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We propose an accelerated algorithm with a Frank-Wolfe method as an oracle for solving strongly monotone 
variational inequality problems. While standard solution approaches, such as projected gradient descent (aka 
value iteration), involve projecting onto the desired set at each iteration, a distinctive feature of our proposed 
method is the use of a linear minimization oracle in each iteration. This difference potentially reduces the 
projection cost, a factor that can become significant for certain sets or in high-dimensional problems. We validate 
the performance of the proposed algorithm on the traffic assignment problem, motivated by the fact that the 
projection complexity per iteration increases exponentially with respect to the number of links.

1. Introduction

We consider the variational inequality problem (VIP)

find 𝑥∗ ∈  s.t. ⟨𝑔(𝑥∗), 𝑥− 𝑥∗⟩ ≥ 0, ∀𝑥 ∈  , (1)

where  is a compact convex set. We assume that the operator 𝑔 is 
𝜇-strongly monotone, 𝐿-Lipschitz continuous, and that the solution set 
of (1) is nonempty. The VIP is a general framework that includes sev

eral problems and applications in systems and control theory, machine 
learning, and operations research. For instance, both composite convex 
minimization and convex-concave minimax saddle point problems can 
be reformulated as in (1) [3,26], which can be used in robust controller 
design for systems under uncertainty [4], Nash [34] and Stackelberg 
games [19], supply chain optimization [1], and adversarial learning 
problems [14].

Fixed-point problems represent another important class in several 
domains, such as game theory and machine learning. Although it is 
straightforward to reformulate the VIP (1) as a fixed-point problem, the 
converse can be computationally beneficial as discussed in [26, section 
3]. For instance, variational Nash equilibrium problems can be reformu

lated as VIPs enabling the use of efficient iterative algorithms [18,13].

For further applications of VIPs in systems and control theory, oper

ations research, game theory, and machine learning, we refer interested 
readers to [13,36,7,2,33] and references therein.

To solve the VIP (1), several iterative algorithms have been pro

posed. For the sake of comparison, we review some recent and closely 
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related methods for solving the general VIP (1), where the operator 𝑔 is 
(strongly) monotone.

(i) Projected Gradient Descent [30]: A classical approach inspired 
by gradient descent in the optimization literature is

𝑥𝑘+1 = proj
(
𝑥𝑘 − 𝛼𝑔(𝑥𝑘)

)
,

where the operator 𝑔(⋅) replaces the gradient operator and 𝛼 is the 
stepsize. In the literature of fixed point computation (e.g., dynamic 
programming), this is also known as Value Iteration. This method 
guarantees convergence for strongly monotone and Lipschitz oper

ator 𝑔 for any stepsize 𝛼 ∈ (0,2𝜇∕𝐿2) where 𝜇 and 𝐿 are the strong 
monotonicity constant and the Lipschitz constant, respectively.

(ii) Extragradient Descent [27]: An improvement to the gradient de

scent approach is to call the operator 𝑔 twice in order to improve 
the convergence rate. This yields the algorithm

𝑦𝑘 = proj
(
𝑥𝑘 − 𝛼𝑔(𝑥𝑘)

)
,

𝑥𝑘+1 = proj
(
𝑥𝑘 − 𝛼𝑔(𝑦𝑘)

)
,

with 𝛼 as the stepsize. Unlike classic projected gradient descent, 
this method does not require strong monotonicity of the operator 𝑔
and ensures convergence for a Lipschitz operator when the stepsize 
𝛼 ∈ (0,1∕𝐿).
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Table 1
Complexity of linear minimization and projection. The parameter 𝜀 denotes the precision of linear minimization or projection 
operator.

Set Linear minimization Projection 
(1) 𝑛-dimensional 𝓁𝑝-ball, 𝑝 ≠ 1,2,∞. (𝑛) ̃(𝑛∕𝜀2)
(2) Nuclear norm ball of 𝑛 ×𝑚 matrices. 𝜃 and 𝜏 denote the number of non-zero entries 
and the top singular value of the projected matrix, respectively.

(𝜃 ln (𝑚+ 𝑛)
√
𝜏∕𝜀) (𝑚𝑛min{𝑚,𝑛})

(3) Flow polytope on a graph with 𝑚 vertices and 𝑛 edges with capacity bound on edges. ((𝑛 log𝑚)(𝑛+𝑚 log𝑚)) (𝑛4 log𝑛)
(4) Birkhoff polytope (𝑛 × 𝑛 doubly stochastic matrices). (𝑛3) ̃(𝑛2∕𝜀2)

(iii) Accelerated gradient descent [32]: An influential idea in opti

mization, first proposed by Nesterov [31], is to accelerate algorithm 
convergence by incorporating a so-called momentum into the up

date dynamics. One can draw a parallel, in a similar fashion as in 
the Gradient Descent (i.e., replacing the gradient with the operator 
𝑔), and arrive at

𝑥𝑘 = argmax
𝑥∈ 

𝑘 ∑
𝑖=0 

𝛼𝑖

[⟨𝑔(𝑦𝑖), 𝑦𝑖 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑖‖2] ,

𝑦𝑘+1 = argmax
𝑦∈ ⟨𝑔(𝑥𝑘), 𝑥𝑘 − 𝑦⟩− 𝛽

2 
‖𝑦− 𝑥𝑘‖2,

where to ensure the convergence, it suffices to choose the stepszie 
and momentum coefficients as 𝛼𝑘+1 =

𝜇

𝐿

∑𝑘
𝑖=0 𝛼𝑖 and 𝛽 =𝐿.

(iv) Projected Reflected Gradient Descent [25]: Evaluating the op

erator at a reflected point, an extrapolation of the current and 
previous iterates, enhances stability and convergence in monotone 
VIP, leading to the following algorithm

𝑥𝑘+1 = proj
(
𝑥𝑘 − 𝛼𝑔(2𝑥𝑘 − 𝑥𝑘−1)

)
,

where 𝛼 ∈
(
0, (

√
2−1)∕𝐿

)
is the stepsize. This method guarantees 

convergence for a Lipschitz operator, and unlike the extragradient 
method, it requires only one projection per iteration. 

(v) Golden Ratio Algorithm [26]: To guarantee convergence when 
using the Gradient Descent method for Lipschitz but non-strongly 
monotone operators, negative momentum parameters are required. 
Introducing a negative momentum ensures convergence, leading to 
the algorithm

𝑦𝑘 = (1 − 𝜁)𝑥𝑘 + 𝜁𝑦𝑘−1,

𝑥𝑘+1 = proj
(
𝑦𝑘 − 𝛼𝑔(𝑥𝑘)

)
,

with 𝛼 ∈
(
0,1∕(2𝜁𝐿)

)
as the stepsize and momentum parame

ter 𝜁 ∈
(
0, (

√
5 − 1)∕2

]
. Additionally, overcomes the limitation of 

methods that rely on problem constants (like Lipschitz continuity 
parameter); the stepsize can be chosen adaptively, leading to the 
adaptive golden ratio algorithm [26]

𝛼𝑘 =min

{
(𝜁 + 𝜁2)𝛼𝑘−1,

‖𝑥𝑘 − 𝑥𝑘−1‖2
4𝜁2𝛼𝑘−2‖𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)‖2

}
.

(vi) Operator splitting methods [13]: The operator 𝑔 can be split into 
a summation of different operators. Solving VIP (1) in these cases 
is equivalent to solving the fixed-point problem 0 ∈ 𝑔1(𝑥) + 𝑔2(𝑥), 
where 𝑔(𝑥) + (𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) and  (𝑥) is the normal cone 
of the compact, convex set  at the point 𝑥. The iterative update 
of each sub-operator leads to convergence towards the solution. A 
well-known class of these algorithms is the Douglas-Rachford split

ting method [5], which can be written as

𝑦𝑘+1 = (𝐼 + 𝛼𝑔2)−1
(
𝑥𝑘 − 𝛼𝑔1(𝑥𝑘)

)
,

𝑥𝑘+1 = 𝑥𝑘 + 𝜁(𝑦𝑘+1 − 𝑥𝑘),

where the stepsize can be chosen 𝛼 ∈ (0,1] and 𝜁 ∈ (0,2) is a relax

ation parameter. The convergence of this method is guaranteed for 
different cases of 𝑔1 and 𝑔2; we refer interested readers to [16,29] 
for further details. Additionally, we refer them to [28] for further 
algorithms related to applications of monotone variational inequal

ities and an open source Python toolbox.

In the methods mentioned above, the projection operator onto the fea

sible set  (proj (⋅)) is a necessary operation of the algorithm which 
can be costly in some cases. Frank-Wolfe (FW) is a classical approach 
to avoid this projection complexity by resorting to a linear oracle min

imization (as opposed to the quadratic optimization of the projection 
operator) over the same set. Table 1 summarizes the computational com

plexity of the linear oracle minimization and the projection onto certain 
sets [11,9]. For concave-convex minimax problems and inspired by the 
recent works [20,22,17], the authors of [15] and [10] prove conver

gence of different types of FW algorithms. They demonstrate the numeri

cal efficiency of the FW algorithm via illustrative saddle point problems, 
in which projecting onto the corresponding sets is computationally de

manding or even intractable; see the perfect matching problem as an 
example of this class of problems [21]. Motivated by this, a natural 
question is whether the FW algorithm can also be utilized for solving 
the VIP (1). To the best of our knowledge, this question is still largely 
unexplored, which is the focus of this study.

Contribution. Following the footsteps of the accelerated Nesterov’s 
technique for solving strongly monotone variational inequalities [32] 
and the FW algorithm for solving saddle point problems [15], we pro

pose a novel accelerated algorithm with FW method as an oracle for 
solving the strongly monotone VIP (1) and provide a non-asymptotic 
convergence rate. To validate the theoretical results, we implement the 
proposed method in the traffic assignment problem, an important ap

plication in transportation and operation research [6,8,7], where the 
complexity of the problem (the corresponding set) increases exponen

tially with the number of variables.

Roadmap. The paper is organized as follows: Section 2 reviews the 
Frank-Wolfe technique and states lemmas for solving minmax saddle 
point problems. In Section 3, we propose our algorithm and provide the 
technical proofs of the convergence theorems. Section 4 benchmarks the 
proposed algorithm in a traffic assignment application. Finally, the con

clusion and future research directions are given in Section 5.

Notation. Let  be a finite-dimensional real Hilbert space equipped 
with the standard inner product ⟨⋅, ⋅⟩ and the associated norm ‖ ⋅ ‖ (so 
that we may simply write ‖𝑥‖2 = ⟨𝑥,𝑥⟩). We define the normal cone of 
the set  at the point 𝑥 ∈  as  (𝑥) = {𝑢 ∶ 𝑢⊤𝑥 ≥ 𝑢⊤𝑦, ∀𝑦 ∈ }. The 
operator proj𝑥∈ denotes the projection onto set  with respect to the 
underlying inner product norm (i.e., proj𝑥∈ (𝑥) ∶= argmin𝑦∈ ‖𝑥− 𝑦‖). 
We define the diameter and boundary distance of a set  as

𝐷 ∶= sup 
𝑥,𝑥′∈

‖𝑥− 𝑥′‖ and 𝜎 (𝑥) ∶= min 
𝑠∈𝜕

‖𝑥− 𝑠‖.
The function 𝐹 (𝑥, 𝑦) is (𝜇 , 𝜇 ) strongly convex-concave if 𝐹 (𝑥, 𝑦) −
𝜇
2 ‖𝑥‖2 + 𝜇

2 ‖𝑦‖2 is convex-concave. The constants 𝐿𝑋𝑌 and 𝐿𝑌𝑋 are 
the cross smooth constants of 𝐹 (𝑥, 𝑦) (or equivalently the Lipschitz con

stants of ∇𝐹 ) over the set  × if for all 𝑥, 𝑥̄ ∈  and 𝑦, 𝑦̄ ∈

‖∇𝑥𝐹 (𝑥, 𝑦) − ∇𝑥𝐹 (𝑥, 𝑦̄)‖ ≤𝐿𝑋𝑌 ‖𝑦− 𝑦̄‖,
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‖∇𝑦𝐹 (𝑥, 𝑦) − ∇𝑦𝐹 (𝑥̄, 𝑦)‖ ≤𝐿𝑌𝑋‖𝑥− 𝑥̄‖.
For brevity, we refer to 𝐹 (𝑥, 𝑦) as a smooth function with constant 𝐿0 =
max(𝐿𝑋𝑌 ,𝐿𝑌𝑋 ) if it is cross-smooth over  × .

2. Assumptions and technical preliminaries

Before proceeding with the solution to the VIP (1), we begin with 
some assumptions and lemmas that will be used throughout the paper. 
We note that most of the results build on the seminal work by Nesterov 
[32] and Jaggi [20]. The following assumptions hold throughout this 
study.

Assumption 2.1 (Operator regularity). We assume that the solution set 
of VIP (1) is nonempty, where  is a compact, convex set and the oper

ator 𝑔 satisfies the following:

(i) L-Lipschitzness: ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤𝐿‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈  ,

(ii) 𝜇-strong monotonicity: ⟨𝑔(𝑥)−𝑔(𝑦), 𝑥−𝑦⟩ ≥ 𝜇‖𝑥−𝑦‖2, ∀𝑥, 𝑦 ∈
 .

Next, we start with a minimax problem, a core component of our 
convergence analysis for VIP (1). Specifically, by leveraging the follow

ing minimax oracle at each iteration, we aim to eliminate the need for 
costly projection steps:

min
𝑥∈ max

𝑦∈ 𝐹 (𝑥, 𝑦). (2)

An important concept relevant to the convergence of the minimax prob

lem (2), which helps us measure the convergence rate of (2), is the error 
function, defined as

ℎ𝑘 ∶= 𝐹 (𝑥𝑘, 𝑦̂𝑘) − 𝐹 (𝑥̂𝑘, 𝑦𝑘), (3)

where 𝑥̂𝑘 = argmax
𝑥∈ 𝐹 (𝑥, 𝑦𝑘) and 𝑦̂𝑘 = argmax

𝑦∈ 𝐹 (𝑥𝑘, 𝑦). The following 

proposition summarizes the convergence of (2) in terms of the error 
function ℎ𝑘, using the FW algorithm. 

Algorithm 1 FW-minimax oracle for (2) [15].

1: Let 𝑧0 = (𝑥0, 𝑦0) ∈  ×

2: for 𝑘 = 0…𝑇 do 
3: Compute the partial gradients of 𝐹 : 𝑟𝑘 =

(
∇𝑥𝐹 (𝑥𝑘, 𝑦𝑘)
−∇𝑦𝐹 (𝑥𝑘, 𝑦𝑘)

)
,

4: Compute the desired direction: 𝑠𝑘 = arg min 
𝑧∈×

⟨𝑧, 𝑟𝑘⟩,
5: Compute the stepsize: 𝛼𝑘 = min

(
1, 𝜈

2𝐶
⟨𝑧𝑘 − 𝑠𝑘, 𝑟𝑘⟩) or 𝛼𝑘 = 2 

2+𝑘
(based 

on Proposition 2.2)

6: Compute the next iteration: 𝑧𝑘 = (1 − 𝛼𝑘)𝑧𝑘 + 𝛼𝑘𝑠𝑘.

7: end for

Proposition 2.2 (FW-minimax oracle convergence [15, Theorem   1]). Let 
𝐹 (𝑥, 𝑦) be 𝐿0-smooth continuous and (𝜇 , 𝜇 ) strongly convex-concave on 
a convex, compact set × and (𝑥∗, 𝑦∗), the solution of (2), is in the interior 
of  ×  . Consider applying the Frank-Wolfe algorithm (Algorithm 1) for 
saddle point problem (2) with the stepsize

𝛼𝑘 =min
(
1, 𝜈

2𝐶
⟨𝑧𝑘 − 𝑠𝑘, 𝑟𝑘⟩), (4)

where the constants are

𝜌 = 𝜈2
𝜎2𝜇

2𝐶
, 𝐶 =

𝐿0𝐷
2

+𝐿0𝐷

2


2 
,

𝜈 = 1 −
√
2

𝜎𝜇
max

{𝐷𝐿𝑋𝑌√
𝜇

,
𝐷𝐿𝑌𝑋√

𝜇

}
,

𝜎𝜇 =
√

min(𝜇𝜎2 (𝑥∗), 𝜇𝜎
2

(𝑦∗)).

Then, the convergence rate for the error ℎ𝑘 (3) is 
(
(1 − 𝜌)

𝑘
6 
)

.

Moreover, if 𝜎𝜇 > 2max
{

𝐷𝐿𝑋𝑌

𝜇
,
𝐷𝐿𝑌𝑋

𝜇

}
and the stepsize is set to 

𝛼𝑘 =
2 

2+𝑘 , then the error ℎ𝑘 (3) decreases at a sublinear rate of (1∕𝑘).

Remark 2.3 (FW-variants). Other FW variants, including the away-step 
and pairwise algorithms, achieve similar convergence guarantees un

der alternative assumptions to those in Proposition 2.2, such as when 
the feasible set is a polytope. These variants often yield better practical 
performance by allowing corrections to previously chosen directions, 
which helps avoid flat regions and reduces zig-zagging behavior near 
the solution. More recently, the authors in [10] proposed a projection

free method under assumptions similar to those in Proposition 2.2, but 
without requiring the solution to lie in the interior of the feasible set 
and their method is based on a three-loop algorithm. The proposed FW 
Algorithm 1 can be replaced by these alternatives. For further details, 
we refer interested readers to [15,10].

Proposition 2.2 lays the foundation for proving the convergence of 
the projection-free algorithm for solving VIP (1). It avoids expensive 
projection steps by instead solving a strongly convex-concave minimax 
problem at each iteration, which is the central motivation behind this 
study.

We move forward by introducing a gap function to measure the op

timality gap of VIP (1) and by proposing two lemmas that are central to 
the development of the algorithm in this paper.

It is not difficult to see that, in light of the strong monotonicity of the 
operator 𝑔, the solution of VIP (1), 𝑥∗, satisfies the following inequality

⟨𝑔(𝑦), 𝑥∗ − 𝑦⟩+ 𝜇

2 
‖𝑦− 𝑥∗‖2 ≤ ⟨𝑔(𝑥∗), 𝑥∗ − 𝑦⟩− 𝜇

2 
‖𝑦− 𝑥∗‖2 ≤ 0, ∀ 𝑦 ∈  .

(5)

In order to measure the approximated solution of (1), we introduce a 
gap function 𝑓 (𝑥) and the following lemma.

𝑓 (𝑥) ∶= sup 
𝑦∈

{⟨𝑔(𝑦), 𝑥− 𝑦⟩+ 𝜇

2 
‖𝑦− 𝑥‖2}. (6)

Lemma 2.4 (Gap function properties, [32, Theorem 1]). The gap function 
𝑓 (𝑥) is a nonnegative, well-defined, 𝜇-strongly convex function on  and 
vanishes at the unique solution of (1).

Using Lemma 2.4 and the definition (6), our goal is to minimize 𝑓 (𝑥), 
which is equivalent to solving the VIP (1). To this end, let us define the 
following quantities

𝑆𝑁 ∶=
𝑁∑
𝑖=0 

𝜆𝑖, 𝑦̃𝑁 ∶= 1 
𝑆𝑁

𝑁∑
𝑖=0 

𝜆𝑖𝑦𝑖,

Δ𝑁 ∶= max
𝑥∈ 

{ 𝑁∑
𝑖=0 

𝜆𝑖

[
𝑔(𝑦𝑖), 𝑦𝑖 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑖‖2]}, (7)

where {𝑦𝑖}𝑁𝑖=0 ⊂  and {𝜆𝑖}𝑁𝑖=0 are sequences of arbitrary points and 
positive weights, respectively. Next lemma shows the upper bound for 
the gap function 𝑓 (𝑥).

Lemma 2.5 (Gap function upper bound, [32, Lemma 1]). Using the quan

tities defined in (7), we have the inequality

𝑓 (𝑦̃𝑁 ) ≤ 1 
𝑆𝑁

Δ𝑁. (8)

The proof follows from the definition of the gap function (6) and the 
strong monotonicity of the operator 𝑔(𝑥). For brevity, we skip the proof 
and refer interested readers to [32] for further details.
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3. Proposed Frank-Wolfe algorithm and convergence analysis

Building on the key proposition and lemmas from the previous sec

tion, this section pertains to the analysis of convergence for using the 
FW algorithm as an oracle in solving VIP (1). The general form of our 
proposed method is provided in Algorithm 2, which follows the ac

celerated gradient descent method [32], with the difference that the 
projection steps are replaced by a strongly convex-concave minimax 
problem solved by the FW algorithm.

Lemmas 2.4 and 2.5 shed light on the behavior of the gap function 
(6) and highlight the goal of minimizing and controlling the growth of 
Δ𝑁 . For 𝛽 > 0, consider the functions

𝜓𝛽
𝑦 (𝑥) ∶= ⟨𝑔(𝑦), 𝑦− 𝑥⟩− 𝛽

2 
‖𝑥− 𝑦‖2, Ψ𝑘(𝑥) ∶=

𝑘 ∑
𝑖=0 

𝜆𝑖𝜓
𝜇
𝑦𝑖
(𝑥).

We note that Δ𝑘 = max
𝑥∈ Ψ𝑘(𝑥), and the functions 𝜓𝛽

𝑦 (𝑥) and Ψ𝑘(𝑥) are 
strongly concave with constants 𝛽 and 𝜇𝑆𝑘, respectively. Consider the 
following iterations

⎧⎪⎨⎪⎩
𝑥𝑘 = arg min 

𝑥𝑘∈
max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2},

𝑦𝑘+1=arg min 
𝑦𝑘+1∈

max
𝑥∈ 

{⟨−𝑔(𝑥𝑘)−𝛽(𝑦𝑘+1−𝑥𝑘), 𝑥−𝑦𝑘+1⟩−𝜇

4 
‖𝑥−𝑦𝑘+1‖2},

(9)

where

𝑊 (𝑥,𝑥𝑘) ∶= ⟨∇Ψ𝑘(𝑥𝑘), 𝑥− 𝑥𝑘⟩ = ⟨ 𝑘 ∑
𝑖=0 

𝜆𝑖(−𝑔(𝑦𝑖) − 𝜇(𝑥𝑘 − 𝑦𝑖)), 𝑥− 𝑥𝑘

⟩
= −𝜇𝑆𝑘⟨𝑥𝑘, 𝑥− 𝑥𝑘⟩+ ⟨ 𝑘 ∑

𝑖=0 
𝜆𝑖(−𝑔(𝑦𝑖) + 𝜇𝑦𝑖), 𝑥− 𝑥𝑘

⟩
.

We are now in a position to derive an upper bound for Δ𝑘 using itera

tions (9), which helps us establish the convergence of the iterates to the 
solution of the VIP (1).

Proposition 3.1 (Upper bound of Δ𝑘). If 𝜆𝑘+1 ≤
𝜇

2𝛽 𝑆𝑘, then by using the 
iterates (9), we have

Δ𝑘+1 ≤Δ𝑘 + 𝜆𝑘+1

[ 1 
𝜇 + 2𝛽

‖𝑔(𝑦𝑘+1) − 𝑔(𝑥𝑘)‖2 − 𝛽

2 
‖𝑦𝑘+1 − 𝑥𝑘‖2]. (10)

Proof. We know that Ψ𝑘+1(𝑥) = Ψ𝑘(𝑥) + 𝜆𝑘+1𝜓
𝜇
𝑦𝑘+1

(𝑥). Then, we have

Δ𝑘+1 = max
𝑥∈ 

{
Ψ𝑘(𝑥) + 𝜆𝑘+1𝜓

𝜇
𝑦𝑘+1

(𝑥)
}

≤Δ𝑘 +max
𝑥∈ 

{⟨∇Ψ𝑘(𝑥𝑘), 𝑥− 𝑥𝑘⟩− 𝜇

2 
𝑆𝑘‖𝑥− 𝑥𝑘‖2 + 𝜆𝑘+1𝜓

𝜇
𝑦𝑘+1

(𝑥)
}

≤Δ𝑘 +max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2}

+max
𝑥∈ 

{
−𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2 + 𝜆𝑘+1𝜓

𝜇
𝑦𝑘+1

(𝑥)
}
.

Note that, if we consider 𝑥†=argmax
𝑥∈ Ψ𝑘(𝑥)=proj𝑥∈

( ∑𝑘
𝑖=0 𝜆𝑖

(
𝜇𝑦𝑖−𝑔(𝑦𝑖)

)
𝜇𝑆𝑘

)
, 

then, from the definition of the projection operator and the first-order 
optimality condition, we have 𝑊 (𝑥,𝑥†) = ⟨∇Ψ𝑘(𝑥†), 𝑥−𝑥†⟩ ≤ 0. There

fore, we can conclude that, as indicated in Proposition 2.2, the iterates 
𝑥𝑘 in (9) ensures min 

𝑥𝑘∈
max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 𝑆𝑘‖𝑥− 𝑥𝑘‖2} < 0. We further 

note that this strongly convex-concave minimax problem can be solved 
by FW algorithm with (sub)-linear convergence guarantee. Therefore, 
by the definition of 𝑥𝑘 in (9), we arrive at

Δ𝑘+1 ≤Δ𝑘 +

≤0 
⏞ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

min 
𝑥𝑘∈

max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2}

+max
𝑥∈ 

{
−𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2 + 𝜆𝑘+1𝜓

𝜇
𝑦𝑘+1

(𝑥)
}

≤Δ𝑘 +max
𝑥∈ 

{
−𝜇

4 
𝑆𝑘‖𝑥− 𝑥𝑘‖2

+ 𝜆𝑘+1

[⟨𝑔(𝑦𝑘+1), 𝑦𝑘+1 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑘+1‖2]}. (11)

Now, let us analyze the second term in the ``max'' part of the right-hand

side of (11). Note that

⟨𝑔(𝑦𝑘+1), 𝑦𝑘+1 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑘+1‖2

= ⟨𝑔(𝑦𝑘+1) − 𝑔(𝑥𝑘), 𝑦𝑘+1 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑘+1‖2 + ⟨𝑔(𝑥𝑘), 𝑦𝑘+1 − 𝑥⟩,

Similar to the previous part, if 𝑦† considered as 𝑦† = proj𝑥∈
(
𝑥𝑘 −

𝑔(𝑥𝑘)
𝛽

)
, 

we have

⟨−𝑔(𝑥𝑘) − 𝛽(𝑦† − 𝑥𝑘), 𝑥− 𝑦†⟩ ≤ 0, ∀𝑥 ∈  .

Therefore, 𝑦𝑘+1 in (9) ensures min 
𝑦𝑘+1∈

max
𝑥∈ 

{⟨−𝑔(𝑥𝑘) − 𝛽(𝑦𝑘+1 − 𝑥𝑘), 𝑥 −

𝑦𝑘+1⟩− 𝜇

4 ‖𝑥−𝑦𝑘+1‖2} < 0, and using the definition of 𝑦𝑘+1 we can write

⟨𝑔(𝑦𝑘+1), 𝑦𝑘+1 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑘+1‖2

≤ ‖𝑔(𝑦𝑘+1) − 𝑔(𝑥𝑘)‖‖𝑦𝑘+1 − 𝑥‖− 𝜇

4 
‖𝑦𝑘+1 − 𝑥‖2

+ 𝛽⟨𝑦𝑘+1 − 𝑥𝑘, 𝑥− 𝑦𝑘+1⟩,
using above inequality and maximizing the right-hand-side based on ‖𝑦𝑘 − 𝑥‖, one obtains

⟨𝑔(𝑦𝑘+1), 𝑦𝑘+1 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑦𝑘+1‖2

≤
1 

𝜇 + 2𝛽
‖𝑔(𝑦𝑘+1) − 𝑔(𝑥𝑘)‖2 + 𝛽

2 
‖𝑥− 𝑥𝑘‖2 − 𝛽

2 
‖𝑦𝑘+1 − 𝑥𝑘‖2.

Putting the above inequality together with (11), and using the upper 
bound on 𝜆𝑘+1, we obtain the inequality (10). □

Now by setting 𝜆𝑘+1 =
𝜇

2𝐿𝑆𝑘 = 1 
2𝛾 𝑆𝑘 in (10), where 𝐿 and 𝛾 = 𝐿

𝜇

are the Lipschitz constant and the condition number of the operator 
𝑔, respectively, we have Δ𝑘+1 < Δ𝑘. We are now ready to show the 
convergence rate of Algorithm 2 for solving VIP (1). 

Algorithm 2 Frank-Wolfe type algorithm for the VIP (FW-VIP).

1: Given 𝛾 = 𝐿

𝜇
, 𝜆0 = 1, 𝜀.

2: for 𝑘 = 0,… , 𝑇 do 

3:

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑘 = arg min 

𝑥𝑘∈
max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 𝑆𝑘‖𝑥− 𝑥𝑘‖2
}

𝑦𝑘+1=arg min 
𝑦𝑘+1∈

max
𝑥∈ 

{⟨−𝑔(𝑥𝑘)−𝐿(𝑦𝑘+1−𝑥𝑘), 𝑥−𝑦𝑘+1⟩
− 𝜇

4 ‖𝑥− 𝑦𝑘+1‖2
}

⎫⎪⎪⎬⎪⎪⎭
FW-minimax oracle 1

with 𝜀-precision

4: 𝜆𝑘+1 =
1 
2𝛾
𝑆𝑘,

5: end for

6: output: 𝑦̃𝑘 =
1 
𝑆𝑘

∑𝑘
𝑖=0 𝜆𝑖𝑦𝑖.

Theorem 3.2 (VIP-convergence via FW-minimax oracle). Consider the 
VIP (1) under Assumption 2.1, and the FW-minimax oracle 1. Let 𝛾 =𝐿∕𝜇
be the condition number of the operator 𝑔, and 𝑓 the gap function defined 
in (6). Algorithm 2 returns an 𝜀 accurate solution to (1) if the number of 
iterations is 𝑇 ≥ (𝛾 + 1) log

(
𝛾2𝑓 (𝑥0)∕𝜀

)
.

Before proceeding with the proof of the theorem, we summarize 
the overall convergence complexity of using Algorithm 2 with the FW

minimax oracle 1 as follows.
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Remark 3.3 (Overall complexity of VIP solution). The overall complexity 
of the solution to the VI problem (1) is the product of the complexity 
of the FW-minimax oracle in Algorithm 1 with the complexity of Algo

rithm 2, under the assumption that the solution of each sub-minimax 
problem lies inside the feasible domain  . In particular, by using the 
stepsize (4) in Algorithm 1, resulting in

 (log (1∕𝜀))
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

Theorem  3.2

⋅ (log (1∕𝜀))
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟
Proposition  2.2

=
(
log2 (1∕𝜀)

)
.

Moreover, by leveraging the diminishing stepsize 𝛼𝑡 =
2 
2+𝑡 , if the ex

tra assumption of Proposition 2.2 is satisfied, the overall complexity of 
solving the problem becomes

 (log (1∕𝜀))
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

Theorem  3.2

⋅  (1∕𝜀)
⏟ ⏟ ⏟

Proposition 2.2

= (log (1∕𝜀)∕𝜀) .

Proof of Theorem 3.2. Using the definition of 𝑆𝑘 in (7) and the fact 
that 𝑆0 = 𝜆0 = 1, we can write

𝑆𝑘+1 = 𝑆𝑘 + 𝜆𝑘+1 =
(
1 + 1 

𝛾

)
𝑆𝑘.

By using Lemma 2.5, the corollary of Proposition 3.1, and using the 
sequence 𝑆𝑘+1 =

(
1 + 1 

𝛾

)
𝑆𝑘 with 𝑆0 = 1, we can conclude that 𝑆𝑘 =(

1 + 1 
𝛾

)𝑘
. Therefore, we obtain

𝑓 (𝑦̃𝑘) ≤
1 
𝑆𝑘

Δ𝑘 ≤
Δ0(

1 + 1 
𝛾

)𝑘
=

(
𝛾

1 + 𝛾

)𝑘

Δ0

=
(
1 − 1 

1 + 𝛾

)𝑘

Δ0 ≤Δ0𝑒
− 𝑘 

𝛾+1 .

Now, we just need to approximate Δ0. Using the definition of Δ and Ψ, 
we can write

Δ0 = max
𝑥∈ Ψ0(𝑥) = max

𝑥∈ 𝜓
𝜇
𝑦0
(𝑥) = max

𝑥∈ 

{⟨𝑔(𝑥0), 𝑥0 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑥0‖2}

=max
𝑥∈ 

{⟨𝑔(𝑥0) − 𝑔(𝑥∗), 𝑥0 − 𝑥⟩+ ⟨𝑔(𝑥∗), 𝑥0 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑥0‖2}

≤ ⟨𝑔(𝑥∗), 𝑥0 − 𝑥⟩+max
𝑥∈ 

{⟨𝑔(𝑥0) − 𝑔(𝑥∗), 𝑥0 − 𝑥⟩− 𝜇

2 
‖𝑥− 𝑥0‖2}

≤ ⟨𝑔(𝑥∗), 𝑥0 − 𝑥⟩+ 𝐿2

2𝜇 
‖𝑥∗ − 𝑥0‖2.

Then, by the definition and strong convexity of the gap function 𝑓 in 
(6), the last inequality is less than 𝑓 (𝑥0). Thus, the theorem’s statement 
is concluded. □

We close this section by noting that the total computational time 
for solving the VIP (1) is the product of the convergence complexity 
of the considered algorithm and the complexity of the mathematical 
operations, e.g., projection(s) used at each iteration, which can be com

putationally demanding in some problems. In the next section, we see 
this behavior and observe the effectiveness of our proposed projection

free method compared to commonly used state-of-the-art algorithms for 
strongly monotone VIP.

4. Numerical results

We demonstrate the performance of Algorithm 2 on the traffic assign

ment problem, an important problem studied in the transportation and 
operations research literature. To evaluate our performance, we com

pare our proposed algorithm (FW-VIP) with projected gradient descent 
(PGD) [30] and Nesterov’s accelerated gradient method (NAG) [32], two 

methods commonly used for solving strongly monotone VIP in the liter

ature. Before proceeding with the simulation results, let us first briefly 
explain the traffic assignment problem.

Traffic Assignment Problem (TAP): Assume 𝑁 be the set of nodes, 
 be set of directed links, and 𝑊 denotes the set of origin-destination 
(OD) pairs. We assume for all 𝑤 ∈𝑊 there is 𝑑𝑤 > 0 representing traffic 
demand entering from origin and exiting from destination. For each OD 
pair 𝑤 ∈𝑊 , the demand 𝑑𝑤 is to be distributed among a given 𝑃𝑤 of a 
paths joining 𝑤. Defining 𝑥𝑝 that shows the flow carried by path 𝑃 , we 
introduce the feasible path flow vector 𝑥 = {𝑥𝑝 | 𝑝 ∈ 𝑃𝑤, 𝑤 ∈𝑊 }, and 
the set corresponding to feasible path flow vector as

𝑋 =
{
𝑥 | ∑

𝑝∈𝑃𝑤

𝑥𝑝 = 𝑑𝑤, 𝑥𝑝 ≥ 0, ∀𝑝 ∈ 𝑃𝑤, 𝑤 ∈𝑊
}
.

Each collection of path flows 𝑥 ∈ 𝑋 defines a collection of links flows 
𝑦𝑖𝑗 with

𝑦𝑖𝑗 =
∑
𝑤∈𝑊

∑
𝑝∈𝑃𝑤

𝛿𝑝(𝑖, 𝑗)𝑥𝑝, (𝑖, 𝑗) ∈  , (12)

where 𝛿𝑝(𝑖, 𝑗) = 1 if path 𝑝 contains link (𝑖, 𝑗) and zero otherwise. The 
vector of links flows 𝑦 = {𝑦𝑖𝑗 | (𝑖, 𝑗) ∈ } can be written as 𝑦 =𝐴𝑥 where 
𝐴 is the arc-chain matrix defined by (12). Similarly, we can define the 
set of feasible link flows as 𝑌 =𝐴𝑋 =

{
𝑦 | 𝑦 =𝐴𝑥, 𝑥 ∈𝑋

}
. For each link 

(𝑖, 𝑗) ∈  , there is a given function 𝑇𝑖𝑗 ∶ 𝑌 → ℝ, which is the measure 
of the delay in link (𝑖, 𝑗). The vector with components 𝑇𝑖𝑗 (𝑦) is 𝑇 (𝑦) and 
due to the choice of 𝑇𝑖𝑗 it is mostly strongly monotone operator. For each 
𝑥 ∈𝑋 and corresponding 𝑦=𝐴𝑥, the vector 𝑇 (𝑦) defines the following 
function for each 𝑤 ∈𝑊 and 𝑝 ∈ 𝑃𝑤

𝑇̄𝑝(𝑥) =
∑

(𝑖,𝑗)∈
𝛿𝑝(𝑖, 𝑗)𝑇𝑖𝑗 (𝑦),

which shows the total travel time of path 𝑝. Then, TAP is to find 𝑥∗ ∈𝑋
such that for all 𝑝̄ ∈ 𝑃𝑤 and 𝑤 ∈𝑊 we have

𝑇̄𝑝̄(𝑥∗) = min 
𝑝∈𝑃𝑤

𝑇̄𝑝(𝑥∗) and 𝑥∗𝑝 > 0. (13)

As shown in [12], if 𝑇̄ (𝑥) denotes the vector with 𝑇̄𝑝(𝑥) components, 
then 𝑇̄ (𝑥) =𝐴⊤𝑇 (𝐴𝑥) and TAP (13) can be reformulated as the follow

ing VIP:

find 𝑥∗ such that (𝑥− 𝑥∗)⊤𝑇̄ (𝑥∗) ≥ 0, ∀𝑥 ∈𝑋. (14)

Note that 𝐴⊤𝑇 (𝐴𝑥) is not necessarily strongly monotone unless 𝐴⊤𝐴 is 
inevitable (as is the case in our simulation).

We consider TAP with the same structure in [7] which can be viewed 
as model of a circular highway. Fig. 1 illustrates the corresponding 
model, in which we consider five OD points, numbered 1--5, and five OD 
pairs: (1,4), (2,5), (3,1), (4,2), and (5,3), associated with the OD points. 
Each OD pair is linked with two possible paths (clockwise and counter

clockwise). The links, types of links, time delays on each link, and the 
demand for each OD pair are given in Table 2, where ℎ(𝑥) = 1 + 𝑥+ 𝑥2

and we set 𝜅 = 0.5. Note that we assume flows cannot utilize the exist

ing ramp that does not lead to its intended destination. Fig. 2 shows the 
optimality gap of the corresponding VIP with parameters reported in 
Table 2. We note that, for a fair comparison and to demonstrate the ef

fectiveness of the projection-free algorithm, we plot the optimality gap 
versus the total iterations multiplied by the total number of projections 
(in PGD or NAG) or LMO (in Algorithm 2). We also note that both pro

jection and LMO operators are evaluated using the same solver, namely 
OSQP [35]. 

5. Further discussion, limitations, and future directions

In this section, we provide additional insights concerning the pro

posed Frank-Wolfe technique for solving strongly monotone variational 
inequalities (1), its limitations, and potential future directions.
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Table 2
Parameters in TAP.

Types of links 
(1) Highway links: 17, 27, 37, 47, 57, 18, 28, 38, 48, 58. 
(2) Exit ramps: 14, 24, 34, 44, 54, 12, 22, 32, 42, 52. 
(3) Entrance ramps: 11, 21, 31, 41, 51, 13, 23, 33, 43, 53. 
(4) Bypass links: 15, 25, 35, 45, 55, 16, 26, 36, 46, 56. 
Delay on links 
(1) Delay on highway link 𝑘: 10 ⋅ ℎ

[
flow on 𝑘

]
+ 2𝜅 ⋅ ℎ

[
flow on exit ramp from 𝑘

]
. 

(2) Delay on exit ramp 𝑘: ℎ
[
flow on 𝑘

]
. 

(3) Delay on entrance ramp 𝑘: ℎ
[
flow on 𝑘

]
+ 𝜅 ⋅ ℎ

[
flow on bypass link merging with 𝑘

]
. 

(4) Delay on bypass link 𝑘: ℎ
[
flow on 𝑘

]
. 

Demands on OD pairs 𝑑(1,4) = 0.1, 𝑑(2,5) = 0.2, 𝑑(3,1) = 0.3, 𝑑(4,2) = 0.4, 𝑑(5,3) = 0.5. 

Fig. 1. TAP model (Fig. 2 in [7]). 

Fig. 2. Optimality gap of the VIP in the TAP. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

(i) Further insights into the Frank-Wolfe technique for solving 
VIP (1): The main motivation behind the Frank-Wolfe technique 
is to avoid expensive projections in each iteration and to select a 
more suitable descent direction compared to projected methods, 
which may exhibit zig-zagging behavior for certain constraint sets. 
This can lead to lower computational complexity and potentially 

faster convergence. Furthermore, as stated in Proposition 3.1, we 
only require the negativity of

𝑁(𝑥, 𝑦) ∶= min 
𝑥𝑘∈

max
𝑥∈ 

{
𝑊 (𝑥,𝑥𝑘) −

𝜇

4 𝑆𝑘‖𝑥− 𝑥𝑘‖2},

to guarantee the convergence of Algorithm 2. While this negativity 
is ensured by the worst-case convergence bound in Proposition 2.2, 
in practice the inner Frank-Wolfe problem can be terminated as 
soon as 𝑁(𝑥, 𝑦) becomes negative, significantly reducing computa

tional complexity.

(ii) Extension to monotone variational inequalities: Solving the VIP 
using a projection-free algorithm requires solving a minimax sub

problem. Unfortunately, existing projection-free methods for mini

max problems rely on strong convexity-concavity of the underlying 
function, which in our setting can be ensured by assuming strong 
monotonicity of the operator in the VIP. Developing a Frank-Wolfe 
method for minimax problems without this assumption is a key step 
toward extending these methods to general monotone variational 
inequality problems and is an important direction for future work.

(iii) Relation to prior works and alternative assumptions: Based on 
the structure of the VIP, alternative assumptions can be applied for 
the Frank-Wolfe algorithm in solving the inner minimax problems, 
replacing the requirement in Proposition 2.2 that the solution lies 
strictly within the domain:

• The sets  and  are polytopes (case (II) in Theorem 1 [15]): In 
this case, the interior-point assumption is not required. Instead, 
we can use the away-step Frank-Wolfe algorithm (Algorithm 3 
in [15]) and the concept of pyramidal width (Eq. 9 in [22]) in

stead of the border distance 𝜎 , while still guaranteeing the same 
convergence as in Proposition 2.2.

• More recently, [10] proposed a projection-free algorithm (Algo

rithm 3) under a similar assumption to Proposition 2.2, without 
requiring the solution to lie in the interior of  ×  . This al

gorithm requires ̃(1∕
√
𝜀) first-order and ̃(1∕𝜀2) linear opti

mization oracle calls to achieve 𝜀-precision for the saddle-point 
problem (2). Its main limitation is implementation complexity, 
as it involves three nested loops per iteration.

(iv) Limitations and future directions:

• The primary limitation of the proposed method is the presence of 
a secondary loop in each iteration for solving the minimax prob

lem. In the context of the Frank-Wolfe algorithm for minimizing 
a smooth convex function, two key inequalities, smoothness and 
convexity, are typically used. For the VIP, no explicit value func

tion exists, making these inequalities difficult to apply. Although 
we can define a convex gap function 𝑓 (𝑥) (6), whose minimiza

tion is equivalent to solving the VIP, this function is parametric, 
complicating the use of standard convex optimization inequali

ties. Restricting the domain to specific sets and leveraging duality 
may allow for a single-loop algorithm, which is an important fu

ture research direction. Adaptive or decreasing accuracy require
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ments for the inner loop may also help eliminate the secondary 
loop.

• Another limitation is the algorithm’s dependence on problem

specific constants. Future extensions could involve adaptive step

size methods [26], which approximate Lipschitz or strong mono

tonicity constants to accelerate convergence.

• Recent works, such as [24], establish Newton-type methods 
combined with Frank-Wolfe techniques for constrained self

concordant minimization, and [23] propose high-order methods 
for solving the VIP. Developing high-order methods for the VIP 
using Frank-Wolfe techniques represents another promising re

search direction.
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