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Abstract
This article investigates bypassing the inversion steps involved in a standard litho-type classification pipeline and performing
the litho-type classification directly from imaged seismic data. We consider a set of deep learning methods that map the
seismic data directly into litho-type classes, trained on two variants of synthetic seismic data: (i) one in which we image the
seismic data using a local Radon transform to obtain angle gathers, (ii) and another in which we start from the subsurface-
offset gathers, based on correlations over the seismic data. Our results indicate that this single-step approach provides a faster
alternative to the established pipeline while being convincingly accurate. We observe that adding the background model as
input to the deep network optimization is essential in correctly categorizing litho-types. Also, starting from the angle gathers
obtained by imaging in the Radon domain is more informative than using the subsurface offset gathers as input.

Keywords Deep Learning · Litho-type classification · Seismic inversion

1 Introduction

Machine learning techniques are becoming increasingly
popular in the field of seismic data analysis. The specific
focus of our work is on the task of supervised classification,
for which a brief, general introduction can be found in
[22]. Convolutional neural networks (CNNs) have been
successfully used as supervised classifiers for predicting
physical properties of rocks such as seismic impedance
[8], subsurface elastic parameters [35], or petrophysical
properties [7]. In this work we also consider a set of
deep-learning-based methods, that learn through a CNN the
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mapping from preprocessed seismic responses directly to
their associated litho-types.

Lithology identification is an important step in reservoir
characterization because it often controls the distribution
of petrophysical properties. The classification of lithology
is usually carried out using well logs, cores, and outcrops
available from the area of study. There is a plethora of
literature on various statistical methods such as discriminant
analysis [24, 30], artificial neural networks [3, 28], and
fuzzy logic [5] in lithology classification. All these
methods use a training dataset in which observed data
and corresponding targets (lithology) are fully known.
Using the training data, a classifier is trained to infer
target membership for the unlabeled data. Established
works for litho-type classification are based on Bayesian
analysis of seismic amplitudes, e.g. [4, 31]. A number
of different implementations of this method exist, e.g.
[10, 31]. These methods typically generate angle gathers
from seismic data through an imaging process [25],
followed by calibration using existing log-data [32]. An
iterative procedure estimates the wavelet at the well
and performs the elastic inversion. Typically, a Bayesian
litho-type classification follows the inversion procedure.
The classification of lithology using the inverted elastic
properties is multivariate in nature, which poses a significant
challenge in its implementation. A modified Bayesian
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Fig. 1 Comparative diagram. Top: the baseline seismic inversion
approach starting from an imaging process, followed by estimating the
wavelet at the well, a time-consuming elastic inversion, and finally
litho-type classification from estimated elastic parameters, followed
by the verification step. Bottom: the proposed deep learning approach

that aims at solving the seismic inversion problem in one step. We start
from a local imaging process, where we use either subsurface-offset
gathers or angle gathers. These together with a background model
obtained from the well-log, form the input of a deep network classifier
which predicts litho-classes to be verified

approach known as Naive Bayes [21], which assumes
independence between the variables, is easy to implement
and provides good results. In this work, we apply both the
full Bayesian and the Naive Bayes approach as baselines.

Here, we consider a set of deep learning methods inspired
by image segmentation and image classification literature
[20, 23]. We compare the considered deep learning methods
with an advanced elastic inversion approach, performing a
non-linear elastic inversion based on a local full-waveform
inversion (FWI) in the tau-p domain, which provides an
estimate of the elastic parameters in the reservoir area
[15]. These elastic parameters form the input of a Bayesian
inference process to determine the litho-types. We evaluate
the estimated litho-types against the petrophysical analysis,
here referred to as the ground-truth labeling. Throughout
this paper, we call this process the baseline approach,
depicted in Fig. 1 (top). As an alternative approach to
this, we propose a one-step algorithm, which bypasses
the individual steps of elastic inversion and litho-type
classification. In the proposal, as in the baseline approach,
we start from the seismic data. We perform an imaging
process to obtain either angle gathers [25], or alternatively,
subsurface-offset gather responses [29]. Note that the
subsurface-offset gathers implicitly store angle-dependent
information in the offset data. These responses represent
the input of a deep-learning pipeline that maps them
directly to corresponding litho-types. To solve the inversion

problem without ambiguity, we also use background models
as prior information and input these into the considered
deep-learning pipeline. Figure 1 (bottom) depicts the deep
learning proposal. The method for obtaining background
models is similar in both the baseline and the deep
learning approach. These background models represent
prior geologic knowledge obtained from typical seismic
velocity analysis. For the purpose of this paper, we create a
synthetic earth model based on the “Book Cliffs” geological
model, derived from the Book Cliffs outcrop in Colorado,
Utah (US). We use this model to evaluate the deep learning
approach and the baseline approach. In both cases, we
evaluate the predicted litho-types by comparison against
the ground-truth labeling. Although a direct comparison
between the baseline and the deep learners is not possible
due to the nature of the data processing, we evaluate both
approaches as transparent as possible.

1.1 Naming conventions

Throughout the paper, we refer to “model” as the earth
geophysical model. We use the names “learner” or
“classifier” for the machine learning methods and in specific
the deep learning networks. We denote the litho-types
predicted by the learners as “labels” or “targets”. We use the
terms “classes” and “litho-classes” to refer to the litho-types
discriminated by the considered classifiers.
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2 Baseline: FWI and Bayesian classification

For the baseline approach, we carry out the estimation of
lithology from seismic data in two steps. Initially, we invert
the global seismic data to estimate the elastic properties,
followed by statistical classification of lithology using
inverted elastic properties and well logs [1]. In the present
work, we use local 1.5D elastic full-waveform inversion
(FWI) to invert the seismic data, and we map the lithology
using a Bayesian classification method [10].

2.1 Data description for the baseline

The dataset used in this article is based on the “Book Cliffs”
geological model, derived from the outcrop in Colorado,
Utah (US). The Book Cliffs model was initially built
tetetyukhina2014acoustic to represent a realistic reservoir
layer containing 8 different litho-types. This model was
downscaled by [11] and changed to have improved geologic
structures that contain 12 litho-types with unique vp (p-
wave velocity), vs (s-wave velocity), ρ (density). Typically,
in lithology prediction, a rough separation of litho-types into
3-4 groups is defined based on physical properties of rocks
[34]. In our work, we group these 12 litho-types together to
represent 4 different classes, each with distinct properties,
and increasing clay content: ‘coal’, ‘sand’, ‘sandy-shale’,
and ‘shale’. Based on the lithological model, we generate
the model for the compressional (p-wave) velocity, shear-
wave (s-wave) velocity, and density of the rock (vp, vs

, ρ) and upscale it to the seismic frequency (60 Hz)
using Backus averaging [2]. The upscaling process brings
a spread in the vp, vs , ρ, as shown in Fig. 2. It is
evident from Fig. 2 that the litho-classes correspond to
well-separated ranges of values. Although in reality, the
classes are not well-separated, the Bayesian methods work
by calculating posterior probabilities for every class and
assigning the class with the highest posterior probability.

Fig. 2 Clustering of rock properties: The rock-physics template for
the Book Cliffs model with 4 lithologies. The values are colour-coded
with litho-types. The litho-types are well separated across ranges of
values

If the data is highly overlapping, different classes may
have similar posterior probability, thus greatly affecting
the classifier’s performance. Therefore, here we consider
a more idealistic case. In our synthetic experiment, we
define a ground-truth model that contains the three elastic
properties of rocks: vp, vs , and ρ measured at different well
locations, and interpolate these spatially. Figure 3 shows the
sampling of the locations along which we define the three
data subsets we use for training, validating, and testing our
classifiers.

2.2 Full-waveform inversion

The inversion scheme applied in this paper was developed
by Gisolf and an den Berg [16] and more extensively
described by Gisolf, Haffinger, and Doulgeris [17]. The
method has been applied in various studies for the purpose
of reservoir-oriented seismic inversion for synthetic data
[12]. This inversion scheme has been shown to provide
better quantitative images of the subsurface for both
synthetic and real-field data [13, 26, 27]. The inversion
uses a wave equation based approach on pre-stack AVO
(amplitude versus offset), or AVP (amplitude versus ray-
parameter) information, and it solves locally the 1.5D full
elastic wave equation, in conjunction with inverting for the
elastic parameters: compressibility (κ), shear-compliance
(M) and density (ρ).

For the application of the inversion scheme on our
considered Book Cliffs model, we generate synthetic data
in the tau-p domain over this model. For this, we use the
Kennett invariant embedding method [19], for 10 different
ray-parameters, or horizontal slowness parameters. The
highest ray parameter is such that on the outermost trace
the maximum angle of incidence is 42 degrees. We make
this choice because in real data we never have angles that

Fig. 3 The sampling of the data: We sample snippets to create the
training, validation, and test sets. For each set we sample overlapping
snippets of fixed length along the highlighted red lines
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Fig. 4 Inverted elastic properties. Top: Our modified Book Cliffs model with 4 litho-types. Middle: Inverted compressibility (κ). Bottom:
Inverted shear-compliance (M). We use full-waveform inversion to invert for the elastic properties

are more than 40 degrees, and we know that FWI can suffer
from missing angles. This allows us to test the limitations of
the learning approaches in terms of missing angles.

For the modeling, we use a zero-phase band-pass wavelet
with a maximum frequency of 60 Hz. Figure 4 shows the
synthetic data after inversion. The inversion reconstructs
the general structure of the lithofacies model, however, it
fails to resolve the thin coal seams. In addition, in some
places, the lateral continuity is missing. This may be due to
the application of the inversion on individual common mid-
points (CMP’s) independently. An accurate estimation of
density requires a broad angle range (> 45 degrees). Given
that the synthetic modeling contains less than 45 degrees,
we did not invert for density.

2.2.1 Full-waveform inversion details

In this study, we use an inversion based on the wave
equation on pre-stack AVO, or AVP. We solve the 1.5D full
elastic wave equation locally, in conjunction with inverting
for the elastic parameters: compressibility κ and shear
compliance M , or their inverse: bulk modulus K and shear
modulus μ. If data quality permits, also density ρ can be
inverted for.

FWI parameterization In this inversion scheme, the outputs
are the contrast in shear compliance M = 1/μ (μ is
the shear modulus), compressibility κ = 1/K (K is

the bulk modulus) and bulk density (ρ). The properties
actually inverted for are the normalised relative contrasts
of the absolute properties against very smooth background
properties (κ0, M0, ρ0). The background medium is a very
important aspect of the inversion as the incident wave field
and Green’s function are calculated in this medium. It has
to be smooth because we rely on the WKB (Wentzel–
Kramers–Brillouin) approximation, which is only valid in
smooth mediums. Additionally, it should be a smooth
heterogeneous background medium that is non-reflective
over the data bandwidth. On the other hand, one would
like to have as much information as possible in the
background, because it represents the starting model for the
inversion, and to keep the contrasts χ as low as possible to
reduce the non-linearity of the problem. However, for the
current state of the art, we need to keep the backgrounds
non-reflective over the bandwidth of data. Usually, low
wave-number backgrounds are derived from well logs and
interpolated between well logs. That is another reason
why the background should have only a low wave-number
content.

Forwardmodelling The forward modelling in the inversion
is based on the scattering approach for calculating wave
propagation in inhomogeneous elastic mediums. This
makes use of the integral formulation of the wave equation.
For the purpose of matching it to the observed data, we
use the data equation, which is a subset of the full integral
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equation, or the object equation. We show the data equation
and object equation for the simple single parameter acoustic
case:

Pdata(xr , xs , ω) =
∫
x∈D

(
G(xr , x, ω)χ(x)

Ptot (x, xs , ω)

)
dx (1)

where G(·) is Green’s function, xr and xs are the
receiver location and source location, respectively, ω is the
frequency. The integral over x is an integral over the whole
object domain. Equation 1 predicts the data recorded at the
surface Pdata in terms of the wave field transmitted by a
source that propagates to every point in the subsurface. The
wave field is transmitted back from the points where the
contrast χ is non-zero to the surface through the smooth
background medium. The contrast functions χ are:

χ(x) = 1 −
[
c0(x)
c(x)

]2

(2)

where c(x) is an unknown subsurface acoustic wave-
velocity model and c0(x) is the known background medium.
On the other hand, the object domain equation predicts the
total wave field at each grid point in the subsurface:

Ptot (x, xs , ω) = Pinc(x, xs , ω) +
∫
x′∈D

(
G(x, x′, ω)

χ(x′)Ptot (x′, xs , ω)

)
dx′ (3)

Eq. 3 can be used to estimate the total wave field with all its
complex propagation, given the contrast function is known.
Equation 3 can be substituted in Eq. 1 to obtain the recorded
seismic data in terms of subsurface properties.

Optimization Scheme The inversion is an iterative process
where the linearized inversion of the recorded data is
alternated with the re-calculation of the total wave field in
the object domain (Fig. 5). The inversion kernel and the

Fig. 5 Iterative inversion scheme for Full-waveform Inversion.
It consists of two loops, an inner loop that inverts for the elastic
parameters for a given wave field in the object domain, and an outer
loop that updates the estimated wave fields by adding a higher order of
scattering after every inner loop iteration

re-calculation of the total wave field are based on the full
elastic wave equation. These are carried out such that every
re-calculation brings in a higher order of multiple scattering
in the modelled data. Optimization is needed to ensure non-
divergence of the field updates. In the context of the iterative
inversion scheme, Eqs. 1 and 3 are solved alternatively for
the elastic case. The process is augmented by using the Born
approximation, where the incident wave-field propagating
in the background medium is subjected to a simple linear
inversion to estimate the approximate subsurface properties.
These approximate subsurface properties are then used to
update the total field in the domain using equation Eq. 3.
This process is repeated until the estimated subsurface
properties and the updated total field do not change
anymore.

2.3 Bayesian classification

Our considered baseline approaches follow [4, 31] and rely
on a full Bayesian classifier and a Naive Bayes classifier.
For classification, one is interested in calculating the class
Cj (litho-types) probabilities, given the elastic properties
X (observed data), and assigning the class with the highest
posterior probability:

argmaxCj
P (Cj | X=x)

= argmaxCj

P (X=x | Cj )

P (X=x)
P (Cj ), (4)

where P(Cj | X=x) is the posterior probability of the jth

litho-type given the elastic parameters. P(Cj ) is the prior
litho-type probability, and P(X=x | Cj ) is the likelihood
of the elastic property ( X=x ) to be from the jth litho-type.
P(X=x) = ∑m

k=1 P(X=x | Ck)P (Ck) is the probability
of the elastic property. If we have n elastic properties for a
given depth sample, the posterior in Eq. 4 becomes:

P(Cj | X1=x1, ..Xn=xn)

= P(X1=x1, ..Xn=xn | Cj )

P (X1=x1, ..Xn=xn)
P (Cj ). (5)

Eq. 5 provides the full Bayesian treatment by including
the correlation among all elastic properties, giving rise
to a multivariate distribution conditioned on the classes.
We estimate this posterior from the training data by using
kernel density estimation (KDE) with Gaussian kernels. A
simplified approach of Eq. 5 is the Naive Bayes classifier,
which assumes independence among elastic properties:

P(Cj | X1=x1, ..Xn=xn) (6)

=

n∏
i=1

P(Xi=xi | Cj )

∑m
k=1

(
P(Ck)

∏n
i=1 P(Xi=xi | Ck)

)P(Cj ),

355Comput Geosci (2022) 26:351–364



Fig. 6 Estimated bivariate
distributions per litho-class.
Trained bivariate distributions
for the full Bayesian
classification for the considered
litho-types in the Book Cliffs
model. We perform the training
using KDE (Kernel Density
Estimation) with Gaussian
Kernels. In the Naive Bayes
case, these become univariate
distributions

where m is the number of litho-types. The above posterior
only requires evaluating univariate distributions conditioned
on the classes. As before, we estimate these from the
training dataset using KDE with Gaussian kernels. We
estimate the target priors P(Cj ) by counting the number
of instances for each target in the training dataset and
normalising this to 1.

For the full Bayesian treatment we estimate a bivariate
density (P(κ, M)), whereas for the Naive Bayes we obtain
univariate distributions (P(κ)P (M)). We do not expect a
significant difference between the full Bayesian and Naive
Bayes classifiers because, in our case, we consider only
two inverted elastic properties: compressibility (κ) and
shear compliance (M). Figure 6 shows the estimated 2D

probability densities for the four litho-type classes.

3 Seismic litho-class estimation with deep
learning

For the deep learning approaches, we employ the same
“Book Cliffs” geological model described in Section 2.1.
This is a single model corresponding to a single ground truth
lithology output. Deep networks require numerous training

examples (models) with their associated labels (ground truth
lithologies). To overcome this bottleneck we propose to
process the data as described below.

3.1 Data description for deep learning

Starting from the same geological model as for the baseline,
we create a large number of samples to be used for training
the deep-learning classifiers. The dataset creation process
depicted in Fig. 7 is as follows: we construct snippets of
subsurface models from a range of possible models that
we expect in our geology. A snippet is a very small piece
of 1D model (say 150 meter) containing a few layers of
elastic parameters. Each snippet is extended by including
an overburden, creating a realistic-scale 1.5D model.
However, the overburden has smooth velocity variations.
Subsequently, we generate a seismic response and apply
the backpropagation and imaging process to arrive at the
local subsurface gathers, either in the linear Radon domain
or in the subsurface offset domain. These local responses
are used as input for the training stage. By this process,
all subsurface responses have natural limitations from the
overburden and surface acquisition parameters (aperture,
seismic source signal, etc.).
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Fig. 7 Deep learning dataset creation: (i) We select a vertical cross-
section. (ii) Along this section we crop fix-length snippets. (iii) These
snippets have associated litho-classes, representing the ground truth
labels for the deep-learning method. (iv) The original snippet is blurred
and subsampled, and this creates the background model for this spe-
cific snippet. (v) The same input snippets together with a simple

overburden are used to simulate seismic responses. (vi) The seis-
mic responses are then either (vi.1) imaged via the linear Radon
domain to obtain angle gathers, or (vi.2) cross-correlated to obtain
subsurface-offset gathers. These together with the background models
(iv) represent the inputs to the deep networks

Figure 7 shows all steps involved in dataset creation: (i)
We select a vertical cross-section (a “well-log”). (ii) Along
this cross-section we crop fix-length snippets. (iii) The litho-
classes corresponding to these snippets are used as ground
truth for the deep-learning pipeline – the learning labels.
(iv) We blur and subsample the original elastic properties
in the snippet, vp, vs , ρ to form the background model.
For fairness of comparison, we use the same procedure in
the baseline method for defining the model prior. (v) We
add a simple overburden to each snippet containing elastic
properties and simulate the expected seismic responses
through this overburden. This imposes typical offset/angle
limitations to the data and includes typical imaging artifacts.
(vi) Finally, we image the simulated seismic responses
giving rise to two different datasets:

(1) Book-Cliffs angle: We preprocess the seismic data
corresponding to each location along with the snippet,
via the linear Radon domain, to obtain the angle
gathers [9, 33]. Note that we refer to these as “angle
gathers” while in principle they are horizontal ray
parameter gathers.

(2) Book-Cliffs offset: We define subsurface-offset
gathers as cross-correlations between the forward-
propagated source fields and the backpropagated
seismic responses [6, 29]. This is done via depth
migration, and specifically in our case WEM (Wave
Equation Migration) using one-way recursive prop-
agation operators, and applying a subsurface offset
imaging condition at each depth level.

The considered deep-learning classifiers use the background
model as input as well as a dataset-specific input: angle
gathers or subsurface-offset gathers. The true litho-classes
represent the learning targets. We sample the three data
subsets: training, test, validation at the same locations as
for the baseline classifiers (Fig. 3), where each location
contains ≈ 1, 900 data tuples composed of: background
model, imaged seismic inputs, and litho-classes.

3.2 Deep learning approaches

For deep learning methods, the few hundred samples avail-
able represent a relatively small dataset size. Because of
this, we consider a set of small network architectures,
selected based on their popularity for visual classification
tasks resembling our litho-type classification task. LeNet
[20] is a standard, commonly-used architecture for clas-
sification on small datasets, while UNet [23] is the most
popular segmentation architecture to date. The lithology
classification implies predicting a class label at every input
location which is similar to image semantic segmenta-
tion. However, our outputs are 1D vectors of litho-types
rather than 2D segmentation maps. We experiment with the
following architecture variations: (a) LeNet-2D: a 2D net-
work inspired by the popular LeNet-5 architecture [20], as
depicted in Fig. 8.(a); (b) LeNet-1D a 1D version of the
same network depicted in Fig. 8.(b), where the 1D convo-
lution is performed across the angles when using the angle
gathers, and across the offsets when using subsurface-offset
gathers; (c) UNet-2D a light-weight version of the network

357Comput Geosci (2022) 26:351–364



Fig. 8 Deep learning methods: (a) LeNet-2D inspired by [20] where
the background and input seismic data are processed on separate
branches; (b) LeNet-1D is similar to the LeNet-2D but using only 1D
convolutions; (c) UNet-2D inspired by [23] where the seismic inputs

and the background models are concatenanted at input level; (d) UNet-
1D is similar to the UNet-2D while performing 1D convolutions. The
yellow blocks represent the inputs/outputs of the learners, the blue
blocks are convolutions, and the gray blocks are fully-connected layers

proposed by [23], shown in Fig. 8.(c); and (d) UNet-1D
a UNet-inspired [23] 1D network displayed in Fig. 8.(d),
where again the 1D convolution is performed across the
angles / offsets dimension. Given the limited depth of the
networks, for all architectures we use filter sizes of 13 × 13
px, 13×1 px respectively, to increase the receptive field size.

We feed into the networks the input data and the
background model and predict the associated ground-truth

litho-classes. In the LeNet-like architectures, we add the
background model via fully-connected layers into the
network and concatenate its output with the downstream
network features. The UNet-like networks are fully-
convolutional, thus we concatenate the background model
to the seismic data as input to the network. For the 2D UNet
we replicate the background model spatially to match the
resolution of the seismic data.

Fig. 9 Visualization of baseline predictions: Example of true and
inverted elastic properties at common-mid-point 200, together with
the predicted litho-types versus the true litho-types. The predictions

are made using full Bayesian and Naive Bayes classification over the
inversion results for M and κ (inverted: blue, true: red). The Naive
Bayes has marginally better predictions
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4 Experimental analysis

We evaluate the considered deep network architectures:
LeNet-2D, LeNet-1D, UNet-2D and UNet-1D on the two
versions of the Book Cliffs data: Book-Cliffs angle and
Book-Cliffs offset. We compare these results with the
baseline: implementing the FWI (full-waveform inversion)
followed by a full Bayesian classifier or Naive Bayes

classifier, respectively. All the considered methods are
trained on the same training data split and evaluated on the
same validation/test split, sampled at the locations in Fig. 3.

4.1 Baseline results

The baseline lithology classification starts from the inverted
elastic properties shown in Fig. 4. We apply the full

Table 1 Comparative numeric evaluation: Class-normalized accuracies on the two datasets for the considered network architectures as well as
the two baseline methods

Book-cliffs accuracy

FWI + Naive Bayes 73.00%

FWI + Full Bayesian 72.75%

# Params. Book-cliffs offset

Only background Train Val. Test

LeNet-2D 112k 96.86% (± 0.64) 73.86% (± 0.91) 79.09% (± 1.97)

LeNet-1D 41k 98.93% (± 0.22) 75.66% (± 3.15) 79.39% (± 3.28)

UNet-2D 261k 97.47% (± 1.25) 81.89% (± 5.03) 82.30% (± 4.54)

UNet-1D 85k 98.80% (± 0.59) 77.93% (± 5.75) 81.99% (± 6.31)

No background

LeNet-2D 122k 96.23% (± 0.73) 62.07% (± 1.00) 68.61% (± 0.82)

LeNet-1D 41k 96.89% (± 0.87) 62.62% (± 0.92) 69.01% (± 0.40)

UNet-2D 261k 99.63% (± 0.38) 63.01% (± 3.00) 70.77% (± 2.39)

UNet-1D 85k 98.07% (± 2.90) 66.82% (± 1.88) 71.05% (± 3.41)

With background

LeNet-2D 145k 96.69% (± 3.76) 65.61% (± 1.59) 73.97% (± 1.72)

LeNet-1D 64k 98.66% (± 0.08) 66.02% (± 1.47) 72.17% (± 1.83)

UNet-2D 261k 96.22% (± 2.91) 78.39% (± 3.79) 83.63% (± 3.81)

UNet-1D 85k 98.36% (± 1.86) 76.80% (± 6.77) 84.63% (± 1.66)

# Params. Book-cliffs angle

Only background

LeNet-2D 145k 93.12% (± 7.42) 74.37% (± 1.49) 78.89% (± 1.58)

LeNet-1D 64k 98.41% (± 1.19) 76.44% (± 3.13) 79.21% (± 1.91)

UNet-2D 261k 98.08% (± 1.02) 79.08% (± 5.49) 83.14% (± 4.50)

UNet-1D 85k 97.73% (± 2.49) 79.20% (± 7.61) 81.50% (± 4.78)

No background

LeNet-2D 122k 95.71% (± 1.10) 61.28% (± 1.51) 66.94% (± 1.13)

LeNet-1D 41k 95.36% (± 1.62) 62.15% (± 1.10) 69.52% (± 0.76)

UNet-2D 261k 99.78% (± 0.07) 65.30% (± 1.32) 69.81% (± 1.75)

UNet-1D 85k 99.54% (± 0.36) 66.00% (± 0.48) 71.94% (± 2.28)

With background

LeNet-2D 145k 95.55% (± 1.46) 65.56% (± 0.60) 72.05% (± 0.83)

LeNet-1D 64k 95.90% (± 2.30) 66.32% (± 0.71) 69.12% (± 1.31)

UNet-2D 261k 98.93% (± 0.55) 82.48% (± 7.10) 83.51% (± 4.35)

UNet-1D 85k 95.88% (± 0.92) 81.63% (± 3.12) 87.08% (± 1.08)

We evaluate also the added value of the background models. The results indicate that starting from the angle gathers (Book-Cliffs angle), is slightly
more beneficial, especially for the fully-convolutional networks. Overall, the UNet classifiers on Book-Cliffs angle achieve the best generalization
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Bayesian and Naive Bayes classifiers to these inputs.
Figure 9 shows the predictions made on common-mid-
point 200 for the full Bayesian and Naive Bayes classifiers,
along with the true lithology. The average accuracy of both
classifiers is ≈70-75%, however, Naive Bayes outperforms
the full Bayesian classifier for some targets, especially for
the ‘shale’ and ‘sandy-shale’ classes. The low accuracy
can be attributed to the imperfect inversion results used as
a starting point for the lithology classification. The true
parameters versus inverted parameters are shown in Fig. 9
(left).

4.2 Deep learning results

To bypass the inversion step in the baseline method, we
use deep networks trained on the training sets of our two
synthetic datasets: Book-cliffs angle and Book-cliffs offset.
We evaluate on the corresponding test sets, where we set the
hyperparameters using the validation sets.

All deep networks are trained for 500 epochs, using the
standard Adam optimizer and batch sizes of 64 samples.
We used a scheduled learning rate starting from 0.003 and
reduced at epochs 100, 200 and 300, and a weight decay
of 0.0001. We standardize the input data: both the imaged
seismic data and the background models, by making it
zero mean and unit standard deviation, using training set
statistics.

Table 1 shows the classification accuracies of the deep
learners: LeNet-1D, LeNet-2D, UNet-2D and UNet-1D
when compared to each other and with the baseline
methods. We also report the performance of the networks
with and without the background models, as well as
just using the background models. For all considered
classifiers, we measure performance as class-normalized
accuracies. For the deep learning classifiers, we also report
standard deviations over three runs and the number of
parameters. The two LeNet inspired networks perform on
par in terms of accuracy, while the UNet methods are
more accurate on both datasets, both with and without
background models. Adding the background models as
input to the network is beneficial for all architectures, and
more specifically for the UNet architectures where it gives a
13-16% improvement in accuracy. Compared to each other
the UNet networks using 1D versus 2D inputs perform
approximately on par when considering the variance of the
learners across different initializations. The advantage of
the UNet methods may come from both having a fully
convolutional network incorporating translation invariance,
and from concatenating the background models earlier on in
the network rather than at the end through a fully-connected
layer. The deep network architectures obtain competitive
performance when compared to the baseline approaches,
however, it is difficult to reach a strong conclusion, as the
seismic data is processed differently between the baseline

Fig. 10 Class confusionmatrices: (a) The full Bayesian classification
with an average accuracy of ≈ 70%; (b) The Naive Bayes classifica-
tion with an average accuracy of ≈ 73%; (c) The LeNet-2D with an
accuracy of ≈ 73%; (d) The LeNet-1D with an accuracy of ≈ 69%; (e)

The UNet-2D with an accuracy of ≈ 83%; and (f) The UNet-1D clas-
sifier on the Book-Cliffs angle test data with and accuracy of ≈ 87%.
The Naive Bayes classifier outperforms the full Bayesian classifier.
The UNet classifiers display less class confusion

360 Comput Geosci (2022) 26:351–364



Fig. 11 Visualization of UNet-1D predictions: Results on the Book-
Cliffs angle test set. We display the true litho-types versus the pre-
dicted litho-types. Each color represents a litho-type. We can see the

predicted litho-types follow the true litho-types, which indicated that
the network is able to generalize well on our considered data

and the deep-network methods. We, additionally, test using
only the background models, and we find the deep networks
are effective at extracting the correct lithology class from
only the input blurred version of the elastic properties. This
may be due to the well-known ability of deep learning
methods to perform input deblurring.

Figure 10 shows the confusion matrices for the two
baseline approaches and for the deep learning methods
trained on Book-Cliffs angle. In the Bayesian approaches,

‘sand’ seems to be often misclassified as ‘shale’, and
‘coal’ as ‘shale’, while the LeNet-like networks display
a larger confusion for the class ‘coal’. For the UNet-1D
deep network, the errors are different: the most common
misclassification is ‘coal’ as ‘sand’. Although we train and
evaluate at the same locations in the Book Cliffs model,
these confusion matrices cannot be directly compared
between the baselines and the deep networks, because the
methods process the seismic data differently.

Table 2 Importance of background models: We evaluate the impor-
tance of the background model for the deep networks by considering
four cases: no background, using a constant background, using the

median vp, vs, ρ value of the blurred background per snippet, as well
as using the blurred background

Book-cliffs offset

No bg. Constant bg. Median bg. Blurred bg.

LeNet-2D 62.07% (± 1.00) 62.04% (± 1.13) 66.00% (± 3.53) 65.61% (± 1.59)

LeNet-1D 62.62% (± 0.92) 62.07% (± 1.09) 64.93% (± 1.74) 66.02% (± 1.47)

UNet-2D 63.01% (± 3.00) 59.19% (± 2.57) 67.55% (± 1.84) 78.39% (± 3.79)

UNet-1D 66.82% (± 1.88) 60.98% (± 1.29) 71.35% (± 6.75) 76.80% (± 6.77)

Book-cliffs angle

No bg. Constant bg. Median bg. Blurred bg.

LeNet-2D 61.28% (± 1.51) 60.09% (± 2.96) 64.44% (± 1.38) 65.56% (± 0.60)

LeNet-1D 62.15% (± 1.10) 61.93% (± 0.18) 65.22% (± 0.35) 66.32% (± 0.71)

UNet-2D 65.30% (± 1.32) 56.32% (± 0.15) 68.48% (± 4.22) 82.48% (± 7.10)

UNet-1D 66.00% (± 0.48) 61.25% (± 2.05) 73.88% (± 4.57) 81.63% (± 3.12)

We report accuracy over 3 repetitions on the validation set for both the Book-cliffs offset and Book-cliffs angle datasets. A constant background
across locations is detrimental to the classification, while the more informative the background is, the higher the accuracy.
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Figure 11 visualizes true and predicted litho-types over
the test set of Book-Cliffs angle when using the UNet-
1D learner. Each color represents one out of the 4 litho-
types: the predicted litho-types closely resemble the true
ones. The explanation for this exceptional performance
is that previous work shows that a shallow network can
successfully approximate the Zoeppritz equations used in
the FWI [14], and the FWI is an iterative process adapting a
set of parameters to a data fit, which is similar to the training
procedure of artificial neural networks. Additionally, our
data does not contain neighboring seismic interferences
and relies on informative background models. We conclude
that on this specific dataset the UNet-1D network can
generalize well. However, we do not know how well these
classifiers generalize to real seismic data, which is more
challenging, and when using less informative background
models.

4.2.1 Importance of backgroundmodels

Here we test the importance of the background models in the
deep learning methods. We consider four scenarios: using
no background, using a constant background obtained by

keeping only the background values at training location
CMP-100, and a background defined as a single median vp,
vs , ρ value of the already blurred background per snippet,
as well as the blurred background. We report validation
accuracies over 3 repetitions for both the Book-cliffs offset
and Book-cliffs angle datasets.

Deep networks are well-known to be able to perform
input deblurring, therefore the best results are obtained
when using the blurred background. Interestingly, in
Table 2, using a constant background is detrimental to
the lithology classification especially for the deep learning
methods where the background is processed earlier on in
the network such as the UNet methods. Moreover, for
the UNet-2D the background is replicated to match the
input data dimensions thus the network focuses more on
the background, and if this background is not informative
the accuracy suffers greatly. Just using a median value of
the blurred background allows the network to find better
solutions when compared to not using any background or
using an uninformative background such as the constant
background. For the deep networks the background plays a
stronger role than for the standard baselines, and therefore a
more informative background greatly improves results.

Fig. 12 Training curves: We show the training and validation losses
and accuracies of the four considered deep networks, when train-
ing on the Book-cliffs angle dataset and evaluating on the validation
set: (a) LeNet-2D, (b) LeNet-1D, (c) UNet-2D, (d) UNet-1D. The

LeNet-based architectures display a strongly overfitting behavior
where the training loss is nearly 0, while the validation loss is
increasing. The UNet-based networks are less prone to overfitting
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5 Discussion

There are a number of limitations to our current work.
The first one is the scarce amount of training data, which
entails the risk of having the deep learners overfit [18].
Figure 12 shows the training curves for the four considered
deep networks. The LeNet-based networks largely overfit
on the training data, while the UNet-based networks seem
to be less prone to overfitting. This could be due to the
reduced number of parameters compared to the LeNet-
based learners and also to the use of skip-connections
allowing the learners to replace parts of the network with
an identity mapping. A possible solution to overcome this
is using multiple earth models and creating a variety of
synthetic datasets to train on. However, this is an involved
task that requires strong geophysical expertise. The second
drawback is that the snippet-based simulation process for
creating the synthetic datasets – Book-cliffs angle and
Book-cliffs offset – covers only an ideal scenario where
the seismic responses do not suffer from large interference
caused by responses coming from neighboring layers. Also,
the background models that we used as priors are blurred
versions of the ground truth, which greatly helps in solving
the classification problem.

6 Conclusion

In our experimental analysis, we compare two networks
inspired by the popular LeNet-5 [20] architecture, and two
fully convolutional CNNs inspired by the UNet architecture
[23]. We compare these learners over two variants of our
data where the seismic responses are imaged either in the
Radon domain or in the subsurface-offset domain. Results
indicate that the fully convolutional networks, where the
background models are input earlier on in the network,
can more accurately solve the classification problem.
Moreover, we also find that preprocessing the data in the
Radon domain improves the classification. The discussed
approaches use different processings of the seismic data:
the deep learning classifiers rely on snippets cropped along
the depth direction in the model, while the baseline uses
the complete model. This means that the results presented
here should be carefully considered, as a direct comparison
between the baseline method and the deep-learning-based
methods is not possible. A more rigorous test of the deep
learning methods would be to apply them to real seismic
data. The lack of publicly available, large, seismic datasets
including well-logs and associated litho-type information
suitable for litho-type classification inhibits progress in the
field.
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