
 
 

Delft University of Technology

Behind the scenes of streamflow model performance

Bouaziz, Laurène J.E.; Fenicia, Fabrizio; Thirel, Guillaume; De Boer-Euser, Tanja; Buitink, Joost; Brauer,
Claudia C.; De Niel, Jan; Savenije, Hubert H.G.; Hrachowitz, Markus; More Authors
DOI
10.5194/hess-25-1069-2021
Publication date
2021
Document Version
Final published version
Published in
Hydrology and Earth System Sciences

Citation (APA)
Bouaziz, L. J. E., Fenicia, F., Thirel, G., De Boer-Euser, T., Buitink, J., Brauer, C. C., De Niel, J., Savenije,
H. H. G., Hrachowitz, M., & More Authors (2021). Behind the scenes of streamflow model performance.
Hydrology and Earth System Sciences, 25(2), 1069-1095. Article 56. https://doi.org/10.5194/hess-25-1069-
2021
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/hess-25-1069-2021
https://doi.org/10.5194/hess-25-1069-2021
https://doi.org/10.5194/hess-25-1069-2021


Hydrol. Earth Syst. Sci., 25, 1069–1095, 2021
https://doi.org/10.5194/hess-25-1069-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz1,2, Fabrizio Fenicia3, Guillaume Thirel4, Tanja de Boer-Euser1, Joost Buitink5,
Claudia C. Brauer5, Jan De Niel6, Benjamin J. Dewals7, Gilles Drogue8, Benjamin Grelier8, Lieke A. Melsen5,
Sotirios Moustakas6, Jiri Nossent9,10, Fernando Pereira9, Eric Sprokkereef11, Jasper Stam11, Albrecht H. Weerts2,5,
Patrick Willems6,10, Hubert H. G. Savenije1, and Markus Hrachowitz1

1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology,
P.O. Box 5048, 2600 GA Delft, the Netherlands
2Department Catchment and Urban Hydrology, Deltares, Boussinesqweg 1, 2629 HV Delft, the Netherlands
3Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
4Université Paris-Saclay, INRAE, UR HYCAR, 92160 Antony, France
5Hydrology and Quantitative Water Management Group, Wageningen University and Research, P.O. Box 47,
6700 AA Wageningen, the Netherlands
6Hydraulics division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
7Hydraulics in Environmental and Civil Engineering (HECE), University of Liège, Allée de la Découverte 9,
4000 Liège, Belgium
8Université de Lorraine, LOTERR, 57000 Metz, France
9Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, Belgium
10Vrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Pleinlaan 2,
1050 Brussels, Belgium
11Ministry of Infrastructure and Water Management, Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands

Correspondence: Laurène J. E. Bouaziz (l.j.e.bouaziz@tudelft.nl)

Received: 17 April 2020 – Discussion started: 28 April 2020
Revised: 24 December 2020 – Accepted: 2 January 2021 – Published: 2 March 2021

Abstract. Streamflow is often the only variable used to eval-
uate hydrological models. In a previous international com-
parison study, eight research groups followed an identical
protocol to calibrate 12 hydrological models using observed
streamflow of catchments within the Meuse basin. In the
current study, we quantify the differences in five states and
fluxes of these 12 process-based models with similar stream-
flow performance, in a systematic and comprehensive way.
Next, we assess model behavior plausibility by ranking the
models for a set of criteria using streamflow and remote-
sensing data of evaporation, snow cover, soil moisture and
total storage anomalies. We found substantial dissimilarities
between models for annual interception and seasonal evap-
oration rates, the annual number of days with water stored
as snow, the mean annual maximum snow storage and the
size of the root-zone storage capacity. These differences in
internal process representation imply that these models can-
not all simultaneously be close to reality. Modeled annual

evaporation rates are consistent with Global Land Evapora-
tion Amsterdam Model (GLEAM) estimates. However, there
is a large uncertainty in modeled and remote-sensing annual
interception. Substantial differences are also found between
Moderate Resolution Imaging Spectroradiometer (MODIS)
and modeled number of days with snow storage. Models with
relatively small root-zone storage capacities and without root
water uptake reduction under dry conditions tend to have
an empty root-zone storage for several days each summer,
while this is not suggested by remote-sensing data of evap-
oration, soil moisture and vegetation indices. On the other
hand, models with relatively large root-zone storage capac-
ities tend to overestimate very dry total storage anomalies
of the Gravity Recovery and Climate Experiment (GRACE).
None of the models is systematically consistent with the in-
formation available from all different (remote-sensing) data
sources. Yet we did not reject models given the uncertainties
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1070 L. J. E. Bouaziz et al.: Behind the scenes of streamflow model performance

in these data sources and their changing relevance for the
system under investigation.

1 Introduction

Hydrological models are valuable tools for short-term fore-
casting of river flows and long-term predictions for strate-
gic water management planning, but also to develop a better
understanding of the complex interactions of water storage
and release processes at the catchment scale. In spite of the
wide variety of existing hydrological models, they mostly in-
clude similar functionalities of storage, transmission and re-
lease of water to represent the dominant hydrological pro-
cesses of a particular river basin (Fenicia et al., 2011), dif-
fering mostly only in the detail of their parameterizations
(Gupta et al., 2012; Gupta and Nearing, 2014; Hrachowitz
and Clark, 2017).

In all of these models, each individual model compo-
nent constitutes a separate hypothesis of how water moves
through that specific part of the system. Frequently, the indi-
vidual hypotheses remain untested. Instead, only the model
output, i.e., the aggregated response of these multiple hy-
potheses, is confronted with data of the aggregated response
of a catchment to atmospheric forcing. Countless applica-
tions of different hydrological models in many different re-
gions across the world over the last decades have shown
that these models often provide relatively robust estimates
of streamflow dynamics, for both calibration and evaluation
periods. However, various combinations of different untested
individual hypotheses can and do lead to similar aggregated
outputs, i.e., model equifinality (Beven, 2006; Clark et al.,
2016).

To be useful for any of the above applications, it is thus of
critical importance that not only the aggregated but also the
individual behaviors of the respective hypotheses are consis-
tent with their real-world equivalents. Given the complex-
ity and heterogeneity of natural systems together with the
general lack of suitable observations, this remains a major
challenge in hydrology (e.g., Jakeman and Hornberger, 1993;
Beven, 2000; Gupta et al., 2008; Andréassian et al., 2012).

Studies have addressed the issue by constraining the pa-
rameters of specific models through the use of additional
data sources besides streamflow. Beven and Kirkby (1979),
Güntner et al. (1999) and Blazkova et al. (2002) mapped sat-
urated contributing areas during field surveys to constrain
model parameters, while patterns of water tables in piezome-
ters were used by Seibert et al. (1997), Lamb et al. (1998) and
Blazkova et al. (2002). Other sources include satellite-based
total water storage anomalies (e.g., Winsemius et al., 2006;
Werth and Güntner, 2010; Yassin et al., 2017), evaporation
(e.g., Livneh and Lettenmaier, 2012; Rakovec et al., 2016a;
Bouaziz et al., 2018; Demirel et al., 2018; Hulsman et al.,
2020), near-surface soil moisture (e.g., Franks et al., 1998;

Brocca et al., 2010; Sutanudjaja et al., 2014; Adnan et al.,
2016; Kunnath-Poovakka et al., 2016; López López et al.,
2017; Bouaziz et al., 2020), snow cover information (e.g.,
Gao et al., 2017; Bennett et al., 2019; Riboust et al., 2019),
or a combination of these variables (e.g., Nijzink et al., 2018;
Dembélé et al., 2020). Reflecting the results of many studies,
Rakovec et al. (2016b) showed that streamflow is necessary
but not sufficient to constrain model components to warrant
partitioning of incoming precipitation to storage, evaporation
and drainage.

Hydrological simulations are, however, not only affected
by model parameter uncertainty, but also by the selection of
a model structure and its parameterization (i.e., the choice
of equations). Modeling efforts over the last 4 decades have
led to a wide variety of hydrological models providing flex-
ibility to test competing modeling philosophies, from spa-
tially lumped model representations of the system to high-
resolution small-scale processes numerically integrated to
the catchment scale (Hrachowitz and Clark, 2017). Had-
deland et al. (2011) and Schewe et al. (2014) compared
global hydrological models and found that differences be-
tween models are a major source of uncertainty. Nonethe-
less, model selection is often driven by personal preference
and experience of individual modelers rather than detailed
model test procedures (Holländer et al., 2009; Clark et al.,
2015; Addor and Melsen, 2019).

A suite of comparison experiments tested and explored
differences between alternative modeling structures and pa-
rameterizations (Perrin et al., 2001; Reed et al., 2004; Duan
et al., 2006; Holländer et al., 2009; Knoben et al., 2020).
However, these studies mostly restricted themselves to analy-
ses of the models’ skills in reproducing streamflow (“aggre-
gated hypothesis”), with little consideration for the model-
internal processes (“individual hypotheses”). The Frame-
work for Understanding Structural Errors (FUSE) was one
of the first initiatives towards a more comprehensive assess-
ment of model structural errors, with special consideration
given to individual hypotheses (Clark et al., 2008).

Subsequent efforts towards more rigorous testing of com-
peting model hypotheses, partially based on internal pro-
cesses, include Smith et al. (2012a, b), who tested multiple
models for their ability to reproduce in situ soil moisture ob-
servations as part of the Distributed Model Intercomparison
Project 2 (DMIP2). They found that only 2 out of 16 models
provided reasonable estimates of soil moisture. In a similar
effort, Koch et al. (2016) and Orth et al. (2015) also com-
pared modeled soil moisture to in situ observations of soil
moisture for a range of hydrological models in different en-
vironments. In contrast, Fenicia et al. (2008) and Hrachowitz
et al. (2014) used groundwater observations to test individual
components of their models. There are actually relatively few
studies that comprehensively quantified differences in inter-
nal process representation by simultaneously analyzing mul-
tiple models and multiple state and flux variables.
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Here, in this model comparison study, we instead use glob-
ally available remote-sensing data to evaluate five different
model state and flux variables of 12 process-based mod-
els with similar overall streamflow performance, which are
calibrated by several research groups following an identi-
cal protocol. The calibration on streamflow was conducted
in our previous study (de Boer-Euser et al., 2017), in which
we compared models using hourly streamflow observations,
leaving the modeled response of internal processes unused.

In a direct follow-up to the above study, we here hypoth-
esize that process-based models with similar overall stream-
flow performance rely on similar representations of their in-
ternal states and fluxes. We test our hypothesis by simulta-
neously quantifying the differences in the magnitudes and
dynamics of five internal state and flux variables of 12 mod-
els, in a comprehensive and systematic way. Our primary
aim is to test whether models calibrated to streamflow with
similar high-performance levels in reproducing streamflow
follow similar pathways to do so, i.e., represent the system
in a similar way. A secondary objective is to evaluate the
plausibility of model behavior by introducing a set of “soft”
measures based on expert knowledge in combination with
remote-sensing data of evaporation, snow cover, soil mois-
ture and total water storage anomalies.

2 Study area

We test our hypothesis using data from three catchments in
the Belgian Ardennes; all of them are part of the Meuse
River basin in northwestern Europe: the Ourthe upstream
of Tabreux (ID1), the nested Ourthe Orientale upstream of
Mabompré (ID2) and the Semois upstream of Membre-Pont
(ID3), as shown in Fig. 1. The Ardennes Massif and Plateau
are underlain by relatively impermeable metamorphic Cam-
brian rock and Early Devonian sandstone. The pronounced
streamflow seasonality of these catchments is driven by high
summer and low winter evaporation (defined here as the sum
of all evaporation components including transpiration, soil
evaporation, interception, sublimation and open water evap-
oration when applicable), as precipitation is relatively con-
stant throughout the year. Snow is not a major component of
the water balance but occurs almost every year with mean an-
nual number of days with precipitation as snow estimated be-
tween 35 and 40 d yr−1 (Royal Meteorological Institute Bel-
gium, 2015). Even if mean annual snow storage is relatively
small, snow can be important for specific events, for exam-
ple, in 2011, when rain on snow caused widespread flooding
in these catchments.

The rain-fed Ourthe River at Tabreux (ID1) is fast-
responding due to shallow soils and steep slopes in the
catchment. Agriculture is the main land cover (27 % crops
and 21 % pasture), followed by 46 % forestry and 6 % ur-
ban cover in an area of 1607 km2 and an elevation rang-
ing between 107 and 663 m (European Environment Agency,

Figure 1. (a) Location of the study catchments in Belgium, north-
western Europe. (b) Digital elevation model and catchments of
the Ourthe upstream of Tabreux (ID1), Ourthe Orientale upstream
of Mabompré (ID2) and Semois upstream of Membre-Pont (ID3).
Pixel size of GRACE, GLEAM, MODIS and SCATSAR-SWI1km.
Colored dots are the streamflow gauging locations, and black dots
are the precipitation stations.

2000; de Boer-Euser et al., 2017). Mean annual precipita-
tion, potential evaporation and streamflow are 979, 730 and
433 mm yr−1, respectively, for the period 2001–2017.

Nested within the Ourthe catchment (ID1), the Ourthe Ori-
entale upstream of Mabompré (ID2) is characterized by a
narrow elevation range from 294 to 662 m, with 65 % of the
catchment falling within a 100 m elevation band, making this
catchment suitable for analyzing snow processes modeled by
lumped models. The Ourthe Orientale upstream of Mabom-
pré has an area of 317 km2, which corresponds to 20 % of
the Ourthe area upstream of Tabreux and has similar land
cover fractions. Mean annual precipitation, potential evapo-
ration and streamflow for the period 2001–2017 are also rel-
atively similar, at 1052, 720 and 462 mm yr−1, respectively.

Forest is the main land cover in the Semois upstream of
Membre-Pont (ID3), at 56 %, followed by agriculture (18 %
pasture and 21 % crop) and 5 % urban cover. The Semois
upstream of Membre-Pont is 24 % smaller than the Ourthe
upstream of Tabreux, at 1226 km2, and elevation ranges be-
tween 176 and 569 m. Mean annual precipitation, potential
evaporation and streamflow are, respectively, 38 %, 4 % and
46 % higher in the Semois at Membre-Pont, at 1352, 759 and
634 mm yr−1.
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3 Data

3.1 Hydrological and meteorological data

Hourly precipitation gauge data are provided by the Ser-
vice Public de Wallonie (Service Public de Wallonie, 2018)
and are spatially interpolated using Thiessen polygons. Daily
minimum and maximum temperatures are retrieved from
the 0.25◦ resolution gridded E-OBS dataset (Haylock et al.,
2008) and disaggregated to hourly values by linear interpo-
lation using the timing of daily minimum and maximum ra-
diation at Maastricht (Royal Netherlands Meteorological In-
stitute, 2018). Daily potential evaporation is calculated from
daily minimum and maximum temperatures using the Har-
greaves formula (Hargreaves and Samani, 1985) and is dis-
aggregated to hourly values using a sine function during the
day and no evaporation at night. We use the same forcing for
2000–2010 as in the previous comparison study (de Boer-
Euser et al., 2017) and follow the same approach to extend
the meteorological dataset for the period 2011–2017. Uncer-
tainty in meteorological data is not explicitly considered, but
our primary aim is to compare the models forced with iden-
tical data. Observed hourly streamflow data for the Ourthe
at Tabreux, Ourthe Orientale at Mabompré and Semois at
Membre-Pont are provided by the Service Public de Wallonie
for the period 2000–2017.

3.2 Remote-sensing data

3.2.1 GLEAM evaporation

The Global Land Evaporation Amsterdam Model (GLEAM,
Miralles et al., 2011; Martens et al., 2017) provides daily
estimates of land evaporation by maximizing the informa-
tion recovery on evaporation contained in climate and en-
vironmental satellite observations. The Priestley and Tay-
lor (1972) equation is used to calculate potential evapora-
tion for bare soil, short canopy and tall canopy land frac-
tions. Actual evaporation is the sum of interception and po-
tential evaporation reduced by a stress factor. This evapora-
tive stress factor is based on microwave observations of veg-
etation optical depth and estimates of root-zone soil moisture
in a multi-layer water-balance model. Interception evapora-
tion is estimated separately using a Gash analytical model
and only depends on precipitation and vegetation charac-
teristics. GLEAM v3.3a relies on reanalysis net radiation
and air temperature from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 data, satellite
and gauge-based precipitation, satellite-based vegetation op-
tical depth, soil moisture and snow water equivalent. The data
are available at 0.25◦ resolution (Fig. 1b) and account for
subgrid heterogeneity by considering three land cover types.
We spatially average GLEAM interception and total actual
evaporation estimates over the Ourthe catchment upstream
of Tabreux for the period 2001–2017.

3.2.2 MODIS snow cover

The Moderate Resolution Imaging Spectroradiometer
(MODIS) AQUA (MYD10A1, version 6) and TERRA
(MOD10A1, version 6) satellites provide daily maps of
the areal fraction of snow cover per 500 m× 500 m cell
(Fig. 1b) based on the Normalized Difference Snow Index
(Hall and Riggs, 2016a, b). For each day, AQUA and
TERRA observations are merged into a single observation
by taking the mean fraction of snow cover per day. The
percentage of cells with a fractional snow cover larger than
zero and fraction of cells without missing data (i.e., due
to cloud cover) for the catchment of the Ourthe Orientale
upstream of Mabompré is calculated for each day. For this
study, we disregard observations during the summer months
(JJA, when temperatures did not drop below 4 ◦C) and
only use daily observations in which at least 40 % of the
catchment area has snow cover retrievals not affected by
clouds, implying that we have 1463 valid daily observations
of mean fractional snow cover. This corresponds to 32 % of
all observations of the Ourthe Orientale catchment upstream
of Mabompré between 2001 and 2017.

3.2.3 SCATSAR-SWI1km Soil Water Index

SCATSAR-SWI1km is a daily product of soil water content
relative to saturation at a 1 km× 1 km resolution (Fig. 1b)
obtained by fusing spatio-temporally complementary radar
sensors (Bauer-Marschallinger et al., 2018). Estimates of the
moisture content relative to saturation at various depths in the
soil, referred to as the Soil Water Index (SWI), are obtained
through temporal filtering of the 25 km METOP ASCAT
near-surface soil moisture (Wagner et al., 2013) and 1 km
Sentinel-1 near-surface soil moisture (Bauer-Marschallinger
et al., 2018). The Soil Water Index features as a single param-
eter the characteristic time length T (Wagner et al., 1999; Al-
bergel et al., 2008). The T value is required to convert near-
surface soil moisture observations to estimates of root-zone
soil moisture. The T value increases with increasing root-
zone storage capacities (Bouaziz et al., 2020), resulting in
more smoothing and delaying of the near-surface soil mois-
ture signal. The Copernicus Global Land Service (2019) pro-
vides the Soil Water Index for T values of 2, 5, 10, 15, 20, 40,
60 and 100 d. Since Sentinel-1 was launched in 2014, the Soil
Water Index is available for the period 2015–2017. We cal-
culate the mean soil moisture over all SCATSAR-SWI1km
pixels within the Ourthe upstream of Tabreux for the avail-
able period.

3.2.4 GRACE total water storage anomalies

The Gravity Recovery and Climate Experiment (GRACE,
Swenson and Wahr, 2006; Swenson, 2012) twin satellites,
launched in March 2002, measure the Earth’s gravity field
changes by calculating the changes in the distance between
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the two satellites as they move one behind the other in the
same orbital plane. Monthly total water storage anomalies
(in millimeters) relative to the 2004–2009 time-mean base-
line are provided at a spatial sampling of 1◦ (approximately
78 km× 110 km at the latitude of the study region, Fig. 1b)
by three centers: U. Texas/Center for Space Research (CSR),
GeoForschungsZentrum Potsdam (GFZ) and Jet Propulsion
Laboratory (JPL). These centers apply different processing
strategies which lead to variations in the gravity fields. These
gravity fields require smoothing of the noise induced by at-
tenuated short wavelength. The spatial smoothing decreases
the already coarse GRACE resolution even further through
signal “leakage” of one location to surrounding areas (Bonin
and Chambers, 2013), which increases the uncertainty espe-
cially at the relatively small scale of our study catchments.
We apply the scaling coefficients provided by NASA to re-
store some of the signal loss due to processing of GRACE
observations (Landerer and Swenson, 2012). The data of the
three processing centers are each spatially averaged over the
catchments of the Ourthe upstream of Tabreux and the Se-
mois upstream of Membre-Pont for the period April 2002 to
February 2017.

3.3 Data uncertainty

The hydrological evaluation data are all subject to uncertain-
ties (Beven, 2019). Streamflow is not measured directly but
depends on water level measurements and a rating curve.
Westerberg et al. (2016) quantify median streamflow uncer-
tainties of ±12 %, ±24 % and ±34 % for average, high and
low streamflow conditions, respectively, using a Monte Carlo
sampling approach of multiple feasible rating curves for 43
UK catchments. We sample from these uncertainty ranges to
transform the streamflow observations (100 realizations). We
then quantify signature uncertainty originating from stream-
flow data uncertainty using the 100 sampled time series for a
selection of streamflow signatures (Sect. 4.2). The 5th–95th
uncertainty bounds of median annual streamflow, baseflow
and flashiness indices result in ±11 %, ±9 % and ±12 %, re-
spectively. These magnitudes are similar to those reported by
Westerberg et al. (2016).

GLEAM evaporation estimates are inferred from models
and forcing data which are all affected by uncertainty. Yet
uncertainty estimates of GLEAM evaporation are not avail-
able. However, GLEAM evaporation was evaluated against
FLUXNET data by Miralles et al. (2011). For the nearby sta-
tion of Lonzee in Belgium, they report similar annual rates
and a high correlation coefficient of 0.91 between the daily
time series. GLEAM mean annual evaporation was compared
to the ensemble mean of five evaporation datasets in Miralles
et al. (2016) and shows higher than average values in Europe
(of approximately 60 mm yr−1 or 10 % of mean annual rates
for our study area). The partitioning of evaporation into dif-
ferent components (transpiration, interception and soil evap-
oration) differs substantially between different evaporation

datasets, as shown by Miralles et al. (2016). GLEAM inter-
ception currently only considers tall vegetation and under-
estimates in situ data (Zhong et al., 2020) and is ∼ 50 %
lower than estimates from other datasets (Miralles et al.,
2016). These uncertainties underline that GLEAM (and other
remote-sensing data) cannot be considered a reliable repre-
sentation of real-world quantities. However, the comparison
of daily dynamics and absolute values of this independent
data source with modeled results is still valuable for detect-
ing potential outliers and understanding their behavior. In ad-
dition, the different methods used to estimate potential evap-
oration of GLEAM and our model forcing should not impede
us from testing the consistency between the resulting actual
evaporation (Oudin et al., 2005).

The most frequent errors within the MODIS snow cover
products are due to cloud–snow discrimination problems.
Daily MODIS snow maps have an accuracy of approximately
93 % at the pixel scale, with lower accuracy in forested areas
and complex terrain and when snow is thin and ephemeral
and higher accuracy in agricultural areas (Hall and Riggs,
2007). However, here, MODIS data are used to estimate the
number of days with snow at the catchment scale. We expect
lower classification errors at the catchment scale as it would
require many pixels to be misclassified at the same time. For
each day and each pixel of valid MODIS observations, we
sample from a binomial distribution with a probability of
93 % that MODIS is correct when the pixel is classified as
snow and assume a higher probability of 99 % that MODIS
is correct when the pixel is classified as no-snow to prevent
overestimation of snow for days without snow (Ault et al.,
2006; Parajka and Blöschl, 2006). We repeat the experiment
1000 times in a Monte Carlo procedure. This results in less
than ±2 % uncertainty in the number of days when MODIS
observes snow at the catchment scale.

The soil water content relative to saturation of SCATSAR-
SWI1km is estimated from observed radar backscatter
through a change detection approach, which interprets
changes in backscatter as changes in soil moisture, while
other surface properties are assumed static (Wagner et al.,
1999). The degree of saturation of the near surface is given
in relative units from 0 % (dry reference) to 100 % (wet refer-
ence) and is converted to deeper layers through an exponen-
tial filter called the Soil Water Index. The smoothing and de-
laying effect of the Soil Water Index narrows the range of the
near-surface degree of saturation. Therefore, data matching
techniques are often used to rescale satellite data to match the
variability of modeled or observed data (Brocca et al., 2010),
which suggests the difficulty in meaningfully comparing the
range of modeled and remote-sensing estimates of root-zone
soil moisture content relative to saturation. However, the
dynamics of SCATSAR-SWI1km data have been evaluated
against in situ stations of the International Soil Moisture Net-
work, despite commensurability issues of comparing in situ
point measurements and areal satellite data. Spearman rank
correlation coefficients of 0.56 are reported for T values up to
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15 d and 0.43 for a T value of 100 d (Bauer-Marschallinger,
2020).

GRACE estimates of total water storage anomalies suf-
fer from signal degradation due to measurement errors and
noise. Filtering approaches are applied to reduce these errors
but induce leakage of signals from surrounding areas. The
uncertainty decreases as the size of the region under con-
sideration increases. However, time series of a single pixel
may still be used to compare dynamics and amplitudes of to-
tal water storage anomalies despite possible large uncertainty
(Landerer and Swenson, 2012). We estimate an uncertainty
in total water storage anomalies of ∼ 18 mm in the pixels
of our catchments by combining measurement and leakage
errors in quadrature, which are both provided for each grid
location (Landerer and Swenson, 2012).

4 Methods

4.1 Models and protocol

Eight research groups (Wageningen University, Université
de Lorraine, Leuven University, Delft University of Tech-
nology, Deltares, Irstea (now INRAE), Eawag and Flan-
ders Hydraulics Research) participated in the comparison
experiment and applied one or several hydrological models
(Fig. 2). The models include WALRUS (Wageningen Low-
land Runoff Simulator, Brauer et al., 2014a, b), PRESAGES
(PREvision et Simulation pour l’Annonce et la Gestion des
Etiages Sévères, Lang et al., 2006), VHM (Veralgemeend
conceptueel Hydrologisch Model, Willems, 2014), FLEX-
Topo, which was still under development when it was cali-
brated for our previous study (Savenije, 2010; de Boer-Euser
et al., 2017; de Boer-Euser, 2017), a distributed version of
the HBV model (Hydrologiska Byråns Vattenbalansavdel-
ning, Lindström et al., 1997), the SUPERFLEX M2 to M5
models (Fenicia et al., 2011, 2014), dS2 (distributed simple
dynamical systems, Buitink et al., 2020), GR4H (Génie Ru-
ral à 4 paramètres Horaire, Mathevet, 2005; Coron et al.,
2017, 2019) combined with the CemaNeige snow mod-
ule (Valéry et al., 2014) and NAM (NedborAfstrommings
Model, Nielsen and Hansen, 1973). The main differences and
similarities between the models in terms of snow processes,
root-zone storage, total storage and evaporation processes are
summarized in Tables 1–3.

In our previous study (de Boer-Euser et al., 2017), we de-
fined a modeling protocol to limit the degrees of freedom in
the modeling decisions of the individual participants (Ceola
et al., 2015), allowing us to meaningfully compare the model
results. The protocol involved forcing the models with the
same input data and calibrating them for the same time pe-
riod, using the same objective functions. However, partici-
pants were free to choose a parameter search method, as we
considered it to be part of the modelers’ experience with the
model, even if this would make comparison less straightfor-

ward. The models were previously calibrated using stream-
flow of the Ourthe at Tabreux (ID1) for the period 2004 to
2007, using 2003 as a warm-up year (de Boer-Euser et al.,
2017). The Nash–Sutcliffe efficiencies of the streamflow and
the logarithms of the streamflow were simultaneously used as
objective functions to select an ensemble of 20 feasible pa-
rameter sets to account for parameter uncertainty and ensure
a balance between the models’ ability to reproduce both high
and low flows. The temporal and spatial transferability of the
models was tested by evaluating the models in a pre- and
post-calibration period and by applying the calibrated model
parameter sets to nested and neighboring catchments, includ-
ing catchment ID2 and ID3 (Klemeš, 1986). Results thereof
are presented in de Boer-Euser et al. (2017).

In the current study, we run the calibrated models for
an additional period from 2011 to 2017 for the Ourthe at
Tabreux (ID1), the Ourthe Orientale at Mabompré (ID2) and
the Semois at Membre-Pont (ID3). Note that the calibration
(2004–2007) and post-calibration (2008–2017) periods have
relatively similar hydro-climatic characteristics in terms of
streamflow and overall water balance (Figs. S1 and S2 of the
Supplement). The modeling groups have provided simulation
results for each catchment in terms of streamflow, groundwa-
ter losses/gains, interception evaporation, root-zone evapora-
tion (transpiration and soil evaporation), total actual evapo-
ration, snow storage, root-zone storage and total storage as a
sum of all model storage volumes (Table 2) at an hourly time
step for the total period 2001–2017. We compare these mod-
eled states and fluxes and evaluate them against their remote-
sensing equivalents as further explained in Sects. 4.2 and
4.3. Our results are mainly shown for the Ourthe at Tabreux
(ID1), as this catchment was used for calibration of the mod-
els. However, the snow analysis is performed for catchment
ID2 due to the narrower elevation range. Catchments ID1 and
ID3 are used to analyze the spatial variability of total storage
anomalies.

4.2 Model evaluation: water balance

All the models are evaluated in terms of the long-term water
balance, which indicates the partitioning between drainage
and evaporative fluxes and allows us to assess long-term con-
servation of water and energy. We compare mean annual
streamflow with observations and mean annual actual evap-
oration and interception evaporation with GLEAM estimates
for the Ourthe at Tabreux during the evaluation period 2008–
2017. A detailed description of streamflow performance for
specific events (low and high flows, snowmelt events, tran-
sition from dry to wet periods) has been detailed in the
previous paper (de Boer-Euser et al., 2017). In the current
study, differences in streamflow dynamics are briefly sum-
marized by assessing observed and modeled baseflow indices
(Ibaseflow, van Dijk, 2010) and flashiness indices (Iflashiness,
Fenicia et al., 2016), as these are representative of the parti-
tioning of drainage into fast and slow responses. Seasonal dy-
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Table 1. Description of symbols used for fluxes, storages and parameters in Tables 2 and 3.

Symbol Unit Description

Fluxes

EP mm h−1 Potential evaporation

EI mm h−1 Interception evaporation

ER mm h−1 Transpiration and soil evaporation

EW mm h−1 Sublimation

EA mm h−1 Total actual evaporation (sum of soil evaporation, transpiration, (separate) interception and, if applica-
ble, sublimation)

P mm h−1 Precipitation

PR mm h−1 Precipitation entering the root-zone storage (after snow and/or interception if present or fraction/total
precipitation)

Q mm h−1 Streamflow

QR mm h−1 Flux from root zone to fast and/or slow runoff storage

QP mm h−1 Percolation flux from root-zone storage to slow runoff storage

QC mm h−1 Capillary flux from slow runoff storage to root-zone storage

QG mm h−1 Seepage (up/down)/extraction

Storages

ST mm Total storage

SW mm Snow storage

SI mm Interception storage

SR mm Root-zone storage

SR – Relative root-zone storage (SR/SR,max)

SD mm Storage deficit

SVQ mm Very quick runoff storage

SF mm Fast runoff storage

SS mm Slow runoff storage

SSW mm Surface water storage

Parameters

CE – Correction factor for EP

Imax mm Maximum interception capacity

SR,max mm Maximum root-zone storage capacity

Sthresh mm Threshold of root-zone storage above which ER = EP

LP – Threshold of relative root-zone storage above which ER = EP

Ccst – Constant water stress coefficient to estimate ER

a, b, S0 – Parameters describing the shape of the streamflow sensitivity

aS – Fraction of land surface covered by surface water

aG – Fraction of land surface not covered by surface water
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Figure 2. Simplified schematic overview of 12 model structures (adapted from de Boer-Euser et al., 2017) with the aim of highlighting
similarities and differences between the models. Solid arrows indicate fluxes between stores, while dashed arrows indicate the influence of a
state on a flux. Colored arrows indicate incoming or outgoing fluxes, whereas black arrows indicate internal fluxes. The narrow blue rectangle
in GR4H indicates the presence of an interception module without interception storage capacity (Table 3). Storages with a color gradient
indicate the combination of several components in one reservoir. FLEX-Topo consists of three hydrological response units connected through
a shared slow reservoir, and wflow_hbv is a distributed model.

namics of actual evaporation over potential evaporation and
runoff coefficients during winter (October–March) and sum-
mer (April–September) are compared between the models.

4.3 Model evaluation: internal states

We compare modeled snow storage, root-zone soil mois-
ture and total storage between the models and with remote-
sensing estimates of MODIS snow cover, SCATSAR-
SWI1km Soil Water Index and GRACE total storage anoma-
lies, respectively, as shown in Tables 2–3.

4.3.1 Snow days

As most models used in this study are lumped, it is not possi-
ble to spatially evaluate modeled snow cover versus MODIS
snow cover. However, we can classify each day in a binary
way according to the occurrence of snow, based on a thresh-
old for the percentage of cells in the catchment where snow
cover is detected. MODIS snow cover observations are clas-

sified as days with and without snow using thresholds of
both 10 % and 15 % of snow-covered cells in the catchment
to be counted as a day with snow, in a sensitivity analysis.
For each model, snow days are distinguished from non-snow
days whenever the water stored as snow is above 0.05 mm to
account for numerical rounding. For each model (and each
retained parameter set), we then compare whether modeled
snow coincides with “truly” observed snow by MODIS, for
each day with a valid MODIS observation. We create a con-
fusion matrix with counts of true positives when observations
and model results agree on the presence of snow (hits), false
positives when the model indicates the presence of snow but
this is not observed by MODIS (false alarms), false nega-
tives when the model misses the presence of snow observed
by MODIS (miss) and true negatives when observations and
model results agree on the absence of snow (correct rejec-
tions). This allows us to identify the trade-off between, on the
one hand, the miss rate between model and remote-sensing
observation, as the ratio of misses over actual positives (num-
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ber of days when snow is observed by MODIS) and, on the
other hand, the false discovery rate as the ratio of false alarms
over predicted positives (number of days when snow is mod-
eled). We also compare annual maximum snow storage and
number of days with snow between the seven models with a
snow module (GR4H, M5, NAM, wflow_hbv, M4, FLEX-
Topo, WALRUS). The snow analysis is performed in the
catchment of the Ourthe Orientale upstream of Mabompré
as it features the narrowest elevation range among the study
catchments (i.e., 294–662 m a.s.l. versus 108–662 m for the
Ourthe upstream of Tabreux) and thus plausibly permits a
lumped representation of the snow component.

4.3.2 Root-zone soil moisture

We compare the range of the relative root-zone soil mois-
ture SR (SR = SR/SR,max, Table 1) between the models for
the period in which SCATSAR-SWI1km is available (2015–
2017). Time series of catchment-scale root-zone soil mois-
ture are available for all the models except WALRUS and
dS2 as these models have a combined soil reservoir (Fig. 2).
The dS2 model only relies on the sensitivity of streamflow
to changes in total storage. In WALRUS, the state of the
soil reservoir (which includes the root zone) is expressed
as a storage deficit and is therefore not bound by an upper
limit (Table 2). Root-zone storage capacities (SR,max, mm)
are available as a calibration parameter for all the other mod-
els. We relate the range in relative root-zone soil moisture to
the maximum root-zone storage capacity SR,max, because we
expect models with small root-zone storage capacities SR,max
to entirely utilize the available storage through complete dry-
ing and saturation.

We then compare the similarity of the dynamics of mod-
eled time series of the relative root-zone soil moisture with
the remotely sensed SCATSAR-SWI1km Soil Water Index
for several values of the characteristic time length parame-
ter (T in days). The T value has previously been positively
correlated with root-zone storage capacity, assuming a high
temporal variability of root-zone soil moisture and therefore
a low T value for small root-zone storage capacities SR,max
(Bouaziz et al., 2020). For each model and feasible realiza-
tion, we identify the T value that yields the highest Spear-
man rank correlation between modeled root-zone soil mois-
ture and Soil Water Index. We then relate the optimal T value
to the root-zone storage capacity SR,max. This analysis en-
ables us to identify potential differences in the representation
and the dynamics of root-zone storage between the models.

4.3.3 Total storage anomalies

For each model, we calculate time series of total storage (Ta-
ble 2) and mean monthly total storage anomalies relative
to the 2004–2009 time-mean baseline for comparison with
GRACE estimates for the Ourthe upstream of Tabreux (ID1)
and the Semois upstream of Membre-Pont (ID3). Both catch-

ments coincide with two neighboring GRACE cells, allowing
us to test how well the models reproduce the observed spatial
variability. We further relate the modeled range of total stor-
age (maximum minus minimum total storage over the time
series) to Spearman rank correlation coefficients between
modeled and GRACE estimates of total storage anomalies.

4.4 Interactions between storage and fluxes during dry
periods

The impact of a relatively large (> 200 mm) versus relatively
small (< 150 mm) root-zone storage capacity on actual evap-
oration, streamflow and total storage is assessed during a
dry period in September 2016 by selecting two representa-
tive models with high streamflow model performance (GR4H
and M5). The plausibility of the hydrological response of
these two model representations is evaluated against remote-
sensing estimates of root-zone soil moisture and actual evap-
oration.

4.5 Plausibility of process representations

The models are subsequently ranked and evaluated in terms
of their consistency with observed streamflow, remote-
sensing data and expert knowledge with due consideration of
the uncertainty in the evaluation data, as detailed in Sect. 3.3.
We summarize our main findings by evaluating the models in
terms of their deviations around median annual streamflow,
flashiness and baseflow indices, median annual actual evap-
oration and interception compared to GLEAM estimates, the
number of days with snow over valid MODIS observations,
the number of days per year with empty root-zone stor-
age and the very dry total storage anomalies compared to
GRACE estimates.

5 Results and discussion

5.1 Water balance

5.1.1 Streamflow

All the models show high Nash–Sutcliffe efficiencies of the
streamflow and the logarithm of the streamflow (ENS,Q and
ENS,logQ) with median values of above 0.7 for the post-
calibration evaluation period 2008–2017 (Fig. 3a and Table 2
for the calculation of the Euclidean distances). The interan-
nual variability of streamflow agrees strongly with observa-
tions for each model in the period 2008–2017 (Fig. 3b). The
difference between modeled and observed median stream-
flow varies between −5.6 % and 5.6 %, and the difference
in total range varies between −9.6 % and 20 %. This is in
line with our results in the previous paper, in which we
also showed that all the models perform well in terms of
commonly used metrics (de Boer-Euser et al., 2017). How-
ever, there are differences in the partitioning of fast and
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slow runoff, as shown by the flashiness and baseflow indices
(Iflashiness and Ibaseflow) in Fig. 3c. The largest underestima-
tion of the flashiness index occurs for M2 and dS2 (∼ 20 %),
while FLEX-Topo shows the highest overestimation (26 %).
FLEX-Topo and WALRUS underestimate the baseflow in-
dex most (41 % and 70 %, respectively), while GR4H and
M5 show the highest overestimation (15 % and 21 %, respec-
tively). There is a strong similarity between modeled and ob-
served hydrographs for one of the best performing models
M5, as quantified by its low Euclidean distance (Fig. 3d and
Table 2). The GR4H model is the only one which includes
deep groundwater losses, but they are very limited and rep-
resent only 1.6 % of total modeled streamflow of the Ourthe
at Tabreux, or approximately 7 mm yr−1.

5.1.2 Actual evaporation

Modeled median annual actual evaporation EA (computed
as the sum of soil evaporation, transpiration, (separate) inter-
ception evaporation and, if applicable, sublimation, Table 3)
for hydrological years between October 2008 and Septem-
ber 2017 varies between 507 and 707 mm yr−1 across mod-
els, with a median of 522 mm yr−1, which is approximately
10 % lower than the GLEAM estimate of 578 mm yr−1, as
shown in Fig. 4a. Annual actual evaporation of the VHM
model is very high compared to the other models, with a
median of 707 mm yr−1, and approximates potential evap-
oration (median of 732 mm yr−1). Calibration of the VHM
model is meant to follow a manual stepwise procedure in-
cluding the closure of the water balance during the identifi-
cation of soil moisture processes (Willems, 2014). However,
in the automatic calibration prescribed by the current proto-
col, this step was not performed, which explains the unusual
high actual evaporation in spite of relatively similar annual
streamflow compared to the other models, as there is no clo-
sure of the water balance (Fig. 3a).

Interception evaporation is included in four models, with
GR4H showing the lowest annual interception evaporation
of 100 mm yr−1 (19 % of EA or 10 % of P ), FLEX-Topo
and wflow_hbv having relatively similar amounts of approx-
imatively 250 mm yr−1 (∼ 45 % of EA or 26 % of P ) and
NAM having the highest annual interception evaporation of
340 mm yr−1 (65 % of EA or 36 % of P ), as shown in Fig. 4a.
Differences are related to the presence and maximum size of
the interception storage (Imax), as shown in Table 3. GLEAM
interception estimates of 189 mm yr−1 are almost twice as
high as GR4H estimates, 25 % lower than FLEX-Topo and
wflow_hbv, and 44 % lower than NAM values, suggesting a
large uncertainty in the contribution of interception and tran-
spiration to actual evaporation. For comparison, measure-
ments of the fraction of interception evaporation over precip-
itation in forested areas vary significantly depending on the
site location, with estimates of 37 % for a Douglas fir stand in
the Netherlands (Cisneros Vaca et al., 2018), 27 %, 32 % and
42 % for three coniferous forests of Great Britain (Gash et al.,

1980) and 50 % for a forest in Puerto Rico (Schellekens et al.,
1999), and are difficult to extrapolate to other catchments due
to the heterogeneity and complexity of natural systems.

GLEAM estimates of actual evaporation show relatively
high evaporation rates in winter and are never reduced to zero
in summer, as opposed to modeled M5 estimates, as shown
in Fig. 4b. GLEAM actual evaporation minus the separately
calculated interception is 94 % of potential evaporation, im-
plying almost no water-limited conditions, as opposed to
our models in which actual evaporation in summer (April–
September) is, due to water stress, reduced to approximately
73 % of potential evaporation on average for all the models
except VHM (Fig. 4c). Larger differences between the mod-
els occur in the ratio EA/EP during winter (October–March),
when FLEX-Topo, wflow_hbv and VHM show EA/EP ratios
close to unity and dS2 the lowest values of EA/EP ∼ 0.75 as
shown in Fig. 4c. The dS2 model differs from all the other
models as it relies on a year-round constant water stress co-
efficient (Ccst), independent of water supply, while the stress
coefficient depends on root-zone soil moisture content in all
the other models (Table 3).

Most models slightly overestimate summer runoff coeffi-
cients, with values between 0.22 and 0.26, which are very
close to the observed value of 0.22, as shown in Fig. 4d. Dur-
ing winter, runoff coefficients vary between 0.55 and 0.71,
which is close to the observed value of 0.66. This implies a
relatively high level of agreement between the models in re-
producing the medium- to long-term partitioning of precipi-
tation into evaporation and drainage and thus in approximat-
ing at least long-term conservation of energy (Hrachowitz
and Clark, 2017).

5.2 Internal model states

5.2.1 Snow days

MODIS snow cover is detected over most of the catchment
area for some time each year between November 2001 and
November 2017, except for the periods of November 2006
to March 2007 and November 2007 to March 2008, when
snow is detected in less than half of the catchment cells, as
shown in Fig. 5a. The number and magnitude of modeled
snow storage events varies between the models (Fig. 5b). The
modeled number of snow days per hydrological year varies
from ∼ 28 d for FLEX-Topo, WALRUS and wflow_hbv to
∼ 62 d for GR4H and∼ 90 d for NAM, M4 and M5, as shown
in Fig. 5c. The variability in median annual maximum snow
storage varies from 3 mm for wflow_hbv and ∼ 5–6 mm for
FLEX-Topo and WALRUS to ∼ 10 mm for GR4H, M4, and
M5 and 15 mm for NAM. We further evaluate the plausibility
of these modeled snow processes by comparing modeled and
observed snow cover for days when a valid MODIS observa-
tion is available.

The presence of snow modeled by FLEX-Topo,
wflow_hbv and WALRUS coincides for 92 % with the
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Figure 3. Evaluation of modeled streamflow performance for the Ourthe at Tabreux for the period 2008–2017. (a) Nash–Sutcliffe efficiencies
of the streamflow ENS,Q and the logarithm of the streamflow ENS,logQ (median, 25th/75th percentiles across parameter sets). (b) Modeled
mean annual streamflow for hydrological years between 2008 and 2017 across feasible parameter sets. The models are ranked from the
highest to the lowest performance according to the Euclidean distance of streamflow performance (see Table 2). The dashed line and grey
shaded areas show median, 25th/75th and minimum–maximum range of observed mean annual streamflow. (c) Baseflow index Ibaseflow as
a function of the flashiness index Iflashiness (median, 25th/75th percentiles across parameter sets). Observed values are shown by the grey
dashed lines. (d) Observed and modeled hydrographs of model M5 with high streamflow model performance (low Euclidean distance).

presence of snow observed by MODIS. However, these
models fail to model snow for ∼ 62 % of days when MODIS
reports the presence of snow, implying that these models
miss many observed snow days, but when they predict snow,
it was also observed (Fig. 5d).

NAM, M4 and M5, on the other hand, predict the presence
of snow which coincides with snow observed by MODIS in
∼ 68 % of the positive predictions, implying a relatively high
probability of false alarm snow prediction of ∼ 32 %. How-
ever, they miss only ∼ 29 % of actual positive snow days ob-
served by MODIS (Fig. 5d). This suggests that these mod-
els miss fewer observed snow days, but they also overpredict
snow day numbers, which could be related to the use of a sin-
gle temperature threshold to distinguish between snow and
rain, as opposed to a temperature interval in the other models
(Table 2).

GR4H is in between the two previously mentioned model
categories, with a snow prediction which coincides with ob-
served snow by MODIS in 79 % of the positive predictions
and therefore only 21 % of false alarms. The model misses
42 % of actual positive snow days observed by MODIS.

GR4H therefore shows a more balanced trade-off between
the number of false alarms and the number of observed snow
events missed. This is illustrated in Fig. 5d.

With an increased threshold to distinguish snow days in
MODIS, from 10 % to 15 % of cells in the catchment with
a detected snow cover (Fig. 5d and e, respectively), we de-
crease the number of observed snow days. For all the models,
this leads to an increase in the ratio of false alarms over pre-
dicted snow days but also a decrease in the ratio of missed
events over actual snow days observed by MODIS. How-
ever, as all the models are similarly affected by the change
in threshold, our findings on the differences in performance
between the models show little sensitivity to this threshold.

Despite the large variability in snow response between the
models, snow processes are represented by a degree-hour
method in all the models, suggesting a high sensitivity of
the snow response to the snow process parameterization (Ta-
ble 2).
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Figure 4. Evaluation of modeled evaporation for the Ourthe upstream of Tabreux for the period 2008–2017. (a) Modeled mean annual actual
evaporation EA and minimum–maximum range of mean annual interception evaporation EI for hydrological years between 2008 and 2017
across feasible parameter sets. The dark grey shaded area shows the range of potential evaporation EP used as input for the models. The
light grey shaded area shows GLEAM actual and interception evaporation. (b) Daily actual evaporation from GLEAM and modeled by the
M5 model. (c) Summer against winter EA/EP ratios for each model (median and 25th/75th percentiles across parameter sets). (d) Summer
against winter runoff coefficient Q/P for each model (median and 25th/75th percentiles across parameter sets), plotted on the same scale.
The dashed grey lines indicate the observed median runoff coefficients in summer and winter.

5.2.2 Root-zone soil moisture

Vegetation-accessible water volumes that can be stored in
the root zone largely control the long-term partitioning of
precipitation into evaporation and drainage. Most hydrologi-
cal models include a representation of this root-zone storage
capacity SR,max, which is estimated through calibration (Ta-
ble 2). The calibrated root-zone storage capacities vary be-
tween 74 and 277 mm across studied models. The root-zone
soil moisture content relative to saturation of models with
relatively large root-zone storage capacities (here defined as
SR,max > 200 mm) tends to never fully dry out (> 0.20) and
saturate (< 0.94) as opposed to models with lower root-zone
storage capacities (SR,max < 150 mm), in which the stor-
age tends to either dry out completely and/or fully saturate
(Fig. 6a). If the vegetation-accessible water storage dries out,
this will lead to water stress and reduced transpiration. On the
other hand, if the root-zone storage is saturated, no more wa-
ter can be stored, resulting in fast drainage. The size of the
root-zone storage capacity is therefore a key control of the
hydrological response, allowing us to explain some of the
observed variability between the models.

We compare the dynamics of modeled and remote-sensing
estimates of root-zone soil moisture by calculating Spearman
rank correlations between modeled root-zone soil moisture
and remote-sensing estimates of the Soil Water Index for the
available T values of 2, 5, 15, 20, 40, 60 and 100 d. As the
T value increases, the Soil Water Index is more smoothed
and delayed. For each model realization, we identify the T

value which yields the highest Spearman rank correlation be-
tween Soil Water Index and modeled root-zone soil moisture
(Fig. 6b). The optimal T value increases with the size of the
calibrated root-zone storage capacity and varies between 15
and 60 d. A small root-zone storage capacity is indeed likely
to fill through precipitation and empty through evaporation
and drainage more rapidly than a large water storage capac-
ity, leading to a higher temporal relative soil moisture vari-
ability. The mismatch between the relatively high root-zone
storage capacities of VHM (SR,max ∼ 200 mm) in relation to
the relatively low optimal T values of 20 d is likely related
to the unclosed water balance (Sect. 5.1.2). The similarity
between modeled root-zone soil moisture and Soil Water In-
dex with optimal T values is high, as implied by Spearman
rank correlations varying between 0.88 and 0.90 across mod-
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Figure 5. (a) Fraction of cells with a MODIS areal fraction snow cover greater than zero in the Ourthe Orientale upstream of Mabompré for
the period 2001–2017. MODIS data are available once every 3 d on average. The dashed lines show the two thresholds of 10 % and 15 %
selected to distinguish snow days. (b) Modeled snow storage for two contrasting models M5 and WALRUS for the light orange shaded period.
(c) Median annual maximum snow storage as a function of number of days per year with snow. Light (yellowish) colors indicate models
with higher performance (lower Euclidean distances). The vertical and horizontal error bars indicate the 25th/75th percentiles over time
and feasible parameter sets. (d, e) Two-dimensional representation of the false discovery rate as a function of the miss rate when applying
thresholds of (d) 10 % and (e) 15 % of cells within the catchment with snow cover greater than zero. In this representation, the perfect model
would be at the origin (0 % misses and 0 % false alarms). The dotted lines show the distance from the origin. The vertical and horizontal
error bars indicate the uncertainty within feasible parameter sets.

els. However, the disparity in optimal T values between the
models underlines the different temporal representations of
root-zone soil moisture content across models, implying that
all these models cannot simultaneously provide a plausible
representation of the catchment-scale vegetation-accessible
water content.

5.2.3 Total storage anomalies

Total water storage anomalies obtained from GRACE are
compared to the storage as simulated by the models, showing

relatively similar seasonal patterns, as illustrated in Fig. 7a
for model M5. GRACE total storage anomalies of the Se-
mois upstream of Membre-Pont and the Ourthe upstream
of Tabreux are mainly represented by two neighboring cells
(Fig. 1b), allowing us to test how models represent the ob-
served spatial variability. The range of anomalies in the Se-
mois upstream of Membre-Pont is larger than in the Our-
the upstream of Tabreux, implying 18 %, 3 % and 7 % less
summer and 19 %, 19 % and 10 % more winter storage in
the Semois upstream of Membre-Pont for each of the three
GRACE processing centers (Fig. 7b). Median precipitation
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Figure 6. (a) Range of relative root-zone soil moisture SR in the Ourthe upstream of Tabreux for the period 2015–2017 as a function of the
median root-zone storage capacity (SR,max) across parameter sets. The feasible parameters for NAM are split into two groups due to the large
variability of SR,max (subsets with SR,max of ∼ 130 and ∼ 240 mm). (b) Root-zone storage capacity SR,max as a function of the optimal T

value for each model realization. Optimal T values are derived at the highest Spearman rank correlation between the Soil Water Index and
modeled root-zone soil moisture.

is also 37 % higher in the Semois upstream of Membre-
Pont than in the Ourthe upstream of Tabreux during winter
months (October–March) but relatively similar during sum-
mer months (April–September). This difference in precipita-
tion potentially leads to a wider range of modeled anomalies
in the Semois upstream of Membre-Pont than in the Ourthe
upstream of Tabreux for all the models, as shown in Fig. 7c.
This implies that all the models reproduce the spatial vari-
ability between both catchments observed by GRACE. As
the models were calibrated for the Ourthe at Tabreux and
parameter sets were transferred to the Semois upstream of
Membre-Pont, the forcing data are the main difference for
explaining the modeled spatial variability.

The models are also able to represent the observed tem-
poral dynamics of total storage anomalies, as suggested by
Spearman rank correlation coefficients ranging between 0.62
and 0.80 for the Ourthe upstream of Tabreux (Fig. 7d). There
is, however, no relation between the Spearman rank cor-
relations of the anomalies and the total modeled storage
range (difference between maximum and minimum values),
as shown in Fig. 7d. PRESAGES, WALRUS, VHM and dS2
have the largest ranges of total modeled storage, varying be-
tween 260 and 280 mm, and are also characterized by rel-
atively large root-zone storage capacities (PRESAGES and
VHM) or no separate root zone (WALRUS and dS2), while
the total storage range of all the other models is between 200
and 220 mm. The similarity in total storage range between
most models is likely related to the identical forcing data and
the similarity in the long-term partitioning of precipitation
into drainage and evaporation (Sect. 5.1.2). However, the ab-
solute values of total storage during a specific event or the
partitioning into internal storage components may vary be-
tween the models (Sect. 5.3).

5.3 Interactions between storage and fluxes during dry
periods

As previously seen in Fig. 6a, the relative root-zone soil
moisture content of the GR4H model is always above 0.2 for
the 3 years for which SCATSAR-SWI1km data are available,
as opposed to M5, which fully dries out for some time dur-
ing the summers of 2015–2017. The Normalized Difference
Vegetation Index of MODIS (NDVI, Didan, 2015a, b) also
does not show a sharp decrease during these periods (Fig. 8a,
b). Actual evaporation in M5 is strongly reduced during these
dry soil moisture periods, unlike GR4H, as shown in Fig. 8c,
d. When zooming into the dry period around September
2016, Fig. 8e, f show median relative root-zone soil moisture
in GR4H of ∼ 0.24 versus ∼ 0.01 for M5, while SCATSAR-
SWI1km has a higher median value of ∼ 0.55 (for both op-
timal T values of 20 and 40 d). The dryness of root-zone
soil moisture in M5 leads to median daily evaporation of
0.8 against 1.3 mm d−1 for GR4H and prolonged periods of
almost-zero evaporation in M5 (e.g., 31 August –3 Septem-
ber, 9–15 September and 22–30 September), while this nei-
ther occurs in GR4H nor in GLEAM actual evaporation, as
shown in Fig. 8g, h. Despite the high streamflow performance
of model M5 (Fig. 3, Table 2), it is unlikely that transpiration
is reduced to almost zero for several days in a row each sum-
mer in a catchment where approximately half of the area is
covered by forests. This is also not supported by the remote-
sensing data of soil moisture, NDVI and evaporation. High
streamflow performances, therefore, do not warrant the plau-
sibility of internal process representation. Despite the dried-
out root-zone storage in M5, there is still water available
in the slow storage to sustain a baseflow close to observed
values, as shown in Fig. 8j, l. The streamflow responses of
GR4H and M5 are both close to observations (Fig. 8i, j) in
spite of differences in storage and evaporation, suggesting

Hydrol. Earth Syst. Sci., 25, 1069–1095, 2021 https://doi.org/10.5194/hess-25-1069-2021



L. J. E. Bouaziz et al.: Behind the scenes of streamflow model performance 1085

Figure 7. (a) Total storage anomalies modeled by M5 and compared to GRACE for the Ourthe upstream of Tabreux. The grey band shows
the variability in total storage anomalies of the three processing centers. (b) Range of GRACE total storage anomalies for the three processing
centers for the Semois upstream of Membre-Pont compared to the Ourthe upstream of Tabreux for the period 2001–2017. (c) Modeled total
storage anomalies for both catchments. (d) Spearman rank correlations between GRACE and modeled total storage anomalies as a function
of the range of modeled total storage for the Ourthe upstream of Tabreux.

different internal process representations for a similar aggre-
gated streamflow response during a low-flow period.

5.4 Plausibility of process representations

The models are ranked and evaluated for a selection of crite-
ria using observed streamflow, remote-sensing data and ex-
pert knowledge (Figs. 9 and S3 in the Supplement). All the
models deviate less than ±6 % from observed median an-
nual streamflow (Fig. 9a), which is less than the estimated
uncertainty of 11 % (Sect. 3.3). In contrast, the modeled
flashiness and baseflow indices of most models deviate more
than the estimated uncertainty (Fig. 9b, c). FLEX-Topo is
the only model with a clear overestimation of the flashi-
ness index, which relates to the calibration aim of having
a flashy model to reproduce small summer peaks (de Boer-
Euser et al., 2017).

Modeled median annual total actual evaporation deviates
by approximately−10 % from GLEAM estimates, except for
the +22 % overestimation of the VHM model due to the
issue of the unclosed water balance, as shown in Fig. 9d.
These results are consistent with the evaluation study of
GLEAM compared to other evaporation products (Miralles

et al., 2016), which reports higher than average values for
GLEAM in Europe (∼+10 % at our latitude).

Four models explicitly account for interception with a
separate module. Median annual interception rates deviate
substantially from GLEAM estimates (−47 % to +80 %) as
shown in Fig. 9e. There is a high uncertainty in the parti-
tioning of evaporation into different components in evapora-
tion products, and GLEAM likely underestimates intercep-
tion rates (Miralles et al., 2016; Zhong et al., 2020). There-
fore, we consider a large uncertainty of +50 % to evaluate
and rank the models. The GR4H interception is lower than
GLEAM estimates. However, an interception storage was re-
cently included in an hourly GR model (GR5H) to better rep-
resent the interception processes (Ficchì et al., 2019; Thirel
et al., 2020).

All the models substantially underestimate the number of
days when snow is observed by MODIS at the catchment
scale for all valid MODIS observations (cloud cover < 40 %
and excluding summer months), as shown in Fig. 9f. Yet we
estimate a low uncertainty of less than 2 % around this num-
ber (Sect. 3.3). The NAM, M4 and M5 models are closest to
MODIS estimates, but they are characterized by high false
alarm rates (Fig. 5d), which implies a mismatch in the mod-
eled and observed days with snow for valid MODIS obser-
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Figure 8. (a,b) Modeled relative root-zone soil moisture SR, SCATSAR-SWI1km Soil Water Index with optimal T value and NDVI for the
period 2015–2017 for GR4H (yellow) and M5 (orange), respectively. The error bars and bands show the standard deviation of the remote-
sensing data within the catchment area. (c, d) Actual evaporation EA by GR4H and M5 for the period 2015–2017, showing a large reduction
of evaporation during summer for M5, unlike GR4H and GLEAM actual evaporation. (e, f) Zoomed-in modeled SR and SCATSAR-SWI1km
root-zone soil moisture for the grey shaded period of September 2016 in (a), (b), (c), and (d). (g, h) Potential, modeled and GLEAM actual
evaporation, (i, j) modeled and observed streamflow Q, and (k, l) total storage ST for the September 2016 dry period. The narrow uncertainty
band of the GR4H model is related to its converging parameter search method.

vations. Based on expert knowledge (Royal Meteorological
Institute Belgium, 2015) and the trade-off between miss rate
and false discovery rate (Fig. 5d, e), we expect the annual
number of days with snow storage to be between 28 and
62 d yr−1 as modeled by wflow_hbv, WALRUS, FLEX-Topo
and GR4H, whereas the ∼ 90 d yr−1 of NAM, M4 and M5
seems too high.

The FLEX-Topo and M2 to M5 models are characterized
by an empty root-zone storage for approximately 10 d yr−1

(SR < 1 %) as shown in Fig. 9g. These models have in com-
mon that evaporation from the root zone occurs at a potential

rate and is not (or hardly) reduced when soils become dry un-
til the point where the storage is empty. This is the case for
models with a very low or no evaporation reduction parame-
ter LP. This behavior is not supported by the remote-sensing
data of evaporation, soil moisture and NDVI (Sect. 5.3) nor
by theory on root water uptake reduction under dry condi-
tions (Feddes, 1982). The additional slow groundwater reser-
voir added in model M5 compared to M2–M4 leads to a
smaller root-zone storage capacity as the available storage
is partitioned into the root-zone storage and the additional
groundwater store. The smaller root-zone storage capacity of
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Figure 9. Ranking and evaluation of model behavior for a selection of criteria based on observed streamflow, remote-sensing data and expert
knowledge. The grey shaded areas are soft indications of more plausible behavior based on uncertainty estimates and expert knowledge.
Model ranks as a function of the (a) deviation from observed median annual streamflow; (b) deviation from the flashiness index; (c) devi-
ation from the baseflow index; (d) deviation from median annual GLEAM actual evaporation; (e) deviation from median annual GLEAM
interception for models with a separate interception module; (f) number of days with snow cover for valid MODIS observations between
2001 and 2017 for models with a snow module; (g) annual number of days when the root-zone storage is dry (filled with less than 1 % of its
capacity); (h) deviation from the 1st percentile of GRACE total storage anomalies for the three centers. The error bars show the 25th–75th
range across the ensemble of feasible parameter sets. Results are for the Ourthe catchment upstream of Tabreux, except for the snow analysis.

model M5 exacerbates the number of annual days with empty
storage. This highlights the complex interactions in internal
dynamics even in parsimonious lumped models with similar
mean annual streamflow performance.

Catchments with relatively large root-zone storage capac-
ities underestimate GRACE estimates of very dry storage
anomalies most (Figs. 6 and 9h). The uncertainty of GRACE

is represented by the estimates of the three processing centers
and the∼ 18 mm uncertainty estimate mentioned in Sect. 3.3.
FLEX-Topo has a low root-zone storage capacity and is the
only model which overestimates the very dry storage anoma-
lies. Models with root-zone storage capacities of around 110
to 150 mm show the most consistent behavior with GRACE
estimates of very dry storage anomalies.

https://doi.org/10.5194/hess-25-1069-2021 Hydrol. Earth Syst. Sci., 25, 1069–1095, 2021



1088 L. J. E. Bouaziz et al.: Behind the scenes of streamflow model performance

6 Implications

While streamflow alone may be used to evaluate hydrologi-
cal models, we subsequently use these models to understand
internal states and fluxes in current and future conditions (Al-
camo et al., 2003; Hagemann et al., 2013; Beck et al., 2017)
or to make operational streamflow predictions (e.g., HBV
and GR types of models are used by the Dutch and French
forecasting services). Our findings show that similar stream-
flow responses obtained by models calibrated according to
an identical protocol rely on different internal process rep-
resentations. While not unexpected, it implies that we might
get the right answers but for the wrong reasons (Kirchner,
2006), as these models cannot at the same time all be right
and different from each other (Beven, 2006).

Almost all the models show a similar long-term partition-
ing of precipitation into drainage and evaporation, as they
are forced and constrained by the same data, also leading to
relatively similar volumes of total storage. However, the par-
titioning of total storage into several internal storage compo-
nents differs between the models, resulting in distinct runoff
responses as expressed by the baseflow and flashiness in-
dices.

None of the models is systematically consistent with the
information available from streamflow observations, remote-
sensing data and expert knowledge. However, some pro-
cesses either play a limited role in the overall water balance
or can be compensated by other processes. Snow occurs ev-
ery year but is not a major component of the streamflow
regime (de Wit et al., 2007), interception evaporation can be
compensated by root-zone evaporation, and very dry periods
only occur for several weeks per year when streamflow is
already very low. There is also a large uncertainty in each
of the data sources, which makes us reluctant to use them
to determine hard thresholds to reject models. Instead, we
ranked the models for a selection of “soft” criteria and found
that NAM, wflow_hbv and PRESAGES are overall most con-
sistent with the evaluation data, with median ranks of 2–3
(Fig. S3 in the Supplement). While an overall ranking may
be useful for practitioners, modelers benefit more from the
specific ranking for each criterion to detect specific model
deficiencies that could be improved in the model structure.
An overall ranking is only a mere indication which should be
interpreted carefully due to uncertainty in the evaluation data
and the applied calibration strategy.

The presence of interception or a slow storage (absent in
M2–M4 but added in M5) affects the representation of other
internal processes, including transpiration and/or root-zone
soil moisture, implying that individual internal model com-
ponents are altered by the presence/absence of other poten-
tially compensating processes. Adding an additional internal
model component changes the internal representation of wa-
ter storage and fluxes through the system, which should be
kept in mind if model parameters were to be fixed in alter-
native model structures. Furthermore, model improvements

through additional process components and/or adapted pa-
rameterization should be evaluated in terms not only of the
aggregated response, but also the partitioning of fluxes and
storages through the system (e.g., does the groundwater com-
ponent improve the baseflow index at the expense of the
availability of root-zone soil moisture during dry periods?).
Models should be confronted with expert knowledge, e.g., on
the occurrence of days with water stress or snow storage, to
assess the plausibility of internal states and fluxes (Gharari
et al., 2014; Hrachowitz et al., 2014; van Emmerik et al.,
2015).

Applying these models to a future, more extreme climate
in the same region might lead to contrasting insights regard-
ing impacts of climate change, as also shown by studies of
Hagemann et al. (2013), Melsen et al. (2018) and de Niel
et al. (2019), in which model structures may lead to differ-
ent signs of change in mean streamflow. Using one model
or the other to assess the effect of rising temperatures on
snow could lead to very different timescales of snow storage
decline. Vegetation already experiences more intense water
stress in some models compared to others, and this would
be exacerbated in more extreme drought scenarios (Melsen
and Guse, 2019). More intense precipitation events could af-
fect interception evaporation and therefore water availabil-
ity in the root zone differently from one model to another.
Beyond model structure, the experience each modeler has
with their model and associated calibration procedure to con-
strain model parameters may also impact the simulation re-
sults (Melsen et al., 2019).

Our findings should, therefore, encourage modelers to use
multiple data sources for model calibration and evaluation, as
already suggested by many other studies (Samaniego et al.,
2010; Rakovec et al., 2016a; Koch et al., 2018; Stisen et al.,
2018; Nijzink et al., 2018; Veldkamp et al., 2018; Dem-
bélé et al., 2020). Remote-sensing estimates of soil mois-
ture, evaporation and total storage anomalies are available
at the global scale, and in spite of potential biases with mod-
els, the temporal dynamics are useful for constraining our
models (McCabe et al., 2017; Sheffield et al., 2018). Ad-
ditionally, it seems essential to support decision-makers by
studies relying on multi-model and multi-parameter systems,
as also suggested by Haddeland et al. (2011) and Schewe
et al. (2014), to reveal uncertainties inherent to the hetero-
geneous hydrological world (Beven, 2006; Savenije, 2010;
Samaniego et al., 2010; Hrachowitz and Clark, 2017).

This study is the result of a joint research effort of scien-
tists and practitioners gathering each year in Liège at the In-
ternational Meuse Symposium to exchange interdisciplinary
and intersectoral knowledge related to the Meuse basin. Al-
though coordination of large international teams may be
challenging, international studies favor close collaboration
between scientists and practitioners, who can learn from
each other to accelerate modeling advances (Archfield et al.,
2015). Another advantage of comparing modeling results of
several research groups is to quickly detect small mistakes in
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the modeling process, including shifts in the time series or
using forcing data of one catchment to model another catch-
ment. While hydrograph characteristics were the main focus
of the previous study (de Boer-Euser et al., 2017), we gain
distinct insights into the plausibility of model behavior by
evaluating additional facets of internal process representation
using remote-sensing data.

7 Knowledge gaps and limitations

Many aspects of the hydrological response remain unknown
and can hardly be evaluated against observations. While in
situ observations of snow, evaporation or soil moisture are
rarely available at a sufficient spatio-temporal scale, remote-
sensing estimates have the advantage of high spatial reso-
lution and worldwide spatial coverage, though they often
rely on models themselves and are affected by high and of-
ten unknown uncertainty. Comparing models with these in-
dependent observations is valuable for evaluating their con-
sistency and detecting outliers. However, these observations
cannot be considered representative of the truth as they rely
on many assumptions themselves, hindering “real” hypothe-
sis testing. The ratio of actual over potential evaporation as
a result of water stress at the catchment scale, therefore, re-
mains highly uncertain (Coenders-Gerrits et al., 2014; Mian-
abadi et al., 2019). While areal fractions of snow cover can
be estimated by MODIS, the presence of clouds limits the
usability of the data, and knowledge of the catchment-scale
snow water equivalent is lacking. If remote-sensing estimates
of near-surface relative soil moisture are available, root-zone
water content remains uncertain, and while GRACE pro-
vides estimates of total storage anomalies, we lack knowl-
edge on absolute total water storage. The spatial variability
and the temporal dynamics of these remote-sensing prod-
ucts provide useful, additional, independent information to
understand the hydrological puzzle but certainly not all the
answers to evaluate the states typically included in process-
based models. Measurements are, therefore, of crucial im-
portance to increase our understanding of hydrological pro-
cesses at the catchment scale, which in turn will improve
the quality of remote-sensing products and model develop-
ment (Vidon, 2015; Burt and McDonnell, 2015; van Em-
merik et al., 2018).

The evaluation of model behavior is conditional on the
calibration procedure, which was freely chosen by the indi-
vidual contributing institutes. The use of different or more
calibration objectives and in-depth uncertainty estimation
(Beven and Binley, 1992) may have resulted in different con-
clusions in terms of the plausibility of the behavior of each
model.

We performed a thorough analysis of 12 models, five vari-
ables and three catchments. We deliberately chose to limit the
number of study catchments to balance depth with breadth,
allowing us to dive into process-relevant insights.

8 Conclusions

Similar streamflow performance of process-based models,
calibrated following an identical protocol, relies on different
internal process representations. Most models are relatively
similar in terms of the long-term partitioning of precipita-
tion into drainage and evaporation. However, the partition-
ing between transpiration and interception, snow processes
and the representation of root-zone soil moisture varies sig-
nificantly between the models, suggesting variability of wa-
ter storage and release through the catchment. The compar-
ison of modeled states and fluxes with remote-sensing esti-
mates of evaporation, root-zone soil moisture and vegetation
indices suggests that models with relatively small root-zone
storage capacities and without reduction in root water up-
take during dry conditions lead to unrealistic drying-out of
the root-zone storage and significant reduction of evapora-
tive fluxes each summer. Expert knowledge in combination
with remote-sensing data further allows us to “softly” evalu-
ate the plausibility of model behavior by ranking them for a
set of criteria. Even if none of the models is systematically
consistent with the available data, we did not formally re-
ject specific models due to the uncertainty in the evaluation
data and their changing relevance for the studied catchments.
The dissimilarity in internal process representations between
the models implies that they are not necessarily providing
the right answers for the right reasons, as they cannot simul-
taneously be close to reality and different from each other.
While the consequences for streamflow may be limited for
the historical data, the differences may exacerbate for more
extreme conditions or climate change scenarios. Considering
the uncertainty of process representation behind the scenes
of streamflow performance and our lack of knowledge and
observations on these internal processes, we invite modelers
to evaluate their models using multiple variables, encourage
more experimental research, and highlight the value of multi-
model multi-parameter studies to support decision-making.

Data availability. Streamflow and precipitation data were provided
by the Service Public de Wallonie in Belgium (Direction générale
opérationnelle de la Mobilité et des Voies hydrauliques, Départe-
ment des Etudes et de l’Appui à la Gestion, Direction de la Ges-
tion hydrologique intégrée (Bld du Nord 8-5000 Namur, Bel-
gium)). Hourly radiation data were retrieved from the portal of
the Royal Netherlands Meteorological Institute (http://www.knmi.
nl/nederland-nu/klimatologie/uurgegevens, Royal Netherlands Me-
teorological Institute, 2018). Daily temperature data were retrieved
from the E-OBS (version 17.0) OPeNDAP server (Haylock et al.,
2008; Cornes et al., 2018). Actual evaporation estimates from the
Global Land Evaporation Amsterdam Model (GLEAM) are avail-
able through the SFTP server of GLEAM (https://www.gleam.
eu/, Global Land Evaporation Amsterdam Model, 2021; Miralles
et al., 2011; Martens et al., 2017). MODIS snow cover frac-
tions are available for download from the Earthdata portal at
https://doi.org/10.5067/MODIS/MOD10A1.006 (Hall and Riggs,
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2016a) and https://doi.org/10.5067/MODIS/MYD10A1.006 (Hall
and Riggs, 2016b). MODIS vegetation indices data are available for
download at https://doi.org/10.5067/MODIS/MOD13A1.006 (Di-
dan, 2015a) and https://doi.org/10.5067/MODIS/MYD13A1.006
(Didan, 2015b). The Soil Water Index SCATSAR-SWI1km is
available from the Copernicus Global Land Service at https://
land.copernicus.eu/global/products/swi (Copernicus Global Land
Service, 2019; Bauer-Marschallinger et al., 2018). GRACE
land data (Swenson and Wahr, 2006; Landerer and Swen-
son, 2012; Swenson, 2012) are available at http://grace.jpl.nasa.
gov (NASA’s MEaSUREs Program, 2021), supported by the
NASA MEaSUREs program. The modeled states and fluxes of
each model are available online in the 4TU data repository at
https://doi.org/10.4121/13221038.v1 (Bouaziz et al., 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-1069-2021-supplement.
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