
 
 

Delft University of Technology

Disagreement-Aware Variable Impedance Control for Online Learning of Physical Human-
Robot Cooperation Tasks

van der Spaa, L.F.; Franzese, G.; Kober, J.; Gienger, Michael

Publication date
2022
Document Version
Final published version
Citation (APA)
van der Spaa, L. F., Franzese, G., Kober, J., & Gienger, M. (2022). Disagreement-Aware Variable
Impedance Control for Online Learning of Physical Human-Robot Cooperation Tasks. Paper presented at
Workshop "Shared Autonomy in Physical Human-Robot Interaction: Adaptability and Trust".

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Disagreement-Aware Variable Impedance Control for
Online Learning of Physical Human-Robot Cooperation Tasks

Linda van der Spaa1,2, Giovanni Franzese1, Jens Kober1, Michael Gienger2

Abstract— In order to make the coexistence between humans
and robots a reality, we must understand how they may
cooperate more effectively. Modern robots, empowered with
reliable controls and advanced machine learning reasoning can
face this challenge. In this article, we presented a Disagreement-
Aware Variable Impedance (DAVI) Controller, where the robot
stiffness is regulated as a function of the perceived disagreement
with the human cooperator. We tested the algorithm on a 7
DoF Franka Emika Panda robot performing the learning of a
pick&place task with continuous adaptation of the goal location
and the via-points with human interactive corrections, triggered
by our proposed approach. A validation study was conducted
with 5 users in order to understand the reliability of the method.

I. INTRODUCTION

The strength of a team depends very much on the ability of
its members to cooperate. Humans and robots have different
strengths and weaknesses. Potentially, teaming up a robot
with a human would allow the partners in the team to
complement each other to the benefit of both. However,
the actual benefit depends on the cooperation skills of both
the human and the robot. In case these are lacking, the
attempted cooperation may instead inadvertently lead to
reduced performance.

Successful cooperation requires partner-awareness, and the
ability to communicate and negotiate on personal preferences
(how to do something), intentions (what to achieve) and
constraints. Factors like preferences depend, at least partially,
on the partners in the team and the cooperation between
them. Therefore, we argue that most effective cooperation
can be achieved when learned online; i.e. while trying to
cooperate, the agents update their behavior to improve on
the overall result. As cooperation skills grow over time,
preferences may change as well as what cooperative behavior
may be optimal. Life-long learning is required in order to
keep adapting accordingly.

Our specific interest is in physical human-robot coop-
eration (pHRC) tasks with prolonged physical interaction
continuing over a sequence of dependent actions. In such
tasks, haptic communication has been shown effective in
integrating intentions in shared decision making [1], and is
actually able to lead to faster optimal decisions than explicit
communication [2]. We focus on tasks where human and
robot move an object to a new location in space, only
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Fig. 1. Scenario for (cooperatively) moving a cup to one of the available
coasters. Initially, the robot does not know where or how to move the cup.
The robot can be guided even when the human moves the cup without
touching the robot.

communicating intuitively through the interaction forces (see
Fig. 1). The robot has to learn how the human prefers to do
the task in order to provide appropriate support.

Starting from an initial solution which allows the human
to finish the task together with the robot, our objective is to
have the robot learn to adhere to the human partner’s personal
preferences, learning from feedback the human implicitly
provides in the interaction. Here, we propose a learning
and control framework (Algorithm 1) that learns high level
target policies π(x) and allows a modulation of the robot
stiffness as a function of the disagreement with the human.
The control of the task is traded between the human and the
robot and when the robot is passive is interactively updating
the desired policy.

The variable admittance/impedance of the robot for a
safer human robot interaction was already proposed in the
literature. For example, in [3], the robot admittance is in-
creased when the human applies sufficient positive work to
the system, effectively and smoothly changing the robot be-
havior to that of a passive follower but without interactively
improving or modifying the desired execution of the task.
Alternatively, [4] proposes to decay the stiffness as a function
of the epistemic uncertainty of the policy encoded with a
Gaussian Process. We show equally smooth transitioning for
impedance controlled trajectory tracking, ramping down the
impedance upon detection of significant interaction force.

We tested our framework in a cooperative pick-and-place
scenario with a 7 DoF Franka Emika Panda robot.



Algorithm 1: DAVI controller framework

1 Initialize {S, π(x)}
2 while Episode do
3 RobotInControl = (K > 0)
4 if ẋ = 0 ∧ !RobotInControl then
5 S = S ∪ x
6 π(x0) = x
7 if ((RobotInControl ∧ ∥x− xg∥ < ε) ∨

(!RobotInControl ∧ x ∈ S)) ∧ π(x) ̸= {} then
8 RobotInControl = True
9 xg = π(x)

10 x0 = x
11 if RobotInControl then
12 x̂ = f(x,xg,x0) Eq. (2)
13 γ = Disagreement(fext)
14 K̇ = ImpedanceModulation(γ) Eq. (4)
15 ImpedanceControl(x̂,K)

II. DAVI CONTROLLER

Our DAVI controller allows an incremental learning of the
policy while being user friendly on the interaction with the
human. The Algorithm 1 gives a hint on what happens during
every learning episode. We can recognize:

• an initial set of states S (which could be empty)
• a policy π(x) that learns the desired next goal of the

robot
• an impedance control low defined by the attractor x̂ and

the stiffness K, allowing safe and comfortable human-
robot interaction during action execution

• a disagreement detection based on the sensed external
force

• the possible switching of the controller and move the
robot in a gravity compensation mode letting the human
to provide kinesthetic teaching.

A. Cartesian Impedance Control

As a base control layer, we use a Cartesian impedance
controller. Briefly, in Cartesian impedance control [5], the
end-effector dynamics are modeled in the form of a mass-
spring-damper system

Λ(q)ẍ = K∆x−Dẋ+ fext, (1)

where Λ(q) is the physical system’s Cartesian inertia matrix,
K is a diagonal matrix with the desired stiffness in the
principal directions, D is the corresponding critical damping
matrix, and fext are the external forces. The external forces
are estimated using the provided model of the robot (mass
matrix, Coriolis, gravity) and the estimated joint friction
provided in [6].

We distinguish between active and passive mode. In active
mode, the end-effector is controlled to follow a trajectory.
In passive mode, the end-effector stiffness and damping are
set to zero. In this circumstance the robot is still gravity
compensated. At any time during active mode, a detected
disagreement would trigger a transition to passive mode;

this allow the human to kinesthetically demonstrate the new
desired behavior. At all times, the robot records the states
and actions it observes during interactive task execution so
it can learn from them.

B. State and Action Learning from Interactions

We define our set of states S as the points through which
the human may want the robot to pass when doing the task.
Here, we just consider a 3D end-effector workspace with a
fixed end-effector orientation, not caring about the robot’s
joint configuration. Initially, the state space only contains
the starting position, and no desired actions are known. A
new state is added when the robot is stopped in an unknown
state for 0.25 seconds, line 5 of Al. 1. The data aggregation
is communicated to the user by a haptic vibration of the end-
effector. The next goal xg of the robot is considered as the
high-level action coming from the policy, line 9 of Al. 1.

During active mode, if a known state is visited, the robot
will remember where to go next. However, if the robot is
corrected to go to a different subsequent state, which may
also be a known state, the policy is update, line 6 of Al. 1.
If the robot stays at a state for at least 5 seconds, the state
is flagged as a final goal state. Before the state is added,
the robot hand signals with a countdown of three vibrations
to alert the human. This would allow them to continue the
demonstration if the state was not their intended final goal.
During passive mode, the robot is considered to be in a
state if the end-effector is within 2 cm distance of the point
defining the state. To help the human feel where the states
are, we let the robot transition to active attraction to the state
point if it is within 10 cm distance.

We connect the current state and the next desired one
with a straight-line trajectory, assuming the absence of
obstacles. For trajectory tracking, we employ a relatively
low impedance (of max. 600 N/m), allowing safe physical
interaction. We apply online attractor distance modulation
[7] to allow a reactive following with a limit on the force
exerted by the robot according to

x̂ = x0 + α(xg − x0) 0 ≤ α ≤ 1 (2)

α̇ =
vref

∥xg − x0∥
1

1 + ∥x− x̂∥/l
(3)

where α determines the progress of the linear trajectory, l
the equivalent tracking error that makes the progress rate to
drop to half, and vref (of 0.3 m/s) is the desired Cartesian
linear velocity.

C. Disagreement Detection

Intuitively, disagreement can be detected based on interac-
tion force/torque, or deviations from the expected trajectory.
The two are coupled by the set robot impedance(s). Alter-
natively, we can detect disagreement based on the human
virtual work, the work they would do if the robot would
not exert a force. In contrast to reacting to the actual work
the human does [3], this also detects disagreement when the
human keeps the robot from moving.



Looking at Eq. (1) and neglecting, for simplicity, the robot
accelerations and velocity, the external force is displacing
the robot according to fext = −K∆x. This means that
we can estimate the virtual work done by the external
forces as Eext = −fext∆x = fTextK

−1fext. This equation is
meaningful as long as the stiffness is positive. Considering
that the injected external energy can only be estimated as a
function of the norm of the external force (and controlled
stiffness), we assign a negative value to our disagreement
constant γ every time the external force is beyond a safety
threshold f thext and positive otherwise. The stiffness changes
according to

K̇ = sign(γ)Kmax/∆ttransition. (4)

The stiffness value will saturate when it goes beyond the
set max limit. The hyperparameter ∆ttransition regulates the
desired stiffness rate during the negotiation phase on whom
has fully control of the task. If an external force was applied
unintentionally, as long as the interaction was not longer than
∆ttransition, then the impedance has not dropped entirely to
zero and hence the passive mode is not activated. When the
force drops again below the safety threshold, positive γ of
Eq. (4) will ramp the stiffness back up to the maximum. This
hysteresis time band helps to prevent unintentional switching
from robot to human control [8]. Once the impedance on the
trajectory the robot was following has become zero, the robot
changes to passive mode. From now on, it keeps track of its
proximity to the states it has stored in its model. The robot
transitions back to active mode, i.e., γ becomes positive,
when it detects itself in a state (other than the one it just
came from) where it knows what action to take.

III. EXPERIMENTAL VALIDATION

We test our general framework on the pick&place task
shown in Fig. 1. The cup can be moved to one of the other
coasters, but our robot has no information on them or any
prior on how it might move. For a parameterized behavior,
knowledge of the environment, such as where the coasters
are, would improve generalizability. But just for showing
the use of interactive learning with disagreement-awareness,
we test in a fixed environment, only using the end-effector
position and external force data.

We asked five people to teach the same task of pick&place
of Fig. 1. Their expertise in robotics ranged from beginner to
expert. The goal was to challenge the algorithm robustness
with all possible interactions, from under to over-confident.
The participants first showed the robot to place the cup
on one of the other coasters, with an arbitrary number of
intermediate states. Next, they altered the trajectory to pass
through at least one additional or alternative state. At least
once, they were asked to steer the robot to another coaster, a
new goal state. Each participant was asked to disagree with
the robot at least once, moving the robot to a different point
in space, unknown and known, in each of the following ways:

• moving the robot in a different direction w.r.t. the
trajectory followed initially,

• stopping the robot on the trajectory it is executing,

Fig. 2. Position, resultant force and stiffness of the end-effector during an
action that is corrected to a new position in space on the trajectory the robot
was executing. The colors in the position plots indicate x (blue), y (orange)
and z (green) respectively. The phase bar shows first the robot is in control.
Upon detecting disagreement, the control transferred to the human.

• making the robot move over a state without stopping
there, teaching it to move to a further lying state instead.

Figure 2 shows the position and force result of a disagree-
ment case. A new state is learned on the executed trajectory.
It is a typical force profile for all cases of disagreement.
Cases in which a state is added in a different region in
space generally only show a higher force peak. After the
disagreement phase, the human is free to teach the robot a
new state, which it registers when its motion is stopped. This
is observed at t = 96.7s. After that, we see the the force on
the end-effector increase again. Since the robot has arrived
in a state it had not seen before, the user is performing a
kinesthetic demonstration to show the robot what it should
do the next time it arrives in the state that was just observed.

Less experienced users struggled considerably more with
deciding on their preferences and remembering them. While
they could teach the robot the same things, they experienced
increased difficulty. They tended to be more surprised when
the robot would activate to start moving towards a state it
had recognized as close. We let that be the robot’s way
of asking the human: “is this where you want to go?” But
less experienced users reflexively let go, or at least did not
immediately resist the robot, which the robot would interpret
as confirmation, until the human would actively disagree
again. This led to some confusion, stiffness going up and
down and some additional interaction forces. However, when
the users understood they were basically negotiating with the
robot, they could successfully push their point and make the
robot understand.

Figure 3 shows a state set that is learned with an in-
experienced user. At the start, the robot only knows the
state marked “t=0.0”. Each state is marked with the time
it was added to the robot’s state set. The recorded end-



Fig. 3. States and trajectories from which they were observed colored in
order of learning from dark to light. Time stamps show when a state was
added to the robot state space.

effector trajectories are also shown in the figure. Both states
and trajectories are color coded a lighter shade for each
newly observed one. The figure shows the new states learned
on the demonstrated trajectories. Changes in preferred state
sequence could be demonstrated with smooth trajectories
made possible by the smooth mode transitions, and once it
was recognized that new behavior was being demonstrated,
the robot lets the human demonstrate without interference. A
video of the experiment, as well as our code, can be found
in our GitHub repository1.

IV. DISCUSSION

By responding to interaction forces by changing the
impedance and sending haptic cues on model updates, there
is two-way communication between the human and the
robot in the physical interaction. This communication allows
intuitive mode switching between human and robot control
without taking the human attention off the physical task, the
way pressing a button would do. We expected this to make
the interaction intuitive for users. Some of the users who
tested our framework agreed. On the other hand, we also
received the remark that switching at a button-press better
disambiguates for the human when the robot is accepting
the demonstration. A future study is necessary to compare
and evaluate the intuitiveness of our implicit mode switching
w.r.t. explicit switching, with a more representative group of
subjects.

The comfort experienced with the mode switching and
reactivation on model recognition varies with people’s ex-
pectations and preferences. When and how fast (or slow)
the robot responds currently depends on a number of preset
variables. Ideally, these variables, or a more general model,
defining the interaction and learning dynamics should be
learned to match people’s individual preferences.

In the current setting, the robot remembers every state it
has seen from the moment we set it to start learning. At
every point in its state space, it has stored a corresponding
subsequent state it was shown to go to. For some participants,

1https:\github.com/franzesegiovanni/franka_human_
friendly_controllers

it was harder to remember the states and sequences they had
taught the robot. Indeed, it may not always be desirable for
the robot to remember all it has seen in the past. How and
what to selectively forget is out of the scope of this study.

The disagreement detection in the presented implemen-
tation is based on a force threshold. Hence is would also
trigger if a user is pushing in the direction the robot is
going, e.g., to speed up the movement. This issue can be
resolved by additionally considering the direction of the
force. Similarly, for tasks requiring applying a force to an
object or the environment, the disagreement detection will
need to be modified to consider the difference to the expected
force.

V. CONCLUSION AND FUTURE WORK

With the presented framework, we showed how to
smoothly transition between letting the robot execute the
task and demonstrating alternative behaviors. By actively
recognizing when the human is demonstrating, in contrast
to only letting the human take the lead during execution [3],
the task execution can be interactively corrected using the
given human feedback.

For generalization, states can be parameterized with re-
spect to objects’ reference frames. That introduces the ad-
ditional complexity of solving the possible ambiguity in the
selection of the right frame for the given goal [9]. Further-
more, the linear trajectory assumption defined in Eq. (2) can
be relaxed and a nonlinear trajectory or a dynamical system
can be learned during the kinesthetic teaching interaction
[4]. For this reason, we believe that the presented framework
opens up many further directions of future work, as it allows
online learning of (parameterized) high-level pHRC policies
on real hardware with real (non-expert) users in the loop.
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