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A B S T R A C T

Bioprocesses are scaled up for the production of large product quantities. With larger fermenter volumes, mixing 
becomes increasingly inefficient and environmental gradients get more prominent than in smaller scales. 
Environmental gradients have an impact on the microorganism’s metabolism, which makes the prediction of 
large-scale performance difficult and can lead to scale-up failure. A promising approach for improved under-
standing and estimation of dynamics of microbial populations in large-scale bioprocesses is the analysis of mi-
crobial lifelines. The lifeline of a microbe in a bioprocess is the experience of environmental gradients from a 
cell’s perspective, which can be described as a time series of position, environment and intracellular condition. 
Currently, lifelines are predominantly determined using models with computational fluid dynamics, but new 
technical developments in flow-following sensor particles and microfluidic single-cell cultivation open the door 
to a more interdisciplinary concept. We critically review the current concepts and challenges in lifeline deter-
mination and application of lifeline analysis, as well as strategies for the integration of these techniques into 
bioprocess development. Lifelines can contribute to a successful scale-up by guiding scale-down experiments and 
identifying strain engineering targets or bioreactor optimisations.   

1. Introduction

Microbes in their natural habitat experience continuously changing
environments. The amplitude and frequency of the environmental 
changes depend on the habitat, for example soil, water or the body 
(Nguyen et al., 2021b). Microorganisms are adapted to cope with the 
dynamics in their natural environments. In biotechnology, they are 
introduced to an artificial environment: the bioreactor. 

In the bioreactor, the microbial population is kept in well controlled 
conditions for the production of biotechnological products like high 
values molecules. Scale-up of bioprocesses to large volumes enables the 
production of large product quantities. Typical industrial-scale stirred 
tank reactors (STR) and bubble columns have volumes in the range of 
50–500 m3 (Fackler et al., 2021) though larger volumes may be 

encountered. 
The scale-up of a bioprocess from laboratory scale to production 

scale (Fig. 1) is a challenge with the risk of affecting the efficiency and 
profitability of the process (Crater and Lievense, 2018; Lara et al., 2006). 
One phenomenon observed during scale-up is the formation of envi-
ronmental gradients in large-scale bioreactors, which are less profound 
in lab-scale bioreactors. Nutrients, oxygen, control agents and temper-
ature are distributed in the fermentation broth by mixing. When moving 
from small to large volumes (Fig. 1), mixing to reach the same degree of 
homogeneity in the same time becomes increasingly impractical, as the 
needed power input scales faster than the circulation time (Lara et al., 
2006). This discrepancy results in longer mixing times in large-scale 
bioreactors, which can easily increase to more than 2 min for 95% ho-
mogeneity (Vrábel et al., 2000). The microorganisms experience the 
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resulting process parameter gradients in the bioreactor and need to 
adapt accordingly, which leads to increased metabolic costs (Minden 
et al., 2022) and population heterogeneity (Delvigne and Goffin, 2014). 

Both, positive effects like increased cell viability (Enfors et al., 2001) 
and negative effects, such as reduced growth and production (Lara et al., 
2017), have been reported in the presence of environmental gradients. 
In either case, the predictability of the process performance at different 
scales is weakened, which contributes to the complexity of the scale-up 
challenge. 

As we need to “[live] with heterogeneities in bioreactors” (Lara et al., 
2006), it is important to analyse the effects of gradients in bioprocesses 
on the production host to estimate the impact of scale-up effects on 
productivity and to take counter measurements (Fig. 1). In the 1980s, 
Oosterhuis introduced the concept of the scale-down procedure in order 
to analyse large-scale gradients in lab-scale fermenters and propose 
optimisations for large-scale bioprocesses (Oosterhuis, 1984). The 
applied lab-scale bioreactors are modified to mimic gradients by using 
multi-compartment reactors consisting of stirred tank reactors and plug 
flow reactors or by using flow-inhibiting elements (Neubauer and Junne, 
2016). Each of these compartments is dedicated towards a parameter 
extremity (e.g. glucose overflow, oxygen depletion) and mimics the 
average mixing times of large-scale bioreactors. 

With the application of scale-down experiments, insights can be 
generated on the microbial population’s physiology in fluctuating en-
vironments, like substrate consumption, − omics, by-product formation 
and growth rates (Nadal-Rey et al., 2020), which can, for example, be 
interpreted as advice for strain development (Löffler et al., 2016). The 
classical scale-down fermenters are, however, limited: different process 
parameter gradients cannot be decoupled (e.g. DO and glucose con-
centrations or pH and osmolarity) and the frequency and amplitude of 
the environmental changes is strongly dependent on the tested param-
eter and microorganism (Haringa et al., 2018a). The chosen scale-down 
configuration greatly influences the results, which can lead to contra-
dictory conclusions (Nadal-Rey et al., 2020). Furthermore, the output of 
scale-down experiments is predominantly population averaged data. 
Approaches to measure population heterogeneity during scale-down 
experiments exist (Delvigne et al., 2009), but are not commonly 

applied and cannot track individual microbes over time. 
Analysing the reaction of individual microbes to gradients and dy-

namic environments is a promising approach for a deeper understanding 
and better predict the microbial population dynamics of large-scale 
bioreactors. One possibility is to virtually take the point-of-view of a 
single cell travelling through different zones in a large-scale bioreactor 
and record what it experiences. Such a timeline of experienced changes 
is called “lifeline”. 

This review aims to introduce the reader to microbial lifelines in 
bioprocesses and their analysis from an interdisciplinary point of view. 
After an introduction to the concept and definition of lifelines, different 
methods to determine lifelines are presented and their contribution to 
bioprocess development is discussed. Finally, an overview of current 
challenges of the determination and application of microbial lifelines in 
bioprocesses is given, as well as possible future developments to further 
advance this field of research. 

2. Lifelines – A brief introduction 

The concept of lifelines was introduced in the context of computa-
tional fluid dynamics (CFD) simulations in the pioneering work of Lapin 
et al. (2004). In their approach, Lagrangian particle tracking is used to 
follow the position of massless virtual particles, representing the 
biomass, over time. The observed local condition in the environment of 
these virtual microbes is registered as a function of time, which is called 
“lifeline”. 

To get an indication of the experienced extracellular conditions, 
unstructured kinetics to describe the biomass are sufficient. The largest 
novelty in the approach of Lapin et al. (2004), however, was the com-
bination of lifelines with structured-segregated models: each particle 
can be regarded as an agent (Kaul et al., 2013) and a structured meta-
bolic model can be used to predict the intracellular composition of each 
particle, and thus interaction between extracellular gradients and 
intracellular response. Lapin et al. (2004) demonstrated, that the 
autonomous glycolytic oscillation in a population of Saccharomyces 
cerevisiae is synchronised in ideally mixed reactors, but the synchronism 
is lost with increasingly non-ideally mixed environments. 

Fig. 1. Scale-up is an essential step in bioprocess development, in which the reactor volume is increased from small laboratory to large industrial fermentors. With 
increasing scale, more pronounced environmental gradients form. The scale-down procedure (Oosterhuis, 1984) aims to reproduce the large-scale regime in lab-scale 
bioreactors simulations, like multi-compartment bioreactors. Using this simulation, optimisation strategies can be tested and later be implemented in large-scale. 
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The next milestone in lifeline research was the corresponsding 
analysis proposed by Haringa et al. (2016). While an individual lifeline 
of a single cell represents the core of lifeline research, the true power of 
lifelines lies in observing the biomass as the sum of individual cells. 
Therefore, a statistically significant number of lifelines needs to be 
considered. Haringa et al. proposed three different methods to analyse a 
large number of lifelines statistically: regime analysis (Haringa et al., 
2016), arc analysis (Haringa et al., 2016) and Fourier analysis (Haringa 
et al., 2018a). Using regime analysis, a lifeline is categorized based on 
the three metabolic regimes experienced by the microorganism, e.g. 
excess, limitation and starvation of a nutrient. In each regime, it is 
assumed that cells have a consistent metabolic response. The analysis 
includes the residence time in each regime and the transition fre-
quencies from one regime to another. If the focus lies on the magnitude 
of the environmental fluctuation, arc analysis can be applied. An arc is 
the time a cell needs to cross a set baseline twice. The half-maximal 
substrate uptake rate can function as such a baseline. Analysing the 
maximum of the arc, the magnitude of a fluctuation can be estimated. 
Fourier analysis is the method of choice, if the lifelines are highly pe-
riodical and do not vary greatly between cells, for example in airlift-loop 
reactors. Of those statistical lifeline analysis methods, the regime anal-
ysis is most widely applied (Kuschel et al., 2017; Kuschel and Takors, 
2020; Siebler et al., 2019). 

By using lifelines for the analysis of bioprocesses from a cell’s 
perspective, the cell itself is put into focus. As this notion spreads from 
computational modelling to other research fields, the need for a differ-
entiated definition of the term “lifeline” arises. 

In a bioreactor, a microbe moves rapidly on a specific trajectory 
(Fig. 2). Due to process parameter gradients in large-scale bioreactors, 
the trajectory crosses zones with different parameter conditions. From a 
microbe’s point of view, this results in a condition-vs-time series of 
environmental conditions. Environmental changes, however, cause 
intracellular reactions, so that a cell on a trajectory in a heterogeneous 
environment will also experience an intracellular condition-vs-time se-
ries. Different cells will encounter different environmental changes in 
magnitude, duration and frequency, leading to individual environ-
mental and intracellular cell histories and eventually population het-
erogeneity (Delvigne and Goffin, 2014). 

Definitions of the term “lifeline” differ (Table 1). The first concept 
defines the trajectory itself as the lifeline, while the cell’s perception and 
reaction are attributes of the lifeline (Kuschel et al., 2017; Kuschel and 
Takors, 2020; Wang et al., 2020b) or can be analysed with respect to 
environmental fluctuations and metabolic state (Lapin et al., 2004; 
Lapin et al., 2006; Siebler et al., 2019; Wang et al., 2020b). The second 
definition focusses on the cell’s perception of their environment. The 
lifeline is the condition-vs-time series from a microbe’s point of view 
(Haringa et al., 2016; Haringa et al., 2018b; Haringa et al., 2018a; 

Fig. 2. Due to non-ideal mixing, environmental gradients form in large-scale bioprocesses. By following the trajectories of single cells in the bioreactor, the spatial 
gradients are seen as temporal fluctuations from a cell’s point of view, which is called “lifeline”. The environmental lifeline, which can also be described as 
extracellular lifeline, acts as input signal for cells and causes fluctuating reactions in the cell in the course of time, which is the intracellular lifeline. 

Table 1 
Literature overview of lifeline definition. X indicates the definition stated in the 
publication, while (X) shows that the authors acknowledge a broader term for 
the definition of lifelines. Comments written in () point out, how the authors see 
the other aspects of lifelines outside their own definition. References marked 
with (*) did not use the term “lifeline”, but applied the concept.   

A lifeline is a … 

Reference Trajectory Environmental 
condition vs. time 
series 

Metabolic condition 
vs. time series 

Anane et al., 
2018  

X (X) (“study response 
kinetics”) 

Bisgaard et al., 
2020  

X  

Hajian et al., 
2020  

X (X) (“readout of 
lifeline”) 

Haringa et al. 
2016, 2017, 
2018b, 
2018a, 2022  

X (X) (lifeline readout; 
evaluation of 
metabolic response”) 

Ho et al., 2019, 
2022 

X   

* Jones et al., 
2016 

(X) X (X) 

Kuschel et al., 
2017 

X (X) (“experienced by 
microorganism”) 

(X) (μ-lifeline shown) 

Kuschel and 
Takors, 2020 

X (X) (X) (μ-lifeline shown) 

Lapin et al., 
2004, 2006 

(X) X (X) (analysis of 
intracellular 
concentrations in 
time) 

*Liu et al., 2016 (X) X  
*Loomba et al., 

2018 
(X) X  

*Marshall and 
Sala, 2011 

X (X)  

*McClure et al., 
2016  

X  

Perner-Nochta 
and Posten, 
2007 

X (X) (light lifeline 
shown)  

Schmitz et al., 
2019   

X 

Siebler et al., 
2019 

(X) (“flowing 
along 
lifelines”) 

X (X) (translation of 
environmental 
changes to YP/X) 

Wang et al., 
2020a  

(X) X 

Wang et al., 
2020b 

(X) X (X) 

Zieringer et al., 
2021  

X (X) (Lifelines serve as 
input for biological 
models)  
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Siebler et al., 2019). Using the lifeline, the metabolic state of a cell can 
be assessed (Hajian et al., 2020; Haringa et al., 2018b; Wang et al., 
2020b; Wang et al., 2020a). The third concept is closely related to the 
second: a lifeline can also be an intracellular condition-vs-time series 
(Haringa et al., 2016). 

Lifeline research cannot be conducted without the cell as agent to 
perceive the environment. It is therefore reasonable to include the cell’s 
perception and interpretation of the gradients into the definition of 
lifelines. One option to account for the difference between perception 
and interpretation of gradients is to differentiate between environ-
mental (extracellular) lifeline and intracellular (metabolic) lifeline. 
Environmental and intracellular lifeline, however, are inseparably 
connected, because they influence and shape each other. In some cases, 
environmental and intracellular lifelines cannot be clearly distin-
guished. An uptake-rate–vs–time series, as applied frequently in works 
of Haringa et al., is strongly dependent on both the environmental 
condition and the metabolic state of a cell. 

All research on lifelines has in common, that it aims to assess the 
metabolic impact of large-scale gradients on microorganisms and mi-
crobial populations. This information can be valuable for insights into 
bioreactor performance (Siebler et al., 2019), guiding future strain en-
gineering (Zieringer and Takors, 2018), bioreactor design and operation 
(Hajian et al., 2020; Kuschel et al., 2017; Lapin et al., 2004) and paving 
the way for efficient and successful bioprocess scale-up (Wang et al., 
2020b; Wang et al., 2020a). 

3. State-of-the-art of lifeline determination 

Lifeline research has its roots in modelling, and as such, it is by far 
the most established approach to determine a microbe’s trajectory and 
environmental and intracellular lifeline. Alternatively, or additionally, 
experimental approaches can be used to capture lifelines, diversifying 
the possibilities of acquisition and gaining knowledge (Fig. 3). In bio-
reactors, flow-following particles can be applied. Radioactive particles, 
which are dragged along the flow, are used to capture trajectories (Sabri 
et al., 2018), while Lagrangian sensors can detect parameter fluctuations 
as they are dragged along, essentially recording an environmental life-
line (Bisgaard et al., 2020). On the other side of the spectrum, precise 
environmental manipulations in microfluidic devices combined with 
live-cell imaging apply an artificial environmental lifeline on living 
microbes to observe intracellular lifelines (Ho et al., 2022). Traditional 
scale-down bioreactors mimic gradients of large-scale conditions. In a 
perfectly mixed single-vessel scale-down reactor, all microbes will 
follow the same recordable lifeline, but for multi-compartment scale- 
down reactors, this is not possible. For this reason, scale-down studies 
are excluded in the following section and the reader is referred to Nadal- 
Rey et al. (2020) for a review of recent scale-down experiments. 

In the following sections, the possibilities to access microbial lifelines 
by measuring, modelling and mimicking will be regarded in more detail, 
highlighting the potential of every technique as well as major 
challenges. 

3.1. Measuring 

Ideally, a single-cell trajectory or environmental lifeline would be 
measured in situ. Process parameters like pH, shear stress and DO as well 
as substrate, product and by-product concentrations would be reported 
by a free-floating sensor the size of a microbe. Measuring process pa-
rameters in today’s large-scale fermentations can include (multiple) 
stationary sensors or moveable lance-based sensors, as was reviewed by 
Nadal-Rey et al. (2020). These approaches measure coarse-grained 
gradients, but fail to capture trajectories or environments of individual 
cells. Flow-following particles offer a reasonable approach for 
measuring either trajectories or environmental lifelines in actual large- 
scale bioreactors. Conceptionally, those particles take the place of a 
single cell as agent in the bioreactor. They are dragged along the flow in 

the bioreactor because they are small (smallest radiation particle 0.1 
mm, smallest sensor particle 7.9 mm) and minimally affected by buoy-
ancy and settling, thereby being able to mimic the microbe’s movement 
(Bisgaard et al., 2020). Particles equipped with a sensor are also known 
as Lagrangian sensor devices. 

To measure a position-vs-time series, a particle needs to be tracked 
either optically or by capturing emitted radiation. Optical techniques 
require transparent liquids and tank walls, which is very rare in large- 
scale bioreactors. The application of radioactive particles can circum-
vent this obstacle. With radioactive particle tracking (RPT) the motion 
of a single γ-ray-emitting particle is recorded via several sodium iodide 
scintillation detectors (Bashiri et al., 2016). The particle is small (~ 1 
mm (Bashiri et al., 2016)) and can be adapted in its density to fit the 
density of the target-phase (Sabri et al., 2018). Those attributes increase 
the flow-following capability. The detectors need to be placed strategi-
cally and close to the bioreactor in positions, that cover the whole 
bioreactor volume and circumvent the detection of γ-rays by more than 
one detector at a time (Bashiri et al., 2016). With computer-aided RPT, 
particle trajectories, local hydrodynamics, the liquid velocity field, 
turbulence kinetic energy and Reynolds shear stress can be measured 
(Sabri et al., 2018). 

RPT provides only positional data. Flow-following sensors can shed 
light into the environment that a moving cell encounters in bioreactors. 
By recording the sensor parameters in a large-scale bioreactor, this 
coarse-grained environmental sensor-lifeline gives insight into possible 
environmental changes in the actual bioreactor during the large-scale 
fermentation. The flow-following sensor can report measurements for 
multiple hours (Zimmermann et al., 2013) to two weeks (Todtenberg 
et al., 2015), resembling the timeframe of fermentation and thus, the 
lifeline span of microorganisms in fermenters. A single particle can be 
equipped with multiple sensors for different parameters. For now, sen-
sors measuring temperature and pressure are most common, but there 
are efforts to measure combinations of pH, dissolved oxygen concen-
tration, glucose concentration, potassium concentration and conduc-
tivity (Bisgaard et al., 2020). 

Sensor-based environmental lifelines are limited in their ability to 
depict lifelines due to challenges in their flow-following capacity and 
detection speed. Flow-following particles need to have a size of maximal 
1 mm to adequately follow the flow in a STR (Hofmann et al., 2022), but 
the smallest sensor particle has a diameter of 7.9 mm (Lauterbach et al., 
2019). This only allows the tracking of coarse-grained, approximated 
lifelines. Furthermore, the finite response time of the integrated sensors 
forecloses the detection of fast dynamics. For example, current DO 
sensors in flow-following particles have a steady state response time of 4 
s (Bisgaard et al., 2020). If the sensor comes in contact with a different 
DO zone for less than its response time, the signal will be smoothed the 
shorter the contact duration is. Shorter contact with a different DO zone 
in a bioreactor would not be detected. Additionally, different parameters 
need different sensors, which have different response times. 

Another substantial challenge is finding or financing large-scale 
bioreactors for research purposes (Nadal-Rey et al., 2020). Companies 
may not object to providing access to their bioreactors if the technique 
adds value, is easy to apply and does not compromise the bioprocess by 
contamination. Unfortunately, for trajectory tracking using techniques 
like radioactive particle tracking, detector arrays are needed in close 
proximity to the bioreactor (Sabri et al., 2018). The other possibility is to 
use radio transmission to extract the data, but the signal is lost when the 
distance is larger than 4 m (Lauterbach et al., 2019). This distance is 
decreased, when the sensor transmits from within a steel enclosure or 
complex media. Sensor particles are an academic playground and 
progress in developing a ready-to-use technology might accelerate the 
transfer to industry, and thus, available large-scale data. 

3.2. Modelling 

Modelling was the first feasible approach to capture microbial 
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Fig. 3. Lifelines can be assessed using methods of measuring, modelling and mimicking. Trajectories and environmental lifelines can be approximated in bioreactors 
using flow-following particles. By tracking a γ-emitting, trajectories are recorded, which can be used to reconstruct the position and velocity field. Lagrangian sensors 
detect environmental changes while they are dragged along the flow and transmit the data on radio frequencies. Trajectories, however, cannot be extracted. 
Modelling lifelines gives computational insights into trajectories, environmental and intracellular lifelines. The model has to be adapted accordingly, choosing 
between one- and two-way coupling and the integration of cellular reaction and regulation kinetics. Microfluidic single-cell cultivation is a tool to investigate cellular 
reactions to environmental changes. Coarse-grained, artificial environmental lifelines are mimicked to observe the resulting intracellular lifeline. 
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lifelines. For this, a minimum of two models are needed, which interact 
with each other: a model for the bioreactor environment and a model 
that describes the cell. Most common for calculating fluid flow for 
gradient or lifeline modelling is the use of CFD models (Hajian et al., 
2020), either using the finite volume approach (often with a frozen 
flowfield) (Haringa et al., 2016; Kuschel et al., 2017; Zieringer et al., 
2021) or, more recently, with Lattice-Boltzmann (Haringa, 2022), but 
less calculation-intensive approaches gain attention like CFD-based 
compartment models (Haringa et al., 2022; Nadal-Rey et al., 2021). 

The fluid dynamics of the bioreactor are typically modelled using an 
Eulerian approach wherein the flow and distribution of other relevant 
parameters, like gas holdup or nutrient concentration, are described by a 
continuum (field based) approach. In this framework, equations for fluid 
motion, like the Navier-Stokes equation, and the equations to calculate 
turbulence, mass transfer and substrate distribution can be included 
(Hajian et al., 2020). As substrate uptake of microbes alters the nutrient 
distribution, unstructured black-box substrate uptake kinetics are often 
applied in the Euler framework (Hajian et al., 2020), where the local 
nutrient specific uptake rate qs is directly linked to the local nutrient 
concentration Cs. 

The cell itself is modelled in a Lagrangian frame, meaning it is 
described by a point-particle of which the position is explicitly tracked 
through integration of the equations of motion. Microbes, which have a 
small diameter of microns, can be seen as a flow-following, massless 
particles; to account for turbulent motion, a random walk model is 
typically added to the equation of motions. This simplifies the trajectory 
calculation, because it may be assumed that the cells immediately adapt 
to the local fluid velocity, and velocity differences between the cell and 
surroundings do not need to be computed. For each cell, equations for 
substrate uptake and intracellular reactions can be included by a 
structured kinetic model. 

By combining the Euler approach and Lagrange framework, the cell’s 
reaction (in the Lagrangian framework) can be coupled to the environ-
ment it experiences (in the Eulerian framework), for example a change 
in substrate uptake rate as the cell travels through a region with different 
substrate concentrations. To decrease calculation time, the Euler-part of 
the model is often frozen in time, so that the cells travel through pseudo- 
stationary gradients. It is assumed, that the cells metabolism will not 
influence the overall gradient in the limited time (a few hundred sec-
onds) that can be calculated by Euler-Lagrange simulation in a reason-
able time. If the Euler-environment influences the Lagrange-cell, but is 
not changed by the cell’s reaction, it is called one-way coupling. Yet, it is 
more realistic that cells will shape their environment over time. This 
method of two-way coupling has, however, seldom been used (Lapin 
et al., 2004; Lapin et al., 2006). For a more detailed view on how to set 
up lifeline models using CFD, the reader is referred to Hajian et al. 
(2020). 

Typically, a large number of cells (~105) is needed in Euler-Lagrange 
simulation, to account for an even biomass distribution and therefore 
prevent artificial variations in the reaction distributions (Haringa et al., 
2017b). Each simulated cell represents multiple cells, that have the same 
trajectory, to incorporate the total biomass concentration into the model 
(Haringa et al., 2017b). Even more cells need to be simulated for models 
using structured kinetics, which considers differences in individual cells’ 
reactions, because variations in too few particles may otherwise lead to 
artificial fluctuations in the intracellular state. A large cell number de-
mands a lot of calculation time. Therefore, priorisation is needed on the 
most important reactions for the target research question and how much 
they can be simplified to still be representative (Tang et al., 2017). Tang 
et al. (2017) introduced the “9-pool-model”, reducing the penicillin 
production in Penicillium chrysogenum to five metabolite pools and four 
enzyme pools, which resemble the capacity of a metabolic pathway. 
These pools were connected by 10 reactions. Haringa et al. (2018b) later 
applied this model in lifeline modelling. The 9-pool model focuses on 
metabolites and enzymes, but ignores regulatory mechanisms concern-
ing transcription and translation, which can delay a cells reaction to the 

environment. Zieringer et al. (2021) demonstrated a model, that 
accounted for non-instantaneous cellular reaction to environments. 

Experimental knowledge about the bioreactor geometry and opera-
tion details as well as microbial kinetics is needed to establish and 
validate sophisticated models. The bioreactor geometry includes the 
height-diameter ratio, the number, position and geometry of turbines, 
ideally including according experimental data concerning velocity, ki-
netic energy and energy dissipation (Haringa, 2022), as well as the point 
of addition for any added substance like substrate, pH or gases (Haringa 
et al., 2016; Kuschel et al., 2017). To model the operation of the 
bioreactor, stirring speed, broth density, broth rheology, aeration and 
feeding rate need to be known. The power input predicted by CFD is a 
parameter that is commonly used for verification with experimental 
large scale data. Furthermore, the mixing time to achieve 95% homo-
geneity is also a parameter of interest for verification of model pre-
dictions. In large-scale bioreactors, the mixing time can be estimated 
using the circulation time, which in turn can be experimentally deter-
mined by measuring the lag time between top-fed addition of a pH active 
substance and the response of a bottom-stationed pH sensor (Haringa 
et al., 2016). To integrate the biological model, the microbe specific 
uptake rate qs of a substrate is the required minimum (Haringa et al., 
2016; Kuschel et al., 2017; Kuschel and Takors, 2020; Zieringer et al., 
2021). Often, qS is calculated from experimentally determined biomass 
specific yield coefficients YX/S and the specific growth rate μ (Kuschel 
et al., 2017). For the substrate uptake, the substrate specific uptake 
constant KS also needs to be experimentally determined. The further the 
focus of lifeline modelling shifts to intracellular lifelines, the more 
experimental data concerning the microbial dynamics is needed. As 
example, Zieringer et al. (2021) regarded the intracellular ATP demand 
of a cell travelling through the bioreactor. For this, they integrated 
experimental data concerning the transcriptional response to repeated 
starvations pulses, ATP consumption growth-independent maintenance, 
the total mRNA content, as well as the RNA-polymerase transcription 
velocity, the translation elongation rate and RNA and protein degrada-
tion rates. 

Lifeline modelling provides access to both environmental and 
intracellular lifelines with high temporal resolution. Models can more 
easily be fitted to the research question than actual large-scale bio-
reactors or other wet-lab experiments by adding relevant equations to 
the model framework or changing input parameters. This is what makes 
lifeline models very useful in optimizing bioprocesses. However, 
modelled lifelines typically consider a very narrow timeframe in the mid 
to late fed-batch phase of a bioprocess (Haringa et al., 2016) and also 
exclude cell division to simplify the model. Refining the model to better 
fit the research question, means to add more equations, which increases 
the computational power needed. To calculate lifelines for 105 cell with 
a duration of a few hundred seconds, the calculation time on a high end 
desktop computer can easily last weeks (Haringa et al., 2018b). Most 
lifeline models regard one process parameter (most often glucose 
availability) in a monophasic environment. However, there are first 
developments to examine two process parameter at once (Kuschel and 
Takors, 2020) and to take aeration bubbles into consideration (Siebler 
et al., 2019). Adapting models to less frequently used organisms is also 
demanding, as knowledge about reaction kinetics and regulatory net-
works in these organisms is limited. Often, assumptions from model 
organisms are applied in these cases, which limits the model to un-
structured kinetics (Siebler et al., 2019). 

3.3. Mimicking 

The application of microfluidic single-cell cultivation and analysis 
gains momentum in biotechnological research and bioprocess develop-
ment (Dusny and Grünberger, 2020; Ortseifen et al., 2020). Using 
microfluidic single-cell cultivation as a tool to mimic lifelines has two 
major advantages compared to modern scale-down approaches (Haringa 
et al., 2018a), which was recently demonstrated for the first time (Ho 
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et al., 2022; Täuber et al., 2022). Microfluidic systems have precise 
environmental control which is decoupled from microbial bioanalytical 
activities and individual cells can be tracked over time with the help of 
live-cell imaging to estimate the influence of cell history effects. 

In microfluidics, fluids are precisely manipulated in structures on the 
micrometer scale. This allows high experimental parallelisation at little 
resource usage. Microfluidic chips applied in live-cell imaging 
commonly consist of the polymer PDMS (polydimethylsiloxane) (Fig. 3 - 
Mimicking) due to its optical properties, biocompatibility, oxygen 
permeability and easy replication by moulding. In these chips, micro-
fluidic structures like monolayer growth chambers, mother machines or 
single-cell traps can be applied for the hydrodynamic trapping of cells 
(Grünberger et al., 2014). The trapping structures can be aligned in 
arrays, which are positioned in parallel to the laminar flow. For different 
microorganisms or research questions, a diversity of other trapping 
methods is available (Johann, 2006; Nguyen et al., 2021a). 

The fast mass transport in microfluidic devices provides the neces-
sary environmental control for mimicking environmental lifelines. The 
microfluidic channels are constantly perfused, replenishing substrates, 
removing metabolites. Thus, the environment is constant and precisely 
applicable in flow channels. Cells in structure-based trapping regions are 
supplied via diffusion from the supply channel, which is very fast in 
micrometer scale (Ho et al., 2019). The environmental control increases 
with decreasing cultivation volume of the trap, because diffusion time 
decreases with the distance and fewer cells alter the environment 
(Grünberger et al., 2014). Changing the medium in the supply channel 
will change the medium in the trapping regions accordingly, effectively 
decoupling the environmental change from the microbe’s metabolism. 

The medium in the channels has to be exchanged very fast for precise 
correlation between environmental change and the observed reaction. 
Technically, dynamic medium exchanges in the range of seconds can 
best be mediated using pneumatic on-chip-valves or external pressure 
pumps (Täuber et al., 2020b). Based on this research, a simple micro-
fluidic set-up for dynamic microfluidic single-cell cultivation (dMSCC) 
was established, which uses pressure driven pumps to shift the laminar 
boundary layer (Fig. 3), thereby exchanging the medium in the 
switching region (Täuber et al., 2020a). Using dMSCC, complete me-
dium exchange in the monolayer growth chambers can be ensured with 
medium oscillations down to 5 s (Täuber et al., 2020a). Only Nguyen 
et al. (2021a) reported faster fluctuations of 3 s. Their system combines a 
dial-a-wave-junction (Ferry et al., 2011), which enables fast medium 
exchange in the inlet channels, and chemical trapping of microbes with 
poly-L-lysine in the channels, so that mass transport is convective 
(Nguyen et al., 2021a). Fluctuation duration, frequency and amplitude 
can easily be modified to fit the research question and can be pro-
grammed to seemingly arbitrary patterns. These fluctuation profiles can 
be inspired by modelled lifelines, therefore applying coarse-grained 
environmental lifelines to microbes (Ho et al., 2022). 

Detection of the resulting intracellular lifelines needs to be non- (or 
minimally) -invasive to ensure the individual microbe’s vitality for 
further tracking in time. Microscopy, especially live-cell imaging, is the 
most essential technique for microfluidic live-cell imaging, which can 
yield data on cell count, morphometrics like cell length and area, as well 
as cell mass (Dusny, 2020). With quantitative phase microscopy and the 
exploitation of the cell’s refractive index, even the biomass of a single 
cell can be estimated (Popescu et al., 2008). Fluorescent chemicals, 
metabolites and proteins are another popular choice to detect cellular 
reaction to environmental changes. The fluorescent output signal should 
be quantifiable and sufficiently fast to react to changes in the timeframe 
of environmental lifelines. The autofluorescence of intracellular me-
tabolites like NADPH can function as such an output signal (Zhang et al., 
2018). Furthermore, a wide palette of metabolite-responsive transcrip-
tion factor-based biosensors has been developed (Monteiro et al., 2019). 
The metabolite of interest acts as ligand for the transcription factor, 
which leads to the transcription of the reporter gene. In this way, the 
intracellular concentration of products (Binder et al., 2012) and 

metabolites acting as indicator for the flux through a pathway (Monteiro 
et al., 2019) can be monitored. A drawback of the application of trans-
lation dependent biosensors is, that the lag-time between sensing and 
expression needs to be considered as well as protein degradation dy-
namics to also decrease the output signal in an appropriate timeframe 
(Dusny, 2020). Alternatively, fluorescent protein biosensors that change 
their intensity (intensiometric) or the excitation or emission spectrum 
(ratiometric) based on the concentration of a target can react to changes 
in real-time (Bolbat and Schultz, 2017). 

Mimicking bioprocess relevant lifelines in microfluidic devices is still 
in it’s infancy, but it promises to make live-cell intracellular lifelines 
accessible. Furthermore, the high parallelisation of microfluidic culti-
vations enables the recording of a statistically significant number of 
lifelines. As all cells experience the same environmental lifelines, effects 
of intrinsic noise on intracellular lifelines can be studied. 

4. Application of lifelines in bioprocess development 

The development of new bioprocesses is an endeavour, that has the 
risk of failing in the late stages. To limit the risks, modern bioprocess 
development keeps the end in mind and retro-engineers the process 
(Noorman and Heijnen, 2017). It is important to plan the large-scale 
process first before starting process development, so that possible 
problems can be tackled before scale-up or circumvented by choosing a 
different approach. Scale-down procedures are an important tool when 
designing bioprocesses with the end in mind (Straathof et al., 2019) and 
lifeline simulation and analysis can develop into a valuable extension 
(Fig. 4). 

The analysis of environmental lifelines already helps to guide clas-
sical scale-down experiments. One major challenge is to adequately 
design the scale-down set-up to closely resemble the large-scale gradient 
(Haringa et al., 2017a). Haringa et al. (2018a) demonstrated how either 
of regime, arc and Fourier analysis of lifelines can be used to develop 
scale-down reactor concepts. Taking regime analysis as an example, the 
number of regimes resembles the number of scale-down compartments 
for each regime, while the volume of each compartment and the flow 
between the compartments is based on the regime volume fraction and 
the regime residence time distribution (Haringa et al., 2018a). An 
approach to guide a non-traditional scale-down was shown by Ho et al. 
(2022), who discretised computational lifelines into a starvation and 
excess regime and directly applied the regime profile to bacteria in a 
microfluidic set up. Today, using the lifeline knowledge to guide scale 
down is the most common application for lifelines in bioprocess devel-
opment (see Table 2). 

With the analysis of environmental lifelines, it is also possible to test 
(Haringa et al., 2018b) and compare (Liu et al., 2016) different biore-
actor configuration to optimise the large-scale set-up (Fig. 4). An altered 
feed addition location can, for example, substantially decrease the 
productivity loss, as a more equal substrate distribution leads to lower 
stress amplitudes and consequently less inhibition of production (Har-
inga et al., 2018b). CFD modelling without Lagrangian particles suffices 
to estimate the magnitude of gradients and change the reactor design 
accordingly. Still, questions of the relevance of a gradient magnitude for 
a bioprocess is best investigated with the durations and frequencies 
observed in a computational microbe’s lifeline. 

The simulation of intracellular lifelines as a reaction to large-scale 
heterogeneity facilitates the identification of metabolic bottlenecks 
and limitation of strains in fluctuating environments and suggests strain 
engineering targets. As such, genetic alteration to decrease the ATP 
demand for transcriptional adaption to changing environments (Siebler 
et al., 2019) or other cellular stress programs (Ziegler et al., 2021) were 
suggested. Another target derived from lifeline analysis is to increase Ks 
for less susceptibility to substrate fluctuations (Haringa et al., 2018b). 

While using lifelines for guiding representative scale-down already 
finds application (Table 2), suggestions to bioprocess optimization and 
strain engineering remain vague. For now, new strain engineering 
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targets are derived from scale-down studies like Löffler et al. (2016), 
which are also used to build more sophisticated models (Siebler et al., 
2019; Zieringer et al., 2021). The possible targets named by Zieringer 
et al. (2021) were engineered by Ziegler et al. (2021), without referring 
to the role of lifeline analysis in their research. Most recently, Minden 
et al. (2022) demonstrated how lifeline analysis can inspire wet-lab 
research that contributes to better models and provides a basis for en-
gineering metabolic targets. All in all, lifelines can help to guide strain 
optimisation and bioreactor design and operation by providing a 
glimpse into large-scale conditions prior to scale-up, but their contri-
bution today is limited to refining scale-down bioreactors. More linked, 
interdisciplinary research can advance the role and application of life-
line research in bioprocess development. 

5. Future directions 

The research on lifelines in bioreactors has greatly developed in the 
last decade. With a coherent statistical analysis of lifelines at hand 
(Haringa et al., 2016), applications of lifelines became accessible for 
scale-down purposes and lifeline research entered its second phase. The 
next phase is now emerging with the concept of lifelines slowly eman-
cipating from modelling to include interdisciplinary approaches like 
lifeline measuring and mimicking (Fig. 5). Still, these techniques need 
further development and integration to determine and use representa-
tive lifelines. 

Flow-following particles can provide insights into actual, albeit 
coarse-grained, large-scale bioreactor trajectories and environmental 
lifelines. In the future, measuring environmental lifelines using 
Lagrangian sensors has to find the balance between the trade-offs of a 
lifeline’s complexity and accuracy. On the one side, the duration and 
complexity of the measured lifelines should be increased. This includes 
the combination of more sensors into the particle sphere, to measure 
more parameters in parallel (Lauterbach et al., 2019). There, one major 
challenge is to achieve the synchrony of the different sensor signals. 
Optimally, the measurement should also last for the whole fermentation 
process, which can be achieved by improving the sensor’s energy effi-
ciency and the battery capacity (Lauterbach et al., 2019). Both those 
improvements would greatly increase the achievable complexity, but 
they are likely to lead to an increase in the sensor’s size. Increasing the 
sensor’s size reduces the flow-following capability, decreasing the 

representability of the measured lifelines. The flow-following capability 
of Lagrangian sensors is especially limited at high impeller speeds 
(Bisgaard et al., 2021a), and high aeration rates, because the sensor is 
not adapted to the density of the disperse fluid. 

It is still very difficult to obtain data from industrial scale bio-
processes for public research, from which the whole lifeline community 
would greatly benefit. To make industrial partners with large-scale 
bioreactors more inclined to apply flow-following sensors in their re-
actors, the recorded lifeline data could be stored locally in the particle 
(Bisgaard et al., 2020) rather than transmitted in real-time, to be 
exported after the fermentation. This would erase the need for closely 
located and expensive transmission receivers or other structural changes 
in the production facility. This would suffice for lifeline research ques-
tions, but not for the application of sensor particles for operating pur-
poses. Another downside of this approach is the further increase of the 
sensor’s weight and size, influencing the flow-following capability. 

Measured lifelines are either trajectories or environmental lifelines. 
The generated data can be used to provide input for models and validate 
them (Bisgaard et al., 2021b; Hofmann et al., 2022). First commercial 
applications of measured lifelines from sensor particles are offered to 
advise on operation condition and bioreactor design (Freesense ApS, 
2022). Furthermore, the environmental lifelines gained from measuring 
in reactors can directly be mimicked using microfluidic single-cell 
cultivation, to access the according intracellular lifeline. 

The modelling of lifelines strives to enhance the realism of both the 
environmental and the intracellular lifeline. Many improvements have 
been made in recent years that enhanced the depiction of the abiotic 
phase in bioprocesses. It is now possible to simulate environmental 
lifelines of more than one parameter at a time (Kuschel and Takors, 
2020) and include gas bubbles as a third phase for the environmental 
calculation (Siebler et al., 2019). Still, other aspects of the abiotic phase 
have yet to be integrated into lifeline modelling. For now, the vast 
majority of lifeline simulations depict a timeframe of a few hundreds of 
seconds during the late fed-batch phase in a bioprocess, while realistic 
lifelines should be traceable throughout the fermentation. Therefore, 
models of the abiotic phase need to account for changing broth volumes 
in time. Nadal-Rey et al. (2021) demonstrated a dynamic compartment 
model that calculated gradients and their development during the whole 
fermentation process. Furthermore, the bioreactor environment is also 
influenced by the organism’s reaction to it. More accurate environments 

Fig. 4. The application of lifelines in bioprocess optimisation adds new tools to the existing scale down procedure of Oosterhuis (1984). In traditional scale down, the 
regime is analysed with regard to gradients, which are mimicked in scale-down bioreactors. The resulting knowledge is applied to optimise the bioprocess. Using the 
lifeline procedure, the regime and its effect on the cell’s metabolism is analysed from the cell’s perspective as lifeline. Analysis of the lifelines can be applied to guide 
scale down experiments or lifeline mimicking, but it can also directly propose bioreactor design and strain optimisation. 
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Table 2 
Overview of studies involving lifelines in literature. Each study is introduced with the study setup, the study’s conclusion (C), the type of lifeline (L) that has been analysed, as well as the key contribution to the field of 
lifeline research (KC). For each reference, the lifeline research was categorized into what was done with the lifelines (recorded, analysed, used to guide scale down experiments) and what the author sees for applications of 
the insights generated with lifelines for the future, e.g. support bioreactor design or strain engineering.  

Lifeline study 
C: conclusion 
L: Type of lifeline 
KC: Key contribution to lifeline research 

Record Analyse Guide Scale-Down Propose Bioreactor 
Optimisation 

Propose Strain 
Engineering 

Reference 

Saccharomyces cerevisiae, glucose gradient, 68 L STR, Euler-Lagrange 
C: Increased environmental heterogeneity caused desynchronization of glycolytic oscillation 
L: Intracellular lifeline: intracellular NADH concentration vs. time as result of internal glycolytic oscillations and 
external heterogeneity. 
KC: first modelled lifelines 

Not 
shown 

x    (Lapin et al., 
2004) 

Escherichia coli, glucose gradient, 900 L STR, Euler-Lagrange 
C: Different scales lead to differences in cell viability 
L: Intracellular lifeline: PEP/PYR ratio dependent on glucose concentration 
KC: Application of lifelines to more bioprocess relevant research question 

Not 
shown 

x    (Lapin et al., 
2006) 

Carthamus tinctorius L., shear stress, 5 L and 15 L STR, Euler-Lagrange 
C: The product of a lifeline’s maximal shear stress and its frequency improves the accuracy of models for shear- 
dependent death kinetics. 
L: Environmental lifeline: shear stress vs. time series 
KC: Lifelines were used to derive a new parameter that can facilitate the shear stress comparison between bioreactor 
setups and operations during scale-up. 

x x  x  (Liu et al., 2016) 

Penicillium chrysogenum, glucose gradients, 54 m3 STR 
Euler-Lagrange 
C: Statistical analysis of lifelines can provide an approach to design representative scale-down experiments 
L: Environmental uptake lifelines: qs vs. time series 
KC: Introduction of regime and arc analysis for lifelines 

x x x   (Haringa et al., 
2016) 

Pseudomonas putida KT2440, glucose gradients, 54 m3 STR, 
Euler-Lagrange, one-way coupled cell cycle model 
C: Subpopulations with different growth phenotypes form in a heterogeneous bioreactor as a consequence of diverse 
microbial lifelines. 
L: Intracellular: growth rate, ATP consumption rate and C-phase duration vs. time series 
KC: Improved understanding of population heterogeneity generation in large scale bioreactors. 

x x    (Kuschel et al., 
2017) 

Saccharomyces cerevisiae, glucose gradients, 22 m3 STR, 
Euler-Lagrange 
C: Previous scale-down designs often do not resemble large-scale conditions, but this can be improved by applying 
lifeline knowledge to experimental scale-down design. 
L: Environmental uptake lifeline: qs/qs,max vs. time 
KC: Demonstration of representative scale-down design based on statistical analysis of microbial lifelines. 

x x x   (Haringa et al., 
2017a) 

Penicillium chrysogenum, glucose gradients, 54 m3 STR, 
Euler-Lagrange CFD coupled with 9-pool metabolic model 
C: Scale-up causes a drop in pencillin production rate, which was reduced by optimizing the bioreactor design. 
L: Environmental uptake lifeline qs/qs,max and intracellular lifeline of μ and metabolite pools 
KC: Showcasing the versatility of lifeline models in multiple process optimization steps 

x x x x x (Haringa et al., 
2018b) 

Clostridium ljungdahlii DMS 13528, CO gradient, 125 m3 bubble column, Euler-Euler-Lagrange including metabolic models 
C: CO is severely limited in this case study and will negatively impact the assumed cell model. 
L: Environmental CO vs. time series, translated to intracellular YP/X vs. time 
KC: Application of a multiphase Euler-Euler model to integrate the gaseous phase into lifeline modelling 

x x   x 
(Siebler et al., 
2019) 

Corynebacterium glutamicum, oxygen and glucose gradients, 300 L STR, Euler-Euler-Lagrange 
C: The modelling mesh can be coarse-grained and still yield very comparable residence times of particles in the biological 
relevant regimes. 
L: Environmental lifeline (oxygen and glucose vs. time) and resulting intracellular lifeline (μ vs. time) 
KC: First example of environmental multiparameter lifeline 

x x x   
(Kuschel and 
Takors, 2020) 

Escherichia coli K12 W3110, glucose gradients, 54 m3 STR, 
Euler-Lagrange, cellular regulation model 
C: Microbial reaction to environmental changes propagate through the bioreactor and will not happen in the near 
vicinity of the environmental change. 

x x   x 
(Zieringer et al., 
2021) 

(continued on next page) 
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can be reached with two-way coupling between environment and cell 
(Pigou and Morchain, 2015). While the feasibility of two-way coupling 
has been shown (Lapin et al., 2004; Lapin et al., 2006), only few studies 
apply it (Haringa et al., 2018b; Haringa, 2022; Haringa et al., 2022). In 
the course of a fermentation, other physico-chemical parameters will 
also change, for example the broth viscosity. There are first CFD-based 
models, that incorporate viscosity changes in the course of fermenta-
tion (Bach et al., 2017), but this technique has yet to be applied in 
lifeline modelling and needs further improvements concerning turbu-
lence and rheology interactions. 

On the other side of model enhancement, there is the on-going 
development of better biomass description. Firstly, with increasing the 
lifeline timeframe to a realistic fermentation length, the increase of 
biomass can no longer be ignored. This includes single-cell growth and 
division events, making it possible to shed light into cell history and 
ancestry effects. The first steps towards depicting population heteroge-
neity in growth in lifeline research have been made by Kuschel et al. 
(2017), who demonstrated how glucose gradients led to heterogeneity in 
growth rates of single P. putida cells, based on a cell cycle model. This 
showcases, how extrinsic noise leads to heterogeneity in populations, 
but intrinsic noise as cause for heterogeneity has not been accounted for 
in lifelines. Recent reviews and research papers highlight ongoing 
development towards more realistic metabolic models (Wang et al., 
2020b) and the integration of cellular regulation into metabolic models 
(Zieringer et al., 2021). 

Increasing the timeframe of simulations, refining intracellular 
models and using two-way coupling between the environment and the 
cells demands a very high computational cost (Haringa, 2022). In 
modelling, the balance between model simplifications and accurate 
depiction of the bioreactor needs to be found. There are multiple ap-
proaches to decrease the computational effort while keeping acceptable 
model accuracy. For CFD-modelling, the mesh size, which depicts the 
resolution of the bioreactor, can be decreased and still yield represen-
tative results (Kuschel and Takors, 2020). Another possibility is to use 
compartment models to describe the environment and stochastic parcel 
tracking to replace the classic trajectories, which requires significantly 
less calculation time (Delafosse et al., 2015; Haringa et al., 2022). 
Alternatively, the environment can be simulated using the Lattice- 
Boltzman approach while tracking single-cells in the Lagrangian frame 
(Haringa, 2022). 

From a modelling perspective, the future application of lifelines 
research lies in predicting the process performance (Siebler et al., 2019). 
With lifelines, digital twins of the bioreactor (macro-twin) and the cell 
(micro-twin) can be established (Hajian et al., 2020). Digital twins can 
help in the scale-up process by reducing the need for costly pilot runs 
and facilitating the optimisation procedure or they could be run in 
parallel to the large-scale fermentation to predict performance in real 
time (Hajian et al., 2020; Neubauer et al., 2021). 

Mimicking lifelines in microfluidic devices has the great advantage, 
that the change in environment is decoupled from the cell’s metabolism 
and that the environment is very precise and defined. The quality of 
intracellular lifeline data generated from mimicking is very dependent 
on the quality of the employed environmental lifeline, both concep-
tionally (CFD-modelling) and practically (microfluidic implementation). 
Until now, research towards microfluidic lifelines has been limited to 
systematic oscillation measurements (Täuber et al., 2022) and the 
mimicking of single-parameter lifelines with two discrete parameter 
values (Ho et al., 2022). Actual large-scale lifelines, however, consist of 
multiple parameters, that change in their amplitude and frequency 
during the course of fermentation. Microfluidic devices have to develop 
towards these standards. 

A first step is to broaden the spectrum of applicable and relevant 
parameters (Leygeber et al., 2019). Nutrient oscillations have been 
applied (Ho et al., 2022; Täuber et al., 2020a) and pH fluctuations can be 
implemented (Täuber et al., 2022). Fast and dynamic switching of dis-
solved oxygen and dissolved carbon dioxide, for example, have not yet Ta
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been shown. This would require the use of more sophisticated set-ups or 
other materials for chip fabrication, because PDMS is permeable for 
gases. In case of dissolved oxygen oscillation, the application of an ox-
ygen scavenging tiol-ene based polymer (Sticker et al., 2020) or non- 
permeable materials like glass can be possible alternatives. 

The combination of different parameters on-chip is another impor-
tant development step. For example, it was shown in scale-down bio-
reactors that oxygen oscillations increase the susceptibility of 
C. glutamicum towards pH perturbations (Limberg et al., 2017). A first 
step to combining multiple parameters is to increase the number of 
possible media reservoirs and switch between those on chip by using 
multiple inlets (Täuber et al., 2022) or pneumatic valves. A similar 
technique can be applied to vary the amplitude of environmental change 
during the experiment. However, the proposed technique offers only 
stepwise changes in parameters, while gradual changes cannot be ach-
ieved in that system. Microfluidic devices that switch the environment 
via a dial-a-wave junction (Kaiser et al., 2018) can change seamlessly 
between any ratio of two environments, but those have never been 
applied in rapid environmental changes (Täuber et al., 2020b). 

Today’s limit of temporal resolution of environmental changes in 
microfluidic devices is 3–5 s (Nguyen et al., 2021a; Täuber et al., 2020a). 
An open question in lifeline mimicking is, which temporal resolution is 
actually necessary to capture representative lifelines. Similar to CFD- 

guided traditional scale-down, modelling lifelines can guide 
mimicking experiments in this instance. In case that faster environ-
mental changes are required, smaller microfluidic trapping regions with 
fewer cells, like mother machines (Wang et al., 2010), or such structures 
that rely on convective and not diffusive mass transport can be used. 
Alternatively, variants of the picolitre bioreactors (Grünberger et al., 
2012) in combination with dMSCC can be applied for this aim. 

Besides the environmental input optimisation, fast and quantifiable 
output options need to be applied to record intracellular lifelines 
appropriately. Well-chosen fluorescent biosensors are a wide field that is 
continuously developed. Beside the microscopic and fluorescent 
readout, Raman spectroscopy might offer a non-invasive analysis tool 
for microfluidic cultivations (Chrimes et al., 2013). 

Interdisciplinary research between modelling and microfluidics can 
be a very fruitful endeavour, that is gaining more and more attention 
(Bjork and Joensson, 2019; Grünberger et al., 2014; Haringa et al., 
2018a). Both modelling and mimicking can benefit from each other. 

Modelling not only provides environmental lifelines to mimic (Ho 
et al., 2022), but it can also help to design microfluidic experiments 
based on lifelines. Using a variation of the rational scale-down based on 
lifelines (Haringa et al., 2017), microfluidic experiments could be 
designed to test representative environmental oscillations (Fig. 4). Due 
to the small size of microfluidic devices, high parallelisation is possible 

Fig. 5. Future direction, challenges and interdisciplinary cooperation of measuring, mimicking and modelling of lifelines (LL).  
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and can be applied for screening organisms for large-scale robustness 
during the early stages of strain development. This would contribute to 
modern bioprocess development, which starts with the end in mind 
(Noorman and Heijnen, 2017). 

Mimicking, on the other hand, can help to validate intracellular 
lifeline models. By replicating environmental lifelines, the observed 
intracellular lifeline can be compared to the lifelines calculated by the 
model. 

Furthermore, there is a demand in the modelling community for 
kinetic data based on dynamic environments that could be provided by 
microfluidic experiments. Observing and understanding the response of 
biological systems to perturbations is needed to further advance models 
towards digital twins (Hajian et al., 2020; Wang et al., 2018; Zieringer 
et al., 2021). This endeavour can greatly benefit from time-resolved 
single-cell data. Other valuable data for modelling can be investigated 
using microfluidics, like substrate uptake kinetics (Lindemann et al., 
2019; Smaluch et al., 2022), flux (Monteiro et al., 2019) or gene network 
dynamics (Bennett and Hasty, 2009). With the application of micro-
fluidic tools for research on population heterogeneity, a differentiation 
between effects of environmental and intrinsic noise is possible, which 
can provide data for enhancing models on population heterogeneity 
(Delvigne et al., 2017; Theron et al., 2018). 

6. Conclusion 

Lifeline analysis is an emerging field of research that aims to estimate 
effects of environmental heterogeneity on microbes in bioprocesses. By 
taking the cell’s point of view in a bioprocess, single-cell data is 
collected. This can reveal effects which are lost in population-averaged 
data of bulk measurements. Lifelines can be defined as time series in 
either position, environment, intracellular concentration or a combi-
nation thereof. The first lifelines were simulated using an Euler- 
Lagrange framework, which already finds application in bioprocess 
development by guiding rational scale-down experiments and proposing 
targets for bioreactor and strain optimisation. Measuring coarse-grained 
environmental lifelines with flow-following sensor particles or 
mimicking lifeline in microfluidic devices to measure the cell’s reaction 
are the start of new interdisciplinary approaches to lifelines. For now, 
mostly single-parameter lifelines are investigated for reasons of 
simplicity. This is in contrast to the actual lifeline experienced by a 
microbe in a bioprocess, which includes the entirety of all environ-
mental and metabolic fluctuations across all thinkable scales and gen-
erations until a cell dies without having reproduced. While this lifeline 
will never be reached with any experimental approach, progress is still 
made towards establishing more bioprocess relevant parameters, 
parameter combination and analysis techniques for lifelines, because 
striving to a more accurate physical description of cells and their envi-
ronments in large-scale bioreactors is still a promising endeavour. In-
sights on which environmental conditions should be aimed or avoided in 
large-scale bioreactors can lead to actionable insights on process design 
and operation. Another question that remains is, how closely the 
determined lifelines need to resemble actual microbial lifelines to reach 
this aim. 

Funding 
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