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Abstract

Proton therapy is a form of radiation therapy, that leverages the unique properties of protons to maximize
dose deposition in treatment volumes. The usefulness of proton therapy treatment, in sparing healthy tissue,
becomes even more evident with the incorporation of the FLASH effect. FLASH delivers ultra-high dose
rates with minimal treatment time while maintaining therapeutic efficiency in eradicating tumours. How-
ever, due to practical challenges such as energy layer switching in pencil beam scanning systems the clinical
applications are limited.

This thesis researched the development of patient-specific ridge filters (RFs) for proton therapy using an
optimization algorithm. Ridge filters are energy modulators that help enable dose delivery without energy
layer switching, making the FLASH effect feasible as was shown in 2018 [1]. Previous studies used static
and dynamic methods [2] and fluence-based optimization [3] to construct patient-specific RFs. This study
presents a novel framework for optimizing patient-specific RFs using a combination of TOPAS, a Monte
Carlo particle simulation software that accurately models particle transport, and PyGAD, a Python-based
genetic algorithm (GA) module. This class of optimizers is effective in cases where no derivatives are avail-
able or are very difficult to compute. GAs do this by testing various simulations and evaluating these using
a fitness function. The methodology involves simulating dose distribution in a scoring volume, optimizing
ridge pin geometry, and evaluating performance using fitness functions.

The results demonstrate that the proposed framework effectively generates patient-specific RFs with min-
imal deviation from the desired dose distribution in simple cases, with a maximum dose difference of 2.66
% and mean dose of 99.21 % over the region of interest. Comparative analysis with prior approaches shows
that the framework achieves similar results. However, applying the framework to cases with obstructions in
the scoring volume requires further refinement of the algorithm. The findings provide a basis for using GAs
for constructing patient-specific RFs for FLASH proton therapy. Future work should be aimed at refining
the GA and Monte Carlo simulation and assessing the viability of producing the generated RFs.
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1 Introduction

Cancer accounts for almost 15% of global deaths, this constitutes cancer as being the second most
common worldwide cause of death [10]. Despite the significant progress in the most common
treatment methods for cancer patients surgery, radiotherapy, chemotherapy, immunotherapy, and
hormone therapy, further progress remains imperative to reduce the loss of life as a result of cancer.
Radiation therapy is employed in over half of cancer treatments [11], often alongside surgery and
chemotherapy [8].

Radiation therapy is used to treat malignant tumours. In this process, high doses of radiation
are delivered to patients. Radiation damages the DNA of cancerous tumours to the point that DNA
repair and division in the tumour is no longer possible, ultimately leading to cell death of the malig-
nant tumour [8]. The challenge of this process is maximizing the damage to cancerous tissue so that
cell death occurs while at the same time sparing as much healthy tissue as possible. Proton therapy
achieves this goal by using the unique physical and radiobiological properties of protons. Recent
advancements in radiotherapy with ultra-high dose rates (UDHR), most notably the discovery of
the FLASH effect by Favaudon et al. in 2014 [12], have shown potential. The FLASH effect has
demonstrated equivalent therapeutic efficiency for killing malignant tumours while sparing an in-
creased amount of healthy tissue [13]. The discovery of the FLASH effect has further increased the
research potential of proton therapy and this field has gained increasing attention since [2, 13, 14].

The clinical implementation of FLASH in combination with proton therapy still presents chal-
lenges. First among these is the reduction of time needed to deliver the dose in clinical settings
using pencil beam scanning [2]. To tackle this Patriarca et al. [1] proposed using ridge filters in
2018. Ridge filters remove the need to switch energy layers, thereby significantly reducing treat-
ment times in systems using pencil beam scanning (PBS) while still achieving the ultra-high dose
rates needed for FLASH.

Given the established need for ridge filters, it raises the question of how to produce these. Nomi-
nally, every patient’s malignant tumours are unique. This uniqueness implies that achieving precise
dosing to only the tumour requires patient-specific ridge filters tailored to the specific shape, size,
and location of the tumour. Currently, there are multiple methods for optimizing ridge filters for
patient tumours. For example, Zhang et al. used a unique dose-influence matrix in 2022 [2]. How-
ever, the two methods tried by Zhang et al., static and dynamic, had a couple of issues. Foremost
among them are limited reusability in the procedure for the static case and the increased complex-
ity in the dynamic case. Another paper by Liu et al. used a matrix-based approach using linear
energy transfer influence matrices in 2023 [3]. However, the treatment planning software used in
this paper, MatRad, optimizes based on fluences instead of a dose distribution.

This paper researches the possibility of constructing patient-specific RFs based on a dose dis-
tribution using an optimizer. Both of these papers used one type of optimizer, however other opti-
mization methods are available. One class of such methods is that of the Genetic Algorithms (GA).
GAs are very useful in so-called black-box optimization, otherwise called derivative-free optimiza-
tion [15]. The problem of optimizing ridge filters to patient-specific tumours falls into the category
of not having a gradient. This makes genetic algorithms particularly useful in this scenario due to
their effectiveness in black-box optimization.
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In this paper the following question will be researched: ”Can patient-specific ridge filters for
proton therapy be constructed based on desired dosage distributions through an optimization proce-
dure? And how does this approach compare to previously established research in terms of achieving
target dosage distributions?”. The report is structured as follows, it consists of five sections: in sec-
tion 2 the theoretical background will be established introducing topics such as proton therapy,
FLASH, ridge filters, Monte Carlo simulations, and genetic algorithms. After that in section 3 the
implementation of the Monte Carlo simulation and the genetic algorithm will be shown. Moreover,
a description is given of how the simulation data has been processed. Continuing in section 4 the
results are presented and discussed. The conclusion and future research recommendations are in
section 5.
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2 Theory

2.1 Proton Therapy

The physical and radiobiological properties of particles like protons enable the delivery of a high
dose to a tumour, with the energy level determining the specific distal edge of the dose deposition.
This behaviour is described by the Bethe-Bloch equation, where the energy and dose deposited are
inversely proportional to the square velocity. As a consequence most of the energy is deposited
right before the particle stops [16]. This characteristic allows proton therapy to deliver more dose
to the tumour volume while minimizing radiation beyond the distal edge, particularly useful for
tumours near critical organs like the lungs and heart [17–19].

This property makes charged particles unique, as conventional radiation therapy with photons
irradiate past the tumour, this is illustrated in figure 2.1. In this figure, the electron and photon
deposit a substantial dose across most of the depth. Whereas charged particles such as protons and
Carbon ions exhibit a sharp dose drop-off, which depends on the particle’s energy level. The sharp
dose deposition is known as the Bragg peak and the entire depth dose curve as the Bragg curve [20].

Figure 2.1: Depth-dose curves for radiotherapy. Dose distributions as a function of depth in water and energy level
are shown. For electrons (20 MeV), photons (18 MeV), Carbon Ions (300 MeV), and Protons (130 MeV). Showcasing
different dose-depth distributions based on particle type. [4].

Figure 2.2 further illustrates the relation between the Bragg peak and the energy level. Higher
energy levels allow for the Bragg peak to extend further.
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Figure 2.2: Bragg peak for different energies. (a) The deposition of the dose varies according to the energy of the
proton. The maximum of the Bragg peak varies according to the energy; (b) The relationship Range - Energy for
protons in water is shown. Edited to have depth on the z-axes instead of range. [5].

The Bragg peak characteristic makes proton therapy particularly useful for treating deep-seated
tumours and those close to organs at risk. This is due to minimal dosage being deposited beyond
the distal edge of the Bragg peak thereby sparing healthy tissues and organs at risk.

2.1.1 FLASH Radiation Therapy

FLASH radiation therapy (FLASH-RT) is a promising approach that, contrary to most current radi-
ation therapy, delivers an ultra-high dose rate (> 40 Gy/s) in a short time frame (< 200 ms [21,22]
or ∼ 500 ms [12, 13] depending on the study). To provide a frame of reference, conventional ther-
apy currently in use delivers a standard dose of up to 1 Gy/min, with treatment times of over a
minute [12]. Recent studies have shown that FLASH-RT shows equivalent efficiency for killing
tumours as traditional methods, while also offering more sparing of normal tissue [13]. This is
due to FLASH-enabled proton therapy sparing healthy tissues both before the proximal edge [13]
and beyond the distal edge, thanks to the Bragg peak, while maintaining the same therapeutic effi-
ciency [7].

The initial proposition for the FLASH effect was based on transient oxygen depletion [23], but
recent studies have shown that oxygen depletion might not fully describe the underlying mechanism
[24, 25]. Other hypotheses now include the kinetics of radicals and an intrinsic differentiation in
oxygen delivery between tumours and healthy tissue micro-environment [14]. However, a definitive
explanation of the FLASH effect remains elusive.

2.1.2 Spread-out Bragg Peak

As explained in section 2.1, the location of the Bragg peak is dependent on the particle’s energy.
This means that if the proton beam consists of one energy level, also known as mono-energetic,
the majority of the dose will irradiate only one part of the tumour. To address this it becomes
necessary to create a spread-out Bragg peak (SOBP) to cover the entire tumour. The production
of a SOBP through the use of a weighted collection of mono-energetic proton beams has been
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studied before by Bortfeld in 1996 [26]. The SOBP allows for the treatment of larger tumours and
larger three-dimensional volumes. Figure 2.3 illustrates that the SOBP covers the entire tumour
target in comparison, the Bragg peak of the mono-energetic beam only covers a fraction of the total
tumour target. The blue line represents a photon with its integral depth doses (IDD), which deposits
considerable doses beyond the distal edge of the tumour target.

Figure 2.3: Depth-dose curves for photon and proton beams. The proton Bragg peak allows for precise dose delivery
to the tumour target and a relative dose elimination compared with photon exit dose [6].
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2.1.3 Pencil Beam Scanning

Pencil beam scanning (PBS) is a technique in proton therapy to precisely direct a proton to the
tumour [7]. This technique offers advantages, such as high dose rates and good dose confor-
mity. Making it suitable for FLASH-RT, as described in section 2.1.1. PBS is commonly used in
intensity-modulated proton therapy (IMPT). In a standard PBS-IMPT delivery, the system switches
between energy layers to shift the Bragg peak. However, this takes ∼ 1 s per energy layer leading
to total treatment time taking over 20 s [2]. Multiple beam angles, which are often needed, further
extend the treatment time.

A schematic overview of PBS is illustrated in figure 2.4. Typically, a narrow proton beam
(diameter 1 cm) [27] is used to fully irradiate a tumour. The PBS starts with the first layer, closest
to the distal edge, and then irradiates spot by spot [28]. The energy level of the beam is adjusted
to move through the layers, shifting the Bragg peak to the correct depth. Dipole magnets steer the
proton beam within each layer so that the entire layer can be covered spot by spot ensuring full
tumour coverage [7].

Figure 2.4: Schematic view of pencil beam scanning, here two pairs of dipole magnets are illustrated. The first magnet
is responsible for horizontal scanning and the second magnet for vertical scanning. By, adjusting the magnets strengths
the entire tumour volume is treated. Image from Maasland [7].

To reduce treatment times to FLASH parameters, static ridge filters (RFs) have been used. Al-
though knowledge of RFs has been around since the 1960s, applying RFs for achieving the FLASH
effect was first demonstrated by Patriarca et al. in 2018 [1]. RFs modulate energy to form an
SOBP (see section 2.1.2) and reduce treatment times by eliminating the time-consuming steps of
energy/layer switching and modulation wheel rotation [2], enabling the use of PBS for FLASH-RT.

Other methods, such as passive scattering (PS), are less suitable for FLASH-RT. As PS dis-
tributes the dose over a larger volume, not all protons reach the target. This reduces the dose rate
and falls below the threshold needed for FLASH [7, 13].
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2.2 Ridge Filters

As discussed in section 2.1.3, ridge filters (RFs) function as energy modulators. They do so by
altering the energy of the protons as they pass through the material. When protons interact with
matter three primary interactions occur, Coulomb collisions (interactions between electrons and
nuclei), bremsstrahlung radiation loss, and nuclear interactions [29]. Among these, the Coulomb
collisions contribute the most significant effect, as the continuous energy loss from collisions with
electrons is the primary mechanism of energy dissipation [30]. In simpler terms, the more matter a
proton passes through the more energy it loses, resulting in the construction of the Bragg peak.

RFs exploit this property when sending a proton beam through an RF all the individual protons
experience different degrees of interaction. Some protons interact with a substantial amount of
material and some of them almost none. Thus creating a weighted collection of mono-energetic
protons and constructing an SOBP, as explained in section 2.1.2.

Illustrated in figure 2.5 is a schematic of a single ridge pin. Depending on the height of the
ridge pin the amount of material varies. Resulting in some protons having significant interactions
and losing a considerable amount of energy, while some pass through minimal material, losing less
energy. This process produces a weighted set of mono-energetic beams giving rise to an SOBP.
Tweaking the design of the ridge pin allows for precise shaping of the SOBP. To achieve a uniform
dose multiple ridge pins are used [31].
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Figure 2.5: Cross-section of a single ridge pin, without the base.

The complete package of a RF includes ridge pins, a base plate, and additional supports for
alignment. Figure 2.6, illustrates a RF that is optimized to produce a SOBP with a width of 2.5 cm,
based on an initial beam energy of 150 MeV. And includes additional supports for alignment. It
was developed by GSI and tested at the Holland Proton Therapy Centre (HPTC) [8].
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Figure 2.6: Ridge filter produced by GSI, optimized for a SOBP with a width of 2.5 cm, with an initial beam energy of
150 MeV [8].
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2.3 Monte Carlo Simulation

The impact of changes in ridge filter design on the spread-out Bragg peak (SOBP) is evaluated
through Monte Carlo Simulations. Simulation is favoured over physical production, as it facilitates
iterative design adjustments efficiently. A Monte Carlo simulation is a type of simulation that uses
random sampling and statistical modelling to estimate the result of a mathematical equation [32].
For example, the chance of a coin toss resulting in head or tails can be estimated by flipping the
coin many times and observing the average outcome. Eventually, through the use of randomness,
you get a deterministic answer. This concept can be traced back to Georges Louis Le Clerc, Comte
de Buffon (1707-1788), an influential French scientist who used randomness to estimate probabil-
ities [32]. However, this method used previously understood deterministic methods. Modern-day
Monte Carlo methods invert this idea by defining the sampling distribution of the inputs a priori.
Then the Monte Carlo simulation repeatedly simulates the model, each time taking a different set
of inputs from the sampling distribution, eventually giving a set of outputs [33].

The use of Monte Carlo simulations in particle transport problems started at Los Almost Na-
tional Laboratory (LANL), during the Manhattan project [34]. Since then almost 50 years have
passed, with LANL still being a main source of Monte Carlo codes. They have continuously im-
proved their Monte Carlo code, with the most recent version being MCNP6. Throughout all the
years of development, improvements have been made to the nuclear physics parameters. This was
done by using the Evaluated Nuclear Data File (ENDF), with MCNP6 using ENDF/B-VIII [34].
Alongside MCNP6 other particle transport Monte Carlo simulations have been developed. In par-
ticular, for the support of nuclear physics experiments, GEANT4 has been developed. GEANT4
was created for simulating the passage of particles through matter for use in among others medical-
and radiation physics [35]. To make particle transport Monte Carlo simulations more accessible
TOPAS was built upon GEANT4 [36]. In comparison to GEANT4, TOPAS does not need exten-
sive knowledge of C++, and most simulations can be done using a text-based instruction file.

However, Monte Carlo simulations do have a couple of disadvantages, first of all, the amount of
simulation runs must be defined. The amount of simulation runs is the number of times you repeat
an entire simulation. This can be quite tricky as the number of simulations varies based on the goal.
Secondly, as the Monte Carlo simulation is dependent on a large number of runs, this can result in
very long computation times. Finally, pseudo-randomness is something you must be aware of in
Monte Carlo simulations. This is because no computer is truly random. Say you use an algorithm to
generate a sequence of random numbers, if you later start the algorithm at the exact same place the
sequence of ’random’ numbers will repeat [33]. According to Ripley in 1990 [37] and Wichmann
in 2006 [38] you need at least a period of 250 ≃ 1015 before pseudo-randomness is no longer a
problem and that the simulations can handle highly parallel applications. Most operating systems
such as Windows 11 are 64 bits [39], so there is a period of 264− 1 ≃ 1019. Therefore the period in
the pseudo-randomness is not a concern in modern-day Monte Carlo particle transport simulation.
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2.4 Genetic Algorithms

To automatically adjust the ridge filter design an optimizer is employed. Given the derivative-free
nature of the problem Genetic Algorithms (GAs) are chosen as the class of optimizers. GAs are
a family of powerful optimization techniques inspired by the idea of survival of the fittest. They
do so by iteratively refining the solutions from previous generations until a near-optimal solution
is reached [40]. One of the advantages of GAs is the fact that they do not necessarily need a con-
tinuous probability space to work. In cases where no continuous probability spaces are available,
derivatives are typically also unavailable unless interpolated. A majority of optimization methods
use derivatives to find an optimal value, as the derivative can give information on where you are
concerning the desired optimum [40]. However, GAs are capable of using discrete probability
space, making them suitable for situations where derivatives are not available. This is because GAs
are probabilistic instead of deterministic. So GAs do not work with a singular solution, but rather a
solution set and then evaluate the set of solutions using fitness functions [40]. Not needing deriva-
tives is beneficial, as not all real-life applications involve continuous probability spaces or if they
do the derivates may not be easy to find [15].

Figure 2.7 illustrates a flowchart of how a GA works. The algorithm begins by initializing a
population in a probability space. The next step is evaluating which of the inputs of the initial
population is ’good’. This is done through the use of a fitness function, otherwise called an opti-
mization function. These solutions, called parents, are selected to generate the next generation’s
population. To produce new generations, a crossover function is applied, which combines two par-
ents and produces new offspring. The idea is that the new offspring may outperform its parents.
After this the new population is mutated, this is done to explore other parts of the probability space,
thus avoiding local minima and reducing the chance of premature convergence of the GA. This
process continues until the stopping criteria are satisfied, at which the algorithm is considered to
have ’converged’. Choice in convergence criteria will have a significant impact on the location of
the found optimum [40].

Generate initial
population n=0

Population
Generation 'n'

Selection

Crossover
Population

Mutate
Population

n = n + 1

Convergence criteria

Final Population

Figure 2.7: Flowchart explaining how a GA works in pseudo-code
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3 Methodology

3.1 Experimental set-up

The research problem addressed in this paper is: ”the construction of RFs that produce an SOBP
that matches a desired dose distribution using an optimizer”. For this an experimental setup was
devised, the experimental setup is illustrated schematically in figure 3.1.

Here the beam source, ridge filter (RF), and the scorer (water box) are shown. All these objects
are centred around the z-axis, and placed in an environment filled with air. The distance between
the beam source and RF, D1 in the schematic (equivalent to |z1 − z2|), is 25 cm. The distance
between the RF and the water box, D2 (equivalent to |z3 − z4|), is 25 cm too. The height of the RF
(|z3− z2|) is 35 mm. The depth, width, and height of the scoring volume (|z5− z4|) are 20 cm. The
material the scoring volume consists of is water as the example RF was tested in a water box.

When the simulation starts the proton source sends a proton beam of 150 MeV along the positive
z-axis. This beam will then hit the RF and scatter into a spread-out Bragg peak (SOBP). This SOBP
will then be registered in the scorer.
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Figure 3.1: The beam source positioned at z1, the RF positioned at z3, and the scorer, as water box, positioned at z5.
The distance between the proton source and RF is denoted by d1, 25 cm, and the distance between the RF and the
scorer by d2, 25 cm. The distance between z2 and z3 is the height of the RF, 35 mm, and the distance between z4 and
z5 is the depth of the water box, 20 cm.
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3.1.1 Ridge filter

A schematic of the ridge filter is illustrated in figure 3.2. In this figure, the top and front views of a
ridge filter consisting of a 2 by 2 grid of ridge pins are shown. Also, the central axis, the ridge pin
height, the baseplate height, the RF width, and the RF depth are indicated. As can be seen in the
figure each ridge pin is essentially a number of rectangular prisms with uniform heights stacked on
top of each other and centred around a central axis. In the simulation setup the RF, as illustrated in
figure 3.2, is rotated by 90 degrees. The top of the RF then corresponds to z2 and the bottom of the
RF to z3 in figure 3.1. As explained in section 2.1.2, the different thicknesses of the material cause
different weights of mono-energetic beams thus generating an SOBP.

Top ViewFront View

Central axis

Baseplate height

Ridge pin height RF width
RF depth

Figure 3.2: Front and top view of a simplified ridge filter design with a 2 by 2 grid of ridge pins, with the central axis
shown in the front view. With values corresponding to the experimental setup listed, ridge pin height, baseplate height,
RF width, and RF depth.

To reduce the scope of this research a couple of parameters are fixed, these parameters are
illustrated in figure 3.3. Here the fixed ridge pin measurements are shown in a schematic. The
fixed base plate height of 5 mm and the ridge pin height of 30 mm are shown. Furthermore, the
maximum width that a ridge pin layer can have, 6 mm, and the pitch-to-pitch distance fixed at 6
mm are indicated.
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Figure 3.3: Schematic of an RF with the ridge pin height (30 mm), maximum ridge pin width (6 mm), base plate height
(5 mm), and pitch-to-pitch distance (6 mm) between the ridge pins

Fixed parameters chosen for individual ridge pins are illustrated in figure 3.4. Here the ridge
pin height is 30 mm and the maximum ridge pin width of 6 mm is identical to those in figure 3.3.
However, to clearly illustrate that it is a maximum ridge pin layer width, the base layer is smaller
than the maximum allowed width. Alongside that, a fixed step height is introduced, this step height
is calculated by dividing the ridge pin height by the number of layers desired. For this project, the
amount of layers chosen is 30, resulting in a step height of 1 mm. Another constraint placed upon
the ridge pin structure is that the width of the layers must be monotone decreasing with respect to
the z axis, which means that each layer must be the same size or smaller than the layer below it in
the z axis. This is done so that there are no air gaps in the ridge filter and to make the ridge pin
producible.
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Maximum ridge pin width, 6 mm

Ridge pin height, 
30 mm

Step Height,
1 mm

Figure 3.4: Ridge pin schematic with the ridge pin height of 30 mm, step height of 1 mm, and the maximum ridge pin
width of 6 mm shown. Number of steps not to scale.

This leaves the following variables free: number of ridge pins in the x direction, number of
ridge pins in the y direction, RF width, RF depth, and the ridge pin layer width depending on the
ridge pin height. Here the number of ridge pins in the x and y direction correlate with the RF width
and depth.

When doing trial runs and trying to achieve the characteristic Bragg peak shape, as described
in section 2.1, and taking the fixed RF parameters a curious phenomenon happened. The resulting
dose distribution in the scorer is illustrated in figure 3.5a. In this figure, a small bump appears at
the trailing end of the dose distribution, the presumed cause is that the RF width and depth are too
narrow and protons reach the water box by scattering around the RF. Using an iterative process it
was found that if the RF has a minimum width and depth of 40 mm the bump at the trailing end
disappears. It is presumed that an RF with a width and depth greater than 40 mm does not allow for
scattering around the RF so all the protons that reach the scorer pass through the RF. The resulting
depth dose distribution is illustrated in figure 3.5b. To make certain that scattering can not occur
around the RF, 33 ridge pins are placed in the x and y axis, resulting in an RF with a width of 200
mm.
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(a) Dose distribution for a ridge filter with a width and depth of
30 mm and height of 5 mm, here protons scatter around the RF
and cause a small bump at the trailing end of the dose distribu-
tion.
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(b) Simulation with a RF satisfying the minimum width and
depth requirement of 40 mm, protons do not scatter around the
RF so the trailing end of the dose distribution remains flat.

Figure 3.5: Impact of ridge filter width on protons scattering around the ridge filter.

Fixing the number of ridge pins in the x and y axis also fixes the RF depth and width. This
leaves only one free variable the ridge pin layer width depending on the ridge pin height. This
is the free variable that the optimizer uses. So the optimizer varies the ridge pin width based on
height, with all ridge pins being identical, to achieve the desired SOBP.

From the choice of fixing the base plate height to 5 mm and the total RF height to 35 mm
(30 mm of ridge pin height and 5 mm of base plate height) a region of interest (ROI) in the dose
distribution provided by the score appears. The ROI appears when simulating the limit cases of
the RF. The dose distributions belonging to the limit cases can be seen in figure 3.6. The distal-
and proximal edges are defined as the location on the z axis of the scorer where the maximum
dose value of the Bragg peak is achieved when simulating limit cases of the RF. In figure 3.6b the
proximal edge is located at 10.9 cm while simulating only the base plate, in figure 3.6a the distal
edge is located at 14.9 cm found by simulating a cube of total RF height and RF width and depth.
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(a) Proximal edge of the region at 10.9 cm achieved when sim-
ulating an RF with height of 35 mm (fixed base thickness of 5
mm and fixed maximal height of 30 mm) and fixed RF width and
depth of 200 mm.
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(b) Distal edge of the region at 14.9 cm achieved when simulat-
ing an RF with only the chosen base thickness of 5 mm and fixed
RF width and depth of 200 mm.

Figure 3.6: Boundaries of the region of interest when simulating limit cases.
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3.2 Monte Carlo Simulation

Section 2.3 described the use of Monte Carlo simulations in particle transport experiments. While
many different Monte Carlo simulations are available for particle transport, for this project, TOol
for PArticle Simulation (TOPAS) is used [36]. Other popular options for simulating therapeutic
high-energy photon and proton beams are PENH, FLUKA, and GEANT4. According to research
by Baumann et al., the maximum error between the different programs is 0.5% [41], therefore this
was not a deciding factor. TOPAS was chosen due to its open-source nature and that simulations
do not require extensive knowledge of C++ compared to programs such as GEANT4, on which
TOPAS is built.

In section 3.2.1, the settings used throughout the simulation are discussed, this is subdivided
into the physics modules, the beam settings, and general simulation settings. After that in section
3.2.2, the implementation of the experimental setup into TOPAS is discussed.

3.2.1 Settings

3.2.1.1 Physics settings

Throughout TOPAS, the standard physics modules were used, listed in table 1.

Table 1: List of physics modules and their function in TOPAS [9]

Module name Function
g4em-standard opt4 GEANT4 standard physics option 4
g4h-phy QGSP BIC HP GEANT4 quark gluon string model binary

cascade mode high precision neutron model
g4decay GEANT4 decay physics
g4ion-binarycascade GEANT4 binary cascade
g4h-elastic HP GEANT4 elastic physics high precision neutron
g4stopping GEANT4 stopping physicss

3.2.1.2 Beam settings

The beam settings used in this paper are shown in table 2.

Table 2: Beam parameters and their values.

Parameter in TOPAS Value
BeamEnergy 150 MeV
BeamEnergySpread 0.757504
BeamPositionDistribution ”Flat”
BeamPositionCutoffShape ”Ellipse”
BeamPositionCutoffX 3 cm
BeamPositionCutoffY 3 cm
BeamAngularDistribution ”Gaussian”
BeamAngularCutoffX 90°
BeamAngularCutoffY 90°
BeamAngularSpreadX 0.0032 rad
BeamAngularSpreadY 0.0032 rad
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3.2.1.3 General settings

Another key parameter for simulating is what TOPAS calls: ”NumberOfHistoriesInRun”. To trans-
late this it means the amount of particles used in the simulation. For this paper, each run in the
simulation uses 105 protons as particles.

To determine this number, test runs were done in incrementing magnitudes from 101 to 106.
First, the data was processed as described in section 3.5, except normalizing the data. Illustrated
in figure 3.7, is the corresponding data, a Bragg peak appears very neatly when increasing the
amount of particles. Note that in the top left of the individual images the scale of the dose changes,
depending on the number of particles. Normalization of the IDDs removes this variable in the op-
timization, data processing is talked about in section 3.3.

The number of particles (”NumberOfHistoriesInRun”) that is used throughout the remaining
simulation is 105. There are no apparent differences between the simulation of 105 and 106 particles,
as illustrated in figures 3.7e and 3.7f. So the reduction in simulation time is a deciding factor.
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(a) ”NumberOfHistoriesInRun” equal to 101
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(b) ”NumberOfHistoriesInRun” equal to 102
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(c) ”NumberOfHistoriesInRun” equal to 103
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(d) ”NumberOfHistoriesInRun” equal to 104
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(e) ”NumberOfHistoriesInRun” equal to 105
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(f) ”NumberOfHistoriesInRun” equal to 106

Figure 3.7: Simulation results with varying the number of particles (”NumberOfHistoriesInRun”)
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3.2.2 Simulation setup

The experimental setup was introduced in section 3.1 and illustrated schematically in figure 3.1.
The implementation of these features into TOPAS is discussed in this section.

3.2.2.1 Scorer

The type of scorer used in this experiment is called a volume scorer. For this experiment, a ’Dose-
ToMedium’ scorer included in TOPAS was used. This is a volume in the simulation over which
you calculate the dose received in each volume region. For this paper the scorer takes the shape of
a box with a width, height, and depth of 20 cm, the material it is made of is water.

The scorer can be further subdivided to provide more precise dose measurements in an area,
these subdivisions are called bins, and they can be in the x, y, and z directions. For this experimental
setup, the only axis of interest is along the z-axis. The bin settings, along the x and y axes, are set
to 1 (1 is the minimal number of bins). Along the z axis, the number of bins is 100. With the
scorer having a depth of 20 cm, this allows a precision of 2 mm in the z direction. A 2-dimensional
schematic of the scorer along the z axis is illustrated in figure 3.8, the depth of the water box is as
explained in section 3.1, with z4 and z5 referring to the same points in the setup. In the figure the
water box is scored along the z-axis with 21 bins, in the actual simulation there are 100 bins.

zz4 z5

y

Figure 3.8: 2-Dimensional illustration of the water box scored across the z-axis, with 21 bins. The points z4 and z5 are
the same as in figure 3.1, the depth of the water box is 20 cm
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3.2.2.2 Scorer modifications

Modification to the scorer as discussed in section 3.2.2.1, consists of the introduction of an obstruc-
tion inserted halfway in the middle of the water box, illustrated in figure 3.9. The chosen material
for the obstruction is bone. This was done as bone is a material that is often present in treatment
volumes in the human body. The bone plate has a width of 2 bins (0.4 cm) and a height of 10 cm,
this replaces the top half of the water in bins 50 and 51. The introduction of an obstruction halfway
in the scoring volume across the y axis necessitates changing the number of bins in the y axis to 2.

zz4 z5

y

Figure 3.9: 2-Dimensional illustration of the water box scored across the z-axis, with 21 bins, actual simulation uses
100 bins. In the middle of the water box a piece of ”bone” is inserted halfway along the y axis into the water box. The
points z4 and z5 are the same as in figure 3.1, depth of the scorer is 20 cm.

Bone is not part of the standard GEANT4 material list, TOPAS uses this list for materials, there-
fore the material must be added manually. The make-up of the bone was taken from Adult Refer-
ence Computational Phantoms published in 2009 [42], more specifically from ICRP110PhantomMaterial Male.
The composition of bone as used in the simulation can be found in table 3. Aside from the bone
composition, the following parameters were used: a density of 1.920 g

cm3 and a mean excitation
energy of 106.40 eV were used.

Table 3: Elemental composition of bone.

Element Fraction of element per volume

Hydrogen 0.036
Carbon 0.159
Nitrogen 0.042
Oxygen 0.448
Sodium 0.003
Magnesium 0.002
Phosphorus 0.094
Sulfur 0.003
Calcium 0.213
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3.2.2.3 Ridge filter

Ridge filters (RFs), as described in this paper in section 3.1.1, are not a part of standard geometry
components available in TOPAS. Therefore implementing RFs into TOPAS needs additional work.
Illustrated in figure 3.10, is the top and front view of a RF consisting of a 2 by 2 grid of ridge pins,
the central axis, ridge pin height (30 mm), baseplate height (5 mm), minimum RF width and depth
(40 mm).

Top ViewFront View

Central axis

Baseplate height, 
5 mm

Ridge pin height,
30 mm

RF width, 
40 mm

RF depth, 
40 mm

Figure 3.10: Front and top view of a simplified ridge filter design with a 2 by 2 grid of ridge pins, with the central
axis shown in the front view. With values corresponding to the experimental setup listed, ridge pin height (30 mm),
baseplate height (5 mm), RF minimum width (40 mm), and RF minimum depth (40 mm).

Because the geometry of ridge pins consists of stacked rectangular prism it was first tried to
build this in TOPAS using instruction files. However, this approach was not feasible as it resulted
in long computation times. Partly, due to this approach generating approximately 500.000 lines
of instruction code. Moreover, these all needed to be collision checked during start-up and due to
floating point errors these inevitably happened.

Therefore, a geometry extension for TOPAS was written, in C++. The geometry extension is
drastically faster because you only need the text file to give the widths of the ridge pin layers and
the number of layers. After that, the extension takes care of generating the ridge pin geometry and
the RF. Due to the geometry being generated in TOPAS instead of in the instruction file, no overlap
checks are needed. Also, the reduction of the instruction file by about 500.000 lines of code reduces
parsing times. This all speeds up simulation times significantly.

Using the instruction file the average computation time for a single solution in a generation
was upward of 8 minutes, using the extension reduces this to ∼ 40 seconds when the remaining
parameters remained unchanged. This is mainly due to significant reductions in the pre-processing
step time.
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3.2.3 Beam source

The beam source sends a proton beam at a mono-energetic value of 150 MeV. This value was
chosen as the example RF was generated for a proton beam with an energy level of 150 MeV. The
”BeamPositionDistribution” was set to ”flat” to simplify the simulation. The remaining parameters
are from the example file RidgeFilter.txt1 provided in TOPAS [43].

1https://topas.readthedocs.io/en/3.7.0/examples-docs/SpecialComponents/RidgeFilter.html

https://topas.readthedocs.io/en/3.7.0/examples-docs/SpecialComponents/RidgeFilter.html
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3.3 Data processing

Before the output data of TOPAS can be used the data needs to be processed. The chosen output
format for the experimental data from TOPAS is a ’.csv’ file. This file contains the coordinates of
the bins in the scoring volume and the sum of the dose in each bin.

Using the recommended package, topas2numpy, from the TOPAS documentation, the ’.csv’
files are imported into Python. For the base case, the scoring volume is only scored in the depth
direction, this is illustrated in figure 3.8. In the data from TOPAS the location of x and y bins are
not needed as there is only one bin in those directions. Thus the location data of the bins in the x
and y directions is removed this is done by squeezing the data. This removes the height and width
dimensions from the array. Now only the information on the depth and the corresponding dosis per
bin remains. This data is used to generate integral depth dose (IDD) plots, the integral depth dose
corresponds to the dose distribution.

In the case with an obstruction, the number of bins in the y axis is increased. As the obstruction
goes exactly halfway, the number of bins in the y axis becomes two. In this case, the y axis does
provide valuable information so it can not simply be discarded. However, the final data that is of
interest is the influence of the obstruction on the dosis in the depth direction. For this, the two bins
in the y direction can be summed, as this does not throw away any necessary information. After
this, the data format is equivalent to that in the base case, and the steps as written above can be
repeated.

Now that the data has been reduced to an integral depth dose the data is normalized, this is done
to remove the absolute dose as a variable. The normalization preserves the shape of the IDD. The
normalization is achieved by dividing by the maximum value of the IDD. This preserves the shape
of the distribution and discards the dose by setting the maximum value of the simulated values to
1.

Furthermore, for each simulation per generation and solution, the following information is
stored in a JSON file: generation number, solution number in the generation, solution values, fitness
value of the simulation, time of simulation, and ’.csv’ file location.
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3.4 Genetic Algorithm

The implementation of the genetic algorithm (GA) in this paper was done in Python, for this, the
library PyGAD was used [44]. PyGAD offers a broad area of support while allowing great user
flexibility in the mutator and crossover functions. This was needed as the constraints in place during
this experiment do not allow standard mutator and crossover functions to be used. This is because
none of the standard mutator- and crossover functions allow for monotonicity to be preserved.

3.4.1 Genetic Algorithm settings

Key parameters of a GA include the number of genes and population size. The size of the popula-
tion is important because it reduces the chance you miss a globally optimal solution, due to being
stuck in a locally optimal solution. Moreover, the number of genes is significant as it allows for a
greater genetic diversity to be present. For this paper, the number of genes was chosen to be 30 as
this would result in a step size of 1 mm. For the scope of this research, this was deemed enough.

According to Vrajitoru in 1999 [45], it is preferable to have a larger population, compared to
the number of generations. However, they provide no definitive ratio. Further research on the topic
has not been conclusive on how much bigger the population should be compared to the number of
genes. But it seems to be somewhere between 2− 3, the number of genes has been chosen to be 30
which gives rise to a population size of 80.

3.4.2 Initial population

Due to the constraints, listed in section 3.1.1, an initial population needs to be created that complies
with the monotonicity constraint. In section 3.4.1, a population of 80, each having 30 genes was
established. Call the number of genes, n = 30, and the chosen size of the population, m = 80.

Then for the initial population, a set is generated with m subsets, and each of these m subsets
contains n items, for each set it holds: ∀i, j ∈ [0, n] with i < j then mi ≤ mj and 0 ≤ mi ≤ 6 mm.
To clarify it means that there are m lists with n items and all the items are sorted so that the biggest
number is at the beginning and the smallest number is at the end. For the problem, this results that
the initial population will be of size 80, each containing 30 values sorted in monotone increasing
order.

3.4.3 Fitness function

The ROI has a proximal edge at 10.9 cm and a distal edge at 14.9 cm, as discussed in section 3.1.1.
To evaluate the effect of a change in the width of a ridge pin layer on the SOBP, a fitness function
is used on this region. The fitness function returns a fitness value that PyGAD can use. PyGAD is
a minimizer so the goal of the fitness function is to get as close to 0 as possible. To start, the data is
processed according to section 3.3. The processing returns only the shape of the SOBP, which can
be compared to the shape of the desired dose distribution in the region of interest.

The shape of the desired dose distribution in this experimental setup is as flat as possible. This
corresponds to returning values near 1 after normalizing. So the fitness function needs to return 0 as
fitness value when this is achieved. Therefore the fitness function pointwise compares the desired
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dose distribution and the dose distribution from TOPAS. For the remainder of this explanation, the
desired dose distribution is that of the base case, however, the procedure holds for other desired
dose distributions as well.

To compare the simulated results and the desired results two different error functions were tried
out.

RMSE =

√∑n
i=0(yi − yi)2

n
(1)

The first potential error is the root mean squared error (RMSE), defined in equation 1. In this equa-
tion, n is the number of values in the region of interest, y1, y2, ..., yn the simulated dose values and
y1, y2, ..., yn the desired dose values.

RMAE =
√

max
i∈[0,...,n]

|yi − yi| (2)

The second contender is the root maximum absolute error (RMAE), defined in equation 2. This
function takes the square root of the maximum absolute error, with [0, ..., n] corresponding to the
number of values in the ROI, and as described for equation 1, y1, y2, ..., yn the simulated dose values
and y1, y2, ..., yn the desired dose values. The norms of these two error functions are equivalent, the
RMAE corresponds to an l∞ norm and the RMSE to a l2√

n
norm.

α∥ · ∥p ≤ ∥ · ∥q ≤ β∥ · ∥p, for p, q, α, β,∈ R (3)

Two norms are equivalent when equation 3 is satisfied.

α∥x∥∞ ≤ ∥x∥2√
n

≤ β∥x∥∞, for α, β,∈ R and x ∈ Rn (4)

Filling in the l2√
n

and the l∞ norm, gives equation 4. With ∥x∥2 =
√∑

i x
2
i and ∥x∥∞ = maxj |xj|.

α∥x∥∞ = αmax
j

|xj| ≤ α

√∑
i

x2
i = α∥x∥2 =

1√
n
∥x∥2 = ∥x∥RMSE (5)

The left-hand side holds for α = 1√
n

as seen in equation 5.

∥x∥RMSE =
∥x∥2√

n
=

√∑
i x

2
i√

n
≤

√∑
i ∥x∥2∞√
n

=

√
n∥x∥2∞√

n
=

√
n∥x∥∞√

n
= ∥x∥∞ (6)

The right-hand side follows from equation 6, with β =
√
n.

Now that both the left and right-hand sides of equation 3 hold, the norms of both error functions
are equivalent. So in the infinite case, both norms would go to 0. However, a decision between the
error functions must still be made. Illustrated in figure 3.11, is the average convergence per gen-
eration containing a population of 40 for the first 10 generations. The results indicate that RMSE
consistently achieves lower fitness values than RMAE. PyGAD is a minimizer so fitness values
closer to 0 are desirable, hence in the remainder of the simulations RMSE is used. Furthermore,
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RMSE is more sensitive to outliers than RMAE. As outliers can have severe consequences when
performing radiation treatment, such as not fully irradiating a tumour thus reducing treatment effec-
tivity RMSE was chosen. Giving the objective function as in equation 1 with the region of interest
between 10.9 cm and 14.9 cm.
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Figure 3.11: Average convergence of a generation containing a population of 40 for the first 10 generations

With the fitness function established, a simplified case can be examined. Figure 3.12 presents
a simplified output from TOPAS. The region of interest boundaries are plotted in red, with PE
standing for the proximal edge and DE for the distal edge. The blue lines represent values obtained
from TOPAS and the desired dose is plotted by the green lines.√

(0.8− 1)2 + (0.9− 1)2 + (0.7− 1)2

3
= 0.216 (7)

Using the fitness function, as described in equation 1, and filling in the values from figure 3.12
results in equation 7 this gives a fitness value of 0.216.
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Figure 3.12: Visualized example of TOPAS output with 3 bins in the region of interest (ROI) between the proximal
and distal edge. The desired output in the ROI is y1 = y2 = y3 = 1, the example output is y1 = 0.8, y2 = 0.9, and
y3 = 0.7

3.4.4 Parent Selection

In this experiment, the parent selection method steady state selection (SSS) is used. Every gener-
ation SSS uses a number of ’good’ solutions, ranked by the fitness value returned from the fitness
function, defined in section 3.4.3. This number has a corresponding parameter that PyGAD calls
’keep elitism’, for this paper ’keep elitsm’ was set to 10. So SSS uses the 10 best solutions to cre-
ate new offspring, replacing the 10 worst solutions. This method was chosen due to it preserving
diversity, thus giving solutions time to propagate.

3.4.5 Crossover function

Due to the monotonicity restriction on the genes, explained in section 3.1.1, the standard crossover
functions available in PyGAD can not be used. The custom crossover function uses the 10 parents
provided as described in section 3.4.4. Then it creates five pairs of two parents from the 10 avail-
able. Following this, the crossover function selects a random crossover point for each of the pairs.
After the crossover point, the remaining genes in the parents get swapped. Then the function sorts
the two resulting genes to preserve the monotonicity.

3.4.6 Mutation function

Due to the monotonicity restriction, discussed in section 3.1.1, the standard mutation functions
available in PyGAD can not be used. Therefore a custom mutation function has been written. The
custom mutator works as follows, it randomly chooses 10% of the population to mutate (giving 8
solutions to mutate as the total population is 80). This was done by setting the PyGAD parameter
’mutation percent genes’ to 10. Then for each selected parent one gene is randomly selected to
mutate. The mutation introduces the following change, the gene is swapped with a random value
within a specified lower- and upper bound. For the first gene in the parent, it randomly selects a
value between 3 and that of the gene above it, for the last gene in the parent it randomly selects a
value between the gene below it and 0, for all the genes in between it takes a random value between
the value of the gene above and below it.
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3.4.7 Convergence criteria

The convergence criteria used in this paper is ’saturate’ which is a standard stopping criterion
available in PyGAD. The ’saturate’ stopping criterion works as follows, the GA stops after the best
fitness value available does not change for x amount of generations.

The reason this experiment uses the ”saturate” method is that it allows more time for latent genes
to diversify and propagate. If the best fitness value available does not change for 7 generations, the
GA will stop.

3.5 Code

All the code for processing the data, the GA, the TOPAS extension, and the instruction files for
TOPAS are located on an open repository on Github2, figure 3.13 contains a QR code to the GitHub
repository.

Figure 3.13: QR Code to the GitHub repository containing the code.

2https://github.com/Dux02/BEP

https://github.com/Dux02/BEP
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4 Results and Discussion

4.1 Results

4.1.1 Base case

This simulation was done according to the setup explained in section 3.1. The convergence of the
ridge pin design is illustrated in figure 4.5. The initial spread of points that the ridge pin used
in the algorithm is shown in navy. Then the change in colour from navy to yellow indicates a
convergence to a ridge pin shape optimized by the GA. The SOBP that corresponds to the RF
generated by this ridge pin shape is illustrated in figure 4.2, this SOBP returned a fitness value
of 0.0109. Illustrated in figure 4.3, is the average fitness value per generation plotted against the
generation number. Furthermore, the plot has the best fitness value found, and the simulation stops
after seven generations if a better fitness value has not been found illustrated. The total time taken
for the optimization was 1.5 day. Further relevant values are present in table 4.

Table 4: Simulation results for optimized ridge filter

Variable Value
Proximal edge 10.9 cm
Distal edge 14.9 cm
Simulation time ∼ 1.5 days
Fitness value 0.0109
Maximum dose (ROI) 100%
Minimum dose (ROI) 97.3350%
Mean dose (ROI) 99.2072%
Maximum dose difference (ROI) 2.66495%
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Figure 4.1: Heatmap of ridge pin coordinates, with navy denoting a low frequency, and yellow denoting a high fre-
quency. Illustrates the convergence to the final optimal ridge pin design for the ridge filter, this is plotted in red.
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Figure 4.2: The IDD of a SOBP generated by the optimized ridge pin, as illustrated in figure 4.5. With the distal edge
at 14.9 cm and the proximal edge at 10.9 cm, and a fitness value of 0.0109.
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Figure 4.3: Average fitness value plotted against generation in blue, with the best fitness value plotted in red
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4.1.2 Benchmark case

The fitness function was adjusted to work over a region of interest with a proximal edge of 13.1 cm
and a distal edge of 15.1 cm. Pertinent values are documented in table 5. The resulting SOBP is
illustrated in figure 4.4.

Table 5: Simulation results for benchmark ridge filter

Variable Value
Proximal edge 13.1 cm
Distal edge 15.1 cm
Simulation time Unknown
Fitness value 0.011045
Maximum dose (ROI) 100%
Minimum dose (ROI) 97.5876%
Mean dose (ROI) 99.1463%
Maximum dose difference (ROI) 2.41236%
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Figure 4.4: IDD showing the SOBP received from simulating using anonymously provided RF, cropped to show
interval between 10 cm and 18 cm. Proximal edge at 13.1 cm and distal edge at 15.1 cm
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4.1.3 Obstructed Scorer

For this simulation, the simulation set-up was as described in section 3.1, with the addition of a
bone plate in the scoring volume as described in section 3.2.2.2. Relevant numbers are located in
table 6.

Table 6: Simulation results for optimized ridge filter with a bone plate inserted halfway into the scoring volume.

Variable Value
Proximal edge 10.9 cm
Distal edge 14.9 cm
Simulation time ∼ 1 days
Fitness value 0.238185
Maximum dose (ROI) 100%
Minimum dose (ROI) 54.5468%
Mean dose (ROI) 83.40838%,
Maximum dose difference (ROI) 45.4532%
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Figure 4.5: Heatmap of ridge pin coordinates, with navy denoting a low frequency, and yellow denoting a high fre-
quency. Illustrates the convergence to the final optimal ridge pin design for the ridge filter, this is plotted in red.



4 Results and Discussion 35

8 10 12 14 16 18
Depth [cm]

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d 

Do
se

Figure 4.6: The IDD of a SOBP generated by the optimized ridge pin, as illustrated in figure 4.5. With the distal edge
at 14.9 cm and the proximal edge at 10.9 cm, and a fitness value of 0.23819.
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Figure 4.7: Average fitness value plotted against generation in blue, with the best fitness value plotted in red
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4.2 Discussion

The research questions posed in this paper were: ”Can patient-specific ridge filters for proton ther-
apy be constructed based on desired dosage distributions through the use of genetic algorithms?
And how does this approach compare to previously established research in terms of achieving tar-
get dosage distributions?” To address these questions, a base case was established to validate the
method, which was then applied to a more complex situation.

In subsection 4.1.1, the optimized ridge pin design achieved a fitness value of 0.0109. In com-
parison, in section 4.1.2, the benchmark case results in a fitness value of 0.0110. These results
support the claim that the combination of a Monte Carlo simulation and a GA is capable of achiev-
ing results comparable to those of previous studies. However, the optimized RF design does not
achieve as flat of an SOBP in the ROI. This limitation is likely due to some constraints in the fitness
function. Despite this, the maximum dose difference over the region of interest differs minimally,
∼ 2.66% (optimized RF) vs. ∼ 2.41% (benchmark RF). Furthermore, the mean dose is ∼ 99.2%
(optimized RF) vs. ∼ 99.1% (benchmark RF). The clinical implications of these differences remain
unknown due to the limited scope of this paper.

When a bone plate was introduced into the scoring volume, the effectiveness of the optimization
significantly decreased. The fitness value rose to 0.2381, an order of magnitude greater than that of
the base case. Furthermore, the ROI exhibits a maximum dose difference of ∼ 45.5% and a mean
dose of ∼ 83.4%. These results suggest that the results of the included obstructions were limited
by the convergence criterion and population size. Increasing both parameters could allow for more
genetic diversity and latent genes to propagate, potentially improving results.

Overall, the results of this study demonstrate that a GA can generate patient-specific ridge filters
effectively for simple cases. However, for more complex situations, additional research is needed
for relevant parameters of the genetic algorithm.
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5 Conclusions and Future Work

This research explored the use of a genetic algorithm (GA) and a Monte Carlo simulation for
optimizing patient-specific ridge filters (RFs) for proton therapy. The results indicate that the op-
timized ridge filter achieves comparable results to the benchmark case. The optimized RF design
for an SOBP of 4 cm has a maximal dose difference of ∼ 2.7% and a normalized mean dose of
∼ 99.2% in the region of interest (ROI). The benchmark ridge filter achieved ∼ 2.4% and ∼ 99.1%
respectively. These findings validate the feasibility of using GAs for RF optimization.

However, significant challenges arose when obstructions were introduced into the scoring vol-
ume. In the obstructed case, the optimization resulted in an SOBP with a maximum dose difference
of ∼ 45%, and a mean dose of ∼ 83%. These results highlight the need for further refinement of
the methodology for more complex situations.

While the use of a simplified 2D model and a fixed pre-chosen dose distribution limit the gener-
alizability of the method, the results serve as a proof of concept for patient-specific RF optimization.
Future studies have several potential avenues to enhance the framework’s practical applications.

• Patient-specific dose distributions: incorporating desired dose distributions based on DI-
COM files to add to clinical relevance.

• 3D Printing: Investigating the possibility of producing optimized RFs.

• Simulation Parameters: The exploration of alternative settings and libraries to improve
efficiency without compromise in accuracy.

• Genetic algorithm improvements: Adjusting convergence criteria, population size, and
gene size to enhance optimization for complex cases.

• Expand free variables: Introducing additional free variables such as ridge pin heights and
the introduction of range modulators to refine SOBP positioning and accuracy.

This study demonstrates the potential of combining Monte Carlo simulations and a genetic algo-
rithm to produce patient-specific RFs for simple scenarios. However, further development is needed
to extend the framework to more complex situations. Optimized RFs could significantly reduce
treatment times, allowing the FLASH effect to be possible in pencil beam scanning systems.
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