unconstrained to height-constrained and from
kinematic to static. Significant improvements in ambiguity
resolution and positioning performance are achievable upon
integrating L5-data of IRNSS with GPS.
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1 Introduction

The Indian Regional Navigation Satellite System (IRNSS)
has recently (May 2016) become fully operational and pro-
vided with the operational name of NavIC (Navigation with
Indian Constellation). It has been developed by the Indian
Space Research Organization (ISRO) with the objective of
offering positioning, navigation, and timing (PNT) to the
users in its service area. The IRNSS satellites transmit
navigation signals, based on code division multiple access
(CDMA), on L5 (1176.45 MHz) with a binary phase-shift
key (BPSK (1)) modulation for standard positioning service
(SPS) users, andwith a binary offset carrier (BOC(5,2))mod-
ulation for restricted service (RS) users (ISRO 2014a). The
fully operational IRNSS constellation has recently been real-
ized, consisting of three geostationary orbit (GEO) satellites
and four inclined geosynchronous orbit (IGSO) satellites.
The orbital period of the IRNSS satellites is one sidereal day
(23h and 56min), such that the IRNSS satellite ground tracks
repeat every solar day (24h) 4min earlier. Table 1 gives infor-
mation on the full IRNSS constellation.

Among the published studies on the IRNSS, while some
are simulation-based (Mozo Garcia et al. 2010; Sarma et al.
2010; Sekar et al. 2012; Rethika et al. 2013; Rao 2013),
the others are based on using real data. Thoelert et al. (2014)
assesses the clock stability of IRNSS-1A, while the accuracy
of a precise model for solar radiation pressure is tested using
the IRNSS-1A and 1B observations in Kumari et al. (2015).
Babu et al. (2015) compares orbit determination methods for
IRNSS-1A, 1B and 1C, and in order to validate the orbit accu-
racy with modernized ephemeris parameters, Chandrasekhar
et al. (2015) employs the IRNSS-1A, 1B and 1C real data.
Montenbruck and Steigenberger (2015) uses the observa-
tions of the IRNSS-1A and 1B to investigate the quality
of the IRNSS navigation messages. Nadarajah et al. (2015),
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Table 1 Information on the IRNSS/NavIC satellites (ISRO 2014b, c, d,
2015, 2016a, b, c)

Satellite Type Longitude Inclination Launch date

IRNSS-1A (I1) IGSO 55◦E 29.0◦ July 2013

IRNSS-1B (I2) IGSO 55◦E 31.0◦ April 2014

IRNSS-1C (I3) GEO 83◦E – October 2014

IRNSS-1D (I4) IGSO 111.75◦E 30.5◦ March 2015

IRNSS-1E (I5) IGSO 111.75◦E 28.1◦ January 2016

IRNSS-1F (I6) GEO 32.5◦E – March 2016

IRNSS-1G (I7) GEO 129.5◦E – April 2016

after assessing the IRNSS noise characteristics, combines the
L5/E5 signals of IRNSS, GPS, Galileo and QZSS for instan-
taneous attitude determination. The positioning results over
India based on the data of I1, I2, I3, and I4 are presented in
Ganeshan et al. (2015). The first IRNSS stand-alone posi-
tioning results over Australia are presented in Zaminpardaz
et al. (2016b), and Odijk et al. (2016) presents the first anal-
ysis of the differential inter-system biases (DISBs) between
L5 signal of IRNSS and the L5/E5a signals of GPS, Galileo
and QZSS.

Transmitting L5 frequency shared by three other GNSSs
(GlobalNavigationSatellite Systems), i.e.,GPS,Galileo, and
QZSS, makes the IRNSS interoperable with those systems.
All the satellites belonging to the latest generation of GPS,
called Block IIF, have been sending out the L5 signal since
2010 as part of the GPS modernization (GPS Directorate
2011). With the launch of the last satellite of Block IIF on
February 2016, it now has all its 12 satellites operational.
There exists a few number of studies in the literature mak-
ing use of the GPS L5 real data. An analysis of the GPS
L5 stochastic properties through different GNSS observables
combinations is provided by de Bakker et al. (2012). The
GPS L5-based precise point positioning (PPP) results are
presented in Tegedor and Øvstedal (2014). In Odijk and Teu-
nissen (2013); Odijk et al. (2016), the DISBs between GPS
L5 and the same signal of other systems are characterized,
and Nadarajah et al. (2015) combines the L5/E5 signals of
GPS, IRNSS, Galileo and QZSS for instantaneous attitude
determination.

In this contribution, we provide the very first L5 ambi-
guity resolution results of the fully operational IRNSS as a
stand-alone system and also in combination with the fully
operational GPS Block IIF together with the correspond-
ing positioning results. This contribution is organized as
follows. In Sect. 2, the unconstrained and weighted height-
constrained single-frequency GNSS model of the combined
IRNSS + GPS and stand-alone IRNSS is formulated. The
noise characteristics of the IRNSS and GPS L5-signal are
presented in Sect. 3 through the carrier-to-noise density,
the estimated measurement precision and time correlation.

A formal analysis of the position dilution of precision
(PDOP) corresponding with the stand-alone IRNSS and
IRNSS + GPS is also provided. This analysis includes the
identification and explanation of occurring periods of poor
receiver-satellite geometries. Section 4 contains the formal
and empirical ambiguity resolution performance analyses
on an epoch-by-epoch and multi-epoch basis. This is done
for the unconstrained and height-constrained model, and
for single-system IRNSS and dual-system IRNSS + GPS.
The corresponding positioning performance is investigated
in Sect. 5, both for ambiguity-float and ambiguity-fixed sce-
narios. Finally, a summary and conclusions are given in
Sect. 6.

2 GNSS model of observations

In this section, we formulate the single-baseline single-
frequency GNSS model for the combined IRNSS and GPS,
fromwhich the stand-alone IRNSSmodel follows as a special
case. In the sequel, we refer to the IRNSS-specific parame-
ters and the GPS-specific parameters using the subscripts I

and G , respectively.

2.1 Unconstrained model

Suppose that two receivers are simultaneously tracking mI

IRNSS plus mG GPS satellites on frequency L5 with the
wavelength λ. We assume that the two receivers form a
short baseline such that the atmospheric delays and orbital
errors are common to both of them, thereby becoming elim-
inated through between-receiver differencing. We further
assume that both receivers are of the same manufacturer
(receiver make, type and firmware), thus allowing us to
assume that the IRNSS-GPS ISBs are zero (Odijk et al. 2012,
2016). Therefore, instead of classical double-differencing per
constellation, inter-system double-differencing can be used,
resulting in a higher level of redundancy. For such a setup,
the corresponding full-rank single-epochmodel of linearized
double-differenced (DD) observation equations reads

E

[
DT
m p

DT
m φ

]
=

[
DT
m G 0

DT
m G λIm−1

] [
b
a

]

D

[
DT
m p

DT
m φ

]
=

[
DT
m Qpp Dm 0

0 DT
m Qφφ Dm

]
(1)

where E[.] and D[.] denote the expectation and dispersion
operator, respectively. Withm = mI +mG , the (m − 1)×m
matrix DT

m = [−em−1, Im−1] represents the inter-system
differencing operator, where em−1 and Im−1 are the (m−1)-
vector of ones and the identity matrix of (m − 1) dimension,
respectively. The combined vectors and matrices can be split
into system-specific parts as
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p =
[
pTI , p

T
G

]T
, φ =

[
φT
I , φT

G

]T
,G =

[
GT

I ,G
T
G

]T

Qpp = 2 × blkdiag
(
σ 2
pI W

−1
I , σ 2

pGW
−1
G

)

Qφφ = 2 × blkdiag
(
σ 2

φI
W−1

I , σ 2
φG

W−1
G

)

with ∗ = {I,G}, p∗ and φ∗ denote, respectively, the m∗-
vectors of between-receiver single-differenced (SD)
“observed-minus-computed” code and phase observables.
The m∗ × 3 matrix G∗ = [−u1∗ , . . . ,−um∗ ]T includes the
undifferenced receiver-satellite unit direction vectors us

T∗ as
its rows. The zenith-referenced standard deviation of the
undifferenced code and phase observables are denoted as
σp∗ and σφ∗ , respectively. W∗ = diag(w1∗ , . . . , wm∗) is the
m∗×m∗ diagonalmatrixwhich captures the elevation depen-
dency of the GNSS observables. In this contribution, the
satellite elevation-dependent weight ws∗ takes the form of
the exponential weighting function as

ws∗ =
[
1 + 10 exp

(
−θ s∗

10

)]−2

(2)

where θ s∗ is the elevation of the satellite s∗ in degrees (Euler
and Goad 1991). The unknowns to be estimated are the
real-valued 3-vector of baseline increment b and the integer-
valued (m − 1)-vector of inter-system DD ambiguities a.
Their corresponding single-epoch weighted least-squares
float solutions, b̂ and â, are given as

b̂ = Qb̂b̂ G
TPDm Q

−1
pp p, Qb̂b̂ = (GTPDm Q

−1
pp G)−1

â = 1

λ
DT
m(φ − Gb̂), Qââ = 1

λ2
DT
m

(
Qφφ + GQb̂b̂G

T
)
Dm

(3)

with PDm = Dm(DT
mQppDm)−1DT

mQpp. Since, in the case
of a single epoch, the number of DD ambiguities equals that
of the DD phase observables, uncorrelated with the DD code
observables, the DD phase observables are fully reserved for
the ambiguity estimation. Therefore, the single-epoch esti-
mation of the baseline components does not benefit from the
high precision phase observables unless the DD ambiguities
are resolved to their integer values. Upon fixing theDDambi-
guities, the phase observations act as the very precise code
observations and improve the baseline estimation and pre-
cision. The fixed baseline estimation and its corresponding
variance matrix are then given by

b̌ = Qb̌b̌ G
TPDm

(
Q−1

pp p + Q−1
φφ φ

)

Qb̌b̌ =
(
GTPDm (Q−1

pp + Q−1
φφ)G

)−1
(4)

To obtain the stand-alone IRNSS observational model
from (1), it is enough to put mG = 0. The redundancy and
solvability for IRNSS and IRNSS + GPS are as follows

IRNSS redundancy : mI − 4

solvability : mI ≥ 4

IRNSS + GPS redundancy : mI + mG − 4

solvability : mI + mG ≥ 4.

This implies that when the IRNSS is integrated with GPS,
(1) would be solvable even if less than four satellites of each
system are in view. Note that the redundancy and solvabil-
ity of the IRNSS + GPS model would be different if the
receivers are of different manufacturers and the ISBs are in
turn present.

2.2 Height-constrained model

For some GNSS applications where the vertical position
of the user does not vary considerably, information on the
height component can be provided to strengthen themodel of
observations. Examples of such applications are bathymetric
surveying (Zhu and Santerre 2002), and kinematic position-
ing over small areas with low height fluctuations (Godha and
Cannon 2007). Enforcing a weighted height constraint, the
observational model in (1) is extended with

E[δh] = [0, 0, 1] b; D[δh] = σ 2
h (5)

with δh being the height constraint corrected for an initial
value of the height component, and σh the a priori standard
deviation of the height constraint.

3 Measurement setup

The data used in this study were taken from the two static
stations CUBB and CUCC of a short baseline at Curtin Uni-
versity, Perth, Australia (Fig. 1). Each station is equipped
with a JAVAD TRE_ G3TH_8 receiver and connected to a
TRM59800.00 SCIS antenna. The dataset contains the 1-s
IRNSS L5 and GPS L5 observations collected with a cut-
off elevation angle of 10◦ on DOY (Day Of Year) 156 of
2016. Most of our analyses are conducted on an epoch-by-
epoch basis, and since the satellites geometry has a low rate
of change over time, our conclusions would be valid even
for lower sampling rates, like 30s. For both constellations,
the broadcast ephemeris is used. Figure 2 illustrates the 24-h
skyplot of IRNSS and GPS Block IIF at Perth.

3.1 Stochastic properties

Prior to our analyses, we need to consider representative val-
ues for the zenith-referenced standard deviations in (1), i.e.,
{σpI , σφI , σpG , σφG }. These values will capture the measure-
ment noise as well as any remainingmis-modeled effects like
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Fig. 1 CUCC (left) and CUBB (right) stations at Curtin Univer-
sity equipped with JAVAD TRE_G3TH_8 receivers, connected to
TRM59800.00 SCIS antennas
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Fig. 2 The 24-h skyplot of IRNSS (top) and GPS Block IIF (bottom)
at Perth, Australia, on DOY 156 of 2016 with cutoff elevation of 10◦

multipath. Therefore, it is expected that upon eliminating
the unwanted impact of multipath on the data, these values
will experience improvement. The impact of multipath is
eliminated using the method described in Zaminpardaz et al.
(2016a).

Applying the least-squares variance component esti-
mation (LS-VCE) (Teunissen and Amiri-Simkooei 2008;
Amiri-Simkooei et al. 2009) to the 1-s original andmultipath-
corrected data of DOYs 155 and 157 of 2016, the mentioned
standard deviations were estimated and the corresponding
results are given in Table 2. These estimations are obtained
on the basis of baseline-known underlying model. The code
precision of the GPS L5 is significantly better than that of
the IRNSS L5. This is also in agreement with the signature
of the carrier-to-noise density (C/N0) graphs of the two sys-
tems in Fig. 3. As it can be seen, the GPS L5-signal has larger
values for C/N0 compared to the IRNSS L5, especially for
elevations between 30◦ to 70◦. After multipath reduction,
both IRNSS and GPS code standard deviations improve sig-
nificantly. The phase observables of IRNSS L5 and GPS L5
are of comparable precisions, and almost insensitive to the
multipath correction. In the sequel, all our empirical anal-
yses are based on the multipath-corrected data of the DOY
156 of 2016. In Table 2, the correlation coefficients of the

Table 2 LS-VCE estimation of the original and multipath-corrected
(within brackets) undifferenced codeσp and phase σφ zenith-referenced
standard deviations and their corresponding correlation coefficient ρpφ

Frequency σp (cm) σφ (mm) ρpφ

IRNSS L5 26 (19) 2 (1) −0.02 (−0.01)

GPS L5 17 (7) 1 (1) 0.02 (0.02)

0 20 40 60 80
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45
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C
\N

0 
[d

B
−H

z]
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Fig. 3 Carrier-to-noise density (C/N0) for IRNSS L5 and GPS Block
IIF L5 signals tracked by a JAVAD TRE_G3TH_8 receiver, connected
to a TRM59800.00 SCIS antenna at Perth, Australia, on DOY 156 of
2016

123



IRNSS/NavIC and GPS: a single- and dual-system L5 analysis 919

phase and code observables for both IRNSS L5 and GPS L5
are also given. The small values for this quantity confirm
that the two types of observations, phase and code, can be
considered practically uncorrelated.

3.2 Time correlation

As another aspect of the GNSS signals noise characteris-
tics, here we assess the time correlation of the IRNSS and
GPS L5 signals. This would be of importance when one
is interested in multi-epoch processing. For this case, not
only the correlation of the observations at a single epoch, but
also their temporal correlation should properly be taken into
account through the stochastic model. Figure 4 (top) shows
the graph of the time correlation among the original IRNSS
L5 and GPS L5 observations as function of their time differ-
ence, while Fig. 4 (bottom) shows the same results for the
multipath-corrected data. These graphs are based on apply-
ing the LS-VCE method to 1h of 1-s short-baseline data
(Amiri-Simkooei and Tiberius 2007). A significant time cor-
relation of periodic behavior can be recognized among the
original data for both the IRNSSandGPSobservations.Upon
removing the multipath effect however, the time correlation
becomes negligible and the periodic signature vanishes. This
means thatwhenworkingwithmultipath-corrected data, they
can safely be considered temporally uncorrelated even if the
sampling rate is 1Hz.

3.3 Satellites visibility and PDOP analysis

Stand-alone IRNSS

The IRNSS constellation consists of seven satellites, three
GEOs and four IGSOs. The 24-h visibility of these satellites
at Perth, on DOY 156 of 2016 with the cutoff angle of 10◦
is depicted in Fig. 5 (in gray). As is shown, five and some-
times six satellites are visible from Perth. In addition to the
number of satellites, Fig. 5 also shows the time series of the
corresponding PDOP (Position Dilution of Precision) which
is defined as (Teunissen 1998a; Hofmann-Wellenhof et al.
2013)

PDOP = 1

σpI

√
trace

(
Qb̂b̂

)
. (6)

Since the IRNSS satellite geometry repeats itself every
(solar) day 4min earlier w.r.t. the previous day, the signature
of the time series shown in Fig. 5 is representable for any
day.

The large values of PDOP during the 24-h period demon-
strate the poor IRNSS geometry for positioning. There exists
one distinct peak in the PDOP time series at UTC [07:45:50].
Shown in Fig. 6 is the skyplot of the IRNSS satellites at the
mentioned time instant. As it can be seen, among the five vis-
ible satellites, two occupy the same skyplot position such that
all five satellites form a cone-like geometry. Such a satellite
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Fig. 4 Time series of the estimated time correlation among the short-baseline IRNSS L5 (left) and GPS Block IIF L5 (right) observations. (top)
Original data; (bottom) multipath-corrected data. The red dashed lines indicate the 95% formal confidence interval
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Fig. 5 Time series of the number of visible IRNSS satellites (gray)
and their corresponding single-epoch PDOP (blue) at Perth, Australia,
on DOY 156 of 2016 with the cutoff angle of 10◦
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receiver position is poorest estimable. The colored contour plots show
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geometry would in turn lead to the design matrix of the base-
line b in (1) becoming rank defect, and PDOP getting large
values. The design matrix DT

mG is rank defect if a vector
d ∈ R

3 can be found such that (Teunissen 1990; Zaminpar-
daz et al. 2016b)

(
DT
mG

)
d = 0 (7)

or equivalently

us
T
d = const; s = 1, . . . ,m (8)

implying that all the unit direction vectors from receiver to
visible satellites, i.e., us (s = 1, . . . ,m), make the same
angle with the vector d. From a geometrical point of view,
vector d is the symmetry axis of the cone on which the
receiver-satellite unit direction vectors lie. The position solu-
tion becomes indeterminate in the direction of d. In the
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Fig. 7 Time series of the number of visible satellites of IRNSS (gray
dashed line), of GPS Block IIF (gray dashed and dotted line), of both
IRNSS and GPS Block IIF (gray solid line), and the corresponding
single-epoch PDOP of IRNSS + GPS Block IIF (blue) at Perth, Aus-
tralia, on DOY 156 of 2016 with the cutoff angle of 10◦

skyplot shown in Fig. 6, the direction d is indicated as purple
dot, and the corresponding cones as colored contour lines
with the angles of 48◦, 50◦ and 52◦, respectively.

IRNSS integrated with GPS

Now consider the case when the IRNSS L5 observables are
combinedwith theGPSL5.GPSBlock IIF has 12 operational
satellites of which the visibility at Perth is illustrated in Fig. 7
(in gray). Combining IRNSS with GPS results in the number
of visible satellites increasing from 5–6 to 6–11. The IRNSS
+GPS PDOP (in blue) in Fig. 7 demonstrates a considerable
improvement compared to that of the stand-alone IRNSS (see
Fig. 5).

4 Ambiguity resolution

In this section, the IRNSS L5 ambiguity resolution perfor-
mance is investigated. The impact of combining IRNSS L5
with GPS L5 observables on the ambiguity resolution will
further be assessed. Our analyses will be based on the uncon-
strained, as well as height-constrained observational model.
Note, the ambiguity resolution in this paper is conducted for
the full vector of the DD ambiguities.

4.1 Ambiguity dilution of precision

The ambiguity dilution of precision (ADOP) was introduced
in Teunissen (1997) as an easy-to-compute scalar diagnos-
tic to measure the intrinsic model strength for successful
ambiguity resolution. It is defined as the square root of the
determinant of the ambiguity variance matrix raised to the
power of one over the ambiguity dimension. Therefore, the
single-baseline ADOP based on (3) is given as
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ADOP = √|Qââ |
1

m−1 . (9)

The closed-form expression for the single-system ADOP,
where the observations on the same frequency are of the same
quality, has already been provided in Teunissen (1997), Odijk
and Teunissen (2008), and the role of different factors such as
receiver-satellite geometry and precision of the observables
was investigated. As a rule of thumb, an ADOP smaller than
about 0.12 cycle corresponds to an ambiguity success rate,
also known as the probability of correct integer estimation,
larger than 99.9% (Odijk and Teunissen 2008). An increase
in the number of satellites would result in an improvement
in the ADOP value. The magnitude of this improvement is
even larger if the added satellite is from GPS Block IIF since
the GPS L5 code observable is more precise than the IRNSS
L5 (see Table 2).

Figure 8 shows the single-epoch ADOP time series of
IRNSS (top) and IRNSS + GPS (bottom), as well as the
corresponding number of visible satellites with the cutoff
angle of 10◦ on DOY 156 of 2016. The horizontal red dashed
line also indicates the ADOP value of 0.12 cycle. It can be
seen that the fluctuations in the ADOP graphs resemble those
in the graphs of the number of visible satellites. The stand-
alone IRNSS ADOP ranges from 0.3 to 0.7 cycle which is by
far more than the target value of 0.12 cycle.When the IRNSS
L5 is integrated with the GPS L5, the ADOP experiences
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Fig. 8 Time series of the number of visible satellites (gray) and their
corresponding single-epoch, single-baseline (CUBB–CUCC) ADOP
(blue) for IRNSS (top) and IRNSS + GPS Block IIF (bottom) at Perth,
Australia, on DOY 156 of 2016 with the cutoff angle of 10◦. The red
dashed line indicates the ADOP value of 0.12 cycle

a dramatic decrease particularly when more than one GPS
satellite are in view.

4.2 From unconstrained to height-constrained

Here, we assess, formally and empirically, the impact of
(weighted) height-constraining on the ambiguity resolution
performance by means of the ADOP and the success rate.
Upon height-constraining with the standard deviation of σh ,
the ambiguities variance matrix improves as

Qââ|h = Qââ − 1

σ 2
h + σ 2

ĥ

Qâĥ Qĥâ . (10)

Taking the determinant of both sides of the above equa-
tion and raising it to the power of 1

2(m−1) , the weighted
height-constrained ambiguity dilution of precision, denoted
by ADOP|h , is given by

ADOP|h = ADOP
σ 2
h /σ 2

ĥ
+ σ 2

ȟ
/σ 2

ĥ

σ 2
h /σ 2

ĥ
+ 1

≈ ADOP
[
1 + σ 2

ĥ
/σ 2

h

]−1
(11)

with σĥ and σȟ being the standard deviations of, respec-
tively, unconstrained float and fixed height solutions, and
Qâĥ the unconstrained float ambiguity-height covariance.
The approximation is due to the ratio σ 2

ȟ
/σ 2

ĥ
getting very

small values, and is valid as long as σ 2
ȟ
/σ 2

ĥ
is negligible with

respect toσ 2
h /σ 2

ĥ
. This is the casewhen imposing a soft height

constraint with relatively large value for σh . As (11) shows,
the larger the ratio σ 2

ĥ
/σ 2

h , the larger the ADOP improvement

will be. Therefore, if σ 2
h is much larger than σ 2

ĥ
, the ambigu-

ity resolution improvement brought by height-constraining
would be negligible. Ambiguity resolution can benefit con-
siderably fromaweighted height constraint ifσ 2

ĥ
is large. The

larger σ 2
ĥ
is, the softer the weighted height constraint can be

to still have an impact on ambiguity resolution. Thus, in case
of a large σ 2

ĥ
, soft constraining of the height can still result

in a very significant improvement of ambiguity resolution.
This is demonstrated in Fig. 9.

The first row of Fig. 9 shows the single-epoch float height
standard deviation time series of the unconstrained model
with 10◦ cutoff angle on DOY 156 of 2016, and the sec-
ond to bottom rows present the corresponding ADOP time
series for σh = ∞ (unconstrained), σh = 1m, σh = 0.1m
and σh = 0.01m, respectively. Comparing the results of the
stand-alone IRNSS (left column) with those of IRNSS +
GPS (right column), the ADOP improvement after apply-
ing the weighted height constraint is overall larger for the
stand-alone IRNSS. With the above explanation in mind,
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Fig. 9 (First row) Time series of the single-epoch unconstrained float
height standard deviation of IRNSS L5 (right) and IRNSS + GPS
Block IIF L5 (right) with the receiver pair CUBB–CUCC, on DOY
156 of 2016 with the cutoff angle of 10◦. (From second row to bottom)

The corresponding time series of the single-epoch ADOP based on the
unconstrained (σh = ∞) and height-constrained model with the stan-
dard deviations of σh = 1m, σh = 0.1m and σh = 0.01m. The red
dashed line indicates the ADOP value of 0.12 cycle

this is due to the larger values of σĥ of IRNSS compared to
IRNSS + GPS. The results in the third row, especially those
of stand-alone IRNSS, show that a soft height constraint of
σh = 1m has a notable impact on ambiguity resolution at the
time instances for which σĥ is large. Increasing the weight of
the height constraint, the results of the fourth and fifth rows
of Fig. 9 show that the ambiguity resolution improvements
spread over to neighboring time instances. In case of a highly
weighted height constraint of σh = 0.01m, the ADOP of the
combined systems is always smaller than 0.12 cycle, whereas

the ADOP of the single-system IRNSS is mostly above the
target value of 0.12 cycle.

Table 3 gives the single-epoch formal and empirical inte-
ger bootstrapped (IB) success rates as well as the empirical
integer least-squares (ILS) success rate for the four models
of Fig. 9. The formal IB success rate is computed by taking
the average of the 24-h time series of the single-epoch IB
success rate which is given as Teunissen (1998b)

Formal IB Ps =
m−1∏
i=1

[
2Φ

(
1

2σẑi |I

)
− 1

]
(12)
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Table 3 24-h average single-epoch formal and empirical bootstrapped (IB) and empirical integer least-squares (ILS) success rate, for single- and
dual-system scenarios, for the unconstrained model (σh = ∞) and the height-constrained model with different values for σh

Model IRNSS L5 Ps (%) IRNSS + GPS Block IIF L5 Ps (%)

Emp ILS Emp IB Form IB Emp ILS Emp IB Form IB

σh = ∞ 19.7 19.5 19.9 97.5 97.4 97.1

σh = 1m 31.1 30.7 32.6 98.0 97.9 97.7

σh = 0.1m 70.8 70.3 73.2 99.2 99.2 99.2

σh = 0.01m 91.5 91.4 93.0 >99.9 >99.9 > 99.9

Emp: empirical, Form: formal

where Φ(x) = ∫ x
−∞

1√
2π

exp{− 1
2v

2}dv and σẑi |I (i =
1, . . . ,m−1 and I = 1, . . . ,m−2) are the conditional stan-
dard deviations of the decorrelated ambiguities. The reason
behind choosing the bootstrapped success rate is twofold.
First it is easy to compute, and secondly it is the sharpest
lower bound to the ILS success rate which has the highest
success rate of all admissible integer estimators (Teunissen
1999; Verhagen and Teunissen 2014). The empirical IB/ILS
success rate is given as

Empirical Ps = # Correct fixed DD ambiguities

# Float DD ambiguities
. (13)

To judge whether a DD ambiguity is correctly fixed,
its corresponding IB/ILS solution is compared with the
reference integer DD ambiguity computed based on the
multi-epoch ILS solution of the baseline-known model. The
empirical values in Table 3 are in good agreement with the
formal ones, confirming the consistency between model and
data. Also, the stronger the model is (from top to bottom),
the larger the success rate becomes.

4.3 Ambiguity resolution performance over the IRNSS
service area

So far, we have presented the single-epoch ambiguity res-
olution formal and empirical analyses on the basis of the
data collected at Perth. The consistency between our formal
outcomes and their empirical counterparts implies that the
easy-to-compute formal values can indeed be used to pre-
dict the expected ambiguity resolution performance. In this
subsection, we conduct a formal analysis of the number of
epochs needed to fix the DD ambiguities with the success
rate of 99.9% over the IRNSS primary and secondary service
area. Our analyses are valid for a short baseline such that the
differential orbital and atmospheric errors can be neglected
for. Figure 10 depicts the extent of these two areas as well
as the locations chosen to be analyzed in terms of ambiguity
resolution performance (red: primary locations; black: sec-
ondary locations). Since ambiguities remain constant over
time (in case of no loss-of-lock or cycle slip), the ambiguity
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Fig. 10 IRNSS primary (red circles) and secondary (black hexagrams)
service area locations. The inner and outer green boundaries indicate
the border of the primary and secondary service areas, respectively

resolution performance can improve if this time constancy is
taken into account through a Kalman filter. The number of
epochs needed to fix the DD ambiguities is then computed
as follows

1. Initialize filter with the data of a single epoch.
2. Compute the DD ambiguities variance matrix.
3. Compute the bootstrapped success rate Ps based on the

decorrelated DD ambiguities (cf. 12).
4. If Ps < 99.9%, go to step 5, otherwise quit the loop.
5. Accumulate the data of the next epoch and go to step 2.

Providing a 24-h time series of the number of epochs
needed to fix the DD ambiguities, we make use of the box-
plot concept to give the statistical properties of this time
series. Note that as 30-s is the most common sampling
rate in GNSS community, our results here are provided on
the basis of such a sampling rate. To be conservative, the
code standard deviation that we use for GPS L5-signal is
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Fig. 11 Boxplots of the stand-alone IRNSS L5 time series of the
required number of epochs to fix the DD ambiguities with Ps > 99.9%
using 30-s sampling rate over the IRNSS service area, on DOY 156 of
2016 with the cutoff angle of 10◦. The primary service area is located
within the green border. Each panel shows four boxplots correspond-
ing with different underlying models: from left to right, the kinematic
unconstrained and height-constrained (σh = 1m) and static uncon-

strained and height-constrained (σh = 1m)model, respectively. In each
boxplot, the horizontal lines from bottom to top show: 2nd percentile
(black), 25th percentile (blue), 50th percentile (green), 75th percentile
(blue) and 98th percentile (black) of the mentioned time series, and red
pluses show the remaining values thereof. These boxplots are computed
based on σpI = 30cm and σφI = 1mm

σpG = 20cm (Nadarajah et al. 2015) and for IRNSS L5-
signal is σpI = 30cm, which is considered less precise than
the GPS L5-signal (see Table 2). The phase standard devia-
tion for both systems is considered as σφI = σφG = 1mm.

Figure 11 for the stand-alone IRNSS L5, and Fig. 12 for
the IRNSS + GPS Block IIF L5, show the boxplots of the
number of epochs to fix the ambiguities. Each panel contains
the results of both kinematic and static scenarios separated
with a vertical gray line. To the left of this line are shown
the unconstrained and height-constrained (σh = 1m) kine-
matic boxplots, and to the right their static counterparts. In
each boxplot, the horizontal lines from bottom to top show:
2nd percentile (black), 25th percentile (blue), 50th percentile
(green), 75th percentile (blue) and 98th percentile (black) of
thementioned time series, and red pluses show the remaining
values thereof.

We first consider the IRNSS stand-alone results. It can be
seen that for those locations on the equator (φ = 0◦, 50.5◦ <

λ < 115.5◦), the ambiguity resolution performance is almost
independent from the underlying model being kinematic or
static, unconstrained or height-constrained. This conclusion
is also valid for the locations (φ = 20◦, 65◦ < λ <

101◦). The performance of the unconstrained and height-
constrained static ambiguity resolution are similar for all the
locations. This is due to the fact that the multi-epoch static
height standard deviation σĥ is so small such that a soft height
constraint with σh = 1m does not bring any considerable
improvement to the ambiguity resolution performance (see
Fig. 9). As one goes further away from the central location
(φ = 0◦, λ = 83◦), the ambiguity resolution performance
gets poorer. Excluding the locations within (0◦ < φ <

20◦, 65◦ < λ < 101◦), the IRNSS user needs a considerably
long time to fix the DD ambiguities with Ps = 99.9%.

We repeated our analysis of the required number of epochs
to fix the DD ambiguities for a higher sampling rate of 1s, as
well. Although the number of epochs increases, the period
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Fig. 12 Boxplots of the IRNSS + GPS Block IIF L5 time series of the
required number of epochs to fix the DD ambiguities with Ps > 99.9%
using 30-s sampling rate over the IRNSS service area, on DOY 156 of
2016 with the cutoff angle of 10◦. The primary service area is located
within the green border. Each panel shows four boxplots correspond-
ing with different underlying models: from left to right, the kinematic
unconstrained and height-constrained (σh = 1m) and static uncon-

strained and height-constrained (σh = 1m)model, respectively. In each
boxplot, the horizontal lines from bottom to top show: 2nd percentile
(black), 25th percentile (blue), 50th percentile (green), 75th percentile
(blue) and 98th percentile (black) of the mentioned time series, and red
pluses show the remaining values thereof. These boxplots are computed
based on σpI = 30cm, σpG = 20cm and σφI = σφG = 1mm

length needed to achieve a success rate of Ps = 99.9%
decreases dramatically. As an example, we consider the
unconstrained kinematic results of the location (φ = −20◦,
λ = 115.5◦). Switching from 30s to 1s sampling rate,
the 2nd, 25th, 50th, 75th and 98th percentiles experience
the following changes, respectively: 4 (120 s) → 5 (5 s),
7 (210 s) → 8 (8 s), 13 (390 s) → 20 (20 s), 20 (600 s) →
29 (29 s) and 42 (1260 s) → 79 (79 s). This means that in
case of using the high sampling rate of 1s, one needs a dra-
matically shorter time period to achieve Ps = 99.9% w.r.t.
using 30-s data.

Integration of IRNSS with the GPS Block IIF brings a
huge benefit to the users within the IRNSS service area,
especially for those on the border of the secondary service
area. The median (50th percentile) for all the locations is
now one to two epochs, and the difference between vari-
ous percentiles reduces, meaning that the variability of the

number of epochs over the 24-h period has reduced. As
Fig. 12 shows, (almost) instantaneous ambiguity resolution
is feasible during the whole day for those locations within
(0◦ < φ < 20◦, 65◦ < λ < 101◦).

GPSBlock IIF is the first generation ofGPSwith the capa-
bility of transmitting L5 signal, and the next GPS generation,
GPS III, will also be transmitting L5 signal as well (Marquis
and Shaw 2016). GPS III is planned to become fully opera-
tional with a constellation of 32 satellites by 2025 (Lockheed
Martin 2013; Bensky 2016), and the first launch thereof is
expected in 2017 (GPS World 2016). For the situation when
the GPS III has reached its full operational capability, we
computed the required number of epochs for fixing the L5
DDambiguities using single-systemGPS III anddual-system
IRNSS + GPS III. In case of the single-system GPS III, the
24-h instantaneous ambiguity resolution with Ps = 99.9%
is not feasible for any of the locations within the IRNSS
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service area. As to the dual-system IRNSS + GPS III, how-
ever, our computations show that for the required success rate
of Ps = 99.9% and even of Ps = 99.99%, instantaneous
ambiguity resolutionbecomes always feasible for all the loca-
tions within the IRNSS service area. This is also consistent
with the results presented byOdolinski andTeunissen (2016).
There, the performance of the dual-system single-frequency
is compared with that of the single-system dual-frequency,
and it is shown that for these scenarios, comparable ambigu-
ity resolution performance are achievable and instantaneous
ambiguity-resolved positioning is always feasible. Note that
our computations are based on σpG = 20cm. Since the GPS
III signals would be three times more accurate than the cur-
rent GPS signals (Marquis and Shaw 2016), IRNSS + GPS
III L5 instantaneous ambiguity resolution even with success
rates higher than 99.99% may become achievable.

5 Positioning results

In this section, the single-epoch positioning results for
IRNSS and then for IRNSS+GPS are presented. The under-
lying model ranges from unconstrained to highly weighted
height-constrained model.

5.1 Stand-alone IRNSS

Shown in Fig. 13 is the stand-alone IRNSS L5 unconstrained
single-epoch float horizontal scatter plot for the CUBB–
CUCC baseline on DOY 156 of 2016. As it can be seen, there
exist some excursions in the scatter plot which correspond
with that time interval with large PDOPs (see Fig. 5). In addi-
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Fig. 13 Stand-alone IRNSS L5 unconstrained single-epoch float hor-
izontal baseline scatter plot corresponding with receiver pair CUBB–
CUCC on DOY 156 of 2016 with the cutoff angle of 10◦. The blue
and purple ellipses show, respectively, the 95% formal and empirical
confidence ellipses
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Fig. 14 Day-averaged IRNSS skyplot at Perth for DOY 156 of 2016
with the cutoff angle of 10◦. The black dot indicates the skyplot position
of vector ū (cf. 15)

tion, the formal and empirical 95% confidence ellipses are
also illustrated by, respectively, blue and purple colors, show-
ing a good consistency. Note that the formal and empirical
confidence ellipses are computed on the basis of the respec-
tive formal and empirical variance matrix. Formal variance
matrix is obtained from taking the average of all the single-
epoch least-squares baseline variance matrices.Whereas, the
empirical variance matrix is obtained from the differences of
the estimated baseline and the available ground truth of the
CUBB–CUCC baseline.

Note that the scatter plot and the confidence ellipses are
elongated in almost North-Westerly direction. This can be
explained by means of the receiver-satellite geometry and its
impact on the confidence ellipse of b̂,

(b̂ − b)T Q−1
b̂b̂

(b̂ − b) = r2 (14)

in which the constant r2 is chosen such that a certain confi-
dence level is reached. As the direction of elongation is given
by the direction of the eigenvector of Q−1

b̂b̂
corresponding to

its smallest eigenvalue, it follows with the aid of (3) that this
direction is given by

f = argmin
f̃

f̃ TQ−1
b̂b̂

f̃

= argmin
f̃

m∑
s=1

ws
[
f̃ T(us − ū)

]2
. (15)

Figure 14 depicts the day-averaged skyplot position of the
IRNSS satellites as well as that of the weighted-average ū at
Perth onDOY156of 2016with the cutoff angle of 10◦. As the
differences (us−ū) aremainly oriented along theNorth-East
direction, the direction f that minimizes their contribution
to (15) will mainly lie in a North-Westerly direction.
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Table 4 Stand-alone IRNSS L5
single-epoch empirical and
formal standard deviations of
the CUBB–CUCC baseline float
and fixed estimations on DOY
156 of 2016 with the cutoff
elevation angle of 10◦

σh = ∞ σh = 1 m σh = 0.1 m σh = 0.01 m

Empirical Formal Empirical Formal Empirical Formal Empirical Formal

Float

σn̂ (m) 1.48 1.44 1.11 1.09 1.01 1.01 1.01 1.01

σê (m) 1.04 1.05 0.73 0.74 0.65 0.66 0.65 0.66

σĥ (m) 2.56 2.71 0.89 0.91 0.10 0.10 0.01 0.01

ρn̂ê −0.64 −0.62 −0.57 −0.58 −0.49 −0.52 −0.49 −0.52

ρn̂ĥ 0.33 0.30 0.33 0.30 0.04 0.04 0.00 0.00

ρêĥ −0.72 −0.72 −0.45 −0.43 −0.05 −0.05 0.00 0.00

Fixed

σň (m) – – – – 0.007 0.005 0.006 0.005

σě (m) – – – – 0.005 0.004 0.005 0.003

σȟ (m) – – – – 0.010 0.010 0.007 0.006

ρňě – – – – −0.70 −0.61 −0.74 −0.65

ρňȟ – – – – 0.28 0.28 0.44 0.42

ρěȟ – – – – −0.67 −0.72 −0.61 −0.64

The underlying models are unconstrained (σh = ∞) and height-constrained for σh = 1, 0.1, 0.01m. σn̂/σň :
north standard deviation; σê/σě: east standard deviation; σĥ/σȟ : height standard deviation

Table 5 IRNSS + GPS Block
IIF L5 single-epoch empirical
and formal standard deviations
of the CUBB–CUCC baseline
float estimations on DOY 156 of
2016 with the cutoff angle of
10◦

σh = ∞ σh = 1 m σh = 0.1 m σh = 0.01 m

Empirical Formal Empirical Formal Empirical Formal Empirical Formal

Float

σn̂ (m) 0.30 0.34 0.29 0.31 0.26 0.28 0.26 0.28

σê (m) 0.37 0.40 0.31 0.35 0.28 0.31 0.28 0.31

σĥ (m) 0.82 0.93 0.54 0.61 0.10 0.10 0.01 0.01

ρn̂ê −0.24 −0.22 −0.17 −0.17 −0.13 −0.15 −0.13 −0.15

ρn̂ĥ 0.23 0.23 0.16 0.16 0.03 0.03 0.00 0.00

ρêĥ −0.46 −0.45 −0.23 −0.24 −0.03 −0.03 0.00 0.00

The underlying models are unconstrained (σh = ∞) and height-constrained for σh = 1, 0.1, 0.01m. σn̂ :
north standard deviation; σê: east standard deviation; σĥ : height standard deviation

Table 4 lists the stand-alone IRNSS single-epoch formal
and empirical standard deviations and correlation coeffi-
cients of the CUBB–CUCC baseline components for both
ambiguity-float and ambiguity-fixed scenarios. The fixed
results are only given for the models with success rates more
than 70% (see Table 3). As σh gets smaller from σh = ∞ to
σh = 0.1m, the baseline estimation gets better in precision.
However, from σh = 0.1m to σh = 0.01m no further pre-
cision improvement can be achieved for the north and east
components.

5.2 IRNSS integrated with GPS

Integrating IRNSS L5 with GPS L5 observations, Table
5 presents the single-epoch empirical and formal standard
deviations and correlation coefficients of the CUBB–CUCC
baseline components for ambiguity-float scenario. Compar-

ing the results in this table with those in Table 4, the baseline
estimation precision improves by a factor of 4–5 horizon-
tally and 2–3 vertically. Imposing a height constraint indeed
improves the baseline float solution precision, but not as
much as it does for the stand-alone IRNSS. This is due to
the fact that the combined system is stronger than the sin-
gle system, and thus experiencing less improvement caused
by height-constraining. Upon fixing the DD ambiguities, the
very precise phase observations take the leading role in base-
line estimation. In case of σpI = σpG and σφI = σφG , the
fixed baseline standard deviations improve by a factor of
σpI /σφI w.r.t. their float counterparts. However, from Table
2, σpI 
= σpG , and the ratio of code and phase standard
deviations is 190 for IRNSS L5 and 70 for GPS L5. The
improvement that is achieved upon fixing the DD ambigu-
ities is around a factor of 150, which lies between 70 and
190. For the chosen values of σh , the fixed solutions are
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Fig. 15 a IRNSS + GPS Block IIF L5 unconstrained single-epoch
horizontal baseline scatter plot correspondingwith receiver pairCUBB–
CUCC on DOY 156 of 2016 with the cutoff angle of 10◦. gray float
solution, green correctly fixed solution, red wrongly fixed solution. b
The corresponding time series of the height component. The bluedashed
lines indicate the 95% formal confidence interval. c The corresponding
time series of the single-epochADOP (blue) and the target value of 0.12
cycle (red dashed line)

almost insensitive to height-constraining. That is because the
height-constraining does not bring any considerable benefit
to a model which is already strong enough.

Figure 15 depicts the unconstrained single-epoch 1-s hor-
izontal scatter plot (Fig.15a) and height time series (Fig.15b)
of the CUBB–CUCC baseline float solutions (in gray), cor-
rectly fixed solutions (in green), and wrongly fixed solutions
(in red), and the corresponding ADOP time series (Fig.15c)
on the basis of L5 observables of IRNSS and GPS Block IIF
collected on DOY 156 of 2016 with the cutoff angle of 10◦.

The scatter plot is of non-ellipsoidal shape which is due to
the significant changes that the receiver-satellite geometry
undergoes during the whole day.

Inside the Fig.15b is also shown the 95% formal confi-
dence interval based on the float height standard deviation
of which the signature is in good agreement with that of the
height error time series, confirming the consistency between
data and model. Comparing the time series of the height
solution with that of the ADOP, the wrong ambiguity fix-
ing occurs during the periods of large ADOPs. It can also
be seen that despite large fluctuations in float height solu-
tion during for exampleUTC [05:00–07:00], DDambiguities
can be correctly fixed. This indicates that while a receiver-
satellite geometry can be poor for positioning, it can still
be strong enough for ambiguity resolution (Teunissen et al.
2014; Zaminpardaz et al. 2016a).

5.3 Positioning performance over the IRNSS service
area

The positioning results presented in the previous subsection
reveal that the formal values are indeed reliable represen-
tatives for their empirical counterparts. Therefore, in this
subsection, we provide a formal analysis of the positioning
performance over the IRNSS service area. For our analyses,
we chose two stationswithin the primary service area, namely
(φ = 0◦, λ = 83◦) and (φ = 40◦, λ = 65◦). The rationale
behind choosing these two locations is twofold. First, their
positioning performance are quite different and secondly, the
instantaneous ambiguity resolution is feasible over these two
locations when integrating IRNSS with GPS.

Figure 16 shows the number of visible satellites (in black)
with the cutoff angle of 10◦, unconstrained single-epoch
north and east standard deviations (in blue) and correlation
coefficient (in gray) time series for (φ = 0◦, λ = 83◦) to
the top and for (φ = 40◦, λ = 65◦) to the bottom. The
underlying model varies, from left to right, from stand-alone
IRNSS to IRNSS + GPS Block IIF to IRNSS + GPS III.
Again to be conservative we set σpI = 30cm, σpG = 20cm
and σφI = σφG = 1mm. As the model gets stronger from
left to right, the level of standard deviations decreases. The
east standard deviation shows a rather stable behavior for all
the cases, and this is due to that fact that the IRNSS satellites
geometry for the mentioned two locations has a large extent
along the East-West direction. The north standard deviation
stabilizes as well provided that the IRNSS is integrated with
GPS III.

As Fig. 12 shows, ambiguity resolution can be conducted
instantaneously always at (φ = 0◦, λ = 83◦) and most of
the time at (φ = 40◦, λ = 65◦), when integrating IRNSS
L5-signal with GPS Block IIF L5-signal. The corresponding
fixed north and east standard deviations, given σpI = 30cm,
σpG = 20cm, σφI = σφG = 1mm, become around 250

123



IRNSS/NavIC and GPS: a single- and dual-system L5 analysis 929

IRNSS L5 IRNSSL5+GPSL5 (BlockIIF) IRNSSL5+GPSL5 (GPSIII) 

5

6

7

# 
sa

te
lli

te
s

8
10
12
14

# 
sa

te
lli

te
s

15

20

# 
sa

te
lli

te
s

0.4

0.6

0.8

1

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σN

σE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

0.2

0.4

0.6

0.8

1

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σN

σE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

0

0.5

1

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σNσE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

5

6

7

# 
sa

te
lli

te
s

6
8

10
12

# 
sa

te
lli

te
s

12

14

16

# 
sa

te
lli

te
s

0.5

1

1.5

2

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σN

σE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

0.2

0.6

1

1.4

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σN

σE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

0

0.5

1

UTC [hh:mm]

S
ta

nd
ar

d−
de

vi
at

io
n 

[m
]

σNσE

00:00 06:00 12:00 18:00 00:00
−1

0

1

C
or

re
la

tio
n

ρNE

Fig. 16 Time series of the number of visible satellites (black), uncon-
strained single-epoch float east and north standard deviations (blue
curves) and their corresponding correlation coefficient (gray curve)
on DOY 156 of 2016 with the cutoff angle of 10◦ for locations (top

row) φ = 0◦, λ = 83◦ and (bottom row) φ = 40◦, λ = 65◦.
These graphs are computed based on σpI = 30cm, σpG = 20cm and
σφI = σφG = 1mm

times better than their float counterparts in Fig. 16 (middle).
As wasmentioned earlier, when the GPS III with the capabil-
ity of transmitting L5 signals becomes fully operational, the
24-h instantaneous ambiguity-resolved positioning would be
realized for all the locations within the IRNSS service area
upon integration of IRNSS with GPS III.

6 Summary and concluding remarks

In this contribution, for the fully operational IRNSS as a
stand-alone system and also in combination with GPS, we
provided an initial assessment of L5 integer ambiguity res-
olution and positioning performance. We studied the noise
characteristics of the L5-signal for both IRNSS and GPS
through carrier-to-noise density, measurement precision and
time correlation. The results show that the GPS data have a
significantly lower noise level than that of IRNSS, particu-
larly in case of the code data. Also the time correlation of
both the constellations can be neglected provided that the
multipath impact is corrected for, even if 1-s data are used.
We therefore based all our empirical analyses of ambigu-
ity resolution and positioning on the multipath-corrected 1-s
data collected by two stations at Perth.

Using real data, single-epoch L5 ambiguity resolution
performance was assessed by means of two scalar mea-
sures: ambiguity dilution of precision (ADOP) and easy-

to-compute bootstrapped success rate, in the framework
of unconstrained/height-constrained and single system/dual
system. Integrating the IRNSS with GPS Block IIF, ADOP
experiences a dramatic decrease particularly whenmore than
one GPS satellite are in view. We also compared empiri-
cal and formal success rates for the mentioned underlying
models, thereby showing the consistency between data and
models.

The agreement between our empirical outcomes and their
formal counterparts implies that the easy-to-compute formal
values can indeed be used to predict the expected ambigu-
ity resolution performance. We conducted a formal analysis
of the number of epochs needed to fix the DD ambigui-
ties with the success rate of 99.9% over the IRNSS primary
and secondary service area. Providing a 24-h time series of
the number of epochs, we made use of the boxplot con-
cept to give the statistical properties of this time series.
The underlying model varied from single-system IRNSS to
dual-system IRNSS + GPS, from unconstrained to height-
constrained (σh = 1m), and from kinematic to static. As to
the stand-alone IRNSS, our results showed that as one goes
further away from the IRNSS constellation central location
(φ = 0◦, λ = 83◦), the ambiguity resolution performance
gets poorer. Excluding the locations within (0◦ < φ <

20◦, 65◦ < λ < 101◦), the IRNSS user needs a consider-
ably long time to fix the DD ambiguities with Ps = 99.9%.
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This time period can notably decrease if one employs higher
sampling rates.

Integration of IRNSS with the GPS Block IIF brings a
huge benefit to the users within the IRNSS service area, espe-
cially for those on the border of the secondary service area,
such that the median for all the locations becomes one to two
epochs, and the variability of the number of epochs over the
24-h period reduces. For this case, (almost) instantaneous
ambiguity resolution is feasible during the whole day for
those locations within (0◦ < φ < 20◦, 65◦ < λ < 101◦).
For the case when the fully operational GPS III with the
capability of transmitting L5 signal has been realized, we
computed the required number of epochs for fixing the DD
ambiguities with Ps = 99.9% and Ps = 99.99% using
IRNSS + GPS III. Our computations showed that instanta-
neous ambiguity resolution for both the values of success
rate becomes always feasible for all the locations within the
IRNSS service area.

Next to the ambiguity resolution performance, we also
investigated the positioning capability of stand-alone IRNSS
(L5) and IRNSS + GPS (L5). All the empirical and formal
values were in agreement with each other, further confirming
the consistency between data and model. While the scatter
plot corresponding with single-system IRNSS looked ellip-
soidal, that correspondingwith IRNSS+GPSBlock IIF (L5)
was non-ellipsoidal due to the significant change in receiver-
satellite geometry. Integrating IRNSS L5 with GPS Block
IIF L5 observations improved the baseline estimation preci-
sion considerably w.r.t. stand-alone IRNSS L5. Comparing
the time series of the fixed height solution with that of the
ADOP, the wrong ambiguity fixing occurs during the periods
of largeADOPs.We also showed despite large fluctuations in
float height solution, DD ambiguities can be correctly fixed.
This indicates that while a receiver-satellite geometry can be
poor for positioning, it can be strong enough for ambigu-
ity resolution. Finally, we provided a formal analysis of the
positioning performance for two stations within the primary
service area. The underlying model varied from IRNSS (L5)
to IRNSS + GPS Block IIF (L5) to IRNSS + GPS III (L5).
As the model gets stronger, the level of standard deviations
decreases and their time series stabilizes.
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