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We propose an accelerated algorithm with a Frank-Wolfe method as an oracle for solving strongly monotone
variational inequality problems. While standard solution approaches, such as projected gradient descent (aka
value iteration), involve projecting onto the desired set at each iteration, a distinctive feature of our proposed
method is the use of a linear minimization oracle in each iteration. This difference potentially reduces the
projection cost, a factor that can become significant for certain sets or in high-dimensional problems. We validate

the performance of the proposed algorithm on the traffic assignment problem, motivated by the fact that the
projection complexity per iteration increases exponentially with respect to the number of links.

1. Introduction

We consider the variational inequality problem (VIP)

find x*€V st (gx"),x—x*)>0, VxeV, (€8]

where V is a compact convex set. We assume that the operator g is
u-strongly monotone, L-Lipschitz continuous, and that the solution set
of (1) is nonempty. The VIP is a general framework that includes sev-
eral problems and applications in systems and control theory, machine
learning, and operations research. For instance, both composite convex
minimization and convex-concave minimax saddle point problems can
be reformulated as in (1) [3,26], which can be used in robust controller
design for systems under uncertainty [4], Nash [34] and Stackelberg
games [19], supply chain optimization [1], and adversarial learning
problems [14].

Fixed-point problems represent another important class in several
domains, such as game theory and machine learning. Although it is
straightforward to reformulate the VIP (1) as a fixed-point problem, the
converse can be computationally beneficial as discussed in [26, section
3]. For instance, variational Nash equilibrium problems can be reformu-
lated as VIPs enabling the use of efficient iterative algorithms [18,13].

For further applications of VIPs in systems and control theory, oper-
ations research, game theory, and machine learning, we refer interested
readers to [13,36,7,2,33] and references therein.

To solve the VIP (1), several iterative algorithms have been pro-
posed. For the sake of comparison, we review some recent and closely

related methods for solving the general VIP (1), where the operator g is
(strongly) monotone.

(i) Projected Gradient Descent [30]: A classical approach inspired
by gradient descent in the optimization literature is

Xi41 = Projy (Xk - “g(xk)),

where the operator g(-) replaces the gradient operator and « is the
stepsize. In the literature of fixed point computation (e.g., dynamic
programming), this is also known as Value Iteration. This method
guarantees convergence for strongly monotone and Lipschitz oper-
ator g for any stepsize a € (0,2u/ L?) where y and L are the strong
monotonicity constant and the Lipschitz constant, respectively.

(ii) Extragradient Descent [27]: An improvement to the gradient de-
scent approach is to call the operator g twice in order to improve
the convergence rate. This yields the algorithm

Y = projy (xk - ag(xk)),

Xi41 = Projy (xk - ag(yk)>,

with « as the stepsize. Unlike classic projected gradient descent,
this method does not require strong monotonicity of the operator g
and ensures convergence for a Lipschitz operator when the stepsize
ae(0,1/L).
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Table 1
Complexity of linear minimization and projection. The parameter ¢ denotes the precision of linear minimization or projection
operator.
Set Linear minimization Projection
(1) n-dimensional £ ,-ball, p # 1,2, co. O(n) O(n/e?)
(2) Nuclear norm ball of n X m matrices. § and = denote the number of non-zero entries O@1In(m+ n)y/7/€) O(mnmin{m,n})
and the top singular value of the projected matrix, respectively.
(3) Flow polytope on a graph with m vertices and n edges with capacity bound on edges. O((nlogm)(n+mlogm))  O(n*logn)
(4) Birkhoff polytope (1 x n doubly stochastic matrices). On?) AOn?/€?)

(iii) Accelerated gradient descent [32]: An influential idea in opti-
mization, first proposed by Nesterov [31], is to accelerate algorithm
convergence by incorporating a so-called momentum into the up-
date dynamics. One can draw a parallel, in a similar fashion as in
the Gradient Descent (i.e., replacing the gradient with the operator
g), and arrive at

k
H 2
v, =argmax Fa (6090 x) = G =P,

I 2
=argmax (g(xy),x; —y) — =|ly — x|,
Vi1 gmax (8(xp), X —¥) 2IIy wll

where to ensure the convergence, it suffices to choose the stepszie
and momentum coefficients as a; | = % Zf;o a;and f=L.

(iv) Projected Reflected Gradient Descent [25]: Evaluating the op-
erator at a reflected point, an extrapolation of the current and
previous iterates, enhances stability and convergence in monotone
VIP, leading to the following algorithm

Xi41 = Projy (Xk —ag(2x; — xk—l))’

where @ € (0, (\/E -1)/ L) is the stepsize. This method guarantees

convergence for a Lipschitz operator, and unlike the extragradient
method, it requires only one projection per iteration.

(v) Golden Ratio Algorithm [26]: To guarantee convergence when
using the Gradient Descent method for Lipschitz but non-strongly
monotone operators, negative momentum parameters are required.
Introducing a negative momentum ensures convergence, leading to
the algorithm

=0 =xp +Cyi_qs
Xl = proj];(yk - ag(xk)>»

with a € (O, 1/(2¢ L)) as the stepsize and momentum parame-

ter { € (0,(\/3 -1/ 2]. Additionally, overcomes the limitation of
methods that rely on problem constants (like Lipschitz continuity
parameter); the stepsize can be chosen adaptively, leading to the
adaptive golden ratio algorithm [26]

— 2 llxe = x, 11

“" mm{ e S s — g P }

(vi) Operator splitting methods [13]: The operator g can be split into
a summation of different operators. Solving VIP (1) in these cases
is equivalent to solving the fixed-point problem 0 € g;(x) + g,(x),
where g(x) + Ny (x) = g,(x) + g,(x) and N,(x) is the normal cone
of the compact, convex set V at the point x. The iterative update
of each sub-operator leads to convergence towards the solution. A
well-known class of these algorithms is the Douglas-Rachford split-
ting method [5], which can be written as

Vir1 = +agy)™ (xk - ag1(xk)>,

X1 =%+ EWpq1 — X4,

where the stepsize can be chosen « € (0, 1] and ¢ € (0,2) is a relax-
ation parameter. The convergence of this method is guaranteed for
different cases of g, and g,; we refer interested readers to [16,29]
for further details. Additionally, we refer them to [28] for further
algorithms related to applications of monotone variational inequal-
ities and an open source Python toolbox.

In the methods mentioned above, the projection operator onto the fea-
sible set V (projy,(+)) is a necessary operation of the algorithm which
can be costly in some cases. Frank-Wolfe (FW) is a classical approach
to avoid this projection complexity by resorting to a linear oracle min-
imization (as opposed to the quadratic optimization of the projection
operator) over the same set. Table 1 summarizes the computational com-
plexity of the linear oracle minimization and the projection onto certain
sets [11,9]. For concave-convex minimax problems and inspired by the
recent works [20,22,17], the authors of [15] and [10] prove conver-
gence of different types of FW algorithms. They demonstrate the numeri-
cal efficiency of the FW algorithm via illustrative saddle point problems,
in which projecting onto the corresponding sets is computationally de-
manding or even intractable; see the perfect matching problem as an
example of this class of problems [21]. Motivated by this, a natural
question is whether the FW algorithm can also be utilized for solving
the VIP (1). To the best of our knowledge, this question is still largely
unexplored, which is the focus of this study.

Contribution. Following the footsteps of the accelerated Nesterov’s
technique for solving strongly monotone variational inequalities [32]
and the FW algorithm for solving saddle point problems [15], we pro-
pose a novel accelerated algorithm with FW method as an oracle for
solving the strongly monotone VIP (1) and provide a non-asymptotic
convergence rate. To validate the theoretical results, we implement the
proposed method in the traffic assignment problem, an important ap-
plication in transportation and operation research [6,8,7], where the
complexity of the problem (the corresponding set) increases exponen-
tially with the number of variables.

Roadmap. The paper is organized as follows: Section 2 reviews the
Frank-Wolfe technique and states lemmas for solving minmax saddle
point problems. In Section 3, we propose our algorithm and provide the
technical proofs of the convergence theorems. Section 4 benchmarks the
proposed algorithm in a traffic assignment application. Finally, the con-
clusion and future research directions are given in Section 5.

Notation. Let V be a finite-dimensional real Hilbert space equipped
with the standard inner product (-,-) and the associated norm || - || (so
that we may simply write [|x||?> = (x, x)). We define the normal cone of
the set V at the point x €V as Ny(x)={u:u'x>u'y, Vy € V}. The
operator proj,), denotes the projection onto set ¥ with respect to the
underlying inner product norm (i.e., proj,ep(x) :=argmin,ey [[x — y|D.
We define the diameter and boundary distance of a set X" as

Dy:= sup ||x—x'|| and o,(x):= min ||x —s|.
x,x'eX SEIX
The function F(x,y) is (uy,Hy) strongly convex-concave if F(x,y) —

”7”‘) [Ix1? + ﬂTy l¥]|? is convex-concave. The constants Lyy and Ly are
the cross smooth constants of F(x, y) (or equivalently the Lipschitz con-
stants of VF) over the set X X Y if for all x,x € X and y,y€ Y

IV F(x,9) =V F, Il < Ly lly = 3l
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IV, F(x,y) = V,F& Il < Ly yllx - =.

For brevity, we refer to F(x,y) as a smooth function with constant L, =
max(L yy, Ly y) if it is cross-smooth over X x Y.

2. Assumptions and technical preliminaries

Before proceeding with the solution to the VIP (1), we begin with
some assumptions and lemmas that will be used throughout the paper.
We note that most of the results build on the seminal work by Nesterov
[32] and Jaggi [20]. The following assumptions hold throughout this
study.

Assumption 2.1 (Operator regularity). We assume that the solution set
of VIP (1) is nonempty, where V is a compact, convex set and the oper-
ator g satisfies the following:

(i) L-Lipschitzness:
(ii) p-strong monotonicity:
V.

Vx,yeV,
Vx,y €

llg(x) — gl < Lllx - yll
(g()—g(), x—y) > ullx—yl1%,

Next, we start with a minimax problem, a core component of our
convergence analysis for VIP (1). Specifically, by leveraging the follow-
ing minimax oracle at each iteration, we aim to eliminate the need for
costly projection steps:

i F(x,y). 2
min max (x,) (2)

An important concept relevant to the convergence of the minimax prob-
lem (2), which helps us measure the convergence rate of (2), is the error
function, defined as

hy 1= F(xp, 9 — F(Xp, yi)s 3
where X, = argmax F(x,y,) and §, = argmax F(x;,y). The following
xeX yey

proposition summarizes the convergence of (2) in terms of the error
function Ay, using the FW algorithm.

Algorithm 1 FW-minimax oracle for (2) [15].

1: Let zy = (xg,y)) EX XY
2: for k=0...T do

3:  Compute the partial gradients of F: r, = < Vi F O 1) ),

—VyF(xk, yk)
4:  Compute the desired direction: s, = arg n{{)iny (z,7%)s
ZEAX

. . — . _ 2
5:  Compute the stepsize: a;, = min (1, %(zk - sk,rk)) or @ = 5 (based
on Proposition 2.2)
6:  Compute the next iteration: z, = (1 — a)z; + a; 5.

7: end for

Proposition 2.2 (FW-minimax oracle convergence [15, Theorem 1]). Let
F(x,y) be Ly-smooth continuous and (uy, j1y) strongly convex-concave on
a convex, compact set X X Y and (x,, y,.), the solution of (2), is in the interior
of X X Y. Consider applying the Frank-Wolfe algorithm (Algorithm 1) for
saddle point problem (2) with the stepsize

. v
ak:mm(l,%(zk—sk,rk)), “
where the constants are
2 2 2
o LoDy + LoD},
p=viz=, C=—"F—,
2C 2
2 D, L Dy L
_l_imax{ﬂ Dby

o, = \/min(u(yai,(x*), Myﬁi,(y*)l
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Then, the convergence rate for the error h; (3) is O ( (1 —p)6 ).

Moreover, if ¢, > 2max{

-2
24k

DyLyy Dylyx
Hy ’ Hx
then the error h;, (3) decreases at a sublinear rate of O(1/k).

} and the stepsize is set to

Ay

Remark 2.3 (FW-variants). Other FW variants, including the away-step
and pairwise algorithms, achieve similar convergence guarantees un-
der alternative assumptions to those in Proposition 2.2, such as when
the feasible set is a polytope. These variants often yield better practical
performance by allowing corrections to previously chosen directions,
which helps avoid flat regions and reduces zig-zagging behavior near
the solution. More recently, the authors in [10] proposed a projection-
free method under assumptions similar to those in Proposition 2.2, but
without requiring the solution to lie in the interior of the feasible set
and their method is based on a three-loop algorithm. The proposed FW
Algorithm 1 can be replaced by these alternatives. For further details,
we refer interested readers to [15,10].

Proposition 2.2 lays the foundation for proving the convergence of
the projection-free algorithm for solving VIP (1). It avoids expensive
projection steps by instead solving a strongly convex-concave minimax
problem at each iteration, which is the central motivation behind this
study.

We move forward by introducing a gap function to measure the op-
timality gap of VIP (1) and by proposing two lemmas that are central to
the development of the algorithm in this paper.

It is not difficult to see that, in light of the strong monotonicity of the
operator g, the solution of VIP (1), x*, satisfies the following inequality

U )z

(80, x" =y + Ty =x"I” < (g, x" = y) = Tlly=x"|? <0, Vye.
%)

In order to measure the approximated solution of (1), we introduce a

gap function f(x) and the following lemma.

f(x) :=sup{<g(y),x—y)+glly—XIlz} (6)
yeY

Lemma 2.4 (Gap function properties, [32, Theorem 1]). The gap function
f(x) is a nonnegative, well-defined, u-strongly convex function on V and
vanishes at the unique solution of (1).

Using Lemma 2.4 and the definition (6), our goal is to minimize f(x),
which is equivalent to solving the VIP (1). To this end, let us define the
following quantities

N 1 N
Sy =D Ay Ty = DA
i=0 SN i=0

N
Ay :=r§1€al>7c{§/1,-[g(y,—),y;—ﬂ—%”"_yfllz]}’ @

where { yi}iﬁ 0 C YV and {Ai}fi , are sequences of arbitrary points and
positive weights, respectively. Next lemma shows the upper bound for
the gap function f(x).

Lemma 2.5 (Gap function upper bound, [32, Lemma 1]). Using the quan-
tities defined in (7), we have the inequality

1
SN S Ay (8)
N Sy N

The proof follows from the definition of the gap function (6) and the
strong monotonicity of the operator g(x). For brevity, we skip the proof
and refer interested readers to [32] for further details.
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3. Proposed Frank-Wolfe algorithm and convergence analysis

Building on the key proposition and lemmas from the previous sec-
tion, this section pertains to the analysis of convergence for using the
FW algorithm as an oracle in solving VIP (1). The general form of our
proposed method is provided in Algorithm 2, which follows the ac-
celerated gradient descent method [32], with the difference that the
projection steps are replaced by a strongly convex-concave minimax
problem solved by the FW algorithm.

Lemmas 2.4 and 2.5 shed light on the behavior of the gap function
(6) and highlight the goal of minimizing and controlling the growth of
Ay . For f >0, consider the functions

k
Wl (x) 1= (g().y—x) ~ gnx P OR ZO Al ().
i=
We note that A, = ma);}; ¥, (x), and the functions u/f (x) and ¥, (x) are
XE

strongly concave with constants § and u.S), respectively. Consider the
following iterations

. H 2}
x, = arg min maxq W(x,x,)— =S, ||x — x s
k gxkev Xev{ (%, x4) 2 wll «ll

- - _ _ _ _ _H 2}
Ves1 argykrilllgvr)?eag{( 8X)=BWr1 =% X=Yiey1) =7 IX =i 17 7.
9

where

k
W(x,xp) = (V¥ (xp), x — X)) = <Z Ai(—gy) — u(xp = y;)), x — xk>
i=0

k
=—uSp{x, x —x;) + (Z Ai(=g(yi) + py), x — xk>.
i=0
We are now in a position to derive an upper bound for A, using itera-

tions (9), which helps us establish the convergence of the iterates to the
solution of the VIP (1).

Proposition 3.1 (Upper bound of Ay). If A;,1 < 2”—ﬁSk, then by using the
iterates (9), we have

1 p
Bprt Byt Ay [mug(ym) — 80l = Sy — x| A0)

Proof. We know that ¥;_;(x) =¥, (x) + lkﬂw;‘w (x). Then, we have
Apy1 = T:é{\yk(x) + ¥y (x)}
U
<A+ ‘;‘g}{ (VP (xp)sx — x4) — ESk”x - xk||2 + /11(+11I/5k+] (X)}
<AL+ max{ W(x,x;)— ESkllx - xkllz}
xeV 4
H 2
+ r;IEa]);{ —ZSkllx = Xill” + Ay (x)}.
oA (My,-—g(y,-))
Sk
then, from the definition of the projection operator and the first-order

optimality condition, we have W (x,x") = (V‘Pk(x*), x—x") <0. There-
fore, we can conclude that, as indicated in Proposition 2.2, the iterates

Note that, if we consider x"=arg max Y, (x)=proj,cy (
XE

X in (9) ensures min max{ W (x,x;) — &S, |Ix — xkllz} < 0. We further
Xk €V xeV 4

note that this strongly convex-concave minimax problem can be solved
by FW algorithm with (sub)-linear convergence guarantee. Therefore,
by the definition of x, in (9), we arrive at

<0

Ve

. H 2
A <A +m1nmax{Wx,x - =S lx=x }
et S Ay + Min, max (%, x;) 1 el el
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H 2
maxi — =S, ||x — x A Ho(x }
+ xev{ 1 il kll” + k+11l/yk+]( )

H 2
<A +max{——S X=X
kT ey 4 il il

+ Ayt [(g(Yk+1)7yk+l —Xx) - %||X—Yk+1||2] } amn

Now, let us analyze the second term in the “max” part of the right-hand-
side of (11). Note that

H
(8Vk41)s Vi1 —X) — 5 lIx = yeslI?
U
=(gWpt1) — 80Xp)s Vi1 — X) — b 1% = Yet1 ”2 +(g(xp)s Viy1 — X)»

Similar to the previous part, if y™ considered as y* = proj.cy (x = % ),
we have

(—g(x) = PO —x),x—yT) <0, Vxe.

Therefore, y, . in (9) ensures min max{(—g(xk) = BVpg1 — Xp)s X —
Yk+1EV x€V

Viw1) — % X —Yii ||2} < 0, and using the definition of y,,; we can write

H
(8Vka1)s Vi1 —X) = 2 llx = yq 12

7]
< lgGirn) = g6OMer =Xl = Z1yeer = X112

+ BVia1 = X X = Vi1 )s

using above inequality and maximizing the right-hand-side based on
v, — x||, one obtains

U
(EWra1)s Viy1 — %) — 3 1x = Yet1 ||2

1 B B
< m ||g(Yk+|) —g(xk)||2 + §||x - Xk||2 - E”ka - Xk||2~

Putting the above inequality together with (11), and using the upper
bound on 4, |, we obtain the inequality (10). [J

Now by setting A,y = 57 5) = ;7Sk in (10), where L and y = £
are the Lipschitz constant and the condition number of the operator
g, respectively, we have A, ; < A;. We are now ready to show the
convergence rate of Algorithm 2 for solving VIP (1).

Algorithm 2 Frank-Wolfe type algorithm for the VIP (FW-VIP).
1: Giveny = 5,10 =1, e.
2: for k=0,...,T do

x, =arg min maxq W(x,x,)— £.5,|x — x 2}
¢ =arg min max { W (x.x) = 45,1 =

FW-minimax oracle 1
with e-precision

@

= i 2 - —L —x,),x—
Virl drgyglgngg{< )= L1 —X1)s X— Y1)
- Slx =yl

1
Asr = ;Sk!

S

end for
L 1 yk
output: j, = < Do Aivie

IS

Theorem 3.2 (VIP-convergence via FW-minimax oracle). Consider the
VIP (1) under Assumption 2.1, and the FW-minimax oracle 1. Lety = L/u
be the condition number of the operator g, and f the gap function defined
in (6). Algorithm 2 returns an € accurate solution to (1) if the number of
iterations is T > (y + 1) log (yzf(xo)/e).

Before proceeding with the proof of the theorem, we summarize
the overall convergence complexity of using Algorithm 2 with the FW-
minimax oracle 1 as follows.
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Remark 3.3 (Overall complexity of VIP solution). The overall complexity
of the solution to the VI problem (1) is the product of the complexity
of the FW-minimax oracle in Algorithm 1 with the complexity of Algo-
rithm 2, under the assumption that the solution of each sub-minimax
problem lies inside the feasible domain V. In particular, by using the
stepsize (4) in Algorithm 1, resulting in
O(log(1/€))-O(log(1/e)) = O (log*(1/¢)) .
——— ——

Theorem 3.2

Proposition 2.2

Moreover, by leveraging the diminishing stepsize a, = -2 if the ex-
tra assumption of Proposition 2.2 is satisfied, the overall complexity of
solving the problem becomes

O(log(1/e))- O(1/e) =0O(log(l/e)/e).
———— N——
Theorem 3.2 Proposition 2.2

Proof of Theorem 3.2. Using the definition of .S} in (7) and the fact
that S, = Ay = 1, we can write

1
Spe1 = Sp + Ay = <1+ ;> S,.

By using Lemma 2.5, the corollary of Proposition 3.1, and using the
sequence S;,; = (1 + i) S, with Sy =1, we can conclude that S; =

k
(1 + %) . Therefore, we obtain
k
- 1 Ay 4
f(yk)S—AkS7k=<— Ay
ey

1\ ke
=<1——) Ag < Age 7.
1+y

Now, we just need to approximate A,. Using the definition of A and ¥,
we can write

B0 = gy o0 = v ) = 6000 %= = Skl
= max{ (g(xp) — g(x™),xg — x) + (g(x*), xy — x) — 2 [Ix - X()||2}
xeV 2
* * H 2
< (g% = x) + max{ (g(xg) = g(x"), g = x) = L llx = x, 2}
x€V 2

<(g(x"),xg —x) + L lIx* = xoll>.
< 2

Then, by the definition and strong convexity of the gap function f in
(6), the last inequality is less than f(x;). Thus, the theorem’s statement
is concluded. []

We close this section by noting that the total computational time
for solving the VIP (1) is the product of the convergence complexity
of the considered algorithm and the complexity of the mathematical
operations, e.g., projection(s) used at each iteration, which can be com-
putationally demanding in some problems. In the next section, we see
this behavior and observe the effectiveness of our proposed projection-
free method compared to commonly used state-of-the-art algorithms for
strongly monotone VIP.

4. Numerical results

We demonstrate the performance of Algorithm 2 on the traffic assign-
ment problem, an important problem studied in the transportation and
operations research literature. To evaluate our performance, we com-
pare our proposed algorithm (FW-VIP) with projected gradient descent
(PGD) [30] and Nesterov’s accelerated gradient method (NAG) [32], two

Operations Research Letters 65 (2026) 107388
methods commonly used for solving strongly monotone VIP in the liter-
ature. Before proceeding with the simulation results, let us first briefly
explain the traffic assignment problem.

Traffic Assignment Problem (TAP): Assume N be the set of nodes,
£ be set of directed links, and W denotes the set of origin-destination
(OD) pairs. We assume for all w € W there is d,, > 0 representing traffic
demand entering from origin and exiting from destination. For each OD
pair w € W, the demand d,, is to be distributed among a given P, of a
paths joining w. Defining x, that shows the flow carried by path P, we
introduce the feasible path flow vector x = {x,|lpE Py, wE W}, and
the set corresponding to feasible path flow vector as

X = {xl Y x,=dy x,20,Yp€ P, weW}.

PEP,
Each collection of path flows x € X defines a collection of links flows
y;; with

vi= Y Y 8,0, (L) EE, 12)
weW peP,,

where 6,(i,j) = 1 if path p contains link (i, j) and zero otherwise. The

vector of links flows y = {y;; | (i,j) € £} can be written as y = Ax where

A is the arc-chain matrix defined by (12). Similarly, we can define the

set of feasible link flowsas Y = AX =

(i,j) € €, there is a given function T; Y - R, which is the measure
of the delay in link (i, /). The vector with components T;;(y) is T(y) and
due to the choice of T}; it is mostly strongly monotone operator. For each
x € X and corresponding y = Ax, the vector T'(y) defines the following
function for each we W and pe P,

{y|y=Ax, xeX}.Foreachlink

T,0= Y 8,6, )T;0),

(i.j)e€
which shows the total travel time of path p. Then, TAP is to find x* € X
such that for all p € P,, and w € W we have

T5(x") = ;161%% T,(x%) and x, > 0. (13)

As shown in [12], if T'(x) denotes the vector with Tp(x) components,
then T'(x) = ATT(Ax) and TAP (13) can be reformulated as the follow-
ing VIP:

find x* such that (x —x*)TT(x*) >0, VxeX. 14)

Note that ATT(Ax) is not necessarily strongly monotone unless AT A is
inevitable (as is the case in our simulation).

We consider TAP with the same structure in [7] which can be viewed
as model of a circular highway. Fig. 1 illustrates the corresponding
model, in which we consider five OD points, numbered 1-5, and five OD
pairs: (1,4), (2,5), (3,1), (4,2), and (5,3), associated with the OD points.
Each OD pair is linked with two possible paths (clockwise and counter-
clockwise). The links, types of links, time delays on each link, and the
demand for each OD pair are given in Table 2, where h(x) = 1 4+ x + x>
and we set k¥ = 0.5. Note that we assume flows cannot utilize the exist-
ing ramp that does not lead to its intended destination. Fig. 2 shows the
optimality gap of the corresponding VIP with parameters reported in
Table 2. We note that, for a fair comparison and to demonstrate the ef-
fectiveness of the projection-free algorithm, we plot the optimality gap
versus the total iterations multiplied by the total number of projections
(in PGD or NAG) or LMO (in Algorithm 2). We also note that both pro-
jection and LMO operators are evaluated using the same solver, namely
0SQP [35].

5. Further discussion, limitations, and future directions
In this section, we provide additional insights concerning the pro-

posed Frank-Wolfe technique for solving strongly monotone variational
inequalities (1), its limitations, and potential future directions.
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Table 2
Parameters in TAP.
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Types of links

(1) Highway links:
(2) Exit ramps:

(3) Entrance ramps:
(4) Bypass links:

17, 27, 37, 47, 57, 18, 28, 38, 48, 58.
14, 24, 34, 44, 54, 12, 22, 32, 42, 52.
11, 21, 31, 41, 51, 13, 23, 33, 43, 53.
15, 25, 35, 45, 55, 16, 26, 36, 46, 56.

Delay on links

(1) Delay on highway link k:
(2) Delay on exit ramp k: h|flow on k|.
(3) Delay on entrance ramp k:

(4) Delay on bypass link k: h|flow on k|.

10 - h|flow on k] +2kx-h [ﬂow on exit ramp from k].

h{flowon k| +«-h [ﬂow on bypass link merging with k] .

Demands on OD pairs

d(1,4)=0.1,d(2,5=0.2,d(3,1)=0.3, d(4,2) =04, d(5,3) = 0.5.

Fig. 1. TAP model (Fig. 2 in [7]).

| — proj(z —

]0-6 I I I I I I
0 1 2 3 4 5 6 7

Hiter x #(proj/LMO) <10*

Fig. 2. Optimality gap of the VIP in the TAP. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

(i) Further insights into the Frank-Wolfe technique for solving

VIP (1): The main motivation behind the Frank-Wolfe technique
is to avoid expensive projections in each iteration and to select a
more suitable descent direction compared to projected methods,
which may exhibit zig-zagging behavior for certain constraint sets.
This can lead to lower computational complexity and potentially

(i)

(iii)

(@iv)

faster convergence. Furthermore, as stated in Proposition 3.1, we
only require the negativity of

N(x,y) := i?é%’feaﬁ{ W (x,x;) — %Skllx —x? }
to guarantee the convergence of Algorithm 2. While this negativity
is ensured by the worst-case convergence bound in Proposition 2.2,
in practice the inner Frank-Wolfe problem can be terminated as
soon as N (x,y) becomes negative, significantly reducing computa-
tional complexity.
Extension to monotone variational inequalities: Solving the VIP
using a projection-free algorithm requires solving a minimax sub-
problem. Unfortunately, existing projection-free methods for mini-
max problems rely on strong convexity-concavity of the underlying
function, which in our setting can be ensured by assuming strong
monotonicity of the operator in the VIP. Developing a Frank-Wolfe
method for minimax problems without this assumption is a key step
toward extending these methods to general monotone variational
inequality problems and is an important direction for future work.
Relation to prior works and alternative assumptions: Based on
the structure of the VIP, alternative assumptions can be applied for
the Frank-Wolfe algorithm in solving the inner minimax problems,
replacing the requirement in Proposition 2.2 that the solution lies
strictly within the domain:
The sets X and Y are polytopes (case (I) in Theorem 1 [15]): In
this case, the interior-point assumption is not required. Instead,
we can use the away-step Frank-Wolfe algorithm (Algorithm 3
in [15]) and the concept of pyramidal width (Eq. 9 in [22]) in-
stead of the border distance o, while still guaranteeing the same
convergence as in Proposition 2.2.
More recently, [10] proposed a projection-free algorithm (Algo-
rithm 3) under a similar assumption to Proposition 2.2, without
requiring the solution to lie in the interior of & x Y. This al-
gorithm requires O(1/ \/E) first-order and O(1/¢?) linear opti-
mization oracle calls to achieve e-precision for the saddle-point
problem (2). Its main limitation is implementation complexity,
as it involves three nested loops per iteration.

Limitations and future directions:

+ The primary limitation of the proposed method is the presence of
a secondary loop in each iteration for solving the minimax prob-
lem. In the context of the Frank-Wolfe algorithm for minimizing
a smooth convex function, two key inequalities, smoothness and
convexity, are typically used. For the VIP, no explicit value func-
tion exists, making these inequalities difficult to apply. Although
we can define a convex gap function f(x) (6), whose minimiza-
tion is equivalent to solving the VIP, this function is parametric,
complicating the use of standard convex optimization inequali-
ties. Restricting the domain to specific sets and leveraging duality
may allow for a single-loop algorithm, which is an important fu-
ture research direction. Adaptive or decreasing accuracy require-
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ments for the inner loop may also help eliminate the secondary
loop.
« Another limitation is the algorithm’s dependence on problem-
specific constants. Future extensions could involve adaptive step-
size methods [26], which approximate Lipschitz or strong mono-
tonicity constants to accelerate convergence.
Recent works, such as [24], establish Newton-type methods
combined with Frank-Wolfe techniques for constrained self-
concordant minimization, and [23] propose high-order methods
for solving the VIP. Developing high-order methods for the VIP
using Frank-Wolfe techniques represents another promising re-
search direction.
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