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Abstract

This study addresses the gap for fine-grained emotion recognition in immersive environments utiliz-
ing solely data from on-board sensors. Two data representations of users eyes are utilized, including
periocular recordings and eye movements (gaze estimation and pupil measurements). A novel multi-
representation method integrating feature extractors for each representation alongside an effective
feature fusion technique is proposed. The method significantly outperforms baselines that use only a
single representation or incorporate content stimuli. It achieves an F1-score of 0.85 with 10% data, ap-
proximately 40 seconds of data from all emotions, for personal adaptation, recognizing emotions while
watching unseen parts of the stimuli used for adaptation. In a more practical scenario, the method
achieves an F1-score of 0.71 with five seconds of personal adaptation data from each emotion, recog-
nizing emotions while watching completely unseen stimuli. Under the same but more extreme condition,
where only one second of data is available, the proposed achieves an F1-score of 0.68. Furthermore,
the study demonstrates that estimated labels can substitute for user-provided labels without sacrificing
performance in emotion recognition, thus eliminating the need for users to manually label emotion elic-
itation segments. Future work will focus on improving performance by allocating more computational
resources and making architectural modifications, conducting deeper investigations into the decision-
making process, and developing real-time recognition systems for in-the-wild experiments. The results
of this study suggest that more engaging, adaptive, and personalized experiences in immersive envi-
ronments can be developed.

iv



1
Introduction

1.1. Background & Motivation
Emotions are part of human nature, and a significant portion of the human brain is dedicated to un-
derstanding and processing them. They occupy daily life to a greater extent than realized. During
social interactions, the human brain captures and interprets various cues such as facial expressions,
body movements, and speech tone, trying to understand each other’s emotional states. During movies,
filmmakers strategically evoke emotional responses in audiences, often eliciting laughter to induce hap-
piness, and in contrast, provoking tears to trigger sympathy. The inability to understand these emotional
nuances is often associated with social deficits, a symptom in diagnosing conditions such as autism
spectrum disorder [63]. Understanding in this context meansmore than grasping fundamentals of some
knowledge, it means having empathy with other’s emotions.

The importance of understanding emotions extends beyond social interaction. Emotions play a
critical role in the evolution of consciousness and the operations of all mental processes [34]. Un-
derstanding emotions could potentially provide insights into unresolved questions in psychology and
neuroscience, particularly in areas such as decision-making, problem-solving, and other cognitive func-
tions. Moreover, emotional understanding could lead to better child education, improvements in social
interaction and effective mental health treatments.

The recent emerging interest in immersive environments has led to a growing amount of research
on emotion understanding within these contexts [30, 85, 96, 100, 101]. Immersive environments has
the advantage of offering experiences that closely mimic the physical world while allowing for isolated
and controlled experimental conditions. This makes immersive environments, such as virtual reality,
particularly valuable for emotion research. The ability to systematically control environmental factors
and stimuli while maintaining the same ecological responses as the physical world, provides more po-
tential than in traditional laboratory settings. However, the field remains largely unexplored. Table 1.1
presents the comparison of recent studies across several key characteristics in emotion understand-
ing, more specifically, emotion recognition. The key characteristics are important as they maximize the
validity of the elicited emotions and minimize the effect of unrelated factors, leading to a more compre-
hensive emotion state of subjects. Hence, effective emotion recognition should ideally be conducted in
immersive environments, employing effective emotion elicitation methods, utilizing only on-board sen-
sors, and aiming to recognize fine-grained emotions. These criteria are established based on the need
for controlled environments that can successfully trigger emotions without compromising the natural
setup of equipped devices, typically consisting of a single headset. Additionally, the identification of
fine-grained emotions is crucial for a nuanced understanding. The comparison shows that current stud-
ies does not fully satisfy the defined characteristics, thus highlighting the need for the present study to
address this gap.

This study builds upon the work of Bishwas [74], who developed a system for data collection in im-
mersive environments using only on-board sensors to capture fine-grained emotions elicited by effec-
tive stimuli. The current study initially focuses on processing the collected raw data to mitigate noise,
aiming to extract more meaningful information and constructing datasets suitable for efficient model
training. Subsequently, the study proposes a model that incorporates various data types as input for

1



1.2. Challenges & Research Objectives 2

Research Immersive Env. Fine-grained Emo. Effec. Stimuli On-board Sen.
RCEA [101] × × ✓ ✓

RCEA-360 [96] ✓ × ✓ ✓
VREED [85] ✓ × ✓ ×

Total VREcall [30] ✓ × ✓ ×
Blink of an Eye [100] × ✓ × ×

SEED-V [51] × ✓ ✓ ×
DECAF [1] × × ✓ ×
DEAP [41] × × ✓ ×

Excitement Detect [2] ✓ × ✓ ✓
Arousal Detect [91] ✓ × ✓ ×

Table 1.1: Comparison of different studies in emotion recognition, the characteristics are shortened from Immersive
Environments, Fine-grained Emotions, Effective Stimuili and On-board Sensors.

fine-grained emotion recognition. The proposed model is trained and evaluated using the constructed
datasets.

1.2. Challenges & Research Objectives
The challenges in this study primarily relate to two aspects. The first involves effectively utilizing diverse
data types for emotion recognition, and the second concerns developing methods for accurate emotion
recognition with limited data.

The first challenge arises from the complexities of feature fusion. Though progress has been made
in achieving progress in performance through feature fusion, it remains an open area that requires fur-
ther research [50]. Different fusion techniques deliver varying results, developing and employing the
optimal method is a challenging task. The second challenge stems from the practical application of
emotion recognition in real-world scenarios. While having access to users content, such as viewing
videos or reading texts, could facilitate emotion recognition, it raises privacy concerns. It also esti-
mates emotions associated with specific content rather than recognizing emotions directly from users
responses. Hence, the recognition process should solely rely on users’ behavioral responses. More-
over, the developed method should require a minimal amount of data from each user for adaptation,
thereby enhancing the user experience. In order to address these challenges, the research objectives
of this study are as follows:

1. To create and validate a comprehensive dataset of emotional responses in immersive environ-
ments, incorporating different types of collected data.

2. To develop and evaluate a method for emotion recognition that effectively utilizes diverse data
types collected in immersive environments.

3. To design and implement a fusion technique that optimally integrates multiple data types for im-
proved emotion recognition accuracy.

4. To compare the performance of the developed privacy-preserving method against approach that
utilizes content information.

5. To investigate and evaluate an approach that achieves robust emotion recognition performance
with limited data used for personal adaption.

1.3. Contributions
The main contribution of this study is that it is the first study that delivers promising fine-grained emotion
recognition performance utilizing solely on-board sensors data gathered in immersive environment trig-
gered by effective stimuli. First, a comprehensive dataset is constructed in immersive environments,
collecting data from 20 subjects by eliciting each with effective stimuli across seven emotions. The
data is gathered exclusively from on-board sensors of the device equipped on the headset. Then, a
model incorporating multiple data types is proposed and trained on the constructed dataset, achiev-
ing promising performance. The contribution fills in the gap in recently studies conducted in emotion
recognition, as it satisfies all the characteristics defined in Table 1.1. The contribution in this study
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along the previous work conducted by Bishwas [74], is combined to form an academic paper aiming
for submission to a top-tier conference.

1.4. Thesis Overview
In Chapter 2, a comprehensive review of related work is first presented, covering emotion models,
immersive environments and emotions, existing emotion datasets, and state-of-the-art emotion recog-
nition methods. Following this, a summary of the data collection process is presented in Chapter 3,
including the emotion model used, the dataset collection tool, and the characteristics of the collected
raw data. After that, Chapter 4 presents comprehensive details of the data processing and dataset
preparation steps are presented, addressing challenges in raw data and outlining the methods used
to create the final dataset structure. The proposed emotion recognition method is then presented in
Chapter 5. Details of the overall architecture and different modules extracting features from different
types of data are presented, along with the implemented effective feature fusion technique. The pro-
cess of data flowing from input to the recognized emotion is comprehensively described. Subsequently
in Chapter 6, the experimental design, implementation details, and performance evaluation results are
outlined. This chapter also includes ablation studies and profiling of the proposed approach. A discus-
sion of the results follows in Chapter 7, providing more insights to the decision-making process and
addressing the study’s limitations. The study concludes in Chapter 8 by summarizing the key findings
and contributions. It also suggests directions for future work and discusses the implications of this
research for human-computer interaction in immersive environments.



2
Related Work

2.1. Emotion Models
Emotion models are broadly categorized into two types: categorical and dimensional [67]. Categor-
ical models require the selection of a single emotion from a predefined set, representing the most
appropriate feeling conveyed, such as Ekman and Friesen’s six basic emotions [24] and Izard’s ten
core emotions [35]. Dimensional models, in contrast, employ quantitative measures through multidi-
mensional scaling. Each dimension represents a specific feature of human emotion, and the combina-
tion provides an interpretation of the emotional state. The Circumplex Model of Affect by Russell [76]
utilizes two dimensions: valence and arousal. In order to differentiate closely related emotions, the
pleasure-arousal-dominance (PAD) model introduces dominance as a third dimension [60]. To quan-
tify these dimensional scales, tools such as self-assessment manikin (SAM) [10] and Feeltrace [15] are
employed.

Recent studies that involve defining emotional models usually employ a combination of both cat-
egorical and dimensional models. For example, Buechel and Hahn [11] utilized a model combining
the categorical approach of Ekman’s six basic emotions with the dimensional valence-arousal model
for emotion analysis in text. Similarly, Tzirakis et al. [87] used a hybrid approach integrating categor-
ical emotions and dimensional features for multi-modal emotion recognition in videos. These studies
demonstrate the effectiveness of leveraging both categorical specificity and dimensional variability in
emotion recognition applications.

2.2. Immersive Environments and Emotions
In recent years, immersive environments have gained significant attention in both academic research
and industrial applications [70, 88]. Immersive environments include Virtual Reality (VR), Augmented
Reality (AR), and Mixed Reality (MR). They offer users experiences that blur the boundary between
the digital and physical worlds [26]. The significantly growing interest in immersive technologies is
driven by the increasing need to enhanced remote collaboration tools. Especially during the trend
towards distributed work and study after the recent global pandemic, namely Covid-19 [53, 59]. The
key characteristic of immersive environments is the ability to create a sense of presence, allowing users
to feel as if they are physically present in the virtual space [70].

Research has shown that immersive environments can elicit a wide range of emotions in users [70],
leading to applications across various fields such as psychology, education, and entertainment. In
psychology, immersive environments have been used for exposure therapy to treat phobias and anxiety
disorders [16, 20]. Educational institutions have employed these technologies to provide immersive
learning experiences for enhancing knowledge retention and understanding [77, 83]. The entertainment
industry has also leveraged immersive environments to create more emotionally engaging storytelling
experiences [73].

Several studies have revealed a strong relationship between immersive environments and emo-
tional experiences. Pavic et al. [70] found that the level of immersion directly correlates with the in-
tensity of emotional responses, while Diemer et al. [19] showed that virtual environments can induce
physiological responses similar to those experienced in real-world emotional situations. However, it is

4
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important to note that the emotional impacts in immersive environments are not always positive. Some
studies have raised concerns about the potential harm caused by these technologies, such as emo-
tional distress or anxiety, particularly in highly realistic and intense scenarios [46]. Therefore, thoughtful
design and careful consideration of the emotional impact on users should be taken into account when
developing immersive experiences.

2.3. Emotion Datasets
The development and evaluation of emotion recognition heavily depend on comprehensive datasets.
Various emotion datasets consisting of different modalities and utilizing different collection methods are
collected by researchers serving the same purpose of recognising different emotions.

One of the most utilized modalities in emotion recognition is numerical time series data representing
users’ behavioral and physiological signals. Several datasets have been collected in immersive envi-
ronments using similar methods. For instance, VREED [85] includes eye movements (gaze estimation
and pupil diameter measurements), electrocardiography (ECG), galvanic skin response (GSR), and
self-report data from 34 participants viewing 12 videos in virtual reality (VR). Similarly, PEM360 [29]
includes identical data types as VREED, with the addition of head movements and heart rate, collected
from 32 participants watching eight videos. CEAP-360VR [95] consists of the same data types as
PEM360 from 32 participants viewing eight videos in VR, with reported motion sickness and presence
levels in addition. SEED-IV [104] gathered electroencephalography (EEG) and eyemovements from 15
subjects while being exposed to six clips. These datasets typically involve participants being equipped
with head-mounted displays (HMDs) and additional devices for capturing physiological signals. They
present participants with stimuli aiming to trigger certain emotions in the immersive environment, and
the collected data are labeled based on users’ self-reported emotional responses.

Facial expressions provide cues for emotion recognition as well, leading to the development of
several image-based datasets. FER+ [6] comprises 28,709 facial expression images sourced from the
internet with multi-label annotations across seven emotions. AffectNet [61] includes 440,000 images
from the internet and manually annotated with single-label emotions across seven emotions which
are identical as FER+. 4DFAB [14] was collected over five years and consists of 1.8 million 3D facial
meshes from 180 subjects. The expressions in 4DFABwere captured through both posed emotions and
spontaneous reactions to video stimuli. Similar to image, video provides visually informative content
as well. However, it has an additional temporal axis, offering potential advantages over images for
emotion recognition. MAFW [52] consists of multi-modal clips from diverse sources such as movies,
TV dramas, and short videos. MAFW features subjects expressing a wide range of emotions in various
scenarios, providing contextual information for emotion recognition.

The emotion datasets discussed can be broadly categorized into two types based on their collec-
tion methodologies: elicited emotion datasets (e.g., VREED, PEM360, CEAP-360VR, SEED-IV) and
enacted emotion datasets (e.g., FER+, AffectNet, 4DFAB, MAFW). Elicited emotion datasets are col-
lected in controlled laboratory settings where participants are exposed to designed stimuli to trigger gen-
uine emotional responses under standardized conditions. In contrast, enacted emotion datasets are
sourced from the internet or involved participants deliberately posing expressions of certain emotions,
which may not reflect genuinely experienced affective states. Elicited emotion datasets often reveal
more nuanced relationships between emotions and biological responses, potentially capturing subtle
physiological and behavioral changes associated with different emotions. Enacted emotion datasets,
while possibly including a mix of genuine and posed expressions, typically capture more obvious differ-
ences in human emotional expressions across a wider range of contexts.

2.4. Emotion Recognition Methods
The significant performance gain brought by deep learning have revolutionized various domains of
artificial intelligence, achieving superior results in natural language processing (NLP) [18, 89], com-
puter vision (CV) [21, 31, 43], and other fields. This paradigm shift has influenced emotion recognition
research, as several modalities involved align with those benefiting from deep learning advancements.

Traditionally, emotion recognition methods have focused on uni-modal approaches, primarily utiliz-
ing onemodality among facial expressions, speech audio, and physiological signals. In facial expression-
based methods, Siqueira et al. [81] demonstrated an accuracy of 87.15% on the FER+ dataset (dis-
cussed in Section 2.3) with convolutional neural networks (CNNs). For speech-based emotion recog-
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nition, recurrent neural networks (RNNs) and their variants, particularly long short-termmemory (LSTM)
networks, have shown promising results in capturing temporal dependencies. Zhao et al. [103] achieved
over 95%accuracy across seven emotions on the Berlin EmoDB dataset [12] on both speaker-dependent
and speaker-independent scenarios. Methods utilizing physiological signals have also benefited from
deep learning advancements. Zhong et al. [105] achieved an accuracy of 73.84% in classifying four
emotions using graph neural networks (GNNs) on the SEED-IV dataset (mentioned in Section 2.3).
They effectively modeled the spatial relationships between different brain regions by leveraging the
inherent graph-like structure of EEG electrode placements.

While uni-modal approaches have made great progress in emotion recognition, there is a growing
trend towards multi-modal emotion recognition methods. These methods align with human emotion
recognition processes during personal interactions. They leverage the complementary information from
different modalities to achieve more robust and accurate emotion recognition. For instance, Makhmu-
dov et al. [56] combined speech audio with corresponding transcribed text, achieving an accuracy of
67.81% on the MELD dataset [71]. Tan et al. [86] demonstrated a recognition rate of 83.33% by utiliz-
ing facial expressions and EEG. Ma et al. [54] achieved an accuracy of 73.95% by integrating speech
audio, transcribed text, and facial expression video, which is currently the highest accuracy achieved
on the IEMOCAP dataset [13].

However, it is important to note that multi-modal methods do not always yield superior results. For
example, in studies on the MELD dataset [71], while Yun et al. [97] achieved 67.37% accuracy utilizing
speech audio, transcribed text, and facial expression video, Xue et al. [94] achieved state-of-the-art
performance on the same dataset using only the transcribed text. This highlights the challenge of
effectively fusing features from different modalities. To address a similar issue, Zhang et al. [102] pro-
posed a novel attention-based fusion mechanism that dynamically weights the contributions of different
modalities based on their relevance to the emotion recognition task.

As emotion recognition systems become potentially prevalent in real-world applications, the need
for real-time processing has gained attention [17]. Studies have focused on developing lightweight
models and efficient inference techniques to enable emotion recognition on edge devices with limited
computational resources [57, 68, 69]. This trend reflects the growing demand for practical and deploy-
able emotion recognition solutions.

2.5. Numerical Time Series Classification
Emotion recognition in immersive environments utilizingmulti-modal data involves analyzing time series
data, such as eye movements, ECG, and heart rate collected from sensors to recognize emotional
states. This task falls under the broader category of numerical time series classification, which has
been extensively studied [5, 33].

Traditional methods for time series classification include distance-based methods such as Dynamic
Time Warping (DTW) [7], feature-based methods like extracting statistical features [64], and ensemble
methods such as BOSS [78]. These traditional methods have been successfully applied to various time
series classification problems and serve as strong baselines. However, they often require hand-crafted
features and may struggle to capture complex temporal patterns in the data.

In recent years, there has been a growing trend towards using deep learning techniques for time
series classification [33]. RNNs have shown promising results in capturing temporal dependencies
and learning discriminative features from raw time series data [37, 66]. Transformer-based methods
have also gained attention, with Zerveas et al. [99] proposing a framework for multivariate time series
representation learning that achieves state-of-the-art performance on multiple datasets.

Empirical studies comparing the performance of traditional methods and deep learning approaches
for time series classification have found that deep learning models generally outperform traditional
methods, especially on complex and large-scale datasets [33]. However, the performance gain varies
depending on the specific dataset and problem domain. Deep learning models have the advantage of
automatically learning relevant features from raw data, eliminating the need for manual feature engi-
neering. They can also capture intricate patterns and long-range dependencies that traditional methods
may struggle with.

In the context of emotion recognition from multi-modal numerical time series data, state-of-the-art
methods often employ deep learning architectures. For example, Ma et al. [55] proposed a recurrent
network with multi-modal data as input, such as EEG and ECG, using an LSTM network equipped
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with residual connections for emotion classification. Li et al. [49] developed a multi-modal emotion
recognition system that integrates EEG and other physiological signals using a hierarchical attention-
based CNN network to capture both spatial and temporal dependencies in the data.

2.6. Video Understanding
Over the past decade, significant progress has been achieved in the field of video understanding. Early
approaches relied on hand-crafted features and traditional machine learning algorithms, where the fo-
cus was on extracting local space-time features from videos and using them for action recognition. For
example, Laptev et al. [44] proposed an approach that detects space-time interest points in videos
and described them using local spatial and temporal features, which were then used to train a support
vector machine (SVM) classifier for action recognition. However, with the advent of deep learning, re-
searchers have developed methods capable of learning hierarchical representations directly from raw
video data. Karpathy et al. [38] introduced a deep learning framework for large-scale video classifi-
cation that learns spatio-temporal features using CNNs. Their approach involves extending the CNN
kernel in time domain and training it on a large dataset of labeled videos, enabling the network to learn
discriminative features for video across different context.

Video understanding contributes to a wide range of tasks, including action recognition, event de-
tection, video captioning, etc. Action recognition aims to classify human actions in videos, such as
walking, running, or jumping [80]. Event detection focuses on identifying specific events or activities,
like a birthday party or a football match [93]. Video captioning generates natural language descriptions
of video content, bridging the gap between visual and textual information [90].

In recent years, video understanding has been applied to various domains beyond traditional com-
puter vision tasks. For instance, it has been used in healthcare for analyzing medical videos and
assisting with diagnosis [25]. In the field of robotics, video understanding enables robots to perceive
and interact with their environment more effectively [47].

Notably, video has emerged as a valuable modality for emotion recognition. Several works have
explored the use of video data to predict emotional states. Kahou et al. [36] proposed a multi-modal
approach that combines facial expressions, audio, and textual information from videos to classify emo-
tions with CNNs. Ebrahimi et al. [22] extended the work by incorporating spatio-temporal features
extracted from video frames using a hybrid RNN-CNN architecture.

The potential of video understanding in immersive environments for emotion recognition is an emerg-
ing area of research [62]. Integrating video data with other modalities, such as physiological signals and
user self-reports, could lead to more accurate and robust emotion recognition systems in immersive
settings.



3
Emotion Dataset Collection

3.1. Emotion Model
As discussed in Section 2.1, emotion models are typically classified as either categorical or dimensional.
Categorical models, such as Ekman and Friesen’s six basic emotions [24], require the selection of a
single emotion from a predefined set. While dimensional models, like the Circumplex Model of Affect by
Russell [76], employ quantitative measures through multidimensional scaling. This study integrates ele-
ments from both categorical and dimensional models. Ekman and Friesen’s six basic emotions (anger,
disgust, fear, happiness, sadness, and surprise) are adopted along with ‘neutral’ as the foundation
of the emotion representations. The inclusion of the ‘neutral’ state allows for a more comprehensive
capture of the emotional states experienced by users, particularly in situations where none of the six
basic emotions are strongly present. Additionally, an intensity scaling dimension is included to capture
the self-reported intensity of each emotion experienced by the users. It is important to note that the
intensity scaling dimension is only utilized for self-reported user emotions and does not play a role in
the emotion recognizing stage. Figure 3.1 illustrates the adapted emotion categorical representation
utilized.

3.2. Dataset Collection Tool
The emotion collection tool used in this research was developed by Bishwas Regmi as part of his
Master’s thesis [74]. The tool is designed to collect multi-modal data from participants while they are
presenting with emotion-eliciting video stimuli in a VR environment. The experimental setup involves
presenting a total of 14 video stimuli to each participant, with pairs of stimuli (labeled as (a) and (b))
intending to evoke the same emotion. This design results in data collection for seven distinct emotions,
each comprising two sessions (a and b) corresponding to the paired stimuli.

The collected data includes eye movements (gaze estimation and pupil diameter measurements),
periocular recordings from both eyes, head movements, and speech audio. Additionally, the tool incor-
porates a self-report mechanism, allowing participants to provide subjective emotion intensity ratings
for various segments of each presented stimulus. These ratings are collected on a scale ranging from
1 to 10, where 1 indicates no intensity, 6 represents mild intensity, and 10 signifies very high intensity.

This data collection approach enables the collection of a dataset that captures both objective be-
haviour responses and subjective emotional experiences, providing a solid foundation for emotion
recognition in the further stages.

3.2.1. Hardware Components
The emotion collection tool utilizes the following hardware components:
VIVE Pro VR headset: Creates a standardized VR environment for presenting the video stimuli to the
participants.
Pupil Labs eye-tracking add-on: Integrated with the VIVE Pro headset to capture eye movement
data and record the periocular region of both eyes [39].
Integrated microphone: Records speech audio data from the participants.

8
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Figure 3.1: Emotion categorical representation adapted in our research, integrating Ekman and Friesen’s six basic
emotions [24] along with the ”Neutral” emotion.

Integrated IMU: Records head movements data from the participants.

3.2.2. Software Components
The emotion collection tool consists of three main software components:
Virtual Environment: Developed with Unity360, and it immerses participants in a controlled setting
for presenting video stimuli and performing data annotation after each stimulus.
Researcher Recording System: Comprises the Recording UI and Recording Program, allowing re-
searchers to manage recording sessions, control stimulus playback, initiate recording, andmonitor data
streams while ensuring synchronized data capture and storage.
Participant Labeling System: Includes the Labeling UI, enabling participants and researchers to
review recorded data, create annotated segments, assign emotion labels and intensity ratings, and
compile the final labeled dataset.

Figure 3.2 presents the user interfaces of the Researcher Recording System and the Participant
Labeling System. The Researcher Recording System (Figure 3.2(a)) allows the researcher to control
and monitor the data collection process, while the Participant Labeling System (Figure 3.2(b)) enables
collaborative annotation of the collected data. It is important to note that the Researcher Recording
System operates concurrently with the virtual environment, while the participant is immersed and pre-
sented with the video stimuli.

3.3. Dataset Collection Process
The dataset collection process follows a structured approach to ensure consistent and reliable data
capture. The data was collected by two researchers: Bishwas, the developer of the tool, gathered
data from 18 subjects [74], while 15 more subjects were collected in addition by Tongyun (the author),
resulting in a total of 33 subjects. The steps involved in the process are as follows:

1. The participant complete a pre-data questionnaire to gather demographic information and screen
for any visual, auditory, or medical conditions that may influence their emotional responses.

2. The participant are instructed to silence their mobile devices to minimize distractions during the
data collection process.

3. The researcher sets up the necessary hardware and software components, including Docker,
Pupil Capture, SteamVR, and the Unity application. The researcher ensures that all components
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(a) Researcher Recording System

(b) Participant Labeling System

Figure 3.2: User interfaces of (a) the Researcher Recording System and (b) the Participant Labeling System. The Researcher
Recording System allows the researcher to control and monitor the data collection process, while remaining hidden from the
participant who is immersed in the Virtual Environment. The Participant Labeling System enables collaborative annotation of

the collected data by both the researcher and the participant.
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are functioning correctly and resets the Pupil Capture software to default settings if needed.
4. The researcher measures the participant’s interpupillary distance (IPD) and adjusts the head-

mounted display (HMD) accordingly to ensure a comfortable and accurate fit.
5. The researcher assists the participant in wearing the HMD and monitors the Researcher Record-

ing System to confirm that all data streams are being captured correctly.
6. The researcher activates the SteamVR Night Mode to minimize visual distractions within the vir-

tual environment.
7. The researcher performs the Unity Gaze Calibration to ensure accurate eye-tracking data collec-

tion.
8. The researcher sets the audio volume to a level between 50 and 55 to ensure clear and comfort-

able audio playback for the participant.
9. The researcher presents the video stimuli to the participant in the sequence specified in Ap-

pendix A.1.
10. The researcher follows the process below for each video stimulus, repeating until the last trigger

clip:

(a) The researcher reads the context of the upcoming video to the participant, hinting at the emo-
tion they may potentially experience. This step is omitted for Neutral and Surprise sessions
to maintain the integrity of the emotional response.

(b) The researcher plays the video stimulus for the participant.
(c) After the video ends, the researcher and participant enter the Participant Labeling System

to review the recording together. The researcher asks the participant to label each segment
with the emotion they felt and the intensity of that emotion.

11. Once all video stimuli have been presented, the researcher assists the participant in removing
the HMD.

12. The participant completes a post-process questionnaire to provide feedback on their experience,
and whether felt surprised during the session triggering surprise.

13. The data collection process concludes.

3.4. Data Collection Characteristics
The dataset initially includes a range of modalities, including eye movements, pupil diameter, periocular
video recordings, etc. However, though audio and head movement data have been collected, they are
excluded from the modalities utilized for the emotion recognition development.

The decision to exclude audio data is because of the nature of the environment where the data
collection process was performed. Despite efforts to minimize noise, the presence of other people
working in the same space introduce unavoidable background disturbances. While these disturbances
do not impact the participants, they introduce irrelevant noise. Furthermore, participants tend to engage
in conversations with the researcher throughout the stimuli display. This consistent bias in the audio
data limits its usefulness for emotion recognition. Similarly, head movement data are excluded due to
the design of the virtual environment. The video clips are not designed for 360◦ display, as a result,
participants remain mostly facing one direction with minimal head movement. This lack of variation in
head movement data reduces the informative value for further analysis.

Table 3.1 presents the detailed information of all utilized data. In total, data from 33 subjects have
been gathered, out of which 20 are selected for the subsequent stages for the emotion recognition
development. The dataset also incorporates self-reported emotion intensity levels from each partici-
pant. As mentioned, on the intensity scale, 1 indicates no intensity, 6 represents mild intensity, and
10 signifies very high intensity. An intensity level exceeding 6 is considered indicative of successful
emotion elicitation for the corresponding emotion. Figure 3.3 illustrates the distribution of emotion
intensity ratings for stimuli across each emotion category. The data reveal a notably high emotion elic-
itation success rate, averaging above 90% across all emotions. This high success rate underscores
the effectiveness of the chosen stimuli in evoking the intended emotions.
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Figure 3.3: Distribution of participants’ emotion intensity ratings

Table 3.1: Comprehensive data collection information

Factor Information
Participant Demographics
Total Number 20 Participants
Gender Distribution Female (9), Male (11)
Age Range Min: 20, Max: 30, Mean: 24.9 ± 2.3
Ethnicity Caucasian (11), East Asian (4), Middle Eastern (2), South

Asian (1), African (1)
Participant Self-Reported States
Stress Level Min: 1, Max: 7, Mean: 4.2 ± 1.8

Scale: 1-10 (1: Very Low, 10: Very High)
Fatigue Level Min: 2, Max: 8, Mean: 4.6 ± 1.7

Scale: 1-10 (1: Not Fatigued, 10: Extremely Fatigued)
Comfort Level Min: 5, Max: 10, Mean: 7.8 ± 1.3

Scale: 1-10 (1: Very Uncomfortable, 10: Very Comfortable)
Experimental Design
Elicited Emotions Neutral, Surprised, Happiness, Sadness, Anger, Disgust,

Fear
Stimuli Presentation 14 video stimuli presented to each participant

Each emotion elicited by a pair of stimuli (’a’ and ’b’)
Eye Movement Data
Gaze Estimation 2-dimensional (x-y coordinates), 240Hz sampling rate
Pupil Diameter Left and Right eyes, 1-dimensional, 120Hz sampling rate
Video Data
Periocular Recording Left and Right eyes, 1 channel (grayscale) each

120fps, 400 x 400 pixels resolution
Note: Sampling rates and recording frame rates are approximates. Pupil diameter sampling rate and periocular recordings
frame rates are constrained by the bandwidth between the eye-tracking device and VR headset. Gaze estimation rate is
determined by the algorithm used to calculate gaze from pupil data.



4
Data Processing and Preparation

4.1. Raw Data Characteristics
4.1.1. Eye-Tracking System Data Output
The eye-tracking system employed in this study provides a comprehensive set of measurements, in-
cluding gaze estimation and pupil diameter, as previously outlined in Table 3.1. In addition to these
primary measurements, the eye-tracker generates a critical supplementary data, which is the confi-
dence levels associated with each measurement. These confidence levels serve as indicators of the
reliability and usability of the corresponding measurements. The confidence levels range from 0 to 1,
where 0 denotes complete uncertainty and 1 represents absolute confidence. According to the guide-
lines provided by the eye-tracker manufacturer, measurements with confidence levels exceeding 0.6
are considered to yield meaningful and reliable information for analysis purposes [19]. Low confidence
values are often, but not exclusively, associated with eye blinks or instances where the pupils are not
clearly visible to the eye-tracker. Figure 4.1 illustrates this phenomenon, depicting the confidence level
plot for both eyes of Subject 2 while viewing clip 0a, designed for a neutral emotional response. Despite
the subject performing only 17 blinks throughout the viewing session, the confidence level drops below
the 0.6 threshold more than 17 times. Further analysis of the data revealed that 7.39% of left eye data
points and 7.70% of right eye data points have confidence levels below 0.6. This discrepancy between
blink counts and low confidence occurrences indicates potential reliability issues in the raw eye-tracker
output, suggesting that factors beyond eye blinks contribute to data uncertainty.

4.1.2. Challenges Associated with Raw Data
The raw data collected from the eye-tracking system present several challenges that require careful
analysis. A primary concern is the variability in confidence levels associated with the measurements.
While discarding low-confidence data points might seem intuitive, this approach would disrupt data
continuity and create temporal misalignment between different representations, i.e., eye movement
data and periocular recordings.

Another significant issue is the inconsistency in sampling rates, as outlined in Table 3.1. The tar-
get collection rates for pupil diameter measurements, gaze estimations, and periocular recordings are
120Hz, 240Hz, and 120fps, respectively. However, these rates fluctuate due to bandwidth limitations
and the nature of the algorithm to used to derive gaze estimation. This inconsistency manifests in multi-
ple ways: misalignment between left and right eye pupil diameter measurements, discrepancies in the
number of pupil measurements relative to periocular recording frames, and an approximate doubling
of the gaze estimation sampling rate compared to pupil measurements.

While measurements are sampled at rather high frequencies for better capture of more details, the
pupil diameter may not accurately capture human physiological responses. Psychological research
indicates that meaningful pupil diameter changes occur at rates just above 9Hz [82], suggesting that
higher sampling rates may introduce noise unrelated to actual behavioral reactions.

Furthermore, The high-resolution periocular recordings (400×400 pixels) captured at 120fps impose
high computational demands. Processing this data volume on the fly require substantial resources,
which can constrain real-time applications.

13
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Figure 4.1: Confidence level plot for Subject 2 viewing clip 0a from ”Ex Machina” (neutral emotion elicitation). The subject
blinked 17 times, yet confidence levels dropped below the 0.6 threshold more frequently. 7.39% and 7.70% of data points had

confidence levels below 0.6 for the left and right eyes, respectively.

These challenges underscore the necessity for sophisticated data processing to mitigate noise,
synchronize different representations of data, and efficiently handle the computational demands. Ad-
dressing these challenges ensures the reliability of the final dataset for emotion recognition.

4.2. Data Processing
This section addresses the challenges of noise mitigation and reduction of micro-computational de-
mands associated with individual samples. The synchronization of different data representations and
the reduction of macro-computational demands during the training process are detailed in Section 4.3.
Figure 4.2 illustrates the comprehensive data processing workflow. Each filtering step for eye move-
ments is followed by a ”Mask and Interpolate” process, which ensures data continuity by interpolating
filtered data points rather than directly eliminating them [65]. Data from all representations are scaled to
the range of 0 to 1 at last, a standard practice that stabilizes the training process in the further stage of
model development by preventing large gradient values from causing significant weight fluctuations [9].

4.2.1. Processing Gaze Estimation
Gaze estimation data are initially filtered based on the confidence level indicated by the eye-tracker
(confidence level ≥ 0.6), followed by masking and interpolation of low-confidence data points. Subse-
quently, Median Absolute Deviation (MAD) with a threshold of 3 is applied to identify extreme outliers.
MAD is preferred for outlier detection due to its robustness against extreme values compared to stan-
dard deviation-based methods, and its suitability for non-normally distributed data [48]. The mask and
interpolate process then follows to address any gaps created by masked outlier data points. Finally,
the data are standardized and normalized on a session-specific level, meaning that data from each
elicitation session of subjects are standardized and normalized independently [4]. This final step is
accounting for slow drifts in sensors, calibration processes, and individual differences in gaze patterns,
enabling more accurate comparisons across participants and experimental conditions. Figure 4.3 illus-
trates the comparison between raw and processed gaze estimation data.

4.2.2. Processing Pupil Diameter Samples
Pupil responses exhibit slower changes compared to eye gaze [82]. This difference requires additional
effort to filter pupil measurements to obtain useful information. While the processing pipeline for pupil
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Figure 4.4: Comparison of raw and processed pupil measurements for Subject 2 viewing clip 0a from ”Ex Machina” (neutral
emotion elicitation).

diameter data shares similarities with that of gaze estimation data, additional steps are included to
account for the nature of pupil responses. The initial processing stages mirror those applied to gaze
estimation: filtering based on confidence levels, MAD outlier detection (threshold = 3), each followed
by masking and interpolation. To address the potential reintroduction of local outliers after interpolation,
a multi-pass filtering approach is employed [42]. This approach first applies Z-score filtering (threshold
= 0.1) [58], with subsequent masking and interpolation to maintain data continuity. Given the relatively
slow nature of pupillary changes, a low-pass filter (cutoff = 5Hz) is then applied to smooth out rapid
fluctuations [42, 79]. To ensure the alignment with the gaze data, the pupil measurements are up
sampled to 240Hz. Finally, mirroring the last process of gaze estimation data, the pupil diameter data
are standardized and normalized. Figure 4.4 shows the comparison of the pupil measurements that are
not yet upsampled to 240Hz with normalized raw data, to facilitate comparison with the same amount
of data points.

4.2.3. Processing of Periocular Video
The periocular recording video of the right eye is initially processed by flipping both horizontally and
vertically. This transformation ensures that the right eye data is in the same orientation as the left eye
data, enabling the use of a single eye feature extractor that focuses on extracting general and common
changes in the periocular region from both eyes [72]. Following the orientation alignment, the original
400×400 pixel resolution of all video frames are adjusted to 224×224 pixels. This reduction decreases
the required computational resources on the fly while maintaining a sufficient level of temporal detail
within the videos. Subsequently, all pixel values from both videos are normalized by dividing by 255, a
standard practice in image processing [28].

4.3. Dataset Preparation
The effective preparation of the dataset is essential for training the emotion recognition model in the
subsequent stage. This process addresses the challenge of macro-computational demands, encom-
passing two primary aspects: managing the extensive volume of collected data and facilitating efficient
data access during the training process.

The collected raw data comprises 276.6GB of information, processing them on the fly would ex-
ceed the memory capacity of the training system. Moreover, the raw data consists of continuous data
streams, which presents challenges for efficient processing. In order to ensure efficiency and consis-
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tency across various training sessions, it is crucial to create a static set of processed samples that can
be efficiently accessed during training phase. To address these challenges, a data preparation pipeline
is implemented, adhering to the processing steps detailed in Section 4.2. This approach involves pro-
cessing and systematically organizing the data prior to training, thereby reducing the computational
demands. By enabling more efficient access to a consistent set of processed samples, this method
not only optimizes training time but also ensures that the same dataset can be utilized reliably across
multiple experiments.

Figure 4.5 presents the comprehensive architecture of the dataset preparation pipeline. The pipeline
processes raw data from each subject and session independently. Initially, it reads the raw data along-
side emotion elicitation times derived from self-reported emotion intensity levels. These data undergo
processing, segmentation, alignment, and label assignment before storage in HDF5 (Hierarchical Data
Format version 5) format. This process continues sequentially until the final session of the last subject
is processed. Subjects are processed in ascending numerical order, with sessions following the se-
quence 0a, 0b, 1a, 1b, through 6b, comprising 14 sessions per subject. It is noteworthy that sessions
where subjects reported no emotion elicitation are excluded from processing. The following subsec-
tions provide a details of each component within this pipeline, explaining the methods employed to
transform raw data into a format conducive to model training in the further stage of development.

4.3.1. Data Segmentation & Synchronization
The data segmentation and synchronization process involves reading and processing the raw data from
each session of each subject, following the procedures outlined in Section 4.2. These procedures result
in periocular recordings at 120 fps, gaze estimation at 240 Hz, and pupil diameter measurements at 240
Hz. Concurrently, the emotion elicitation time for each session and subject is retrieved from pre-stored
user self-reported intensity levels (detailed in Appendix A.2). The emotion elicitation time is defined
as the beginning of the first segment where subjects report an emotional intensity of 6 or higher on
the predetermined scale. The emotion elicitation segment extends from this point until the end of the
recording, as depicted in Figure 4.6. The elicitation time serves as a reference point for initiating the
cropping of different representations.

The cropping process utilizes a specified window size for each experiment. The method begins
cropping from the end of each dataset, proceeding backwards until the elicitation time is reached. This
approach is based on the intuition that different representations are synchronized at their endpoints,
ensuring that cropped samples contain approximately the same information across representations. By
initiating the process from the end, the inclusion of relevant data after the user-reported elicitation point
is maximized and the risk of losing samples that do not fit within the specified window size is mitigated.
While the final sample may extend beyond the emotion elicitation time, it remains valid as long as
it contains data claimed to elicit the emotion. This end-aligned cropping strategy ensures consistent
temporal alignment across different representations. It is worth noting that the method incorporates the
capability for overlapping windows. However, all experiments in this study utilize samples created in
a non-overlapping manner. This decision increases the recognition difficulty by reducing the likelihood
of recognition based solely on common segments across different samples.

The outcome of this method is arrays of data, each array containing all the samples cropped from
representations of the session. These arrays are then prepared for the subsequent process of data
storage. A pseudo-code representing this method could be found in Appendix A.3 included with more
details.

4.3.2. Efficient Data Storage & Retrieval
Following the segmentation and synchronization of data, the pipeline incorporates an efficient storage
and retrieval system. This component addresses the challenges of managing large volumes of raw
data and ensuring efficient access during model training.

The system utilizes the HDF5 file format for data storage. HDF5 is chosen for its ability to han-
dle large, complex datasets and its support for high-performance I/O operations. HDF5 allows for
the organization of heterogeneous data types within a single file, which is beneficial for storing multi-
representation data alongside emotion ground truth labels. The data is structured into separate groups
within the HDF5 file for each representation: periocular video frames, gaze coordinates, pupil diam-
eters, and ground truth labels. Each group contains datasets that store the processed samples and
their corresponding ground truth, with data and labels corresponding to the same instance stored at
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Figure 4.6: Example of the data segmentation, illustrating the identification of emotion elicitation time and subsequent emotion
elicitation segment.

the same entry index. The HDF5 format offers lossless compression algorithms, resulting in significant
data reduction. The original 276.6GB of raw data is compressed more than 20 times and stored, with
periocular recordings down-sampled to 10fps and eye movements sampled at 120Hz.

Another key advantage of using HDF5 for data storage is its ability to access specific portions of the
data without loading the entire file, thus enhancing retrieval speed. As illustrated in Figure 4.5, an index
counter is initialized at the beginning of the process, and data samples from each subject are stored
in separate HDF5 files. The index counter tracks the indices of all samples from each session of each
subject. This information is output to a JSON file, which indicates theminimumandmaximum indices for
each subject, facilitating the identification of the subject associated with a given index. Additionally, the
JSON file stores the amount of samples of each session for each subject, making it easy to determine
which session a particular sample belongs to. During the training process, entry indices replace the
actual data. When specific data is required, it is fetched from the corresponding HDF5 file using the
index. This approach addresses the issue latency caused by computing required data on the fly, and
minimizing I/O bottlenecks during training.

4.4. Final Dataset Structure and Characteristics
This section describes the characteristic of the dataset created with a non-overlapping window size
of one second, periocular recordings at 10fps, and eye movements at 120Hz. It is important to note
that different window sizes yield approximately the same number of samples and dataset size, while
changes in recording fps result in proportional scaling in size.

4.4.1. Dataset Composition and Distribution
The dataset comprises 15,987 samples from 20 subjects, totaling 13.5GB in size. This represents a
significant reduction from the 276.6GB of raw data, with a compression factor of 20.5. Figure 4.7 illus-
trates the distribution of samples across subjects. The mean sample count per subject is 798.35, with a
standard deviation of 65.10. Figure 4.8 depicts the distribution of samples across emotion classes and
the two sessions for each emotion. A notable data imbalance exists among different emotions, which
can be attributed to the nature of elicitation methods for different emotions. As Paul Ekman argues,
most emotions can be repeatedly evoked by stimuli [23], such as maintaining a scary atmosphere or
displaying violent scenes to elicit disgust. However, this approach is challenging for surprise, as stimuli
that consistently evoke surprise are difficult to design. This imbalance is not unique to the collected
dataset in this study, other facial emotion datasets also exhibit over-representation of certain emotions,
particularly happiness and other positive emotions, compared to negative emotions [27].
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4.4.2. Data Organization and Characteristics
The dataset is structured with individual subject data stored in separate HDF5 files. Data retrieval is
facilitated by indices and an output JSON file, the details of which is presented in Appendix A.4. This
JSON file, containing index counts, is generated during the dataset preparation pipeline described in
Section 4.3. It includes the minimum and maximum indices for each subject and the sample count
for each session. The data retrieval process involves two steps: first, identifying the subject an index
belongs to by comparing it to the min and max indices, and second, accessing the data from the
corresponding HDF5 file using an adjusted index (calculated as the given index minus the subject’s
minimum index). A similar method is employed to determine the session for each sample.

The HDF5 files are composed of four primary datasets: Periocular Left, Periocular Right, Eye Move-
ments, and Labels. Their structures are as follows:
Periocular Left and Periocular Right: These datasets contain periocular recordings for the left and
right eyes, respectively. Each dataset has a shape of (X, 1, 10, 224, 224) with a float32 data type.
X represents the number of samples created with the non-overlapping window, each containing 10
frames of 224×224 pixel gray-scale frames.
Eye Movements: This dataset stores gaze estimation and pupil diameter measurements with a shape
of (X, 120, 4) and float32 data type. Each sample is a four-dimensional multivariate time series, where
the last dimension contains X-Y coordinates of gaze estimation and pupil diameter measurements for
both left and right eyes.
Labels: This dataset encompasses metadata and labels for each sample. It contains X entries, each
with a complex data type including subject ID, emotion label, session label, window number, frames per
second, frame size, frame channels, and timestamp rate. While the emotion label is primarily used as
the ground truth for prediction tasks, the additional metadata is retained to facilitate potential retrieval
of specific information of samples when necessary.



5
Emotion Recognition Method

5.1. Emotion Recognition Model Architecture Overview
An emotion recognition method by utilizing only periocular recordings and eye movements is proposed.
Themodel incorporatesmultiple data representations to enhance the robustness of emotion recognition.
It comprises four main components: a periocular feature extractor (FV ), an eye-movement feature
extractor (FE), a feature fusion module, and an emotion classifier. The periocular feature extractor
processes periocular recordings from both left and right eyes, while the eye-movement feature extractor
analyzes eye movement data. The feature fusion module then integrates the features extracted from
each distinct input representation. Finally, the emotion classifier predicts the user’s emotional state
based on the fused feature. Figure 5.1 presents an overview of the overall architecture.

The periocular recordings are represented as x̃l ∈ RTWHC and x̃r ∈ RTWHC for the left and
right eyes, respectively. T denotes the temporal dimension (number of frames), while W , H, and C
represent the width, height, and channels of each frame. The eye movement data is represented
as x̃e ∈ Rwm, where w is the sequence length of eye movements, and m is the feature dimension,
which in this case is the sum of dimensions of gaze estimation and pupil diameter measurements. The
subsequent sections provide detailed descriptions of the processing methodology for each input and
their integration to produce the final emotion classification.

Pe
rio

cu
la

r R
ec

or
di

ng
s

Ey
e-

m
ov

em
en

ts
 D

at
a

Le
ft

Ri
gh

t

Periocular 
Feature

Eye-movement 
Feature Extractor 𝑭!

Eye-movement 
Feature

G
az

e
Pu

pi
l 

D
ia

m
et

er
s

Feature Fusion

Fused Multi-modal 
Representation

Classifier

Shared Weights

Periocular Feature 
Extractor 𝑭"

Figure 5.1: Architectural overview of the proposed emotion recognition model.
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Figure 5.2: Tubelet embedding: Linear extraction of non-overlapping spatial-temporal patches from the input video.

5.2. Periocular Feature Extraction
The periocular feature extractor employs the tubelet embedding method and utilizes the most efficient
variant of the Video Vision Transformer (ViViT) model proposed by Arnab et al. [3]. This approach
is chosen for its ability to effectively capture spatio-temporal features from video data, demonstrating
state-of-the-art performance on video classification tasks.

5.2.1. Tubelet Embedding
Figure 5.2 illustrates the tubelet embedding process, which extracts non-overlapping spatio-temporal
patches from the entire video content of a sample. Each patch is then linearly projected into a d-
dimensional space to form input tokens for the model. This method allows for efficient processing of
video data by preserving both spatial and temporal information in the extracted features.

For each input x̃l ∈ RTWHC and x̃r ∈ RTWHC , dimensions of each patch are defined as (t, w, h, C).
A total of nt × nw × nh patches can be extracted from the video, where nt = ⌊T

t ⌋, nw = ⌊W
w ⌋ and

nh = ⌊H
h ⌋. To ensure an integer number of patches in each dimension, the input dimensions should

be divisible by the corresponding defined patch dimensions. The extracted patches are denoted as
x̃t′,w′,h′ ∈ RtwhC , where t′ = [0, 1,…, nt − 1], w′ = [0, 1,…, nw − 1], and h′ = [0, 1,…, nh − 1]. The
extracted patches are linearly projected into the d-dimensional space and are augmented with spatial
positional embedding to form the sequence of tokens:

x′
t′,w′,h′ = Wtex̃t′,w′,h′ + bte (5.1)

where x′
t′,w′,h′ ∈ Rd, and Wte ∈ RtwhC×d and bte ∈ Rd are learnable parameters.

xt′,w′,h′ = x′
t′,w′,h′ + pw′,h′ (5.2)

where xt′,w′,h′ ∈ Rd, and pw′,h′ ∈ Rd represents spatial positional embedding. These embedding are
repeated for each frame along the t′ dimension nt times, ensuring that nt patches of the same temporal
index receive the same positional embedding.

5.2.2. Factorized Encoder
Themost efficient variant of ViViT, the factorized encoder, is illustrated in Figure 5.3. It consists of spatial
and temporal encoders, both sharing the same structure and utilizing pre-norm transformer encoder
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Figure 5.3: Video feature extractor model architecture overview. The model comprises two sequential transformer encoder
blocks: the first extracts features from tokens of the same spatial index, while the second facilitates interaction between

features from different temporal indices.

blocks (detailed in Appendix A.5).

Spatial Encoder
The tokens formed by the tubelet embedding xt′,w′,h′ ∈ Rd are arranged in a multi-dimensional tensor
of shape (nt, (nwnh), d), where nt is the number of temporal indices, (nwnh) is the number of spatial
tokens per temporal index, and d is the dimension of each token. This arrangement enables the spatial
encoder to interact among tokens of the same temporal index. The aim of the spatial encoding process
is to extract a single token from spatial tokens of each temporal index for representation. There are two
approaches to extract this representation token: one is to attach an extra CLS token to each temporal
index, and the other is to perform global pooling of all spatial tokens in each temporal index. Using the
CLS approach, a learnable CLS token xcls ∈ R1×1×d is concatenated to each temporal index, resulting
in the multi-dimensional tensor Xspatial_input ∈ Rnt(nwnh+1)d. The spatial encoder then processes this
input through multiple transformer encoder blocks:

Xspatial_output = SpatialEncoder(spatial_input) (5.3)

The spatial encoder consists of N encoder blocks, where the output of each block serves as the input
to the subsequent block:

Y n
s = SpatialEncoderBlock(Y n−1

s ), n = 1, . . . , N (5.4)

where Y n
s is the output of the n-th encoder block, and Y 0

s = Xspatial_input is the initial input sequence.
Each spatial encoder block comprises layer normalization (LN), multi-head self-attention (MSA), and
feed-forward network (FF) sublayers:

SpatialEncoderBlock(Z) = LN(FF(LN(MSA(LN(Z)))) + Z) + Z (5.5)

where Z represents the input to each block. The output of the spatial encoder is Y N
s ∈ Rnt(nwnh+1)d,

and then each of the CLS token is extracted from each temporal index as a representation of the spatial
information, resulting in the final output Xspatial_output ∈ Rntd.

Temporal Encoder
The final output of the spatial encoder Xspatial_output serves as the input to the temporal encoder,
Xtemporal_input. It undergoes a similar multi-block processing approach as the spatial encoder. Using
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the CLS token approach for temporal encoding, a single CLS token is concatenated along the tempo-
ral indices, resulting in Xtemporal_input ∈ R(nt+1)d. The temporal encoder processes this input through
multiple transformer encoder blocks:

Xtemporal_output = TemporalEncoder(Xtemporal_input) (5.6)

Identical as the spatial encoder, the temporal encoder consists of M encoder blocks:

Y m
t = TemporalEncoderBlock(Y m−1

t ), m = 1, . . . ,M (5.7)

where Y m
t is the output of them-th encoder block, and Y 0

t = Xtemporal_input is the initial input sequence.
Each temporal encoder block has the same structure as the spatial encoder block:

TemporalEncoderBlock(Z) = LN(FF(LN(MSA(LN(Z)))) + Z) + Z (5.8)

where Z represents the input to each block. The output of the temporal encoder is Y M
t ∈ R(nt+1)d,

and then the CLS token is extractedas a representation of the whole video sample, resulting in the final
output Xtemporal_output ∈ Rd. Xtemporal_output is also the final output of the periocular feature extractor.

Multi-Head Self-Attention
Both spatial and temporal encoders use multi-head self-attention mechanism (MSA). For an input Z ∈
Rl×d, where l is the amount of tokens, the multi-head self-attention is computed as:

MSA(Z) = Concat(head1, ..., headc)W
O (5.9)

where c is the number of attention heads, and WO ∈ Rcdk×d is the output projection matrix. Each
attention head is computed as:

headi = Attention(ZWQ
i , ZWK

i , ZWV
i ) (5.10)

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5.11)

where WQ
i ,WK

i ,WV
i ∈ Rd×dk are learned parameter matrices, and dk = d/c is the dimension of each

head.

Feed-Forward Network
The feed-forward network in each encoder block is defined as:

FF(Z) = W2(GELU(W1Z + b1)) + b2 (5.12)

where W1 ∈ Rd×dff , W2 ∈ Rdff×d, b1 ∈ Rdff , and b2 ∈ Rd are learnable parameters, and dff is the
hidden layer dimension. The network projects the input to a higher dimension and back, and introducing
non-linearity through the GELU activation function. it enhances the model’s ability to capture complex
patterns in the data.

5.3. Eye-Movement Feature Extraction
The eye-movement feature extractor is based on a multivariate time series transformer framework [98].
This approach is chosen for its demonstrated efficacy in processing multivariate time series data, which
is crucial for capturing the temporal dynamics in eye movements. The core structure of the framework
is adopted, specifically a transformer encoder block in the post-norm fashion (detailed in Appendix A.5).
Figure 5.4 illustrates an overview of the adopted architecture.

As mentioned earlier, the eye movements are represented as a multivariate time series x̃e ∈ Rwm,
where w is the sequence length and m is the feature dimension. Each time step in the sequence is
represented by a feature vector xst ∈ Rm.



5.4. Multi-Representation Feature Fusion 26

𝑑𝑖𝑚2

𝑑𝑖𝑚𝑚

𝑠𝑡1 𝑠𝑡2 𝑠𝑡3 𝑠𝑡𝑤

… …. ….

… … … …

𝑥1

𝑥2

𝑥𝑤

𝑥𝑠𝑡𝜖ℝ
𝑚

…
 

Input encoding

Positional Encoding
𝑝
𝑠𝑡 𝜖ℝ

𝑑𝑢1

𝑢2

𝑢𝑤

𝑢𝑠𝑡𝜖ℝ
𝑑

…

+

𝑣1

𝑣2

𝑣𝑤

𝑣𝑠𝑡𝜖ℝ
𝑑

…
 

Transformer Encoder Block

𝑧1

𝑧2

𝑧𝑤

…

𝑧
𝑠𝑡 𝜖ℝ

𝑑: Representation at tim
e step st

×
𝐾

Ey
e 

M
ov

em
en

t D
at

a

𝑑𝑖𝑚1

Figure 5.4: Architecture overview of the time series feature extractor for eye movements.

5.3.1. Input Embedding
The embedding process includes projection to a d′-dimensional space and the addition of positional
encoding. These steps can be formulated as:

ust = Wpxst + bp (5.13)

vst = ust + pst (5.14)

where Wp ∈ Rd′×m and bp ∈ Rd′ are learnable parameters, and pst ∈ Rd′
, st ∈ {0, ..., w − 1} are the

positional encoding for each time step st. The resulting sequence, V ∈ Rwd′
= [v0, v1, ..., vw−1], serves

as input tokens to the transformer encoder.

5.3.2. Transformer Encoder
The transformer encoder for eye movements shares the fundamental structure with the periocular fea-
ture extractor (described in Section 5.2), but incorporates adaptations for time series data. Unlike
the pre-norm setup used previously, this encoder applies normalization after each component (self-
attention and feed-forward network). The post-norm configuration that has shown empirical benefits in
time series processing [98]. Additionally, batch normalization, applied across both batch samples and
time steps, replaces layer normalization as previously used.

The transformer encoder for eye movements can be represented as a series of encoder blocks:

Y k
e = TransformerEncoderBlock(Y k−1

e ), k = 1, . . . ,K (5.15)

where Y k
e is the output of the k-th encoder block, and Y 0

e = V is the initial input sequence. Each
encoder block is defined as:

TransformerEncoderBlock(Z) = BN(FF(BN(MSA(Z) + Z)) + Z) (5.16)

whereZ represents the input to each block, and BN is batch normalization, which replaced layer normal-
ization. The multi-head attention mechanism and the feed-forward network remain identical to those
described previously in Section 5.2. The output of the transformer encoder is Y K

e ∈ Rw×d′ . The final
feature representation is then obtained by applying a GELU activation function to the output, followed
by mean pooling across the temporal dimension. This process can be summarized as:

fe = MeanPool(GELU(Y K
e )) (5.17)

where fe ∈ Rd′ is the final output feature vector. The GELU activation introduces non-linearity, while
the mean pooling operation reduces the sequence dimension, resulting in a compact representation of
the entire eye movement sequence that captures global temporal dependencies.

5.4. Multi-Representation Feature Fusion
The proposed emotion recognition model leverages features extracted from both periocular record-
ings and eye movements. This section details the fusion approach used to combine these multi-
representation features effectively. Figure 5.5 illustrates an overview of the fusion process.
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Figure 5.5: Overview of multi-representation cross-attention feature fusion process.

To effectively combine the extracted features from multiple representations, a multi-representation
cross-attention fusion approach is proposed. This approach allows the model to learn the internal
relations among different features and the relative importance of each. The fusion method consists of
three main steps: feature projection, cross-attention processing, and weighted pooling.

5.4.1. Extracted Features
As a result of the feature extraction processes described in the previous sections, the following feature
representations are obtained:

fv,l = FV (x̃l) (5.18)

fv,r = FV (x̃r) (5.19)

fe = FE(x̃e) (5.20)

where fv,l, fv,r, and fe correspond to features obtained from the left and right periocular recordings,
and the eye movements, respectively.

5.4.2. Cross-Attention Based Fusion
The cross-attention based fusion process involves projecting obtained features from different represen-
tations into a same dimension, processing representation features with cross-attention and forming the
final fused representation with weighted pooling at last.

Feature Projection
The fusion method begins by projecting each representation’s features into a common h′-dimensional
space:

fri = Wrixri + bri, ri ∈ {fv,l, fv,r, fe} (5.21)

where Wri ∈ Rh′×dri and bri ∈ Rh′ are learnable parameters, and dri is the original dimension of
representation ri. This step results in dimension-aligned features f ′

v,l, f ′
v,r, and f ′

e from all three repre-
sentations.

Cross-Attention Processing
The aligned features in dimension are then stacked and processed through a transformer encoder in
post-norm fashion, which facilitates effective interaction between different representations:

F = FF(MSA([f ′
v,l, f

′
v,r, f

′
e])) (5.22)
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The output F ∈ Rnf×h′ contains refined features that have incorporated information from all represen-
tations. In the case where all three representations are involved in the feature fusion process, nf = 3.

Weighted Pooling
Finally, a learnable weighted sum is employed to pool the refined features into a single representation:

ffused =

nf∑
a=1

βaFa (5.23)

where βa are learnable pooling weights normalized through a soft-max function, and the final fused
representation ffused ∈ Rh′ encapsulates information from all input modalities.

5.5. Emotion Classification
The final stage of the emotion recognition model involves classifying the fused features into discrete
emotion categories. The feature vector resulting from the fusion approach serves as input for emotion
classification. A simple linear layer is implemented for this task, which can be expressed as:

y = Wffused + b (5.24)

whereW ∈ Rh′×cl and b ∈ Rcl are learnable parameters, cl represents the number of emotion classes,
and h′ denotes the dimension of the fused representation. This linear transformation maps the fused
features to a cl-dimensional space, corresponding to the emotion classes. To transform the linear layer
output into class probabilities, the soft-max function is applied:

ŷu =
exp(yu)∑cl
j=1 exp(yj)

(5.25)

where ŷu represents the predicted probability of the u-th class, and yu is the u-th element of the linear
layer output for a given sample. The emotion class with the highest probability is taken as the recog-
nized emotion. For model training, the cross-entropy loss function is employed. Given a batch of B
samples, the calculated class probabilities ŷ, and the true class labels ỹ, the loss is computed as:

L = − 1

B

B∑
n=1

cl∑
i=1

ỹn,ilog(ŷn,i) (5.26)

where it aims to minimize the discrepancy between the predicted probabilities and the true class labels
during the training process.

5.6. Model Configuration
This section elaborates on the specific configurations of all building modules of the model described
previously. These configurations remain consistent across different experimental setups in subsequent
stages of experimentation. The primary variations in the experiments involve the inclusion or exclusion
of specific modules, depending on the method being evaluated. This approach facilitates a system-
atic comparison of different representations and their combinations in emotion recognition tasks while
maintaining a consistent architectural design.

The periocular feature extraction module, based on the ViViT architecture detailed in Section 5.2, is
designed to extract spatio-temporal features from periocular recordings efficiently. The tubelet embed-
ding first processes video frames in patches of 16×16 pixels spatially and five frames temporally, then
projecting the patches to a dimension of 256. This dimension serves as the size for the input tokens
and internal representations throughout the module. The architecture comprises three spatial trans-
former blocks followed by one temporal transformer block, each utilizing eight attention heads. The
feed-forward network within each transformer block is designed with a dimension of 1024, four times
the dimension of the internal representation. To enhance the model’s generalization capabilities and
mitigate over-fitting, dropout rates of 0.1 are incorporated in the tubelet embedding, spatial encoder,
and temporal encoder.
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The eye movement feature extraction module, implemented as a time series transformer, as de-
scribed in Section 5.3, is designed to process four-dimensional feature vectors representing gaze esti-
mation and pupil diameter measures in eye movement data. This module operates with input tokens of
dimension 64 and employs eight attention heads within a single transformer block. The feed-forward
network in this module has a dimension of 256, maintaining the four-to-one ratio as in the ViViT module.
It also incorporates a dropout rate of 0.1 for regularization in both embedding and encoder components.

In methods incorporating feature fusion, as described in Section 5.4, the extracted feature represen-
tations from modules undergo further processing. These representations are projected into a common
256-dimensional space before combination, ensuring that features from different representations are
aligned in dimension. The subsequent fusion process utilizes a single transformer block with eight
attention heads. The feed-forward network in this module has a dimension of 1024, maintaining the
four-to-one ratio. A learnable weighted sum is employed which enables the model to leverage comple-
mentary information from different representation features.



6
Experiment Methods and Results

6.1. Experiment Design
6.1.1. Dataset Preparation
Posterior to data processing, emotion-elicited segments are extracted based on user self-reported
emotion intensity levels and prepared into datasets, as detailed in Section 4.3. However, the method
of extracting segments provided by each user has limitations, as new incoming users’ labels are not
available in real-world applications. To address this, an alternative method is proposed.

The alternative method provides an estimation of each emotion elicitation time for each user using a
95% confidence interval, derived from the data of all other users. The lower bound calculated for each
session serves as the estimated elicitation time. Subsequently, the segment from the determined start-
ing point to the end is extracted and prepared into a dataset using the pipeline detailed in Section 4.3.
To assess the accuracy of this estimation, the mean absolute error (MAE) between the estimated and
user-provided emotion elicitation times across all sessions is calculated. The average MAE is 6.60
seconds with a standard deviation of 15.47 seconds, indicating that most users experience emotion
elicitation at approximately similar points in time.

Datasets using both emotion labels are prepared with recording segments sampled at a maximum
of 10fps, and eye movements at 120Hz, utilizing non-overlapping sliding windows with a maximum size
of two seconds.

6.1.2. Evaluation Protocol
The experiment employs a 5-fold cross-validation approach across 20 subjects, implementing two pri-
mary testing schemes:
Pre-train Testing. This scheme evaluates the model on samples from four unseen subjects in each
fold without any fine-tuning. It assesses the model’s performance on entirely new subjects after solely
pre-training with data from all other sixteen subjects. This approach tests the ability of the model to
generalize across different individuals.
Fine-tune Testing. This scheme involves fine-tuning the model with a small proportion of samples
from an unseen subject before testing on the remaining samples. This mimics real-world application
scenarios where a limited amount of data from a new user is available for the adaptation purpose. This
approach evaluates the model’s ability to quickly adapt to new users with minimal additional data.

6.1.3. Implementation Details
In the 5-fold cross-validation pre-training process, all samples from the four unseen subjects in each
fold are used as testing samples, while all samples from the remaining sixteen subjects are used for
training. In the personal adaptation fine-tuning process, the model is fine-tuned on each independent
subject. The initial samples of each session from a subject are selected, aligning with the nature
of watching videos. This approach simulates a realistic scenario where early data from a new user
becomes available for model adaptation. To comprehensively verify the model’s performance, its ability
to recognize emotions triggered by watching unseen data of the same content (same-session) and its

30
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ability to recognize emotions triggered by watching unseen different content (cross-session) are both
evaluated. The implementations of these two distinct criteria are as below:
Same-session. A certain amount of initial samples are taken from both sessions of each emotion and
are used as training data, while the remaining samples serve as testing data. This approach assesses
the model’s ability to recognize emotions triggered by watching unseen data of the same content.
Cross-session. A certain amount of initial samples are taken from one of the sessions of each emotion
and are used as training data, and the data of the other session serve as testing data. This process is
repeated twice for each subject, as each emotion has two sessions per subject, and the performance
is averaged. This approach evaluates the model’s ability to recognize emotions triggered by watching
unseen different content, testing its ability to generalize across varying stimuli.

6.1.4. Evaluation Metrics
For all experiments, the model’s performance is reported as emotion recognition accuracy using the
weighted F1-score, which accounts for class imbalance. The weighted F1-score is calculated as fol-
lows:

Weighted F1-score =

n∑
i=1

wi · F1i (6.1)

where n is the number of classes, wi is the proportion of true instances for class i, and F1i is the
F1-score for class i. The F1-score for each class is the harmonic mean of precision and recall:

F1i = 2 · precisioni · recalli

precisioni + recalli
(6.2)

where precisioni and recalli are defined as:

precisioni =
true positivesi

true positivesi + false positivesi

(6.3)

recalli =
true positivesi

true positivesi + false negativesi

(6.4)

6.1.5. Baseline Methods
To demonstrate the effectiveness of the proposed approach, it is compared with three other baselines:
Periocular Only. This approach utilizes only the periocular recordings from both eyes as input. It
employs the upper half of the architecture shown in Figure 5.1, including the periocular feature extrac-
tor to extract features from both eyes and the feature fusion module to combine features extracted
from them. This baseline assesses the contribution of visual information from the periocular region to
emotion recognition.
Eye Movements Only. This approach uses only the eye movement data as input. It utilizes the lower
half of the architecture shown in Figure 5.1, solely including the eye movement feature extractor, and
excluding the feature fusion module. This baseline evaluates the performance contribution of eye
movement patterns to emotion recognition.
Content Attention. This approach incorporates the recording of the user’s view (i.e., the content being
watched) along with an attention map. For each frame of the view, an attention heat map is calculated
based on the average gaze point of the user on the displayed content. This heat map is then appended
to each frame as a fourth channel, as illustrated in Figure 6.1. The dataset is created with the pipeline
detailed in Section 4.3. The method employs a single periocular feature extractor of the proposed
architecture, which in this case acts as a feature extractor of the content attention, excluding the feature
fusion module and eye movement processing components. This baseline presents the performance of
combining visual content with gaze information for emotion recognition.

6.2. Performance Evaluation
6.2.1. Model Training
The training process for each evaluated model is designed to optimize performance and ensure con-
vergence. The process encompasses 25 epochs, employing the Adam optimizer with a learning rate
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Figure 6.1: Illustration of the content attention heat map overlay on user view frames.

scheduler. The scheduler incorporats a five-epoch warm-up phase, peaking at a learning rate of 8e-5,
followed by 20 epochs of cosine annealing, decreasing to 8e-6. The final five epochs maintain this
lower learning rate to ensure convergence. It has been found that applying a label smoothing factor of
0.4 improves performance. The intuition to this cause is that label smoothing helps reduce the model’s
confidence in its predictions, potentially leading to better generalization during pre-training. Consis-
tently, 30% of the training data is allocated for validation, and the entire dataset of unseen subjects is
reserved for testing.

For the fine-tuning phase, the same optimizer and learning rate scheduler are utilized, but with
modifications to suit the task of adaptation to new subjects. The duration of each phase is extended to
five times that of the pre-training, and the peak learning rate is reduced to 1e-5 and the final learning
rate to 1e-6, allowing for more gradual adaptation. Label smoothing is removed during fine-tuning to
allow the model to capture subject-specific nuances more precisely.

The training process above applies to the proposed method and the periocular-only baseline. How-
ever, for the content attention baseline, a different approach is necessary. This baseline employs the
same fine-tuning setting but skips the pre-train phase. The decision is made because pre-training is not
a reasonable task for the content attention baseline, as it inherently relates content to certain emotions.
Moreover, given that the stimuli presented to each participant are the same, including a pre-training
phase would not provide a fair comparison with the other methods. The eye movements-only baseline
requires a modified training approach. It is trained for a greater number of epochs with a larger learning
rate to ensure convergence.

6.2.2. Pre-training Performance Analysis
The pre-training performance of the proposed model is evaluated on samples from unseen subjects
without personalized fine-tuning adaptation. This evaluation aims to assess the model’s generalizability
across different individuals. Table 6.1 presents the performance results across various window sizes
for different representation combinations. The data consistently demonstrates that the combination of
eye movements and periocular data outperforms single-representation approaches, with the best per-
formance at the two-second window size (F1-score of 0.52). This multi-representation approach shows
a 15.6% improvement over the periocular-only method (F1-score of 0.45) and a significant 73.3% im-
provement over the eye movements-only method (F1-score of 0.30) at the same two-second window
size. The superior performance of the multi-representation approach can be attributed to its ability to
capture complementary information from both eye movements and periocular recordings. Eye move-
ments provide dynamic temporal information about gaze patterns, while periocular recordings offers
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Table 6.1: Pre-training performance across various window sizes

Modalities Window Size (s)
0.5 1.0 1.5 2.0

Eye Movements 0.26 0.27 0.29 0.30
Periocular 0.45 0.44 0.46 0.45
Eye Movements + Periocular 0.43 0.44 0.46 0.52

Table 6.2: Fine-tuning performance with one-second window: Comparison across modalities

Modalities 10% Same-session 10% Cross-session

Eye Movements 0.46 0.23
Content Attention 0.64 0.17
Periocular 0.82 0.54
Eye Movement + Periocular 0.84 0.70

visual cues from the eye and muscle movements.
However, an exception to this trend occurs at the 0.5-second window size, where the proposed

approach slightly under-performs (F1-score of 0.43) compared to the periocular-only method (F1-score
of 0.45). This may be attributed to the limited information providing by eye movements in such a short
time frame. In this case, the eye movement data might introduce noise rather than valuable features
to the model, potentially obscuring the more reliable periocular information. This observation suggests
the existence of a minimum temporal threshold for effectively leveraging eye movement data in emotion
recognition tasks. At shorter time scales, the patterns of eye movements may be less informative for
emotion recognition. As the window size increases, the eye movement data becomes more meaningful,
contributing positively to the overall performance of the multi-representation model.

6.2.3. Fine-tuning Performance Analysis
The fine-tuning performance analysis evaluates the effectiveness of personal adaptation based on the
pre-trained models under two criteria: same-session and cross-session. This analysis employs a one-
second window size and explores both user-provided and estimated labeling methods for determining
emotion elicitation time.

Initially, user-provided labels are used for the experiments. Table 6.2 presents the results of the 10%
proportional fine-tuning with user-provided labels. The multi-representation approach consistently out-
performs all baselines on both same-session and cross-session criteria. This method achieves an
F1-score of 0.84 for same-session and 0.70 for cross-session, surpassing the periocular-only base-
line (0.82 and 0.54, respectively). Notably, while the periocular-only baseline achieves comparable
performance to the multi-representation approach under same-session criteria, it is significantly out-
performed in the more challenging and practical cross-session criteria. The eye movement-only and
content attention baselines demonstrate limited performance under the one-second window size, with
cross-session F1-scores of only 0.23 and 0.17, respectively, indicating their inadequacy for practical
emotion recognition tasks in this context.

To simulate more practical scenarios where user labels are unavailable during personalized adapta-
tion, a comparison is conducted between user-provided labels and estimated labels. Table 6.3 presents
this comparison for themulti-representation method and the periocular-only baseline under 10% propor-
tional fine-tuning. The results demonstrate remarkably similar performance regardless of the labeling
method used, suggesting that estimated labels derived from other users’ data can effectively substi-
tute user-provided labels in practical applications while maintaining comparable emotion recognition
performance.

To further validate the effectiveness of the estimated labeling method, a statistical analysis is con-
ducted. AWilcoxon Signed-Rank Test comparing the F1-scores of themulti-representationmodel using
both labeling methods delivered a p value of 0.125, showing no statistically significant difference be-
tween user-provided (Mean = 0.71, Deviation = 0.12) and estimated (Mean = 0.73, Deviation = 0.12)
labels. This analysis supports the conclusion that the estimated labeling method can effectively substi-
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Table 6.3: Comparison of user-provided and estimated labeling methods

Labeling Modalities 10% Same-Session 10% Cross-Session

User Periocular 0.78 0.52
Eye Movement + Periocular 0.84 0.70

Estimated Periocular 0.83 0.54
Eye Movement + Periocular 0.85 0.71

Table 6.4: Few-shot fine-tuning performance: User-provided vs. Estimated Labels

Labeling Modalities 1-shot 2-shot 3-shot∗ 4-shot∗ 5-shot∗

User Periocular 0.53 0.56 0.57 0.57 0.57
Eye Movement + Periocular 0.67 0.68 0.69 0.70 0.70

Estimated Periocular 0.55 0.56 0.57 0.57 0.57
Eye Movement + Periocular 0.68 0.70 0.70 0.71 0.71

∗: For emotion ‘Surprise’, at most 2 shots are taken.

tute user-provided labels in practical applications.
Moreover, an investigation on the impact of labeling methods in a few-shot fine-tune cross-session

setting is also conducted, as shown in Table 6.4. This setting evaluates the model’s ability to generalize
emotion recognition to unseen content while training on only a small proportion of data from seen con-
tent. The multi-representation approach consistently and significantly outperforms the periocular-only
baseline across all shot settings. With user-provided labels, the multi-representation method achieves
an F1-score of 0.67 under 1-shot, compared to 0.53 for the periocular-only method. This performance
gap persists as the number of shots increases, with the multi-representation method reaching an F1-
score of 0.70 at the 4-shot setting, while the periocular-only method peaks at 0.57.

Focusing on the more realistic 4-shot and 5-shot settings for practical applications, an overall com-
parison of both modalities combined shows similar performance between user-provided labels (Mean =
0.635, Standard Deviation = 0.065) and estimated labels (Mean = 0.640, Standard Deviation = 0.070).
A Wilcoxon Signed-Rank Test yielded a p-value of 0.157, suggesting no statistically significant differ-
ence between the two labeling methods.

These results highlight the proposed multi-representation method’s effective generalization capabil-
ity with very limited training data and its robustness in real-world scenarios where ground truth labels
may be unavailable during application.

6.3. Ablation Studies
6.3.1. Impact of Eye Movement Window Size
The choice of window size for eye movement data analysis is a critical factor in emotion recognition
tasks. While the proposed method in this study employs short window sizes due to computational
constraints imposed by the video feature extractor, it is important to understand the potential impact
of longer window sizes on the performance. Previous studies have explored a range of window sizes
for emotion recognition tasks, with some extending up to 10 seconds in comparative studies [40] and
even 180 seconds (three minutes) in research on emotion elicitation in virtual reality environments [84].
To assess the impact of window size on our model’s performance, the eye movement-only baseline is
evaluated for various window sizes up to 15 seconds. Table 6.5 presents the results of this analysis,
revealing a consistent trend of performance improvement as the window size increases.

In the pre-train stage, a substantial improvement in performance as the window size increases is
observed. The F1-score rises from 0.26 at 0.5 seconds to 0.39 at 15 seconds, representing a 50%
improvement. This trend suggests that longer window sizes continue to provide additional informa-
tive features for emotion recognition, potentially capturing more temporal patterns in eye movements
that are indicative of emotional states. The fine-tuning stage exhibits a similar pattern of improvement.
For the 10% same-session scenario, the F1-score increases from 0.46 at 1 second to 0.54 at 15 sec-
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Table 6.5: Eye movement representation performance: Window size analysis

Modalities Stage Window Size (s)
0.5 1 1.5 2 5 10 15

Eye Movement Pre-train 0.26 0.27 0.29 0.30 0.34 0.37 0.39
Fine-tune∗ 0.46 0.46 0.44 0.43 0.50 0.52 0.54

∗: 10% same-session fine-tune.

onds, a 17.4% increase. This improvement indicates that personalized adaptation benefits from longer
temporal contexts, allowing the model to capture individual-specific patterns in eye movements over
extended periods. However, it is crucial to note that even with a 15-second window, the absolute perfor-
mance (0.39 for pre-train, 0.54 for fine-tune) still does not surpass the proposed approach with shorter
windows.

6.3.2. Effect of Periocular Recording Frame Rate
The core intuition in this research is that directly feeding high frame rate (120fps) periocular recordings
into a model is computationally infeasible. Instead, the approach samples the recordings at a lower
frame rate and uses high-frequency eye movement data to compensate for the loss of frames. To
test the hypothesis that higher frame rate input video should lead to better performance, an evaluation
is conducted on the impact of varying the frame rate of periocular recordings while maintaining eye
movement data at 120Hz, with a constant window size of one second. For this experiment, the default
model configuration as described in Section 5.6 is maintained for all frame rates except 2fps. In the
2fps setting, the frame patch size is adjusted from 5 to 2 frames temporally. This adjustment is pri-
marily necessary to accommodate the input shape requirements of the model. The modification allows
configurations (5fps with 5-frame patches and 2fps with 2-frame patches) to treat a one-second video
segment as a single temporal unit. By maintaining this consistent temporal treatment across frame
rates, a fair comparison of the model’s ability to extract meaningful features from equivalent time spans
is ensured.

Table 6.6 presents the results for 10% proportional fine-tuning across different frame rates. The
results confirm the hypothesis: higher frame rates generally lead to improved performance for both the
periocular-only baseline and the proposed multi-representation method. The proposed approach con-
sistently outperforms the periocular-only approach across all frame rates and fine-tuning scenarios. In
the more practically relevant cross-session scenario, the proposed method shows significant improve-
ments over the periocular-only method. At 2fps, the proposed method achieves an F1-score of 0.67,
compared to 0.52 for the periocular-only approach, featuring a 28.8% improvement. This performance
gap is maintained across higher frame rates, with the proposed method reaching an F1-score of 0.71
at 20fps, compared to 0.56 for the periocular-only method. It’s worth noting that the performance gains
from increasing frame rates tend to diminish at higher frame rates. For the proposed approach, the
improvement from 2fps to 10fps (0.67 to 0.70) is more substantial than from 10fps to 20fps (0.70 to
0.71). This suggests that the proposed method can achieve strong performance even at lower frame
rates, which has positive implications for computational efficiency.

6.4. Profiling
To assess the practical viability of the proposed multi-representation approach, a comprehensive pro-
filing analysis is conducted on model variations that demonstrated strong performance in the practical
cross-session scenario. The profiling focused on the inference phase, examining the impact of vary-
ing periocular recording frame rates while maintaining eye movement data at 120Hz, with a constant
window size of one second.

The profiling is performed on an Alienware Desktop equipped with an 11th Gen Intel Core i7-
11700KF 3.60GHz CPU and an NVIDIA GeForce RTX 3080Ti GPU with 12GB of memory. This hard-
ware configuration aligns with typical desktop configuration used in combination with the VR headset
setups, which ensures the relevance of the results to real-world applications.

Parameters and model sizes are directly measured, as these remain constant across inferences.
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Table 6.6: Performance analysis: Varying frame rates for periocular and combined representation

Modalities Frame Rate 10% Same-session 10% Cross-Session

Periocular

2fps 0.78 0.52
5fps 0.79 0.52
10fps 0.82 0.54
15fps 0.83 0.58
20fps 0.84 0.56

Eye Movement + Periocular

2fps 0.80 0.67
5fps 0.80 0.68
10fps 0.84 0.70
15fps 0.84 0.70
20fps 0.84 0.71

Table 6.7: Profiling of proposed multi-representation (peiocular + eye eovements) models at various frame rates

Frame Rate Parameters Model Size Memory Required Inference Time

2fps 4,271,757 17.02MB 342MB 3.30ms
5fps 4,469,901 17.81MB 342MB 3.39ms
10fps 4,520,077 18.01MB 344MB 3.55ms
15fps 4,570,253 18.21MB 364MB 3.56ms
20fps 4,620,429 18.42MB 366MB 3.61ms

Memory requirements and inference time are averaged over 9,000 iterations, with the first 1,000 itera-
tions discarded to mitigate any latency effects from initial model loading. Inference time is measured
using Python’s built-in timing functions, while memory consumption is monitored using Nvidia’s propri-
etary application.

Table 6.7 presents the profiling results. The data reveal a clear trend: as the frame rate increases,
all measured factors show an increase. It is noteworthy that even at the highest frame rate (20fps),
the model maintains performance well within the bounds required for real-time emotion recognition. In
other words, the inference time remains far below 50ms, enabling the system to perform a new emotion
recognition for each incoming frame.
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Discussion

7.1. Discussion on Results
The results presented above in Chapter 6 reveal two clear trends. Firstly, the proposedmulti-representation
approach consistently outperforms all other baselines. Secondly, by utilizing more information, specifi-
cally longer window sizes and higher frame rates of periocular records, leads to improved performance.
However, several phenomena are observed, which includes the slight out-performance of other base-
lines under the pre-train settings, the consistency of the estimated labeling method out-performing the
user-provided labeling method, and the saturation threshold of factors such as window size, recording
frame rate, and frame size on the performance.

7.1.1. Pre-train Settings and Personal Features
The intuition to the phenomenon observed in the pre-train settings is that emotion recognition is highly
dependent on personal features. All methods perform poorly in pre-train settings, with the highest accu-
racy reaching only 0.52 using the proposed multi-representation approach with a two-second window
size. However, further fine-tuning with a single sample from each emotion class significantly boosts per-
formance. For instance, the proposed method and the method utilizing only periocular recordings both
achieve 0.44 accuracy under pre-train settings with 10fps recordings, 120Hz eye movements, and a
one-second window. In contrast, under the fine-tune setting of cross-session 1-shot, their performance
increases to 0.67 and 0.53, respectively. This significant improvement from a single sample, repre-
senting only one second of data from the subject, underscores the importance of personal features in
emotion recognition tasks and the necessity of fine-tuning for accurate performance evaluation.

7.1.2. Estimated vs. User-provided Labeling Methods
The consistent out-performance of the estimated labeling method is likely due to that it does not contain
extreme situations where subjects report no emotion elicited in an emotion session. The estimated
labeling method ensures that emotions are attributed to all sessions, while using user-provided labels
include sessions that are reported as no emotion elicited. This causes troubles in the training phase in
cross-session scenarios and leading to lower overall performance.

7.1.3. Saturation Thresholds and Resource Constraints
Some evidence, as presented in Table 6.6, suggests that periocular recording frame rates above 10fps
yield minimal performance improvements. However, this aspect remains incompletely explored, to-
gether with other factors such as window sizes. The primary constraint is the memory-intensive nature
during training of models that utilize video information. The limit of the training system is under the
setting of 20fps periocular recordings, 120Hz eye movements with a one-second window size.

7.1.4. Comparison with Existing Studies
To facilitate a comparison with existing studies [30, 84, 96], the performance of valence and intensity
identification is performed. The proposed approach, integrating periocular recordings at 10fps and eye
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movements at 120Hz, achieves a performance of 0.70 in the 5-shot cross-session scenario with user-
provided labels. After categorizing recognized emotions on valence and intensity scales, the approach
demonstrates performance of 0.89 for valence identification and 0.81 for intensity identification. These
results are comparable to those reported in other studies, despite the significantly shorter window size
of one second used in this study compared to the ten-second to minute-long windows employed in
others.

7.2. Discussion on Model Decision-Making
To explore the explanability of the decision-making of proposed multi-representation approach, further
analysis are conducted. This section aims to discuss the reason why the multi-representation approach
significantly outperforms the baseline method that utilizes only periocular recordings (referred to as the
single-representation approach in this section).

For these analysis, data from the first subject (Subject ID P002) is used with user-provided labels.
The more practical cross-session scenario is chosen, specifically employing 5-shot training on one
session and testing with data from another session of the same emotion. The analysis are performed
on data with a 10fps frame rate for periocular recordings while maintaining eye movement data at
120Hz, with a constant window size of one second.

7.2.1. t-SNE Analysis
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis is first performed to visualize the high-
dimensional data in a two-dimensional space. This technique is particularly useful in this case as it
helps to reveal patterns in the data by clustering similar points together while maintaining the relative
distances between dissimilar points. The features for t-SNE analysis are extracted from the output
of the module immediately before the passing into the emotion classifier, as previously illustrated in
Figure 5.5.

Figure 7.1 presents the results of the t-SNE analysis. Figure 7.1(a) shows the features extracted by
the proposed multi-representation approach, while Figure 7.1(b) and (c) display those extracted by the
single-representation baselines. The multi-representation approach demonstrates a clearer division
among features extracted from each emotion. Both multi-representation and periocular approaches
struggle to extract distinct features for neutral and surprise emotions, but the multi-representation ap-
proach shows clear divisions among the other emotions, whereas the periocular approach fails to estab-
lish distinct boundaries between features extracted among disgust, anger, and sadness. The approach
using only eye movements fails to draw any clear divisions among the features extracted.

This observation suggests that while periocular recordings alone perform well, the additional infor-
mation contained in eye movements provides crucial cues for distinguishing between certain emotions,
particularly disgust, fear, and anger.

7.2.2. Attention Analysis
Attention analysis is also conducted to further understand the model’s focus during emotion recognition.
As defined in Section 5.6, the temporal size for patches is five, resulting in two tokens extracted from
each temporal dimension that represent the collective information of a set of frames. These tokens are
utilized to plot the attention heat-map. Three versions of the heat-map were created: two using each
of the individual spatial tokens, and one using the mean of both tokens. Detailed information on the
realization of this visualization can be found in Appendix A.6.

Figure 7.2 presents the visualization of the attention heat-maps, where white indicates high attention
and black indicates low attention. The multi-representation approach consistently focuses on the areas
surrounding the eyes across all emotions. In contrast, the single-representation approach does not
exhibit a clear attention pattern. This difference is particularly evident in the happiness and sadness
emotions.

These findings suggest that the information in eye movements may enable the model to consistently
focus on the areas surrounding the eyes, as the eyemovements already contain informative information
of the eyes. This consistent attention potentially contributes to the improved performance of the multi-
representation approach.
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(a) Multi-representation t-SNE Analysis (a) Periocular-representation t-SNE Analysis 

(c) Eye-movement-representation t-SNE Analysis 

Figure 7.1: t-SNE analysis visualization of emotion features extracted from (a) multi-representation approach, (b)
single-representation approach with periocular, and (c) single-representation approach with eye movements. The analysis is

performed on data from Subject P002 in a five-shot cross-session scenario. Features are extracted from the output of the fused
feature module before emotion classification.
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Figure 7.2: Attention visualization comparison between multi-representation and single-representation approaches for Subject
P002 across all seven emotions, focusing on the right eye. The analysis uses a one-second window size, with periocular

recordings sampled at 10fps and eye movements at 120Hz in a five-shot cross-session experiment setup.
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7.3. Limitations
This study acknowledges two primary limitations: the lack of comparable methods and the absence of
in-the-wild experiments.

7.3.1. Lack of Comparable Methods
The comparative analysis in this study is limited due to the evaluation solely being performed on the
dataset specifically gathered for it. Moreover, the methods utilizing different representations are all
variants of the proposed approach, which restricts the range of comparison. This limitation is primarily
due to the fact of the absence of publicly available datasets that offer the same data representations for
emotion recognition in immersive environments. The lack of comparability with other studies in the field
potentially limits the ability to evaluate the performance achieved in this study with other research. This
limitation may reduce the confidence in claiming how the current results compare to existing bench-
marks in the field.

7.3.2. Absence of In-the-Wild Experiments
The current study does not include experiments conducted in naturalistic settings, such as participants
watching videos or performing daily tasks in a VR environment. While it is common practice to gather
data and conduct experiments under controlled and standardized conditions, this approach may be
influenced by various factors, including the careful selection of stimuli presented to subjects, specific
hardware configurations, and the installation of eye-tracking devices. The controlled environment, while
providing standardization, may not fully represent real-world scenarios.
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Conclusion & Recommendation

8.1. Conclusion
This study proposes an approach for emotion recognition in immersive environments that utilizes solely
multi-representation data extracted from users’ eyes. By combining periocular recordings from both
eyes with eye movement data, the method effectively addresses the challenge of achieving promising
results in recognizing seven distinct emotions.

The proposedmulti-representationmethod leverages the complementary information from eyemove-
ments and periocular recordings, significantly outperforming baselines that use only one type of data
or incorporate content stimuli. Notably, in the same-session scenario, where the model is tested on
responses to unseen parts of the stimuli used for adaptation, the approach achieves an F1-score of
0.85 using only 10% of the data for personal adaptation. Furthermore, to enhance user experience
and minimize the amount of data required from each user, it has been demonstrated that the proposed
method achieves robust performance with minimal adaptation data. Using only five seconds of data
from each emotion for personal adaptation, summing to 35 seconds in total. The proposed method
achieves an F1-score of 0.71 in cross-session emotion recognition, where the model is tested on re-
sponses to completely different stimuli from the one used for adaptation. Under the same but more
extreme condition, where only one second of data is available from each emotion, seven seconds in
total, the proposed method achieves an F1-score of 0.68.This indicates that the approach can quickly
adapt to new users and perform effectively on unseen content with very limited data.

Importantly, the conducted experiments also show that using estimated labels derived from other
users’ data can effectively substitute for user-provided labels in the personal adaption process. Statisti-
cal analysis confirms that there is no significant difference in performance between using user-provided
labels and estimated labels, highlighting the practicality of the method in real-world applications where
obtaining user labels may not be feasible.

In conclusion, this study demonstrates the effectiveness of employing multi-representation behav-
ioral responses from users’ eyes for emotion recognition in immersive environments. By requiring
minimal data for personal adaption, the proposed approach offers a practical and efficient solution for
real-world applications. The promising results underscore the potential of the method to enhance user
experience and interaction in immersive technologies.

8.2. Future Work
Future work can be performed in three main directions: enhancing model performance, investigating
model explainability, and developing real-time emotion recognition systems for in-the-wild experiments.

To build upon the baseline set by the proposed multi-representation approach, further research can
explore the allocation of additional computational resources to train larger models and evaluate their
performance. Moreover, investigations on architectural modifications can be performed to enhance
both the feature extraction process and the fusion of features from different representations.

A deeper examination of model explainability is another direction for future work. It can provide
valuable insights into the decision-making processes of emotion recognition. This involves identifying
and extracting critical features that contribute to the recognition of specific emotions. Furthermore,
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methods for weighting and visualizing the precise contributions of each data representation to the final
recognized emotion can also be developed. These efforts would not only enhance the interpretability
of the model but also potentially improving the design for more effective emotion recognition systems.

The development of a real-time emotion recognition system for in-the-wild experiments is another
direction for further research. It can not only validate the performance reported in the current study
through practical, real-world experiments, but also potentially gather a new dataset from users per-
forming a wider range of common tasks in immersive environments. This requires a design of a new
labeling technique that demands less user effort to adapt the nature of other tasks performed in immer-
sive environments. The newly gathered dataset can provide a richer and more diverse set of data for
future emotion recognition systems to be evaluated on.

8.3. Implications for HCI and Immersive Environments
The promising performance achieved in emotion recognition could lead to developing more engaging,
more adaptive and more personalized experience in immersive environments.

Accurate emotion recognition could benefit enhancing the sense of presence and improving social
interactions in immersive environments. Research has shown that the realistic appearance of avatars,
including vivid facial expressions, enhances the self-perception of one’s own virtual body and leads
to more positive communication experiences in virtual spaces [45]. Moreover, a positive correlation
between highly embodied avatars and users’ deep engagement in immersive environments has also
be discovered [8]. Promising emotion recognition could contribute to enhancing more realistic facial ex-
pressions leading to more embodied avatars. This could improve the current existing social gatherings,
remote collaborative work experience in immersive environments.

The ability to accurately recognize emotions in immersive environments also enables the devel-
opment of adaptive and personalized applications. For instance, emotion logging systems could be
implemented for mental state tracking, offering tools for well-being monitoring and clinical purposes.
As for the gaming industry, immersive games could dynamically adjust their difficulty, narrative, or
environmental elements depending on the emotional state of users at different time points.

While the potential benefits are significant, ethical considerations are also raised. Concerns consid-
ering privacy related to the collection and use of personal emotional data should be properly taken care
of. Moreover, the potential lead to manipulation in emotion-aware applications for clinical purposes or
well-being monitoring should also be thoroughly examined before applying in practice.
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A
Appendix

A.1. Video Context Instructions
The following context sentences were read to the participants before each video stimulus to provide
background information and prime them for the intended emotional response (excluding Neutral and
Surprise), without explicitly mentioning the target emotion:

• 0a Neutral: A man was selected to assist another man in his research, and the two men are
discussing the topic on AI.

• 1a Surprise: A woman is riding a bike among quiet and calm streets to meet her husband.
• 1b Surprise: A man is giving a speech trying to unite his fellow scientists to not give up when they
find themselves trapped in a research lab in the middle of the ocean.

• 0b Neutral: A group of coworkers are having a business meeting to try and secure a partnership
with a fellow company.

• 2a Happiness: A disabled girl is coach surfing by a beach at a rural place in Thailand. She tries
to encourage local kids to join her in this amazing sport that gave her hope for life.

• 2b Happiness: A teen bought a lottery ticket for his grandma, and the clerk convinced him to buy
one for himself as well.

• 3a Sadness: A lady diagnosed with Alzheimer’s is looking at the family album. She can remember
her mother and her sister, but not the location of the bathroom in her own house.

• 3b Sadness: A conversation takes place among a girl diagnosed with leukemia, her family, and
the doctor. The doctor steps away from the child and informs the mother that her daughter is
dying.

• 4a Anger: During the age of colonization, the colonizers treated slaves as animals that could
be traded. While the officers are bargaining, a mother of two kids is begging them to save her
children, but the officers ignore her and treat her violently.

• 4b Anger: A man arrives home to his wife, who is cooking dinner. She discovers evidence of him
cheating and he acts violently in response.

• 5a Disgust: A man with a Nazi tattoo treats a person of color violently and shows no regret. He
smiles as the police arrive and arrest him.

• 5b Disgust: Two men have just fought and are lying on the ground face to face. Blood floods the
floor, flowing from one man to the other.

• 6a Fear: Three friends built a cabin in the woods. Two of them left for home, while one insists on
staying and living there alone.

• 6b Fear: A lady living alone in a house suddenly hears noises coming from the basement and
decides to go down to investigate.
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A.2. Subjects Emotion Eliciting Time Across Sessions
Table A.2 presents the emotion eliciting time across different sessions for subjects in the study. It
provides a detailed breakdown of when subjects reported experiencing emotional responses during
each session. The table is organized by session number, time stamp, and subject IDs. This information
is derived from user-provided labels.

Table A.1: Subjects emotion eliciting time across sessions

Session No. Time Stamp Subject IDs
0a 0:00 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
0b 0:00 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
1a 0:35 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
1b 1:26 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
2a 0:19 2, 3, 6, 8, 11, 12, 14, 15, 18, 24, 26, 28, 32

1:20 7, 9, 13, 17, 23, 25, 30, 31, 33
2b 0:06 2, 3, 6, 8, 9, 12, 13, 14, 15, 18, 23, 24, 25, 28, 30, 31

0:45 7, 26
1:30 11, 33

3a 1:37 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 23, 24, 25, 26, 31, 32, 33
2:00 15, 28, 30

3b 0:55 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
4a 0:32 2, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 23, 25, 26, 28, 30, 31, 32, 33

1:35 3, 17, 24
4b 0:31 13

0:56 2, 3, 6, 7, 8, 9, 12, 15, 18, 23, 25, 28, 31, 32, 33
1:23 11, 14, 24, 26, 30

5a 0:38 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
5b 0:35 2, 6, 7, 8, 9, 11, 12, 13, 14, 18, 23, 24, 25, 26, 28, 30, 31, 32, 33
6a 0:10 7, 8, 12, 13, 14, 15, 18, 23, 24, 25, 26, 28, 31, 33

0:28 2, 3, 9
0:42 11

6b 0:10 2, 7, 8, 9, 11, 14, 15, 17, 18, 23, 24, 26, 28, 30, 31, 32, 33
0:40 12, 25
0:47 6, 13
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A.3. Pseudo-code for Data Segmentation and Synchronization in
Dataset Preparation

This appendix section presents the pseudo-code for data segmentation and synchronization in the
dataset preparation process. The piece of code loads various data types including eye videos, gaze
data, and pupil data. It then processes these data streams, synchronizing them based on the emotion
elicitation time provided by participants. It employs a back-to-front cropping approach to maximize the
inclusion of relevant data after the reported elicitation point, and allows for flexible handling of different
data types and rates.

1 def segment_and_synchronize_data(subject, session, elicitation_time, window_size):
2 # Load data
3 # eye0 represents left eye, eye1 represents right eye
4 eye0_video = load_video(subject, session, 'eye0')
5 eye1_video = load_video(subject, session, 'eye1')
6 gaze_data = load_gaze_data(subject, session)
7 pupil_data = load_pupil_data(subject, session)
8

9 # Initialize parameters
10 fps = 120
11 gaze_pupil_rate = 240
12

13 # Calculate end frame and elicitation frame
14 end_frame = get_total_frames(eye0_video)
15 elicitation_frame = calculate_elicitation_frame(elicitation_time, fps)
16

17 # Crop and process data from back to front
18 # This approach maximizes inclusion of relevant data after the user-reported elicitation

point and mitigates the risk of losing samples that don't fit within the specified
window size

19 eye0_samples = crop_data_back_to_front(eye0_video, end_frame, elicitation_frame,
window_size, fps)

20 eye1_samples = crop_data_back_to_front(eye1_video, end_frame, elicitation_frame,
window_size, fps, flip='horizontal')

21 gaze_samples = crop_data_back_to_front(gaze_data, end_frame, elicitation_frame,
window_size, gaze_pupil_rate)

22 pupil_samples = crop_data_back_to_front(pupil_data, end_frame, elicitation_frame,
window_size, gaze_pupil_rate)

23

24 # Synchronize samples
25 min_samples = min(len(eye0_samples), len(eye1_samples), len(gaze_samples), len(

pupil_samples))
26

27 synchronized_data = {
28 'eye0': eye0_samples[:min_samples],
29 'eye1': eye1_samples[:min_samples],
30 'gaze': gaze_samples[:min_samples],
31 'pupil': pupil_samples[:min_samples]
32 }
33

34 return synchronized_data
35

36 def crop_data_back_to_front(data, end_point, elicitation_point, window_size, rate):
37 samples = []
38 current_point = end_point
39

40 while current_point > elicitation_point:
41 # The final sample may extend beyond the emotion elicitation time
42 # It remains valid as long as it contains data claimed to elicit the emotion
43 start_point = max(elicitation_point, current_point - window_size * rate)
44 window = extract_window(data, start_point, current_point)
45

46 if isinstance(data, Video) and data.eye == 'eye1':
47 window = apply_horizontal_flip(window)
48

49 samples.append(window)
50 current_frame -= window_size * rate
51

52 return reverse(samples) # Reverse to maintain chronological order
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A.4. Table representation of the output JSON file
Table A.2 presents a tabular representation of the output JSON file generated during the dataset prepa-
ration pipeline described in Section 4.3. This JSON file is crucial for efficient data retrieval from the
HDF5 files that store individual subject data. The table displays the following information for each
participant:

• Participant ID
• Minimum and maximum indices
• Number of samples for each emotion class across two sessions (a and b)

The emotion classes are represented by numbers 0-6, corresponding to the following label map:

• 0: neutral
• 1: surprise
• 2: happiness
• 3: sadness
• 4: anger
• 5: disgust
• 6: fear

This structured representation facilitates a two-step data retrieval process: first, identifying the subject
an index belongs to by comparing it to the min and max indices, and second, accessing the data from
the corresponding HDF5 file using an adjusted index (calculated as the given index minus the subject’s
minimum index). The session for each sample can be determined using a similar method.

Table A.2: Subjects sample index of all sessions

Subject Min Index Max Index Emotion #Samples (Session(a)/(b))
0 1 2 3 4 5 6

P002 0 869 43/31 5/10 133/108 46/53 85/64 112/13 35/132
P003 870 1514 43/31 4/9 133/107 46/52 17/60 109/0 34/0
P006 1515 2303 43/31 5/10 133/107 45/52 82/62 112/12 0/95
P007 2304 3015 43/31 4/10 73/69 47/53 85/64 112/13 53/55
P008 3016 3901 43/31 4/10 133/108 46/53 84/64 112/13 53/132
P009 3902 4708 43/31 4/10 72/108 46/53 84/64 112/13 35/132
P011 4709 5451 43/31 5/10 133/24 46/52 84/37 112/13 21/132
P012 5452 6311 43/31 4/10 134/108 47/53 85/64 112/13 53/103
P013 6312 7121 43/31 5/10 72/108 46/52 84/89 111/12 53/94
P014 7122 7984 43/31 4/10 133/108 47/53 85/37 113/13 53/133
P015 7985 8834 43/31 5/10 133/108 23/53 84/63 112/0 53/132
P018 8835 9720 43/31 4/9 133/108 47/53 84/64 112/13 53/132
P023 9721 10540 44/31 4/10 72/107 46/53 84/64 109/13 53/130
P024 10541 11306 43/31 4/9 132/105 43/51 17/34 109/10 51/127
P025 11307 12101 43/31 5/10 72/108 45/53 84/64 112/13 53/102
P026 12102 12881 43/30 4/8 128/67 40/48 82/34 105/11 51/129
P028 12882 13740 43/31 4/10 133/107 23/53 84/63 112/12 53/131
P030 13741 14439 43/30 4/9 70/106 22/51 82/35 107/12 0/128
P031 14440 15249 43/30 4/9 71/107 44/51 83/62 112/12 52/130
P033 15250 15986 43/30 4/10 73/23 46/52 84/63 112/13 53/131
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A.5. Post-norm Vs. Pre-norm Transformer Block
The transformer architecture, a foundation of modern natural language processing and computer vision
tasks, exhibits two primary variants in its block design: post-norm and pre-norm. These variants differ
in the placement of layer normalization within the transformer block structure.

In the post-norm configuration, layer normalization is applied after the multi-head attention and
feedforward operations. Conversely, the pre-norm design positions the normalization layer before these
operations. Figure A.1 illustrates these two configurations.

While both variants are widely used in various implementations, recent research has been con-
ducted to evaluate the advantages of one over the other. Several empirical [32, 75] and theoretical
[92] studies advocate for a pre-norm design in Transformer architectures. This earlier placement of
normalization layers has been shown to stabilize the training process and potentially enhance perfor-
mance. However, it is important to note that despite these findings, both post-norm and pre-norm
designs continue to be employed in practice.

Multi-head 
Attention

Feedforward

Add & Norm

Add & Norm

Multi-head 
Attention

Feedforward

Add

Norm

Add

Norm

(a) Post-Norm (b) Pre-Norm

Input Input

Extracted Feature Extracted Feature

Figure A.1: Transformer encoder block variants. (a) Post-norm: normalization applied after multi-head attention and
feedforward operations. (b) Pre-norm: normalization applied before multi-head attention and feedforward operations.
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A.6. Visualization of Attention
The process begins by loading the trained model and registering forward hooks to capture the output
of specific layers. In PyTorch, hooks are a mechanism that allows for the interception and modification
of tensors during the forward or backward pass of the neural network. In this case, forward hooks are
utilized to extract intermediate representations. A hook on the QKV (Query-Key-Value) computation
layer to extract the combined QKV tensor is registered.

After registering the hook, themodel is fed with the input data. As the data flows through the network,
the registered hook capture the required intermediate representations.

The QKV tensor, obtained via the hook, is then split into its constituent parts: query (Q) and key
(K). These are reshaped to incorporate the multi-head attention structure. The attention weights are
computed by performing a matrix multiplication between Q and the transpose of K, resulting in a tensor
that represents the attention scores for each head across all patches of the input image.

To create a single attention map, the attention weights are summed across all heads. This aggre-
gated attention map is then reshaped and upsampled to match the dimensions of the original size of
the input frames of the periocular recordings. The resulting heat-map is overlaid on the first frame of
the recording. The following pseudo-code illustrates the key steps in this process, including the hook
registration:

1 def register_hooks(model):
2 def qkv_hook(module, input, output):
3 hooks_output['qkv'] = output.detach()
4 model.qkv_layer.register_forward_hook(qkv_hook)
5

6 def generate_attention_heatmap(model, input_data):
7 hooks_output = {}
8 register_hooks(model)
9

10 _ = model(input_data) # Forward pass, hooks capture outputs
11

12 qkv = hooks_output['qkv']
13 q, k = split_and_reshape_qkv(qkv)
14

15 attention_weights = compute_attention(q, k)
16 attention_map = aggregate_attention(attention_weights)
17

18 upsampled_map = upsample(attention_map, target_size)
19

20 overlay_heatmap(upsampled_map, input_data[0])
21 display_heatmap()
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