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SUMMARY

The National Highway Transportation Safety Administration (NHTSA) reports that
94-96% of the road accidents involve human error. These statistics make it seem
as if humans are terrible drivers. However, a different set of numbers paint a com-
pletely different picture. According to the United States Bureau of Transportation
Statistics, the failure rate of human drivers is 0.68 fatalities per 100 million kilome-
tres. This number is so low that autonomous vehicle manufacturers are having a
hard time proving that their vehicles are safer than human drivers. The safety ben-
efits of Driver Assistance Systems, autonomous vehicles, and other safety systems
are not being challenged here. However, it needs to be realised that a non-fatigued,
attentive human is one of the safest drivers we can have.

Automotive manufacturers and researchers have realised this fact and are now
shifting towards understanding how humans drive, to make their systems more
safe, efficient, and acceptable to humans who use them. This has brought the
age-old field of driver modelling back into the limelight. Researchers in this field
try to understand why humans drive the way they do and formulate mathemat-
ical models that can replicate human driving behaviour. Unsurprisingly, akin to
other fields in science, a theory of everything (for driving) has kept researchers busy
for decades. Several unified theories of driving have been proposed. For example,
the risk-threshold theory put forth by Näätänen and Summala proposed that hu-
mans try to maintain their perceived risk below a certain threshold. Gibson and
Crooks proposed that humans perceive a ‘Field of Safe Travel’ that comprises of all
the possible trajectories that a vehicle could take unimpeded. These motivational
theories could qualitatively explain driving behaviour in a unified manner, but
lack the specificity and operationalizability of quantitative mathematical models.
Quantitative driver models have traditionally adopted two main strategies. First
is the data-driven black-box approach, which provides little to no understanding
about the underlying motivations for human driving behaviour, and second is by
stitching together several models, each of which are based on a different under-
lying principle and are applicable in a different scenario. This has led to a rather
fragmented understanding of the underlying motivations for driving. Hence, to the
best of our knowledge, driver models are currently, either unified but qualitative,
or fragmented but quantitative.

The goal of this thesis is to take a step towards formulating a unified and quan-
titative driver model by operationalizing the qualitative motivational theories of
driving behaviour. One such motivational theory that showed potential to be oper-
ationalized was the previously mentioned risk-threshold theory proposed by Näätä-
nen and Summala. According to this theory, drivers try to maintain their perceived
risk, which was objectively defined as the product of the probability of an event
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xiv SUMMARY

occurring and the consequence of that event, below a threshold level. Here, proba-
bility refers to the driver’s belief about the probability of him/her passing through
a location in the upcoming seconds (look-ahead-time), and the consequence refers
to the ‘dangerousness’ of being at a particular location (cost map). This definition
of risk sounded a lot like the concept of consequence of noise in the field of sensori-
motor control. More interestingly, researchers in that field had already formulated
unified quantified models for simple limb movements. Hence, it was obvious that
these models and principles had to be borrowed from sensorimotor control and
applied to the field of driving.

In chapter 2, the first step was taken in this attempt to operationalize a moti-
vational theory by using sensorimotor control principles. An experiment was con-
ducted to empirically quantify the probability part of the risk equation. In the field
of sensorimotor control, the origin of this probability distribution of the future po-
sitions the limbs is attributed to the presence of noise in the sensors and actuators
of our body. However, in the field of driving there was no such study that empir-
ically quantified the driver’s belief about what possible positions the ego-vehicle
will occupy in the upcoming time interval. To address this gap, a driving simula-
tor experiment in which eight participants encountered 308 obstacles each, was
performed. These identical obstacles appeared at 77 (7 longitudinal positions, 11
lateral positions) different locations in front of the vehicle. The idea was that this
experiment would reveal what parts of the road guide obstacle avoidance, and con-
sequently expose where drivers think the ego-vehicle will be in the upcoming sec-
onds. Since, the obstacles at all the 77 locations were identical, the consequence of
hitting these obstacles was identical as well. This meant that the magnitude of the
subjective and objective response, that constituted the Driver’s Risk Field (DRF),
could be interpreted as the driver’s assumed probability of where the ego-vehicle
will be in the next few seconds. The subjective response was a numerical answer to
the question “How much steering do you think you need at this moment in time?”
and the objective response was calculated as the maximum absolute steering an-
gle. The results showed that the magnitude of the DRF decreased as the distance
from the ego vehicle increased, and could be modelled using the Gaussian function
in the lateral direction, and the power-law in the longitudinal direction. The results
also showed that the propagation of the width of the DRF along the longitudinal di-
rection resembled an hourglass shape, i.e., the DRF widened as the distance from
the ego-vehicle increased. More importantly, all participants responded to obsta-
cles that were placed beyond the width of the car. This implied that the DRF is
wider than the car-width and suggests the propagation of sensorimotor noise in
predicting the future positions of the ego-vehicle.

In chapter 3, the second step: combining the empirically quantified probabil-
ity with the consequence of the event i.e., a cost map representing the dangerous-
ness of the different elements in the environment, was taken. However, before this
could be done, the static DRF that was estimated in the previous chapter needed to
be upgraded to a dynamic DRF so that it could incorporate the effects of the mul-
tiplicative sensorimotor noise. Essentially, the dynamic DRF would now elongate
in the longitudinal direction with an increase in speed (assuming a constant look
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ahead time) and expand in the lateral direction as a function of absolute steering
angle. The resultant product was the risk estimate and was hypothesised to cor-
relate with the risk perceived by the drivers. This risk estimate was then used as
a ‘cost function’ in a threshold-based controller where the controller would only
take corrective action (steering and/or speed) when the risk estimate exceeded a
certain risk-threshold. The behaviour emerging from this DRF-based driver model
was compared to human driving behaviour in seven different scenarios (four road
scenarios: lane width change, curve driving, obstacle avoidance, and roadside fur-
niture; and three traffic scenarios: car following, overtaking, and negotiating on-
coming cars). The results showed that the trends shown by the model were coher-
ent with those exhibited by human drivers (reported in the literature). This sug-
gests that maintaining the ‘consequence of the human’s perception-action noise’
under a threshold level is an underlying principle for driver’s adaptations in speed
and lateral position to a wide variety of road and traffic conditions.

In chapter 4, the third step: testing the validity of the risk estimate in a real ve-
hicle, was taken. Although, human-like behaviour emerged from the driver model
that used risk estimate as a ‘cost function’, the hypothesis that the risk estimate
correlates with the perceived risk of the driver was yet to be tested. To address this
an experiment was performed where the participants’ actions and comments were
compared to the dynamic signal: risk estimate. The experiment was performed in
a real vehicle since it was essential that the drivers perceived realistic levels of risk.
Eight participants drove 5 laps manually and experienced 12 different laps of au-
tomated driving on a test track. The test track consisted of three sections: curve
driving, parked car, and 90-degree intersections. If the driver verbally expressed
risk or performed a takeover, that particular sector was labelled as risky. The results
showed that the risk estimate could predict manual driving behaviour (ρsteer i ng =
0.69, ρspeed = 0.64), as well as correlated with the driver’s perceived risk in curve
driving (r 2 = 0.98), and while driving past a car parked outside the lane boundary
(r 2 = 0.59). No conclusions could be drawn for the 90-degree intersections because
all the occurrences in this sector were rated to be safe by the participants, and had
a low risk estimate value. Hence there were no data points that had a high value
of risk estimate or a ‘risky’ rating by the participants. Despite the lack of data for
90-degree intersections, the results showed that the risk estimate was predictive of
manual driving behaviour, and perceived risk in automated driving.

Three overarching conclusions can be drawn from this thesis: (i) Drivers re-
spond to objects beyond the width of the car and lane boundaries. (ii) The com-
puted risk estimate constitutes a signal that correlates with the risk perceived by the
driver, and (iii) Human-like adaptations in speed and lateral position behaviour
emerge when the consequence of sensorimotor noise is maintained below a thresh-
old level. These results and conclusions point towards the fact that, in line with the
goal of this thesis, a unified quantitative driver model can be formulated using a
risk-based model (at least for the seven scenarios tested in this thesis).

However, these results and conclusions come with some limitations, which one
needs to be aware of before using these mathematical formulations. First, the DRF
only accounts for the obstacles in front of the vehicle. Hence it is not capable of
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reacting appropriately in a lane change scenario on a highway with multiple lanes.
Second, the DRF only responds to the danger posed by an object due to its phys-
ical presence, and does not account for the ‘tactical costs’. For example, it won’t
anticipate cross-traffic and slow down at an intersection or stop at a traffic light.
However, this can be easily resolved by adding artificial barriers at intersections
whose costs are context-dependent. Third, the traffic elements used in this the-
sis, although dynamic, were deterministic and non-interacting. Hence, the model
will have to be substantially upgraded before it can start ‘negotiating’ at unpro-
tected intersections and reacting acceptably to other interacting traffic. Finally, the
model is computationally inefficient and does not run in real-time. If the model is
to be used as a reference trajectory generator for automated systems, this practical
aspect will be an essential upgrade that will have to be made.

Despite these limitations, the DRF based driver model, and the risk estimate
are a step towards a theory of everything for driving. We hope that the mathe-
matical formulations proposed in this thesis become a part of larger theories (e.g.,
predictive processing theory) of driving and enhance not only quantitativeness of
these unifying theories but also the scientific understanding of human driving be-
haviour. Regardless of the future evolution of this DRF-based model, one thing is
for sure: we humans are aware of the consequence of noise in our sensorimotor
system and account for it while driving, similar to while performing simple move-
ment tasks.



SAMENVATTING

De National Highway Transportation Safety Administration (NHTSA) meldt dat 94-
96% van de verkeersongevallen te maken heeft met menselijke fouten. Door deze
statistieken lijkt het alsof mensen vreselijke chauffeurs zijn. Een alternatieve statis-
tiek geeft echter een heel ander beeld: Volgens het Amerikaanse Bureau of Trans-
portation Statistics is de faalbaarheid van menselijke bestuurders 0,68 doden per
100 miljoen kilometer. Dit aantal is zo laag dat fabrikanten van autonome voertui-
gen het moeilijk vinden om te bewijzen dat hun voertuigen veiliger zijn dan men-
selijke bestuurders. De veiligheidsvoordelen van rijhulpsystemen, autonome voer-
tuigen en andere veiligheidssystemen worden hier niet in twijfel getrokken. Men
moet zich echter realiseren dat een niet-vermoeide, oplettend mens een van de
veiligste chauffeurs is die we kunnen hebben.

Autofabrikanten en onderzoekers hebben dit feit ingezien en zijn nu bezig met
het begrijpen van hoe mensen rijden, om hun systemen veiliger, efficiënter, en ac-
ceptabeler te maken voor mensen die ze gebruiken. Dit heeft het eeuwenoude
veld van bestuurdersmodellering weer in de schijnwerpers gezet. Onderzoekers
op dit gebied proberen waarom mensen rijden zoals ze doen te begrijpen en wis-
kundige modellen te formuleren die menselijk rijgedrag kunnen nabootsen. Het is
niet verwonderlijk dat, net als andere wetenschapsgebieden, een theorie van alles
(voor autorijden) onderzoekers decennia lang heeft bezig gehouden. Er zijn ver-
schillende uniforme theorieën over autorijden voorgesteld. De risicodrempelthe-
orie die werd voorgesteld door N äät änen en Summala stelde bijvoorbeeld voor
dat mensen proberen hun waargenomen risico onder een bepaalde drempel te
houden. Gibson en Crooks stelden voor dat mensen een ’veld van veilig reizen’
dat alle mogelijke trajecten omvat die een voertuig onbelemmerd zou kunnen af-
leggen, waarnemen. Deze motivatietheorieën zouden het rijgedrag kwalitatief op
een uniforme manier kunnen verklaren, maar missen de specificiteit en bruikbaar-
heid van kwantitatief wiskundige modellen. Kwantitatieve bestuurdersmodellen
hanteren van oudsher twee hoofdstrategieën: Ten eerste de datagestuurde black-
box-benadering, die weinig tot geen inzicht geeft in de onderliggende motivaties
voor menselijk rijgedrag, en ten tweede door verschillende modellen die elk geba-
seerd zijn op een ander onderliggend principe en derhalve toepasbaar zijn in een
ander scenario. Dit heeft geleid tot een nogal gefragmenteerd begrip van de on-
derliggende motivaties voor autorijden. Voor zover wij weten, zijn de bestuurders-
modellen daarom momenteel ofwel uniform maar kwalitatief, ofwel kwantitatief
maar gefragmenteerd.

Het doel van dit proefschrift is om een stap te zetten in de richting van het for-
muleren van een uniform en kwantitatief bestuurdersmodel door de kwalitatieve
motivatietheorieën over rijgedrag te operationaliseren. Een van die motivatiethe-

xvii
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orieën die het potentieel toonde om te worden geoperationaliseerd, was de eerder
genoemde risicodrempeltheorie. Volgens deze theorie is risico een product van de
waarschijnlijkheid dat een gebeurtenis plaatsvindt en het gevolg van die gebeur-
tenis, en dat bestuurders proberen dit risico onder een drempelniveau te houden.
Deze definitie van risico leek veel op het concept van consequentie van ruis op het
gebied van sensorimotorische controle. Interessanter is dat onderzoekers op dat
gebied al uniforme gekwantificeerde modellen hadden geformuleerd voor eenvou-
dige bewegingen van ledematen. Het was dus duidelijk dat deze modellen en prin-
cipes moesten worden ontleend aan sensorimotorische besturing en toegepast op
het rijgedrag.

In hoofdstuk 2 was de eerste stap die werd gezet in deze poging om een moti-
vatietheorie te operationaliseren met behulp van sensorimotorische controleprin-
cipes, het empirisch kwantificeren van het waarschijnlijkheidsdeel van de risico-
vergelijking. Op het gebied van sensorimotorische controle wordt de oorsprong
van deze kansverdeling van de toekomstige posities die de ledematen zullen inne-
men, toegeschreven aan de aanwezigheid van ruis in de sensoren en actuatoren
van ons lichaam. Op het gebied van autorijden was er echter geen studie die de
overtuiging van de bestuurder over de mogelijke posities die hij/zij in het komende
tijdsinterval zal innemen, empirisch kwantificeert. Om deze kloof te dichten, werd
een rijsimulator-experiment uitgevoerd waarbij acht deelnemers elk 308 obstakels
tegenkwamen. Deze identieke obstakels verschenen op 77 verschillende locaties
voor het voertuig (7 lengteposities, 11 laterale posities). Het idee was dat dit expe-
riment zou onthullen voor welke delen op de weg bestuurders obstakels vermijden
en bijgevolg blootlegt waar de bestuurders denken dat het ego-voertuig zich de ko-
mende seconden zou kunnen bevinden. Aangezien de obstakels op alle 77 locaties
identiek waren, was het gevolg van het raken van deze obstakels ook identiek. Dit
betekende dat de omvang van de subjectieve en objectieve respons, die het Driver’s
Risk Field (DRF) vormde, kon worden geïnterpreteerd als het door de bestuurder
aangenomen waarschijnlijkheid van waar het ego-voertuig de komende seconden
zal zijn. De subjectieve reactie was een cijfermatig antwoord op de vraag "Hoe-
veel stuurinput denkt u op dit moment nodig te hebben?ën de objectieve respons
werd berekend als de maximale absolute stuurhoek. De resultaten toonden aan
dat de omvang van de DRF afnam naarmate de afstand tot het ego-voertuig groter
werd, en kon worden gemodelleerd met behulp van de Gaussische-functie in de
laterale richting en een machtsfunctie in de longitudinale richting. Interessant is
dat de resultaten toonden dat de voortplanting van de breedte van de DRF in de
lengterichting leek op een zandlopervorm en dat alle deelnemers reageerden op
obstakels die buiten de breedte van de auto waren geplaatst. Dit impliceerde dat
het Driver’s Risk Field breder is dan de wagenbreedte en suggereert de voortplan-
ting van sensorimotorisch ruis bij het voorspellen van de toekomstige posities van
het ego-voertuig.

In hoofdstuk 3 werd de tweede stap genomen om de empirisch gekwantifi-
ceerde kans te combineren met het gevolg van de gebeurtenis, d.w.z. een kosten-
kaart die de gevaarlijkheid van de verschillende elementen in de omgeving weer-
geeft. Voordat dit kon worden gedaan, moest de statische DRF die in het vorige
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experiment werd geschat, worden geüpgraded naar een dynamische DRF zodat
deze de effecten van de multiplicatieve sensorimotorische ruis kon opnemen. In
wezen zou de dynamische DRF nu langer worden in de lengterichting met een toe-
name in snelheid (uitgaande van een constante vooruitkijktijd) en uitbreiden in
de laterale richting als functie van de absolute stuurhoek. Het resulterende pro-
duct was de risicoschatting en werd verondersteld te correleren met het door de
bestuurders waargenomen risico. Deze risicoschatting werd vervolgens gebruikt
als een ‘kostenfunctie ’in een drempelgebaseerde controller waarbij de control-
ler alleen corrigerende maatregelen zou nemen (sturen en/of snelheid) wanneer
de risicoschatting een bepaald risico overschreed. drempel. Het gedrag dat voort-
kwam uit dit op DRF gebaseerde bestuurdersmodel werd vergeleken met menselijk
rijgedrag in zeven verschillende scenario’s (vier wegscenario’s: verandering van rij-
strookbreedte, rijden in bochten, vermijden van obstakels en wegkantmeubilair;
en drie verkeersscenario’s: auto volgen, inhalen en onderhandelen tegen tegen-
liggers). De resultaten toonden aan dat de trends die door het model werden ge-
toond, coherent waren met die van menselijke bestuurders (gerapporteerd in de
literatuur). Dit suggereert dat het onder een drempelwaarde houden van het ‘ge-
volg van het waarnemingsruis van de mens’ een onderliggende principe is voor de
aanpassing van de snelheid en de laterale positie van de bestuurder aan een grote
verscheidenheid aan weg- en verkeersomstandigheden.

In hoofdstuk 4 werd de geldigheid van de risicoschatting getest in een echt
voertuig. Hoewel mensachtig gedrag voortkwam uit het bestuurdersmodel dat ri-
sicoschatting als ‘kostenfunctie ’gebruikte, moest de hypothese dat de risicoschat-
ting correleert met het gepercipieerde risico van de bestuurder nog worden ge-
test. Om dit aan te pakken werd een experiment uitgevoerd waarbij de acties en
commentaren van de deelnemers werden vergeleken met het dynamische signaal:
risicoschatting. Het experiment werd uitgevoerd in een echt voertuig, aangezien
het essentieel was dat de bestuurders realistische risiconiveaus ervaarden. Acht
deelnemers reden 5 ronden handmatig en beleefden 12 verschillende ronden ge-
automatiseerd rijden op een testbaan. De testbaan bestond uit drie secties: rijden
in bochten, geparkeerde auto, en kruisingen van 90 graden. Als de bestuurder het
risico verbaal uitsprak of een overname uitvoerde, werd die specifieke sector als
risicovol bestempeld. De resultaten lieten zien dat de risicoschatting handmatig
rijgedrag kan voorspellen (ρsteer i ng = 0,69, ρsnelhei d = 0,64), en ook correleert met
het door de bestuurder gepercipieerde risico bij het rijden in bochten (r2 = 0,98)
en tijdens het passeren van een auto die buiten de rijstrookgrens geparkeerd stond
(r2 = 0,59). We konden geen conclusies trekken voor de 90-graden-kruising, omdat
alle voorvallen in deze sector door de deelnemers als veilig werden beoordeeld en
een lage risico-inschatting waarde hadden. Daarom waren er geen datapunten met
een hoge waarde van risicoschatting of een risicovolle beoordeling van de deelne-
mers. Ondanks het gebrek aan gegevens voor 90-graden kruispunten, toonden de
resultaten aan dat de risicoschatting voorspellend was voor handmatig rijgedrag
en waargenomen risico bij geautomatiseerd rijden.

Drie overkoepelende conclusies kunnen worden getrokken uit dit proefschrift:
(i) Bestuurders reageren op objecten buiten de breedte van de auto en de rijstrook-
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grenzen. (ii) De berekende risicoschatting is een signaal dat correleert met het door
de bestuurder waargenomen risico, en (iii) Menselijk rijgedrag komt naar voren
wanneer het gevolg van sensorimotorische ruis onder een drempelwaarde wordt
gehouden. Deze resultaten en conclusies wijzen erop dat een uniform kwantita-
tief driver-model kan worden geformuleerd met behulp van een risicogebaseerd
model (althans voor de zeven scenario’s die in dit proefschrift zijn getest).

Deze resultaten en conclusies hebben echter enkele beperkingen waarvan men
op de hoogte moet zijn alvorens deze wiskundige formuleringen te gebruiken. Ten
eerste houdt de DRF alleen rekening met obstakels voor het voertuig. Daarom is
het niet in staat om op de juiste manier te reageren bij een rijstrookwisselscenario
op een snelweg met meerdere rijstroken. Ten tweede reageert de DRF alleen op het
gevaar van een object vanwege zijn fysieke aanwezigheid en houdt geen rekening
met de ‘tactische kosten’. Het anticipeert bijvoorbeeld niet op kruisend verkeer en
vertraagt niet op een kruispunt of stopt bij een verkeerslicht. Dit kan echter een-
voudig worden opgelost door kunstmatige barrières toe te voegen op kruispunten
waarvan de kosten contextafhankelijk zijn. Ten derde waren de verkeerselemen-
ten die in dit proefschrift werden gebruikt, hoewel dynamisch, deterministisch en
niet interactief. Daarom zal het model substantieel moeten worden geüpgraded
voordat het kan beginnen met ‘onderhandelen ’op onbeschermde kruispunten en
acceptabel kan reageren op ander reagerend verkeer. Ten slotte is het model re-
keninefficiënt en werkt het niet in realtime. Wil het model worden gebruikt als
referentietrajectgenerator voor geautomatiseerde systemen, dan zal dit praktische
aspect een essentiële upgrade zijn die aan het model moet worden doorgevoerd.

Ondanks deze beperkingen zijn het op DRF gebaseerde bestuurdersmodel en
risicoschatting een stap naar een theorie van alles voor autorijden. We hopen dat
de wiskundige formuleringen die in dit proefschrift worden voorgesteld, een on-
derdeel worden van grotere theorieën (bijv. Voorspellende verwerkingstheorie)
over autorijden en niet alleen kwantitativiteit van deze verenigende theorieën ver-
sterken, maar ook het wetenschappelijk begrip van menselijk rijgedrag. Ongeacht
de toekomstige evolutie van dit op DRF gebaseerde model, één ding is zeker: wij
mensen zijn ons bewust van de gevolgen van ruis in het sensorimotorische sys-
teem en houden er rekening mee tijdens het rijden, vergelijkbaar met het uitvoeren
van eenvoudige bewegingstaken.



1
INTRODUCTION

1.1. BACKGROUND

T HE quest for a theory of everything has tempted scientists since time immemo-
rial. Be it in the fields of biology and psychology where humans try to under-

stand humans, or the fields of physics and chemistry where humans try to under-
stand the nature of nature. There seems to be some beauty in trying to explain the
complexity of the world through simple underlying principles. Research in the field
of driving, which has become an important part of our lives ever since the intro-
duction of the automobile, has not escaped this allure of an all explaining unified
theory of driving.

1.1.1. UNIFIED QUALITATIVE THEORIES OF DRIVING

Researchers have proposed different theories about what motivates humans to
drive like they do. Gibson and Crooks (1938) [1], for example, proposed that drivers
perceive a Field of Safe Travel (FoST) - a field of all the safe paths the car can take
unimpeded. The main idea was that locomotion through the FoST is similar to
walking or running, except that in this case the locomotion was performed using
a tool - the car. Others, for example, Näätänen and Summala [2] proposed that
drivers try to maintain their perceived risk below a certain threshold and perform
(steering and/or speed) corrections only when this threshold is exceeded.

Motivational theories proposed by Fuller [3] and Wilde [4], similar to the ones
mentioned above, focused on the low-level control behaviour of the driver and
aimed to explain human driving behaviour qualitatively (Fig. 1.1 [a]). They provide
a good theoretical framework, but lack the specificity of mathematical models [5].

1.1.2. QUANTITATIVE DRIVER MODELS

For any practical use, we need mathematical models that can generate quantifiable
outputs, for given inputs. They find use in applications ranging from the design

1
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Figure 1.1: Approaches to driver modelling: Scenario, Steering, and Speed 1,2,...n represent the sce-
narios and the corresponding lateral and longitudinal control actions, respectively. (a) Qualitative
driver models propose theories that explain human driving behaviour without mathematical speci-
ficity. Quantitative driver models either take a data-driven (black-box) approach (b) or a fragmented
approach (c) where several models based on different underlying principles (explainable) for different
scenarios are combined. (d) In this thesis, the formulation a unified model based on underlying prin-
ciples (hence explainable), that also offers the diversity similar to the black-box approach, is proposed.
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and construction of roads to the development of automated systems for vehicles.
Quantitative driver models are being used as reference models for automated sys-
tems, since an attentive non-fatigued human driver is one of the best drivers we
can have. In fact, automated vehicle manufacturers are having a hard time proving
their systems are safer than a human driver [6]. These quantitative driver models,
which are being used as reference models could also help in generating human-
acceptable trajectories for the automated systems. For example, that driver’s prefer
a system that they think drives like them [7].

Researchers have developed several quantitative models of driver behaviour
and these have been formulated using one of the following two main approaches:

1. Data driven approach: In this approach, a large dataset is used to estimate
the parameters of a standard model (e.g., neural network). This approach
can deliver models of driving behaviour in scenarios that were used for es-
timating the parameters, but cannot easily generalise to previously unseen
scenarios [8]. This is partly solved by introducing more scenarios in the train-
ing dataset. However, the most important drawback of this approach is that,
these models provide little to no understanding of why humans drive like
they do. This makes such models a black-box which is not only scientifically
not satisfying but also largely unexplainable, which is not desirable in critical
applications like driving, where an error could lead to a life-altering event [9]
(Fig. 1.1 [b]).

2. Approach based on underlying principles: In this approach, researchers
formulate models based on the understanding of some underlying princi-
ples. This approach has the presumed advantage of being generalizable to
previously unseen scenarios but the models are typically fragmented. What
we mean by fragmentation is that the task of driving is divided into sub-tasks,
each of which is modelled separately. Fragmentation has occurred because
it is difficult to systematically conduct rigorous research of the driving task as
a whole. It also allows the freedom to base each sub-task on a different the-
oretical underpinning [10]. For example, longitudinal behaviour has been
modelled using the optical edge rate [11] on open roads, the time to extended
tangent point [12] in curves, time to collision (TTC) [13] [14] while approach-
ing obstacles and time headway (THW) [15] during car following. Lateral po-
sitioning has been modelled using heading perception in two-point (i.e., an-
ticipatory vs. compensatory) [16] models in normal driving, and open-loop
steering [17] corrections in emergency scenarios.

1.2. PROBLEM

1.2.1. DRAWBACKS OF A FRAGMENTED APPROACH

A fragmented set of models, each performing a different sub-task is efficient and
practical for implementing Driver Assistance Systems, since they aim to automate
parts of the driving task. Practically, a unitary model can be stitched together from
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several models (Fig. 1.1 [c]), but this fragmented approach has several drawbacks.
A few of them are listed below:

1. An appropriate switching model that determines which model to use in which
scenario, will be needed [18].

2. Switching between the models needs to be smooth and stable. For example,
if we switch from a car following to an overtaking task, the parameter settings
of the respective models need to be such that the transition is smooth and
stable [19].

3. The low-level control behaviour, which this thesis focuses on, is affected by
higher-level factors (e.g., familiarity of the driver to a road). If the effects of
such high-level behaviour (e.g., drives more aggressively on a familiar road,
and cautiously on an unfamiliar road) are to be incorporated, the parameter
setting of all the different models will have to be changed homogeneously so
as to not cause any abrupt changes [5].

4. It is also unclear how the occurrence of multiple scenarios simultaneously
will be handled. For example, how will the models of overtaking and ne-
gotiating oncoming traffic be combined when we encounter an oncoming
vehicle while overtaking.

5. Although, each of the models are generalizable, they can be generalised to
previously unseen scenarios withing their scope (that particular sub-task).
For example, a car following model cannot be generalised to perform a curve
driving task. This means that the stitched model will not be able to execute
appropriate actions in scenarios that have not been specifically incorporated
in it.

6. Since, the fragmented models use different theoretical underpinnings for
each sub-task, it becomes difficult to develop a unified scientific understand-
ing of the motivations for driving behaviour [10].

The above points highlight the need for a unified quantitative driver model. To
the best of our knowledge, there exist unified qualitative driver behaviour theories,
but there are no unified quantitative driver models based on underlying principles.
Optimal Preview Control models such as that proposed by Peng and Tomizuka [20]
used both feedforward and feedback components to control the steering. How-
ever, their main limitation was that they considered driving as a lane-centre track-
ing task, which does not allow for satisficing [21]: a behaviour exhibited by hu-
man drivers. Some algorithms from the field of robotics do offer the possibility of
performing trajectory planning in a wide range of scenarios [22][23][24][25]. How-
ever, these algorithms having being developed for robots do not account for the
subtleties of human driving. For example, they can perform path planning and
even re-plan in real-time, in case of dynamic obstacles. However, they are not con-
cerned with slowing down more, and cutting a curve more, while negotiating a
sharp corner, as compared to a shallow corner, which human drivers would do
[26].
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1.3. GOAL OF THIS THESIS
The goal of this thesis is to formulate a unified quantitative driver model that can
predict human behaviour, in terms of speed and lateral position adaptations, in a
multitude of scenarios. More importantly, the model needs to be based on a single
underlying principle, from which human-like adaptations are expected to emerge
in different scenarios. The by-product of this driver model could be a mathemati-
cal representation of the underlying motivation for why humans drive the way they
do and could also be used as a feature in the ‘data-driven’ approach.

1.4. SCOPE AND APPROACH
It is important to note that, in this thesis, the focus will be on modelling the effect
of road geometry (e.g., curvature, lane width) and non-interacting deterministic
traffic (e.g., car following, overtaking). The modelling of interactive behaviour of
traffic elements, or the process of conscious decision making during driving (e.g.,
which route to take) will not be studied in this thesis. Essentially, the focus will be
on modelling the effect of the physical presence of different (static and dynamic)
road elements, on driver behaviour.

To achieve the goal of this thesis, inspiration was drawn from the fields that
study basic human movements. The thought being that the mathematical formu-
lations developed for simple human movements could be extended to the more
complex field of driving (Fig. 1.2).

The Optimal Feedback Control (OFC) theory for sensorimotor control proposed
by Todorov and Jordan in 2002 [27] successfully unified several characteristics of
human movements (e.g., Gaussian velocity profiles [28], reduction in movement
variability in the vicinity of constraints) across a range of movements (e.g, hitting
a hitting a ping-pong ball, grasping an object). The essence of this model lies in its
two main features:

1. Multiplicative noise: The noise in the sensors and actuators (e.g., muscles)
of our body contains multiplicative noise. In essence, the noise increases as
the mean value of the signal increases [29]. This means that a faster move-
ment leads to a larger inaccuracy and hence affects the chances of achieving
the goal (e.g., moving your arms to a circular target). The Fitts’ Law emerges
from this model, since humans slow down their arm movements when the
target gets smaller. This ‘target reaching task’ in motor control is analogous
to a car slowing down for a narrow road.

2. Managing the relevant consequences of noise: The noise in the sensors and
actuators can lead to a deviation from the intended action and hence re-
sult in undesirable consequences. It appears that the brain tries to find a
trade-off between the reward (intended action) and the cost (undesired con-
sequences) [30]. More importantly, the Optimal Feedback Controller uses a
‘goal oriented’ cost function i.e., it only penalises the states that deviate from
the goal. This is different from a ‘reference trajectory’ approach where the
cost function penalises any deviation from a reference trajectory. What this
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Sensorimotor control Driving

Figure 1.2: Research approach: The field of sensorimotor control provides principles, and a unified
approach (Optimal Feedback Control theory) that can quantitatively model human movements in a
wide range of scenarios. The aim is to extract the essence of these principles and apply them to the
field of driving, to formulate a unified model for driving behaviour in a multitude of scenarios. The
following two principles were borrowed: (i) Human sensorimotor system has multiplicative noise, and
(ii) Humans balance the cost and reward due to the consequence of the noise relevant to the goal.

leads to is a controller from which human-like behaviour emerges in terms
of remarkable consistency in achieving the goal while rarely replicating the
trajectory in its details. This is analogous to the concept of satisficing [21] in
driving, where drivers do not try to follow a reference trajectory (e.g., centre
of the road), but are satisfied with being within certain bounds on the road.

Such similarities between simple motor tasks and driving, and the ability of the
Optimal Feedback Controller to quantitatively model sensorimotor tasks in a uni-
fied manner make it a great candidate to be extended to the field of driving. Kolekar
et al. [31] attempted this for a driver steering model but manifesting the OFC into
a receding horizon controller, but soon ran into mathematical complexity while
extending it to speed control and dynamic traffic related tasks. Hence, this thesis
aims to extract the essence of this sensorimotor control theory and implement it
in a mathematically simplistic way to probe if an approach similar to the Optimal
Feedback Control can be successful in modelling speed and lateral position adap-
tations in driving.

One of the essential elements of the OFC that we are interested in extracting is
the cost function it uses. The cost referred to above, is a product of the probability
of an event occurring and the consequence of that event occurring (Fig. 1.3). The
probability of the event occurring is determined by the probability distribution of
the possible locations of the limb due to the multiplicative noise in the sensorimo-
tor system. The consequence of the event is dependent on the task (e.g., hitting a
ping-pong ball correctly gives you a point, whereas missing it costs you a point)
and essentially, defines the goal of a particular movement. Incidentally, this prod-
uct of probability and consequence has been termed risk in the field of driving [2].
This thesis proposes the risk estimate signal that aims to quantify this risk during
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Figure 1.3: Proposed risk estimate: The first row visualises the definition of risk proposed by Näätänen
and Summala. They proposed that the risk perceived by a driver is the production of the consequence
of being in a particular location and the driver’s belief about he/she passing through that location. The
second row illustrates the method proposed in this thesis to quantify the risk.

driving. The probability of an event and the consequence of an event in the context
of driving are defined as follows:

1. Probability of an event: This is similar to a probability distribution function,
with input being the state of the ego-vehicle (x-y position) and the output be-
ing the driver’s belief about how probable it is that he/she will pass through
that point in the next few seconds (look-ahead-time).

2. Consequence of an event: This is similar to a ‘cost map’ that defines the ‘dan-
gerousness’ of each state in the environment (x-y position). For example, the
value of this cost map will be very low (or even zero) for the road and very
high for the tree besides the road.

In the definitions provided above, an event refers to the act of being present at a
particular location. A collision occurs when the position of the ego-vehicle coin-
cides with the position of an obstacle in the environment.

This approach of conceptualizing the probability and the consequence as a prob-
ability field and a cost map, respectively, draws inspiration from the field based ap-
proach adopted by Gibson and Crooks [1] in their Field of Safe Travel theory. Their
theory could explain, in a unified manner, driving in several scenarios. Hence, it
was decided to integrate the concept of risk and the field based approach to pro-
pose the new Driver’s Risk Field quantitative formulation. One of the novelties of
our field based approach, is that we aim to define the shape of the field from hu-
man driving data as opposed to an artificial potential field which was created based
on thoughtful insights of the researcher [32].
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Figure 1.4: Thesis structure: In chapter 2, the shape of the DRF is quantified. In chapter 3, the risk
estimate is used as a cost function in a risk threshold-based controller to formulate a driver model.
The output of the driver model (speed and steering) is validated by comparing it to driving behaviour
reported in literature. In chapter 4, it is tested if the proposed risk estimate corresponds to the subjective
feeling of risk of the driver while driving manually and in an automated vehicle on a test track.

1.5. THESIS STRUCTURE
The details of the proposed Driver’s Risk Field (DRF) and the steps taken to achieve
the goals of this thesis are explained in the upcoming chapters that are structured
as follows (Fig. 1.4):

• Chapter 2: Since the field-based approach proposed by Gibson and Crooks
was qualitative, the first step was to try and empirically quantify the shape
of the field. Essentially, it would reveal which parts of the road, in front of
the driver incite a response from the driver. The field derived in this chapter
is called the Driver’s Risk Field (DRF) and represents the probability compo-
nent of the risk.

• Chapter 3: In this chapter, the principles learned from sensorimotor control
are used to upgrade the static DRF derived in chapter 2, to a dynamic DRF.
This dynamic DRF, essentially, morphed its shape and size with the steering
angle and speed of the ego-vehicle. The DRF when used in conjunction with
’consequence’ map of the environment, yielded an estimate of the perceived
risk of the driver. The risk estimate when used in a risk threshold-based con-
troller, human-like driving behaviour emerged in several driving (road and
traffic) scenarios. The model’s behaviour was validated using the experimen-
tally measured driving behaviour published in the literature.

• Chapter 4: The risk estimate calculated in the previous chapter could gener-
ate human-like behaviour in different scenarios. But it was not known if this
risk estimate that was proposed, actually corresponded to the risk perceived
by the human drivers. To test this, conditions where the drivers perceived
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realistic levels of risk were needed. Hence, the validation experiments were
conducted in a real car on a test-track. The validity of the proposed risk esti-
mate was tested in both: manual and automated driving conditions.

In short, the single unifying principle that was focused on in this thesis is: Do
human-like adaptations in speed and lateral position behaviour emerge, when the
consequence of noise (risk estimate) is attempted to be maintained below a certain
threshold?

1.6. APPLICATIONS
The findings of this thesis are not only aimed to improve the scientific understand-
ing of why humans drive like they do, but also have applications in partially and
fully automated vehicles. For example, a unified driver model can be a very potent
tool for the automotive industry to run (virtual) ’driver-in-the-loop’ simulations in
a variety of scenarios. The unified model could also generate human-acceptable
trajectories for automated systems in fully or partially automated vehicles [7]. The
risk estimate proposed in this thesis could be used as a metric to evaluate how
risky a particular trajectory of an automated vehicle is, or to add constraints to
the operational domain of an automated system, as proposed by Mobileye [33].
Moreover, since this thesis aims to understand the underlying principles that mo-
tivate drivers’ speed and lateral position adaptations, its findings can be a valuable
tool for applications in the field of human-machine interaction. For example, the
Symbiotic Driving project [34], which aims to develop an adaptive Haptic Shared
Controller, can incorporate the driver model that will be developed in this the-
sis to generate predictions about where, when, and how drivers will adapt to the
environment. This information can then be used to generate appropriate torque
commands on the steering wheel and gas pedal to share the control of the vehicle
with the driver.





2
DRIVER’S RISK FIELD (DRF):

AN EMPIRICAL QUANTIFICATION

Gibson and Crooks (1938) argued that a ‘field of safe travel’ could qualitatively ex-
plain drivers’ steering behaviour on straights, curved roads, and while avoiding ob-
stacles. This chapter aims to quantitatively explain driver behaviour while avoiding
obstacles on a straight road, and quantify the ‘Driver’s Risk Field’ (DRF). In a fixed-
based driving simulator, 77 (7 longitudinal and 11 lateral) positions of the obstacles
were used to quantify the subjectively perceived and objectively (maximum absolute
steering angle) measured DRF for eight participants. The subjective response was a
numerical answer to the question “How much steering do you think you need at this
moment in time?” The results show that the propagation of the width of the DRF,
along the longitudinal distance, resembled an hourglass shape, and all participants
responded to obstacles that were placed beyond the width of the car. This implies
that the Driver’s Risk Field is wider than the car-width.

The contents of this chapter have been published in:
S. Kolekar, J.C.F. de Winter, and D. Abbink, Which parts of the road guide obstacle avoidance? Quantify-
ing the driver’s risk field, Applied ergonomics 89 (2020), 103196

11

https://doi.org/10.1016/j.apergo.2020.103196
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2.1. BACKGROUND

M ANY car manufacturers worldwide are developing highly automated driving
systems that are expected to contribute to driver comfort and safety [35]. Be-

fore automated driving systems can be deployed on a large scale, various techno-
logical challenges still need to be resolved. One specific challenge is that current
automated driving systems are conservative, strictly obedient to the traffic rules,
and unable to exhibit natural driving behaviours, rendering them, at present, slow
and inefficient [36]. A second challenge is that until fully (SAE Level 5) autonomous
cars are introduced, there will be a need for automated systems that keep the hu-
man involved in the driving task. Such systems may have to interact with the driver
in a human-like manner [37][38][39], for example via a shared control system [40].

This need for effective interaction, and the inefficiencies of (partially and highly)
automated vehicles provides an impetus for developing automated cars that drive
in a human-like manner, with acceptable safety margins towards other road users
and road boundaries [41]. At present, however, there is no generally accepted
model that quantitatively captures human driving behaviour [10][42][43]. As early
as 1970, a driver task analysis by McKnight and Adams [44] identified over 1,000
characteristics (vehicle, roadway, traffic, and environment characteristics) of the
highway transportation system to which the driver must respond. The sheer com-
plexity of driving makes it impractical to rely on separate heuristics for every driv-
ing situation, which is why it would be beneficial to identify the general principles
that govern human driving behaviour.

So far, attempts at identifying the underlying principles of human driving be-
haviour have resulted in a rather fragmented understanding of the driving task,
where specific visual cues are used to predict the driver’s behaviour in specific
driving tasks [10]. For example, the optical edge rate has been used to predict the
speed at which drivers drive [11], whereas Lee (1976) [13] showed that time to colli-
sion (TTC) is predictive of human braking behaviour while approaching a static or
moving obstacle. Godthelp and colleagues provided evidence that time-to-lane-
crossing (TLC) can describe the positioning of a vehicle in a lane while driving on
straights and curves [45][46]. The TLC model of Godthelp was extended by Boer,
to account for the variability of lateral position (satisficing) while driving in curves
[47]. Additionally, models based on a ‘potential-field’ have tried to solve the path
planning problem by assigning different costs to different obstacles and finding the
path of least cost [48]. However, these potential-field models have not been tested
for human-likeliness.

The first attempt of creating a unified model of human driving behaviour can
be found in Gibson and Crooks’ 1938 paper, where they proposed the concept of
‘field of safe travel’ [1]. They defined the field of safe travel as the “field of possible
paths which the car may take unimpeded” (p. 454); it was described as comprising
both subjective elements (“subjective experience of the driver”, p. 455) and ob-
jective elements (“it exists objectively as the actual field within which the car can
safely operate”, p. 455). Gibson and Crooks illustrated the field with various draw-
ings of driving situations (e.g., straight-line driving, curve driving, moving pedes-
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Figure 2.1: Visualising the Driver’s Risk Field (DRF): The height of the surface represents the magni-
tude of the steering response to an obstacle (subjective or objective). Obstacle O1 stimulates a response
of magnitude R1, whereas obstacle O2 does not stimulate any response from the driver.

trian, moving obstacle, overtaking a parked car, blind corner). The study, however,
was qualitative and based on discussions between a psychologist and a student
of driving. Thus, although the field of safe travel is introspectively plausible and
highly influential, it lacks operationalization and has limited empirical validation
[49].

In recent years, some automated cars have been based on concepts similar to
that of Gibson and Crooks’. These concepts used ‘tentacle-like’ algorithms that
allowed for driving on straights and curves while negotiating obstacles [23] [50].
These algorithms generated the possible future paths originating from the current
state of the vehicle (based on several different methods such as rapidly-exploring
random trees (RRT) and trajectories of maximum lateral acceleration at different
speeds) which resembled tentacles extending from the front of the vehicle. These
algorithms scanned the driver’s preview area and used that information for plan-
ning the path through the environment. Despite the fact that these algorithms
were not intended to be human-like, their success in navigating through several
scenarios indicates that area-based models could potentially provide an under-
standing of human driving behaviour in several scenarios [51].

As indicated above, the use of field-based approaches is promising in mod-
elling human driving behaviour and for using it in the controllers of automated ve-
hicles. However, so far, there appears to be no experimental evidence as to whether
such a field is perceived and used by humans while driving. In this study, we take a
step towards operationalizing the field of safe travel [1] by measuring the ‘Driver’s
Risk Field’ (DRF): a quantification of the driver’s steering response as a function of
the region (area) in front of the vehicle. It is important to point out that the DRF
defined in this study and the field of safe travel are two different concepts. To put
it in the context of other literature, Näätänen and Summala (1976) [2] suggest that
a driver’s perceived risk is the product of (i) the driver’s belief about the probabil-
ity of a hazardous event occurring and (ii) the consequences of that event. In this
chapter, we hold the second part (consequence of the event) constant by perform-
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ing obstacle avoidance tasks with identical obstacles. We assume that when the
drivers think that they may collide with the obstacle they respond proportionally
to the perceived risk. With this assumption, the DRF represents the first part: the
driver’s belief about the probability of him/her colliding with an obstacle appear-
ing (hazardous event) in his/her preview. The DRF can be used to estimate the
driver’s perceived risk, which will be a function of the car and driver state. The op-
timal values of this estimated risk (with respect to the yaw rate, heading, speed, etc.
apart from the position of the vehicle), when plotted as a function of the position of
the vehicle in the environment, will result in Gibson and Crooks’ field of safe travel.
The field of safe travel can hence be seen as the solution space of a path planning
problem, whereas the DRF can be viewed as a component that helps generate this
solution space.

To determine the shape of the DRF, different positions in the preview of the
driver needed to be probed. For this study, we chose an obstacle avoidance task
on a straight road, where an obstacle appeared at a specific lateral and longitudi-
nal location. The experiment was conducted in a driving simulator instead of in
a real car for safety and experimental control. The shape of the DRA (the 2D pro-
jection of the DRF on the road surface) was hypothesised to expand (i.e., widen)
as the longitudinal distance from the vehicle increases (Fig. 2.1). This hypothe-
sis was based on neurophysiological studies that have provided evidence for the
presence of noise in the human sensors (vision, proprioception, etc.) and actu-
ators (muscles) [29]. It is also known that humans try to minimise the effect of
noise present in their sensorimotor control system [30][52]. In the field of driving,
it has been established that humans look ahead (preview) while driving [53]. If pre-
dictions of positions of the vehicle are made, the noise/uncertainty will propagate
and will result in an expanding region as the longitudinal distance increases [54].
Furthermore, we hypothesised that the height of the DRF decays as the lateral and
longitudinal distance from the vehicle increase. This hypothesis is based on find-
ings in the literature that show that with higher time margins, the response of the
driver decreases. Jurecki and Stanczyk [55] found that the driver became more re-
laxed (higher reaction times) as the risk of colliding with a pedestrian decreased
(time to collision (TTC) to pedestrians increased). Lewis-Evans et al. [56] found
that the perceived risk and task difficulty increased when the time headway during
car-following increased. In our study, we aimed to quantify these observations by
finding the functions that describe these relationships.

2.2. EXPERIMENTAL METHODS

2.2.1. APPARATUS
Participants (N = 8) drove in a fixed-base simulator (Fig. 2.2) at the Control and
Simulation Department at the faculty of Aerospace Engineering, Delft University
of Technology. Self-aligning torques of the front wheels were provided by a MOOG
FCS ECOl8000 S steering motor running at 2500 Hz. A single-track model (heavy
sedan of 1.8 m width) was used to simulate the vehicle dynamics. The environment
was shown using three digital light processing (DLP) projectors (BenQ W1080ST
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Figure 2.2: Fixed base driving simulator: A snapshot of the driving scene from the simulator, at the
moment the obstacle appeared in front of the driver. The participants drove a 1.8 m wide car on a 7 m
wide road with no centre lane markings, at a constant speed of 25 m s−1.

1080p Full HD), together providing a horizontal and vertical field-of-view of 180°
and 40°, respectively. The visuals were displayed with a frame rate of 60 Hz, and
the data was logged at 100 Hz. The (front) bonnet/hood of the car was visualised
to facilitate a more accurate perception of the car’s position relative to the road
boundaries.

2.2.2. PARTICIPANTS

Since, our goal was to examine the functional relationships at the level of individual
participants, it was decided to follow a design in which a large number of observa-
tions were made on a relatively small number of participants (Smith, 2018). Eight
participants (7 male, 1 female) with normal or corrected-to-normal vision volun-
teered for this study and performed 308 obstacle avoidance trials. Participants had
the following characteristics (Mean ± SD) [units]: age (25.4 ± 1.7) [years], driving
experience (6.1 ± 2.0) [years], driving frequency in the last 12 months (2.1 ± 1.8)
[trips/week], and distance driven in the past 12 months (4712 ± 688) [km].

2.2.3. EXPERIMENTAL SETUP

Participants had to avoid an obstacle that appeared at one (randomly chosen) of
the 77 positions. Each obstacle position was encountered 4 times, once per block
of 77 trials. In total, each participant performed 308 obstacle avoidance trials. The
experiment was spread out over two separate (not necessarily consecutive) days,
with each day consisting of 2 blocks of approximately 30 minutes each. Each block
consisted of 3 sub-blocks of approximately 8 minutes each. Sub-blocks 1, 2, and 3
consisted of 26, 26, and 25 trials, respectively, which resulted in each block making
up 1 repetition of 77 trials. The trials were randomly ordered among the sub-blocks
to ensure that participants could not anticipate the position of the obstacles.

In the experiment we had 78 obstacle positions, but the 78th position was not used for analysis in this
study. It appeared as the 26th obstacle of every sub-block 3 and was positioned on the lane centre
(lateral position = 0 m) at a longitudinal distance of 350 m. This obstacle was implemented for analysis
which will be performed in a follow up study, and has not been considered for analysis in this study.
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2.2.4. ROAD AND OBSTACLE DESIGN

ROAD DESIGN

Participants drove on a straight single-lane 7-m wide road, with no centre lane
markings, and no traffic. The road was designed to be wide, to minimise the cues
that participants would get from the lane boundaries with respect to the obstacle
positions.

OBSTACLE POSITIONS

The 77 obstacle positions formed a grid that was used to determine the shape of
the DRF. There were 7 columns of obstacle positions, and each column consisted
of 11 positions. The distances were calculated from the centre of the obstacle to
the centre of the vehicle, with longitudinal and lateral directions being parallel and
perpendicular to the heading of the road, respectively. The 7 columns were at lon-
gitudinal distances of 25 m, 50 m, 75 m, 100 m, 125 m, 150 m, and 175 m in front of
the vehicle centre. In each of the columns, the obstacles were positioned at lateral
distances of 2.05 m, 1.85 m, 1.65 m, 1.45 m, 1.25 m, 0 m, -1.25 m, -1.45 m, -1.65
m, -1.85 m, and -2.05 m, from the lane centre. A positive value indicates that the
obstacle was to the left of the lane centre, negative to the right, and zero indicates
that the obstacle was on the lane centre.

As can be noticed, the 5 obstacles to the left and right of the lane centre were
laterally positioned 20 cm apart, but the distance between the obstacle at ± 1.25
m and the obstacle at 0 m is 1.25 m. The vehicle used in the simulator is 1.8 m
wide, and hence, any obstacle positioned within 1.025 m (1.8/2 + 0.25/2) of the
lane centre would have to be always avoided. All the obstacles beyond 1.025 m,
theoretically, do not need to be avoided, as they are beyond the width of the car.
Accordingly, in our experiment, 70 out of 77 obstacles (i.e., all obstacles except the
7 in the centre row) did not have to be avoided. The participants were not made
aware of this information.

OBSTACLE PROPERTIES

Each obstacle was a cuboid with a rectangular cross-section (height x width = 12.5
cm x 25 cm) and length of 15 m. The obstacle laid flat on the road with its long
axis parallel to the road heading. The obstacle was relatively long to encourage
participants not to steer back immediately after they have passed the front of the
obstacle.

2.2.5. DRIVING TASK

The experiment was conducted at a constant vehicle speed (25 m s−1) since the
intention was to measure the response of the driver solely by means of steering.
If speed control would be handed over to the driver, it could be expected that the
response of the driver would get distributed over steering and speed control. Addi-
tionally, it was necessary to ensure that, in every trial, the relative distance between
the vehicle and the obstacle is realised, as per the design (Fig. 2.3). Therefore, guid-
ance torques were exerted on the steering wheel, which guided the vehicle to the
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Figure 2.3: Obstacle positions: The representation (not to scale) of the grid of obstacle positions. Dur-
ing each trial, an obstacle would appear at one of these 77 positions (11 lateral and 7 longitudinal po-
sitions). If driven straight, only the centre row of obstacles obstructed the vehicle. All other obstacles
were at a lateral distance (at least 0.225 m) greater than the width of the car.

lane centre, before the start of each trial. A small buzzing vibration was also added
to the steering wheel to convey to the driver that the vehicle is guiding itself to the
lane centre. Each trial was assigned a road section of 350 m, and the obstacle would
appear at the start of this section (Fig. 2.4). As soon as the obstacle would appear,
the lane centring guidance would deactivate. The driver would perform the ma-
noeuvre, and then 50 m after the obstacle centre had been passed by the vehicle
centre, the guidance torques would come into effect. As soon as the next obstacle
would appear, the guidance torques would deactivate, and the experiment would
continue with the subsequent trial.

Because the obstacles appeared at random positions and the lane centring guid-
ance system took over after the obstacle was passed, the duration for which the
guidance system was on was also random. This random duration mitigated the
problem of participants anticipating the obstacle appearance based on the dura-
tion for which the guidance was on.

2.2.6. MEASURING THE DRIVER’S RESPONSE

Whether the DRF is subjective (only perceived) or objective (visible in the driver’s
actions) is an important point that needs to be investigated. If the DRF is subjective
but not objective, then it could be a quirk of human perception, where people sub-
jectively experience the DRF but do not act accordingly. Conversely, if it is objective
but not subjective, then apparently people perform their steering actions subcon-
sciously, without necessarily being aware of what they are doing. These, however,
are extreme cases. Different shapes of DRF for subjective and objective steering
responses could provide insights into the driver’s awareness and perception of the
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Figure 2.4: Driving task: A trial commenced when the obstacle appeared. The participant was expected
to provide a numerical value (subjective response) and perform (or not perform) a steering manoeuvre
to avoid the obstacle. Fifty meters after the vehicle centre had passed the obstacle centre, the lane
centring guidance forces took over and guided the participant to the lane centre, in preparation for the
next trial. The guidance deactivated, as soon as the next obstacle appeared, which also marked the
beginning of the next trial.

driving scene. Thus, the experiment measured both the subjective and the objec-
tive steering responses of the participants during an obstacle avoidance task, and
the results are analysed independently without assuming any dependency of one
on the other.

OBJECTIVE RESPONSE

The objective measure was calculated as the maximum of the absolute value of the
steering angle applied from the instant the obstacle appears to the point when the
vehicle centre travelled 25 m (1 s, since speed of vehicle = 25 m s−1 ). In Fig. 2.5, this
is indicated from 0 longitudinal distance until the dotted vertical line. This ensured
that we captured the initial response of the participants since we were interested
in quantifying the shape of the DRF at the “current instant in time”.

SUBJECTIVE RESPONSE

For each trial, participants had to say aloud a non-negative real number as soon as
the obstacle appeared. The number was an answer to the question: “How much
steering do you think you need, at this moment?”. The words “at this moment”
are an important part of the question since the DRF, as previously defined, relates
to the perceived risk at the current time instant. Participants were instructed to
report zero if they did not feel the need to steer at the current time instant. The
question was stated at the beginning of the experiment (on each day) and was not
repeated for each trial. The participants were expected to respond as soon as the
obstacle appeared. They were trained for this with a 6 minute trial at the start of
each day. No scale or reference values related to the subjective response were pro-
vided to the participants [57]. This approach was used to prevent the saturation
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Figure 2.5: Driver’s response: The figure shows the steering angle applied by a participant and the lat-
eral position of the vehicle on the road as a function of the longitudinal distance along the lane centre.
In this particular example, the obstacle appeared on the lane centre (lateral position 0 m) at a longitu-
dinal distance of 50 m. The four lines represent the four repetitions for this particular obstacle position
(Rep1 = first repetition). SR = subjective response of the participant for the corresponding trial.

of subjective answers towards the extremes of a predefined scale, which is impor-
tant in our experiment because the participants did not know the lowest or highest
level of the stimulus beforehand. Also, this approach provided more freedom to
the participants, as it did not require them to multiply, divide, etcetera to scale
their responses to the given reference value (Stevens, 1975 [57], p 28).

2.3. ANALYSIS
In this chapter, the analysis and results are reported for each participant indepen-
dently. For each trial, we calculated a subjective and an objective measure, as de-
scribed in the methods section. Three-hundred-eight responses were recorded per
participant for the subjective and objective measure, each. All participants were
instructed to report a subjective response of ‘0’ to indicate “no steering needed
at this instant in time”. A similar threshold that distinguishes between a ‘steering
action’ and ‘no steering action’ is needed for the objective measure (since the ob-
jective measure will never be exactly 0). A steering angle of ± 2 degrees was used as
a threshold for the objective measure since literature indicates that angles greater
than |± 2 degrees| represents a conscious steering action [58][59][60]. This means
that if the maximum of the absolute of the steering angle applied by the participant
was less than 2 degrees, the objective measure was set to 0, for that particular trial.
Following this, for both subjective and objective measures, the 4 repetitions for the
77 obstacle locations were averaged and rearranged in an 11 x 7 matrix (11 lateral
positions and 7 longitudinal positions). It is important to note that we performed
the experiment at a constant speed and we expect speed to have a significant effect
on the DRF (which will have to be quantified in future studies). Hence, to avoid the
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speed dependency, we report our results in terms of distances and not in terms of
time-based measures such as time to collision (TTC) or time headway (THW).

2.3.1. SHAPE OF THE DRIVER’S RISK FIELD (DRF)
We investigated the relationship between the position of the obstacle and the steer-
ing responses (subjective and objective) to determine the shape of the DRF with
respect to the 3 axes:

1. y-axis: Effect of the lateral position of the obstacle on steering response (sub-
jective and objective)

2. x-axis: Effect of the longitudinal position of the obstacle on steering response
(subjective and objective)

3. z-axis: Contours of constant steering response (subjective and objective)

For each of these 3 axes, the data was fit to a function (Gaussian, power curve, or
parabolic), and the R2 index was calculated to assess the goodness of fit. A non-
linear least-squares method with the Trust-Region algorithm was used to find the
optimal parameters [61]. The analysis is identical for the subjective and the objec-
tive steering response, and is performed independently for each participant.

EFFECT OF THE LATERAL POSITION OF THE OBSTACLE ON THE STEERING RESPONSE

The effect of lateral position on the steering response was studied by using the
11 data points per longitudinal position (Fig. 2.6, Row 1). Each row of 11 data
points (in cutting planes parallel to the y-z plane) was used to fit a Gaussian func-
tion (equation 2.1).

z = a1 exp

(
−y2

a2
2

)
(2.1)

where a1 and a2 are the parameters to be estimated. The steering responses had
their maximum value at the lane centre and decayed to zero on either side of the
lane centre, for each of the 7 longitudinal positions. Accordingly, the continuous
and differentiable Gaussian function was chosen over other simple functions such
as linear functions or parabolas. The R2 index was calculated per participant by
taking a mean of the R2 index of each of the 7 (longitudinal positions) curves.

EFFECT OF LONGITUDINAL POSITION OF THE OBSTACLE ON THE STEERING RESPONSE

The effect of longitudinal position on the steering response was studied by using
the 7 data points per lateral position (Fig. 2.6, Row 2). Each column of 7 data points
was then used to fit a power function (equation 2.2).

z = a3xa4 +a5 (2.2)

where a3, a4, and a5 are the parameters to be estimated. A power curve was fit
to the experimental data because, from visual inspection, it could be seen that the
steering response decays as the longitudinal position increases, an effect that bears
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(dla) was the distance along the longitudinal axis, beyond which the steering response of the driver was
zero.



2

22
2. DRIVER’S RISK FIELD (DRF):
AN EMPIRICAL QUANTIFICATION

a resemblance to the relationship between an objective stimulus and a subjective
response studied by Stevens (1975). The R2 index is calculated, per participant, by
taking a mean of the R2 of each of the 11 (lateral positions) curves.

SHAPE OF CONTOURS REPRESENTING CONSTANT STEERING RESPONSES

The interpolated Gaussian functions (previous subsection) are ‘sliced’ (parallel to
the x-y plane) at 5 levels of steering response (0.1%, 2.5%, 10%, 25%, 50% of the
maximum value of the measure). The maximum value is calculated per partic-
ipant, separately for the subjective and objective measure. The points at which
these cutting planes intersect the interpolated Gaussians are calculated and used
to fit a second-order polynomial (equation 2.3)

y = a6 (x −a7)2 +a8 (2.3)

where a6, a7, and a8 are the parameters to be estimated and x is the longitu-
dinal distance. A parabolic function was chosen because it is the lowest degree of
the polynomial capable of estimating curvature. The number of data points avail-
able for curve fitting was a factor of consideration because we probed seven lon-
gitudinal distances (25 m to 175 m), but participants could have lower look ahead
distances (dla), resulting in a smaller (than 7) number of data points available for
interpolation. Hence, a polynomial of the second order was chosen. If the cutting
plane intersected only two Gaussians, then linear interpolation (equation 2.4) was
used because interpolating a parabola is not feasible with less than three points.

y = a6x +a7 (2.4)

If the cutting plane intersected less than two Gaussians, a region could not be
calculated, and hence is not shown in the plots. The R2 index was calculated per
participant by averaging the R2 index of each curve. There are five cutting planes
and each plane results in two boundary curves (left and right), which are mirror
images of each other about the longitudinal distance (x) axis since the Gaussian
function is centred at a lateral position of 0 (equation 2.1).

2.3.2. WIDTH OF THE GAUSSIAN CROSS-SECTION ALONG THE LONGI-
TUDINAL DISTANCE

In the previous subsection, we proposed to quantify the cross-section of the DRF
with a Gaussian function whose height decays as a power-law function of the lon-
gitudinal distance. However, the propagation of the width of the Gaussian function
along the longitudinal distance is not quantified. For this, we fit a 2nd order poly-
nomial to the a2 parameter (from equation 2.1) of the Gaussian function at each
longitudinal distance.

σ= a9 (x −a10)2 +a11 (2.5)

The 3 parameters for (a9, a10, a11) of the second-order polynomial (equation
2.5) define the shape of the propagation of the width of the DRF along the longi-
tudinal distance (x). Parameter a9 dictates the curvature of the boundary (a9 > 0,
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Figure 2.7: Width of the Gaussian cross-section as a function of longitudinal distance: The three pa-
rameters (a9, a10, a11) can form 12 different shapes, 4 of which are shown. The direction of travel of
the vehicle is along the positive x-axis, and the near and far end are located at 25 m and dla (look ahead
distance) in front of the vehicle, respectively.

curves upwards and a9 < 0, curves downwards). Parameter a10 defines the posi-
tion along the longitudinal distance, at which the curve reaches its inflection point
(slope = 0). Parameter a10 can be classified into three regions: (i) a10 < 25 (in front
of the near end) , (ii) 25 < a10 < dla (between the near and far end), and (iii) a10 > dla

(beyond the far end). dla is the look ahead distance of a particular participant. If
the obstacles appear beyond the dla, the participant does not feel the need to steer
immediately (Fig. 2.6). Parameter a11 defines the lateral position of the inflection
point of the curve. Hence, a9 is classified in 2 ways (a10 > 0, a10 <0), a10 is classified
in 3 ways (a10 < 25, 25 < a10 < dla, a10 > dla), and a11 is classified in 2 ways (a11 >
0, a11 < 0). Hence, there are 12 (2 x 3 x 2) possible shapes, 4 of which are shown in
Fig. 2.7. The Type 1 shape resembles an hourglass, which widens at the ends and
narrows in the middle. Type 2 looks like a funnel which widens from one end to
the other, and Type 3 is ‘opposite’ of Type 2, where the funnel narrows as the longi-
tudinal distance increases. Type 4 bulges outwards while narrowing from the near
end to the far end. We plot the left boundary using (equation 2.5) (a2 > 0) and its
‘mirror image’ (-a2 < 0) about the longitudinal axis to provide better visualisation
and understanding of the shape that would propagate (Fig. 2.7).

2.4. RESULTS

2.4.1. SHAPE OF THE DRIVER’S RISK FIELD (DRF)
EFFECT OF THE LATERAL POSITION OF THE OBSTACLES ON THE STEERING RESPONSE

The effect of lateral position of the obstacles on the steering response of all eight
participants (individually) is shown in Fig. 2.8 (subjective: top two rows, objec-
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Figure 2.8: Effect of lateral distance: The figure shows the effect of lateral distance (of the obstacle
centre from the lane centre) on the steering response for the eight participants (P1–P8). The x-axis rep-
resents the lateral distance of the obstacle from the lane centre (left of lane centre is positive), and the
y-axis represents the subjective response (top 2 rows) and the objective measure of maximum absolute
steering angle (bottom 2 rows).
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tive: bottom two rows). As hypothesised, the magnitude of steering response de-
creased as the lateral distance of the obstacle from the lane centre increased (on
either side). All participants responded to obstacles beyond the width of the car
(± 0.9 m), indicating that the area in the driver’s preview that stimulates a steering
correction is wider than the width of the vehicle and that drivers prefer to adopt
a lateral safety margin to the obstacles. Individual differences can be found in the
height and width of the Gaussians. For example, P1 and P5 have narrow Gaus-
sians, whereas P4 and P8 have wide Gaussians. As the longitudinal distance of the
obstacle to the vehicle increases, the magnitude of steering response decreases (as
shown by the grayscale gradient lines in Fig. 2.8). The range of angles applied by
the participants (objective measure) was quite similar (in the range of 0–80 deg),
while the subjective responses had widely varying ranges. For example, P8 had a
range from 0 to 100, while P3 had a range from 0 to 4. A Gaussian function accu-
rately described the effect of lateral position on subjective (R2 = 0.77) and objective
(R2 = 0.69) steering responses.

EFFECT OF THE LONGITUDINAL POSITION OF THE OBSTACLES ON THE STEERING RE-
SPONSE

The effect of the longitudinal position of the obstacles on the steering response is
shown in Fig. 2.9 (subjective: top two rows, objective: bottom two rows). As the
longitudinal distance of the obstacle from the vehicle increases, the magnitude of
steering response decreases. Individual differences can be found in the height and
the rate at which the responses decline as a function of longitudinal distance. For
example, P3 and P7 have gradual rates of descent of steering response, whereas P5
and P6 have steep rates of descent. As the lateral distance to the lane centre in-
creases, the magnitude of steering response decreases (as shown by the grayscale
gradient lines in Fig. 2.9). A Power law was used to describe the effect of the longi-
tudinal position of the obstacle, on subjective (R2 = 0.86) and objective (R2 = 0.98)
steering responses.

CONTOURS OF CONSTANT STEERING RESPONSES

The results in Fig. 2.10 show the regions in the DRF that correspond to different
intervals of steering response. The intervals were defined relative to the maximum
steering response (subjective and objective) of each participant. There are clear in-
dividual differences in the way participants responded to obstacles. For example,
P2 has a very wide DRF compared to P1. As the magnitude of steering response
increases (0.1% to 50%), the area of the corresponding contour region shrinks to-
wards the vehicle. It is also evident that the participants used different look ahead
distances (dla). Most participants (P1, P2, P4, P5, P6, P8) have the same look ahead
distance for subjective and objective measures.

Participants P3 and P7 have a shorter look ahead distance calculated from the
objective measure as compared to that calculated from the subjective measure.
This means that participants consciously decided to make a correction, but the
steering corrections were smaller than the 2 deg steering angle threshold that we
set (to differentiate a conscious steering action from noise). Some of the subplots
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Figure 2.9: Effect of longitudinal distance: The figure shows the effect of longitudinal distance (of the
obstacle centre from the vehicle centre) on the steering response for the eight participants (P1-P8). The
x-axis represents the longitudinal distance of the obstacle from the vehicle (the vehicle is travelling in
the positive x-direction), and the y-axis represents the subjective response (top 2 rows) and the objective
measure of max absolute steering angle (bottom 2 rows).
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Figure 2.10: Constant steering response contours: The figure shows the regions of constant steering
response at different intervals, for the eight participants (P1-P8). The different intervals (0.1%, 2.5%,
10%, 25%, 50%) are of the maximum value of the measure (subjective and objective, respectively), per
participant. The x-axis represents the longitudinal distance of the obstacle from the vehicle (the vehicle
is travelling in the positive x-direction), and the y-axis represents the lateral distance of the obstacle
from the lane centre. All participants exhibit a DRF that is wider than the width of the car (horizontal
dotted lines).
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do not have the 50% (red) plane plotted (subjective: P6, objective: P1, P3, P4, P6,
P8) since the 50% cutting plane intersected with less than two Gaussians.

2.4.2. WIDTH OF THE GAUSSIAN CROSS-SECTION ALONG THE LONGI-
TUDINAL DISTANCE

The width of the Gaussian function (a2) for each longitudinal distance was used
to interpolate a parabola to determine the shape of the propagation on the DRF
(Fig. 2.11). The 95% confidence interval of the estimation of a2 is shown in grey
markers.

The shape was quantified by the parameters of the parabolic boundaries (a9,
a10, and a11) as explained in the analysis section (reported in Table A.1: Appendix
A), and was classified into Type 1, 2, 3, or 4 (Fig. 2.7), according to the parameter
values. The interpolated Gaussian functions with height (a1) = 0 were not used for
fitting the parabolas since 0 steering response indicated ‘no immediate steering
required’. Most of the shapes (six of eight for subjective, and seven of eight for
objective) resemble an hourglass shape (Type 1). Participants P1 and P3’s objective
measure narrows as the longitudinal distance increases and hence is classified as
Type 3, whereas the subjective measure of P7 narrows (with a bulge) and hence is
classified as Type 4.

2.4.3. THE RELATION BETWEEN SUBJECTIVE AND OBJECTIVE MEASURES

When the subjective responses were compared against the corresponding objec-
tive responses, for each participant (Fig. 2.12), the Pearson correlation coefficients
(r ) indicated a strong association between them. This result shows that the DRF
was not only perceived by the humans (subjective measure) but also acted upon
(objective measure). However, there were a considerable number trials (especially
for participant 4, Nobj0 = 30) where participants reported a non-zero subjective re-
sponse but did not perform a steering action within 1 s of the obstacle appearing.
This effect can also be seen in Fig. 2.10, where the subjective contours (Fig. 2.10
top 2 rows) with higher values (red, yellow, deep-blue) cover larger areas of the DRF,
compared to their area in the objective contours (Fig. 2.10 bottom 2 rows). This in-
dicates that even if the participants perceive the risk at the current instant in time,
they do not necessarily act immediately.

2.5. DISCUSSION
This study aimed to experimentally investigate the shape of the ‘Driver’s Risk Field’
(DRF) by quantifying the steering response in an obstacle avoidance task, at a con-
stant speed. The results (Fig. 2.8, Fig. 2.9) show that the effect of lateral and lon-
gitudinal position of the obstacle on steering response can be quantified by the
Gaussian function and the Power law, respectively. Hence, the DRF constitutes a
function (Fig. 2.13 [b]) that describes the driver’s risk along the direction of move-
ment of the vehicle, where the risk decreases in the lateral direction according to
a Gaussian function, and according to the Power law in the longitudinal direction.
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Figure 2.11: Width of Gaussian cross-section: The figure shows the effect of longitudinal distance on
the width of the Gaussian cross-section of the DRF for the eight participants (P1-P8). The x-axis repre-
sents the longitudinal distance of the obstacle from the vehicle (the vehicle is travelling in the positive
x-direction), and the y-axis represents the width of Gaussian. A parabolic function is fit to the width
of Gaussian (parameter a2 in equation 1) at every longitudinal distance. The 95% confidence interval
(calculated using the confint function in MATLAB) are shown with the grey markers.
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Figure 2.12: Relation between subjective and objective measures: The figure shows the correlation
between the subjective response on the y-axis and the objective response (maximum of the absolute
steering angle applied by the driver) on the x-axis. The Pearson correlation coefficient (r ) is reported
for each participant and indicates a high correlation between the subjective and objective measures
(average of all participants: r = 0.86). Nobj0 is the number of times (out of 77) that the objective measure
was 0 and the subjective measure was non-zero (red squares), and Nsbj0 is the number of times the
subjective measure was 0 and the objective measure was non-zero (green squares).

The top-down projection of the function visualises the Driver’s Risk Field projected
around the vehicle, and the propagation of the width of the risk field follows an
hourglass shape (for most participants). We hypothesised that the shape of the
DRF would expand as the longitudinal distance increased (Type 2 shape), but the
results show that the DRF is shaped like an hourglass (Type 1 shape) for most of
the participants (Fig. 2.11). The Type 1 and 2 shapes are both wide at the far end,
but the hourglass shape (Type 1) we observed for most subjects also widens at the
near end. This widening at the near end could be due to startle, because of an ob-
stacle appearing suddenly in front of the participant. This startle could initiate an
open-loop steering action, without completely processing the position of the ob-
stacle. This open-loop type of steering response in emergency scenarios was also
observed in a previous study by Van Auken et al. (2011) [17].

We hypothesised that the steering response would decrease as the distance be-
tween the obstacle and the vehicle increases. This hypothesis was confirmed by
the results in Fig. 2.8 and Fig. 2.9. The decrease in steering response magnitude
for increasing longitudinal distance to an obstacle corresponds to previous stud-
ies. For example, Gold et al. [62], the steering response (and hence the trajec-
tory of the vehicle) became smoother as the take-over ‘time budget’ was increased
(Fig. 4 in Gold et al.,[62]). Other researchers found a decrease in subjective rat-
ings of risk as the time headway (to a leading vehicle) increased, confirming our
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Figure 2.13: Shape of the DRF: (a) The results of our study show that the DRF is hourglass-shaped
(Type 1), whereas the hypothesis (marked by the dashed black lines) is funnel-shaped (Type 2). We
argue that the widening towards the vehicle is due to the startle open-loop correction caused by an
obstacle suddenly appearing at a short distance. (b) Three-dimensional representation of the shape of
the DRF. The height and width of the Gaussian cross-section follow the power law and the hourglass
shape, respectively.

subjective results [56][63][64]. An important contribution of this chapter is that we
captured this decrease in steering response as a function of increasing longitudi-
nal distance by means of a Power law function for both subjective and objective
steering response. The shape of the DRF in this study is quantified at a constant
speed. However, to fully understand the nature and properties of the DRF, experi-
ments at different fixed vehicle speeds and with speed control handed over to the
driver need to be carried out. However, the challenge here will be to derive a single
DRF based on both lateral and longitudinal control since the driver’s response is
expected to be distributed over steering and braking/acceleration. We expect that
the size of the DRF will scale with the speed of the vehicle, but maintain its shape.
This prediction is based on the fact that drivers tend to maintain a constant look
ahead time, and hence the look ahead distance, and in turn, the DRF scales with
speed [65].

The shape of the DRF, as quantified in this study, is based on the steering re-
sponse magnitude as a function of the position of the obstacles. All the obstacles
presented in this study were identical. This was done to study only the effect of
the position of the obstacle and not its dangerousness. However, in the real world,
obstacles pose different levels of risk. For example, a stone is less harmful as com-
pared to a rock (effect of size), a sheet of paper on the road is less dangerous than a
pothole of the same size (effect of material), a static obstacle like road work equip-
ment causes different response compared to dynamic obstacles such as pedestri-
ans and vehicles (effect of speed). Future experiments should be done using ob-
stacles posing different levels of hazard.

In this study, we measured the subjective and objective responses of the par-
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ticipants to examine if the risk field is perceived and/or acted upon. The results
showed that the participants perceived (subjective response) and acted (objective
response) on the risk. However, Fig. 2.12 showed that some participants perceived
the risk at the current instant in time but did not act immediately. This means that
sometimes the perceived risk is not large enough to elicit an immediate action (or
any action at all). The relationship between the delay in responding to perceived
risk and the position of the obstacle will be studied in the future.

One of the limitations of measuring subjective and objective response simul-
taneously is that there can be an interaction between the two responses. We tried
to minimise this interaction by making the task ‘subconscious’ so that the partici-
pants did not consciously link their subjective and objective responses. We trained
and motivated the participants to provide us their subjective response as soon as
they saw the obstacle. Secondly, the participants could respond with any non-zero
number and did not have to adhere to any predefined scale. This reduced the men-
tal effort of consciously performing arithmetic calculations to provide a subjective
response. Future studies could measure the subjective and objective measure sep-
arately and examine the interaction effect.

The DRF proposed in this study, which represents the belief of the driver re-
garding the probability of a hazardous event occurring, can be combined with the
consequences of the event to calculate the perceived risk [2]. This perceived risk
could be used as a novel ‘cost function’ in controllers of automated driving/assistance
systems. Fajen et al. [66] performed a similar study with participants walking in an
area strewn with obstacles and reported that such a field-based approach could
predict participant’s path. The ‘tentacle-like’ algorithms in the field of robotics
make use of the information from a vehicle’s preview and show resemblance to
the DRF. These similarities and the success of the area-based approaches in the
field of robotics to negotiate a variety of scenarios indicates that the DRF can po-
tentially be useful in several curve negotiation and obstacle avoidance scenarios
[67][23][50][68]. However, the main difference between the existing algorithms
and the present DRF is that the former are derived from a control-theoretic point
of view, whereas the DRF, as shown in this study, is perceived and acted upon by
humans. We expect that our human-factors based approach can serve to improve
the anthropomorphism of automated vehicles. In recent years, ‘human-like’ driver
models [69][31][70][71][72] and personalised driver models that can describe and
adapt to the behaviour of individual drivers [73][74] have gained increasing atten-
tion. An important aspect of such models is the use of a function, the parameters of
which can be modified to individualise driving behaviour [75]. The DRF in our ex-
periment had an hourglass shape (for most participants), but its size was different
for each tested individual. These individual differences can be captured by manip-
ulating the parameter values and hence provide a means to individualise the DRF
and make personalised driver models. Note that in this study, we do not provide a
unifying model or theory based on the quantified DRF. Such model development
will have to be explored in future research, along with experimental studies to test
the generalisability of the shape of the DRF for different driving scenarios. We hope
that this study thereby contributes to the development of automated vehicles that
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understand and interact with humans in a safer and more efficient manner.

2.6. CONCLUSIONS
In order to quantify the Driver’s Risk Field (DRF) which is subjectively perceived
and objectively acted upon by the drivers, we performed a driving simulator study
where drivers needed to avoid suddenly appearing objects on a straight road at a
constant speed. For the experimental conditions studied, we conclude the follow-
ing:

• Objective and subjective response of the drivers decreased as the lateral dis-
tance of the obstacle from the vehicle increased, and this relationship could
be described by the Gaussian function (Fig. 2.8: Subjective R2 = 0.77, Objec-
tive R2 = 0.69).

• Objective and subjective response of the drivers decreased as the longitudi-
nal distance of the obstacle from the vehicle increased, and this relationship
could be described by the Power law (Fig. 2.9: Subjective R2 = 0.86, Objective
R2 = 0.98).

• All participants responded to obstacles that were placed beyond the width of
the car, meaning that the quantified DRF exceeds car-width. (Fig. 2.10).

• For most of the participants, the propagation of the width of the DRF along
the longitudinal distance resembled an hourglass shape (Fig. 2.11).
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DRF-BASED DRIVER MODEL:

OPERATIONALIZING THE RISK

THRESHOLD THEORY

Current driving behaviour models are designed for specific scenarios, such as curve
driving, obstacle avoidance, car-following, or overtaking. However, humans can
drive in diverse scenarios. Can we find an underlying principle from which driv-
ing behaviour in different scenarios emerges? We propose the Driver’s Risk Field
(DRF), a two-dimensional field that represents the driver’s belief about the prob-
ability of an event occurring. The DRF, when multiplied with the consequence of
the event, provides an estimate of the driver’s perceived risk. Through human-in-
the-loop and computer simulations, we show that human-like driving behaviour
emerges when the DRF is coupled to a controller that maintains the perceived risk
below a threshold-level. The DRF model predictions concur with driving behaviour
reported in literature for seven different scenarios (curve radii, lane widths, obsta-
cle avoidance, roadside furniture, car-following, overtaking, oncoming traffic). We
conclude that our generalizable DRF model is scientifically satisfying and has appli-
cations in automated vehicles.

The contents of this chapter have been published in:
S. Kolekar, J.C.F. de Winter, and D. Abbink, Human-like driving behaviour emerges from a risk-based
driver model, Nature communications 11.1 (2020), 1-13

35

https://doi.org/10.1038/s41467-020-18353-4


3

36
3. DRF-BASED DRIVER MODEL:

OPERATIONALIZING THE RISK THRESHOLD THEORY

3.1. BACKGROUND

W ITH the introduction of automated vehicles, humans will increasingly need to
interact with automated systems. One of the factors that influences human-

automation interaction is the trust that users have in the system [76][77]. Research
suggests that the more technology seems to have human-like capacities, the more
people are expected to trust it to perform its intended function competently [78].
For example, when recorded vehicle trajectories were played back to drivers, the
drivers preferred a driving style they thought was their own [7]. To impart human-
like capabilities in automated systems, understanding and modelling the human
driver is essential.

Despite many efforts in the field of driver modelling (for surveys see [79][80][81]),
driver models are typically developed for specific scenarios. For example, longitu-
dinal behaviour has been modelled using the optical edge rate on open roads [11],
the time to extended tangent point in curves [12], time to collision (TTC) while
approaching obstacles [13], and time headway (THW) during car-following [65].
Lateral positioning has been modelled using two-point (i.e., anticipatory vs. com-
pensatory) models [16][70] in normal driving, and open-loop steering corrections
[17] in emergency scenarios. To the best of our knowledge, the literature does not
include a model of human driver behaviour that is applicable to a multitude of
scenarios.

Practically, a unitary model could be developed by including a switch that se-
lects a sub-model (or model parameters) based on the current driving scenario.
However, this would require a-priori identification of all possible scenarios, linked
to appropriately parameterized models, and smooth transitions between them.
Such an approach has two main problems: Firstly, the fragmented approach will
not perform satisfactorily for driving situations where there is an inappropriate
switch between tasks, or for driving situations that have not been addressed a-
priori, a problem also reported for machine learning techniques [8]. Secondly, this
fragmented approach is not scientifically satisfying since it does not elucidate the
underlying principles governing driving behaviour. These principles can be seen as
a ‘cost function’ that human drivers try to minimise. Such cost functions have been
proposed in the area of human motor control and have demonstrated emergent
motor control behaviour in different tasks and environments [27]. The present
study explores whether a similar generalizable model can be made for driving in
different scenarios.

Essential to generalizable models is a cost function that is based on existing
theories that aim to explain driving behaviour in a unified manner. The first at-
tempt to such a unified theory was made by Gibson and Crooks [1]. They pro-
posed that drivers perceive the qualitative concept of a ´field of safe travel´, which
is comprised of the possible paths that the car can take unimpeded. This the-
ory paved the way for ‘motivational driver models’ such as the risk homeostasis
and task difficulty homeostasis theories by Wilde [4] and Fuller [82], respectively.
However, these theories have two drawbacks: Firstly, they lack specificity regard-
ing their internal mechanisms, which makes it difficult to operationalize and vali-
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date them [83][84][85]. Secondly, homeostasis theories cannot account for an im-
portant characteristic of human driving behaviour, namely satisficing. Drivers do
not optimise their states (e.g., they do not try to follow the centre-line of the road
perfectly) but try to maintain their state within acceptable limits (e.g., within lane
boundaries) [21]. Models based on homeostasis theories maintain a certain risk or
task-difficulty level, and hence will always follow a reference trajectory (for exam-
ple, centreline of the road), which is not coherent with satisficing behaviour.

Näätänen and Summala [2] addressed satisficing behaviour by introducing the
concept of a risk threshold. According to their theory, drivers do not maintain a
certain level of risk but make corrective actions only when the risk they perceive
increases beyond a threshold. This means that any vehicle state is acceptable, as
long as the driver’s risk is within his/her individualised threshold. However, to the
best of our knowledge, the risk threshold theory has not been operationalized and
tested in different driving scenarios.

In this chapter, we propose a novel metric - the risk estimate, which is based
on published empirical data. We then formulate a driver model that utilises the
proposed risk estimate as a cost function, simulate it in different driving scenar-
ios, and compare its predictions about adaptations in speed and lateral position
behaviour with the driver behaviour reported in literature. The results exemplify
that, in driving, similar to motor-control tasks, a cost function that accounts for
the consequence of noise (in human’s perception and actions) seems to be the un-
derlying principle governing speed and lateral position adaptations of drivers. In
short, we propose the risk estimate that operationalizes human-like behaviour in a
unified manner, for different driving scenarios.

3.2. METHODS

3.2.1. QUANTIFYING PERCEIVED RISK
According to Näätänen and Summala [2], perceived risk is the product of the sub-
jective probability that an event will occur and the consequence of that event (Fig.
3.1 [a]). In this chapter, we operationalize these components (Fig. 3.1 [b]). The
consequence of an event is the dangerousness of being in a particular state. We
quantified this by assigning a cost to objects in the driving scene according to the
danger they pose. These values need to be identified experimentally and are inde-
pendent of the driver. A representation of the driver’s belief about the probability
of an event occurring was quantified in chapter 2. They measured drivers’ subjec-
tive (self-reported) risk levels and objective (steering angle) steering responses in
an obstacle avoidance task. The Driver’s Risk Field (DRF), as we called it in chapter
2, has a high value near the ego car and decays as the lateral and longitudinal dis-
tance from the ego car increases. The DRF hence indicates that the driver believes
that there is a higher probability of being in a position near their current position,
in the next tla seconds (preview time), than at further away points. The DRF, in
essence, is assumed to capture the driver’s uncertainty in his/her perception and
actions.

The risk estimate is a scalar value which is the product of the ‘cost of an event’
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Figure 3.1: Visualising the quantification of driver’s perceived risk: (a) This row illustrates Näätänen
and Summala’s [2] formulation of perceived risk. The consequence of an event (e.g., colliding with a
tree) and the driver’s subjective belief about the probability of that event occurring, form the driver’s
perceived risk. The driver in the ego car is indicated using the black marker. (b) This row illustrates
the proposed quantification of this perceived risk. The cost of each element in the driving scene is
multiplied with the Driver’s Risk Field (DRF) that represents the driver’s belief of the probability of being
in a position. This product summed over all grid points generates the risk estimate.

and the DRF, summed over all the grid points. In essence, the risk estimate quan-
tifies the ‘consequence of noise/variability in our perception and actions’, which is
similar to the unifying cost functions proposed in motor control [27][30].

3.2.2. MODELLING THE DRIVER’S RISK FIELD

The DRF has been previously quantified for a fixed speed on a straight road [86].
In this section, we provide the mathematical formulation of a DRF that moves with
the driver and changes its shape with speed and steering angle. In this chapter,
the predicted vehicle path is calculated using a kinematic car model. The position
(xcar, ycar), heading (φcar), and steering angle (δ) determine the radius of the arc
(Rcar) in which the car is predicted to travel, assuming a constant steering angle
(equation (3.1)).

Rcar = L

t an(δ)
(3.1)

L is the wheel-base of the car. Using xcar, ycar, φcar, and Rcar, the centre of the
turning circle (xc, yc) is determined, which is used to calculate the arc-length (s),
measured along the predicted path (Fig. 3.2 [a]). The DRF is modelled as a torus
with a Gaussian cross-section (equation (3.2)). The height (a) and width (σ) of the
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Figure 3.2: Modelling the Driver’s Risk Field: (a) The ‘predicted path’ is calculated using the trajectory
of vehicle kinematics, assuming constant steering angle (δ) and speed (v) for a fixed look ahead time
(tla). (b) The DRF is modelled as a modified torus. Four steps are taken to form the DRF from (i) A
torus that curves along the ‘predicted path’. (ii) Cross-section of torus is modified to a Gaussian. (iii)
Height (a) and (iv) width (σ) of the Gaussian become functions of arc length (s), equations (3.3) and
(3.4), respectively.

Gaussian are a function of the arc length (s) (Fig. 3.2 [b]).

z(x, y) = a exp


−

(√
(x −xc)2 + (

y − yc
)2 −Rcar

)2

2σ2

 (3.2)

The height of the Gaussian (a), is modelled as a parabola (equation (3.3)).

a = p (s − v tla)2 (3.3)

With a fixed look ahead time (tla), the look ahead distance is assumed to increase
linearly with speed (v). Parameter (p) defines the ‘steepness’ of the parabola (Fig.
3.3 [a][b]).

The width of the Gaussian (σ) is modelled as a linear function of arc length (s)
(equation (3.4)), which is a simplification of the parabolic function (Fig. B.1 [a]:
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Figure 3.3: Driver’s Risk Field (DRF) parameters The DRF is parameterized by 6 parameters: p, tla, k1,
k2, m, c. The effect of p (steepness of the parabola) and tla are shown in (a) and (b) and emerge from
equation (3.3). The maximum height of the Gaussian is determined by p, tla, and speed. (c) Parameters
k1 and k2 link the steering angle to the width of the Gaussian. The DRF widens (if k1, k2 > 0) or narrows
(if k1, k2 < 0). (d) k1 and k2 correspond to the inner and outer Gaussian widths, respectively. So, if
k1 < k2, the inner Gaussian is narrower than the outer, which enables ‘corner cutting’ in curves.

Appendix B) used in Chapter 2 and includes the following parameters: (i) c defines
the width of the DRF at the location of the vehicle and is related to the car-width. In
this chapter, c is equal to car-width/4 (±2σ of Gaussian distribution accounts for
95%). (ii) m defines the slope of widening (or narrowing for negative values) of the
DRF when δ = 0 (driving straight). (iii) k1 and k2 increase (or decrease, for negative
values) the width of the DRF proportional to the (absolute) steering angle (|δ|). This
is based on the rationale that variability in steering angle increases linearly with the
intended steering angle [65][31]. It is similar to the empirically confirmed signal-
dependent noise present in the human sensorimotor system [30][29]. k1 and k2

represent the parameters for the inner and outer edges of the DRF, respectively, and
allow for an asymmetric DRF (Fig. 3.3 [c][d]). The expansion of DRF proportional
to |δ| results in the accumulation of a higher risk for a curve with a smaller radius.
The asymmetric expansion (k1 and k2) provides flexibility to exhibit curve-cutting
(k1 < k2), centreline (k1 = k2), or curve overshooting (k1 > k2) behaviour.

σi = (m +ki |δ|) s + c (3.4)

i = 1(inner σ),2(outer σ)

In short, the Driver’s Risk Field (DRF) is parameterized by p, tla, m, c, k1, k2, and is
only dependent on driver’s state, not the environment (Fig. 3.4).

To test if the proposed risk estimate can operationalize human-like behaviour
in a unified manner, we used the risk estimate as an input for a simple driver model
(Fig. 3.5 and Fig. 3.6) and simulated it on a virtual track (Fig. 3.7).
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Figure 3.4: Effect of steering and speed on the DRF: The figure shows the shape and magnitude of DRF
as a function of the position in the driving scene (global X and Y coordinates). The DRF is a dynamic
field that expands with an increase in speed (compare (a)-(b)), and steering angle (compare (a)–(c) and
(c)–(d)).

3.2.3. DRF-BASED DRIVER MODEL

DRIVER MODEL CONTROL STRUCTURE

To generate model predictions on human driving behaviour, the risk estimate cal-
culated using the DRF needs to be connected to a controller that converts the risk
estimate into control actions. We chose a simple control algorithm over more com-
plex ones for two reasons: (i) we wanted to avoid the ambiguity in attributing the
driver model’s behaviour to the complex algorithm instead of the DRF, and (ii) we
wanted to avoid unnecessary complexity in formalising the optimisation problem.
The DRF is an analytically calculable non-linear function (of the driver’s states).
However, since the environment is represented as a discretized (grid) cost map,
the risk estimate needs to be calculated numerically. Moreover, we need a con-
troller that maintains the cost below a certain threshold and not one that min-
imises it. Hence, formulating the optimisation problem with the necessary con-
straints would itself be a separate study and is beyond the scope of this study. The
main characteristic of the DRF driver model is that it does not minimise the cost
function. Instead, it tries to achieve a certain goal (in this study, a desired speed
Vdes), while maintaining the cost (risk estimate: r̂ ) below an individualised thresh-
old (Rt).

The basic control structure (Fig. 3.5 [a]) includes a driver model that uses the
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Figure 3.5: Driver model: A simple driver model that utilises the proposed risk estimate to generate
control actions is shown. (a) Driver model control structure: The driver model uses the cost map of
the driving scene (information about the environment), and the vehicle states (position (xcar, ycar),
heading (φcar), and speed (v) at kth time step to generate the steering angle (δ), and speed (v) for k+1th

time step. (b) The zoomed-in driver model block: The DRF is a dynamic field and changes its shape with
vehicle state, which are inputs to the driver model block. The DRF is multiplied with the cost map of the
driving scene and summed over all grid points to generate the risk estimate (cost function). The driver
model algorithm uses the computed cost function, and the vehicle states to generate the speed (v) and
steering angle (δ) for next time step. The DRF model algorithm is based on the risk threshold theory
and compares risk estimate (r̂ ) with risk threshold (Rt). The DRF can be individualised based on DRF
parameters while the Driver model parameters determine how the cost (risk estimate) is converted to
control actions (speed and steering).
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information from the environment and the feedback from the vehicle kinematics
to generate control actions (vk : speed, and δk : steering angle) at the kth time step.
The inner workings of the driver model block are shown in Fig. 3.5 [b]. The DRF is
multiplied with the cost map of the driving scene, and summed over all points to
provide us with the risk estimate (cost). This cost is then used by the driver model
algorithm, which is based on the risk threshold theory, to generate the control ac-
tions.

DRIVER MODEL ALGORITHM

The risk estimate (r̂ ), in combination with the risk threshold (Rt) and desired speed
(Vdes), is used to formulate the DRF-based driver model. Vdes is the speed at which
the driver wants to drive on an open straight road, uninhibited.

In accordance to the risk threshold theory, the model tries to maintain the risk
estimate (r̂ ) below the risk threshold (Rt), and hence does not provide a specific tra-
jectory, but rather a range of safe trajectories (satisficing). To avoid the ‘bouncing’
behaviour exhibited by satisficing controllers (Fig. B.1 [b]: Appendix B), the DRF
model is complemented by a heading controller for the steering (equation (3.5)).

δk+1 = δk +kh
(
φroad −φcar

)
(3.5)

where φroad and φcar are the heading of the road and car tlah seconds in the fu-
ture, respectively. The gain of the heading controller is kh. The predictions about
the future position and orientation of the car are made using the ‘predicted path’
calculations explained earlier.

The driver model algorithm (Fig. 3.6), at each time step (k), compares the risk
estimate (r̂k ) to risk threshold (Rt), and speed (vk ) to the goal (Vdes). This results in
four distinct cases of inequality. We do not consider the equality relations (e.g., if
r̂k == Rt) because, practically they rarely occur.

1. If (r̂k < Rt and vk < Vdes): This condition generally occurs when you start
the journey. The model speeds up at a rate proportional to (Vdes − vk ). The
parameter kv (specific for each driver) represents how aggressively the model
accelerates. The steering is determined by the heading controller (δhead).
Hence, δk+1 = δhead and vk+1 = vk +kv (Vdes − vk ).

2. Else if (r̂k > Rt and vk < Vdes): In this condition, the incurred cost (risk esti-
mate) is more than the threshold (Rt), and the goal of desired speed has also
not been achieved. In this case, we first check if the steering alone can help
the model reduce the risk estimate below the threshold. This check is per-
formed by using the fmin_bound function which finds the steering angle δop

(within the bounds of [δk –180◦, δk +180◦]) that minimises the risk estimate
(r̂k ) assuming a speed of vk . It also calculates the risk estimate (Rop) at this
δop.

(a) If the model can find a δop such that Rop < Rt, then we continue to
accelerate (to achieve our goal) and steer using δopt that reduces r̂k to
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Rt (and not δop that reduces r̂k to Rop). This is done so that the model
does not ‘over correct’. If we were to use δop to minimise r̂k to Rop, it
would always take the model to the lane centre. Hence the model tries
to apply a steering that is just enough to reduce r̂k and get it below the
threshold (Rt). Hence δk+1 = δopt and vk+1 = vk +kv (Vdes − vk ).

(b) If the model cannot find a δ resulting in Rop > Rt, then the model slows
down proportional to Rop − r̂k (and not Rop–Rt) since the steering ap-
plied = δop is expected to reduce r̂k to Rop. This is done so that we
do not slow down more than what is required. Hence, δk+1 = δop and
vk+1 = vk +kvc

(
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Figure 3.6: Driver model algorithm: At each time step (k), we compare the cost (risk estimate) (r̂k ) to
risk threshold (Rt), and speed (vk ) to the goal (Vdes). This results in four distinct cases of inequality.



3.2. METHODS

3

45

3. Else if (r̂k < Rt and vk >Vdes): In this case the model slows down, while being
steered by the heading controller since the risk estimate is lower than the
threshold, and speed is higher than what is desired. Hence, δk+1 = δhead and
vk+1 = vk +kv (Vdes − vk ).

4. Else if (r̂k > Rt and vk >Vdes): In this case both the speed and risk are over the
desired limits and hence the model slows down while steering with δop that
minimises r̂k . Hence δk+1 = δop, and vk+1 = vk +kvc (Rt − r̂k )+kv (Vdes − vk ).

PARAMETER ESTIMATION

The parameters of the DRF model were estimated from the experimental data (N
= 1). To identify realistic parameter values for the driver model, we replicated the
track used to simulate the model (Fig. 3.7), in a fixed base driving simulator. The
experiment was approved by the Human Research Ethics Committee (HREC) - TU
Delft, and a signed informed consent was obtained from the 25-year-old male vol-
unteer. The video of the experiment in the fixed base driving simulator is shown
in Supplementary Movie 1 (Appendix B). Simulations of the DRF model in normal
and sport parameter settings are shown in Supplementary Movies 2 and 3 (Ap-
pendix B), respectively.

The participant drove ten times with the instruction, “drive as you normally
would” and ten times with, “drive faster”. This was meant to emulate ‘normal’ and
‘sport’ driving behaviour. A section of the track (Fig. 3.7 and Fig. 3.8) was used for
parameter estimation. The speed and lateral deviation trajectories estimated by
the DRF model showed a close resemblance to the trajectories of the participant
who also drove faster in sport setting than in normal setting. Also, the trajectories
remained, for most parts, within the ±2σ bound of the human trajectories. These
results show that the DRF driver model can operationalize driving behaviour and
remain within the human-like trajectory bounds (±2σ). These were necessary, but
not sufficient checks. To verify if the proposed quantified risk is indeed human-
like, we compare the predictions of the DRF model with the results published in
human driving behaviour studies in the literature (Results section).

The parameters can be segregated into three types: (i) the DRF parameters that
determine the shape of Driver’s Risk Field, and are specific to each person, (ii) the
Driver model parameters that connect the risk estimate calculated using the DRF to
the control inputs of the vehicle, and (iii) the Environment parameters that define
the cost map and describe the consequences of being in a particular state (posi-
tion, velocity, etc.), and are constant for all drivers.

DRF parameters (Table 3.1): As explained in the results section, the six pa-
rameters (p, tla, m, c, k1, k2) define the driver’s risk field (DRF). Parameter c, which
represents the initial width of the DRF can be directly calculated from the width of
the ego car (2.0 m). The remaining five parameters were estimated using the grid
search algorithm.

Driver model parameters (Table 3.2): The driver model parameters include
the speed controller gains (kvc, kv), the risk threshold (Rt), and the desired speed
(Vdes). Parameters Vdes and kv can be directly estimated by driving on a long straight
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Figure 3.7: Track used for testing the driver model: The track contains four road and three traffic sce-
narios. The four road scenarios are (1) Curve radii: R100m, R200m, R300m, and R400m, (2) Lane widths:
2.5, 3.0, 3.5, and 4.0 m, (3) Obstacle avoidance: A car was parked on a 3.5 m wide straight section such
that 0.9 m or 1.4 m of the car-width encroached on the road to simulate narrow (on) and wide (ow) ob-
stacles, respectively. (4) Roadside furniture: A 200 m long row constituting of 10 cars was placed either
outside the left lane boundary (asymmetric) or outside both lane boundaries (symmetric). The three
traffic scenarios are (1) Car-following: Two cars travelling at a constant speeds of 12.5 m s−1 (cfs) and 15
m s−1 (cff) along the lane centre on different straight sections were followed. (2) Overtaking: Two cars
travelling at constant speed of 7.5 m s−1 (ovs) and 10 m s−1 (ovf) were overtaken using a 3.5 m overtake
lane. (3) Oncoming traffic: Two cars, travelling at a constant speed of 5 m s−1 on the 2 m wide oncoming
lane, approached the ego car. The first oncoming car drove on the lane centre (onc). The second car
was offset 0.3 m towards the ego car.

section of a wide road, where the driver reaches his/her unbounded desired speed
(Vdes) while accelerating (proportional to kv) from a standstill. kvc and Rt were es-
timated using the grid search algorithm.

Environment parameters (Table 3.3): The environment parameters define the
consequence of being in a particular state (restricted to position, in this study).
These parameters are independent of the driver and hence are same for everyone.
Personalised driving behaviour is obtained by changing the DRF parameters and
the Driver model parameters. In this chapter, we assumed the cost (consequence)
of being in the ‘ego lane’ (Croad) = 0, and outside the lane boundary (Cenv) = 500.
The costs of all other objects in the environment were identified relative to Cenv.
Different objects have different costs; for example, a car in traffic may be assigned
a cost of 4000, and a roadside tree may be assigned a cost of 8000. However, since
the focus of this chapter is to demonstrate the working of the model, and not iden-
tifying the costs of different obstacles, all the obstacles in our simulation were iden-
tical: a sedan (1.8 m wide and 5 m long). This ‘obstacle car’ traversed with differ-
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Figure 3.8: Parameter estimation: To identify realistic values for the parameters of the DRF driver
model, we replicated the track in a driving simulator and one volunteer drove 10 times ‘normally’ (blue)
and 10 times in a ‘sporty manner’ (red). Speed and lateral deviation from the lane centre are plotted as
a function of the distance travelled along the lane centre of the track. The speed and lateral deviation
trajectories of the DRF driver model, for the most part, lie within the ±2σ limits of the experimental tra-
jectories. The ‘sport’ parameter setting consistently drives faster than the ‘normal’ setting and in both
cases shows similar trends in acceleration braking as shown by the human. The driver model maintains
itself within the lane boundaries, while exhibiting satisficing (i.e., not always following the lane centre),
even in conditions that were not experienced during parameter estimation (oncoming traffic scenario).

ent speeds (for overtaking, oncoming, and car-following scenarios), or was parked
alongside the road (for obstacle avoidance, asymmetric and symmetric road furni-
ture). In all these scenarios the same cost (Cobs) was assigned to the car, as identi-
fied using the grid search algorithm. The overtaking lane (Covt) was ‘modelled’ as
rectangular obstacles with a ‘very low cost’ (identified using grid search), while the
oncoming lane was assumed to be four times as dangerous (four times the cost) as
the overtaking lane.

The grid search algorithm tried to minimise
∑3

i=1

(
yi model − yi experiment

)2, where
i = 1: steering angle, i = 2: speed, i = 3: lateral deviation from the lane centre. All
the signals were a function of the distance travelled along the lane centre. Tables
3.1, 3.2, and 3.3 report the estimated parameter values for the ‘normal’ and ‘sport’
condition. It has to be noted that to personalise the DRF model to an individual,
only six parameters need to be estimated (p, tla, m, k1, k2, c). Driver’s Risk Field pa-
rameters (Table 3.1) and the Driving scene parameters (Table 3.3) were estimated
only from the ‘normal’ condition and were used for ‘normal’ and ‘sport’ parame-
ter setting of the DRF driver model, since neither the driver nor the driving scene
changed. Only the task instruction had changed, due to which (we assume) that
the manner in which the driver translates his/her perceived risk into steering and
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Table 3.1: Driver’s Risk Field parameters

p tla m k1 k2 c
Normal & Sport 0.0064 3.5 0.001 0 1.3823 0.5

Table 3.2: Driver model parameters

Ct Vdes kvc kv

Normal 3000 21.6 1.5x10−4 0.14
Sport 5200 26.0 1.5x10−4 0.30

Table 3.3: Driving scene parameters

Croad Cenv Covt lane Ccar
Normal 0 500 3.5 2500
& Sport (Assumed) (Assumed)

speed - control actions changes, which are represented by the Driver model pa-
rameters (Table 3.2).

3.3. RESULTS
To validate the DRF model, we selected papers from literature that investigated
driver behaviour as a function of road and traffic conditions in terms of speed and
lateral position. Since no single study fully replicates our scenarios, we chose dif-
ferent studies from literature, to compare with the respective DRF model predic-
tions. Wherever possible, we chose a naturalistic driving study in similar condi-
tions as simulated.

3.3.1. EFFECT OF ROAD SCENARIOS
We tested four road scenarios: different curve radii, different lane widths, obstacle
avoidance, and roadside furniture.

CURVE RADIUS

The effect of curve radius on driving behaviour was examined by investigating the
lateral position (curve-cutting behaviour) and speed while driving through curves.

Lateral position: Research has shown that drivers exhibit ‘curve-cutting’, that
is, they do not follow the centreline of the lane but try to increase the effective
radius of travel [87][88][89]. For model validation, we selected the on-road study
by Xu et al. [26] because it provides the largest sampling of curve radii (0–200 m).
They found that the amount of curve-cutting reduced as the curve radius increased
(Fig. 3.9 [b]), which is coherent with the predictions of the DRF driver model (Fig.
3.9 [a]). They quantified curve-cutting behaviour using the ‘Trajectory Transec-
tion Rate’ (TTR), which normalises the lateral deviation from the lane centre with
respect to the lane width, in curves. The DRF model exhibits curve-cutting be-
haviour due to its asymmetric shape defined by parameters k1 and k2 (Fig. 3.3
[c][d]). The DRF model also predicts that curve-cutting is higher in sport setting
than in normal setting.
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Figure 3.9: Road scenario 1 - curve radius: In the two columns (Metric 1 and Metric 2), two different
metrics are used to compare the DRF model predictions to those from literature (Xu et al. [26], Taragin
and Leisch [90]). Subfigures (a) and (b) show that the DRF model predicts the decrease in ‘curve-cutting’
(quantified using TTR) as curve radius increases. Subfigures (c) and (d) show that the DRF model could
predict the increase in speed, at the curve centres, with increasing radius. The sport setting of DRF cuts
the curves more (a) and drives at higher speeds (c) compared to the normal setting.

Speed: Several studies report that the speed at which a curve is taken increases
non-linearly with the curve radius, in driving simulator [91][92] and on-road tests
[65] [91][93]. The paper from Taragin and Leisch [90] was chosen (Fig. 3.9 [d]) be-
cause their on-road study provided data on curve radii range (60 to 714 m) and lane
width range (2.6 to 4.3 m) which are similar to that simulated for the DRF model.
The DRF model predicts that the speed increases with curve radius, asymptoti-
cally approaching straight road speed for a large radius (Fig. 3.9 [c]), which is sim-
ilar to the experimental results of Taragin and Leisch [90] (Fig. 3.9 [d]). The DRF
model exhibits this speed dependency on curvature because the width of the DRF
changes with steering angle (equation (3.4)).

LANE WIDTH

The effect of lane width was examined using the standard deviation of lateral posi-
tion (SDLP) and speed.

Lateral position: SDLP, which represents the swerving behaviour of a car, is re-
ported to increase with lane width, in a simulator study by Godley et al. [94]. They
examined the SDLPs of participants on three different lane widths (2.5, 3.0, 3.6 m)
(Fig. 3.10 [b]). Similar results are reported in other simulator [95][96] and on-road
studies [97] which are coherent with the predictions of the DRF model (Fig. 3.10
[a]). On a wider road, the DRF model has wider areas of low cost and hence, can
use a larger width of the road without steering corrections (exhibit satisficing), re-
sulting in higher SDLP.

Speed: It is reported that the speed at which drivers negotiate roads increases
as the lane width increases, in simulator [94][99][98][42] and on-road studies [97][100].
The DRF model also showed a similar increase in speed with lane width (Fig. 3.10
[c]) and is compared to the results from a (moving base) simulator study of Liu et al.
[98] (Fig. 3.10 [d]). On a wider road, there is a larger area of ‘no risk’, which means
that the model can reach higher speeds before exceeding the risk threshold.
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Figure 3.10: Road scenario 2 - lane width: In the two columns (Metric 1 and Metric 2), two different
metrics are used to compare the DRF model predictions to those from literature (Godley et al. [94], Liu
et al. [98]). In the ‘DRF model’ subfigures, the black and grey markers represent the sport and normal
parameter settings, respectively. Subfigure (b) shows that the (mean±SE) Standard Deviation of Lateral
Position (SDLP) of the vehicle increases as the lane width increases. The DRF model (a) can predict this
trend. Subfigure (d) plots the (mean±SD) mean speed on different lane widths. Subfigures (c) and (d)
show that the DRF model can predict that the speed at which drivers negotiate a road increases as the
lane width increases.

ON-ROAD OBSTACLES

Obstacle avoidance was simulated for the DRF model by parking a car partially
on the road, which led to a temporary ‘narrowing’ of the street. The ’narrow’ and
’wide’ obstacles (Fig. 3.11 [a][b][d][e]) were created by placing the same (1.8-m
wide) car such that 0.9 m, and 1.4 m of the car-width encroached over (the left
boundary of) the 3.5-m wide lane, respectively. The effect of this temporary nar-
rowing was examined by analysing the lateral deviation and speed of the ego ve-
hicle. Several researchers have reported, in on-road studies, that on-street park-
ing induces ‘traffic calming’ by reducing the average speed [101][102][103]. We se-
lected the simulator study of Edquist et al. [104] because they measured the effect
of on-street parking on lateral position and speed.

Lateral deviation: Edquist et al. [104] reported that the mean lateral position
of the vehicles shifted away from the parked cars (Fig. 3.11 [c]). The DRF model
yields a similar trend, where the ego car deviates away from the parked car (Fig.
3.11 [b]).

Speed: A reduction in mean speed was reported in the presence of parked cars
(Fig. 3.11 [f]) [104], which is coherent with the behaviour shown by the DRF model
(Fig. 3.11 [e]). It should be noted that Edquist et al. [104] reported the mean
speed since they had a row of parked cars. However, we had only one parked car,
which means we can only report the minimum speed. The DRF model successfully
avoided on-road obstacles by steering and braking.

ROADSIDE FURNITURE

Road shoulders, guard-rails, vegetation, and parked cars have been reported to af-
fect a vehicle’s lateral position and speed [89][105]. The DRF model was simulated
in an ‘asymmetric’ case where a 200 m long row of cars was parked outside the left
lane boundary, and a ‘symmetric’ case where they were parked outside both lane
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Figure 3.11: Road scenario 3 - on-road obstacles: In the two columns (Metric 1 and Metric 2), two
different metrics are used to compare the DRF model predictions to those from literature (Edquist et
al. [104]). In subfigure (b), the ‘wide’ obstacle encroaches more onto the road compared to the ‘narrow’
obstacle. The minimum lateral deviation (b) is calculated from the trajectories in subfigure (a). Drivers
moved away from the parked cars, as shown in subfigure (c). In subfigure (c) lane centre = 0 and the
bars indicate 95% confidence interval. Subfigure (b) shows that the DRF model showed a similar trend
of moving away from the obstacle. Drivers drove slower when there were parked cars, as compared to
when there were no parked cars encroaching the road, as shown in subfigure (f ). Here also the bars
indicate the 95% confidence interval. Subfigure (e) shows that the DRF model slows down for obstacles
covering the road partially.

boundaries. Dunning et al. [106] examined ‘asymmetric’ (with water (more risk)
on one and grass (less risk) on the other side of lane boundary), and ‘symmetric’
(with water on both sides) conditions in their experiment.

Lateral position: Dunning et al. [106] reported that the lateral position of the
participants shifted towards the less dangerous grass in the asymmetric case and
remained in the centre in the symmetric case (Fig. 3.12 [c]). Similar results are
seen in the behaviour of the DRF model where the ego car moves away from the
parked cars (at lateral position = +2.75 m) and remains in the centre of the lane in
the symmetric case (Fig. 3.12 [b]).

Speed: Dunning et al. [106] reported that participants, on average, drove slower
in the symmetric case (Fig. 3.12 [f]). The DRF model also shows similar behaviour
where the ego car drove faster in the asymmetric case as compared to the symmet-
ric case. This is because in the asymmetric case, the DRF model steered away from
the ‘risky’ parked cars and could maintain a higher speed without exceeding the
risk threshold. In the symmetric case, driving on the centreline was not enough
to reduce the risk below the threshold and hence the model had to slow down. In
both conditions, the sport setting drove faster than the normal setting of the DRF
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Figure 3.12: Road scenario 4 - roadside furniture: In the two columns (Metric 1 and Metric 2), two
different metrics are used to compare the DRF model predictions to those from literature (Dunning et
al. [106]). In the asymmetric case, the mean lateral deviation from the lane centre is away from the
parked cars (b) and away from water (more dangerous than grass) in (c). Subfigure (c) shows the distri-
bution of lateral position of the participants. Subfigures (e) and (f ) show that in symmetric condition
with ‘danger’ on both sides on the lane, the DRF model correctly predicted that the drivers drove slower
than in the asymmetric case. The mean lateral deviation (b) and mean speed (e) are calculated from
the trajectories in subfigures (a) and (d), respectively.

model. The DRF model could react to roadside furniture by steering and braking
since the DRF spreads beyond the lane boundaries.

3.3.2. EFFECT OF TRAFFIC SCENARIOS
We tested three traffic scenarios, namely: car-following, overtaking, and interac-
tion with oncoming cars.

CAR-FOLLOWING

We tested the effect of lead car speed on Time Headway (THW) and braking in-
tensity during car-following. We simulated ‘slow’ and ‘fast’ car-following with lead
cars that maintained constant speeds of 12.5 m s−1 and 15 m s−1, respectively.

Time Headway (THW): THW during car-following represents the time avail-
able to the driver of the following vehicle to reach the same level of deceleration
as the lead vehicle, in case the lead vehicle brakes. Several studies in literature ex-
amined the effect of lead vehicle speed on THW [107][108][109] and reported that
(for lead car speed above 10 m s−1) the preferred time headway under steady-state
car-following (THWpref) is almost constant and independent of the lead car speed.
The DRF model also predicts an almost constant THWpref (Fig. 3.13 [b]). The DRF
model, with the current parameter values, behaved more conservatively (higher
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Figure 3.13: Traffic scenario 1 - car-following: In the two columns (Metric 1 and Metric 2), two different
metrics are used to compare the DRF model predictions to those from literature (He et al. [109] and Van
der Horst [111]). Subfigures (b) and (c) indicate that the preferred time headway is independent of the
speed. In subfigure (c), the circular markers indicate median and the whiskers indicate 25th and 75th

percentile. Subfigures (e) and (f ) show that the braking intensity (represented by the acceleration at
brake initiation) increases as the approach speed to the obstacle increases.

THWpref) than the average human driver, as reported by He et al. [109] in their
on-road study (Fig. 3.13 [c]). Additionally, the THWpref for the sport parameteriza-
tion was smaller than that for the normal parameterization of the DRF model. This
concurs with the findings in the literature, where sensation-seeking drivers were
reported to maintain lower THWpref compared to sensation avoiding individuals
[108][110].

Braking intensity: Another aspect of car-following that is widely studied is
the braking intensity of the car in response to the separation to the lead car. In
a test-track study, Van der Horst [111] reported that the braking intensity (deceler-
ation at the onset of braking) increased as the approach speed increased (Fig. 3.13
[f]), which corresponds to the DRF model’s results (Fig. 3.13 [e]). The study also
reported that with ‘hard braking’ instruction, participants’ braking intensity was
higher than in normal braking condition. The DRF model also predicts that a sport
parameter setting (black markers) will yield higher deceleration than the normal
setting (grey markers: Fig. 3.13 [e]). The DRF model exhibits this behaviour since
the lead car encroached the DRF at a higher rate when the approach speed was
high and at a lower rate when the approach speed was low. This ‘rate of encroach-
ment’ translated into velocity reduction at a proportional rate.
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Figure 3.14: Traffic scenario 2 - overtaking: In the two columns (Metric 1 and Metric 2), two different
metrics are used to compare the DRF model predictions to those from literature (Crawford [112] and
Chen et al. [113]). Subfigures (b) and (c) show that the DRF model could correctly predict that the
overtake-distance increases as the speed of the overtaken car increases. In the sport setting, the model
covers larger distance than in normal setting, indicating ‘smoother’ trajectories in the sport setting.
However, the DRF model does not come back to its own lane sufficiently (a). Subfigures (e) and (f ) show
that the predictions of the DRF model agree with the results in literature that show the Time to collision
(TTC) at the start of the overtake manoeuvre increases, as the speed of the overtaken car increases.

OVERTAKING

We studied the effect of lead vehicle speed on overtake-distance (distance covered
during the overtaking manoeuvre) and on the time to collision (TTC) at which the
overtaking manoeuvre is initiated. To test the DRF model, we simulated a ‘flying
overtake manoeuvre’ in which there are no oncoming cars on the adjacent lane.
Figure 3.14 [a]) illustrates one of the major drawbacks of the DRF model: it over-
takes the car but does not return to its own lane after the overtake. This is the
drawback of using a cost threshold-based satisficing controller. Since the model
perceives the road to be twice as wide (ego + overtaking lane), it comes back (to its
lane) just enough to bring the risk below its threshold (satisficing). Secondly, the
DRF model would not be able to perform an ‘accelerative overtake’ since its speed
is limited by the Vdes parameter.

Overtake-distance: Crawford [112] reported that the overtake-distance increased
with the speed of the overtaken car (Fig. 3.14 [c]). This corresponds to the DRF
model’s behaviour, where the overtake-distance was higher for the 10 m s−1 over-
taken car than for the 7.5 m s−1 overtaken car. Additionally, note that the sport
setting of the DRF model had larger overtake-distances than the normal setting.

TTC at overtake initiation: Several studies investigate time to collision (TTC =
ratio of relative distance to relative speed) at the initiation of overtaking manoeu-
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Figure 3.15: Traffic scenario 3 - oncoming traffic: In the two columns (Metric 1 and Metric 2), two dif-
ferent metrics are used to compare the DRF model predictions to those from literature (Crawford [112]
and Chen et al. [113]). In the ‘DRF model’ subfigures, the black and grey markers represent the sport
and normal parameter settings, respectively. In subfigures (b) and (c), the minimum lateral deviation
is shown on the y-axis. The condition where no oncoming cars were present is indicated by ‘absent’.
The DRF model simulated one car that drove on the oncoming lane’s centre (‘centre’ in subfigure (b))
and another car that was offset towards the ego lane (‘offset’ in subfigure (b)). In normal and sport
setting the DRF model moved away from the oncoming traffic, which is in agreement with the driver’s
behaviour. (e) and (f ) show that the DRF model slowed down, like humans (f ), when it encountered
oncoming traffic. In subfigures (c) and (f ), the black markers indicate mean, and whiskers indicate the
± standard deviation.

vres either to the lead car [113] or with the oncoming car [114][115] (outside of the
scope of our scenarios). The on-road study by Chen et al. [113] reported that the
TTC at (start of) lane change increased with the speed of the overtaken car (Fig.
3.14 [f]). Similar behaviour is shown by the DRF model, but more interestingly, the
sport setting of the DRF model maintained a lower TTC than the normal setting. In
a driving simulator study, Farah [116] reported that young male drivers, generally
considered sporty drivers, had smaller TTCs at lane change than adults.

ONCOMING TRAFFIC

We examined the effect of oncoming traffic’s lateral position on the DRF model’s
choice for speed and lateral position. We simulated a narrow rural road with 2 m
wide ego and oncoming lanes, without any barrier in between. Lewis-Evans and
Charlton [99] reported that on a two-lane rural road, drivers drove more towards
the road centre, in the absence of oncoming traffic. The DRF model also exhibits
similar behaviour with a bias (≈ 50 cm) towards the road centre (Fig. 3.15 [b]):
‘absent’ condition). The model shows this behaviour because the paved road to the
left (i.e., oncoming lane with no traffic) is less ‘dangerous’ than the road boundary
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to the right.
Lateral position: Studies that investigated the effect of oncoming traffic [117][118]

[119] have reported that drivers’ lateral position depends on the presence of on-
coming vehicles in the adjacent lane. Räsänen [117], in an on-road study, com-
pared driver’s lateral position with and without oncoming traffic (Fig. 3.15 [c]) and
reported behaviour similar to DRF model predictions, where the lateral position
moves away from the lane with oncoming traffic. Additionally, it moves even fur-
ther when the oncoming car is offset towards the lane position of the ego car (Fig.
3.15 [b]).

Speed: The DRF model slowed down in the presence of oncoming traffic, and
slowed down more when the lateral position of the oncoming car was offset to-
wards the ego car (Fig. 3.10 [e]). Räsänen [117] (Fig. 3.15 [f]) reported no signifi-
cant difference in speed between the oncoming traffic ‘absent’ and ‘present’ con-
ditions. However, Rosey et al. [118] reported a significant reduction in speed when
drivers encountered oncoming vehicles. Moreover, they also reported a significant
decrease in speed while encountering trucks as compared to cars [118], which is in
line with the predictions of the DRF model.

3.4. DISCUSSION
In this study, we set out to find the underlying principle that governs human adap-
tations in speed and lateral position during driving, and implement this into a
cost function into an operational driver model. We also evaluate the generaliz-
ability of the modelled behaviour across different traffic scenarios by comparing it
to adaptations in speed and lateral position from available literature of real-world
and driving simulator studies.

One of the principles that emerged from qualitative driver behaviour theo-
ries was ‘perceived risk’. However, to the best of our knowledge, ‘perceived risk’
has not been quantified or used in a driver model to generate human-like driv-
ing behaviour. In this chapter, we operationalized the ‘perceived risk’ by propos-
ing the risk estimate as the product of the DRF (which is assumed to account for
the driver’s perception-action uncertainty) and the cost map of the driving scene
(which quantifies the consequence of a hazard/event). This makes the cost func-
tion ‘uncertainty-aware’.

A driver’s ‘uncertainty-awareness’ is embedded in the DRF model via four fea-
tures. First, the DRF widens along the ‘predicted path’ and hence is wider than the
car-width. Without this feature, the DRF model would not slow down on a narrow
road (wider than car-width). Second, the DRF widens and elongates with increas-
ing speed. Without this, the DRF model would not maintain constant time head-
ways in car-following or slow down for curves. Third, the DRF widens with an in-
crease in steering angle. Without this feature, the DRF model would not slow down
more for curves with higher curvature than for curves with lower curvature, and
would negotiate all the curves at the same speed. Fourth, the asymmetric widen-
ing of the DRF along the ‘predicted path’ (generally k1 < k2) lets the model exhibit
‘curve-cutting’ behaviour. Without the asymmetric widening, the model would al-
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ways follow the lane centre.
Dealing with uncertainty in the ego-robot’s and the external obstacles’ location

has been widely studied [120][22]. Several models, ranging from tentacle-like algo-
rithms [23] to Rapidly-exploring Random Trees (RRT) [24], have been proposed for
trajectory and speed planning. The methods that are closest to the cost function
proposed in this chapter are based on uncertainty propagation [25]. Most of these
algorithms account for the first two points mentioned in the previous paragraph,
namely: widening of the uncertainty with predicted path and speed dependency of
uncertainty field. Additionally, these algorithms account for the uncertainty in pre-
dicting the future location of the obstacles. This feature needs to be incorporated
in the driving scene cost map of future versions of the DRF model (Fig. 3.16 [d]).
However, algorithms in the literature seldom incorporate the latter two features:
widening of uncertainty with steering and asymmetric uncertainty propagation;
hence, existing models cannot produce ‘curve-cutting’ and curvature dependent
speed negotiation, behaviours that are seldom required in robotic applications. In
short, to generate human-like behaviour, the underlying cost function has to be
‘uncertainty-aware’ and incorporate the (motor-control inspired) effect of signal-
dependent noise to replicate speed-accuracy trade-off that we see in driving be-
haviour.

Implementing a satisficing controller in a potential field has its drawbacks. The
model did not return to its lane after overtaking the lead car because it can sense
hazard only from physical objects (e.g., cars, road boundary) and cannot perceive
the ‘tactical’ risk of being in an oncoming lane. Other tactical risks, such as risks
that may occur when approaching an intersection or a red traffic light, are not in-
corporated in the model either. However, the structure of the model facilitates the
addition of these ‘tactical’ costs to different road elements. Other limitations in-
clude the use of car-kinematic model, using a circular arc for ‘predicted path’ cal-
culations, and the DRF extending only in front of the ego car. In future iterations
a car-dynamic model, a spline instead of a circular arc (Fig. 3.16 [b]), and a DRF
that surrounds the vehicle on all four sides (Fig. 3.16 [c]) can help generate better
microscopic trajectories and generate behaviour in more scenarios (e.g., ego car
being overtaken).

Satisficing behaviour becomes important when developing Advanced Driver
Assistance Systems (ADAS) that physically interact with the driver, e.g., the Haptic
Shared Controller (HSC) [40], which guides the driver via torques on the steering
wheel. If the HSC tries to follow a reference (e.g., the lane centre), it will exert a
torque and bring the driver to the centreline, even if the driver was satisfied with
an off-centre lateral position. To avoid these undesired torques that can severely
hamper the acceptance of the system, we need threshold-based models that can
exhibit satisficing behaviour.

An important contribution of this chapter is the extensive literature-based val-
idation. Note that in this chapter we do not compare the trajectories of steering
angle, speed, and lateral deviation, but assess the behaviour of the model by com-
paring trends in certain metrics to those reported in the literature. Six out of the
seven scenarios were validated using on-road studies or studies from driving simu-
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Figure 3.16: Limitations of the model: (a) Tactical costs: The DRF model can only perceive physical risk
from objects such as cars, trees, etc. However, it cannot perceive the risk from oncoming traffic which
is currently not in its field of view. Hence at an intersection, rather than slowing down, it will speed
up since there is larger road-area available, which is contrary to what a human would do. This can be
solved by introducing additional ‘tactical costs’ that artificially increase the risk of an intersection (red
square). This approach can be extended to other elements such as traffic lights, or zebra crossings. (b)
Predicted path: For simplicity, the DRF model currently uses a circular arc for predicting the path (for
preview time tla seconds). This circular path arises due to the assumption that the current steering
angle (δ) and speed (v) will be held constant over the preview time. However, we can optimise for a
vector of steering angles and speed (as is done in a Model Predictive Control). This allows for a flexi-
ble DRF and better prediction of microscopic trajectories. (c) Surround DRF: In this chapter, the DRF
only extends in front of the vehicle (top). However, the risk field extends on all four sides. The bottom
image is merely a suggestion and the shape has not been investigated. This ‘surround DRF’ will help
predict human driving behaviour in additional scenarios such as: being followed by another car, being
overtaken, lane change manoeuvres, etc. (d) Uncertainty in dynamic obstacles: The DRF represents
the driver’s (self) perception-action uncertainty. However, the motion of dynamic obstacles is less pre-
dictable. This uncertainty was ignored in this chapter, but will have to be accounted for in the future
iterations of this model.

lators backed by on-road studies (only simulator studies found for roadside furni-
ture: Appendix B - Supplementary Tables B.1 - B.8). In Fig. 3.9 - 3.12 (road scenar-
ios), owing to the simplicity and ‘static’ nature of road elements, there was abun-
dant literature and consensus amongst researchers as to which metric reflected
human behaviour (e.g., curve-cutting: TTR, lane width: SDLP). In Fig. 3.13 - 3.15
(traffic scenarios), defining a metric that could capture human-driving character-
istics was more difficult, owing to the complexity that arises due to its dynamic
nature. Despite these limitations, as the results show, the strength of the risk esti-
mate (cost function) and the risk threshold driver model lies in the fact that they
generate human-like behaviours in different road and traffic conditions, including
previously unseen scenarios. Such a generalizable model in which the behaviour
emerges from an intrinsically motivated cost does not only provide understand-
ing about human motivations for driving, but also has applications in the design
of automated systems. For example, it could be used to make the automated ve-
hicle drive in a human-like manner, which is reported to be preferred by humans



3.5. CONCLUSION

3

59

[7][119]. Machine learning algorithms could use the risk estimate as a feature that
could be extracted from demonstrated human driving trajectories.

Our model has been developed for unassisted driving. However, since its be-
haviour emerges from the underlying motivations for driver adaptation, we hy-
pothesise that it should be able to capture driver adaptations to various driving
support systems. For example, drivers drove faster when their vehicle was equipped
with lane-keeping assistance based on HSC than in a car without this assistance
[121]. The DRF model should be able to predict this speeding behaviour, since
HSC essentially provides a ‘channel’ on the road through which it guides the driver,
reducing the driver’s perception-action uncertainty. This would translate to a nar-
rower DRF, which allows a driver to drive faster before exceeding his/her risk thresh-
old. This thought experiment illustrates that a generalizable model in which be-
haviour emerges from underlying cost functions, not only predicts unassisted driver
behaviour but also the effect of automated and assistive technologies (on driver
behaviour).

3.5. CONCLUSION
• The risk estimate, the driving equivalent of the sensoriomotor control con-

cept of consequence of noise could be formulated by combining (i) the Driver’s
Risk Field (DRF) as a proxy for the probability of an event and (ii) a cost map
of the environment, that specified the consequence of an event.

• The risk estimate was used as a cost function in a threshold based controller.
The trends displayed by the behaviour of this controller matched the trends,
in speed and lateral position adaptation in seven different scenarios, reported
in the literature.

• The model can only account for the risk posed by an object due to its physi-
cal presence and cannot account for ‘tactical costs’. This combined with the
satisficing nature of the controller meant that the model, after performing a
lane change during overtaking, did not return sufficiently to its lane.

• Despite the above limitation, the DRF model can use a parametrization based
on small subset of data (curves, car-following, etc.) to predict plausible adap-
tations in speed and lateral position of road and traffic conditions which the
model has not experienced before.

• Maintaining the ‘consequence of the human’s perception-actions noise’ un-
der a threshold level seems to be the underlying principle for driver’s adap-
tations in speed and lateral position to a wide variety of road and traffic con-
ditions.





4
DRF-BASED RISK ESTIMATE:

A VALIDATION STUDY IN A

TEST-VEHICLE

Quantifying drivers’ perceived risk is important in the design and evaluation of the
automated vehicles (AVs), and to predict takeovers by the driver. A ‘Driver’s Risk
Field’ (DRF) function has been previously shown to be able to predict manual driving
behaviour in several simulated scenarios. In this chapter, we test if the DRF-based
risk estimate (r̂ ) can predict manual driving behaviour and the driver’s perceived
risk during automated driving. To ensure that the participants perceived realistic
levels of risk, the experiment was conducted in a test-vehicle. Eight participants
drove 5 laps manually, and experienced 12 different laps of automated driving on a
test-track. The test-track consisted of three sections (which were sub-divided into 12
sectors): curve driving (9 sectors), parked car (1 sector), and 90-degree intersections
(2 sectors). If the driver verbally expressed risk or performed a takeover, that partic-
ular sector was labelled as risky. The results show that the risk estimate (r̂ ) predicted
manual driving behaviour (ρsteer i ng = 0.69, ρspeed = 0.64), as well as correlated
with the driver’s perceived risk in curve driving (r2 = 0.98) and while negotiating a
car parked outside the lane boundary (r2 = 0.59). In conclusion, the DRF-based risk
estimate (r̂ ) is predictive of manual driving behaviour and perceived risk in auto-
mated driving. Future research should include tactical and strategic components to
the driving task.

The contents of this chapter have been published in:
S. Kolekar, S.M. Petermeijer, E.R. Boer, J.C.F. de Winter, and D. Abbink, A risk field based metric corre-
lates with driver’s perceived risk in manual and automated driving: A test-track study, Transportation
Research Part C: Emerging Technologies 133 (2021), 103428
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4.1. BACKGROUND

R ECENT years have seen a surge in the popularity of automated vehicles (AVs).
Although AVs may solve several problems, they also introduce new ones. What

is acceptable driving behaviour for an AV, and when do humans takeover the AV’s
control? To answer these questions, it may be useful to have an estimate of the
driver’s perceived risk in the AV [122]. AVs will be used by drivers and passengers,
and how these drivers and passengers perceive their system while driving is hardly
known, yet essential to know. If drivers perceive high levels of risk, and the AV
does not react appropriately and reliably, they could lose trust [123] and take over
control, or reject the use of the AV altogether. Accordingly, it can be argued that
new AVs need an assessment of how end-users perceive their behaviour.

Perceived risk is influenced by a variety of factors, including the environment
and traffic situation, the mental state of the driver, and prior experiences. Sev-
eral studies have shown a correlation between personality characteristics and risky
driving behaviour [124] [125] [126] [127]. In this study, in which we provide a com-
putational estimate of perceived risk, we consider the effect of the road environ-
ment and traffic situation only.

Summala [128] proposed four factors that need to be maintained above a cer-
tain threshold to keep drivers within their “comfort zone”. These are safety margins
(to road edges, obstacles or other vehicles), vehicle-road system (accelerations,
road geometry), rule-following (obeying traffic laws, maintaining speed limits),
and good progress of the trip (meeting one’s expectations for the pace or progress
of the travel). Siebert et al. [129] noted that the rule-following factor for comfort is
redundant, as automated vehicles (AVs) will almost certainly follow the rules, and
that good progress of the trip is dependent on traffic conditions, rather than au-
tomation state in itself. Therefore, in this chapter, we focus specifically on factors
that affect the safety margins and vehicle-road system for manual and automated
driving. Other researchers have investigated the acceleration-related comfort as-
pect of automated driving, which we do not investigate in this study [130]. Specif-
ically, we will focus only on the perceived risk that arises due to the presence of
physical objects (road curb, obstacles, cars, etc.) and exclude risks that arise due
to other factors related to vehicle dynamics (loss of traction, roll over, etc.).

There have been several studies that have attempted to predict manual driv-
ing behaviour for scenarios involving road boundaries and obstacles. For exam-
ple, longitudinal behaviour has been modelled using the optical edge rate on open
roads [11], the time to extended tangent point in curves [12], time to collision
(TTC) while approaching obstacles [13] [14], and time headway (THW) during car-
following [15]. Lateral behaviour has been modelled using the two-point model
[16], in which lateral and heading error were used as signals. Other models have
used features such as the ‘angle to the tangent point’ [131] and time to lane cross-
ing (TLC) as signals to steer the vehicle [65] [47]. Some studies have also utilised
a combination of signals such as speed and acceleration (executed by the drivers)
to classify manual driving behaviour into different levels of risk-taking behaviour
[132][133].
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All the above models used a particular measure (TLC, TTC, THW, etc.) to pre-
dict the actions of a human driver. If we abide by Näätänen and Summala’s [2] risk
threshold theory, which proposes that all motivations for actions are to reduce the
perceived risk and maintain it below a threshold level, these measures would rep-
resent the driver’s perceived risk. However, using different measures to quantify
perceived risk in different scenarios leads to a fragmented model. For example, [7]
used 10 different measures for assessing the behaviour in 14 different scenarios.

Some of the problems with having separate measures for separate scenarios
are that:

(i) It is difficult to compare the estimated risk between scenarios.
(ii) If two or more scenarios occur simultaneously it is difficult to estimate the

combined risk.
(iii) The operational level driving behaviour is often influenced by higher level

factors such as a driver’s familiarity with a particular road, his/her mood, etc. In
case of a fragmented model, one would have to tune the parameters of several
models in a coherent manner. On the other hand, with a unified model one has
to tune parameters of only one model.

Accordingly, a unified model that can estimate driving behaviour or generate a
risk estimate is needed.

The first attempt of making a unified model for explaining driver behaviour
in different scenarios was made by Gibson and Crooks, using their ‘Field of Safe
Travel’ concept [1]. However, this was a qualitative description of how humans
drive in different scenarios. There have been several models that utilise this con-
cept of risk field [32] [134] [135] [136] [137]. For example, Wang et al. [32][138]
tested the Driver Safety Index (DSI) in real cars on straight sections of the high-
way during car-following and cut-in scenarios. Rasekhipour et al. [134] proposed
a path planning approach by combining the potential field approach with an op-
timal controller. In chapter 3, we proposed a driver model based on the ‘Driver’s
Risk Field’ (DRF) which could predict driving behaviour in a unified manner in 7
different scenarios (curve driving, obstacle avoidance, car following, etc.). Hence,
we hypothesise that the DRF-based risk estimate (r̂ ) is a good candidate for evalu-
ating perceived risk during automated driving.

In chapter 3, we validated the driver model by comparing its output (i.e., steer-
ing angle and speed) to manual driving behaviour. However, we did not test if the
risk estimate (r̂ ), we calculated (which was used as a ‘cost function’ in the driver
model), corresponded to the perceived risk of human drivers. Testing this is im-
portant since, if we can formulate a signal that correlates with the perceived risk
by the driver, it can be a valuable tool to assess the behaviour and acceptance of
automated driving systems. Also, in chapter 3, we compared the simulation results
to manual driving behaviour results published in literature. Here, since we aim to
quantify the driver’s perceived risk, it becomes imperative that an experiment is
conducted in a real vehicle to generate realistic feeling of risk.

In this chapter, we test if the DRF-based risk estimate (r̂ ) correlates with the
drivers’ perceived risk, in a test-vehicle. We perform two main analyses. First, as
an initial check, we tested if the risk estimate (r̂ ) predicts the driver’s behaviour



4

64
4. DRF-BASED RISK ESTIMATE:

A VALIDATION STUDY IN A TEST-VEHICLE

during manual driving. This is the necessary validation before performing the sec-
ond step where we compared the risk estimate (r̂ ) to the driver’s comments and
the takeovers that they performed, while being driven in an automated manner
around a test-track. The test-track consisted of three scenarios: curves with differ-
ent curvatures, a parked car (placed outside the lane), and intersections. The car
was deliberately parked outside the lane boundary to examine if objects outside
the lane boundary affect the perceived risk.

4.2. EXPERIMENTAL METHODS

4.2.1. TEST-TRACK AND TEST-VEHICLE
The experiment was conducted at a test facility in collaboration with Nissan, Japan.
The test-vehicle was a 1st generation Nissan Leaf equipped with an automated
driving system. The participants sat on the right side of the vehicle and drove on
the left hand side of the road.

To test different scenarios we divided the test-track into three sections. The first
section consisted of curves with varying curvatures and road widths. The second
section, the parked car section, consisted of a Nissan NV500 van parked along the
left shoulder of the road (outside the lane boundary). The third section consisted
of two 90-degree intersections. We further subdivided these three sections in 12
sectors. The curve driving section was divided into 9 sectors (S1 to S9), the parked
car was its own sector (PC), and the intersection segment consisted of two sectors
(I1 and I2), as shown in Fig. 4.2. The intersection (I1) had a zebra crossing on it,
which the participants were asked to ignore for the purpose of this experiment.

4.2.2. PARTICIPANTS AND TEST PROCEDURE
Eight male Nissan test drivers, certified to operate the automated test-vehicle, par-
ticipated in the experiment (mean age = 44.1 and SD = 13.4 years). Each driver
drove five laps of the test-track manually on one day, and on another day they were
driven in the same car, along the same track, in an automated manner for twelve
laps. The experimenter (first author) sat behind the driver’s seat and an interpreter
(Japanese ⇐⇒ English) sat in the passenger’s seat.

During the automated driving condition, the participants were requested to
comment on how they felt about the driving behaviour of the vehicle. They were
encouraged to specify the ‘why and where’ of their feedback. This was done be-
cause, first, steering or speed control data was unavailable, since the car was being
driven in an automated manner. Second, we could not provide the driver’s with a
hand-held or foot-operated device to indicate their perceived risk level. This was in
accordance with Nissan’s safety committee’s guidelines which required the drivers
to always be able to takeover the vehicle’s controls. Third, physiological measures
are reliable in a laboratory setting, but in the dynamic environments of the test
course, it is challenging to acquire reliable physiological data. Hence, the decision
was made to ask the participants to think out loud as they were driven around the
lap. The audio and video of all the laps were recorded and the participants could
takeover the control of the vehicle whenever they wanted.
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Figure 4.1: Risk estimate: (a) The risk estimate is validated in a test-vehicle to ensure the participants
perceived realistic amounts of risk. (b) The driver in the ego car is indicated using the black marker. The
bottom row illustrates the proposed quantification of the driver’s perceived risk: the risk estimate. The
cost of each element in the driving scene is multiplied with the Driver’s Risk Field (DRF). This product
summed over all grid points generates the risk estimate (r̂ ).

4.2.3. DRF-BASED RISK ESTIMATE FOR EACH TRAJECTORY
The DRF-based risk estimate (r̂ ) is a function of the vehicle’s trajectory which is
defined by the vehicle’s position (xcar, ycar), heading (φcar), steering angle (δ), and
speed (v). We calculated the r̂ for each manual and automated lap of every partic-
ipant as a product of the probability of the event, and the consequence of the event
(for e.g., hitting a tree is worse compared to being on the road, see Fig. 4.1 [b]).

PROBABILITY OF THE EVENT OCCURRING

The ‘probability of the event occurring’ is represented by the Driver’s Risk Field
(DRF) (Fig. 4.1 [b]), which was empirically determined in chapter 2 [86]. The DRF
is mathematically represented by a modified torus with a Gaussian cross-section,
the height of which decreases and width increases, as you go further away from the
ego-car (Fig. 4.1 [a]). The DRF is a dynamic field that increases its size with speed
and morphs its shape with steering. Additionally, the DRF expands with steering
angle (Fig. 3.4). These features, in a simplistic manner, mimic the multiplicative
noise present in the driver’s sensorimotor system. The DRF’s shape is determined
by six parameters: p, tla, k1, k2, m, and c (details in chapter 3). Although the DRF
parameters are specific to each individual, in this study we decided to use the same
parameter values (Table 4.1) for all the eight participants. This was done so that we
could combine/average the results over all the participants.
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Table 4.1: DRF and cost map parameter values

DRF
parameters

p tl a k1 k2 m c
0.04 3 0.02 0.05 0.0055 0.75

Cost map
parameters

Croad Coff−road Concoming−road Cparked car

0 500 250 5000

CONSEQUENCE OF AN EVENT

In the DRF model, the ‘consequence of an event’ is represented by a cost map that
provides relative costs of colliding with different objects in the environment (for
e.g., road = 0, grass off-road = 500, tree = 2000, etc.). The DRF model can gener-
ate the r̂ online by using the environment generated by lidar and camera systems
on-board the test-vehicle. However, in this study we calculate the r̂ offline. We
acquired a high definition map of the test-track, converted it into a cost map, and
tracked the location of the car using GPS (± 5 cm accuracy). The cost of being on
the road (Croad), cost of being off-road (Coff−road), and cost of hitting the parked car
(Cparked car) were determined using manually driven trajectories (Table 4.1).

4.2.4. DATA EXCLUSION

For the automated driving conditions, participants experienced twelve different
trajectories (speed and position profiles). The initial plan was to have the driver’s
experience two repetitions of six different controllers (1: centreline follower, 2:
manual replay, 3: manual replay with 90% speed, 4: DRF model, 5: DRF model
safer (90% risk threshold) from chapter 3, and 6: ‘safe’ driver’s trajectory). How-
ever, we could not replicate these trajectories on the track. Hence, we decided not
to analyse the results per controller and attribute the trajectories to any controller
type. In other words, we now analyse them purely based on the trajectory that
the driver’s experienced (not what the car was supposed to implement). After ev-
ery lap, the participants filled up a questionnaire that evaluated the characteristics
of the controllers. Since we do not draw or attribute any conclusions to the type
of controller, we did not analyse the questionnaires. Additionally, due to experi-
menter error, the video for Lap 4 of participant 6 was not recorded and hence this
lap has been excluded from the analysis.

However, between the time of submitting this chapter to a journal, and writ-
ing this thesis, a study that performs a similar experiment has emerged [139]. In
this driving simulator-based experiment the participants experienced human-like
and non-human-like AV driving styles, as well as the automated replay of their own
manual drive. The authors conclude that humans prefer a slower human-like driv-
ing style for AV controllers that adapts its speed and lateral offset to roadside ob-
jects and furniture.
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Figure 4.2: Snapshot of manual driving condition: The signals of lap 2 from participant 2. The dotted
green and red lines indicate the start and end of the trajectory used for analysis, respectively. (a) The
test-track consisted of curved section (Sectors S1 - S9), a parked car (PC), and two 90◦ intersections (I1,
I2). The driver started every lap from the green dot and stopped at/after the red dot. In the automated
driving condition, the car would need some initialisation time and hence it had to be driven manually
from the green dot and it would get into automated mode by the time it crossed the green line. Hence,
the green line is used as start of analysis for both manual and automated trajectories. The pink dot
indicates the current (snapshot) location of the car on the track, and is indicated by the vertical dashed
pink line in each of the plots.(b) A screenshot of the video recorded during the experiment. (c) Road
curvature is positive for left curves, negative for right curves, and zero for straight roads. (d) The r̂ is the
risk estimate for this particular lap. There are peaks in sectors S6 and S7, which are caused due to the car
going close to the curb, as seen in the lateral deviation plot (e). Positive lateral deviation is towards the
left, and negative lateral deviation is towards the right of the centreline. The thick black lines indicate
the road boundaries and the translucent red box indicates the oncoming lane. The expansion in the
sector S1 is due to a road joining the track as shown in test-track plot (a). Most participants used that
piece of tarmac to ‘cut the corner’. (f ) Steering angle is positive for left turns and negative for right turns.
(g) Car heading is positive counterclockwise and North direction was assumed to be 90◦. (h) The speed
drops at all the curves and intersections, especially at the very sharp corner in S9.
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4.3. RESULTS

4.3.1. MANUAL DRIVING
For the manual driving conditions, the eight participants drove five laps of the test
course. They were instructed to drive as they normally would. To test if the DRF
model could predict the driver’s behaviour during manual driving, we compared
the predictions of the model to the steering and speed control actions performed
by the driver.

DRIVER ACTIONS

To mitigate a rise in risk, the driver could perform steering corrections and speed
reductions. Hence, we calculated the following signals to evaluate the DRF esti-
mate predictions.

• Absolute steering angle (|δ|): Since both positive (left turn) and negative
(right turn) steering actions indicate the driver’s intent to reduce risk, we cal-
culate the absolute value of the steering angle to quantify the driver’s action.

• Speed reduction (vreduction): We assume that speed reduction is an indica-
tion of the driver’s intent to reduce the risk. The reduction in speed is cal-
culated with respect to the maximum speed at which the driver drove dur-
ing that particular lap (Vmax). Hence vreduction= Vmax- v . We calculate the
vreduction with respect to Vmax, because we think that Vmax represents the
driver’s maximum willingness to incur risk, in context of this track.

DRF MODEL PREDICTIONS

The DRF-based driver model in chapter 3 generates a single risk estimate. How-
ever, as mentioned earlier, the driver’s actions (to mitigate the rise in risk) are split
mainly into two components: |δ| and vreduction. To quantify what part of the r̂ cor-
responds to a reduction in risk due to |δ| and what part corresponds to a reduction
in risk due to vreduction, we calculate the DRF steering risk potential (p̂steering, Fig.
4.3 [b]) and DRF speed risk potential (p̂speed, Fig. 4.3 [c]), respectively.

p̂steering = r̂δ=0,v_max − r̂v_max (4.1)

p̂speed = r̂δ=0,v_max − r̂δ=0 (4.2)

The r̂δ=0 is the r̂ when δ = 0 and hence, indicates the r̂ if the driver had not
taken any steering actions. Similarly, r̂v_max is the r̂ when v = Vmax (Vmax of that
particular lap) and hence, it indicates the r̂ if we were to disregard the speed re-
ductions performed by the driver. r̂δ=0,v_max is the r̂ when δ = 0 and v = Vmax and
hence, it represents the risk estimate if the driver had not made any speed or steer-
ing corrections.

From Fig. 4.3 [a] we can see that, for most parts, r̂δ=0,v_max> r̂δ=0, r̂v_max> r̂ . It
indicates that, as expected, most of the steering and speed corrections performed
by the driver reduced the risk. At some instances (in the neighbourhood of 300
m) the r̂v_max is higher than the r̂δ=0,v_max. The difference indicates that the model
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Figure 4.3: Manual driving predictions: The figure shows the risk estimates, DRF steering risk potential
(p̂steering), and DRF speed risk potential (p̂speed) as a function of the distance covered along the lane
centre, for Participant No. 2. All the signals are mean over the five repetitions of the manual trajectories.
(a) The four different risk estimates: r̂δ=0,v_max, r̂v_max, r̂δ=0, and r̂ are plotted. The r̂δ=0,v_max has the
highest value, and the r̂ has the lowest value. In between these two are the r̂δ=0 and r̂v_max plots. (b) We
compare the p̂steering, which is the model’s prediction about how much steering the driver should have
implemented, to the steering angle implemented by the driver (|δ|). (c) We compare the p̂speed, which
is the model’s prediction about how much speed reduction is needed, to the speed reduction imple-
mented by the driver (vreduction). The driver’s speed reduction can be seen to have ‘slower dynamics’
compared to the model predictions. ρ indicates the Pearson’s correlation coefficient. The plots for all 8
participants can be found in Appendix C.

thinks that the steering implemented by the driver at this point was ‘incorrect’.
Interestingly, it can be seen that the r̂δ=0 is lower compared to the r̂δ=0,v_max, which
indicates that the driver compensated for this ‘steering error’ by reducing the speed
more than the model have expected him/her to.

The predictions of the model and the driver’s steering behaviour are compared
and they showed a moderate-to-strong correlation (ρsteering = 0.69 ± 0.04 (Mean
± SD), Table 4.2). The peaks of the p̂steering and the |δ| signals also align, indicat-
ing the steering timing also matches. In the neighbourhood of 300 m, the |δ| is
higher than the p̂steering, which means that the driver steered more than the model
expected him/her to.
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Table 4.2: Correlation coefficients between DRF model predictions and manual driving behaviour

Participant No. 1 2 3 4 5 6 7 8 Mean ± SD
ρsteering 0.69 0.73 0.75 0.62 0.70 0.67 0.74 0.67 0.69 ± 0.04
ρspeed 0.77 0.63 0.63 0.61 0.67 0.64 0.65 0.52 0.64 ± 0.07

Figure 4.3 [c] shows that the driver’s speed reduction correlates moderately
with the model predictions (ρspeed = 0.64 ± 0.07 (Mean ± SD), Table 4.2). The
peaks of the vreduction signal occur earlier than the peaks in the p̂speed, indicat-
ing that the drivers reduced their speed earlier than the model expected them to.
This, we think, is due to the parameter values identified for the DRF. Specifically,
the look-ahead-time (tla) parameter of the DRF was set to 3 seconds (Table 4.1).
Increasing this value will lead to the model predicting an earlier speed reduction.

Ideally, for the speed control case, we should have compared the model pre-
dictions to the brake and accelerator pedal activity since, the perceived risk of the
driver is more directly related to the actions of the driver. However, the pedal ac-
tivity was recorded as a binary (on/off) signal. Hence, we decided to use the speed
signal, even though the car dynamics would entail that it would have a ‘slower dy-
namics’ compared to the risk metric, as can be seen in Fig. 4.3 [c]. The results
hence verify that the risk estimate correlates well with the steering and speed re-
duction actions performed by the drivers during manual driving condition.

4.3.2. AUTOMATED DRIVING
Investigating if the risk estimate (r̂ ) can predict the driver’s subjective feeling of risk
during an automated drive is the main aim of this study. To test this we compared
risk estimate (r̂ ) to the comments provided by the driver, and the takeovers they
performed during each lap. Essentially, if the risk estimate captures the risk per-
ceived by the drivers, then we should see a Risky comment or a takeover when the
r̂ value was high, and a Non-risky comment, no comment, or no takeover when the
r̂ value was low.

DRIVER’S COMMENTS AND TAKEOVERS

We segregated the driver’s comments into two categories: Risky comments and
Non-risky comments. Risky comments were those in which the driver indicated
a sense of danger, discomfort, or risk by using words or phrases such as ‘close to
the curb’, ‘scary’, etc. Non-risky comments are those that indicated if the drivers
liked the drive, were ‘OK’ with it, found it too safe (boring), or did not comment at
all. Table 4.3 shows a few words that, for illustration purposes, we categorised into
(i) the reasoning (e.g., close, near), (ii) the object (e.g., curb), (iii) the noises par-
ticipants made (e.g., woh, aaahhh), (iv) how they described the sector (e.g., risky,
scary), (v) the takeovers (e.g., overtook, (steering) correct(ion)). The complete list
of Risky and Non-risky comments can be found in Appendix C.

As mentioned in the methods section, we had segregated the track into 12 sec-
tors (Curve driving: S1 - S9, Parked car: PC, Intersections: I1, and I2) because par-
ticipants usually commented while referring to these salient features, after they
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Table 4.3: Words mentioned in drivers’ comments (8 participants x 12 laps x 12 sectors)

Risky comments Count Non-risky comments Count

close, left, near, closer 105
right, close, far, clearance,

larger, margin, space, wide,
widely, wider, width

34

curb, edge, stone 37 curb 21
woh, aaahhh, ... (noises) 40 oh, hmmm, ooooooh (noises) 7

risk, risky, scary, hit, aggressive,
immediately, wrong, bad, dangerous,

harshly, intensely, jumps, rush
scared, sharp, sharply, steep,

suddenly, surprised, weird

45

good, ok, like, nice, fine, risk,
safe, acceptable, safer, comfortable,

reliable, smooth, avoid, avoided,
avoiding, liked, normal, average,

odd, peaceful, so-so

138

override, overrode, overshoot, correct 10 - 0

had experienced the sector. Hence using time stamps of the comments to attribute
the comments to the location of the vehicle on the track would not make sense.
The comments were hence attributed to each sector. If a driver complained about
a particular sector being Risky, the trajectory for the entire sector was ‘marked red’
and the takeovers by the drivers were measured as a binary signal (thin black line)
(Fig. 4.4).

DRF MODEL PREDICTIONS

We compared the driver’s comments and takeovers to the the r̂ calculated during
the automated trajectory. Similar to that calculated for manual driving condition,
the r̂ in automated driving condition is unique to the trajectory of each of the 12
laps, for each of the eight participants.

Risk estimate trajectories: The r̂ trajectories for each participant are plotted
in Fig. 4.4. Visual inspection of the plot reveals that the participants made a Risky
comment when the r̂ was also calculated to be high. This points towards a good
match between the driver’s subjective feeling of risk and the objective risk estimate
calculated by the DRF model. However, there are some instances in the I1 and
I2 sectors (90-degree intersections) where red sectors are marked at very low risk
estimate (r̂ ) values.

Another interesting point is that the r̂ indicates a high-risk level in sectors S1
and S7, but a low-risk level in sector S9. However, in Fig 4.2 [c], we can find that
the curvature in sector S9 is even higher than that of S1 and the curvature in S7 is
relatively small. The reason for this high risk is due to the lateral positioning of the
vehicle. The AV drove very close to the curb in S7 and S1 and hence led to a high
value for r̂ Ṡeveral Risky comments from the participants also corresponded to the
vehicle being too close to the curb. In S9, the AV would slow down considerably
more compared to that in S1 and S7, and hence the r̂ is low despite the curvature
being more than that in S1 and S7.

Maximum of r̂ per sector: We assume that the maximum risk experienced by
the driver is a more valid index of perceived risk as compared to mean risk experi-
enced during a sector. Hence, we calculate the max(r̂ ) in each sector, as a metric,
to quantify the ‘riskiness’ of that particular sector. This metric (max(r̂ ) per sector)



4

72
4. DRF-BASED RISK ESTIMATE:

A VALIDATION STUDY IN A TEST-VEHICLE

1

2

3

P
1

S1 S2 S3 S4 S5 S6 S7 S8 S9 PC I1 I2

1

2

3

P
2

1

2

3

P
3

1

2

3

P
4

1

2

3

R
is

k 
es

ti
m

at
e 

( 
 )

 [-
]

P
5

1

2

3

P
6

1

2

3

P
7

100 200 300 400 500 600
Longitudinal distance [m]

1

2

3

P
8

x103

r̂

‘Risky’ comment 
by the driver

‘Non-risky’ comment or 
no comment by the driver

Take-over perfromed by
the driver

Figure 4.4: Risk estimate for automated driving: P1 - P8 refer to the eight participants. Each row has 12
plots corresponding to the 12 laps for each participant. The shaded rectangles indicate the 12 different
sectors. S1 - S9 for the curve driving segment, PC is the parked car segment, and I1 and I2 indicate the
two 90-degree intersections. The plots show the risk estimate (r̂ ) for each lap. The blue parts indicate
Non-risky sectors and the red parts indicate the Risky sectors. The black ‘steps’ indicate the steering
takeover by the driver. It can be seen that, in general, the risk estimate (r̂ ) is marked red when its value
is high. Also, the takeovers occur when the r̂ peaks.

was labelled either Risky or Non-risky based on the comments, and takeover or no
takeover depending on whether the participant took over the vehicle’s control or
not (Fig. 4.5).
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Figure 4.5: Steps in automated driving analysis: Step 1: The comments were classified into Risky or Non-risky (Table 4.3). The takeovers were recorded by the
vehicle’s data collection system. Step 2: The trajectory of the entire sector, the comment was attributed to, was tagged Risky or Non-risky. Similarly, the entire
sector in which the takeover was initiated was tagged takeover or no takeover. If a takeover was initiated or comment was attributed to parts between 2 sectors, both
sectors were tagged. Step 3: The max(r̂ ) for each sector was chosen as a metric. The number sectors with different levels of r̂ were plotted in a stacked histogram.
The two histograms, comments and takeovers, combined and presented in Fig. 4.6. Step 4: The proportion of risky comments or takeovers was calculated for each
participant in each of the bins of the histogram, and then averaged over all the eight participants. The red circular markers indicate the mean, and the bars indicate
± standard deviation (SD). The plot shown here is for the curve driving section (S1-S9). Identical analysis was performed for the parked car (PC) and intersections
(I1, I2) and results are shown in Fig. 4.7.
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Figure 4.6: Histogram of comments and takeovers: P1 - P8 indicate the eight participants. The 3
columns indicate the segregation of sectors into the three segments: curve driving (S1-S9), parked car
(PC), and intersections (I1-I2). The x-axis represents the number of sectors and the y-axis represents the
risk estimate. We plot the Risky and Non-risky comments stacked on top of each other for comparison.
Simultaneously, we also plot the takeovers and non-takeovers in a stacked manner. Hence the height of
two adjacent bars is equal. The bar plots have 14 bins (y axes) with minimum value of 0 and maximum
value of 3500, and a width of 250.

Counting the number of Risky and Non-risky sectors: We plotted a histogram
for each participant (Fig. 4.6) using the max(r̂ ) for each sector (from Fig. 4.4). We
compared the qualitative response - the comments provided by the driver, and a
quantitative response - the takeovers performed by the drivers in a stacked his-
togram. Figure 4.6 shows that in the curve driving and the parked car sections,
none of the participants made any Risky comments or performed takeovers in the
lowest risk estimate (bin). However, in the intersections there are several instances
when the participants (P1, P5, P6, P7, and P8) either made a Risky comment or
performed a takeover. Naturalistic driving is majorly comprised of non-risky situa-
tions and a very few risky situations. A similar trend was shown by the risk estimate
(r̂ ), where the number of sectors decreased as the risk estimate increased (Fig. 4.6).
Also, most of the takeovers are accompanied by a Risky comment.

Risk estimate as a decision variable: The main aim of this chapter was to test
if the risk estimate could be used to detect Risky and Non-risky sectors. Since, the
participants can express their ‘feeling of risk’ by either commenting or by taking
over, we combine the two modes (using the ‘or’ function). Hence a sector is marked
Risky if the participant either made a Risky comment, or a takeover, or both, and
the remaining sectors are labelled Non-Risky.

We calculated the proportion of Risky sectors ( Risky
Risky +Non-Risky ) for each r̂ value

(mid point of each bin) and averaged it over all the eight participants. The mean
(circular markers) and standard deviation (error bars) are plotted in Fig. 4.7. The
curve driving plot (Fig. 4.7 [a]), all the 14 points together, are calculated from 855
points (8 participants x 12 laps x 9 sectors - 9 sectors of lap four of participant six,
which the experimenter failed to record). The parked car section plot (Fig. 4.7
[b]), all the 8 points combined, represent the mean and standard deviation over 95
points (8 participants x 12 laps x 1 sector - 1 sector of lap four of participant six).
The intersection plot (Fig. 4.7 [c]), all the 9 points combined, represent the mean
and standard deviation over 190 points (8 participants x 12 laps x 2 sectors - 2 sec-
tors of lap four of participant six). We think that this difference in the number of
data points explains the larger uncertainty in the parked car section and intersec-
tions compared to the curve driving section.

A logistic function was fit to the (mean) data points in all the three sections (Fig.
4.7). Instances with r̂ higher than 2250, and 1000 did not occur at the parked car
and in the intersections, respectively. In the curve driving section, at high values of
r̂ , the proportion of Risky sectors almost reaches 1, and 0 for low values.

x = a1

1+e−a2(y−a3)
−a4 (4.3)
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Figure 4.7: Proportion of risky sectors: This plot shows the mean (circular markers) and ±SD (bars) of
the proportion of risky sectors (either the comment was Risky or there was a takeover) over the 12 laps of
all the 8 participants (95 laps in total, since 1 lap’s video was accidentally not recorded). The sectors for
the three sections: curve driving (S1-S9), parked car (PC), and intersections (I1, I2) contained 855, 95,
and 190 data points respectively. A logistic function was fit to the mean (circular markers) data points
(equation 4.3). The goodness of fit is indicated by the r squared (r 2) metric.

The results from Fig. 4.7 show that the risk estimate for the automated driving
condition is correlated with the subjective feeling of risk (comments or takeovers)
of the participants in curve driving and parked car sections. In the intersections
however, the results are inconclusive since no instances of high r̂ were experienced
in any of the laps.

4.4. DISCUSSION
The aim of this chapter was to test if the DRF-based risk estimate (r̂ ) correlates with
drivers’ perceived risk. The results show that the risk estimate could predict the
driver’s manual driving behaviour - speed and steering actions. Furthermore, in
automated driving, the risk estimate, correlated with the comments and takeovers
performed by the drivers in curve driving and avoiding a car parked outside the
lane boundary. In other words, the DRF, a field based risk metric, captured the
perceived risk in curve driving and with a static obstacle.

The results for 90-degree intersections were inconclusive. Events with high r̂
did not occur (Fig. 4.6, 4.7) and the proportions of Risky comments were low at low
r̂ values. It is unknown how the results extrapolate to higher values of r̂ . However,
the fact that the current version of the DRF only accounts for the physical presence
of objects suggests that the r̂ at intersections may be a limitation on this model.
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This is because at an intersection the DRF sees a larger patch of road (‘safe zone’)
and hence reduces the r̂ , which may result in speeding rather than braking at an
intersection. Humans slow down at an intersection in anticipation of traffic. This
kind of learned conscious behaviour will have to be integrated in future versions of
the DRF.

In this study, we derived the perceived risk (indicated by the driver) as a mea-
sure of it being Risky or Non-risky. This was based only on the driver’s comments
and whether they took over the controls of the vehicle or not. However, while
analysing the videos we found several interesting behaviours where the drivers
would hover their hands near the steering wheel (presumably when they felt a high
risk). This kind of bio-mechanical preparedness to takeover also contains valuable
information about the risk perceived by the driver [140] and could be analysed in
detail in future studies.

To put our results in the context of literature, we compare it to ‘time to lane
crossing’ (TLC) [65]. There are several methods for calculating TLC [141], such as
the ‘TLC swath’ approach proposed by Boer [47]. The similarities between the TLC
and the r̂ arise from the fact that they both have an expanding arc (for TLC) or a
field (for DRF). This combined with the threshold, below which these metrics need
to be maintained, results in satisficing behaviour (a strategy that aims for a sat-
isfactory result [e.g., stay within lane boundary], rather than the optimal solution
[e.g., follow lane centre]). However, there are two key differences.

First, the expansion of the arc for the TLC is fixed, whereas the expansion of the
DRF is proportional to the (absolute value of the) steering angle. This means that
the DRF expands more (higher r̂ ) for a sharper curve compared to a shallower one,
and hence would want the car to drive slower for a sharper curve. The ‘swath TLC’
gets around this problem by having an additional ‘straight line’ TLC which projects
straight ahead and intersects with the outer lane boundary of the curve. The added
benefit of having a steering dependent expansion over a straight line TLC is that it
is generalizable to scenarios other than interacting with lane boundaries.

The second difference is that, since TLC is calculated using the intersection
points of the arc and the lane boundary, it cannot account for the presence of ob-
jects outside the lane boundary. For a TLC based controller driving on a road with
curbs on both sides of the road is the same as driving on a road with curb on one
side and an open oncoming lane on the other. The DRF being a field can expand
beyond the lane boundaries and hence can account for objects outside the lane
boundaries and the different levels of danger that they pose (curb is more danger-
ous than an open oncoming lane).

In this study, all the scenarios were static which made it easy to formulate a high
definition (HD) cost map of the test-track, offline. However, multi-lane dynamic
scenarios need dynamic cost maps that are updated online. Researchers, primar-
ily using computer simulations, have suggested approaches for straight roads and
intersections using the ‘Conditional Random Field (CRF)’ [137] and the ‘Potential
Field Indicator (PFI)’ [136] that account for the uncertainties in behaviour of neigh-
bouring vehicles and the noise introduced while sensing their state (e.g., position,
velocity, acceleration). Lu et al. [142] also incorporate the mass of the vehicle and
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Huang et al. [143] incorporate the intention of the vehicle in a mixed (manual + au-
tomated) traffic condition using long-short term memory (LSTM) networks to de-
termine the potential field generated by external vehicles. In the future, we would
like to incorporate these features into the dynamic cost-map and test the validity
of r̂ in multi-lane dynamic scenarios with test-vehicles.

An important aspect of the DRF model is its intent to formulate a unified risk
measure over a plethora of driving scenarios. Although further experimentation
with other (static and dynamic) scenarios will be needed to test the validity of the
model, this unified approach to express driver’s perceived risk has important appli-
cations in designing the behaviour of automated systems. It can be used to assess
the performance of the automated system in different scenarios and adjusted to
meet the preferences of the individual drivers.

4.5. CONCLUSIONS
The aim of this chapter was to test if the Driver’s Risk Field (DRF)-based risk esti-
mate (r̂ ) could correlate with the perceived risk of the driver. To ensure that the
driver’s perceived realistic levels of risk, the experiment was performed on a test-
track with a Nissan Leaf test-vehicle.

• The risk estimate (r̂ ) correlates with manual driving behaviour expressed in
terms of steering angle and speed (ρsteering = 0.69, ρspeed = 0.64, Table 4.2,
Fig. 4.3)

• In automated driving condition, the r̂ could predict the comments and takeovers
performed by the drivers in the curve driving section (r 2 = 0.98, Fig. 4.7).

• The r̂ could also predict the comments and takeovers by the drivers, in the
automated driving condition, while negotiating a car that was parked out-
side the lane boundary (r 2 = 0.59, Fig. 4.7).
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5.1. BACKGROUND

Formulating a unified driver model that can quantitatively predict human driv-
ing behaviour in a multitude of scenarios has inspired researchers for decades.
This thesis aimed to take a step towards such a unified driver model with a fo-
cus on speed and lateral position adaptations. Qualitative models that explain the
motivations underlying driving behaviour in a unified manner exist, but they lack
the specificity and operationalizability of quantitative models. Most quantitative
driver models in literature either: (i) follow the data-driven black-box approach
which provides little to no understanding about human driving behaviour, or (ii)
stitch together several driver models, each using a different underlying principle
and applicable to a different scenario. This has led to a fragmented understand-
ing of the underlying motivation for driving. Moreover, stitching together different
models requires an overarching unifying model to bring all the existing models to-
gether. The other option is to formulate a single unified model.

5.1.1. GOAL AND SCOPE OF THIS THESIS

The goal of this thesis was to formulate a unified driver model, based on a single
underlying principle, from which human-like speed and lateral position adapta-
tions would emerge in a multitude of scenarios. However, driving is a sophisticated
task with sub-tasks at different levels [83]. Since, this is a preliminary step towards
a unified driver model, the scope of this thesis was limited to low-level control
(steering and speed) behaviour of the driver, in scenarios that involved changes
to the road geometry (e.g., curvature, lane width, roadside furniture, etc.) and de-
terministic non-interacting traffic (e.g., car following, overtaking, etc.). Modelling
the interaction between the different players in traffic is a research topic in itself
[144][145] and is beyond the scope of this thesis.

79
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5.1.2. APPROACH TO ACHIEVE THE GOAL
In order to achieve the goal mentioned above, we borrowed principles from the
field of sensorimotor control. This thesis is not the first time that driver modelling
researchers have borrowed from the field of sensorimotor control. Sentouh et al.
[70] proposed a driver model that included visual and kinesthetic perception, as
well as anticipatory and compensatory control. Markkula et al. [146] proposed a
computational framework that used driver steering control as an illustration while
borrowing the concepts of motor primitives, neuronal evidence accumulation, and
prediction of sensory consequences of motor actions from the field of sensorimotor
control. Both these studies focused on the microscopic trajectories of the driver’s
steering inputs.

The model developed in this thesis, although generated similar microscopic
trajectories for steering as well as speed control, was focused on capturing the
macroscopic adaptations in speed and lateral behaviour of the drivers (e.g., slow-
ing down more and cutting the curve more for a sharper curve as compared to a
shallower curve). With this intention, the following set of sensorimotor principles
were borrowed: (i) presence of multiplicative noise in the perception and actions
of a human [30], and (ii) balancing the reward (achieving the goal) and the goal-
relevant cost (undesired consequences) [27]. It was also apparent that the cost
(mentioned above) was generally incurred due to the undesired consequences of
the noise present in our sensorimotor system. The consequence of noise, in the sen-
sorimotor context, is calculated as the product of the probability of an event and
the consequence of that event, and is analogous to the concept of risk, proposed by
Näätänen and Summala [2] for the field of driving, and was used in this thesis.

The results from chapters 2, 3, and 4 show that basing a driver model on senso-
rimotor control theories does help in capturing speed and lateral position adapta-
tions of a driver in a multitude of scenarios. For example, the sensorimotor princi-
ple of penalising only the goal-relevant costs could be seen at work in the roadside
furniture scenario in chapter 3. The model (as well as human drivers) steered away
from the cars parked only outside one lane boundary while not changing the speed
drastically. However, when the cars were parked outside both lane boundaries, the
model slowed down considerably (more than in the earlier case) and drove along
the lane centre. This display of ‘not slowing down when not needed’ is a manifesta-
tion of the goal-relevant penalty in sensorimotor control. Another example where
the effect of multiplicative noise becomes clear is the curve driving scenario. The
DRF would expand with the increase in magnitude of the steering angle, which
mimicked (in a very simplistic manner) the multiplicative noise in the driver’s sen-
sorimotor system. This led to the model having a wider DRF while negotiating a
sharper curve (smaller radius), in turn incurring higher cost, leading to the model
having to slow down to maintain the cost (risk estimate) below the threshold. This
‘slowing down more for sharper curve’ as compared to a shallower curve is also
exhibited by human drivers.

An essential component of the driver model proposed in chapter 3 is the risk
estimate signal that is used in conjunction with the risk threshold theory to gener-
ate speed and lateral position adaptations. The probability component of the risk
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estimate, which was named the ‘Driver’s Risk Field’ (DRF), was empirically quan-
tified in chapter 2 and was found to be wider than the ego-vehicle. The DRF was
then combined with the cost map (consequence of an event) in chapter 3 to gener-
ate the aforementioned risk estimate. In chapter 4, an experiment in a real vehicle
on a test-track showed that the risk estimate corresponded to the risk perceived by
drivers during manual as well automated driving.

Each of the chapters mentioned above (chapters 2, 3, and 4) feeds into the sub-
sequent chapters, but they have their own results and conclusions which are in-
dependently valid. However, writing this thesis presents a unique opportunity to
reflect on all the three chapters, as a whole. The following section will discuss the
overarching conclusions that can be drawn from this entire thesis and presents
them in the context of the literature.

5.2. THREE OVERARCHING CONCLUSIONS
When all the results and conclusions of this thesis are recapitulated, three main
conclusions can be drawn regarding human driving behaviour. The evidence, sig-
nificance, and limitations for each these three main conclusions are discussed in
the following paragraphs.

5.2.1. CONCLUSION 1: DRIVERS RESPOND TO OBJECTS BEYOND THE

WIDTH OF THE CAR AND LANE BOUNDARIES

In addition to the objects within the lane boundaries, driver’s subjectively perceive
and respond to the risk posed by objects outside the width of the car and the lane
boundaries. This phenomenon has been observed in the literature where the pres-
ence of roadside furniture has been shown to affect the lateral position and speed
adopted by drivers [105][106]. In this thesis, we not only provide direct evidence
for this behaviour, but also quantify this overflow of risk (Fig. 5.1).

Driver’s Risk Field (DRF)

Over�ow of risk beyond 
the lane boundary

Figure 5.1: Overflow of risk: The Driver’s Risk Field (DRF) captures the fact that drivers care about the
region beyond the car and lane boundaries.
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EVIDENCE

The direct evidence for this conclusion can be found across all the three chapters.
In chapter 2, all the participants of the driving simulator experiment responded to
obstacles that were placed beyond the width of the ego vehicle. In this experiment,
we had placed obstacles at 77 different locations in front of the driver. Only 7 out
of these 77 obstacles were placed in the path of the vehicle. The remaining 70 were
beyond the width of the vehicle and, in principle, did not need any action from the
driver to avoid them. Yet, all the participants made steering corrections to avoid
obstacles that were beyond the width of the vehicle.

In chapter 3, we cite literature which showed that driver’s care about the ob-
jects beyond the lane boundaries. For example, Alessandro Calvi [105] found that
when trees were close to the road edge, drivers decreased their speed significantly
and moved towards the centreline of the road. Francesco Bella [89] found that in
the presence of a shoulder on either side of the road, drivers drove faster and less
towards the road centre (of a two lane road), as compared to when the shoulder
was absent. Dunning et al. [106] found that participants drove slower, and away
from the road edge when they encountered water as compared to grass, outside
the lane boundary. In the driving simulator experiment performed in chapter 3,
the single participant who drove around the track also moved away from the row
of cars parked outside the left lane boundary. When cars were parked outside both
lane boundaries, he slowed down.

In chapter 4, drivers complained when the automated vehicle was following
a trajectory that was too close to the car parked outside the lane boundary. All
these results provide sufficient direct evidence to conclude that drivers respond to
objects beyond the width of the car and lane boundaries.

SIGNIFICANCE

The proposed risk metric has similarities with Time to Lane Crossing (TLC) [141],
that comprises spatio-temporal safety margins towards lane boundaries and TTC
[147], that comprises spatio-temporal safety margins towards objects within it.
Controllers have been proposed based on these metrics [47][148][149][150]. The
main difference of the risk estimate, lies in its ability to capture the driving be-
haviour as shown by the evidence mentioned above: humans also respond to ob-
jects beyond the car and lane boundary. Other researchers have also suggested
different shapes of potential fields that extend beyond car and lane boundaries
[32][136]. However, these proposed potential fields were not empirically measured,
but were designed a-priori based on the understanding gained by the researcher.

The DRF, on the other hand, empirically captures this overflow of the risk (Fig.
5.1), as being caused by the presence and propagation of sensorimotor noise. The
uncertainty about the ego vehicle’s current position and speed, the uncertainty
about the steering action that the driver applies, and the uncertainty in predict-
ing the future speed and position trajectory of the ego vehicle create a probability
distribution of the possible positions that the vehicle id expected to occupy in the
next couple of seconds. Such uncertainty propagation has also been proposed in
the field of robotics [151]. Note that, if the uncertainty was somehow removed and
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Driving
in fog

(b)

Haptic guidance
on steering wheel
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Train-like
drive

(d)

Figure 5.2: Hypothesised effect of noise on the DRF: We hypothesise that the DRF originates due to
the noise in the sensorimotor system and its propagation. (a) Normal driving: This is the shape as
measured in chapter 2. (b) We expect the size of the DRF to expand as compared to (a) in foggy weather
conditions, since fog increases visual noise. (c) Haptic guidance on the steering can act as a ‘channel’
through which the vehicle is guided and hence reduce lateral variability. We expect the DRF to shrink
laterally as compared to the DRF in (a). (d) In this ‘train-like’ scenario, the vehicle has Haptic guidance
on the steering as well as visual cues regarding the path the vehicle is going to strictly follow. We expect
this reduce the lateral variability to a negligible amount and hence expect a DRF which is of the same
width as the vehicle.

the prediction of future positions of the ego vehicle was deterministic, humans
would not care about objects beyond the width of the car (Fig. 5.2 [d]). A good ex-
ample is that of a train. The rails of a train constrain the lateral position of the train
and hence the uncertainty in this direction is negligible. The resulting behaviour
is that the driver of the train can zoom past other trains, or walls of the tunnels,
or station platforms, barely centimetres apart without reducing speed! The same
would not be done by the driver in a car, which is not constrained to rails.

LIMITATIONS

The main limitation of this conclusion is that the direct empirical evidence for this
overflow of risk (represented by the DRF) has been shown only for one fixed speed
(experiment in chapter 2). In chapter 3, the DRF was upgraded to a dynamic DRF
that morphed its shape and size as a function of speed and steering. However,
these upgrades are based on assumptions that drivers tend to maintain a constant
time headway [109] (hence the elongation of the DRF in the longitudinal direction
with increase in speed) and that steering becomes less accurate as the steering
angle increases [31]. These assumptions are yet to be experimentally verified. Ex-
periments similar to the one conducted in chapter 2 with different levels of fixed
speeds and road curvatures are recommended, to quantify the change in shape of
the DRF as a function of steering and speed.

Apart from the change in shape of the DRF caused by the steering and speed,
it is predicted that changes in the sensorimotor noise caused by external factors
can expand or contract the DRF. One could, artificially modify the level of noise
and see if the size and shape of the DRF changes (Fig. 5.2). For example, intro-
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ducing fog will increase the visual noise (Fig. 5.2 [b]), introducing Haptic guidance
(Fig. 5.2 [c]) and visual rails on the road could reduce noise (Fig. 5.2 [d]). We do
have behavioural evidence that people drive slower in foggy conditions [152] [153]
and faster with Haptic guidance [121], which suggest that the DRF expands and
shrinks, respectively. However, we do not have direct evidence for this size and
shape change.

These experiments recommended to address the limitations of the conclusion
mentioned above will further improve our understanding of how this overflow of
risk depends on other factors (such as steering, speed, external noise, etc.) and
how drivers may adapt their behaviour to such factors.

5.2.2. CONCLUSION 2: THE risk estimate CONSTITUTES A SIGNAL THAT

CORRELATES WITH THE RISK PERCEIVED BY THE DRIVER

The risk estimate proposed in this thesis, represents the driving equivalent of the
sensorimotor control concept of consequence of noise - a product of probability,
and the consequence of a risky event occurring. It constitutes a dynamic signal,
which was hypothesised to correlate to the risk perceived by the driver.

EVIDENCE

In chapter 3, we already found indirect evidence for the above mentioned con-
clusion. The risk estimate was used as a cost function in a driver model and the
behaviour of the driver model showed trends similar to human speed and lateral
position adaptations in seven different scenarios. However, in chapter 4, direct
evidence can be found during both manual and automated driving for the effec-
tiveness of the risk estimate as a predictor for driver’s perceived risk. In the manual
driving condition, a peak in the risk estimate is observed in the vicinity of a steering
and/or speed change performed by the driver (Fig. 4.3 [b][c]). This suggests that
the driver perceived a large amount of risk and hence performed a corrective ac-
tion to lower the risk. In the autonomous driving condition, when the value of the
risk estimate was high, drivers either complained about the car driving in a risky
manner or took over control of the vehicle.

Apart from the evidence found in this thesis, evidence can also be found in liter-
ature for risk estimate-like signals/metrics being able to effectively relate to driver’s
characteristics. For example, Woo et al. [154] and Mullakkal-Babu et al. [135] de-
veloped signals (similar to the risk estimate signal) based on artificial potential field
approach. Woo et al. [154] developed a ‘Driving Risk Feature’ to assess the driving
style of external drivers using a potential field based approach. Their speed de-
pendent potential field was centred around the external road user (the DRF pro-
posed in this thesis is attached to the ego vehicle) and generated a ‘repulsive’ force
on the ego vehicle which could effectively classify aggressiveness of the external
driver. Mullakkal-Babu et al. [135] also developed a signal based on the ‘Proba-
bilistic Driving Risk Field’ which originated from the objects in the environment.
The risk descriptions from their proposed approach could qualitatively reflect the
narration of the situation and were in general consistent with the Time To Colli-
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sion (TTC) signal. Other researchers, for example, Wei et al. [155] generated a risk-
corridor based on the trajectories executed by drivers. They found that providing
this corridor as a reference to the AV controller yielded a more human-acceptable
and comfortable drive than using the road centre as reference, during curve driv-
ing and obstacle avoidance. These studies show the versatility and effectiveness
of risk field/corridor based signals and metrics in predicting the characteristics of
human driving.

SIGNIFICANCE

The fact that the risk estimate correlates with the risk perceived by a driver, pro-
vides direct evidence that even in driving (like in sensorimotor control), humans
care about the consequence of the noise. This concept of accounting for the conse-
quence of noise may sound familiar to those who are aware of the Kalman Filter,
and indeed, both - the Kalman Filter and the DRF account for the consequence
of noise. However, there is a key difference. The Kalman Filter is mainly used
to estimate a hidden (by noise, not only non-observable) state and to propagate
its uncertainties into the future, which are then used for control [156][157]. The
DRF, on the other hand, also propagates uncertainties into the future, but also di-
rectly dictates the modifications in the actions depending on the magnitude of the
uncertainty. This difference becomes clear when the noise in both sensing and
predictions is increased proportionally. The Kalman Filter would provide the same
expected value. On the other hand, the DRF would ask the controller to slow down.
A more suitable way to capture the consequence of the noise on behaviour, in an
‘optimal control’ manner was explored by the Kolekar et al. [69] by using the ex-
ponential Linear Quadratic Regulator proposed by Jacobson in 1973 [158]. Here,
the Taylor series expansion of the exponential of the quadratic cost automatically
accounted for the variance of the signals. Another complication that arises while
using ‘normal’ Kalman Filter while modelling driving behaviour is the presence of
multiplicative noise. Todorov (2005) [159] proposed a solution to this problem,
which was later then adapted by Kolekar et al. [31] into a receding horizon frame-
work to formulate a driver steering model.

The risk estimate, besides improving the scientific understanding of risk per-
ception, has several applications in automated systems of a vehicle as well. The
risk estimate can be used to create a ‘safety envelope’ around an automated vehi-
cle to ensure safe handling of critical scenarios. For example, Mobileye has pro-
posed the Responsibility-Sensitive Safety [33] which formalises critical situations
and driving rules to ensure uniform safety standards across various manufactur-
ers. An updated version of the risk estimate could be useful in creating a unified
’critical situation detector’ in a multitude of scenarios.

On the flip side of creating a ‘safety-envelop’, the risk estimate can also be used
to monitor how risky the trajectory driven by an automated vehicle is. This could
be then used to either modify the trajectory (according to the preference of the
driver) or rate the automated system (safe/unsafe). The risk estimate can be quite
effective at this because as seen in chapter 3, it could capture the trends in be-
haviour expressed in terms of different metrics (TLC, TTC, THW, etc.). This pro-
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vides evidence that the risk estimate can act as a unified metric to quantify human
behaviour in several scenarios.

LIMITATIONS

The main limitations of this conclusion arise from the nature and shape of the
DRF which represents the probability of an event in the risk estimate calculations.
Firstly, the risk estimate proposed in this thesis only accounts for the area in front
of the vehicle. Hence, it cannot account for risk from the side or behind the vehi-
cle. However, this is an important aspect of every day driving, and a ‘surround DRF’
will need to be developed. The second limitation is that the risk estimate can only
account for the risk due to the physical presence of the object. It cannot estimate
tactical risks which are rules that are consciously learnt by humans, for example to
stop at the red light at an intersection. Hence, if the rule based behaviour is to be
incorporated in this model, the ‘cost of breaking these rules’ needs to be added to
the cost map using phantom obstacles. For example, a red light at an intersection

(b) Instructed(a) Relaxed

(c) Ready to take-over (hovering) (d) Take-over

Figure 5.3: Bio-mechanical readiness of the driver during automated driving: These are screenshots
from the video recorded during the automated driving condition of the experiment in chapter 4. Drivers
are expected to place their hands in a relaxed position, as shown in (a), when they do not perceive suffi-
cient risk from the automated system’s trajectory. This screenshot is taken when the car was stationary,
since the participants were instructed to keep their hands near the steering wheel, throughout the du-
ration of the experiment, as shown in (b). When drivers perceived a high amount of risk they prepared
themselves by hovering their hands above the steering wheel, as shown in (c). Finally, when the per-
ceived risk is high enough to trigger an action from the driver, a take-over action could be seen, as
shown in (d).
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could be represented as a phantom barrier with a very high cost, which disappears
when the light turns green. The third main limitation of this conclusion is that, in
chapter 4, we could directly validate the risk estimate only in static scenarios (road
geometry, parked car, etc.). Despite the fact that there is evidence (in chapter 3)
that the trends in human behaviour match that of the driver model based on the
risk estimate, a direct validation of the risk estimate in dynamic scenarios will pro-
vide valuable insights.

Apart from the above mentioned limitations, there were a few points related to
this conclusion that were not tested in this thesis but could be interesting follow-up
research questions. First, we did not test one of the main advantages of a unified
metric, i.e. that it can estimate the ‘total risk’ when multiple scenarios occur at
once. It could be an interesting experiment to test if the perceived risk of the driver
correlates to the risk estimate when multiple scenarios (e.g., overtaking a parked
car with an oncoming vehicle) occur simultaneously. Second, in chapter 4 a binary
scale (risky or not risky) was used to segregate the comments and actions of the
drivers. However, the video footage revealed interesting subtleties in the driver’s
posture and arm movement. These could act as predictors for driver’s perceived
risk. For example, the driver would occasionally hover their arms (Fig. 5.3 [c]) over
the steering wheel in preparation of a take-over (Fig. 5.3 [d]). In chapter 4, we did
not analyse these subtle cues because the safety regulations of the test track man-
dated that the participants always keep their hands near the steering wheel (Fig.
5.3 [b]). However, in naturalistic driving we can expect the drivers to relax their
arms and rest them on their lap (Fig. 5.3 [a]), and then hover their hands over the
steering wheel in preparation of a take-over. Such bio-mechanical readiness can
give us vital information regarding the risk perceived by the driver [140]. Despite
these limitations, the risk estimate could effectively predict the risk perceived by
the driver.

5.2.3. CONCLUSION 3: HUMAN-LIKE DRIVING BEHAVIOUR EMERGES

WHEN THE CONSEQUENCE OF SENSORIMOTOR NOISE IS MAIN-
TAINED BELOW A THRESHOLD LEVEL

In sensorimotor control, it was proposed that humans try to manage the conse-
quence of the noise. This principle was borrowed and applied to the field of driv-
ing. The risk estimate proposed in this thesis is the driving equivalent of the con-
sequence of noise idea in sensorimotor control. It was hypothesised that when the
risk estimate is used as a cost function in a driver model, that tries to maintain the
risk estimate below a threshold level, human-like behaviour emerges in a multi-
tude of scenarios.

EVIDENCE

The evidence for this conclusion can be found in the predictions made by the
driver model in chapter 3. In seven (four road and three traffic) different scenarios,
the trends in speed and lateral position adaptations matched the trends exhibited
by the driver model that tried to maintain the risk estimate below a threshold level
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(Fig. 5.4). The model could generalise its behaviour to previously seen scenarios
(e.g., parameter estimation performed on a curve with radius 200 m) but with dif-
ferent geometric values (e.g., could generalise to driving on curves with radii 100,
300, 400 m). More importantly, the model could generalise to an unknown scenario
- negotiating oncoming traffic. This scenario was not present in the parameter es-
timation data set, yet the model slowed down and steered away from the oncoming
cars, similar to what a human would do.

In chapter 4, evidence for the presence of a risk threshold can be found. In
Fig. 4.6 it can be seen that at lower values of the risk estimate the driver’s made
very few risky comments and performed very few take-overs. However, as the risk
estimate increased, drivers complained and took over the control of the vehicle.
The sigmoid shape of the plot in Fig. 4.7 provides evidence for the presence of
a risk threshold, beyond which drivers feel the need to express or act upon the
perceived risk.

SIGNIFICANCE

One of the important advantages of having a unified model that can predict driving
behaviour in multiple scenarios is that, one does not need to stitch together several
driver models that are each applicable to different scenarios. The advantage of not
having to do this is clear, especially when trying to estimate the parameters of such
a stitched model. The DRF based driver model could negotiate the entire track,
which consisted of various scenarios, with the same set of parameters. This be-
comes important especially when we try to integrate higher level models of driver
behaviour (mood, experience, familiarity of the road, etc.) with lower (control)
level driver models. These higher level ‘settings’ are expected to affect the driver
behaviour across scenarios. For example, if a driver is in a ‘sporty’ mood, he/she
is likely to drive faster, cut the corners, overtake more aggressively across different
scenarios. Hence, if one was to stitch together a collection of driver models, he/she
would have to update their parameters separately while trying to ensure that there
is no abrupt jump when the switch from one scenario to another occurs. On the
contrary, if we have a unified model, we need to update only the parameters of one
model and not worry about harmonising the behaviour across different models.

This unifying nature of the risk threshold based driver model has practical ap-
plications in the development of automated vehicles as well. Since the proposed
DRF based driver model can generate human-like behaviour, it could act as a ref-
erence trajectory generator for the automated systems. Several researchers have
shown that human’s prefer technology that seems to have anthropomorphic char-
acteristics [78]. More specifically, for automated driving trajectories, research has
shown that humans prefer the trajectory they think was their own trajectory [7].
However, some research has claims opposing this idea of ‘automated systems need
to show human-like driving characteristics’ [160]. However, it needs to be noted
that this study was conducted for external road users who were watching the cars
pass by them while they stood outside the lane boundaries. Essentially, apart from
the zebra crossing part of the experiment, the participants did not have a lot to
gain from knowing weather the car was driving in a human-like manner or not.
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Figure 5.4: A step towards a unified driver model: The Driver’s Risk Field (DRF) based driver model
proposed in this thesis could predict human adaptations in speed and lateral position in seven different
scenarios.

The second point is that, external road users observe a wide variety of driving
styles. But that is not the case for a driver placed inside the vehicle. He/she is very
much linked and affected by that particular vehicle’s driving style. Hence, we think
that automated vehicle systems need to exhibit human-like characteristics while
driving (e.g., slowing down more for sharper curves, taking a larger gap towards
a parked car, curve-cutting, etc.). It may not have to be completely personalised
to every individual [161], but at the least, the automated vehicle systems need to
behave like a non-fatigued, attentive human driver.

LIMITATIONS

One of the main limitations of this conclusion is that the validation was based on
large qualitative ‘trends’ in speed and lateral position adaptations. The metrics
that were used in calculating these trends were derived from the signals describ-
ing speed and lateral position of the driver model, in order to compare them to
the metrics reported in literature. These metrics were neither used to statistically
compare the difference between empirical data and the model, nor were the ac-
tual signals compared from which the metrics were determined. A follow-up study
where the model’s steering angle, speed and position trajectories are compared in
different scenarios with human driving data, will provide valuable insights.

Note that such strengthened validation studies will not address a second major
limitation of the driver model: that it is computationally inefficient, preventing the
generation of vehicle control behaviour in real-time. If this model is to be used as
a reference trajectory generator in automated systems, it has to be able to generate
trajectories at least at real-time speed. Smarter ways to calculate the product of
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the probability and cost map matrix can significantly improve the computational
efficiency of the model.

Improving the computational efficiency of this model could have other bene-
fits as well. For example, it could then be used predict the behaviour of surround-
ing human-driven vehicles, so that the automated ego vehicle has an estimation
regarding the future paths of the agents in the scene. However, an important as-
pect of such a scene with multiple agents is the interaction amongst the agents. In
its current form, the model cannot account for interactive and strategic level be-
haviour of humans. The interaction between two or more agents has been studied
quite extensively [144][145] and is a field in itself. However, it could be interesting
to explore the possibility of using the risk estimate, proposed in this thesis, as a
feature/cost-function in these interaction models, especially the ones using game-
theoretic approaches [162][163].

Despite the limitations mentioned above, the threshold-based driver model,
formulated in chapter 3, managed to generate some interest amongst researchers
from academia and industry. Discussions with these researchers revealed that
there was some ambiguity regarding the physical interpretation of the different pa-
rameters used in the model. The origin of this confusion stems from the fact that
decreasing the size of the DRF decreases the cost (risk estimate) incurred, which
may seem similar to increasing the risk threshold, since the model only generates
an action to mitigate the high risk when the risk threshold is exceeded. However,
there is a subtle difference between decreasing the shape of the DRF and increas-
ing the risk threshold. The difference is that the DRF is intended to capture the
characteristics of a particular human, whereas increasing or decreasing the risk
threshold enlarges or diminishes the impact of these characteristics on speed and
position trajectories. For example, two individuals can have the same ‘area’ cov-
ered by the DRF but one could be a curve-cutter (k1 < k2) and another could be a
curve-overshooter (k2 > k1) [164]. The model for both these individuals (with same
risk threshold) will behave identically while following a car on a straight road, be-
cause the shape and size of the field will be identical for both parameter settings.
However, the differences will arise during curve negotiation: the curve cutter will
cut the curve and the curve-overshooter will take a trajectory is on the farther half
of the lane. More importantly, increasing the risk threshold for both individuals
will only exaggerate the curve-cutting and curve-overshooting behaviour, but it
will not change the curve-overshooter into a curve-cutter, and vice-versa. Hence
we recommend the following:

1. The parameters that define the shape of the DRF are different for different
individuals. However, they are constant for an individual, irrespective of
his/her mood, scenario, etc. Essentially, the DRF parameters capture the
inter-driver variability (Fig. 5.5 [a]).

2. The risk threshold is used to modulate the behaviour of a particular driver in
different ‘moods’. For example, if a driver is in the mood for a relaxed drive,
the risk threshold could be lowered. If the driver is in the mood for a sporty
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(a) DRF captures inter-driver variability

(b) Risk-threshold captures intra-driver variability

Figure 5.5: Changing the DRF versus changing the risk threshold: The DRF is a personalised field for
each individual and captures the inter-driver variability. The risk threshold enlarges or diminishes the
individual’s driving characteristics defined by the DRF, for example according to the driver’s mood. It
captures the intra-driver variability.

drive, the risk threshold could be increased. Essentially, it captures the intra-
driver variability (Fig. 5.5 [b]).

This clarity in the physical interpretation of the parameters can open up a few
avenues of research. For example, initially the purpose of the experiment in chap-
ter 4 was to answer the question What type of autonomous driving trajectories do
humans prefer? A similar experiment was performed by Basu et al. [7] in a fixed
base driving simulator. However, in our case, pre-programmed trajectories (e.g., a
replay of participant’s manual driving) could not be reproduced satisfactorily in the
real vehicles. Hence, the analysis was performed on trajectories without attribut-
ing any labels (e.g., replay of manual trajectory) to them. One of the more inter-
esting comparisons which were planned during this experiment was the trajectory
generated by the DRF driver model and a ‘safer DRF driver model’. The DRF driver
model trajectories were generated by estimating the parameters for each driver,
based on their manual driving trajectories. The ‘safer DRF driver model’ had a
lower (90%) risk threshold as compared to the estimated parameter value. The hy-
pothesis being that, since humans are not in control of the vehicle, they would pre-
fer the vehicle to drive a little more safer than their driving style. However, a ‘safer’
trajectory can easily be implemented by merely reducing the speed of the man-
ual trajectory. Hence, a follow-up comparison between: merely slowing down the
manual trajectory, and the ‘safer DRF driver model’ was planned. The interesting
part, in this comparison would have been the automated vehicle’s trajectory near
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the parked car. If the speed was merely reduced without any changes to the tra-
jectory of the vehicle, it would drive around the parked car along the same path as
in manual drive, but with a slower speed. The ‘safer DRF driver model’ would take
a larger gap to the parked car (as compared to manual drive) and maybe slowed
down, depending on the width of the lane. This distinction between merely slow-
ing down the entire trajectory versus behavioural changes (e.g., larger gap) need
to be investigated to test the need for driver model based modification of auto-
mated trajectories. Despite its limitations, this conclusion regarding human-like
behaviour emerging from a risk threshold driver model can open up new avenues
of research and practical solutions to defining how an automated vehicle should
drive.

5.3. FUTURE WORK AND TAKE HOME MESSAGE
This thesis is just the beginning of the journey towards a unified driver model and
the risk estimate proposed in this thesis is, to say the least, in its infancy. How-
ever, it points out the importance of looking towards and learning from other fields
to gain inspiration and perspectives that can then be borrowed to solve our re-
search questions. For example, Engström et al. [165] also took a similar approach
of borrowing the predictive processing framework from neuroscience into the field
of driving. The predictive processing theory essentially states that humans try to
minimise the error between their own predictions about the sensory inputs they
are going to receive, and the sensory inputs they actually receive. This theory es-
pecially becomes important in the current climate of automated systems where the
drivers are becoming more and more detached from the act of driving and hence
have lesser information to generate predictions. This can lead to a large mismatch
between the expectations of a driver and the way the car drives and lead to sur-
prise. The mathematical formulations of the DRF, the risk estimate, and the driver
model have potential to grow and be a part of larger frameworks like the predic-
tive processing framework. The risk estimate could act as a proxy for the level of
risk generated by the behaviour of the vehicle as well as the risk expected by the
driver. In the future, the model can be upgraded to incorporate interaction capa-
bilities (with other agents), and can be used to explore new avenues of research
that are not only practically relevant but also take us towards a quantitative unified
model of human behaviour. However, for now, one thing we can be certain of is:
we humans are aware of the consequence of noise in the sensorimotor system and
account for it while driving, similar to while performing simple movements task.
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A.1. SUPPLEMENTARY TABLE

Table A.1: Parameters for the propagation of Gaussian width: The table provides the values of the
parameters a9, a10, and a11 that define the shape of the left and right boundaries of the DRF. The
values are provided for each participant (P1-P8), and according to the rules mentioned in Fig. 2.7, are
used to classify the shapes into Types (1 to 4). The top and bottom blocks provide the values for the
subjective and objective DRF, respectively. The results are shown in Fig. 2.11.

Parameter P1 P2 P3 P4 P5 P6 P7 P8

Su
b

je
ct

iv
e a9 x 10−4 1.9346 0.5172 1.075 3.1583 1.1236 0.6673 -0.1808 1.5271

a10 55.9150 83.9591 78.9046 88.8631 59.0451 71.8177 15.9020 95.7857

a11 0.9251 1.3207 1.5260 1.7744 1.1113 0.8433 1.3983 1.6816

O
b

je
ct

iv
e a9 x 10−4 0.3939 0.5058 1.2518 2.1292 0.1546 3.0247 1.1487 1.0856

a10 108.6883 90.4710 62.2331 102.6379 224.1546 78.3114 73.4117 103.8128

a11 0.9248 1.3974 1.3158 1.0962 0.7956 0.9746 1.1534 1.5344

A.1.1. STEERING ANGLE AND LATERAL DEVIATION TRAJECTORIES
The following plots show the steering angle, and lateral deviation trajectories as a
function of the longitudinal distance covered by the vehicle along the lane centre.
The left plots (red) show all the trajectories that had a corresponding subjective
measure of ‘0’. Hence indicating a ‘no steering action’ by the participant. The right
plots (blue) show all the trajectories that had a corresponding subjective measure
of > 0, hence indicating a steering action by the participant. The horizontal black
dotted lines indicate ± 2 degree in the steering angle plots. The vertical dotted line
indicates the 25 m longitudinal distance mark.
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Figure A.1: Steering angle and lateral deviation trajectories: The plots show the steering angle, and
lateral deviation trajectories as a function of the longitudinal distance covered by the vehicle along the
lane centre.

A.2. DATA AVAILABILITY AND SUPPLEMENTARY MEDIA

DATA AVAILABILITY:
The data and the accompanying MATLAB code used to perform the analysis is
available in the 4TU.Centre for Research Data with the identifiers: http://doi.or
g/10.4121/uuid:921b56a0-7ae0-4d5e-a8a1-bda219a00048

SUPPLEMENTARY MEDIA:
A video of the experiment is available at: https://ars.els-cdn.com/content/image/
1-s2.0-S0003687018307373-mmc3.mp4. The video is also included in the data folder
whose link is provided above.

A.2.1. GENERAL INFORMATION ABOUT THE DATA FOLDER

SET-UP OF THE FILES AND FOLDERS

1. Extract the files and folders from the compressed file in a folder of your choice.

http://doi.org/10.4121/uuid:921b56a0-7ae0-4d5e-a8a1-bda219a00048
http://doi.org/10.4121/uuid:921b56a0-7ae0-4d5e-a8a1-bda219a00048
https://ars.els-cdn.com/content/image/1-s2.0-S0003687018307373-mmc3.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S0003687018307373-mmc3.mp4
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2. The extracted data should contain the following folders

(a) AnalysisCode: Contains all the MATLAB code.

(b) ExptSetup: Contains the data regarding the experimental setup (.mat
files).

(c) Objective: Contains the data recorded from driving the simulator for
each participant

(d) Subjective: Contains the subjective answers provided by the partici-
pants

(e) ParticpantDetails: Contains the driving details of participants (anony-
mous)

3. In AnalysisCode folder should contain the following files

(a) Results_figures_from_article.m: This file you need to run to gen-
erate the results (plots) presented in chapter 2 (Fig. 2.8, 2.9, 2.10, 2.11,
2.12).

(b) Data_extraction.m: This file that will help you extract the separate
trials (4 repetitions) corresponding to each of the 77 obstacles, of every
participant (8 participants).

(c) All the other functions are ‘called’ from the above two files (3.(a) and
3.(b))

DATA EXTRACTION GUIDE: BASIC GUIDE

1. We have made a simple file so that you can extract all the data that you need
of each trial of each subject (Data_extraction.m).

2. The Plot_data_extraction.m will help you plot the subjective and corre-
sponding objective metrics in one figure for 3 signals (steering torque, steer-
ing angle, lateral position)

3. If you want to extract other signals (for e.g. yaw rate, heading angle etc.)
please open Objective_Analysis.m file and refer to lines 66 to 72, 76 to 82,
and 90 to 96, while not forgetting to ‘output’ the new signals on the first line
in the function.

4. The driving simulator logs 69 signals at 100 Hz. Some of these signals may
not be useful to the readers, but it is necessary to know the names and con-
vention of the signals if you want to extract them (as mentioned in the step
(3) above). A summary and sign conventions of the signals are provided in
the document DRF_DS_sign_conv.pdf

DATA EXTRACTION GUIDE: ADVANCED GUIDE

1. If readers want to delve deeply into the data, we have provided all the raw
.mat files for every participant in the Subjective and Objective folders.
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2. Subjective data: S1_subjective_answers.mat contains the subjective an-
swers of participant number 1.

3. Loading this file will provide a S1ME (Subject 1 Magnitude Estimation) matrix
(26 x 12) matrix.

4. The 12 columns refer to the 12 sub-blocks of the experiment. The 26 rows
correspond to the 26 obstacles that the participant encountered during each
sub-block.

5. Since the obstacles popped at random, they are uniquely identified by their
ObsID (Obstacle ID) . The order in which each obstacle appeared during a
sub-block is provided in the ExptSetup folder in the ObsID1to12.mat
file.

6. When you load ObsID 1 to 12 .mat it should generate the variables ObsID 1,
ObsID 2,. . . ObsID 12 in the MATLAB workspace. Each is a row vector of 26
elements. The numbers specify the Obstacle ID, hence specifying the order
in which the obstacles popped up.

7. For example: ObsID 1 contains the following numbers ‘32, 40, 22, 34,. . . ’.
It means that the 1st obstacle that popped up was with ObsID 32, the 2nd

obstacle that popped up has ObsID 40, and so on.
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Figure A.2: Data extraction guide: The figure shows the 4 repetitions (Rep1 = 1st repetition) of objective
data (signals of steering torque, steering angle, lateral position) when participant number 1 encoun-
tered the obstacle with ID (ObsID) = 61. The position and corresponding Obstacle IDs can be found
in the ‘Data_extraction.png’ image file. SR = Subjective response provided by the participant for
the corresponding trials. All the signals are plotted as a function of the Longitudinal Distance (x axis)
covered by the vehicle along the lane centre (for further clarification check the end of this document).
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8. The relation between ObsID and the position of the obstacle is provided in
the Data_extraction.png.

9. Objective data: S1data.mat contains the subjective driving simulator data
of participant number 1.

10. Loading this file load variables S1B1log (Subject 1 sub-block1), S1B2log,. . .
S1B12log (Subject 1 sub-block12) in the MATLAB workspace.

11. Each of these log files contain 69 signals recorded at 100Hz, in addition to
the initial conditions (inco) of the experiment. A summary and sign conven-
tions of the signals are provided in the document DRF_DS_sign_conv.pdf

12. The S1B1log.ObstacleNumber signal will provide you information about
which obstacle popped up, as a function of simulation time. Then using this
information and the information from ObsID1, you can arrive at the obstacle
position.

13. General advice would be to always plot/analyse the signals with respect to
the longitudinal distance travelled by the car along the lane centre (as done
in our analysis). For this you will need to use S1B1log.nearest_rp_idx sig-
nal. Please refer to the Data_extraction.m and Plot_data_extraction.m
files, or for further help please contact Sarvesh Kolekar (s.b.kolekar@tudelft.nl
/ kolekar.sarvesh380@gmail.com).

14. Subjects performed the 12 sub-blocks in different orders. The following table
details out the order in which each participant performed the sub-blocks.

Table A.2: Sub-block order for each participant

Sub-blocks −→ 1 2 3 4 5 6 7 8 9 10 11 12

P1 ObsID1 ObsID2 ObsID3 ObsID4 ObsID5 ObsID6 ObsID10 ObsID11 ObsID12 ObsID7 ObsID8 ObsID9

P2 ObsID4 ObsID5 ObsID6 ObsID7 ObsID8 ObsID9 ObsID1 ObsID2 ObsID3 ObsID10 ObsID11 ObsID12

P3 ObsID7 ObsID8 ObsID9 ObsID10 ObsID11 ObsID12 ObsID4 ObsID5 ObsID6 ObsID1 ObsID2 ObsID3

P4 ObsID10 ObsID11 ObsID12 ObsID1 ObsID2 ObsID3 ObsID7 ObsID8 ObsID9 ObsID4 ObsID5 ObsID6

P5 ObsID1 ObsID2 ObsID3 ObsID4 ObsID5 ObsID6 ObsID10 ObsID11 ObsID12 ObsID7 ObsID8 ObsID9

P6 ObsID4 ObsID5 ObsID6 ObsID7 ObsID8 ObsID9 ObsID1 ObsID2 ObsID3 ObsID10 ObsID11 ObsID12

P7 ObsID7 ObsID8 ObsID9 ObsID10 ObsID11 ObsID12 ObsID4 ObsID5 ObsID6 ObsID1 ObsID2 ObsID3

P8 ObsID10 ObsID11 ObsID12 ObsID1 ObsID2 ObsID3 ObsID7 ObsID8 ObsID9 ObsID4 ObsID5 ObsID6
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B.1. SUPPLEMENTARY FIGURES

B.1.1. SHAPE OF THE DRF AND SATISFICING

DRF boundary
from chapter 2

DRF boundary
used in chapter 3

DRF region assumed
to be due to surprise

DRF region assumed
 to be only due to preview

Lane
boundary

Lateral position where
risk threshold is broken

‘bouncy’ behaviour of
satis�cing controllers

Road heading

Figure B.1: Shape of the DRF and satisficing: (a) In chapter 2, it is reported that the hatched region was
only ‘active’ when the obstacle appeared instantaneously, or approached from the rear of the vehicle.
In this paper, the DRF model focuses on previewed objects and hence the hatched region is neglected.
(b) ’Bouncing’ behaviour exhibited by satisficing controllers since there is no correction until the risk
threshold is crossed. The dashed line represents the lateral position at which the risk threshold is bro-
ken. That’s when a correction (steering) is made.
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B.1.2. METRICS USED TO COMPARE DRIVER MODEL TO LITERATURE
The following figures (Fig. B.2 - B.8) refer to the figures in chapter 3 (Fig. 3.9 - 3.15)
and provide details regarding the calculations of the metrics.

The two figures below explain the calculations for the metrics used while com-
paring the curve radius and lane width scenarios with results from literature. For
more details regarding the TTR metric shown in Fig. B.2, please refer to Xu et al.
[26].
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T
T

R
 [%

]

R

DRF model trajectory
vector: lat_dev

50
m

50m

R
(a) DRF model

Curve radius [m]

Sp
ee

d
cu

rv
e 

ce
n

tr
e [m

 s
-1

]  

R

DRF model 
trajectory

50
m

50m

R
(c) DRF model

Distance along lane centre [m]

Sp
ee

d
 [m

 s-1
] Speed curve centre

• lat_dev is a data vector that contains 
lateral deviation of the DRF model 
from the lane centre.
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Figure B.2: Road scenario - curve radius: This figure explains the calculations of the metrics used in
the subfigures (a) and (c) in Fig. 3.9 of the main text.
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• lat_dev is a data vector that contains 
lateral deviation of the DRF model 
from the lane centre.

• w = lane width
• �e curve radius = 200 m
• SDLP = std(lat_dev)
• SDLP=Standard Deviation of Lateral 

Position

Figure B.3: Road scenario - lane width: This figure explains the calculations of the metrics used in the
subfigures (a) and (c) in Fig. 3.10 of the main text.
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The two figures below explain the calculations for the metrics used while com-
paring the road scenarios: on-road obstacles and roadside furniture, with results
from literature. In Fig. B.5, we expect the trajectory in the symmetric case to be
along the lane centre. However, the trajectory shown in the image is merely for
illustration purposes.
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• lat_dev is a data vector that contains 
lateral deviation of the DRF model 
from the lane centre.  

• Since the obstacles were placed to 
the left, we calculate the minimum 
of lateral deviation to represent the 
maximum deviation from obstacle.  

• Min lat deviation = min (lat_dev)

• speed is a data vector that contains 
the speed of the DRF model.

• �e ‘absent’ condition is used to 
denote the position when obstacle is 
not present. �e 1 element of the 
speed vector.

• Min speed = min (speed)

Figure B.4: Road scenario - on-road obstacles: This figure explains the calculations of the metrics used
in the subfigures (b) and (e) in Fig. 3.11 of the main text.
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Figure B.5: Road scenario - roadside furniture: This figure explains the calculations of the metrics used
in the subfigures (b) and (e) in Fig. 3.12 of the main text.



B

104 B. APPENDIX FOR CHAPTER 3

The two figures below explain the calculations for the metrics used while com-
paring the traffic scenarios: car following and overtaking, with results from liter-
ature. In Fig. B.7, the start (d1) and end (d2) of an overtaking manoeuvre is calcu-
lated using lateral velocities since we staged the overtaking manoeuvre of a straight
road. Hence we assume that any lateral velocity > 0.2 m s−2 is due to the overtaking
manoeuvre.
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• thw is a data vector that contains 
time headway of the DRF model to 
the lead car.

• thw = dhw / ego car speed
• ego car speed = DRF model speed
• dhw = distance headway (distance 

between ego car and lead car)
• Time Headway

settle
= time headway at 

steady state car following. It is the 
last element in the thw vector.

• Acceleration
brake

= acceleration at 
braking (initiation) point 

• speed = speed vector 
• If braking point occurs at kth time step 

and simulation time step is dt, then
• Acceleration

brake
= 

   [speed(k+1) - speed(k)] / dt

Figure B.6: Traffic scenario - car following: This figure explains the calculations of the metrics used in
the subfigures (b) and (e) in Fig. 3.13 of the main text.
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and d
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are the start and end of the 

overtaking manoeuvre.
• �ese points are determined when 

lateral velocity > 0.2m/s 
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during the overtaking manoeuvre
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• Time to collision (TTC) at lane change 
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and overtaken car
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= speed of ego car at d
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Figure B.7: Traffic scenario - overtaking: This figure explains the calculations of the metrics used in the
subfigures (b) and (e) in Fig. 3.14 of the main text.
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• lat_dev is a data vector that contains 
lateral deviation of the DRF model 
from the lane centre.

• Since the oncoming car is on the left, 
we calculate the minimum of lateral 
deviation to represent the maximum 
deviation from oncoming car.

• Min lat deviation = min (lat_dev)

• speed is a data vector that contains the 
speed of the DRF model.

• �e ‘absent’ condition is used to 
denote the position when obstacle is 
not present. �e 1st element of the 
speed vector.

• Min speed = min (speed)

Figure B.8: Traffic scenario - oncoming traffic: This figure explains the calculations of the metrics used
in the subfigures (b) and (e) in Fig. 3.15 of the main text.

B.2. SUPPLEMENTARY TABLES

In chapter 3, studies were selected based on the similarity of the conditions they
tested, to those simulated for the DRF model. This meant that in some scenarios
studies performed in a simulator were chosen ahead of an on-road study. The Ta-
bles B.1-B.8 provide a brief description of the experimental setup of the selected
studies, and in scenarios where simulator based studies were used, at least one
on-road study which supports the findings of the simulator based study (except
for roadside furniture scenario, where a similar quantified on-road study was not
found).

Table B.1: Curve radius - metrics 1 and 2

The effect of curve radii on curve cutting behaviour (metric 1) and speed (metric 2) was validated using
the on-road study of Xu et al., 2018 [26] and Taragin & Leisch, 1954 [90], respectively.
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(N=4) Field driving experiments were performed on four
two-lane mountain highways in China, and vehicle trajec-
tories under natural driving conditions were acquired. The
road lengths were 26.8 km, 45.2 km, 74.8 km, 121.9 km,
and participants had to drive them on them twice. Cars
used: Mitsubishi ASX, Buick Firstland GL8 Business, Mer-
cedes Benz Vito Business.

Curve cutting re-
duced as the curve
radius increased (Fig.
3.9 [b]).
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(N=8400) The study was conducted on two-lane highways
mainly in Maryland, New York, South Carolina, Illinois, and
Minnesota. 8400 free moving passenger cars were observed
on 35 different curves.

Speed increases with
curve radius, and
reaches an asymp-
tote approaching
straight road speed
for a large radius (Fig.
3.9 [d]).
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Table B.2: Lane width - metric 1

The effect of lane width on standard deviation of lateral position (SDLP) was validated using the driving
simulator based study of Godley et al., 2004 [94]. The simulator has a motion platform and has been
validated for use in research. We also cite the on-road study of De Waard et al., 1995 [97] who found
similar results that validate the DRF model’s predictions. However, we used the simulator based study
of Godley et al., 2004 [94] since the conditions they used (lane widths) were similar to those simulated
for the DRF model.
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(N=28) Experiment was conducted in the Monash Univer-
sity Accident Research Centre driving simulator, in Australia.
This simulator has been validated for its use in examining
road-based speeding countermeasures [166]. The driving
simulator consisted of a Ford Falcon cabin. The simulator
also contained a three-dimensional sound system reproduc-
ing tyre and engine noises, and a vertical motion platform
providing road feel for accelerating, braking,cornering,and
raised road objects.

Standard Deviation
of Lateral Position
(SDLP) which de-
notes the swerving
behaviour of a car is
reported to increase
with lane width (Fig.
3.10 [b]).
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ad (N=28) The experiment was conducted on 12 km of wood-
land road and 10 km of moorland roads in the Netherlands.
The test vehicle was a modified Volvo 245 station wagon.

“More important, the
SD of the lateral po-
sition, which reflects
swerving behaviour,
is lower on the exper-
imental (narrow) sec-
tions” (Section 3.1 of
De Waard et el. [97])

Table B.3: Lane width - metric 2

The effect of lane width on speed (metric 2) was validated using the driving simulator based study of
Liu et al., 2016 [98]. The simulator has a motion platform and has been validated for use in research.
We also cite the on-road study of Fitzpatrick et al., 2000 [100] who found similar results that validate the
DRF model’s predictions. However, we used the simulator based study of Liu et al., 2016 [98] since the
conditions they used (lane widths) were similar to those simulated for the DRF model.
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r (N=24) The driving simulator of Tongji University - China is

a motion-base simulator. A real car is placed in the middle
of the experimental cabin as the test vehicle. This simulator
has been validated in published literature([167][168]).

Speed increased with
lane width (Fig. 3.10
[d]).
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(N=100) In this on-road study, the speed data was collected
between April 1998 and June 1999 during daylight, off-peak
periods, and under dry weather conditions. Speed profiles
for approximately 100 free-flowing vehicles were taken at
each site (several sites in Texas, USA). Vehicle type was iden-
tified by observation. The speed profiles were collected us-
ing laser guns positioned on the side of the roadway. Tech-
niques used to hide the technicians from passing motorists
include the truck blind and locating behind a tree or bushes
were used.

Speed increased
with lane width (Fig.
8-6 of Fitzpatrick et
al.[100]).
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Table B.4: On-road obstacles - metric 1 and 2

The effect of on-road obstacles (parked cars on the road) was validated using the simulator study of
Edquist et al., 2012 [104]. Results similar to that predicted by the DRF model and Edquist et al. [104]
in terms of speed adaptation are also found in the on-road study of Daisa Peers, 1997 [101]. We chose
the simulator study of Edquist et al. [104] over Daisa Peers [101] because it examined both speed and
lateral position effect of parked cars.
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(N=29) The experiment used an EF-X by Eca-Faros driv-
ing simulator with modified software for research purposes.
Twenty-nine drivers (15 male) with an average number of
years participants had been driving was 9.8 (SD = 8.0); all
participants were regular drivers with at least one year of li-
censed driving experience.

The mean lateral po-
sition of the vehicles
shifted away from the
parked cars (Fig. 3.11
[c]). The mean speed
reduced in the pres-
ence of parked cars
(Fig. 3.11 [f]).
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(N=6900) Two sections of the same road about a mile apart
in the same town (Rte. 77 in Guilford). The pavement widths
are different, as one location has on-street parking but the
other does not. However, the pavement width at the site
without parking is about the same as the width of the travel
lanes at the site with parking.

Speed decreased with
increase in parking
density (Fig. 6-3 of
Ivan et al., [102]).

Table B.5: Roadside furniture - metric 1 and 2

The effect of roadside furniture was validated using the simulator study of Dunning et al., 2015 [106].
Results similar to that predicted by the DRF model and Dunning et al. [106], in terms of speed and
lateral deviation adaptation are also found in another simulator study of Calvi, 2015 [105]. We chose
the simulator study of Dunning et al. [106] over Calvi [105] because it examined both symmetric and
asymmetric roadside furniture. Calvi [105] only examined asymmetric roadside furniture (Trees on one
side and oncoming lane on the other).
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(N=12) In the experiment, subjects maintained one-
dimensional “steering” control of a vehicle in a driv-
ing simulation. The goal of the game was to complete
each trial as quickly as possible, where the speed of
the car was determined solely by position on a two-
lane road.

Lateral position of the par-
ticipants shifted towards the
less dangerous grass in the
asymmetric case and re-
mained in the centre in the
symmetric case (Fig. 3.12
[c]). Participants, on av-
erage, drove slower in the
symmetric case (Fig. 3.12
[f]).
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(N=44) The experiments were performed with the
fixed-base CRISS driving simulator at Roma Tre Uni-
versity. The apparatus consisted of a real car with a
force-feedback steering wheel, brake pedal, and ac-
celerator. The system was widely validated in previ-
ous studies [169][170] and used for evaluating driving
performance in terms of speed, acceleration, and tra-
jectory under various driving conditions and road en-
vironments.

“When trees were closer,
drivers saw the trees as
a risk, slowed down, and
moved further away from
them.” (Abstract and Table 2
of Calvi [105]).
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As mentioned in chapter 3, only in the roadside furniture (Table B.5, above)
scenario on-road quantitative studies which could be readily compared to the DRF
model simulation scenario were not found. In all other scenarios at least one on-
road study was reported. It is recommended that this scenario be tested in an on-
road test, but the trends in speed and lateral position behaviour from these simu-
lator studies can be assumed to be similar to on-road behaviour.

Table B.6: Car following - metric 1 and 2

The effect of car following on Time Headway (metric 1) was validated using the on-road study of He et
al., 2002 [109]. The effect on acceleration at braking point (metric 2) was validated using the on-road
study of Van der Horst, 2004 [111].
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(N=184,546) Data in both constrained and free flow traf-
ficwere collected. By using a set of traffic flow measuring
apparatus based on switch sensors, more than 196,000
field data, with flow varying from 50 to 1900 veh/h/lane,
had been collected at JingShi, Jinghua and Guang Fuo
highway, located at Beijing and Guangdong province,
China. After data validation process, 184,546 pairs data
of vehicle pairs can be used in the study, only 5.87% of
data was eliminated.

The preferred time head-
way under steady-state
car following (THWpref)
is almost constant and
independent of the lead
car speed (Fig. 3.13 [c]).
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(N=12) The experiment was conducted on a former
runway 540 m long and 60 m wide in Vancouver,
Canada. Participants drove an instrumented car which
approached a Styrofoam model of a car. The instru-
mented car used in the experiment was a front wheel
drive Dodge Mini Ram.

Braking intensity (de-
celeration at the onset
of braking) increased
as the approach-speed
increased (Fig. 3.13 [f]).

Table B.7: Overtaking - metric 1 and 2

The effect of overtaking on overtake distance (metric 1) was validated using the on-road study of Craw-
ford, 1963 [112]. The effect on time to collision (TTC) at lane change (metric 2) was validated using the
on-road study of Chen et al., 2015 [113].
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(N=8) The experiment was carried out on a straight two-
lane road 22 ft wide laid out along the edge of an airfield
runway 2000 yd long. Participants drove a 2.25 litre (en-
gine displacement) saloon car.

Overtake distance in-
creased with the speed
of the overtaken car (Fig.
3.14 [c]).
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(N=45) The 100-Car study was a landmark large-scale
naturalistic driving study (NDS) conducted by the Vir-
ginia Tech Transportation Institute-USA from 2001 to
2004. A total of 46,250 trips from 45 drivers were used
in this study. A total of 326,238 lane changes were found
in the 46,250 trips. The distribution of left side and right
side lane changes was essentially even.

TTC at (start of) lane
change increased with
the speed of the over-
taken car (Fig. 3.14 [f]).
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Table B.8: Oncoming traffic - metric 1 and 2

The effect of oncoming traffic on lateral deviation away from the oncoming traffic (metric 1) and speed
(metric 2) was validated using the on-road study of Räsänen., 2005 [117].
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(N=6599) This study was conducted along a curve on a
two-lane road section of main road 4 in Finland where
the barrier line was worn out due to encroachment by
cars. The length of the left turning curve was 467 m, ra-
dius of curvature 990 m and speed limit 100 km h−1.

Lateral position of ego car
moves away from the on-
coming traffic (Fig. 3.15
[c]). No significant dif-
ference in the speed be-
tween the oncoming traf-
fic ‘absent’ and ‘present’
conditions (Fig. 3.15 [f]).

As it can been, 6 out of the 7 scenarios have results from on-road/test-track
based studies from published literature that support the predictions of the DRF
model. Also, the simulator based studies used for validation are mostly performed
in previously validated high-fidelity simulators. Hence we think that the results
found in these studies are valid indications of on-road human driving behaviour.

B.3. SUPPLEMENTARY NOTES
These notes explain which figures/ data, from the corresponding literature, were
used and the unit conversions (for example, km h−1 to m s−1) that we performed.

B.3.1. ROAD SCENARIOS
• Note 1 - Main text Fig. 3.9 [b]. Xu et al. (2018) [26]: This figure is adopted

from Fig. 10 on page 13.

• Note 2 - Main text Fig. 3.9 [d]. Taragin & Leisch (1954) [90]: This figure is
created from the data of Taragin & Leisch (1954) [90] and adopted from Fig.
9 of McLean (1974) [93]. That figure contains data points from Taragin &
Leisch (1954) [90] and the Department of Main Roads-NSW, (1969) [171]. We
only plot the data points from Taragin & Leisch (1954) [90].

• Note 3 - Main text Fig. 3.10 [b]. Godley et al. (2004) [94]: This figure is
adopted from Fig. 5. We arranged the lane widths in the ascending order,
while in the original figure it is in the descending order.

• Note 4 - Main text Fig. 3.9 [d]. Liu et al. (2016) [98]: This figure shows the
data from Table. 2 [98]. We only show speed for 0.5 m shoulder width right
lane.

• Note 5 - Main text Fig. 3.11 [c]. Edquist et al. (2012) [104]: This figure is
adopted from Fig. 4 of the corresponding paper [104]. We reversed the direc-
tion of the Y axis since in the original plot negative values of lateral deviation
from lane centre indicate to the left of the lane centre. In the DRF model’s
convention (which is maintained consistent throughout the paper). We plot
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only the ‘No lead vehicle’ case, since that’s the most relevant to our discus-
sion.

• Note 6 - Main text Fig. 3.11 [f]. Edquist et al. (2012) [104]: This figure is
adopted from Fig. 2 of the corresponding paper. We only plot the ‘Mean
speed’ condition for empty and full parking, since that’s the most relevant
for our discussion.

• Note 7 - Main text Fig. 3.12 [c]. Dunning et al. (2015) [106]: This figure was
adopted from Fig. 3 of the corresponding paper [106]. Out of the 13 lateral
position distribution figures we only show 2 plots. The plots for ‘Standard
Deviation of Motor Noise = 8’ for ‘Symmetric-High cost’ and ‘Asymmetric
case’.

• Note 8 - Main text Fig. 3.12 [f]. Dunning et al. (2015) [106]: This figure was
adopted from Fig. 5 of the corresponding paper [106]. Out of the 13 box plots
we only show 2 plots. The plots for ‘Standard Deviation of Simulated Motor
Noise = 8’ for ‘Symmetric-High cost’ and ‘Asymmetric case’.

TRAFFIC SCENARIOS

• Note 9 - Main text Fig. 3.13 [c]. He et al. (2002) [109]: This figure is adopted
from Fig. 3 [109]. The X axis is plotted in m s−1 rather than km h−1.

• Note 10 - Main text Fig. 3.13 [f]. Van der Horst (2004) [111]: This figure is
adopted from Fig. 3 (the bottom subplot). Only plot the ‘no occlusion’ case
is plotted, since the DRF model did not simulate any occluded conditions.

• Note 11 - Main text Fig. 3.14 [c]. Crawford (2007) [112]: This figure is adopted
from Fig. 5 [112]. Only the ‘Average overtaking distance’ condition is plotted,
while the ‘Average of each driver’s best performance’ condition is omitted.

• Note 12 - Main text Fig. 3.14 [f]. Chen et al. (2015) [113]: This figure is
adopted Fig. 3 [113]. All the points and the 50 percentile line are plotted.
The 10 percentile line is not plotted.

• Note 13 - Main text Fig. 3.15 [c]. Räsänen (2005) [117]: This figure is plotted
from Table 3 of the corresponding paper. The data of only the ‘Before’ condi-
tion (which refers to the road before lane dividing measures were taken) for
passenger cars was plotted. The DRF model also did not simulate a lane di-
vider. To convert the original data (say x) provided in the table into the same
convention as used for DRF model (say y), the following steps were taken:

1. Convert cm to m : x1 = x/100

2. Räsänen (2005) [117] measured the lateral distance from lane edge to
left tyre. Hence an average vehicle width of 1.8 m : x2 = x1 + 1.8/2, was
assumed.

3. To state the distance from lane centre the (lane width)/2 was subtracted
: x3 = x2 - 3.4/2 (Lane width they used was 3.4 m)
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4. To make left of lane centre means positive lateral deviation values mul-
tiplied by -1 : x4 = -x3

5. Data plotted in Results figure of DRF model : y = x4

• Note 14 - Main text Fig. 3.15 [f]. Räsänen (2005) [117]: This figure is plotted
from Table 3 of the corresponding paper [117]. The data of only the ‘Be-
fore’ condition (which refers to the road before lane dividing measures were
taken) for passenger cars is plotted. The DRF model also did not simulate a
lane divider. km h−1 was converted to m s−1.

B.4. DATA AVAILABILITY AND SUPPLEMENTARY MEDIA

B.4.1. DATA AVAILABILITY:
The driving simulator experiment data, the simulation data that support the find-
ings of this study, and the source data for Figs. 3.9 - 3.15 are available in the 4TU.Centre
for Research Data with the identifier: https://doi.org/10.4121/uuid:8132bccd-e900-
4ba0-942e-c3114502bda2.

B.4.2. CODE AVAILABILITY
The DRF Model MATLAB code that supports the findings of this study and a MAT-
LAB GUI that helps explain the DRF are available in the 4TU.Centre for Research
Data with the identifiers:
DRF model: https://doi.org/10.4121/uuid:ec0f2742-e665-4af9-bf37-8fe1761a8a62
DRF GUI: https://doi.org/10.4121/uuid:1230ca50-4120-47b2-b6de-35d41c0a4d8a.

B.4.3. SUPPLEMENTARY MEDIA:
Supplementary movie 1: This video shows the track and scenarios implemented
in the fixed base driving simulator. https://static-content.springer.com/esm/art%
3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM4_ESM.mp4.
Supplementary movie 2: This videos shows the simulation of the DRF model with
‘normal’ parameter settings. https://static-content.springer.com/esm/art%3A10.1
038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM5_ESM.mp4.
Supplementary movie 3: This videos shows the simulation of the DRF model with
‘sport’ parameter settings. https://static-content.springer.com/esm/art%3A10.103
8%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM6_ESM.mp4.

https://doi.org/10.4121/uuid:8132bccd-e900-4ba0-942e-c3114502bda2
https://doi.org/10.4121/uuid:8132bccd-e900-4ba0-942e-c3114502bda2
https://doi.org/10.4121/uuid:ec0f2742-e665-4af9-bf37-8fe1761a8a62
https://doi.org/10.4121/uuid:1230ca50-4120-47b2-b6de-35d41c0a4d8a
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM6_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18353-4/MediaObjects/41467_2020_18353_MOESM6_ESM.mp4




C
APPENDIX FOR CHAPTER 4

C.1. DRIVER COMMENTS DURING AUTOMATED DRIVING
Below is a list of all the comments made by the eight participants during the au-
tomated driving condition. The comments were mostly made in Japanese which
were than translated into English by an interpreter. This translation was done
offline by watching the videos recorded during each lap. Only the red and blue
coloured text are included in formulating Table 4.3 form chapter 4. We have added
some grey text to these comments to clarify what the participant was trying to say.
These grey parts of the text are not included in formulating Table 4.3.

C.1.1. RISKY COMMENTS
1. "When the car came close to the lane boundary (left curb), I feel a bit of risk,

while approaching the curve. My driving line would be the same, but I felt
different since the car is automated. Maybe it is because I am not used to it."

2. "I felt risk, so I over ride the steering. It comes very intensely and jumps
suddenly. I feel the car drive into the edge stone very sharply."

3. "The car drove lot more left compared to the last trial."

4. "The car drove lot more left compared to the last trial."

5. "The car drove lot more left compared to the last trial."

6. "At the gas station, car went wide. It overshoot. And the come back from
overshoot was not human-like."

7. "This right turn I would have made this very slowly (creep). It felt scary"

8. "It is slow. This is better than previous trials. But it will be better to be slow
earlier"

113
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9. "Distance to parked car was fine. But the steering just turned left and then I
immediately felt the risk and felt to take over!"

10. "I felt risk and prepared to take over.It was too close to curb stone. I guess I
do similar stuff in manual driving, but in autonomous driving the car is not
under my control so I feel a bit risk. So if something happens, I immediately
have to take over."

11. "This is not mine. The way it slows here, its not mine."

12. "The way to stop near the intersection is weird."

13. "At this point sometimes I feel the risk. It drives really slow, but I still could
feel the risk"

14. "I am overriding. I feel it is aggressive. It accelerated when it turned. At this
point too (feel risk and it accelerated when it turned)!"

15. "Too close to the left side."

16. "Ooooooohhhooohhooo! (Car hit the curb). I felt that it will not hit, but...."

17. "In the first curve it goes close to the side stone. I feel risk"

18. "When it goes close to curb I feel risk behind the building."

19. "Everyone (all trials) drove close to the curb stone in the corner"

20. "This time it drives very close to the curb stone"

21. "Parked car: The distance to parked car was close. The risk level was um-
mmm.. ok, but I felt it was close."

22. "It is close to the curb."

23. "Close to the curb here."

24. "It is too close (to the curb). I override a little bit."

25. "I feel little bit close to the car."

26. "Woh woh woh. This is too close! Its like tracing the curb!"

27. "Little bit close to the curb."

28. "Oh!!"

29. "Parked Car: This is too close."

30. "Very close to the curb."

31. "Parked car: It behaves as if there is no car parked there. It just goes straight."

32. "It is little bit close. But less close compared to previous trial."
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33. "Parked car: It is close to the car. It drove as if there was nothing (no parked
car)."

34. "Little bit close."

35. "Parked Car: Its little bit close."

36. "This one is too close."

37. "This one is close close close!"

38. "Wooooh! Too close!"

39. "So close!"

40. "Parked Car: This is close to the car."

41. "A little bit close. As usual (almost all the trials were close)."

42. "Parked Car: This is too close."

43. "Oh no! This is wrong! Here it is wrong!"

44. "Parked Car: Ah! this is not my trajectory. I am not going to do that close."

45. "It was a little bit left (close to the curb)."

46. "Oooh! Here I feel risk. Very close (to curb)."

47. "Here also too much left."

48. "Oh! It went too much left (Post trial comment: (right) (took the curve wide)."

49. "Parked Car: Oh! A little bit close."

50. "Parked Car: It is close."

51. "Parked Car: (Distance is) not so good."

52. "Parked Car: Hmm... too close"

53. "Oh no!"

54. "Too much left and too close."

55. "Too much left and too close"

56. "Oh.(My comment: Hands touching the steering wheel)"

57. "Too close and too fast."

58. "Parked Car: Too close."

59. "No deceleration."

60. "Parked Car: bad"
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61. "In the first corner speed is fast. the car drove too left."

62. "The distance form the car is fine. But it comes back to the lane too early."

63. "The car went too much left."

64. "It was not scary but it was a bit too close to the left side."

65. "Parked car: The car drove too close to parked car."

66. "Oooooo.. That was scary! Very risky"

67. "It was left. If there was an oncoming car I might take that trajectory."

68. "Parked Car: Since at the steep corner, the car went too much outside, at
the parking car, the distance is ok,but the angle at which it approaches the
Parking car, it is not ok."

69. "Oooooo! It went straight (in) to the curb.In the first section the speed is little
bit faster. On the first left corner, the car accelerated. He never did this. So
he is surprised."

70. "I override. Since it hit the curb. Since it already hit the curb once, I overrode
more earlier."

71. "I override. Since it already hit the curb once, I overrode more earlier."

72. "Too much left. Thinks a lot about oncoming car."

73. "Ooooo...."

74. "Ooo.. (Override). Dangerous point. It is little bit fast here."

75. "Parked car: Distance from Parking car, close."

76. "Decelration is not enough."

77. "It did not stop at intersection!"

78. "It was going very close to the curb, but I may do it as well."

79. "Oooooh!! (Car hit the curb)"

80. "Because it hit the curb (in Sector2), so now I am a bit scared"

81. "Ohohoh.. (My comment: Went too close to left boundary)"

82. "I would go closer to edge. (encroaching oncoming lane)"

83. "It is too close to the edge."

84. "It is too close to the edge."

85. "It is too close to the edge."
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86. "It is making a very big circle."

87. "Parked Car: The car was pointing to wards the parked car, hence he cor-
rected."

88. "Hmm.."

89. "(My comment: Says something, not clearly audible)"

90. "I slowed it down and steered. The car tends to rush. Car steered too early."

91. "Parked Car: This car tends to approach the parked car.The distance was still
good, but after the sharp curve, the car went too wide, and to correct it, it
came inside and that i did not like."

92. "The car follows the curb too much. It is too fast."

93. "Speed was slow, but car started steering too early. So it was a mismatch."

94. "Parked Car: Timing of steering was too late.I would steer to the right earlier."

95. "Car started steering too early and it was too close to the edge"

96. "Parked Car: Distance is close."

97. "Hmm..but ok.. maybe little bit near."

98. "(No comments: I accidentally did not record the video!)"

99. "Close"

100. "Parked Car: It is little near."

101. "Parked Car: It is little bit near."

102. "Waauww! Wow! wow! I override!."

103. "Close!"

104. "Override again. It is too risky!"

105. "Woh woh woh (My comment: It took a big circle.)"

106. "Parked Car: It is near."

107. "No brake!"

108. "Very close."

109. "It is offset to the left. It is a bit faster than I drive."

110. "It was close to the left curb."

111. "It was little bit close."
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112. "Should have slowed down earlier."

113. "Close to the left curb."

114. "That corner was close to the curb."

115. "This corner also close to the curb."

116. "Here also close to the curb."

117. "This goes too much to (road) centreline (wide turn)."

118. "Intersection: This corner is not well modulated.There is no deceleration
control!"

119. "It goes to the left."

120. "In this corner, it is close to the curb."

121. "It is close to left curb and speed is high. This is very different from my drive.
If I drive this close, I drive slower."

122. "Here it is close."

123. "Too much left."

124. "Different trajectory from my drive."

125. "Here also steering return timing is early. So it always goes to the right."

126. "Ooooo! (Car hits the left curb)"

127. "Parked Car: Close. He did not think it was avoiding the parked car. It just
goes. It is like a robot."

128. "Here car was aggressive."

129. "Parked Car: This trajectory he felt like the car was not avoiding the parked
car. It just went straight. Because there is no avoiding reaction near the park-
ing car, he felt it is like a robot."

130. "Too fast and too aggressive."

131. "Scary!!"

132. "Parked Car: Scary!! (Distance too close)"

133. "Too close to left curb."

134. "Too close to the curb."

135. "Woh woh woh! (Too close to curb)"

136. "Ahh ahhh ahhh ooh! This is aggressive (Too close to curb)"
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137. "AAAhhh aaahhh! (Hit the curb)"

138. "Why is this steering so harshly? Interviewer then explains that, since you
corrected it went away from its reference trajectory and now it wants to come
back to its reference trajectory."

139. "Ooo Oh! (Hit the curb)"

140. "Parked Car: Too close to the car."

141. "A bit close"

142. "Oh! A little bit close"

143. "Parked Car: This is scary."

144. "Intersection: It goes left before the right turn.It is robot like. Humans will
not do this."

145. "Parked car: It is near."

146. "It was close to the left curb."

147. "Parked Car: That was close."

148. "Parked Car: Distance is close."

C.1.2. NON-RISKY COMMENTS
1. "That curve was ok."

2. "Probably the car drove close to the left side. But I could predict that the car
would turn right. That is why I did not feel a lot of risk"

3. "Probably the car drove close to the left side. But I could predict that the car
would turn right. That is why I did not feel a lot of risk"

4. "The distance to parked car was ok."

5. "The distance to parked car was more than last time. Larger space is safer.
The risk level was still acceptable but it is better to have some margin."

6. "I did not feel any high risk. So it is good"

7. "I did not feel any high risk. So it is good"

8. "In the widing section it is close to my trajectory."

9. "In the widing section it is close to my trajectory."

10. "It is not my trajectory, but it is fine."

11. "The car also tried to avoid the parked car.That part I feel safe."

12. "Parked car: It is completely fine.It is close to my sense."
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13. "Parked car: It had enough clearance.And the way it passed by was also very
smooth."

14. "Ooooooh. It is good"

15. "Parked car: It is completely fine. Maybe because I (have) drive a Leaf, I know
(its dimensions) that this kind of clearance is completely fine."

16. "That behaviour was very much like a human. Because the lateral move-
ment. This person has that. I do not say it is bad, but there is lateral move-
ment."

17. "I like that it keeps distance from the curb. It feels more safe."

18. "Here also it keeps distance. I like this one. It is same like my drive."

19. "Parked Car: I like the distance from the car."

20. "It is a little bit offset to the right (towards the road centre)."

21. "This section is ok. A lot of distance from the curb."

22. "Car speed is ok"

23. "I like this trajectory here. Nice distance from the curb."

24. "This is good. No problem. (My comment: But he overrides!)"

25. "Keeps distance from the curb. Nice!"

26. "I like this distance from the curb"

27. "Hmm... nice! Oh I like this!"

28. "Nice!"

29. "Nice trajectory. But car speed is very slow."

30. "This is nice."

31. "This is nice. Very reliable drive."

32. "Car speed is slow. Distance from the curb is nice. Reliable drive."

33. "This section is nice. A little bit far from the curb. Needs to be a bit closer."

34. "This is nice."

35. "Hmmm.. nice! This is much safer. This is like robot! Overall this is robot!"

36. "Oh! This supposed to be inside"

37. "Parked Car: Oh! Yeah this is robot. You are robot now! Distance to parked
car was completely fine."
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38. "Very comfortable speed. I like this one."

39. "Hmmm, nice... This is like human"

40. "Hmm... ok."

41. "Parked Car: I like it."

42. "This distance is ok. It is comfortable for me."

43. "Nice distance."

44. "Speed is good. Distance from curb is also good."

45. "This drives very slow."

46. "Nice and safe."

47. "This is nice."

48. "It keeps the distance. This is like a robot! It is safer."

49. "Parked Car: This is robot. It keeps safe distance form the car."

50. "Oh I like this. Speed and trajectory."

51. "So far I like this. Speed and trajectory."

52. "This is my drive isn’t it?."

53. "Parked Car: It is ok."

54. "It is ok."

55. "It is ok."

56. "Very peaceful."

57. "Parked Car: Distance is ok."

58. "Thats good."

59. "Thats good."

60. "Parked Car: Distance is very good."

61. "Thats ok."

62. "Thats very good."

63. "It is a little bit fast behind xx building."

64. "Parked Car: That is good."

65. "It slows down more. I get time to check around."
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66. "Very slow. Trajectory is good."

67. "Hmm.. That was good. Speed is just a little bit fast"

68. "Not so much risk."

69. "Very slow!"

70. "No risk. But, I do not like (went wide)."

71. "That is good. Speed is also very nice."

72. "Parked Car: Its ok."

73. "Parked Car: Distance is very good."

74. "This deceleration timing is very good."

75. "It is ok."

76. "Hmm... here it is not good (too much right)."

77. "(No comment)"

78. "This behaviour is preferred."

79. "(No Comment)"

80. "Similar to my driving"

81. "It is slow. I would drive bit more to the left"

82. "I would drive more left. I want to follow the curb, but car goes outside (away
from curb)."

83. "Parked Car: Its fine"

84. "I would steer more towards the left."

85. "The car is bit to the right. Similar to previous one."

86. "Here the car is going more right."

87. "Parked car: Distance is totally fine."

88. "It is good. It is more similar to mine (as compared to Lap 1 and 2)"

89. "It was smooth"

90. "Parked car: Distance is ok."

91. "The car is too far from my trajectory"

92. "Parked Car: Distance is ok."

93. "The car is too far from the curb (going towards road centre)"
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94. "Parked Car: Distance to the parked car is a bit too wide."

95. "This part is similar to my driving."

96. "It is similar to me."

97. "Parked Car: Car did not approach the parked car.It was straight."

98. "The car should go a bit to left."

99. "Here its different from me. Car starts steering too late.Here it assumes as if
the road is one way. It steers too widely,and goes into the oncoming lane"

100. "Here, timing of steering is good. But I would steer more."

101. "Here, timing of steering is good. But I would steer more.The car fully uses
the width of the road."

102. "I would steer more. It did not follow the curve. (It went to road centre)."

103. "(My comment: Take over. It went to road centre,he wanted it to be more
towards the left, nearer to the curb.)"

104. "This part was similar to what I do. It is not exactly like me, but I may do like
this. (Steering correction)"

105. "This part is similar to me. (Steering correction)"

106. "Parked Car: Distance is ok."

107. "Braking before intersection was good."

108. "It is ok."

109. "It is ok."

110. "It is ok."

111. "Parked Car: Yes it (distance) is ok."

112. "Parked Car: Distance is ok."

113. "Parked Car: Distance is ok."

114. "Nice nice."

115. "Parked Car: Distance is nice."

116. "It went a little bit over to the right."

117. "Little bit too much steer."

118. "It is little over the centreline. It is not close to the curb but a bit more offset
to the right. compared to his drive"
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119. "It is little over the centreline. It is not close to the curb but a bit more offset
to the right. compared to his drive"

120. "Parked car: Distance is good."

121. "Timing of deceleration is good."

122. "So far this is the best. Distance between car and curb is also good."

123. "That corner was slightly different."

124. "Parked Car: This is my drive."

125. "Beginning of the corner is similar to my drive."

126. "Parked Car: Distance to parked car is little narrow."

127. "Here also goes to the left."

128. "Last corner was bit towards the road centre."

129. "Around this corner is good."

130. "Speed and distance from curb is good."

131. "This corner also good."

132. "Parked Car: Slightly closer, but ok."

133. "It is little bit slower than me."

134. "Beginning of the corner is slightly different from me."

135. "Distance from the curb is ok."

136. "Car went towards the centre. But I might drive like this"

137. "Parked Car: Distance is good."

138. "Angle is towards the left."

139. "Distance from the curb is good."

140. "This goes inside (cuts the curve more)."

141. "Parked Car: Distance is so-so."

142. "This trajectory is similar to his drive."

143. "Parked Car: Distance is narrow. Hmm..but acceptable."

144. "It felt a bit odd. Deceleration timing little bit late"

145. "Trajectory around this corner is good."

146. "This curved section is very good."
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147. "Little bit different from my drive."

148. "Goes to the right (road centre)."

149. "Parked Car: Little bit close. But it is acceptable."

150. "Distance from curb is good."

151. "Here it is good."

152. "Speed and distance from curb is good, so far."

153. "Little bit right side (towards road centre)."

154. "Parked Car: Distance is wider."

155. "Deceleration is quite good."

156. "Beginning of the corner is completely different from his drive."

157. "Distance from curb and speed is good."

158. "Distance from curb is more."

159. "It is keeping more distance from the curb on purpose."

160. "It went a little centre (road centre)"

161. "Parked Car: Distance is normal/average."

162. "Steering return timing is early."

163. "Parked Car: It was avoiding the car."

164. "Parked Car: This car avoided the parking car. So this is the best trajectory so
far."

165. "It went to the left before the turn. I liked it."

166. "I like this speed."

167. "That corner was good."

C.2. SUPPLEMENTARY FIGURE
The predictions of the DRF model were compared to the steering and speed adap-
tations made by the drivers during manual driving in chapter 4. This figure below
(Fig. C.1) is an expansion of Fig. 4.3 from the main text. Each row corresponds
to a participant (P1 to P8). Left column: Compares the four different types of risk
estimates. Middle column: Comparing steering risk potential (p̂steering) to the ab-
solute steering angle (|δ|). Right column: Comparing speed risk potential (p̂speed)
to the speed reduction (vreduction).
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PROPOSITIONS

1. Drivers perceive and act upon the risk posed by objects beyond the lane
boundaries (this thesis).

2. Humans have a veridical perception of objective risk, i.e., the product of the
probability and consequence of an adverse event (this thesis).

3. Human-like adaptations emerge when the driver’s perceived risk is main-
tained below a threshold (this thesis).

4. Models from which human-like behaviour emerges are the only means to
make predictions about human driving behaviour in previously unseen sce-
narios (this thesis).

5. A term similar to ‘jaywalker’ will be invented to shame the driver of a manu-
ally driven car.

6. Autonomous vehicles would have emerged even in a world with zero road
accidents.

7. No one knows the absolute truth; everything in quantitative science is a cor-
relation.

8. All the wars in the world are due to local optima; every side thinks they are
right.

9. A person can only perceive themselves through their interaction with others.

10. It is a certainty that humans care about uncertainty.

These propositions are considered opposable and defendable, and have been ap-
proved as such, by the promotors prof. dr. ir. D.A. Abbink and dr. ir. J.C.F. de Winter.
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