
The Sensitive Office
A demonstrator for sensing
the enterprise environment

D.J.A. Rennings
S.A. Kassing

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy

THE SENSITIVE OFFICE

A DEMONSTRATOR FOR SENSING
THE ENTERPRISE ENVIRONMENT

by

D.J.A. Rennings
S.A. Kassing

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science and Engineering

at the Delft University of Technology,
to be defended publicly on Monday July 6, 2015 at 13:30 PM.

Supervisor: Prof. dr. ir. G. J. P. M. Houben
Thesis committee: Prof. dr. ir. G. J. P. M. Houben, TU Delft

Dr. M. A. Larson, TU Delft
Drs. R. H. J. Sips, IBM

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

A mere two months ago we set our first step on the floors of the IBM Centre for Advanced Studies (IBM CAS),
taking the leap into an exciting journey. Unbeknown to the challenges that awaited us, we began our endeav-
our. Resulting in - in the words of our supervisors from both TU Delft and IBM - "an aspiring project, with
potential to excel". While facing these challenges, we successfully developed a solution that represents the
skills and knowledge acquired in our Bachelor of Science in Computer Science and Engineering at the TU
Delft.

The accompanying internship at IBM CAS in Amsterdam enabled us to fully analyze requirements, and al-
lowed us to collaborate with its driven employees and interns. IBM CAS offered their continuous support
throughout the process, enabling us to consolidate that the intricate system we were creating, fitted within
the wishes and ambitions of IBM CAS.

We would like to specifically thank a set of people that were invaluable in the development process. First,
we would like to thank our supervisor at IBM, Robert-Jan Sips, for his day-to-day feedback, support, vision,
and pragmatism, but also for offering us the opportunity to take part in the Inclusive Enterprise research line
of IBM CAS, which is currently pending to be patented. Second, we would like to thank our TU Coach, Geert-
Jan Houben, for guiding our process and offering advice, next to getting us in touch with IBM in advance of
the project. Third, we we would like to thank Manfred Overmeen from IBM for his technical support during
the development of the product.

All the courses followed, projects completed, design patterns studied and development methodologies learned,
have converged into the creation of this single piece of software. We proudly present the report of our labor,
providing both documentation and evaluation of the design, development process and implementation of
the system. We hope that you, the reader, will be as captivated as we are by the potential demonstrated by
our solution.

D.J.A. Rennings
S.A. Kassing

Delft, June 2015

iii

SUMMARY

The Centre for Advanced Studies of IBM Amsterdam (IBM CAS) has an ambitious plan to revolutionize the
workforce. Within the Inclusive Enterprise research line they aim to investigate and map the factors that in-
fluence employee well-being. Among these factors, we may find environmental factors that can be coupled
to measurable quantities such as temperature, light intensity or humidity. IBM CAS approached the TU Delft
to create a demonstrator for a system that can measure these quantities by using IoT devices, and collect
the data that is produced by such measurements. Based on the wishes of IBM CAS, requirements at both a
system- and a data-level have been composed.

Existing solutions were found to be too specific for the fulfillment of a single goal, still in a prototypical
state, licensed commercially nonviable, or targeted at a single platform. Based upon a literature study, in-
vestigation of previously mentioned existing solutions and thorough analysis of requirements, a client-server
architecture was designed. The system architecture consists out of four components: (1) the sensor nodes,
responsible for measuring, (2) the hub nodes, responsible for channeling data between the sensor node and
the server, (3) the server, responsible for system configuration and data collection, and (4) the database, re-
sponsible for storing and providing access to this data. The constructed architecture is not limited to a single
context, and can function as a framework for measurement systems.

The strength of the design lies in its platform-independent nature, and its traceable data model. The sys-
tem has been implemented on the Arduino and Android platform for the sensor node, Java for the hub node,
and IBM Bluemix for the server. It has been thoroughly tested using platform-specific frameworks (e.g. JUnit
with EclEmma, Mocha with Istanbul) and analyzed using static code analysis (e.g. Sonarqube, SIG evalua-
tion), making it a product of high quality code. The system has been developed with the explicit intention of
being continued upon in the future, to grow from a demonstrator into a commercial product.

v

CONTENTS

1 Introduction 1

2 Research 3
2.1 Introduction . 3
2.2 Problem Definition and Analysis . 3

2.2.1 Problem Description . 3
2.2.2 Deliverables . 4
2.2.3 Existing Solutions . 5
2.2.4 Stakeholder Analysis . 7
2.2.5 Strategic Placement and Impact . 8

2.3 Design Goals . 8
2.3.1 Establishing a Quality Model . 8
2.3.2 Quality Model of Design Goals . 9

2.4 Requirements Analysis . 9
2.4.1 Requirement Criteria . 9
2.4.2 General Requirements . 10
2.4.3 Sensor Network Requirements . 11
2.4.4 Cloud Application Requirements . 13
2.4.5 Visualization Requirements . 13
2.4.6 Expectations and Success Criteria . 13

2.5 Context Constraints . 14
2.5.1 Hardware Constraints . 14
2.5.2 Hardware Choices . 14
2.5.3 Software Choices. 15

2.6 Development Methodology . 15
2.6.1 Adapted Scrum . 15

3 Design 17
3.1 Introduction . 17
3.2 Architecture. 17

3.2.1 Overview. 17
3.2.2 Sensor Node Responsibilities . 18
3.2.3 Hub Node Responsibilities . 19
3.2.4 Server Responsibilities . 19
3.2.5 Database Responsibilities . 20
3.2.6 Backing of Design Choices . 20

3.3 Data Model . 21
3.3.1 Data Modeling Methodology. 21
3.3.2 Measurement Centric Requirements . 21
3.3.3 Device Centric Requirements . 22
3.3.4 Entity Relationship Model . 23

4 Implementation 27
4.1 Introduction . 27
4.2 Sensor Node . 27

4.2.1 Hardware . 27
4.2.2 Software Dependencies . 29
4.2.3 Software Design . 30
4.2.4 Software Implementation . 32

vii

viii CONTENTS

4.3 Hub Node . 35
4.3.1 Software Dependencies and Hardware. 35
4.3.2 Software Design . 35
4.3.3 Software Implementation . 38

4.4 Server . 39
4.4.1 Hardware . 39
4.4.2 Software Dependencies . 39
4.4.3 Software Design . 42
4.4.4 Software Implementation . 47

4.5 Database . 48
4.5.1 Relational Scheme . 48
4.5.2 SensorType Table . 49
4.5.3 DeviceType Table . 49
4.5.4 Environment Table. 50
4.5.5 SensingDevice Table . 50
4.5.6 SensingDeviceConfiguration Table. 50
4.5.7 Sensor Table . 51
4.5.8 SensorActivity Table . 52
4.5.9 Hub Table . 52
4.5.10 SensingDeviceLocation Table . 53
4.5.11 Measurement Table . 53

5 Testing 55
5.1 Introduction . 55
5.2 Test Plan . 55

5.2.1 Testing Guidelines . 55
5.2.2 Unit Testing . 55
5.2.3 Integration Testing . 56
5.2.4 System Testing . 56

5.3 Unit Testing Results . 57
5.3.1 Android Sensor Node . 57
5.3.2 Arduino Sensor Node . 57
5.3.3 Hub Node . 58
5.3.4 Server . 58

5.4 Integration Testing Results . 59
5.4.1 Smartphone UI . 59
5.4.2 Smartphone Data Persistence . 59
5.4.3 Component Dry-run . 59
5.4.4 Arduino to Unconnected Hub . 59
5.4.5 Arduino Data Persistence . 59

5.5 System Testing Results . 60
5.5.1 Deployment Overview . 60
5.5.2 Preliminary Deployment (June 12) . 61
5.5.3 Main Deployment (June 15) . 61
5.5.4 Deployment Analysis . 62
5.5.5 Deployment Conclusion . 62

6 Final Product Evaluation 65
6.1 Introduction . 65
6.2 Requirements Evaluation . 65

6.2.1 General Requirements . 65
6.2.2 Sensor Network Requirements . 66
6.2.3 Cloud Application . 69
6.2.4 Visualization . 69
6.2.5 Evaluation Summary. 70

CONTENTS ix

6.3 Code Quality . 71
6.3.1 Measuring Code Quality . 71
6.3.2 Sonarqube . 72
6.3.3 SIG Evaluation . 75

7 Process 77
7.1 Introduction . 77
7.2 Overview . 77
7.3 Technical Process . 79

7.3.1 Development Tools . 79
7.3.2 Technical Challenges. 79

7.4 Actor Processes . 79
7.4.1 The Team . 79
7.4.2 The Client . 80
7.4.3 IBM Employees and Interns . 80
7.4.4 The Supervisor . 80
7.4.5 Coordinators . 80

8 Future Work 81
8.1 Introduction . 81
8.2 General . 81

8.2.1 Communication Reliability Evaluation. 81
8.2.2 Efficient Communication Format . 81
8.2.3 Confidentiality, Integrity, Availability and Authenticity of Data. 82

8.3 Sensor Node . 82
8.3.1 Heartbeat . 82
8.3.2 Additional Phenomena . 82
8.3.3 Variable Indoor Location. 82
8.3.4 Low-cost Sensor Node Custom Hardware . 82
8.3.5 Smartphone Platform Independence . 83
8.3.6 Defect Detection . 83
8.3.7 Dynamic Addition and Removal of Sensors . 83
8.3.8 Proximity Detection . 83
8.3.9 Broader Platform Testing. 83

8.4 Hub Node . 84
8.4.1 Parallel Bluetooth Connection Handling . 84
8.4.2 Hub User Interface . 84

8.5 Server . 84
8.5.1 Refactor Handlers . 84
8.5.2 Management and Monitoring System . 84
8.5.3 Transactionalize Endpoints . 84
8.5.4 Time Synchronization . 84
8.5.5 Database Independence . 84
8.5.6 Database Improvements . 85

8.6 Visualization . 85
8.6.1 Passive Visualization . 85
8.6.2 Live visualization . 85

9 Conclusion 87

A Initial Project Description as Proposed by IBM in March 2015 89
A.1 Background . 89
A.2 Project . 89
A.3 Research Questions (extra) . 89
A.4 Deliverables. 90

x CONTENTS

B Quality Model of Design Goals 91
B.1 Functional Suitability . 91
B.2 Maintainability . 91
B.3 Portability. 91
B.4 Reliability . 92
B.5 Efficiency . 92
B.6 Compatibility . 92
B.7 Usability . 92
B.8 Security . 93

C PostGreSQL Queries 95
C.1 Scheme Creation . 95
C.2 SensorType Table Creation . 95
C.3 DeviceType Table Creation . 95
C.4 Environment Table Creation . 96
C.5 SensingDevice Table Creation. 96
C.6 SensingDeviceConfiguration Table Creation . 96
C.7 Sensor Table Creation . 96
C.8 SensorActivity Table Creation . 97
C.9 Hub Table Creation . 97
C.10 SensingDeviceLocation Table Creation . 97
C.11 Measurement Table Creation . 97
C.12 Environment Tuple Creation . 98
C.13 Drop All Tables . 98
C.14 Delete All Content. 98
C.15 Drop Scheme . 98

D DB2 Queries 99
D.1 Scheme Creation . 99
D.2 SensorType Table Creation . 99
D.3 DeviceType Table Creation . 99
D.4 Environment Table Creation . 100
D.5 SensingDevice Table Creation. 100
D.6 SensingDeviceConfiguration Table Creation . 100
D.7 Sensor Table Creation . 100
D.8 SensorActivity Table Creation . 101
D.9 Hub Table Creation . 101
D.10 SensingDeviceLocation Table Creation . 101
D.11 Measurement Table Creation . 101
D.12 Environment Tuple Creation . 102
D.13 Drop All Tables . 102
D.14 Delete All Content. 102
D.15 Drop Scheme . 102

E Cost Analysis 103

F Sonarqube Code-style Deviations 105
F.1 Categories. 105
F.2 Examples . 105

G Raw SIG Feedback 107
G.1 First Evaluation . 107
G.2 Second Evaluation . 108

H Infosheet 109
H.1 The Project . 109
H.2 The Project Team . 109
H.3 Contact Information . 109

CONTENTS xi

Bibliography 111

1
INTRODUCTION

Over a period of ten weeks, we developed a system that we named "The Sensitive Office". The system is a
demonstrator for sensing several phenomena such as temperature, light-intensity and humidity in the en-
terprise environment by means of a sensor network, a problem that was encountered by the IBM Centre for
Advanced Studies (IBM CAS). It was developed as a bachelor end project for the course TI3806 offered by TU
Delft at the faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS).

It is interesting to note that this project does not solely offer a software implementation to solve the problem
of the client. The provided solution is namely a specific implementation of a framework that was designed.
This framework allows the reader to implement a measurement system in other contexts as well. The frame-
work has been implemented, and its implementation has been tested and deployed to show the validity of
the framework. The created framework is novel, and is currently pending to be patented.

In this report we provide an overview of both the process of creation of the system, as well as the system
itself. The report enables the reader to understand the design and implementation of the system. More im-
portantly, it provides the reasoning behind the design and implementation choices, and vital information
about the context in which those choices were made. Furthermore, the system is evaluated based on the cri-
teria that were established at its inception.

First, in chapter 2, the research phase is discussed. It covers the analysis of the problem, discusses exist-
ing solutions, establishes the requirements, and gives a sense of the adopted methodology for realizing the
system. This enables the reader to understand what was demanded by the client, and what the angle of ap-
proach of the development team was.

Second, in chapter 3, the design of the system is explained. The architecture of the various system com-
ponents, their responsibilities and the design choices that back them are given. Furthermore, a detailed
description of the data model adopted throughout the system is provided. This architectural overview of the
system allows the reader to obtain a high-level understanding of the system and the data model behind it.

Third, in chapter 4, the implementation for each of the designed system components is elaborated upon.
It discusses the reasoning behind the choice of hardware and software dependencies, and more importantly:
the design of the software. It zooms into every system component, and, through visualizations, it will ex-
plain the platform-specific implementation. This enables the reader to quickly understand the underlying
mechanics of the implementation for each component of the system.

Fourth, in chapter 5, the testing methodology and results are discussed. The test plan is introduced, and
for each of the three employed testing methods (unit, integration and system testing), the results are given
and discussed. This enables the reader to understand the engineering effort that has gone into developing a
working, reliable and maintainable system.

Fifth, in chapter 6, the final product is evaluated. This evaluation is done through assessing the fulfillment

1

2 1. INTRODUCTION

of the requirements from the research phase, and the usage of objective code quality tools. This provides the
reader with evidence for the validation and verification of the system.

Sixth, in chapter 7, the development process is described. This offers the reader with a view on the context of
the product development, such as the phases out of which the development process consisted, a distribution
of labor in these phases, and interaction with stakeholders throughout these phases.

Seventh, in chapter 8, the future work for the system is discussed. It addresses all extensions and improve-
ments that could not be (partially or fully) done by the development team due to the limited time and/or
resources in the project scope. This chapter will enable future project teams to get a good feeling of how to
continue with the development of the system in the best manner.

Finally, in chapter 9, the report is concluded and a final word is given by the development team.

2
RESEARCH

2.1. INTRODUCTION
The first step when tackling a problem is the analysis. The need for a thorough, descriptive analysis of the
problem allows the creation of effective solutions that tackle the actual problem, which is often masked due
to difficulties caused by transferring, translating and transforming of information across cross-disciplinary
boundaries [1]. It is important to note that this analysis is merely an inception, and is subject to change
throughout the iterative process that software development requires. Requirements and their importance
evolve as the system is implemented, and more information becomes available [2].

This chapter will therefore represent the analysis of the problem and provide a basis for creating the actual
system as a solution to the problem. We will convince the reader that the chosen approach to the described
problem is optimal, based upon our analysis of the problem and the review of alternative solutions. This
chapter was created over the first two weeks of the project and contains the result of literary study, but also
represents the outcomes of many discussions that were held with stakeholders. It was revised to be included
in this report.

First, in section 2.2 the problem is described, existing solutions to the problem are reviewed, the deliver-
ables are laid out, the stakeholders are analysed, and the strategic placement and impact of the system are
predicted. Second, in section 2.3 the design goals, which follow from the stakeholders’ desires, are defined,
making use of ISO standards. Third, in section 2.4 the requirements are laid out, and linked to their respective
stakeholder(s) and matching design goal(s). Fourth, in section 2.5 the constraints that are imposed through
the context in which the system will be developed, are accounted for. Finally, in section 2.6 the development
methodology is described, including our approach to adopting an agile development process.

2.2. PROBLEM DEFINITION AND ANALYSIS
In order to get a good feeling of the problem, this section is devoted to defining the problem, and describing
our analysis of this problem. First, in section 2.2.1, the problem and the relevance of solving the problem are
described. This description is a more extensive version of the initial problem definition as provided by IBM in
March 2015 (see appendix A). Second, in section 2.2.2, the deliverables of the project are listed, and optional
research expansions are outlined. Third, in section 2.2.3, existing solutions are examined, in combination
with arguments for these solutions not to be an optimal or a complete solution to the problem. Fourth, in
section 2.2.4, the stakeholders of the system are enumerated and elaborated upon. Finally, in section 2.2.5,
the strategic placement and the potential impact of the project are clarified.

2.2.1. PROBLEM DESCRIPTION

The widespread up-rise of devices that have sensing, computational, and communicative abilities is chang-
ing society as we know it. One facet of this interesting development is the Internet of Things (IoT). The IoT
is the concept of utilizing “the pervasive presence around us of a variety of things or objects which, through
unique addressing schemes, are able to interact with each other and cooperate with their neighbors to reach

3

4 2. RESEARCH

common goals” [3]. The availability of technologies such as WiFi allow devices to constantly be in connec-
tion with all other devices connected to the Internet. As of today, more than a billion intelligent, connected
devices already comprise the IoT [4]. The investment required for systems using IoT devices will thus be sig-
nificantly lower than systems consisting of dedicated self-deployed devices [5]. The low cost of these systems
allow deployment at locations where cost is a pressing factor, which would make a solution also deployable
in third world countries. As a result, the Internet of Things will have a disruptive effect on various domains,
which can be categorized as (1) Personal and Home; (2) Enterprise; (3) Utilities; and (4) Mobile [6].

Among the aforementioned domains we can find the Enterprise Environment. In this domain it gets in-
creasingly important for companies to sense and personalize the (physical) working environment [7]. This
personalization has the potential to increase employee well-being, which is generally known to be a sensi-
tive issue, as employers are mainly concerned with the costs [8] rather than the actual well-being. The usage
of effective personalization and sensing of an office environment requires highly dense data, on both a spa-
tial and a temporal dimension. For example, one would need to know how light intensity and temperature
change throughout the floor of a building to provide either an appropriate seating advice, or an appropriate
modification of the temperature.

A variety of partial solutions to the described problem have already been created by others regarding sensing
in the Enterprise domain. Unfortunately, these solutions have proven to not be viable, as will be elaborated
upon in section 2.2.3. On the other hand, promising developments have been demonstrated in the domain
of Agriculture, where low-cost sensing is allowing for highly dense sensing in remote locations [9].

[10] -

.

. This demonstrator
can be used as a partial foundation for the development of a larger system, which measures and maintains the
employee’s pleasure at work. Such a system would comprise of other components as well, in order to analyze
the data, and to take into account other parameters such as emotional well-being. The focus of this project
is therefore to create a well-documented and well-programmed basis for sensing environmental factors, that
can be extended to become (part of) such a full Enterprise Environment system.

2.2.2. DELIVERABLES
As stated by the customer, IBM Centre for Advanced Studies (CAS) Benelux, the focus of this project is to
create a demonstrator system in which sensing technologies will be employed in an enterprise environment.
If possible (concerning time), the project could also address one or more research questions. Below, the core
system components that must be developed within the scope of the project are described first. Secondly, the
optional research questions are defined.

CORE SYSTEM COMPONENTS

The system will consist of four1 core components:

• Low-cost Sensing Devices: sensing devices that enable the measurement of phenomena such as tem-
perature, light intensity, sound, and humidity. These sensing devices merely gather sensor data, and
send it to the cloud application.

• Smartphone App: a cross-platform application for mobile phone devices that enables the measure-
ment of phenomena through the embedded
sensors, with consent of the user (i.e. owner of the phone). This application merely gathers sensor
data, and sends it to the cloud application.

• Cloud Application: the central data gathering and aggregation point. The cloud application gains input
from the sensing devices, aggregates the data and outputs a transformed version of this data in order

1The Low-cost Sensing Devices and the Smartphone App together form the Wireless Sensor Network, throughout this document, the
term will thus refer to both components.

2.2. PROBLEM DEFINITION AND ANALYSIS 5

to enable the creation of visualizations. It will therefore function as a central point between the sensing
devices and visualizations.

• Visualization2: a visualization component providing a representation of the state of an enterprise en-
vironment as sensed by the sensing devices.

These core components translate in general terms for the delivery of a) an architecture document containing
an analysis of the requirements and a description and argumentation for the most important decisions made
in designing the system, and b) the demonstrator code of the system and related documentation.

OPTIONAL RESEARCH QUESTIONS

Besides the core system, a research component could be added to the deliverables when core components are
sufficiently developed and sufficient time can be allocated for the research. The optional research questions
below are described at system level, and concern the optimization of the system’s performance. The following
optional research questions have been composed:

• Which other phenomena could be measured or derived from embedded sensors in smartphones? And,
what would be the additional value of taking these phenomena into account?

• What is the optimal distribution between “fixed” low-cost devices and “mobile” sensors to guarantee
output and accuracy while minimizing the amount of fixed sensors needed?

• Is it possible to correlate the highly coarse sensing through smartphones and/or low-cost devices to the
measurements as done by the existing Building Management System?

• What would be an optimal setup of such a sensing system: Cloud-Centric or Device Centric (the first
meaning a centralized cloud instance calculating derivatives from the sensed parameters, the latter
meaning local peer-to-peer networks of mobile and fixed devices, jointly deciding on what the most
accurate measurement in a specific “zone” would be)?

2.2.3. EXISTING SOLUTIONS
Similar (sub)problems to ours have been encountered by others. In this section we will describe a number
of existing (partial) solutions for the problem introduced in the previous section. Existing solutions were
examined to uncover their advantages and shortcomings. It will be made evident that these solutions are
not sufficient for the context of our problem. However, lessons learned from these existing solutions for
associated problems can be used as an inspiration for our own solution.

BUILDING MANAGEMENT SYSTEMS

Modern buildings often contain a building management system, as is the case at IBM CAS in Amsterdam,
which operates PRIVA Building Intelligence3. Such management systems are mainly aimed at monitoring its
system components (e.g. vents, air conditioning, window blinds), and measuring phenomena it can control
(e.g temperature, humidity, light intensity). As these systems are specifically designed to regulate the build-
ing itself, the granularity at which measurements are taken is generally broad, and the distribution of sensors
for these measurements is often done uniformly among the surface areas of the building. This makes such
systems unusable for sensing on a human centric scale, in which measurements aim at measuring the con-
ditions of the workspace of a single person. This precision is needed to tackle the problem described in the
previous section. Besides the broad granularity and lack of coverage at the scale of individual workspaces,
the sensor networks of existing building management systems are not easily extendable to adopt new devices
or sensors, as they are connected through physical connections between fixed hardware components. It is
therefore not possible to easily extend the system to measure "new" phenomena, which is desired for possi-
ble extensions of the demonstrator in the near future. Third, in older and more primitive buildings (e.g. in
developing countries) these management systems do not always exist. Deploying such a system in an existing
building would be unfeasible, as significant investment would be needed to realize the system’s infrastruc-
ture. Concluding, existing building management systems are related to this problem, but are far from directly
applicable as an off-the-shelf solution for the sensing component of the system.

2This component has been moved to future work due to re-prioritization.
3http://www.priva.nl//nl/ (retrieved 1 May 2015)

6 2. RESEARCH

WIRELESS SENSOR NETWORKS

Recent advances in the field of wireless communications and electronics have enabled the development
of low-cost sensor networks [11]. Examples of implementations are plentiful, e.g. [10], [12], and [13]. Be-
cause this hardware usually does not possess full programming and computing powers but rather a micro-
controller, almost all of the related projects found were written in native code. Their code is not reusable in
other contexts (or on other device types) without significant porting activities. However, their design method-
ology can - if legally allowed - function as a basis to develop a similar, but dynamic implementation for low-
cost sensor devices. The up-rise of cheap, re-usable, fully programmable Arduino boards4 supports this.
These sensor devices can function as a ground truth. By doing so they allow the calibration of the measure-
ments produced by non-self deployed IoT devices such as smartphones, which are predicted to be less stable.
After deploying such low-cost sensor nodes, steps could be taken to solely take into account the non-self de-
ployed IoT devices, of which the measurement may be stabilized by machine learning, allowing to eventually
exclude the low-cost sensor nodes. Concluding, these existing wireless sensor network systems are related
to this problem, but are again far from being directly applicable as an off-the-shelf solution for the sensing
component of the system.

SENSING THROUGH SMARTPHONES

The desire to make use of the sensing capability of smartphones has been shared by others in the past, and has
been coined as Human Centric Sensing (HCS) [14]. Existing HCS systems were examined, including frame-
works, platforms, libraries, and apps. Two notable solutions were found, being the Medusa and PRISM sys-
tems. Though they are not off-the-shelf solutions, but rather prototypes, they show similarities to parts of the
context of the problem.

Medusa A programming framework for crowd-sensing that provides support for humans-in-the-loop to trig-
ger sensing actions or review results, the need for incentives, as well as privacy and security [15]. The
Medusa framework seems to be primarily focused on the participatory sensing, relying on owners of
the smartphone to take action (e.g. take a photo or video) in order to get relevant data. Something
which is initially not needed in our solution, as we need continuous sensing and do not want to disturb
the user constantly. "The system may never rely on mandatory interactions and additional workload
for employees" [7], thus an Opportunistic Sensing approach is preferable. Moreover, Medusa’s server is
only implemented natively for Linux Ubuntu, and the client respectively for Android. This does not al-
low for easy portability to other platforms such as Android, iOS, or Windows. There is also little activity
in the development of the product 5, no complete documentation, and no license stated, indicating its
status as being merely a prototype.

PRISM A Platform for Remote Sensing using Smartphones, which addresses a number of common chal-
lenges faced by applications that are aimed at community sensing [16]. It offers system requirements
of such a platform, and identifies key design goals in its architectural design. Though, it is currently
solely developed for the Windows Phone operating system, whereas support for other platforms such
as Android and iOS is preferable for our solution. Moreover, source code, documentation and a com-
plete product were all unavailable. This again hints to a system being merely a prototype, rather than a
useful component for our solution.

The analysis of these smartphone sensing solutions led to four conclusions. (1) Many of the systems we found
were too specified into a certain direction of sensing aimed at fulfilling a single goal such as traffic manage-
ment [17]. (2) The systems are often still in a prototype state, not offering full support and documentation
which a maintainable future commercial system would require if a dependency exists. (3) The systems are
often licensed under GPL or similar licenses, making it difficult to be incorporated in a commercially viable
product. IBM therefore requires full control of the Intellectual Property of the product. In the case of PRISM,
the source code is even completely proprietary and unavailable. (4) These systems are often oriented at spe-
cific platforms only, requiring heavy porting activities to be transferred to other platforms. Concluding, these
smartphone sensing solutions are related to this problem, but are not useful as a (partial) solution to our
problem.

4See http://www.arduino.cc/ for more information.
5https://github.com/USC-NSL/Medusa (retrieved 30 April 2015)

2.2. PROBLEM DEFINITION AND ANALYSIS 7

2.2.4. STAKEHOLDER ANALYSIS
The system that has to be developed will function as a demonstrator for sensing in an enterprise environ-
ment. Thus, the system will not be a fully deployable commercial system. The scope of the stakeholders that
are of direct importance is therefore primarily limited to the members of the team of the Centre of Advanced
Studies at IBM that are involved in this project. They are the direct stakeholders of this software project, which
have immediate stakes in the outcome of the project for various reasons.
The strategic placement of the project also implies a group of indirect stakeholders. These stakeholders need
to be taken into account for the project to be of further value after the realisation of the demonstrator, since
this would allow for the opportunity to actually create a real commercial product out of the demonstrator.
This group of stakeholders consists of the end-users of the system, regarding both development and actual
usage. But, as the system that has to be delivered, will only form a demonstrating foundation for the product
that will be developed by and for these stakeholders, we have chosen to mainly focus on the direct stakehold-
ers. In order to also take into account the opinion of both groups of indirect stakeholders, we have explicitly
asked the IBM research supervisor to represent the opinion of these stakeholders, as he will lead the devel-
opment team and is already in contact with potential customers. The current (research) state of the product
and the role of the members of the development team within IBM does namely not allow for conversations
between the development team and potential future customers. In the following subsections you can find a
description of both the direct and indirect stakeholders.

DIRECT STAKEHOLDERS

Robert-Jan Sips (RJS) The IBM research supervisor for this project. His concerns are mostly directed at the
applicability of the system, and for it to be a demonstrator of the capabilities of one of IBM’s strategic
responses to the Internet of Things. That the system functions and can be built upon after the project
ends are his main concerns. As previously stated, Robert-Jan will also represent the wishes of both
groups of indirect stakeholders.

Uditha Ravindra (UR) CS graduate student at IBM. Her master thesis topic - the influence of environmental
variables on the work pleasure - is closely related to the system. She will directly use the dataset that
will be outputted by the system that has to be developed in this project. She will therefore be taken
into account in discussions concerning the design of the system (input), concerning the way data is
aggregated and stored, and of course concerning the visualizations of the system (output).

Manfred Overeem (MO) The IBM technical supervisor for this project. His involvement is mostly related to
the hardware that is to be used in the project. He will therefore, as a stakeholder, mostly be part of the
discussions concerning the hardware used in this project.

Smartphone App Participants (SAP) The IBM personnel that will install the sensing application on their
smartphone. Their primary concerns are privacy and energy consumption of the application. This
personnel will not be part of discussions other than feedback sessions related to the usability of the
smartphone app.

Development Team Members (DTM) The TU Delft bachelor students (Daan Rennings and Simon Kassing)
executing this project. Their aim is to fulfill the wishes of the involved direct stakeholders from IBM
and TU Delft, and to consider the values of the indirect stakeholders. Next to this, they value an overall
successful execution of the project. Choices regarding requirements are, from the perspective of this
stakeholder, therefore mainly based upon the ability of the team members to realize a certain compo-
nent of the system.

INDIRECT STAKEHOLDERS

Future Project Teams (FPT) In the future, the project may be followed up by another project, executed by a
different team. Such a team would generally desire high quality code, and clear documentation.

Future Clients (FC) The future clients of IBM that may potentially use the system after its initial deployment
at IBM CAS. These end-users will probably attach most value to usability and installability. Since this
is a demonstrator, the clients are not listed as a direct stakeholder. Though, throughout the design
process, the eventual use of the system by clients is taken into account, as it would be the end-goal of
this project to make such adoptions possible in the (near) future.

8 2. RESEARCH

2.2.5. STRATEGIC PLACEMENT AND IMPACT

The motivation of IBM to support our bachelor thesis comes from the Inclusive Enterprise research line within
IBM. The goal of this research line is to revolutionize the work environment through technology. The moni-
toring and maintaining of employee well-being lies at its core. Specifically, there is a focus on the recent devel-
opment of the Internet of Things, because of the lack of cost to deploy infrastructure among the widespread
technology. In the working context, this translates to a variety of things or objects that are spread over the
work floor and interact and cooperate with each other to reach a common goal [3]: increasing the work plea-
sure. Our project finds itself in a larger group of projects that are designed to explore and demonstrate the
possibilities in this research line. This pool of projects contains the Poseidon project, and the projects of MSc
students Lie Yen Cheung and Uditha Ravindra, which will be described in the following paragraphs. Along-
side and in collaboration with these projects, this research line is aimed at changing the working environment
to increase the well-being of employees.

POSEIDON PROJECT

The Poseidon project [9], lead by Robert-Jan Sips, explored the usage of low-cost sensing and routing devices
to measure the state of plants. In the context of the work environment, it could help to regulate the level
of carbon dioxide in the air by signaling when office plants, the converter of carbon dioxide to oxygen, have
certain needs. Indication of bad plant health could also be used to infer a problem in the work environment,
in essence the plant would become a natural sensor. This project served as inspiration for this project, which
encompasses many more sensing, and offers more functionality, but is still aimed at improving the working
environment through the use of sensing.

EMOTIONAL WELL-BEING OF EMPLOYEES

Lie Yen Cheung, MSc graduate intern at IBM CAS Benelux, leads a project concerning the emotional well-
being of employees on the work floor, as part of her masters’ thesis. Using the datasets from an emotional
polling game, she attempts to predict how content employees are. In this project she also makes use of the
emotions that can be recognized from the faces of employees during their working hours. Although not yet
coupled, the state of employees could be laid next to measurable phenomena such as heat, or light in the
office, which this system could measure.

ENVIRONMENTAL INFLUENCE ON THE WORK FLOOR

Uditha Ravindra, MSc graduate intern at IBM CAS Benelux, leads another project for her masters’ thesis,
concerning the influence of environmental variables on the work pleasure, which in turn influences work
productivity. The system we are developing in this project will provide her with the datasets of the measurable
phenomena at the work floor. We will therefore closely work together with her.

2.3. DESIGN GOALS
The desires of the stakeholders, described in section 2.2.4, are - from a software development perspective -
broadly translatable into categories of design goals such as reliability, security, and efficiency. The desires
were uncovered after extensive data gathering through discussions and interviews in which the stakeholders
formed the central component. First, in section 2.3.1 the methodology for creating a quality model of design
goals is formulated. Second, in section 2.3.2 the quality model is concisely described.

2.3.1. ESTABLISHING A QUALITY MODEL

The design goals described in this section are mainly based upon the ISO standards for a quality model of
a software product (respectively ISO/IEC 25010 [18] and its predecessor ISO/IEC 9126-1 [19]). The motiva-
tion for not merely taking over these standards is the context-dependence of software (development). As [20]
states, “design goals do not apply uniformly to all actors, but reflect the perspectives and interests of stake-
holders”. With this statement and the ISO standards in mind, we defined our own quality model of design
goals by also taking into account the stakeholders and our personal expectations of the problem, the context
of this problem and the product. The definitions in this quality model are a combination of the explicit stan-
dard (ISO) definitions and our own interpretations of the used terms in our context. All of the design goals
that are present in the desires of one or more stakeholders are incorporated into our own quality model of
design goals.

2.4. REQUIREMENTS ANALYSIS 9

2.3.2. QUALITY MODEL OF DESIGN GOALS

Using the methodology explained in 2.3.1, a quality model is formulated. This quality model of design goals
has been carefully described in appendix B. To allow the reader to get an impression of the model, a compre-
hensive overview is presented below. The order of the design goals (functional suitability being of the highest
importance, down to security being of the lowest importance) gives a rough view of the importance of each
design goal.

Functional Suitability The ability of the system to satisfy stated or implied needs (from stakeholders).
(1) Functional completeness, (2) functional correctness, (3) functional appropriateness.

Maintainability The ability of the system to allow maintenance and modification.
(1) Modifiability, (2) testability, (3) analyzability, (4) reusability, (5) modularity

Portability The ability of the system to be ported to other contexts, or to handle a changing context.
(1) Installability, (2) adaptability

Reliability The ability of the system to perform functions under specified conditions within a specified time
window.
(1) Maturity, (2) fault tolerance, (3) recoverability, (4) availability

Efficiency The ability of the system to efficiently use what it has at it (potentially) has to its disposal.
(1) Resource utilization, (2) time utilization, (3) capacity, (4) expense

Compatibility The ability of the system to exchange information with other products, systems or components,
and/or perform its required functions, while sharing the same hardware and/or software environment.
(1) Co-existence, (2) interoperability

Usability The ability of the system to be used by the specified set of users.
(1) Operability, (2) usability compliance, (3) user interface aesthetics

Security The ability of the system to actively or passively defend itself from dangers and threats.
(1) Confidentiality, (2) integrity, (3) authenticity, (4) accountability, (5) non-repudiation

As previously mentioned, design goals are stakeholder-oriented. Instead of arbitrarily linking stakeholders
with abstract design goals, the stakeholders’ design goals are concretely expressed through the requirements
in section 2.4. The description of importance of each requirement in section 2.4 also enables the reader to
deduce the importance of each design goal at a system level.

2.4. REQUIREMENTS ANALYSIS
Extensive information has been collected from the stakeholders that are listed in section 2.2.4, primarily
through in-depth interviews and discussions. Previously, in section 2.3, the norms and values of the stake-
holders were translated into design goals oriented at software development. This section translates these
desires into concrete prioritized requirements for the system. First, the strategy that was handled to gather
and formulate the requirements is described in section 2.4.1. Second, the overall requirements that are gen-
erally applicable to all parts of the system are described in section 2.4.2. Third, the requirements that are
imposed upon the three main components of the system are described: sensor network (section 2.4.3), cloud
application (section 2.4.4), and visualization (section 2.4.5). Finally, in section 2.4.6 the expectations and
success criteria of the project are discussed.

2.4.1. REQUIREMENT CRITERIA

There is a vast diversity in ways to compose requirements for software projects. Using our own experience and
education as a guideline, we formulated our own strategy for gathering the requirements for this project. First,
the assignment of importance is described. Second, the objectivity and unambiguity of the requirements is
elaborated upon.

10 2. RESEARCH

ASSIGNING IMPORTANCE

The degree of importance for stakeholders are assigned using the MoSCoW method [21]. We adopted this
model for prioritizing the requirements as we are familiar with it and experienced its success in previous
software development projects. The MUST (‘must-have’) requirements are guaranteed to be delivered in
the scope of the project. The SHOULD (‘should-have’) requirements should be delivered, are important, and
may be painful to leave out. The COULD (‘could-have’) requirements are wanted or desired, but could be
left out with less impact. The WON’T (‘won’t-have’) requirements, are those of which the project team has
agreed upon to not deliver, but may be considered in future work on the project. For each requirement in the
tables below, the order of importance is assigned by the usage of one of the words “must”, “should”, “could”
or “won’t”.

MEASURABILITY

During the definition of the requirements, attention was also given to the measurability of the requirements.
It must be objectively and unambiguously clear when requirements are met, and when they are not, similar
to a boolean expression. Concerning this characteristic, the requirements thus differ from the design goals
stated in section 2.3 from which they originate, which are hardly measurable.

2.4.2. GENERAL REQUIREMENTS
Certain design goals, such as maintainability, can be defined on a system level, rather than only making sense
on a specific component. The requirements listed below are applicable to all components of the project.

Nr. Requirement Design goals Stakeholder(s)

G1 All functions in the delivered code must be accompanied by a
comment explaining its input, behavior, and output.

Modifiability,
testability

FPT, DTM

G2 The delivered code must be developed according to the test
plan (to be) described in section 5.2

Maintainability,
Reliability

FPT, DTM

2.4. REQUIREMENTS ANALYSIS 11

2.4.3. SENSOR NETWORK REQUIREMENTS
The sensor network is dedicated to measuring several phenomena such as temperature, light intensity and
humidity. These measurements are performed continuously, and thus continuously produce data, which
needs to be sent to the cloud application. The sensor network encompasses both sensor nodes, and - if
necessary - supporting infrastructure.

Nr. Requirement Design goals Stakeholder(s)

S1 The sensor network must be able to measure temperature Functional
completeness

RJS, UR

S2 The sensor network should be able to measure light intensity Functional
completeness

RJS

S3 The sensor network could be able to measure the level of
sound

Functional
completeness

RJS

S4 The sensor network should be able to measure the level of hu-
midity

Functional
completeness

RJS

S5 The sensor network won’t be able to measure the amount of
people in the proximity of sensor nodes

Functional
completeness

UR

S6 The sensor network should be adaptable to measure other
phenomena

Functional
completeness,
Adaptability

RJS

S7 The sensor network must be able to measure the stated phe-
nomena using measurements from sensor nodes with a fixed
location (x, y, z)

Functional
completeness

RJS, MO, UR

S8 The intervals in which phenomena are measured should be
adjustable

Functional
correctness

RJS, UR

S9 The sensor data must, when stored, be labeled with a system-
wide synchronized timestamp

Functional
correctness

RJS, UR

S10 The sensor network must enable new sensor nodes to be de-
ployed within ten minutes

Adaptability RJS, MO, DTM

S11 The sensor network must be able to deliver its sensing data to
the cloud application

Functional
completeness

RJS

S12 A sensor node could communicate with the cloud application
while maintaining the confidentiality, integrity, authenticity
and accountability of the messages.

Functional
completeness,
Authenticity,
Accountability,
Confidentia-
lity, Integrity

RJS, FC, SAP

S13 A sensor node should be configured with less than 10 device-
specific values.

Installability,
adaptability

RJS, MO

S14 The sensor network should be able to handle dynamic addi-
tion, and removal of sensor nodes.

Adaptability RJS

12 2. RESEARCH

LOW-COST SENSING DEVICES SPECIFIC REQUIREMENTS

Requirements specifically aimed at the Low-cost Sensing Devices deliverable.

Nr. Requirement Design goals Stakeholder(s)

L1 The low-cost sensor nodes should not make noise that dis-
turbs employees.

Usability com-
pliance

SAP, FC

L2 The low-cost sensor nodes could enable the dynamic addition
and removal of sensors.

Adaptability RJS

L3 The sensor network won’t be able to measure the stated phe-
nomena using measurements from low-cost sensor nodes
with a variable location (x, y, z)

Functional ap-
propriateness

RJS, MO, UR

L4 The average price of a readily deployable low-cost sensor
node, including supporting infrastructure, must be less than
$100.

Expense RJS, MO, FC

L5 The average price of a readily deployable low-cost sensor
node, including supporting infrastructure, should be less than
$80.

Expense RJS, MO, FC

SMARTPHONE APP SPECIFIC REQUIREMENTS

Requirements specifically aimed at the Smartphone App deliverable.

Nr. Requirement Design goals Stakeholder(s)

A1 When interaction is required, it should occur on voluntary ba-
sis [7]

Usability com-
pliance

FC, SAP, RJS

A2 When interaction is required, it should occur in an engaging
context. [7]

Usability com-
pliance

FC, SAP, RJS

A3 The app should be easy to use for a non-developer, minimiz-
ing the cognitive burden to the user [7].

Operability SAP

A4 The style of the app could match the IBM style. User interface
aesthetics

RJS

A5 The mobile application should be well documented so that it
can be implemented on different operating systems as well.

Reusability, In-
stallability

RJS

A6 The sensor network should be able to measure the stated phe-
nomena using measurements from smartphone devices with
a variable location (x, y, z)

Functional ap-
propriateness

RJS, MO, UR

2.4. REQUIREMENTS ANALYSIS 13

2.4.4. CLOUD APPLICATION REQUIREMENTS
The cloud application will contain a database and run on a central server. This server will receive semi-raw
sensor data from the sensor nodes in the network, as they will not send the data they directly gain from their
sensors, but in a specific format that will be defined later. The cloud application receives, pre-processes (if
necessary), and subsequently stores sensor data in a database. Besides the gathering and storage of data, the
cloud application is responsible for interpreting the data, and deriving semantic meaning. It is responsible
for making this data available for visualization in a format that allows to visualize it easily.

Nr. Requirement Design goals Stakeholder(s)

C1 The data must be stored in with sensor type Functional
completeness

UR, RJS

C2 The data structure must have both textual and visual docu-
mentation for each entity, and the relations between entities

Modifiability FPT

C3 The style of the cloud application interface could match the
IBM style.

User interface
aesthetics

RJS, SAP

C4 A basic cloud application interface that allows monitoring of
the states of sensor nodes must exist

Analyzability,
testability

DTM, RJS, MO

C5 The cloud application must be able to handle at least ten sen-
sor nodes simultaneously.

Functional
completeness

RJS, UR

C6 The cloud application should be able to handle 50 sensor
nodes simultaneously.

Functional ap-
propriateness

RJS, UR

C7 The cloud application should be scalable, and thus scale with
the addition of new resources.

Functional ap-
propriateness

RJS

C8 Every endpoint of the access API must be completely docu-
mented.

Modifiability RJS, FPT, DTM

C9 Sensor data must be traceable to a specific sensor node. Accountability,
Non-
repudiation

RJS, DTM, UR

2.4.5. VISUALIZATION REQUIREMENTS
The visualization will make the sensor data accessible through a visual device such as a laptop or tablet. It
pulls data in a presentable format from the cloud application, and uses the pulled data to visually represent
the state of the system, either textual or graphical.

Nr. Requirement Design goals Stakeholder(s)

V1 A simple statistics visualization must be developed Functional
completeness

RJS

V2 A graphical visualization could be developed Functional
completeness

RJS

V3 The style of the visualization could match the IBM style. User interface
aesthetics

RJS, SAP, FC

V4 Each visualization must (be able to) retrieve the visualization
data from the server via the Internet.

Functional
completeness

RJS, MO

2.4.6. EXPECTATIONS AND SUCCESS CRITERIA
Before starting a software project, it is important to estimate when the project is completed successfully for
the specified period of time. Such estimations should be made in accordance with the client. Together with
the direct stakeholders, we therefore defined the project to be successful when a basic static sensing system
for the office environment is created that forms a maintainable basis for future development. It is important
to note that all of the criteria must be fulfilled under the context constraints listed in section 2.5. In terms
of requirements, we can translate this definition of success regarding the four categories of the MoSCoW
method. That way, the minimal success criterion was relatively simple to define: all MUST requirements

14 2. RESEARCH

need to be met within the time frame of the project (ten weeks from the start, so within eight weeks from the
publication of this report). Furthermore, additional SHOULD or COULD requirements that are implemented,
will add to its success. In our expectation, hurdles will be found during the development cycles, resulting
in the need to add, remove, redefine and/or re-prioritize requirements, a phenomenon that is commonly
known as "software evolution" [2]. We will therefore aim at fulfilling all of the ’must haves’ in accordance
with the context constraints and fulfilling as much of the other requirements (should requirements prior to
could requirements) as possible, while keeping the evolution and continuation of our software product into
account.

2.5. CONTEXT CONSTRAINTS

This section is devoted to describing, and providing arguments for having several constraints on the system
regarding the context of its development. These constraints mainly arose from the fact that the software
product has to be developed over a (short) period of ten weeks, and within the resources IBM provides, firstly
this is elaborated upon in section 2.5.1. Second, in section 2.5.2, each of the hardware choices is explained.
Third, in section 2.5.3, each of the software choices is explained.

2.5.1. HARDWARE CONSTRAINTS

Choices concerning the hardware had to be made well in advance for two reasons. First, the time span of the
project is relatively short in comparison to the delivery time for affordable hardware. Secondly, it takes time
to test and get used to conventions regarding the hardware and the software it is programmed. Ordering of
hardware in later states of the project would incur increased time pressure, and thus frustration within the
development and unnecessary dependencies on external parties for the success of the project.

The context constraints can not be seen as design goals (listed in section 2.3), as they do not form a goal
that has to be accomplished, neither can they be seen as requirements (listed in section 2.4), as they are not
aimed at realizing a certain design goal. The context constraints namely form a collection of agreements
the development team members made with the technical and research supervisors from IBM, respectively
Manfred Overmeen and Robert-Jan Sips.

2.5.2. HARDWARE CHOICES

RASPBERRY PI’S

The Raspberry Pi6, a low-cost, complete computer, will be used for routing, and, if necessary, sensing. This
choice was motivated by their low cost, energy efficiency, the enormous amount of (educational) documen-
tation, and the ability to easily extend them via modules with extra functionality (such as WiFi or Bluetooth
communication capabilities). Extended with a storage device, they can function as buffer between (low-cost)
sensing devices and the cloud application.

ARDUINO’S

The Arduino, a low-cost micro-controller, will be used as primary sensing device in the network. This choice
was motivated by their small size, low cost, energy efficiency, the enormous amount of documentation, and
the ability to extend them with multiple sensor easily through simple electronics. Furthermore, with the
addition of a WiFi or Bluetooth module, they can be used wireless. These factors make it an ideal candidate
to be spread over an office to sense phenomena such as temperature.

BLUEMIX

At its roots, IBM is market leader in business-grade hardware, especially servers. They offer practically unlim-
ited access to computer power and storage, which makes the purchase or renting of servers not required. Fur-
thermore, they offer a clean interface, BlueMix, which directly offers a variety of services including database
and web server services. Bluemix is also a portal to IBM Watson, which allows could support semantic inter-
pretation of produced data.

6As can be found in chapter 4.3 The Raspberry Pi is not used for implementing a hub node in the eventual system

2.6. DEVELOPMENT METHODOLOGY 15

2.5.3. SOFTWARE CHOICES

SMARTPHONE APP

The smartphone application will first be created in Android. This is motivated by previous experience with
programming applications for Android by the development team, and the high presence of Android smart-
phones within the IBM office.

CLOUD APPLICATION

The cloud application requires two services: a database and a web server. Both are offered by IBM Bluemix. A
NodeJS web server is chosen due to its simplicity in creating endpoints, and the data model (JSON) it handles
is easy to encode. A relational database will most likely be used for storage of data, because of the experience
of the development team through courses to use and optimize it.

ARDUINO

The official documentation of Arduino uses the Processing language, which is supported by the Arduino envi-
ronment they provide. Furthermore, Processing is natively supported by the boards, and is capable to access
the complete functionality offered by the Arduino board.

RASPBERRY PI

The Raspberry Pi is commonly used with the Linux operating system, due to its small system footprint. The
Linux OS Raspbian, part of the NOOBS software package, supports Python, the official full programming
language for Raspberry Pi’s. Most documentation and example projects are written in Python. For these
reasons, Python will be used7.

2.6. DEVELOPMENT METHODOLOGY
The key components of the methodology adopted in the process of developing the system are described
in this section. Most of the adopted techniques came forth from our academical experience with software
projects. The version of Scrum that was used throughout the process is described in section 2.6.1.

2.6.1. ADAPTED SCRUM
The fundamental principles of Scrum enable efficient, and effective software development, as we can state
based upon our experience of this software development method. The success of Scrum comes from the fact
that it doesn’t blame the customer for giving the wrong requirements, but it accepts that “project require-
ments might be unclear or unknown even as the project gets underway” [22]. The same holds for our project.
We do know its main goals and the general deliverables, but the requirements might change throughout the
process due to new findings done along the way. We therefore chose to adopt this software development
methodology.

Due to the small size of the development team, the regular Scrum roles were not explicitly appointed. The
continuous collaboration in close proximity, and the small team size, allows us to effectively maintain the
product backlog collaboratively, and fuel the capability to accomplish the product goals and provide the de-
liverables. Taking into account the two month duration of the project, and the (ambitious) goals that are set,
the sprint distance is set to one week. This results in having at least one meeting with our stakeholders, the
TU coach and client, every week, in order to appraise them of recent progress and discuss the next steps in
the process. A sprint review is held at the end of every sprint to reflect on progress, and to determine the
sprint backlog for the next sprint. At the start of each day the tasks to be done will be discussed within the de-
velopment team, and a rough planning of the day is decided. At the level of sprints, evolutionary prototyping
[23] will be applied, as this would enable the agile development of the product.

7Raspberry PI’s were investigated, but not used in the demonstrator. A closer study of the NOOBS operating system unveiled a default
support for Java. This means that the existing hub node code could work on the Raspberry PI, provided that a supported Bluetooth
stack is present on the device

3
DESIGN

3.1. INTRODUCTION
This chapter is devoted to the design of the overall system and its components, and the backing of the main
design choices that were made. A high level overview of the system design, and the responsibilities of the four
components are given in section 3.2. Furthermore, in section 3.3, the data model of the system is described
via the Entity Relationship modeling method. For comprehensibility, a distinction is made between the main
design corpus described in this chapter, and the eventual implementation, which is described in chapter 4.

3.2. ARCHITECTURE
In this section the architecture of the overall system is discussed. First, in section 3.2.1 a top-level overview
of the system is given, introducing its four core components. Second, the responsibilities of the sensor node
(section 3.2.2), the hub node (section 3.2.3), the server (section 3.2.4), and the database (section 3.2.5) are de-
scribed. In section 3.2.6 we provide the reader with argumentation for the introduced architecture by backing
the design choices that were made.

3.2.1. OVERVIEW
A scalable distribution of system intelligence was required in order for the system to function, regarding e.g.
maintainability and safety. The design follows the design principle of maintaining low coupling and high co-
hesion. This means that there is low interdependence between components, while highly related function-
ality is put together as closely as possible (within a component). Two main responsibilities were identified
in the requirements, namely (1) the gathering of (sensor) data from low-cost and smartphone sensor nodes
on-site, and (2) the persistent storage of data in a central database. To effectively distribute system intelli-
gence to support these responsibilities, the choice was made to divide the system up into four components:
the sensor nodes, hubs, server and database. An argumentation for this architecture design can be found in
the first two subsections of section 3.2.6. The system overview is depicted in figure 3.1.

17

18 3. DESIGN

Figure 3.1: System Overview

In figure 3.1, a hierarchy from top to bottom is shown. The hierarchy consists of three layers (sensor nodes,
hub nodes and cloud application) containing four components (sensor and hub nodes, the server, and the
database) in total. These components are represented by six types of ’devices’, as depicted by the different
images.

The sensor nodes are depicted at the bottom layer, and consist out of two types of sensing devices. On one
hand there are sensor nodes with long range communication capabilities (represented by the smartphones
on the left side). These sensor nodes communicate directly with the server through a long range medium
such as by accessing the Internet through WiFi. On the other hand there are the sensor nodes with only short
range communication capabilities (represented by the Arduino boards on the right side). These sensor nodes
do not communicate directly with the server, but rather use their short range communication capabilities
(e.g. Bluetooth) to communicate with hub nodes.

The hub nodes (depicted at the middle layer) in turn send the data they received from the sensor nodes
to the server through a long range communication medium such as accessing the Internet through Ethernet
or WiFi. This can be done by any device with matching both short range and long range communication ca-
pabilities (i.e. a laptop or Raspberry Pi). The hub nodes act as channels between the server and sensor nodes
which solely have short range communication capabilities. The hub manipulates the data it passes on as little
as possible, only accounting for the inconsistencies its presence as a channel induces (e.g. delay).

The server (depicted left at the top layer) configures the sensor nodes and hubs, and receives sensing data
from all of the sensor nodes. The server stores this received data in the database it is linked to. This database
(depicted right in the top layer) forms a central storage point for all configuration and sensing data.

3.2.2. SENSOR NODE RESPONSIBILITIES
The sensor nodes are the on-site devices that have a sensing capability, unlike the other components of the
system. Its responsibilities are related to the gathering of reliable measurements, and transmitting them to
the server. There is a difference between sensor nodes that communicate directly with the server, and ones
that communicate indirectly via a hub (respectively depicted left and right in figure 3.1). Nevertheless, their
responsibilities are equal:

Measuring The sensor node continuously produces measurements through its sensors. It stores these mea-
surements with their time, value, and sensor origin.

3.2. ARCHITECTURE 19

Buffering The sensor node continuously gathers measurements, which need to be stored before transmis-
sion. If there is (temporarily) no network connection, it must buffer those measurements in a first-in-
first-out fashion when the buffer’s size limit is reached.

Sensor maintenance The sensor node checks whether the sensors are still working properly. If the sensor
detects defects, it should remove that sensor from its configuration.

Persistent storage The sensor node must persistently store the identification and configuration data it re-
ceived from the server. This ensures that when the device loses power, it is not detected as a new device
by the server.

Transmission The sensor node itself is responsible for communicating with the server, this includes identifi-
cation, (dynamic) configuration, and passing its measurements. This transmission can either be done
directly to the server (e.g. via WiFi) or indirectly via a hub (e.g. via Bluetooth).

3.2.3. HUB NODE RESPONSIBILITIES
The hub nodes are the devices on-site that have both short and long range communicative capabilities, al-
lowing them to be a channel between the server and the sensor nodes, of which the latter solely has short
range capabilities. The responsibility of the hub node focuses on reliably passing on messages between the
server and sensor nodes. Its responsibilities are the following:

Message channel The hub node must transmit any messages it receives from sensor nodes to the server, and
vice versa. Processing of these messages is done at the server, therefore the hub is mostly a bridge in
the communication pathway between the low-cost sensor nodes and the server.

Traceability The hub node must identify itself with the server. It should then always attach its identification
information to the meta-data of the messages it channels, offering the server the ability to monitor the
performance of hubs.

Temporal consistency The hub node should channel messages “as if it was not there”. To achieve this, it
must calculate the delay it induces between receiving the message and passing it on. This delay must
then be included in the meta-data of the message.

3.2.4. SERVER RESPONSIBILITIES
The server is seen as a single point with which the sensor nodes can communicate (through a hub if neces-
sary). The server is generally responsible for providing services to sensor nodes, and allowing the monitoring
of the system by its administrators. In this service it maintains semantic data consistency, and supports con-
figurability of the system. The server has the following responsibilities:

Identification The server allows (both sensor and hub) devices to request a system-wide identification. This
received identification can then be used to uniquely link any future correspondence with the server to
a single device in the system. The identification request includes device type and initial location.

Configuration registration The server allows sensor nodes to register their own device configuration with
the server. This configuration contains the sensors that are on-board of the sensor node. This service
can be called upon multiple times by a device (e.g. due to sensor failure, or change).

Measurement The server allows sensor nodes to persistently store measurements in the system it measured
in both a temporal and spatial dimension. The service is responsible for handling delays.

Dynamic configuration The server allows system administrators to dynamically configure the sensors on
the sensor nodes. For example adjusting the interval at which the sensors produce measurements, or
whether they are active.

State preservation The server stores the state of the system at any point. This means that any change in
(dynamic) configuration is stored in the database as well, not just the effect of it on the momentary
system state.

20 3. DESIGN

3.2.5. DATABASE RESPONSIBILITIES
The database is an organized collection of relational data, containing both measurement-oriented data the
system produces, as well as state-oriented data (e.g. device types, devices, sensors, sensor activity). Its re-
sponsibilities are related to the storage of data, the presentation of data, and maintaining the relational data
constraints. The responsibilities are the following:

Data Storage The database continuously receives insertion requests from the server. The database needs to
efficiently store this data, while ensuring that imposed relational constraints are upheld (as an insur-
ance for data consistency preservation).

Data Retrieval Many data constraints are left to the server due to limitations of relational constraints (see
relations in section 4.5) and practical considerations (e.g. it is better to check for the existence for an
identifier, rather than blindly inserting and performing error handling). The server will frequently query
the database to check these constraints, thus it is the responsibility of the database to answer promptly
(e.g. by maintaining additional indexes).

3.2.6. BACKING OF DESIGN CHOICES
In this section we provide the reader with argumentation for the design choices that were made in translating
the requirements and context constraints (described in section 2.4 and 2.5 respectively) into an actual design
(described in this chapter). First, in section 3.2.6, an argumentation is given for the addition of a hub node.
Second, in section 3.2.6, the need for a central server is elaborated upon. Finally, in section 3.2.6, the chosen
push/pull mechanisms are described.

HUB ADDITION

As mentioned in section 3.2.1, the sensor nodes can communicate directly with the server or indirectly,
through a hub. There are four factors that accounted for the addition of this hub:

Device Exclusion Devices that cannot be extended with long range communication capabilities would be
excluded from participating in the system.

Network Restrictions In certain environments, addition of unknown devices to the WiFi network is not pos-
sible. In the case of IBM, a device firstly has to be authenticated and approved by the network admin-
istrator. Safety concerns for the internal infrastructure made this approval process troublesome.

Extension Cost Additional costs will be made for devices that can be extended with an extra long-range
communication module. Furthermore, embedded system devices typically do not possess an UI or
a browser, nor the protocol stack to handle complex authentication procedures (which was the case
with the cheap ±$5 ESP8266 for the Arduino). The added module would need to support all these fea-
tures on top of the embedded system device, which will increase the price significantly (e.g. an Arduino
WiFi shield of ±$60).

Existing Infrastructure The mass presence in the work environment of laptops with both short-range (Blue-
tooth) and long-range (WiFi) communication capabilities are already ideal candidates to become hubs
(as is the case of IBM). These laptops already have network access, thus circumvent any possibly im-
posed network restrictions.

These factors proved the hub to be an elegant solution for the system. It would namely be the best solution
with respect to the design goals we value: installability, extendability, and deployability.

CENTRAL SERVER

To meet the demand of central storage, a central component where all data is stored - a database - is required.
A choice was made to put a server in front of this database, allowing other components to communicate
with the server instead of directly communicating with the database. This choice was motivated by four
arguments. First, the other components only need to talk the language of the server, which we can control,
instead of relying on the choice of database and its interface. Second, in order to guarantee consistency
and reliability of data stored in the database, an application-specific implementation is required to check
the semantic constraints. Third, to allow the system to be adaptable and configurable, a server can instruct
devices that connect to it, whereas a database would only work as a passive servant to the other components.
Fourth, it abstracts the sensor nodes from the choice of database, and enables the system to be scaled up by
only adapting the server.

3.3. DATA MODEL 21

PUSH/PULL MECHANISMS

The management of the energy consumed by system components was taken into account for creating the
system design. The sensor nodes are commonly wireless, thus do not have a continuous power source. The
server does possess this ability, and the hub (often) does so too, or at least has a larger power supply. This
supported the design choice to let the devices themselves determine when to communicate with the server.
The hub in this equation actively offers sensor nodes the ability to do so and engages in the connection,
whereas indirect sensor nodes merely accept or reject. This reduces cost of energy consumption at the side
of sensor nodes.

3.3. DATA MODEL
This section is devoted to explaining the design choices made when creating the data model for the cloud ap-
plication. First, in section 3.3.1, the methodology is laid out. Second, the requirements from a measurement
centric point of view are described in section 3.3.2. Third, the requirements from a device centric point of
view are described in section 3.3.3. Finally, these requirements are expressed in an Entity Relationship Model
in section 3.3.4, including a visual depiction in the form of a diagram.

3.3.1. DATA MODELING METHODOLOGY
The research phase (chapter 2) was the first step in the creation of a data model that could support a system
specified by the requirements (see section 2.4). These requirements, however, were too abstractly defined to
function as direct data model requirements. To narrow this ‘abstraction gap’, further interviews and discus-
sions were held with the two stakeholders that were the closest related, Robert-Jan Sips and Uditha Ravindra.
The former has had significant experience with data modeling, and was able to most clearly communicate
his needs. The results of these stakeholder interactions allowed for a more precise composition of data model
requirements.

During the development, the data model has undergone several iterations. After each iteration, it became
more fit for the system’s needs, both in terms of technical and stakeholder demands. The reasoning behind
the requirements is added as a story after each requirement category. In these stories, a focus was put upon
the most important choices. A separation was made between measurement and device centric requirements
(respectively laid out in section 3.3.2 and 3.3.3). These data model requirements were then translated using
entity relationship (ER) modeling in section 3.3.4 into an ER model, including a visual diagram.

3.3.2. MEASUREMENT CENTRIC REQUIREMENTS
Measurement Centric List

1a The (synchronized) time of a measurement must be known;

1b The location of a measurement must be known;

1c The location of a measurement must be traceable to the location of a sensing device;

1d A measurement must be traceable to a specific device configuration at a specific point in time;

1e New measurement types (from new sensor types) must be able to be dynamically assigned and subse-
quently measured;

1f A sensor of the same model can measure multiple quantities;

1g A sensor can produce multiple measurements;

1h A measurement is performed by one sensor in one specific device configuration;

1i Sensors are either active or not;

1j Absence of measurements due to sensors being deactivated must be traceable

1k A measurement must only be in one environment;

1l Multiple environments can exist in which measurements are taken;

1m Environments must have a unique name;

1n Environments can be in different time zones;

1o The locations of measurements are relative to the origin of the environment;

22 3. DESIGN

1p The hubs that pass on measurements must be traceable;

1q The type of device that the hub is must be stored;

1r Sensing devices need to able to switch between hubs freely;

1s New device types need to be able to be added dynamically;

Measurement Centric Story
In order to be able to distinguish between different measurements, the time and location of a measurement
must be known (1a,1b) and the location of such a measurement must be traceable to the location of a sensing
device (1c) and a specific device configuration of a sensing device (1d). But, you can imagine that new types of
sensors are added to sensor nodes (think of a newly added sensor to an Arduino or smartphone). Therefore we
want the potentially new measurement types of these sensors to be dynamically assigned and subsequently
measured, so that the system enables sensor extension (1e). Ofcourse a sensor model can measure multiple
quantities and a sensor can produce multiple measurements, in which each measurement is performed by
one sensor in one specific device configuration (1f,1g,1h). But, we do not always want the sensor nodes to
measure everything they can (according to their device configuration). We would rather want to be able to
tell them when to measure what (1i) and archive this (1j). A measurement always takes place in a certain
environment (like the second floor of IBM CAS in Amsterdam, or the second floor at the faculty of EEMCS at
TU Delft) (1k,1l,1n), which has a unique name (1m) and is located in a certain time zone (1m). The locations
of measurements are stored relative to the origin of a certain environment (1o). The data from measurements
is sent to the cloud through hubs. We want this transfer of data to be traceable (1p,1q) and dynamic (1r), and
to allow for the adoption of new device types (1s).

3.3.3. DEVICE CENTRIC REQUIREMENTS
Device Centric List

2a A sensing device is uniquely identified by a device identifier;

2b A sensing device must have a name;

2c The location of the sensing device, including its sensors, is registered as a singular point in three di-
mensions;

2d The timestamps the sensing device provides in its communication, must be synchronized with the
general time of the system;

2e A sensing device always has a device configuration;

2f A sensing device can not have multiple device configurations at the same time;

2g The history of previous sensing device configurations of a device must be stored;

2h A sensing device configuration consists out of zero or more sensors;

2i A (physical) sensor can only be added to a single device configuration;

2j A sensing device configuration can exist out of multiple sensors of the same type;

2k Multiple sensors can have the same type;

2l A sensor can have only one sensor type;

2m A sensor type can exist while there are no measurements of that type (e.g. when a device with a ‘unique’
sensor announces its configuration but immediately drops out afterwards);

2n A sensor type has a model, quantity, unit, default interval, and default active setting of new sensors;

2o A device type has a brand (e.g. ’Samsung’), model (e.g. ’SM-G920’), marketing name (e.g. ’Galaxy S6’)
and an category (e.g. ’smartphone’);

2p A device type is uniquely identifiable using its brand and model.

Device Centric Story
In order to distinguish between devices, every sensing device has a unique device identifier (2a) and for the
ease of usage, we also gave each device a name (e.g. ’CAS Bureau #1’) (2b). In order to couple measure-
ments to both time and location, these variables must be registered for the sensing device (2c,2d). In order to
know what measurements can be done by which device, we store its device configuration (2e,2f). The client

3.3. DATA MODEL 23

pointed out that he wants the history of previous sensing device configurations to be archived (2g). A device
configuration can consist out of multiple sensors (2h), but a (physical) sensor can only be added once to a
single device configuration (2i), whereas a device configuration can consist out of multiple sensors (2j) that
can have the same type (2k). Every sensor can have only one sensor type (2l), but this does not mean that
the database will contain measurements of every type (2m). A sensor type is chosen to consist of a model,
quantity and unit of measurement (2n), and a device type is chosen to consist of a brand, model, marketing
name and category (2o). A device type is thereby uniquely identifiable using its brand and model (2p).

3.3.4. ENTITY RELATIONSHIP MODEL

From the requirements in the previous sections, ten entities were identified1: SensingDevice (s), SensingDe-
viceConfiguration (w), Sensor (w), SensorActivity (w), SensorType (s), Measurement (w), SensingDeviceLo-
cation (w), Environment (s), Hub (s), and DeviceType (s). Twelve relationships bind these strong and weak
entities together. Not all requirements can be (wholly) expressed through the ER model, due to its expression
limitations. This ER model enables quick transfer of the concept of the data model, as it covers the necessary
main components fundamental to understanding the system. Requirements that are expressed, are linked in
the sentences by adding their number between brackets, e.g. “(1a)”. A visual representation of the ER model,
the ER diagram, is shown in figure 3.2.

SensingDevice A strong entity, it represents a sensing device in the system. It is identified using a device
identifier (2a). It has three other attributes: LastConfigTime, Name (2g), and LastLocation (2l). It must
be coupled to at most one device configuration in time (2b). The ActivatedTime attribute of the Con-
figuredWith relation enables placement of a configuration in the time domain (2e).

SensingDeviceConfiguration A weak entity, it represents the (history of) sensing device configurations (2d).
It is uniquely identifiable through the combination of ActivatedTime and DeviceID (2c), both obtained
from the ConfiguredWith relationship. This combination is however not used as primary key, to avoid
creating string identifiers which take a significant larger space than a numerical identifier when often
referenced. It has zero or more Sensor entities related through the ConsistsOutOf relationship.

Sensor A weak entity, it represents a sensor attached to a device in a specific configuration. It has one at-
tribute: Name (e.g. “NORTH”). It is uniquely identifiable through the combination of its Name attribute
(2j) and the two related entities, through IsSensorTypeOf and ConsistsOutOf relationships, namely Sen-
sorTypeID and ConfigID. It must be related to one SensorType (2l), and one SensingDeviceConfigura-
tion (2h, 2i). It must have an entry in the SensorActivity table (1m). It can create multiple measurements
through the MeasuredBy relationship (1d).

SensorActivity A weak entity, it represents whether a sensor is active or not in time. It is identified through
the ActivityLog relationship with Sensor (1m). It has two attributes, namely Active and Time.

SensorType A strong entity, it represents the types of sensors that exist in the system. It has six attributes:
SensorTypeID (generated identifier), Model (e.g. “KY001”), Quantity (e.g. “TEMPERATURE”), Unit (e.g.
“CELCIUS”), DefaultInterval (e.g. 5000), and DefaultActive (e.g. true) (2n). The combination of Model
and Quantity is unique, but SensorTypeID is used as identifier to avoid creating string identifiers which
take a significant larger space than a numerical identifier when often referenced. It defines the type of
zero (2m) or more sensors through the IsSensorTypeOf relationship (1b, 2k).

Measurement A weak entity, it represents a measurement in the system. It is uniquely identified through
the MeasuredBy relationship with Sensor (1c, 1e), using the combination of SensorID, and its own at-
tributes Tag and Time. It has three attributes, namely Value, Tag and Time (1a). Its location and envi-
ronment are determined through the MeasureAt relationship (1o, 1p, 1r, 2e). The hub that passed it on
(if there is one) is determined by the AggregatedBy relationship (1j, 1l).

SensingDeviceLocation A weak entity, it represents the location of a SensingDevice at some point in time.
It is uniquely identified through the LocationID. There is however a unique combination of possible
through the LocatedAt relationship, using the combination of Time and DeviceID of that relationship.
It has two attributes: LocationID (generated identifier) and Location (e.g. (x: 4.2, y: -1.2, z: 1)) (2e). It
determines its environment through the MeasuredIn relationship.

1(s): strong entity; (w): weak entity

24 3. DESIGN

Environment A strong entity, it represents a measuring environment. This is the only entity that is created
by the administrator of the server. It has four attributes: EnvID (generated identifier), Timezone (e.g.
“GMT+1”) (1g), Name (e.g. “IBM CAS”) (1h), and origin (e.g. latitude, longitude, elevation) (1i), which
is the location to which all measurements in the environment are taken relative to. Zero or more mea-
surements are linked to the environment through the MeasuredIn relationship (1f).

Hub A strong entity, it represents a hub which passes on communication from sensing devices to the server.
It has two attributes: HubID (generated identifier), and Name (e.g. “PI IBM CAS #1”). The Name is
purely for identification by humans, to the server a hub is just used with its identifier. The type of
device that the hub is, is determined by the IsHubDeviceTypeOf relationship (1k).

DeviceType A strong entity, it represents a type of device (1q). It has four attributes: DeviceTypeID (gener-
ated identifier), MarketingName (e.g. “Samsung Galaxy S3”, “Arduino Uno”, or “Raspberry PI 2 B+”),
Brand (e.g. “Samsung”, “Arduino”, or “Raspberry PI”), Model (e.g. “SHV-E210L”, “Uno ATmega328P”,
or “B+”), and Category (e.g. ’smartphone’, or ’board’) (2o). The combination of Brand with Model is
unique, but DeviceTypeID is used as a dedicated identifier to avoid creating string identifiers, which
require a significant larger amount of memory than a numerical identifier.

3.3. DATA MODEL 25

Figure 3.2: ER Diagram

4
IMPLEMENTATION

4.1. INTRODUCTION
This chapter is devoted to the implementation of the system. The implementation is based on the design de-
scribed in chapter 3, in which it was specified that the system consists of four components. For each of these
components their implementation is discussed in a separate section in this chapter. The first three sections
describe the hardware used in the implementation, the dependencies regarding the software (e.g. libraries,
tools and their licensing), the design of the software (e.g. pseudo-code) and the actual implementation (e.g.
class diagrams) regarding each component of the system. First, in section 4.2, the implementation of the sen-
sor node is discussed for both the low-cost sensor node and the smartphone app. Second, in section 4.3, the
implementation of the hub node is elaborated upon. Third, in section 4.4, the implementation of the server is
described. Finally, in section 4.5, the implementation of the data model in a relational database is described.

4.2. SENSOR NODE
The sensor node component has been implemented on two platforms for the demonstrator. In this section,
those implementations are discussed. First, in section 4.2.1, the chosen hardware of the two platforms is
discussed. Second, in section 4.2.2, the platform-specific software dependencies are explained. Third, in
section 4.2.3, the platform-independent software design is elaborated upon.

4.2.1. HARDWARE
The sensor node component in the system architecture has been implemented on two platforms: Arduino
and Android. First, in section 4.2.1, the choice for the Arduino hardware is explained. Second, in section
4.2.1, the choice for the Android platform is elaborated upon.

ARDUINO HARDWARE

The Arduino board is immensely popular among electronics enthusiasts, having produced over 700.000 offi-
cial boards and roughly the same amount in clones1. With the goal being a learning platform, its documen-
tation2 is in excellent shape, enabling developers to quickly comprehend the features it offers. These include
all the features required for a sensor node, including timing, dynamic addition and removal of sensors, both
persistent and RAM memory, and, with addition of a module, communicative capability. Three boards have
been tested in the demonstrator: the Arduino Nano, Uno, and Mega 2560. Because of its popularity, libraries
have already been written for many of the additive electronics (e.g. sensors) that Arduino supports. The ad-
ditive hardware chosen to complement the Arduino boards in becoming a sensor node, is listed in table 4.1.

The choice of sensors (KY001, DHT11, KY018) for the demonstrator Arduino board was based on both the
availability of libraries, the phenomena they measure (matching the requirements), and the range and accu-
racy they posses. For the system design itself, the sensor is merely seen as a component providing a value,
making the choice for sensor of significantly less importance in a demonstrator of the system.

1http://medea.mah.se/2013/04/arduino-faq/ (retrieved 6 June 2015)
2http://www.arduino.cc/en/Reference/HomePage (retrieved 6 June 2015)

27

http://medea.mah.se/2013/04/arduino-faq/
http://www.arduino.cc/en/Reference/HomePage

28 4. IMPLEMENTATION

There is a wide variety of communication modules, namely so-called shields that are the same size as an
Arduino, and smaller stand-alone modules, which connect via a serial port. The former were outside of the
price range, being even more expensive than the board itself and all of its sensors combined. This supported
the decision to disregard this option. Two stand-alone modules were examined, namely the ESP8266 WiFi
module, and the HC-05/06 Bluetooth module. The former, the ESP8266, proved to be unreliable in data
transmission, often resulting in data loss. The latter, the HC-05/06, proved to reliably send and receive data
in our conducted tests. Therefore the HC-05/06 was chosen.

All three boards (Nano, Uno, and Mega) are able to handle the additive hardware selected. An electronic
schematic for the smallest, the Nano, is depicted in figure 4.1.

Model Cost Functionality Specifications Library exists
HC-05 $3.903 Bluetooth module (digital /

serial port)
2.4GHz, 3Mbps4 None required, used via

Serial Port Profile (SPP)
KY001 $2.125 Temperature sensor (digital) -55°C to +125°C, range ac-

curacy +- 0.5°C between -
10°C and +85°C 6

Yes, MAX31850
DallasTemp7 and
OneWire 8

DHT11 $0.999 Humidity sensor (digital) 20% to 80% humidity,
range accuracy 5%10

Yes, AdaFruit DHT11

KY018 $1.6612 Light intensity sensor (ana-
log)

0 (light) - 1024 (dark) None required, provides
analog value

Table 4.1: Arduino Additional Hardware

Figure 4.1: Electronic schematic for the Arduino Nano sensor node (generated using Fritzing)

3http://www.ebay.com/itm/Wireless-Serial-6-Pin-Bluetooth-RF-Transceiver-Module-HC-05-RS232-Master-Slave-/
400562862516 (retrieved 6 June 2015)

4http://wiki.iteadstudio.com/Serial_Port_Bluetooth_Module_%28Master/Slave%29_:_HC-05 (retrieved 6 June 2015)
5http://www.ebay.com/itm/KY-001-DS18B20-Temperature-Sensor-Module-Temperature-Measurement-Module-Arduino-/
271643288650 (retrieved 6 June 2015)

6https://tkkrlab.nl/wiki/Arduino_KY-001_Temperature_sensor_module (retrieved 6 June 2015)
7https://github.com/adafruit/MAX31850_DallasTemp (retrieved 6 June 2015
8https://github.com/adafruit/MAX31850_OneWire (retrieved 6 June 2015)
9http://www.ebay.com/itm/1pcs-DHT11-Digital-Humidity-Temperature-Sensor-NEW-/171302145362 (retrieved 6 June

2015)
10https://www.adafruit.com/products/386 (retrieved 6 June 2015)
11https://github.com/adafruit/DHT-sensor-library (retrieved 6 June 2015)
12http://www.ebay.com/itm/KY-018-photoresistor-module-for-Arduino-AVR-PIC-/121167420768 (retrieved 6 June 2015)

http://www.ebay.com/itm/Wireless-Serial-6-Pin-Bluetooth-RF-Transceiver-Module-HC-05-RS232-Master-Slave-/400562862516
http://www.ebay.com/itm/Wireless-Serial-6-Pin-Bluetooth-RF-Transceiver-Module-HC-05-RS232-Master-Slave-/400562862516
http://wiki.iteadstudio.com/Serial_Port_Bluetooth_Module_%28Master/Slave%29_:_HC-05
http://www.ebay.com/itm/KY-001-DS18B20-Temperature-Sensor-Module-Temperature-Measurement-Module-Arduino-/271643288650
http://www.ebay.com/itm/KY-001-DS18B20-Temperature-Sensor-Module-Temperature-Measurement-Module-Arduino-/271643288650
https://tkkrlab.nl/wiki/Arduino_KY-001_Temperature_sensor_module
https://github.com/adafruit/MAX31850_DallasTemp
https://github.com/adafruit/MAX31850_OneWire
http://www.ebay.com/itm/1pcs-DHT11-Digital-Humidity-Temperature-Sensor-NEW-/171302145362
https://www.adafruit.com/products/386
https://github.com/adafruit/DHT-sensor-library
http://www.ebay.com/itm/KY-018-photoresistor-module-for-Arduino-AVR-PIC-/121167420768

4.2. SENSOR NODE 29

ANDROID HARDWARE

The Android operating system, unveiled by Google in 2007, has a smartphone market share of 78% as of Q1 of
201513. Android’s source code is licensed under open source licenses, while also allowing it to be combined
with proprietary software which is the case for this project. Its documentation is vast, evolving itself for the
better with each iteration (the latest being Android 6.0: M). One of its keystones is backward compatibility,
offering libraries to both support older platforms, and still use the latest technologies it has to offer. This
maximizes the range of devices that an Android application can reach. Because of major changes between
2.1 and 2.2, any device that runs Android 2.2 or higher will be supported by the application. Smartphones
such as the Nexus 5 or Samsung Galaxy S5 house a wide variety of sensors, e.g. battery temperature sensor,
light sensors, and microphones.

Other options were also explored, such as IBM MobileFirst, and native iOS. During the exploration phase
we found that the former, IBM MobileFirst, was not as thoroughly developed and adopted by programmers,
compared to other platforms. Due to a lack of equipment to develop for iOS, it was found to be impossible
in the scope of this demonstrator to develop an iOS application. However, the logical design in section 4.2.3
outlines how to develop for other platforms, such as iOS, in future iterations. Moreover, to support cross-
platform deployment, the Android-specific code (primarily concerning interface) and the general Java code
have already been kept as separated as possible following the model-view-controller design pattern.

4.2.2. SOFTWARE DEPENDENCIES

To program the hardware chosen in section 4.2.1, choices in software were made for both platforms: Arduino
and Android. First, in section 4.2.2, the choice of software for the Arduino hardware is explained. Second, in
section 4.2.2, the choice of software for the Android hardware is explained.

ARDUINO: C++/PROCESSING

C++ and Processing are the official languages of the Arduino platform. They combine the strength of Arduino
specific functionality, and C++’s vast library functionality. This includes low level memory access, abstraction
through classes, and native code running at high speeds. Complimentary libraries are added for the sensors,
and testing. The ArduinoUnit framework is chosen due to its little boilerplate code, and its small size. All
selected libraries are depicted in table 4.2 in combination with their licensing.

Name Functionality License
Arduino Arduino specific functionality such as timing, and

reading/writing to ports.
GNU LGPL

ArduinoUnit Unit testing framework. MIT License
OneWire Support for slave devices that operate using a 1-

wire protocol.
MIT License

DallasTemperature Support for temperature measuring devices that
use the 1-wire protocol.

GNU LGPL v2.1 or higher

DHT Sensor Library Supports the reading of the DHTxx series sensors. MIT License

Table 4.2: Arduino libraries

ANDROID: JAVA

Java is the native language of the Android platform. It abstracts from device specific code by using a vir-
tual machine (DalvikVM). Through this abstraction, it has proven to be virtually device-independent, while
still offering low-level access to the hardware in the device, e.g. the battery temperature sensor. Usage of
Java also enables all the functionality that a platform offers, including multithreading, encryption, and inter-
faces. Compatibility is central in its complete official documentation, with many online communities such
as StackOverflow offering answers to implementation questions. For unit testing the well-known and well-
documented JUnit framework is used, with the latest version that is compatible with Android (v3). EMMA is
chosen as coverage tool, as it is already present on the Android platform, and continues to receive support
from Google. All selected libraries are listed in table 4.3.

13http://www.idc.com/prodserv/smartphone-os-market-share.jsp (retrieved 6 June 2015)

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

30 4. IMPLEMENTATION

Name Functionality License
Android SDK Android specific functionality SDK License
JUnit 3 Unit testing framework Eclipse Public License v1.0
EMMA Coverage Tool Common Public License v1.0

Table 4.3: Android libraries

4.2.3. SOFTWARE DESIGN
Independent of any platform, there is a general logic design for the sensor node. This has been implemented
on both chosen platforms using its platform-specific software described previously (in 4.2.2). First, the high
level pseudo-code is given as an overview to its program flow. Second, the different operational modules on
which the program flow relies, are discussed. Third, each phase in the program flow is elaborated upon.

HIGH LEVEL PSEUDO-CODE

Listing 4.1: Sensor Node High Level Pseudo-code

input : communication , storage , sensors , measurements

begin
while (true) {

i f not ident i f ied then
ident i f y ()

else i f not configured then
configure ()

else i f not dynamically configured then
archive () // Zero measurements i s f l a g for dynamic configuration

else
sense ()
i f measurements . s i z e > THRESHOLD then

archive ()

}
end

OPERATIONAL MODULES

Communication The module responsible for communication with the server. This is typically implemented
blocking in single-thread environments. It receives an endpoint and message from the caller, passes
this message via a POST request to the respective server endpoint (direct or indirect via a hub), and
then returns the server’s response to the caller.

Storage The module responsible for persistent storage of variables on the sensor node. It can store and
retrieve the identification and configuration.

Sensors Fixed size array of sensors that are on-board of the sensor node. Each element is an abstraction
module for a physical sensor. It keeps track of the value of the physical sensor it wraps, and saves the
interval and activity of the sensor’s measurement production.

Measurements Buffer for the storage of measurements. Each measurement contains a sensor node times-
tamp, so that the original time of measurement can be calculated.

PHASES

identify() Checks whether an identification (i.e. device identifier) exists in the persistent storage. If it does
not, it requests a new identification via the communication from the server (giving its device type and
initial location) and stores it persistently.

4.2. SENSOR NODE 31

configure() Checks whether credentials for a configuration exist in the persistent storage. If one exists, it
checks if it is still up-to-date with the device’s configuration at boot-up. If it is either not stored, or not
up-to-date, it will submit its new configuration (giving its sensor types) to the server, and will afterwards
receive credentials for it (i.e. sensor identifiers).

archive() Composes a request of all the measurements stored in the buffer, along with their time (delay)
and location. Sends this request to the server. It will however also handle any dynamic configuration
messages it receives such as intervals and activity of sensors.

sense() Goes over all sensors, and asks them where they want and can submit a measurement. If a sensor
wants to and can do so, it retrieves the value, resets the timer of the sensor, and adds a new measure-
ment containing this information to the measurements buffer.

32 4. IMPLEMENTATION

4.2.4. SOFTWARE IMPLEMENTATION
In this section we elaborate upon the software implementation of the sensor node. For the Android code we
discuss their behavior and interfaces separately, as described in the first two following sections. At the end of
this section, the Arduino software implementation is discussed.

INTERFACES VERSUS BEHAVIOR

To separate platform specific code (interface) from sensor node code (behavior), a clear separation is made in
the implementation of the Android platform. The interface code mostly calls Android functionality, for tasks
related to user interaction (e.g. starting/stopping the sensor node, or input of device name). The behavior
code is more general and concerns the platform-independent software design laid out in section 4.2.3. The
latter could easily be adapted to support other Java-based operating systems.

ANDROID BEHAVIOR IMPLEMENTATION

The behavior is visually depicted using a UML diagram in figure 4.2. The DeviceBehavior class is the connec-
tor with the interface implementation, and runs on a separate thread.

Figure 4.2: UML Class Diagram of the Sensor Node Behavior (generated using ObjectAid UML Explorer)

The most important design choices within the Android behavior implementation are as follows:

Operational Module Isolation The communication is completely done through the Server class, and the
storage by the Storage class. This shelters the other classes from its internal workings, and enables
abstraction on their side.

Phase Isolation Each of the phases described in the software design is directly translated into a single class,
respectively the Identification, Configuration, Archivation, and Sensing classes. This allows for easy
adaptability of the program flow in the DeviceBehavior class, and enables it to describe only a high
level of program flow.

4.2. SENSOR NODE 33

ANDROID INTERFACE IMPLEMENTATION

The interface is visually depicted using a UML diagram in figure 4.3. As can be seen, the SensingThread class is
the connector between the behavior, represented by the DeviceBehavior class, and the interface, represented
by the MainActivity class.

Figure 4.3: UML Class Diagram of the Sensor Node Interface (generated using ObjectAid UML Explorer)

The most important design choices within the Android interface implementation are as follows:

Single Activity Because the application is small, and only requires little user interaction, a single activity
exists. This eliminates the need to transfer data between multiple dependent activities.

Thread Separation The behavior runs on another thread than the main activity. This enables the interface
to remain responsive, even if the behavior is blocking (e.g. when a network request is performed). The

34 4. IMPLEMENTATION

main thread is however still in full control, and can, through the SensingThread class, terminate the
sensor node behavior at the finger tips of the user.

Listeners and Dialogs To separate the MainActivity class intialization task from the interface, separate lis-
tener classes are created for each of the UI elements. The listeners are responsible for the subsequent
interaction with the user through a dialog.

ARDUINO IMPLEMENTATION

The class hierarchy of the C++ implementation is visually depicted in figure 4.4. The main module (which is
not a class) follows almost literally the software design pattern laid out in section 4.2.3.

Figure 4.4: Class Hierarchy of the Arduino implementation (generated using Doxygen)

The most important design choices within the Arduino implementation are as follows:

Sensor Abstraction Each sensor type follows the abstraction provided by the Sensor class. Tasks that are
ubiquitous, such as interval handling, are implemented in the parent class. More sensor-specific func-
tionality, such as value measurement, are implemented by the respective sensor subclasses themselves.

Phase Isolation The four phases have been implemented separately, enabling abstraction in the main mod-
ule. The Identification, Configuration, and Archivation, are all implementations for the CommProtocol
abstract class. This simplifies the communication, as they only need to implement the request and the
final handling of the response. All other communicative functionality is taken care of by the Comm
class.

Operational Module Isolation The communication is completely done through the Comm class, and the
storage by the Storage class. These needed to implemented at a particularly low-level. The Comm class
needs to communicate via I/O sockets using a Serial Port Profile with the hub node, which requires a
lot of timing. Furthermore, the Storage class needs to convert data types to bytes, which are mapped
and stored in the EEPROM memory.

4.3. HUB NODE 35

4.3. HUB NODE
The hub node component has been implemented on a single platform (Java) for the demonstrator, how-
ever, due to the selection of this specific (widely supported) platform, an enormous range of devices can be
reached. In this section, the implementation of the hub node is discussed. First, in section 4.3.1, the chosen
hardware and software dependencies for the hub node are explained. Second, in section 4.3.2, the software
design is elaborated upon. Third, in section 4.3.3, the software implementation is discussed.

4.3.1. SOFTWARE DEPENDENCIES AND HARDWARE
At the inception of the project, the usage of dedicated (relatively low-cost) hub nodes was seen as the obvious
choice. In the research phase, we performed testing on the Raspberry Pi platform. These experiments uncov-
ered three major issues. First, it proved extremely challenging to connect these to the IBM network because
of their status as unknown hardware (all hardware connected to the IBM network had to be registered before
they could make a connection). The network administrator was unwilling to comply, as it would result in
a major security drop, if they would allow unknown hardware to be connected to the network. Second, the
Raspberry Pi does not natively support a Bluetooth stack, and thus requires an additional Bluetooth mod-
ule. Due to time constraints put on the project, there was insufficient time to properly test and evaluate the
Bluetooth modules. Third, debugging proved to be difficult, with the absence of HDMI-support at IBM. The
support for the Raspberry Pi has however not been abandoned.

Instead of deploying dedicated hub nodes, in discussion with the client it was suggested to use existing infras-
tructure of laptops used by employees. These laptops possessed both a well-documented and well-supported
protocol stack (WINSOCK), and Java. To maintain as much platform independence, a Java Bluetooth library
was chosen that supported as many operating systems and protocols as possible: BlueCove14. With the sup-
port of Mac OS X, WIDCOMM, BlueSoleil and Microsoft Bluetooth (SP2 and later), it proved to be the best
solution. Furthermore, the latest version of the JUnit framework was used for testing, due to its overwhelm-
ing adoption by Java developers, its vast documentation, and many additional powerful add-ons (such as
PowerMock for mocking objects). The EclEmma tool is used to analyse the coverage of the JUnit test results,
due to their excellent Eclipse plug-in and seamless integration with JUnit. An overview of the software de-
pendencies is depicted in table 4.4.

Name Functionality License
BlueCove Bluetooth protocol stack wrapper Apache Software License v2.0
JUnit 4 Unit testing framework Eclipse Public License v1.0
EclEmma Coverage Tool Eclipse Public License v1.0

Table 4.4: Hub node software dependencies

4.3.2. SOFTWARE DESIGN
This section described how the software is designed (using the dependencies in 4.2.2) from a high level point-
of-view . In the first section, an overview is given of the operational modules on which the program flow
depends. In the second section, the program flow of the main thread is discussed. In the third section, the
program flow of the communication thread is elaborated upon.

OPERATIONAL MODULES

Throughout the hub node there are modules on which the main program flow relies. These can be imple-
mented in various ways (both explicitly in a class, or implicitly in the program), but always offer the same
functionality. There are four such modules:

Bluetooth The module responsible for communication with another Bluetooth device through the Serial
Port Profile (SPP) protocol. It can detect devices, open and close connections, and read and write.

Server The module responsible for communication with the server. This is implemented with multithread-
ing support, allowing for multiple requests to be handled simultaneously. It receives an endpoint and
message from the caller, passes this via a POST request to the server, and then returns the response to
the caller.

14The BlueCove project is hosted at: https://code.google.com/p/bluecove/ (retrieved 10 June 2015)

https://code.google.com/p/bluecove/

36 4. IMPLEMENTATION

Storage The module responsible for persistent storage of variables on the hub node. It can store and retrieve
the identification.

Communication Threads List of started communication threads. Each communication thread tries to con-
nect with the sensor node it was started for, if it fails, it will die. If it succeeds, it will continue to com-
municate with the sensor node.

HUB NODE MAIN THREAD

The main thread of the hub node is responsible for identifying itself with the server, and maintaining the
connections with the sensor nodes. The connections themselves are managed by separate communication
threads, as will be elaborated upon in the following section.

Listing 4.2: Main Thread Pseudo-code

input : bluetooth , server , storage , communicationthreads

begin
while (true) {

i f not ident i f ied then
ident i f y ()

else then
discover_devices ()
f i l ter_sensor_nodes ()
communicate_with_unconnected_sensor_nodes ()
wait_for_next_discovery ()

}
end

The following phases are present in the main thread of the hub node:

identify() Checks whether an identification (i.e. device identifier) exists in the persistent storage. If it does
not, it requests a new identification via the communication from the server (giving its device type and
initial location) and stores it persistently.

discover_devices() Discover nearby (paired) Bluetooth devices.

filter_sensing_devices() Filter the list of discovered devices, looking for sensor nodes (this can either be done
through their services or name).

communicate_with_unconnected_sensor_nodes() Start a separate communication thread for each of the
sensor nodes that are not connected. Also removes threads that died, and starts new replacement
threads in an attempt to reconnect.

wait_for_next_discovery() Discovery of devices is an intensive and blocking procedure, this phase waits a
set time to look for devices again (allowing the actual communication to take place in the meanwhile).

4.3. HUB NODE 37

HUB NODE COMMUNICATION THREAD

The communication threads of the hub node are responsible for maintaining the connection with the in-
dividual sensor nodes. Each thread attempts to connect to the sensor nodes in a timely fashion, and asks
whether they have any request. If there are requests, the communication thread functions as a channel be-
tween sensor node and server.

Listing 4.3: Hub Node Communication Thread Pseudo-code

input : bluetooth , server

begin
while (not dead) {

i f not attempt_connection () then
die ()

send _ s t a r t _ s i g n a l ()

i f received request then
adapt_request ()
send_request_to_server ()
await_server_response ()
send_back_response_to_sensor_node ()

wait_for_next_attempt_connection ()

}
end

The following phases are present in the communication threads of the hub node:

attempt_connection() Attempt to connect with the device to which this thread is dedicated. If it fails, the
thread will die. A new attempt is done for the next time when the main thread rediscovers the devices.

send_start_signal() Send the start signal to the sensor node. This is a predefined sequence that informs the
sensor node the hub is ready to receive a request.

adapt_request() Slightly adapt the request, adding the hub identifier and the delay it induced.

send_request_to_server() Send the adapted request to the server.

await_server_response() Await the response of the server.

send_back_response_to_sensor_node() Send back the response it received from the server.

wait_for_next_attempt_connection() The hub node asks the device in an interval if it has any message. This
phase is waiting for the interval to pass.

38 4. IMPLEMENTATION

4.3.3. SOFTWARE IMPLEMENTATION
As explained in section 4.3.1, the software was implemented using Java. Below, the structure is briefly ex-
plained. For specific implementation inquiries, it is best to directly look at the code.

Figure 4.5: UML Class Diagram of the Hub Node

The most significant implementation choices are explained below:

Asynchronous Device Discovery The BlueCove library performs the device discovery on a separate thread.
The DeviceDiscoveryListener class is created to handle its response and to notify the waiting ’locked’
main thread of the Hub class.

Identification The HubIdentification class is entirely responsible for the request and storage of the hub iden-
tification. It relies on the Server class to handle the former.

Storage of Device Information The device information (e.g. name, type) is pulled from a configuration file
upon the starting of the hub. The DeviceInfo class is fully responsible for the delivery of this informa-
tion.

Multithreading The Hub class is run on the main thread. After discovery of sensor nodes, it creates additional
DeviceWorkerThreads to handle the communication with each separate device. This enables support
for Bluetooth stacks that allow simultaneous connections, and thus increases the scalability of the hub
node.

4.4. SERVER 39

4.4. SERVER
The server is implemented using NodeJS and was deployed with IBM Bluemix, which will be substantiated
below. First, in section 4.4.1, the chosen hardware for the server - IBM Bluemix and DB2 - will be discussed.
Second, in section 4.4.2, the chosen software - NodeJS - for the server will be elaborated upon, and its de-
pendencies justified. Third, in section 4.4.3, the software design is explained. Finally, in section 4.4.4, the
implementation is elaborated upon.

4.4.1. HARDWARE

In this section, the chosen hardware for the server will be discussed. Below the choice of using IBM Bluemix
will firstly be elaborated upon, followed by a discussion regarding the usage of IBM’s DB2.

BLUEMIX

IBM Bluemix was chosen to host both the server and the database. This choice was made based on five
reasons:

Client’s Wishes The client, IBM, has strong preference to use IBM technologies. This allows them to be in
full control of the project, instead of relying on third party hosting. In addition, the usage of Bluemix
was in our case free of charge as it considered for internal usage regarding research.

Private Git Repositories Through the DevOps programme of IBM, it is possible to host private Git reposito-
ries on Bluemix. This Git repository is then coupled to the Bluemix app, enabling smooth deployment
integration.

Low Latency Database Connection Both the chosen database for the demonstrator, DB2, and the server, are
hosted on Bluemix. This provides a reliable connection with little latency (as they are part of the same
internal network).

Build and Deploy Stages Bluemix allows developers to stage releases, and, in case of a faulty release, revert
to previous versions. This control enables developers to have full control over what is released.

Automatic Dependency Loading Bluemix reads the project’s configuration, and will load in the modules it
depends on. It supports multiple versions of several modules such as NodeJS. It uses the default NPM
installer, thus ensures that when it works locally, it will also work when the system goes ’live’.

Extremely Scalable Bluemix allows developers to dynamically adjust the bandwidth and memory allocated
for an application within a very large range. This allows the developers to increase capacity during
stressful periods, and decrease in less pressing times.

IBM DB2 DATABASE

IBM’s database, DB2, was chosen to be the database on which the server would rely. In early product devel-
opment, PostGreSQL was used. Due to two reasons, a switch was made to IBM’s product. The first reason
was the insistence of the client, whom preferred the usage of an internal database. This would namely enable
IBM to be in full control and the single possessor of the data. Secondly, as IBM hosts the DB2 database, the
available space is unlimited. Given the expected size of the dataset, hosting by an external party could be-
come quite expensive when the system is deployed. Apart from a few minor changes in the syntax, the two
database types (PostGreSQL and DB2) are interchangeable. Database independence is further discussed in
section 8.5.5.

4.4.2. SOFTWARE DEPENDENCIES

In this section, choices of software dependencies for the server are explained. First, the main system software
dependencies are elaborated upon. These software dependencies are used in the actual production code.
Second, the test software dependencies are explained. These dependencies are only used for debugging and
testing the system, and are not part of the main system.

40 4. IMPLEMENTATION

MAIN SYSTEM

NodeJS15 was chosen as the programming language. The choice was motivated by five factors. First of all,
NodeJS is an open-source project with an active community, offering wide support and regular updates. Sec-
ond, NodeJS matches our need for a logic structure of endpoints. Third, its syntax is the same as JavaScript, to
which many developers are accustomed, as it can be seen as the dominating scripting language on the Web at
this moment. Fourth, the NodeJS Package Manager (NPM) enables a Maven-like control over dependencies.
Fifth, NodeJS is supported by Bluemix. Alternatives that were also supported by Bluemix like Liberty for Java,
and the .go, .php, .py, .ruby and .net languages, which did not have as much preference, as they offered less
benefits.

Express, the "fast, unopinionated, minimalist web framework for Node.js"16, was chosen for running the
NodeJS server application. Alternatives17 like the Koa18 and Hapi19 frameworks are, next to being less pop-
ular and thus having a smaller community, respectively still under heavy development and more aimed at
creating larger applications. The latter would result in a considerable amount of boilerplate code for creating
a server with our (considerably small) needs.

Next to the web framework, a parser needed to be integrated to parse the JSON requests. For this purpose,
we included the Body Parser parsing middleware, which can be seen as the defacto standard regarding pars-
ing in combination with Express. As will be explained in section 8.5, in future development this JSON parser
can be removed when using self created requests, enabling for even more efficient communication by low-
ering the message length. Though, as the demonstrator still is and will be under development, we chose to
use JSON requests as it allows for a more visualizable communication in development. This is the result of
JSON’s descriptive structure, and usage of operators well-known under programmers. The IBM DB module
was added to communicate with the DB2 database. To date, this is the only module that supports the DB2
database communication, which bound us to usage of this module. An overview of the described system
software dependencies can be found in table 4.5.

Name Functionality License
Express Web framework MIT License
Body Parser Parsing of request into JSON MIT License
IBM DB Connection client for DB2 database MIT License

Table 4.5: Server main software dependencies

TESTING

After choosing NodeJS for implementing the server and IBM DB for accessing the DB2 database, it was re-
quired to choose a testing toolkit, starting with a testing framework. For this, we chose Mocha20, "the gold
standard" and a "well tested and maintained"21 framework for testing with NodeJS. Next to this framework,
we also included Istanbul. Istanbul is a coverage tool for JavaScript, and has standard support for Mocha. For
comprehensability of logging messages, the colors22 module was added as well, which allows for coloring the
console output. A separate assertion library was not needed (e.g. Assert, Chai or should.js), because NodeJS’s
own assert module already provided us with the needed functionality. An overview of the described testing
software dependencies is given in table 4.6.

15https://nodejs.org/
16http://expressjs.com/
17A comparison done by Jonathan Glock can be found on:

https://www.airpair.com/node.js/posts/nodejs-framework-comparison-express-koa-hapi (retrieved 18 June 2015)
18http://koajs.com/
19http://hapijs.com/
20http://mochajs.org/
21http://thenodeway.io/posts/testing-essentials/
22https://github.com/Marak/colors.js

https://nodejs.org/
http://expressjs.com/
https://www.airpair.com/node.js/posts/nodejs-framework-comparison-express-koa-hapi
http://koajs.com/
http://hapijs.com/
http://mochajs.org/
http://thenodeway.io/posts/testing-essentials/
https://github.com/Marak/colors.js

4.4. SERVER 41

Name Functionality License
Mocha Asynchronous testing framework MIT License
Istanbul Coverage BSD-3-Clause license
Colors Colouring of console messages MIT License

Table 4.6: Server testing software dependencies

42 4. IMPLEMENTATION

4.4.3. SOFTWARE DESIGN
The NodeJS structure inherently supports modularity, as is attested by the effort to uncouple so-called com-
bination packages (e.g. early versions of Express) into separate packages (e.g. Express, Body Parser, JSON
Parser). The server implements four endpoints to fulfill its responsibilities laid out in section 3.2.4. These
four endpoints share a demand for certain functionality, namely database communication (e.g. insertion,
deletion) and certain utilities (e.g. logging, validation). First, this highly demanded functionality is discussed
in the first two sections. Second, the endpoints are described in the following four sections.

DATABASE QUERY MODULE

All throughout the server, a database connection is used. The database query module acts as an interface
between the server and the database. It offers semantic functionality, and abstracts over the SQL queries.
This enables the server to become database independent, which would allow for other databases to be used
in future stages of the product. The database query module is separated into eight sub-modules, which have
dedicated responsibilities:

insert Blind insertion of new entities into the database.

select Selection of entities of the database.

remove Removal of entities from the database.

check Checking the validity of identifiers, that supposedly match entities in the database.

forced-get Retrieval of identifiers of the database. The functions also receives additional parameters, that
are used when the identifier could not be found to create a new entity.

update Updating entities of the database.

date-conv Conversion between the date objects of JavaScript and the date standards of the database.

sys-defaults Maintaining the settings of the system, such as a dynamic configuration interval for sensor
nodes.

UTILITY MODULE

The utility module contains functionality that all endpoint handlers use, but does not belong to the category
of ’database functionality’. There are two sub-modules:

validator Validates the input variables the endpoints receive in the bodies of requests.

logm Manager for the logging of messages. It supports color-coding, which drastically improves reading
comprehensibility.

4.4. SERVER 43

HUB NODE IDENTIFICATION ENDPOINT

Each hub has to identify itself before relaying any communication between sensor nodes and the server. This
endpoint handles that identification. The request itself contains device information, i.e. the chosen name
and its device type. There are two main flows, if an hub identifier is already given, and if not. The former
requires merely a check, whereas the latter requires the creation of an entirely new hub.

Listing 4.4: Hub Identification Pseudo-code

input: hub_id , name, device_type

begin
read_input_from_body ()

i f hub_id i s given then
i f not check (hub_id) then

end FAILURE

else then
i f not v al i d (device_type) then

end FAILURE

get_device_type_id ()

insert_new_hub ()

end SUCCESS

end

44 4. IMPLEMENTATION

SENSOR NODE IDENTIFICATION ENDPOINT

Each sensor node has to identify itself with the server before either configuration or submission of mea-
surements can take place. This endpoint handles the identification. The request itself contains an existing
identifier (optional), name, device type, and its current location. The server checks whether the identifier is
valid, or creates and returns a new one. Next, it checks whether a location exists. If it does not, it creates and
returns a new location. If it does, it will update the database with the most up-to-date variant.

Listing 4.5: Device Identification Pseudo-code

input: device_id , name, device_type , location

begin
read_input_from_body ()

i f device_id i s given then
i f not check (device_id) then

end FAILURE

else then
i f not v al i d (device_type) then

end FAILURE

get_device_type_id ()

insert_new_device ()

location_id := NULL

i f location i s not given then
location_id = s e l e c t _ l a t e s t _ l o c a t i o n ()

else
i f v al id (location) and check (location . environment)

location_id = get_location_id (location)

i f not v al id (location_id) then
end FAILURE

end SUCCESS

end

4.4. SERVER 45

SENSOR NODE CONFIGURATION ENDPOINT

After a sensor node has identified itself with the server, it needs to configure its static configuration (sensors)
with the server. This endpoint handles that configuration. The request contains the device identification, and
an array of the sensors that are attached to the sensor node. The sensor node can configure itself multiple
times, e.g. when a sensor has been removed. Hence, a time conflict check is added. If the sensors are valid, it
will then iterate over each sensor, and insert each sensor as an entity into the database. The resulting sensor
identifiers are returned in the response.

Listing 4.6: Device Configuration Pseudo-code

input: device_id , sensors

begin
read_input_from_body ()

i f device_id i s given then
i f not check (device_id) then

end FAILURE

i f s e l e c t (l a t e s t _ c o n f i g) and time c o n f l i c t s then
end FAILURE

insert_new_device_configuration ()

i f v al i d (sensors) then
for each sensor in sensors :

i f v al id (sensor)

get_sensor_type ()
insert_sensor ()
i n s e r t _ s e n s o r _ a c t i v i t y ()

end SUCCESS

end FAILURE

end

46 4. IMPLEMENTATION

SENSOR NODE MEASUREMENTS ENDPOINT

The sensor nodes regularly submit their measurements to the server. This regular interaction is used to sup-
port the dynamic configuration as well. The measurements endpoint firstly checks whether all the input it
receives is valid. The sensor and hub node obtained most of the information from the identification and
configuration with the other endpoints. Second, the endpoint makes sure that a new location is stored, if
one is given. Third, it iterates over all the measurements and inserts them, if they are valid. Finally, it checks
whether the sensor node needs to receive an update on the dynamic configuration it should follow.

Listing 4.7: Measurements Pseudo-code

input: device_id , hub_id , hub_delay , location , measurements

begin
read_input_from_body ()

read_time ()

i f not v al id (device_id , measurements)
end FAILURE

i f not check (device_id)
end FAILURE

i f e x i s t s hub_id and not check (hub_id) then
end FAILURE

location_id = get_location_id (location) ;

i f location_id i s NULL then
end FAILURE

for each measurement in measurements :
i f v al id (measurement)

insert_measurement (location_id , hub_id , hub_delay , time , measurement)

update_dynamic_configuration ()

end SUCCESS

end

4.4. SERVER 47

4.4.4. SOFTWARE IMPLEMENTATION
The previously described software design has been implemented in their respective four modules. As can
be derived from the naming of certain high level functions, the main handler modules depend on a set of
database and utility modules. A module diagram of the server is shown in figure 4.6.

Figure 4.6: Module diagram for the server

The most important implementation choices are discussed below:

• Database Isolation: The main module handlers do not directly communicate with the database through
SQL queries, but rather make use of the DBQ modules. This allows the handlers to abstract from the
database chosen.

• Logging Control: Logging on the server is essential for debugging purposes. The logging manager
allows abstraction from where (e.g. in the console, or in a file) and how (e.g. colouring) the logging
messages are written.

48 4. IMPLEMENTATION

4.5. DATABASE
The Entity Relationship model that was designed in section 3.3.1 has been implemented in a relational scheme.
In section 4.5.1 the relational scheme diagram is depicted. Each unit of the relational scheme, a relation or ta-
ble, is described in the following sections. This includes both the constraints it leaves for the system (including
which component is responsible for it) and possible improvements. It respectively discusses the SensorType
(4.5.2), DeviceType (4.5.3), Environment (4.5.4), SensingDevice ((4.5.5), SensingDeviceConfiguration (4.5.6),
Sensor (4.5.3), SensorActivity (4.5.8), Hub (4.5.9), SensingDeviceLocation (4.5.10), and Measurement (4.5.11)
tables.

4.5.1. RELATIONAL SCHEME
The translation from a relational scheme to relational database is done through Structured Query Language
(SQL) queries. In appendix C and D the SQL queries for respectively the PostGreSQL and IBM DB2 databases
are enumerated. Both databases have been used in the development, although in the final iterations and
deployment, IBM DB2 was used (per request of the client). An overview of the relational scheme is depicted
in figure 4.7.

Figure 4.7: Relational Scheme Diagram (generated using MySQL Workbench)

4.5. DATABASE 49

4.5.2. SENSORTYPE TABLE
Directly translated from the SensorType entity. To minimize communication with devices, the SensorTypeID is
set as primary key for the table. The combination of Model and Quantity is marked as unique because a single
sensor type can measure multiple quantities. Units of the same quantity are translatable into each other (e.g.
Celsius and Fahrenheit), but are stored in the quantity of the actual measurement for comprehensibility. The
default activity and interval are used in the creation of the first sensor activity for a newly created sensor.

Constraint(s) left to system: the devices are responsible for providing proper model names and quantities.
The server does not check the validity of these received sensor types. A recommendation is to uppercase
all model and quantity values.

Possible improvements: extra information about the sensor types could be added, such as precision, or
scale.

Column Description Data type Special attributes

SensorTypeID Unique identifier of the device (assigned) SERIAL/INT Primary key, auto in-
crement

Model Sensor model (e.g. “KY001”) VARCHAR(127) Part of unique combi-
nation with Quantity

Quantity Physics Quantity (e.g. “TEMPERATURE) VARCHAR(127) Part of unique combi-
nation with Model

Unit Unit of measurement (e.g. “CELSIUS”) VARCHAR(127) /

DefActive Default activity (e.g. true) BOOL/SMALLINT /

DefInterval Default interval in ms (e.g. 5000) INT /

Table 4.7: SensorType table (SQL in C.2 and D.2)

4.5.3. DEVICETYPE TABLE
Directly translated from the DeviceType entity. Because devices have to identify themselves with each com-
munication, a single column DeviceID is added and as primary key for the table. The combination of Brand
and Model is set as unique. Marketing name and category are mere descriptive columns.

Constraint(s) left to system: the devices are responsible for providing a proper brand, model, and marketing
name. For the low-cost devices, this requires providing the cloud application with a hard-coded brand,
model and name, but for the other sensor nodes (e.g. smartphone) we expect that this can be deduced
by the application.

Possible improvements: link this table with external databases containing information about hardware in-
stead of relying on devices to provide accurate information.

Column Description Data type Special attributes

DeviceTypeID Unique identifier of the device type (as-
signed)

SERIAL/INT Primary key, auto in-
crement

Brand Brand of device (e.g. “Samsung”) VARCHAR(127) Part of unique combi-
nation with Model

Model Model of device (e.g. “SHV-3958”) VARCHAR(127) Part of unique combi-
nation with Brand

MarketingName Marketing name (e.g. “Galaxy S3”) VARCHAR(127) /

Category Category it belongs to (e.g. "smart-
phone’)

VARCHAR(127) /

Table 4.8: DeviceType table (SQL in C.3 and D.3)

50 4. IMPLEMENTATION

4.5.4. ENVIRONMENT TABLE
Directly translated from the Environment entity. EnvID is added as primary key, this has two reasons: (1)
this table is referenced by every tuple of SensingDeviceLocation, highlighting a small primary key, and (2)
there is not really a different candidate key than a uniquely chosen Name. The location of the environment
is determined globally by Latitude, Longitude, and Elevation. To localize the time of the measurements, the
Timezone column is added.

Constraint(s) left to system: the sensor nodes themselves are responsible for detecting the environment
they are in. Either through beacons, or through hard-coded values.

Possible improvements: determine what makes an environment unique, instead of solely relying on the
generated identifier. This is difficult, because it is not yet known where the environments will be. Iden-
tifying information such as “Company” might not be applicable in all situations.

Column Description Data type Special attributes

EnvID Unique identifier of the environment SERIAL/INT Primary key, auto in-
crement

Timezone Timezone (e.g. GMT+1) CHAR(127) /

Name Name given (e.g. “IBM CAS”) CHAR(255) /

Latitude GPS Latitude DOUBLE PRECISION /

Longitude GPS Longitude DOUBLE PRECISION /

Elevation Elevation DOUBLE PRECISION /

Table 4.9: Environment table (SQL in C.4 and D.4)

4.5.5. SENSINGDEVICE TABLE
Directly translated from the SensingDevice entity. The Name column is provided by the device. All fields are
mandatory. To prevent manually assigning identifiers to devices, the DeviceID is automatically generated.

Constraint(s) left to system: the name of the device should be chosen to be identifiable for humans. The
server is responsible for updating the last configuration time.

Possible improvements: addition of a descriptive column for the operating system, which is being run on
the device.

Column Description Data type Special attributes

DeviceID Unique identifier of the device (assigned) SERIAL/INT Primary key, auto incre-
ment

Name Given name of the device (given by de-
vice)

VARCHAR(255) /

LastConfigTime Last time the device was dynamically
configured

TIMESTAMP /

DeviceTypeID Identifier to the type of device INT References Device-
Type.DeviceTypeID

Table 4.10: SensingDevice table (SQL in C.5 and D.5)

4.5.6. SENSINGDEVICECONFIGURATION TABLE
Directly translated from the SensingDeviceConfiguration entity. To ensure that no device can have two con-
figurations at the same time, columns DeviceID and ActivatedTime form a unique combination. The ConfigID
column is added to allow the coupling with sensors (and ultimately measurements) without having to copy
the unique combination of DeviceID and ActivatedTime, which would require considerably more space. This
unique constraint forces the creation of an index, which can be used to quickly retrieve the current sensing
configuration of a device.

4.5. DATABASE 51

Constraint(s) left to system: there must always be a device configuration for a sensing device. Before mea-
surements are sent, the device must have passed on its configuration.

Column Description Data type Special attributes

ConfigID Unique identifier for the device configu-
ration

SERIAL/INT Primary key, auto incre-
ment

DeviceID Unique identifier of the device (assigned) INT Part of unique combina-
tion with ActivatedTime,
references SensingDe-
vice.DeviceID

ActivatedTime When the configuration was activated TIMESTAMP Part of unique combina-
tion with DeviceID

Table 4.11: SensingDeviceConfiguration table (SQL in C.6 and D.6)

4.5.7. SENSOR TABLE
Directly translated from the Sensor entity. To ensure that a device only has differently named sensors in a
specific configuration, columns ConfigID, SensorTypeID, and Name form a unique combination. The Sen-
sorID column is added to prevent the copy of ConfigID, SensorTypeID, and Name into the measurements to
uniquely identify them, which would require significantly more space considering the vast amount of mea-
surements to be made in this system.

Constraint(s) left to system: the devices are responsible to give names to the sensors in case there are multi-
ple of the same type. This can happen when the sensing device measures light in five directions, which
could have the names “NORTH”, “EAST”, “SOUTH”, “WEST”, “TOP”. It can also be more subjective, e.g.
“TOWARDS PERSON”, “TOWARDS LIGHTS”.

Column Description Data type Special attributes

SensorID Unique identifier for the sensor INT Primary key, auto increment

ConfigID Configuration identifier in which the
sensor is present

INT References DeviceConfig-
uration.DeviceID,part of
unique combination with
SensorTypeID and Name

SensorTypeID Sensor type identifier of the type the
sensor is

INT References Sen-
sorType.SensorTypeID,part
of unique combination with
ConfigID and Name

Position Position name of the sensor on the de-
vice (e.g. "NORTH")

VARCHAR(255) Part of unique combination
with ConfigID and Sen-
sorTypeID

Table 4.12: Sensor table (SQL in C.7 and D.7)

52 4. IMPLEMENTATION

4.5.8. SENSORACTIVITY TABLE
Directly translated from the SensorActivity entity. The column SensorID and Time form a unique combina-
tion.

Constraint(s) left to system: when a device configuration is created, for each sensor an entry must be made
into this activity table (in the same transaction). This ensures that the database always knows whether
a sensor is active or not.

Column Description Data type Special attributes

SensorID Unique identifier for the sensor INT Primary key

Time Time at which the activity is changed TIMESTAMP Primary key

Active Whether the sensor is now active BOOLEAN /

Interval The interval at which the sensor mea-
sures

BOOLEAN /

Table 4.13: SensorActivity table (SQL in C.8 and D.8)

4.5.9. HUB TABLE
Directly translated from the Hub entity. The column HubID is added so that it is not necessary to manually
distribute identifiers amongst devices.

Constraint(s) left to system: the name should be chosen as identifiable as possible by the hub (e.g. "John
Jameson’s laptop").

Column Description Data type Special attributes

HubID Unique identifier for the hub SERIAL Primary key

Name Given name of the hub CHAR(127) /

DeviceTypeID Identifier of the type of device INT References Device-
Type.DeviceTypeID

Table 4.14: Hub table (SQL in C.9 and D.9)

4.5. DATABASE 53

4.5.10. SENSINGDEVICELOCATION TABLE
Directly translated from the SensingDeviceLocation entity. This table is completely responsible for linking
the location of devices to measurements. Because the location is referenced by each measurement tuple, the
column LocationID is added to conserve space. The columns DeviceID and Time form a unique combination.
This unique combination forces the creation of an index that can be used to quickly retrieve the sensing
device’s last location.

Constraint(s) left to system: when a sensing device is created, an entry must be made into this table so that
the server always knows a location for a device. The server is responsible for providing proper times-
tamps for the Time column.

Column Description Data type Special attributes

LocationID Unique identifier for this location SERIAL/INT Primary key

DeviceID Identifier to the sensing device INT Part of unique combina-
tion with Time, references
SensingDevice.DeviceID

Time The time at which the location was regis-
tered

TIMESTAMP Part of unique combina-
tion with DeviceID

EnvID Environment identifier INT References Environ-
ment.EnvID

LocationX X-coordinate relative to environment ori-
gin

REAL /

LocationY Y-coordinate relative to environment ori-
gin

REAL /

LocationZ Z-coordinate relative to environment ori-
gin

REAL /

Table 4.15: SensingDeviceLocation table (SQL in C.10 and D.10)

4.5.11. MEASUREMENT TABLE
Directly translated from the Measurement entity. To ensure that a sensor can only produce one measurement
at a time, the columns SensorID and Time form a unique combination. The location is determined with the
LocationID column. A hub that might have passed on the measurement is registered via the HubID column.

Constraint(s) left to system: the server is responsible for providing proper timestamps for the Time column.

Column Description Data type Special attributes

SensorID Unique identifier of the sensor that mea-
sured

INT References Sen-
sor.SensorID,Part of
unique combination
with Time

Time When the measurement was taken TIMESTAMP Part of unique combina-
tion with SensorID

LocationID Identifier to the location it was taken INT References SensingDe-
viceLocation.LocationID

HubID Identifier of the hub that aggregated it INT NULL value is allowed

Value Value of the measurement DOUBLE PRE-
CISION

/

Tag Tag of the measurement (e.g. "NOW",
"MAX")

VARCHAR(3) /

Table 4.16: Measurement table (SQL in C.11 and D.11)

5
TESTING

5.1. INTRODUCTION

This chapter is devoted to the testing of the system. First, the test plan is explained in section 5.2. Second, the
unit testing for each of the system components is described in section 5.3. Third, in section 5.4, the testing of
the integration of components is discussed. Finally, in section 5.5, the results of the demonstrator deployment
are presented.

5.2. TEST PLAN

Similar to iterative development, testing is essential for a healthy software development procedure. It is a
form of quality assurance: it points out flaws and defects in the system, it can evaluate performance, greatly
increases maintainability of the system, and moreover, when done correctly, gives a sense of trust in the
validity of the solution. As explained in section 5.2.1, a set of guidelines was composed to induce testing
behavior. Three types of testing were performed in the product development of this system: Unit testing
(5.2.2), Integration Testing (5.2.3), and System Testing (5.2.4).

5.2.1. TESTING GUIDELINES

To ensure proper testing throughout the development cycle, we set up a set of guidelines for ourselves to
ensure product quality. The guidelines are as follows:

• Before committing to a local branch, the automated (unit) tests for each changed component must
have been run and succeeded.

• Before merging a branch with the main repository, all automated (unit) tests for all components must
have been run and succeeded. This supports that the main branch only contains working versions.

• Before labeling a commit in the main branch as a stable version, all automated (unit) tests, and inte-
gration tests must have been run and succeeded.

5.2.2. UNIT TESTING

Unit tests are performed on the component level. First, the unit tests for the least dependent classes are
written, moving upward in the hierarchy tree. These tests are typically completely automated. In the case of
interfaces, user interaction is mocked. A unit test class typically corresponds to a single class in the imple-
mentation, and tests all functionality of that class. Unit testing is very effective for regression testing, as it
automatically tests all units within a system component (thus classifying it as ’still working’ or ’broken’). All
the unit testing frameworks and coverage tools mentioned in chapter 4 are added to an overview in table 5.1,
for the convenience of the reader.

55

56 5. TESTING

System Component Unit Test Framework Coverage Tool
Android Sensor Node JUnit 3 EMMA
Arduino Sensor Node ArduinoUnit /
Hub Node JUnit 4 EclEmma
Server Mocha Istanbul

Table 5.1: Unit Test Frameworks and Coverage Tools

5.2.3. INTEGRATION TESTING
Integration testing takes place between the different system components, but also between sub-components
in a system component. Unlike unit testing, these tests can be semi-automated and may thus require manual
intervention. The integration tests always take place in a developer-controlled environment. The following
five integration tests were performed:

• Smartphone UI: exhaustively interact with the smartphone application’s functionality through the user
interface (UI). This includes enabling and disabling long range communication capabilities.

• Smartphone Data Persistence: run the server and activate the sensor node on the smartphone. Sub-
sequently match the logging information shown in the application with the data in the database.

• Component Dry-run: running each system component without any other components active. Test
their autonomous capabilities, and the absence of unexpected behavior due to dependence on other
system components.

• Arduino to Unconnected Hub: test that the Arduino does not show unexpected behavior when con-
nected to a Hub, which is not connected to the server.

• Arduino Data Persistence: run the server and hub, and activate the Arduino. Subsequently match the
logging information produced by the Arduino with the data in the database.

5.2.4. SYSTEM TESTING
Deployment testing is performed at the end of the development cycle. It involves unleashing the system into
the environment it was designed for. In the case of this demonstrator, the office of IBM CAS in Amsterdam.
This is the final test of the system, as it involves all system components running together in a distributed
fashion.

5.3. UNIT TESTING RESULTS 57

5.3. UNIT TESTING RESULTS

5.3.1. ANDROID SENSOR NODE
The JUnit 3 framework was used to test the Android application (see section 4.2.2). To separate the test code
from the main code, an additional Android project is created that depends on the main project. For each class
(e.g. "NameOfClass"), a test class was made (e.g. "NameOfClassTest") following the same package structure,
according to Android naming conventions1. A total of 17 test classes were made, that contain a total of 95
separate unit tests. The tests have been run on two devices, the Google Nexus 5 and Samsung Galaxy S5. The
coverage statistics are displayed in table 5.2.

Package Class Method Block Line
com.ibm.tso.app.view.activities 100% (1/1) 100% (11/11) 70% (183/263) 66% (40.5/61)
com.ibm.tso.app.storage 100% (1/1) 100% (11/11) 81% (215/267) 78% (50.4/65)
com.ibm.tso.app.comm 100% (1/1) 80% (4/5) 82% (108/132) 89% (31/35)
com.ibm.tso.app.threads 100% (2/2) 100% (9/9) 93% (107/115) 94% (34.7/37)
com.ibm.tso.app.util 100% (1/1) 90% (9/10) 98% (218/223) 97% (44.8/46)
com.ibm.tso.app.view.listeners 100% (9/9) 100% (30/30) 98% (713/726) 98% (134.8/138)
com.ibm.tso.app.behavior 100% (5/5) 100% (34/34) 100% (1259/1261) 100% (230/231)
com.ibm.tso.app.sensors 100% (3/3) 100% (22/22) 100% (150/150) 100% (47/47)

Overall 100% (23/23) 98% (130/132) 94% (2953/3137) 93% (613.2/660)

Table 5.2: Coverage Statics for Android Unit Tests (generated by EMMA)

As can be seen in table 5.2, only two methods are not covered: one (in comm) that created an actual network
socket, making it untestable, the second (in util) being the default constructor of an abstract class. There is
a significant drop in the block and line coverage for the activities and storage package. The former is due to
complications in testing multithreaded processes. The latter is caused by difficulties to trigger I/O exceptions
when reading and writing files. Overall can be substantiated that, based on the statistics, the Android code
is sufficiently covered. An overall coverage summary underlines this, stating a 100% class, 98% method, 94%
block, and 93% line coverage according to EMMA.

5.3.2. ARDUINO SENSOR NODE
The ArduinoUnit framework was used to test the Arduino functionality (see section 4.2.2). Because the Ar-
duino boards are embedded systems, the code requires platform-specific functionality to be executed. The
code can thus only be executed on the Arduino devices themselves, which do not offer any coverage tools to
date. Despite the absence of an objective coverage measurement, the code has been well-covered. For each
class, a test class was made, which covered as many branches and lines of the respective class as possible. A
total of 9 test classes were written, that cover the 13 classes in the main code. An overview is depicted in table
5.3. The proportional test size is given as an indication of how extensive testing was done.

Test Class (#lines) Target Class(es) (#lines) Proportional test
size (%)

CommTest (410) Comm (439) 93%
StorageTest (153) Storage (192) 80%
SensorTest (143) Sensor (154), Sensor_DHT11 (71), Sensor_KY001

(63), Sensor_KY018 (55), Sensor_KY038 (57)
36%2

SensingTest (172) Sensing (102) 168%
JSONWriterTest (194) JSONWriter (114) 170%
IdentificationTest (112) Identification (91), CommProtocol (81/3) 95%
ConfigurationTest (127) Configuration (119), CommProtocol (81/3) 87%
ArchivationTest (96) Archivation (95), CommProtocol (81/3) 79%

Total Test Size: 1407 Total Target Size: 1631 86%

Table 5.3: Arduino Unit Tests Overview3

1http://developer.android.com/training/activity-testing/activity-basic-testing.html

http://developer.android.com/training/activity-testing/activity-basic-testing.html

58 5. TESTING

5.3.3. HUB NODE
The JUnit 4 framework was used to test the Java application for the hub node (see section 4.3.1). The project
was a Maven2 project, and thus employed dynamic dependency management. Test naming and package
structure conventions were upheld. Furthermore, a separation was made between the main code (src/main/-
java) and test code (src/test/java). A total of 8 test classes were made, that contain a total of 48 separate unit
tests. The tests have been run on Java version 1.7 and 1.8. The coverage statistics are displayed in figure 5.1.

Figure 5.1: Hub Coverage Report (generated by EclEmma)

Two classes stand out for their low coverage: Hub and DeviceInfo. The former is caused by its multithreading
behavior. A possible solution could be redefining the threading structure, or using static code analysis. The
latter, DeviceInfo, is caused by difficulties to trigger I/O exceptions in non-mockable objects. Overall can be
substantiated, based on the statistics, that there is sufficient coverage, with an overall coverage of 78.3%.

5.3.4. SERVER
The Mocha framework was used to test the NodeJS application for the server (see section 4.4.2). The project
was NodeJS project, and thus used the Node Package Manager (NPM) for dynamic dependency management.
A clear separation was made in the main code and test code (only contained in folder test). By adding different
scripts to the project package, multiple running test ways could be used. A total of 15 test classes were made.
Moreover, a test database was created to separate the actual data from the testing, simultaneous testing and
deployment. The coverage statistics are displayed in figure 5.2.

Figure 5.2: Server Coverage Report (generated by Istanbul)

As shown in figure 5.2, the database query (dbq/) and handler (handlers/) modules are well covered, scoring
very high in statement, function and line coverage, and high in branch coverage. The are only two utility
modules, respectively the validator (which has 100% coverage on all statistics), and the logging manager. The
latter is not part of production code (as logging is disabled, and merely a debugging feature). In conclu-
sion, the server is extremely well tested. In overall, it has high statement (96.06%), branch (80.15%), function
(94.59%), and line coverage (96.06%).

2This low percentage is partially due to the large quantity of comments.
3The line amounts include comments and white-space.

5.4. INTEGRATION TESTING RESULTS 59

5.4. INTEGRATION TESTING RESULTS

Integration testing takes place between the different system components, but also between sub-components
in a system component. The integration tests take place in a developer-controlled environment. Each of the
integration tests were executed multiple times (following the guidelines 5.2.1). In section 5.4.1 up to section
5.4.5, it is for each integration test explained what it entailed, and which information was derived from it.

5.4.1. SMARTPHONE UI
In this integration test, there is an exhaustive interaction with the smartphone application’s functionality
through the user interface (UI). This includes enabling and disabling long range communication capabilities.

The UI of the smartphone is not particularly a part of the system design, but is responsible for the correct
input of the device location and information, not to mention (de)activation of the sensor node. It was im-
portant that the functionality behind the UI maintains state consistency. Different input styles, and button
interaction sequences were performed. One of the most important bugs that was discovered was in the us-
age of Java’s Scanner.nextDouble() function, that requires a Locale to parse doubles (English using a dot, and
Dutch a comma).

5.4.2. SMARTPHONE DATA PERSISTENCE

In this integration test, the server is run and the sensor node is activated on the smartphone. Subsequently
the logging information shown in the application is matched with the data in the database.

By performing this test, the implementation of the server’s API on the Android smartphone was tested. This
test was particularly helpful when the API changed, and thus the implementation on the sensor nodes re-
quired to be adjusted. These adjustments were then validated, giving insight into the correctness of the API,
and its implementation on the Android smartphone.

5.4.3. COMPONENT DRY-RUN

In this integration test, each system component is run without any other components active. This tests their
autonomous capabilities, and that each system component does not show unexpected behavior due to de-
pendence on other system components.

For the system to perform its function, the system components need to collaborate. However, the system
must be able to handle the failure of devices on which the system components are implemented. An ex-
ample of this occurrence came forth when the Bluemix server was undergoing maintenance, and therefore
unreachable for both hub and sensor nodes.

5.4.4. ARDUINO TO UNCONNECTED HUB

In this integration tests, the arduino is run without a connection to an hub. It tests that the Arduino does not
show unexpected behavior when connected to a Hub, which is not connected to the server.

The hub functions merely as a channel between sensor node and server. If either end is interrupted, both
sides of the connection must be able to handle the lack of connectivity. This test proved especially useful in
testing the buffering behavior of Arduino sensor nodes.

5.4.5. ARDUINO DATA PERSISTENCE

In this integration test, the server and hub are run, and the Arduino is activated. Subsequently the logging
information produced by the Arduino sensor node and the hub node is matched with the data in the database.

The Arduino interacts through a hub node with the server. All of the data received from the Arduino sensor
node, complemented with the meta-data from the hub node, must be handled according to the API defi-
nition. When the API changed, this test proved particularly useful in discovering implementation errors on
both the Arduino sensor node and the Java hub node.

60 5. TESTING

5.5. SYSTEM TESTING RESULTS
System testing is performed at the end of the development cycle. It involves unleashing the system into the
environment it was designed for. In the case of this demonstrator, the office of IBM CAS. This is the final
test of the system, as it involves all system components running together in a distributed fashion. First, in
section 5.5.1, an overview is given of the deployment. Second, the results of the preliminary deployment are
discussed in section 5.5.2. Third, the results of the main deployment are discussed in section 5.5.3.

5.5.1. DEPLOYMENT OVERVIEW
Both deployments were performed at the Centre for Advanced Studies at IBM, Amsterdam. First, the envi-
ronment of the deployment is described. Second, the strategy is elaborated upon.

ENVIRONMENT

The environment is an office space. An overview of the office space is depicted in figure 5.3. There are a total
of 22 desks on which the system can be deployed. It is expected that only a portion of the employees are
attending, or have the required hardware with them to accommodate the Arduino or Android sensor node
implementation. The hardware that has been tested for specifically, is the standard Lenovo T430 laptop. The
location of the Arduino sensor nodes is fixed, and these low-cost sensor nodes are supposed to be paired
together with their complementing Android sensor nodes.

Figure 5.3: Floor plan of the low-cost sensing devices deployed at the second floor of IBM CAS in Amsterdam

5.5. SYSTEM TESTING RESULTS 61

STRATEGY

Each deployment was performed using the following strategy:

• Arduino Upload: The Arduino sketch is uploaded to each Arduino sensor node, with its device specific
information (e.g. name and static location).

• Location Notes: On each measurement spot a note is put, displaying its coordinates. This manual
approach is done due to the inability of the sensor nodes to dynamically sense their location, at this
stage of the project (see also future work section 8.3.3)

• Hub Nodes: The hub devices are configured and paired with their respective Arduino device.

• Android Sensor Nodes: The participating Android devices install the application and configure their
settings (e.g. name and static location).

• Activation: All hub and sensor nodes are switched on, the data collection begins.

5.5.2. PRELIMINARY DEPLOYMENT (JUNE 12)
On June 12, a first deployment was conducted in the controlled environment of IBM CAS. After going through
the strategy, the experiment started in the afternoon. Three types of hub nodes were present: several Lenovo
T430 laptops, an Asus N-series laptop, and a HP 8570w laptop. All hub nodes were responsible for the con-
nection with a single Arduino Nano ATmega328 low-cost sensor node. Two smartphone sensor nodes were
deployed as well, being a Samsung Galaxy S5 and a Google Nexus 5. The sensor nodes generated 11,030 mea-
surements over the span of approximately two hours. The deployment went smoothly, especially considering
it was the first deployment on ’foreign’ hardware. The preliminary deployment statistics are depicted in table
5.4.

Nr. Loc.4 Measurements Device Type Measurements
per hour

Timespan5 Inconsistency
cause

1 #18 3489 Arduino Nano ATmega328 1789 1:57
2 #17 3303 Arduino Nano ATmega328 1852 1:47
3 #12 2868 Arduino Nano ATmega328 1792 1:36
4 #17 109 Android (Samsung Galaxy

S5)
327 0:20 User

behavior6

5 #18 1261 Android (Google Nexus 5) 713 1:46

Table 5.4: Statistics Preliminary Deployment

5.5.3. MAIN DEPLOYMENT (JUNE 15)
On June 15, the main deployment was conducted at IBM CAS. The strategy actions were performed faster than
the first deployment, as expected. Due to the absence of employees, only a part of the maximum potential
in terms of amount of sensor nodes was achieved. Three types of hub nodes were present: several Lenovo
T430 laptops, Asus N-series laptop, and HP 8570w laptop. A total of 11 Arduino sensor nodes, and 2 Android
sensor nodes participated. Deployment on one other Android tablet device (Asus ME173X) was found to be
unstable and is taken into account in future work, section 8.3.9. Over the course of roughly 4 hours, a total
of 72,819 measurements were recorded by the participating 13 devices. The main deployment statistics are
depicted in table 5.5.

4Location can be found in figure 5.3
5Time difference between the last and first recorded measurement.
6This was caused by it being only used very shortly, being switched on and off repeatedly, while simultaneously loosing WiFi signal. This

was done by one of the team members as a test
7Location can be found in figure 5.3
8Time difference between the last and first recorded measurement.
9When the participant accidentally shut down the hub, the attached sensor node was unable to send its measurements to the server.

When this was noticed by the development team, the hub was rebooted, but time had passed
10Repeatedly switched on and off. This was done by a team member to test the Android smartphone
11During lunch break, the app was switched off, but was not reactivated after lunch. The participant switched on/off at the end of the

day, causing a very late last recorded measurement

62 5. TESTING

Nr. Loc.7 Measurements Device Type Measurements
per hour

Timespan8 Inconsistency
cause

1 #17 615 Arduino Nano ATmega328 1845 0:20
2 #18 11898 Arduino Nano ATmega328 1802 6:36
3 #3 8159 Arduino Nano ATmega328 1813 4:30
4 #4 8678 Arduino Nano ATmega328 1771 4:54
5 #5 8363 Arduino Nano ATmega328 1730 4:50
6 #6 2703 Arduino Nano ATmega328 1763 1:32
7 #12 5723 Arduino Nano ATmega328 1073 5:20 Signal loss
8 #11 2050 Arduino Nano ATmega328 572 3:35 User

behavior9

9 #9 6725 Arduino Nano ATmega328 1,143 5:53 Signal loss
10 #7 10093 Arduino Nano ATmega328 1745 5:47
11 #15 6274 Arduino Nano ATmega328 1094 5:44 Signal loss
12 #18 401 Android (Google Nexus 5) 414.83 0:58 User

behavior10

13 #17 1137 Android (Samsung GT-
I8190N)

144.84 7:51 User behav-
ior 11

Table 5.5: Statistics Main Deployment

5.5.4. DEPLOYMENT ANALYSIS
In both deployments, the Arduino sensor nodes had three sensors (temperature, humidity and light intensity)
attached to them. All smartphone sensor nodes had a single sensor switched on, which measured the battery
temperature. All sensors were set to produce measurements every 5 seconds. This sums up to a maximum
potential of 2160 measurements per hour for Arduino sensor nodes, and 720 for Android sensor nodes.

In the measurements per hour column in both table 5.4 and 5.5, it can be seen that some inconsistencies
occurred during deployment. These are explained by the phenomena stated below. For each of these phe-
nomena, a (reference to an) action plan is also discussed.

• Buffering Effect and Communication Overhead: The Arduino sensor nodes have to buffer their mea-
surements, and then sent them to the hub. The buffer has a very limited size (10) due to memory
capacities. The hub only engages in a connection in a fixed interval. When the buffer of the sensor
node is full, it will adopt a first-in-first-out strategy. Thus the measurements per hour for the Arduino
sensor nodes are less than the maximum potential. This effect could be mitigated by increasing buffer
size, which would require to use other (more expensive) hardware, resulting in a consideration between
cost and reliability. This is described in future work section 8.3.4.

• Signal loss: The Arduino sensor has to communicate continuously with the hub to store its measure-
ments on the server. It was observed that there were periods in which the hub’s internal Bluetooth
module and Arduino Bluetooth module were unable to connect with each other (which is handled by
the third party module firmware). Additional tests for both the hardware and software of the hub nodes
and Arduino sensor nodes is needed to analyze their reliability. This is addressed in future work section
8.2.1.

• User behavior: User behavior can influence the measuring. If the sensor node, or hub node, is shut
down by the user, no measurements will be taken or channeled. This could be mitigated by connecting
the sensor node to multiple hubs, or by warning the user that closing the hub program window will end
his participation in the demonstrator (see section 8.4.2). Furthermore, a system overview interface will
allow for better monitoring of the system, as is described in future work section 8.5.2.

5.5.5. DEPLOYMENT CONCLUSION
The two deployment tests yielded promising results, while also uncovering possible improvements in the
system. These improvements range from enhancing the communication hardware to reduce signal loss, op-
timizing the communication overhead, increasing buffer size, and improving the usability of applications that

5.5. SYSTEM TESTING RESULTS 63

require user interaction, namely the smartphones and hubs. In conclusion, both deployments are considered
successful, as they already produced valuable measurement data in this early demonstrator phase.

6
FINAL PRODUCT EVALUATION

6.1. INTRODUCTION
Throughout the process of developing the product, we reviewed the requirements on a regular basis, when
discussing our sprint plans. During the development process we also took into account the quality of our
code, through the usage of several testing and analysis tools as will be discussed in this section. We thus
respectively both validated [24] and verified [24] our product. By this, we ensured the quality of our product,
of which an evaluation will be done in this section. First, in section 6.2, fulfillment of the requirements is
evaluated. Second, in section 6.3, the code quality is assessed.

6.2. REQUIREMENTS EVALUATION
In the research phase, a large set of requirements was established (see section 2.4). The fulfillment of these
requirements will be evaluated in this section according to the success criteria (2.4.6). This evaluation of
fulfillment ensures that the client receives the product that was promised at the start of the project, as was
expressed in the requirements. In this section, each of the categories of requirements is evaluated separately.
For each of the requirements their fulfillment is checked, and the explanation is given. Because requirements
are subject to change, some requirements have been dropped, after discussion with the client. A require-
ment can thus be fulfilled (X), dropped (/) or unfulfilled (×). All of the six categories of requirements have
been evaluated: the general (6.2.1), sensor network (6.2.2), low-cost sensing device (6.2.2), smartphone app
(6.2.2), cloud application (6.2.3), and visualization requirements (6.2.4). Finally, an evaluation summary of
the fulfillment of the requirements is given in section 6.2.5.

6.2.1. GENERAL REQUIREMENTS
All general requirements, aimed at system level, have been fulfilled (see table 6.1). All of the encoded func-
tions are accompanied by comments (G1) and the code of the system was developed according to the speci-
fied test plan (see section 5.2) (G2).

Nr. Requirement Design goals Stakeholder(s) Fulfilled

G1 All functions in the delivered code must be accompa-
nied by a comment explaining its input, behavior, and
output.

Modifiability,
testability

FPT, DTM X

G2 The delivered code must be developed according to
the test plan (to be) described in section 5.2

Maintainability,
Reliability

FPT, DTM X

Table 6.1: Fulfillment of the General Requirements

65

66 6. FINAL PRODUCT EVALUATION

6.2.2. SENSOR NETWORK REQUIREMENTS
Most of the sensor network requirements (see table 6.2) have been fulfilled. The sensor network is able to
measure temperature, light intensity, humidity (S1, S2, S4) with an adjustable interval (S9), a fixed location
(S7) and a system-wide synchronized timestamp (S10). Its code was made in a way, that it is easily adaptable
to measure other phenomena (S6) and allows for the deployment of new sensor nodes within a few minutes
(S11). A sensor node is also configured with less than ten device-specific values (S14). Furthermore, the sen-
sor network is able to handle dynamic addition and removal of sensor nodes (S15) and delivers its sensing
data to the cloud application (S12).

The three requirements that were not met, were (a) the requirement that the sensor network should be able
to measure the level of sound (S3), (b) the ability of the sensor network to measure the amount of people in
the proximity (S5) and (c) the requirement concerning the CIAA of the system (S13). Although the low cost
sensor nodes were implemented with the possibility to measure sound intensity, the measurements from this
sensor seemed to be of no value, due to its limited range. We therefore chose not to implement this sensor
in the demonstrator and dropped the requirement in consultation with the client. Second, the requirement
concerning measuring the amount of people in the proximity of the sensor nodes was not implemented as it
was found to be quite a stand-alone feature, costing quite some effort to implement while being of not that
high value. However, an approach towards implementing this feature is described in section 8.3.8. Third,
the deployment of the demonstrator took place in a controlled and secure environment. Because of this, low
priority was given by the client to fulfill the CIAA requirement, also due to time constraints. Moreover, the
system was designed to support this feature in future work (see section 8.2.3).

6.2. REQUIREMENTS EVALUATION 67

Nr. Requirement Design goals Stakeholder(s) Fulfilled

S1 The sensor network must be able to measure temper-
ature

Functional
completeness

RJS, UR X

S2 The sensor network should be able to measure light in-
tensity

Functional
completeness

RJS X

S3 The sensor network could be able to measure the level
of sound

Functional
completeness

RJS /

S4 The sensor network should be able to measure the level
of humidity

Functional
completeness

RJS X

S5 The sensor network won’t be able to measure the
amount of people in the proximity of sensor nodes

Functional
completeness

UR ×

S6 The sensor network should be adaptable to measure
other phenomena

Functional
completeness,
Adaptability

RJS X

S7 The sensor network must be able to measure the stated
phenomena using measurements from sensor nodes
with a fixed location (x, y, z)

Functional
completeness

RJS, MO, UR X

S8 The intervals in which phenomena are measured
should be adjustable

Functional
correctness

RJS, UR X

S9 The sensor data must, when stored, be labeled with a
system-wide synchronized timestamp

Functional
correctness

RJS, UR X

S10 The sensor network must enable new sensor nodes to
be deployed within ten minutes

Adaptability RJS, MO, DTM X

S11 The sensor network must be able to deliver its sensing
data to the cloud application

Functional
completeness

RJS X

S12 A sensor node could communicate with the cloud
application while maintaining the confidentiality, in-
tegrity, authenticity and accountability of the mes-
sages.

Functional
completeness,
Authenticity,
Accountability,
Confidential-
ity, Integrity

RJS, FC, SAP ×

S13 A sensor node should be configured with less than 10
device-specific values.

Installability,
adaptability

RJS, MO X

S14 The sensor network should be able to handle dynamic
addition, and removal of sensor nodes.

Adaptability RJS X

Table 6.2: Fulfillment of the Sensor Network Requirements

68 6. FINAL PRODUCT EVALUATION

LOW-COST SENSING DEVICE SPECIFIC

As can be seen in table 6.3, 3 out of 5 of the specific requirements for the low-cost sensing devices are met. The
sensor nodes namely do not produce any audible sound at all (L1) and have an average price way below $80,
as they have an average cost lower than $18, as was calculated in appendix E (L4, L5). The sensor network can
also handle different positioning of the low-cost sensor node, but the nodes do not have a variable regarding
their location to send (L3), though this is added to the future work (section 8.3.3). The dynamic removal and
addition of sensors (L2) has been put to future work as well (see section 8.3.7).

Nr. Requirement Design goals Stakeholder(s) Fulfilled

L1 The low-cost sensor nodes should not make noise that
disturbs employees.

Usability com-
pliance

SAP, FC X

L2 The low-cost sensor nodes could enable the dynamic
addition and removal of sensors.

Adaptability RJS ×

L3 The sensor network won’t be able to measure the
stated phenomena using measurements from low-cost
sensor nodes with a variable location (x, y, z)

Functional ap-
propriateness

RJS, MO, UR ×

L4 The average price of a readily deployable low-cost sen-
sor node, including supporting infrastructure, must be
less than $100.

Expense RJS, MO, FC X

L5 The average price of a readily deployable low-cost sen-
sor node, including supporting infrastructure, should
be less than $80.

Expense RJS, MO, FC X

Table 6.3: Fulfillment of the Low-cost Sensor Node Specific Requirements

SMARTPHONE APP SPECIFIC

Almost all of the smartphone specific requirements have been met (see table 6.4). The application is installed
on a voluntary basis (A1), and does not require any interactions except setup (A2). The app is designed using
basic Gestalt design principles, and contains little UI elements. Futhermore, any information that can be
derived from the device is already filled in for the convenience of the user (A3). The application matches
the IBM colors, and is generally designed conform the IBM style (A4). The application code has been well
tested (see section 5.3.1) and documented (see 6.3.2) (A5). Only A6, the ability to measure smartphones with a
variable location has not been fulfilled. The data model and system however are designed to be able to handle
variable locations, thus allowing this feature to be implemented in future work quite easily, as is elaborated
upon in section 8.3.3.

Nr. Requirement Design goals Stakeholder(s) Fulfilled

A1 When interaction is required, it should occur on volun-
tary basis [7]

Usability com-
pliance

FC, SAP, RJS X

A2 When interaction is required, it should occur in an en-
gaging context. [7]

Usability com-
pliance

FC, SAP, RJS X

A3 The app should be easy to use for a non-developer,
minimizing the cognitive burden to the user [7].

Operability SAP X

A4 The style of the app could match the IBM style. User interface
aesthetics

RJS X

A5 The mobile application should be well documented so
that it can be implemented on different operating sys-
tems as well.

Reusability, In-
stallability

RJS X

A6 The sensor network should be able to measure the
stated phenomena using measurements from smart-
phone devices with a variable location (x, y, z)

Functional ap-
propriateness

RJS, MO, UR ×

Table 6.4: Fulfillment of the Smartphone App Specific Requirements

6.2. REQUIREMENTS EVALUATION 69

6.2.3. CLOUD APPLICATION
As can be seen in the table below, all of the requirements specified for the cloud application have been ful-
filled. In section 3.3 it is described that the data is stored in combination with the sensor type (C1) and it is
described how sensor data is traceable to a specific sensor node (C9). In the same section, both textual and
visual documentation for each entity and their relationships is provided (C2). Also, the current version of
the system allows for monitoring states through server-side logging and their inputs which can be accessed
from the database interface (C4), which is the IBM DB2 interface that is an IBM product (C3). As described in
section 5.5, the cloud application can handle at least twenty nodes simultaneously (C5). Due to the usage of
IBM Bluemix for running the server, it has become very scalable as well (C7). Based upon (C5) and (C7), we
dare to be confident about the server being able to handle fifty devices simultaneously as well (C6). All of the
endpoint code is completely documented (C8). The data model enforces measurement traceability (C9).

Nr. Requirement Design goals Stakeholder(s) Fulfilled

C1 The data must be stored in combination with sensor
type

Functional
completeness

UR, RJS X

C2 The data structure must have both textual and visual
documentation for each entity, and the relations be-
tween entities

Modifiability FPT X

C3 The style of the cloud application interface could
match the IBM style.

User interface
aesthetics

RJS, SAP X

C4 A basic cloud application interface that allows moni-
toring of the states of sensor nodes must exist

Analyzability,
testability

DTM, RJS, MO X

C5 The cloud application must be able to handle at least
ten sensor nodes simultaneously.

Functional
completeness

RJS, UR X

C6 The cloud application should be able to handle 50 sen-
sor nodes simultaneously.

Functional ap-
propriateness

RJS, UR X

C7 The cloud application should be scalable, and thus
scale with the addition of new resources.

Functional ap-
propriateness

RJS X

C8 Every endpoint of the access API must be completely
documented.

Modifiability RJS, FPT, DTM X

C9 Sensor data must be traceable to a specific sensor
node.

Accountability,
Non-
repudiation

RJS, DTM, UR X

Table 6.5: Fulfillment of the Cloud Application Requirements

6.2.4. VISUALIZATION
Due to re-prioritization in consultation with the client, no visualizations have been created (V1, V2, V3, V4).
The focus in development was on creating a robust, reliable system. The ability to export data from the
database is however present, which in turn can be used for offline visualization (e.g. graphs). In the future
work chapter, section 8.6 is devoted to the implementation of this component.

Nr. Requirement Design goals Stakeholder(s) Fulfilled

V1 A simple statistics visualization must be developed Functional
completeness

RJS /

V2 A graphical visualization could be developed Functional
completeness

RJS /

V3 The style of the visualization could match the IBM
style.

User interface
aesthetics

RJS, SAP, FC /

V4 Each visualization must (be able to) retrieve the visu-
alization data from the server via the Internet.

Functional
completeness

RJS, MO /

Table 6.6: Fulfillment of the Visualization Requirements

70 6. FINAL PRODUCT EVALUATION

6.2.5. EVALUATION SUMMARY
Finally, the project can be evaluated as a whole. By combining the evaluation for all system component
categories, the entire system can be evaluated. The overall fulfillment by MoSCoW element is depicted in
table 6.7. The overall fulfillment for each system component is depicted in table 6.8.

Category Total Fulfilled Dropped Unfulfilled Fulfillment1

(%)

Must have 16 14 2 0 100%

Should have 15 14 0 1 93%

Could have 7 2 3 2 50%

Won’t have 2 0 0 2 0%

Total 40 30 5 5 86%

Table 6.7: Overview of fulfillment of the requirements by MoSCoW category

Category Total Fulfilled Dropped Unfulfilled Fulfillment1

(%)

General 2 2 0 0 100%

Sensor Network 14 11 1 2 92%

Low-cost 5 3 0 2 60%

Smartphone 6 5 0 1 83%

Cloud Application 9 9 0 0 100%

Visualization 4 0 4 0 /

Total 40 30 5 5 86%

Table 6.8: Overview of fulfillment of the requirements by system component

The evaluation by MoSCoW elements shows a healthy distribution. The expectations and success criteria de-
scribed in the research phase in section 2.4.6 have been met. All MUST requirements have been met within
the time frame of the project. Moreover, a large amount of SHOULD and COULD requirements are imple-
mented, adding to its success. As was expected, adjustment of the requirements has taken place during de-
velopment, mostly resulting in dropping some requirements due to re-prioritization. To give strength to this,
86% of all requirements - regardless of priority - have been met, resulting in a well-developed end product. In
conclusion, the success criteria have been met, and were even exceeded.

1Ful f i l l ment = Ful f i l led

Tot al −Dr opped
×100%

6.3. CODE QUALITY 71

6.3. CODE QUALITY
Other than the requirement validation done in section 6.2, which is aimed at evaluating whether the prod-
uct complies with the wishes of the client ("Are we the right thing?"), it is important to evaluate the quality
of the code, which is commonly known as verification ("Are we building the it right?"). For this project we
can even state that the latter may be of even higher importance, considering it concerns the development of
a demonstrator which will be extended by future development teams. Future development teams of such a
project should implement new features, instead of having to re-factor legacy code. It is important to note that
(1) the requirements also pertain verification and (2) that code quality insurance through testing is described
separately in chapter 5.

First, in section 6.3.1, the three tools used to measure code quality are introduced. Second, in section 6.3.2,
the Sonarqube evaluation results are discussed. Third, in section 6.3.3, the feedback received from the SIG
evaluations is discussed.

6.3.1. MEASURING CODE QUALITY
To verify the quality of the code, two methods are used: the static code analysis tool Sonarqube, and code
submissions to the Software Improvement Group (SIG).

SONARQUBE

Sonarqube is an open source web-based application for managing code quality. It provides insight in the
quality of the code regarding metrics such as complexity, duplications and code-style violations. Further-
more, it follows generally accepted coding conventions, making the code universally understandable. An
example of the output produced by Sonarqube throughout one of the latest phases of the project is depicted
in figure 6.1. In section 6.3.2 the Sonarqube results of the final code is provided separately for each of the sys-
tem components, together with a description of and argumentation for the outcomes. An overview of these
outcomes is provided in the latest paragraph of that section.

Figure 6.1: Sonarqube output for the Server NodeJS code in the second to last week of the project

SIG FEEDBACK

Two submissions were made to the Software Improvement Group (SIG). SIG is a management consultancy
that focuses on the analysis of proprietary software, and acts often as an objective third party evaluator of
projects. It originally stems from the Software Engineering department of the TU Delft. The submissions for
code inspection were sent in the middle and at the end of the development process. SIG has provided us with
feedback according to their 5-star classification system for software quality, based upon the ISO/IEC 25010
model. In section 6.3.3 our prospects, the actual feedback and our approach towards using this feedback is
discussed for both submissions.

72 6. FINAL PRODUCT EVALUATION

6.3.2. SONARQUBE
The Sonarqube tool was run for each of the four system component implementations. For each of these
implementations the results are analyzed and discussed in this section.

ANDROID SENSOR NODE

The output of Sonarqube for the Android sensor node Java code is depicted in figure 6.2. The code scores
an A at the SQALE rating, and has a mere 0.1% technical debt ratio. It is also well commented, consisting for
32.5% out of comments. From the metrics can be inferred that the hub node code is in excellent shape. Only
a few minor ’issues’ exist due to tabulation, which are deliberately unfixed as this tabulation is part of the
code-style of the team (see appendix F).

Figure 6.2: Sonarqube output for the final Android application code

ARDUINO SENSOR NODE

In figure 6.3, the limited output of Sonarqube for the Arduino code is depicted. Sonarqube does not provide
as much information regarding C++/Processing code quality, as it does for Java. Though, we can see that the
Arduino code generally seems to have sufficient commenting, being 37% of the code. Next to this, we can
also find a complexity of 1.7 per function, which is quite low. We can therefore conclude that, based on the
limited output, the Arduino code is in fine shape and of good quality.

Figure 6.3: Sonarqube output for the final Arduino code

6.3. CODE QUALITY 73

HUB NODE

The output of Sonarqube for the hub node Java code is depicted in figure 6.4. The hub node scores an A at
the SQALE rating, and has a mere 0.2% technical debt ratio. It is well commented, consisting for 33% out of
comments. From the metrics it can be inferred that the hub node code is in excellent shape, just like the code
for the Android application.

Only two major issues reside, one concerning a constructor having too many parameters, and the other con-
cerning complexity. The former is caused by the behavior constructor, which allows its caller to specify the
behavior modules it depends on (e.g. identification, configuration). This many-parameter constructor is
fully covered in unit tests, and therefore currently of low priority to adjust. The latter, concerning complex-
ity, arose due to a logging function. Splitting it up into smaller functions would take significant re-factoring
efforts, while yielding little improvement. The minor issues are only concerning tabulation, which is part of
the code-style of the team (see appendix F).

In conclusion, the hub node code is in very good condition.

Figure 6.4: Sonarqube output for the final Hub code

74 6. FINAL PRODUCT EVALUATION

SERVER

The output of Sonarqube for the server NodeJS code is depicted in figure 6.5. The server code scores an A at
the SQALE rating due to its low technical debt ratio of 3,1%, is thoroughly commented (roughly 50% of the
code consists of comments) and does not have any dependencies to cut, nor does it contain any duplications.
From these metrics, we can generally state that the server code is of good quality. There are some issues de-
tected by Sonarqube, in the three categories that are of lowest importance: major, minor and info.

There are two major issues. The first, the violation of the rule "console logging should not be used" is defi-
nitely acceptable for a logging manager file. Second, there is a concern regarding the complexity of certain
handler functions. Lowering the complexity of the handler functions would indeed make the code more
maintainable. The choice was made to not adjust this in the limited time span, as it takes considerable time,
and the current code is easily understandable, well-documented, and well-tested.

Looking at the minor and info issues, we can easily conclude that the code-style check done by Sonarqube
does not match our personal code-style. The code-style deviations are explained in appendix F. Examples in-
clude banning of tabulation characters, trailing white spaces, and trailing comments. The code-style is very
personal, and adjusting it throughout the project would require a significant effort, while offering virtually no
gain, but rather a loss of time and readability in our opinion.

In conclusion, it can be stated that the server code is of very good quality, as the metrics of the code are
good. Less than 1% of the issues presented by Sonarqube can be seen as actual issues, of which a solution is
provided in future work (section 8.5.1).

Figure 6.5: Sonarqube output for the final Server code

6.3. CODE QUALITY 75

6.3.3. SIG EVALUATION
A total of two submissions to the Software Improvement Group (SIG) have bee done. The first was performed
in the middle of the development, and the second towards the end. For each of the evaluations, the expec-
tations were written down before the feedback was received. This can be contrasted by the reader with the
actual feedback received. The actual feedback in the following sections has been summarized and translated.
The raw feedback is documented in chapter G. The action plan (response) to process the feedback has been
given for both evaluations as well.

FIRST EVALUATION

The first code submission was done on Tuesday May 26, the feedback was received Friday May 29. The code
included all system components, excluding the Android application. The raw feedback can be viewed in
appendix G.1.

• Expectation: The main code is of good quality, and proper coding conventions with regard to com-
menting have been followed. The test code has grown quite big, and due to shortage in time, we were
unable to re-factor the test code before the submission. We therefor expect that in terms of unit size we
will score sub-optimal.

• Feedback: The system scores four out of five on the scale of our maintainability model. In the C++
code there are many functions that have a boolean as final parameter, this should be reconsidered. Be
wary of creating very long functions. Splitting up methods into smaller pieces will make the component
easier to understand, test, and maintain. Sending the version of the project with and without libraries
gives a good view of the project. Be sure to add which parts of the code are maintained by the project,
and which by an external party. In general, the code scores above average. The presence of test code is
promising, and we hope that this will grow as new functionality is added.

• Response: The C++ code will be re-factored to keep track internally of the state of the JSONWriter el-
ements added. The server has been adjusted slightly to split up the endpoints into smaller pieces.
An extra README file has been added to the libraries to distinguish between internally and externally
maintained libraries. We will continue to thoroughly test our code.

SECOND EVALUATION

The second code submission was done on Tuesday June 9, the feedback was received on Wednesday June 17.
The code included all system components. The raw feedback can be viewed in appendix G.2.

• Expectation: All system components have been tested thoroughly, and the code has been re-factored.
Due to dependencies between components, there are still a few large constructors in the Hub system
component, which might negatively affect out score on Unit Interfacing. The handlers of the server
code are split up, although still larger than average functions, which probably will negatively influence
the Unit Size. Furthermore, a lot of time was put into the new Android code. This code is additionally
added to the second submission. The specific examples mentioned in the previous feedback have all
been implemented. We expect the feedback to be slightly better than the first evaluation, considering
the amount of unevaluated code that has been added since.

• Feedback: We see that in the second upload the code volume has grown, while the maintainability
score has remained roughly the same. On the level sub-scores, we have a similar image as with the
first upload: Unit Size and Unit Interfacing, which was marked as a point of improvement in the first
upload, still score the lowest. On both aspects we see a small improvement, although this did not have a
significant influence on the score. From these observations we can conclude that although the system
is maintainable, the recommendations of the previous evaluation have been taken into account in a
limited manner.

• Response: As expected, the Unit Size and Unit Interfacing has been improved slightly. Despite the
addition of an entire Android application, the code has continued to be above average maintainable. In
future work (see chapter 8), we have added the re-factoring of the server handlers, being the main point
of issue for SIG, which we deliberately did not tackle due to the time needed to resolve the issue versus
the quality improvements gained (which are quite low in our opinion). It is also important to note that
the volume of tests has grown along with the addition of new functionality (including a thorough testing

76 6. FINAL PRODUCT EVALUATION

suite for the Android application). Although this is not specifically mentioned in the second evaluation
done by SIG, it is an improvement regarding the previous feedback gained.

7
PROCESS

7.1. INTRODUCTION
To give the reader a sense of the course of the system, this chapter is devoted to describing the development
process. First, an overview of this process is described in section 7.2, providing the reader with an overview
of the phases and sprints out of which the development process consisted. Second, the technical process is
discussed in section 7.3, including a description of the tools that were used and technical challenges that were
faced throughout the process. Finally, the actor processes are described in section 7.4, offering an insight in
the interactions with the actors related to this project.

7.2. OVERVIEW
Throughout the development, a Git repository was used as a central point of project storage, enabling ver-
sion control and synchronous labor. For each sprint, a new branch was created. This branch contained the
progress of the project in that week, always resulting in a shippable product. The commits on the Git reposi-
tory are an indication of how much implementation was done in a specific time period. The same indication
is found for documentation in the number of pages produced. A total overview of the development progress,
both implementation- and documentation-wise, is depicted in table 7.1. A graphical display of this table is
shown in figure 7.1.

Sprint
#

Main Implementation Goal(s) Main Documentation Goal(s) # of com-
mits

of doc.
pages

1 Experiment with hardware Research: Orientation 0 3
2 Experiment with hardware Research: Analysis 1 10
3 Project Creation Platform Dependencies 12 2
4 Hub, Arduino and Server Imple-

mentation
Data Model 37 11

5 Server Restructure, and Hub, Ar-
duino and Server Testing

System Structure, Server API,
Queries

46 15

6 Android, and Arduino Restruc-
ture

Sensor Node Structure 34 5

7 Android Testing, Minor Im-
provements, Report

Design and Implementation 14 30

8 Report, Minor Improvements Implementation, Testing, Final
Product Evaluation

4 30

9 Final Adjustments Process, Future Work, Conclu-
sion

3 22

Table 7.1: Development Progress Statistics

77

78 7. PROCESS

Figure 7.1: Development Progress Graph

The visualization in figure 7.1 especially highlights the diversity of phases that was undergone during the
project. According to our plan, there was a three-phase-division, which we can also see coming forth in the
data, being:

• Orientation: In the first three weeks, we mainly focussed on orientation, and produced little measur-
able value regarding lines of code and pages of reporting. However, in this time we collected a very
thorough feeling of the problem, context of the problem and the wishes of the client regarding the so-
lution. We also obtained invaluable personal skills, concerning development on completely unfamiliar
hardware, e.g. Arduino, the Raspberry Pi, and Bluetooth modules. This led us to having everything we
needed to start with the actual implementation of the project.

• Implementation: In the middle period of the project, we made a big shift from getting familiar with
and investigating the problem and hard- and software to be used, to the actual implementation of the
system. After the orientation, we knew how to properly write software for the enormous variety of plat-
forms we had found to be needed. In this time, the main part of the implementation was done, after
having carefully thought it out during the previous phase. Documentation was generated to accom-
pany design choices, and to provide structure to the internal workings. Towards the end, we focused
more on testing the system and streamlining out bugs.

• Documentation: After having largely implemented the system while generating temporary (non-final)
documentation, the time arrived (due to time constraints) to properly document the system. By hav-
ing worked meticulously in the previous phases, the report was already roughly written in our heads.
During this phase, it was put to paper.

7.3. TECHNICAL PROCESS 79

7.3. TECHNICAL PROCESS
In this section the technical process is described. First, in section 7.3.1, the development tools are evaluated,
this includes both coding and documentation tools. Second, in section 7.3.2, the technical challenges we
faced, are explained.

7.3.1. DEVELOPMENT TOOLS
A vast combination of tools was used during development. We were already familiar with the usage of the
Eclipse IDE, JUnit, EclEmma, the Android SDK, EMMA, Notepad++, SourceTree, Trello, Google Drive, and
ShareLatex. These tools performed well, as we expected based upon our previous experiences.

Regarding the tools we were unfamiliar with, we were especially impressed with IBM Bluemix, Mocha and
Istanbul, and Sonarqube. We were surprised with the ease of application deployment through IBM Bluemix,
and the ability to dynamically add services such as a database. The combination of Mocha, as unit testing
framework, and Istanbul, as coverage tool, turned out to provide valuable debugging information and greatly
improved test quality regarding the server code. The wide support for programming languages of Sonar-
qube allowed static code inspection of all code using a single tool. The suggestions Sonarqube made were
language-specific, and improved code quality significantly.

Tools that were found to be less useful were IBM MobileFirst, a mobile platform-independent development
platform, and Blanket.js, a coverage tool for JavaScript. The former required a large amount of packages to
work, and seemed to be in a prototypical state. The latter turned out to be incompatible with the server’s
NodeJS code, despite the best efforts of the team.

7.3.2. TECHNICAL CHALLENGES

UNKNOWN HARDWARE

The team was previously inexperienced with the usage of a large part of the hardware that was found to be
needed for this project. It was required to quickly get familiar with it, to evaluate its usefulness for the project,
and to fit it into the system design. Reliability was one of the most challenging factors, especially when testing
out communication modules such as the HC-05 and the ESP8266. The software tools that we used for the
platforms, had specific qualities and conventions as well, which all needed to be understood in order for the
development team to be able to properly write and debug code.

HARDWARE DELIVERY

The delivery time of hardware turned out to span a significant amount of time, relative to the duration of
the project. Although there was hardware already present on-site, such as the Arduino Nano chips, a lot of
other hardware components were not (e.g. temperature and Bluetooth sensors). This hardware also had to
be tested, before a large quantity was ordered. This put heavy time constraints on when development and
deployment could take place.

7.4. ACTOR PROCESSES
In this section we discuss the process of the actors involved in this project. We start out with discussing the
actor processes within the team and with the client. Next, the process involving other IBM employees and
interns is described, followed by a description of the process with the supervisor and coordinators from TU
Delft. For some of the actors involved in this project, a description of their roles is given in section 2.2.4.

7.4.1. THE TEAM
The development team of this project consisted of just two members. This enabled us to cooperate thor-
oughly and communicate on a nearby 24/7 basis throughout the project, as we were working next to each
other for nearly 90% of the time. It allowed us to instantly ask for each others opinion and to constantly be
aware of each others’ progress. Luckily, we did often have different opinions on certain design or implemen-
tation choices that had to be made, enabling a good discussion to be held. These discussions always ended
in a consensus, which resulted in the best informed choice to be taken.

The software development method that was adopted by the development team concerned an adapted ver-
sion of Scrum, as is described in section 2.6.1. This agile development methodology has proven to be a good

80 7. PROCESS

approach for creating a shippable product over a short period of time. The iterative structure of programming
and regular meetings with the stakeholders involved in the project, enabled for a highly accessible develop-
ment process at any point in time.

7.4.2. THE CLIENT
Throughout the project there has been a strong communication between the team and the client, in which
we specify the client as IBM, impersonated by Robert-Jan Sips (our supervisor from IBM). We regularly held
meetings, up to three times a week, to discuss the current state of the project and the next steps to take. These
frequent meetings enabled us to both validate and verify the product with the client, making it continuously
in alignment with the client’s wishes. It namely enabled us to, at any point in time, spend our time on de-
veloping the features that were most valued by the client. Next to this, it allowed us to involve the client in
making decisions in designing the system and implementing it according to his wishes.

7.4.3. IBM EMPLOYEES AND INTERNS
At IBM, we also held meetings with other IBM employees and interns. We held several meetings with Uditha
Ravindra (who will use the output of the demonstrator), discussing the output of the system, so that it would
contain the data she needed. We also held several discussions with Manfred (the technical supervisor of the
project), regarding the hardware of the system. Throughout the project, we also interacted with other IBM
employees and interns, sharing knowledge. This was valuable because they either work on related projects,
or work with related tools. This enabled us to get quickly started with the project in the IBM environment.

7.4.4. THE SUPERVISOR
At least once a week, we also discussed the current state and process of the project with our supervisor from
TU Delft. Sometimes this was done through emailing, other times through an actual (physical) meeting. In
these discussions, our supervisor provided us with feedback about our approach for developing the system
and documenting the outcomes. This guidance allowed for the confidence of adopting the best approach
and taking into account all matters at stake.

7.4.5. COORDINATORS
Other than a few questions before and during the project regarding the regulations of the bachelor end
project, we held one Skype meeting with the coordinators of the bachelor end project. From this meeting,
we took away that we should not underestimate the effort needed for the report, testing and deployment.
The coordinators will also be involved in grading the project.

8
FUTURE WORK

8.1. INTRODUCTION

At the beginning of the project, we set course for creating a demonstrator; a strong basis for a potentially
commercial product that is to be developed for the client. In other words, we already knew that there would
be future work to be done, which could not be taken into account during this project, due to its limited scope
of ten weeks. In this section we will elaborate upon the future work that can be done in order to further im-
prove the demonstrator to become an actual commercial product. This is expressed in (1) improvements to
the existing code and (2) separate extensions to several components of the system. First, in section 8.2, the
future work involving multiple components of the system, is explained. Second, in section 8.3, future work
on the sensor node is discussed, for both the low-cost sensor node and the smartphone app. Third, in section
8.4 future adaptations and extensions to the hub node are elaborated upon. Fourth, future work on the server
is discussed in section 8.5. Finally, the future addition of a visualization component is discussed in section 8.6.

For each of the items in each of the five future work categories, it is specified (a) what functionality could
be added and (b) how this could be done with respect to the current implementation. This will enable future
development teams to quickly enhance the product with these features.

8.2. GENERAL

This section is devoted to the general future work. This future work spans two or more of the system compo-
nents. For each functionality is specified what it entails, and how it could be implemented.

8.2.1. COMMUNICATION RELIABILITY EVALUATION

A choice was made to use low-cost Bluetooth modules for the Arduino sensor nodes. This enabled them to
communicate with other Bluetooth devices that would take on the role of a hub. A protocol was devised to
communicate between both nodes. This protocol, its implementation, and the reliability of the hardware
should be tested and evaluated more thoroughly. The designed framework described in section 3, abstracts
from the usage of Bluetooth communication, and allows the usage of other communication standards such
as Zigbee or NFC. These other communication techniques might prove to enable for a more reliable com-
munication. Environmental factors such as distance between sensor node and hub, and obstacles between,
might affect the reliability as well. These factors should be studied, and taken into account more thoroughly,
before the system can become commercially viable.

8.2.2. EFFICIENT COMMUNICATION FORMAT

In the demonstrator, the JavaScript Object Notation (JSON) is used for messages sent between different sys-
tem components. Although it allows for a clear visual understanding (i.e. the JSON notation is easy to read),
this notation is quite inefficient compared to other formats. A more efficient (self defined) format could be
used in the final system, e.g. making use of run-length encoding and integrity hashes.

81

82 8. FUTURE WORK

8.2.3. CONFIDENTIALITY, INTEGRITY, AVAILABILITY AND AUTHENTICITY OF DATA
The current communication format does not contain any security measures. As this version of the system
was purely a demonstrator, the system resided in a secure environment. When aiming at deploying the sys-
tem outside a secure environment, additional layers must be added over the communication format, such as
encryption and integrity checks. Extra communication protocols should also be introduced to enable protec-
tive measures such as key distribution. This improvement must be done system-wide, and will require vast
changes to the sensor node (in the communication module) and server implementation (across all existing
endpoints, but also the addition of new endpoints).

8.3. SENSOR NODE

8.3.1. HEARTBEAT
Although measurements do already function as a heartbeat in most cases, there are edge cases in which the
sensor node might be active, but does not produce any measurements. This can for example occur when
all sensors have been disabled, or malfunction. The addition of a heartbeat into the protocol will allow the
server to more easily detect which sensor nodes are active at which moment in time. Implementing such a
heartbeat would ask for the addition of an extra endpoint (e.g. /heartbeat) to the server, and the addition of
a communication protocol (or extension of the existing communication protocol) that allows for an efficient
communication with this endpoint. The protocol should entail a short, simple message being sent regularly
(in a fixed interval) by the sensor node to the server’s heartbeat endpoint.

8.3.2. ADDITIONAL PHENOMENA
Currently, the low-cost sensor nodes and smartphone application respectively measure the temperature,
light-intensity and humidity, and the temperature of the battery. As said in the COULD requirement S3 in
section 2.4.3, the sensor nodes could also measure the level of sound. Specifically for the smartphone app,
the light-intensity and humidity could also be taken into account. This would allow for setting first steps into
the direction of being able to doing the measurement with (calibrated) smartphone sensor nodes only, as
stated in section 2.2.3.

Implementing sensing functionality for the additional phenomena can be done very easily. Regarding the
low-cost sensor node, this would only ask for adding a new physical sensor to the breadboard, connecting
this to the Arduino Nano, adding the sensor handler to the Arduino Nano code (e.g. SENSOR_XYZ.cpp, which
inherits from Sensor) and adding where the sensors have been attached in DeviceSensors.h. Concerning the
smartphone app, this would only ask for adding a new Sensor inheriting class to the com.ibm.tso.app.sensors
package and adapting the constructor of the DeviceBehavior class in the com.ibn.tso.app.behavior package
to add an additional sensor of the newly specified class. For both cases we predict it would not ask more than
one hour to implement the sensing of a new phenomenon (excluding time needed for writing tests as this
may be strongly dependent of the type of the sensor).

8.3.3. VARIABLE INDOOR LOCATION
The location of the sensor nodes is currently put in manually. Variable indoor localization can potentially
be achieved by deploying Bluetooth beacons. These Bluetooth beacons will broadcast their location and
environment, through a Bluetooth signal. The sensor node can combine the broadcasted information with
the signal strengths to determine both its position (via trilateration) and environment (which is included in
the information). In order to implement this feature, a developer would have to adjust the behavior of the
sensor node. The sensor node will require a new class (e.g. LocationFinder) that uses the Bluetooth module
to pick up and process the broadcasted information. This class will need to continuously check for changes,
and supply the most recent location to the Sensing class.

8.3.4. LOW-COST SENSOR NODE CUSTOM HARDWARE
The low-cost sensor nodes in the current demonstrator were built out of general purpose hardware, such
as the Arduino Nano chip. This general purpose hardware contains many components that are not needed
(as indicated by its name), but do increase cost. Furthermore, the buffers size on the Arduino Nano chip is
very limited. An electrical engineer could design a far more efficient electronic design, which implements
exactly all the hardware required. The production cost of this custom design would be significantly less,
and its performance (e.g. in terms of energy consumption, communicative capability and buffer size) would
be significantly better. However, this would ask for a quite large investment regarding the design of such a

8.3. SENSOR NODE 83

system. Moreover, this would also negatively affect the extendability of the system. Whereas the Arduino
Nano Chips on breadboards enable for easy extension of the node to include new sensors, a dedicated board
would not allow for such an extension. Porting the existing software to this new hardware is expected to be of
a lesser concern, due to the high portability of the implementation.

8.3.5. SMARTPHONE PLATFORM INDEPENDENCE

The deployment of the system on many platforms is a strongly desired feature, as it would immediately allow
for the adoption of far more smartphone sensor nodes in the sensing network. The current implementation
of the Android application could be ported to a platform-independent environment, such as IBM Mobile-
First, which supports many platforms (e.g. Android, iOS, Blackberry, Windows, and as a web application
for others). This hybrid application would be implemented both platform-independent (e.g. connecting to
the server) and platform-specific (e.g. reading the device sensor). The client has indicated that the usage of
IBM MobileFirst has strong preference over the usage of other hybrid environments. A separation between
destined platform-specific and platform-independent implementation must be made in the existing Android
code, and the code destined to be platform-independent should be implemented in the general language of
the hybrid framework (e.g. JavaScript).

8.3.6. DEFECT DETECTION

In the deployment tests, no defects occurred. This is however attributed to the controlled, safe environment
in which the deployment tests were conducted. An implementation can be made so that sensor nodes can
detect a failing module. With digital sensors, this could be detected by unresponsiveness. With analog sensors
this might be more difficult, as a specific output range check would need to be conducted for each type
of sensors and sensing device configuration. The data model and the server both support the (dynamic)
configuration of sensors (through the SensorActivity and SensingDeviceConfiguration entities), but the sensor
nodes do not yet utilize this support.

8.3.7. DYNAMIC ADDITION AND REMOVAL OF SENSORS

The support for dynamic addition and removal of sensor would allow the sensor nodes to become more au-
tonomous. The data model already supports this, through requesting a new configuration from the server.
This dynamic addition and removal can be implemented by checking on a fixed interval whether new sensors
have been added to ports, or existing sensor have been removed. Communication must take place to deter-
mine the sensor type. This will prove to be more difficult with (analog) sensors that do not provide additional
information about themselves. A new class would need to be made responsible for this regular checking
(e.g. SensorDetector), but on forehand, investigation has to be done into the possibility to fulfill especially the
dynamic addition of sensors.

8.3.8. PROXIMITY DETECTION

The detection of nearby entities such as humans would allow the sensor node to adjust its measurements.
This proximity detection could be done through the addition of ultrasonic sensors, or through detecting pat-
terns in the measurements that those entities affect. Examples include the sudden increase in temperature
due to the presence of body heat, or the shadow entities cast on a light sensor. This feature is expected to
be quite difficult to implement. Regarding the second option for implementation, it would definitely benefit
from machine learning.

8.3.9. BROADER PLATFORM TESTING

The application was developed with support for Android devices running the Android OS of version 2.2 and
above. Throughout this project, we only tested devices running Android 2.2, 4.1, 5.0 and 5.1. Additional
testing for devices running other versions of Android is recommended, as such devices can also become part
of the system. Next to this, testing could be extended to include other device types, like tablets, as well. This
would allow the future scope of the sensor nodes to be extended to other IoT devices as well, which is a desired
feature as discussed in 2.2.1.

84 8. FUTURE WORK

8.4. HUB NODE

8.4.1. PARALLEL BLUETOOTH CONNECTION HANDLING

The hub has been implemented in a multithreaded fashion, allowing simultaneous handling of sensor nodes
connections. On the contrary, the Bluetooth adapter only allows for a single Bluetooth connection to be open
at one point in time. Problems such as starvation could occur, although they are highly unlikely to appear. Ad-
dition of a Bluetooth adapter that can handle multiple simultaneous connections would significantly increase
the response speed of hub nodes, and also slightly increase reliability. For this feature to be implemented, the
hub node code would require little adjustment, as it is already implemented multithreaded. However, sup-
port of the BlueCove library for the associated Bluetooth stack for opening multiple connections should be
checked.

8.4.2. HUB USER INTERFACE

The hub implementation could benefit from an interface that displays how many sensor nodes are connected
to it, and what their latest activity was. Furthermore, this interface can prevent its host from unintentionally
shutting down the hub node. This interface could be implemented using the Javax Swing library, which is
included by default in Java distributions.

8.5. SERVER

8.5.1. REFACTOR HANDLERS

In order to lower the complexity of the NodeJS handler files, they should be refactored. The four current han-
dlers - especially /measurements - have a high cyclomatic complexity due to the checking of received identi-
fiers. Conversion of the handlers large functions into several smaller functions will increase maintainability
of the code.

8.5.2. MANAGEMENT AND MONITORING SYSTEM

It is currently only possible to manage and monitor the system through the database interface. Addition of
(for example) a web interface, would enable administrators to more easily manager and configure the sensor
and hub nodes. This was not done within the scope of our project, as more importance was given to the
actual sensing system and the ability to configure this system, rather than creating a proper interface (which,
if done well, would require significant design investment). A HTML5/JavaScript website could do this, making
asynchronous requests to retrieve real-time data from dedicated server endpoints.

8.5.3. TRANSACTIONALIZE ENDPOINTS

The server endpoints currently share a database client connection, which makes it unable to fully transac-
tionalize endpoints. With the cost of losing speed, each endpoint call could create its own database client
connection. This could also reach the ceiling of allowed database connections (determined by the database).
Making every endpoint handling a transaction, will increase the consistency of the data stored persistently.
An example would be when the server loses power, and already inserted a few of the measurements, but not
all of them. If this were a transaction, the inserted measurements would be rolled back instead of wrongfully
persisted in the database. This can be implemented by starting a transaction at the beginning of the handler,
and by rolling back at a failure, or committing if it was a success.

8.5.4. TIME SYNCHRONIZATION

The addition of a central server which hands out the current time. This will especially come into play when
the server is deployed on many servers, which all require a synchronized sense of time. The times synchro-
nization server could be completely dedicated, only having an endpoint /time. The other servers will then
request a synchronous timestamp from the dedicated time server when needed.

8.5.5. DATABASE INDEPENDENCE

The server implementation currently only supports DB2 relational databases. However, due to the existence
of a separate database query module, it is possible to support other relational databases as well (e.g. Post-
GreSQL and MySQL). Two adjustments need to be made: (1) the database query module must implement a
storage class that stores the SQL queries for the chosen database type, (2) the database client must become

8.6. VISUALIZATION 85

an abstraction, of which an individual implementation must be made for each relational database type. This
abstracted database client should have a connect() and a querySync() function.

8.5.6. DATABASE IMPROVEMENTS
In section 4.5, some possible improvements for the data(base) model have been proposed for several tables:

• The addition of a descriptive column in the SensingDevice table for the operating system, which is being
run on the device.

• Determination of what makes an Environment unique, instead of solely relying on the generated iden-
tifier. This is difficult, because it is not yet known where the environments will be. Identifying informa-
tion such as “Company” might not be applicable in all situations.

• Linking the DeviceType with external databases containing information about hardware instead of re-
lying on devices to provide accurate information.

• Extra descriptive information about a SensorType could be added, such as precision, or scale.

It is up to future development teams to determine the value of implementing these improvements, as they
are not system-critical.

8.6. VISUALIZATION
Due to a shift in priority, the visualization of the system has moved to future work. The system would benefit
from two types of visualization: passive and active visualization.

8.6.1. PASSIVE VISUALIZATION
Passive visualization is performed on a full data set over a span of time, instead of only using the latest values.
The passive visualization is more focused on aggregate statistics, and supporting claims concerning a larger
span of time. One of such claims could be the existence of a correlation between sensor values (e.g. between
light intensity and temperature).

8.6.2. LIVE VISUALIZATION
Live visualization receives continuous real-time data, and focuses on the most recent data it receives. It is
a depiction of the output of the system in a very short period of time. The purpose of this live visualization
is to keep track of the system, and to allow system administrators to detect errors (e.g. if a sensor falls out,
the live visualization should highlight this). It would furthermore be of value as an interesting visualization
when displayed on a screen in the same environment, attracting participants for the project while being in a
prototypical state and gathering support while being a commercial product.

9
CONCLUSION

In the short span of ten weeks, an ambitious project has been completed. Through iterative development,
and frequent interaction with the client, IBM, we have implemented a demonstrator system to measure sev-
eral phenomena in the enterprise environment. The project was both a software engineering and research
challenge, making it unique in the landscape of bachelor end projects. Moreover, a part of the system is pend-
ing to be patented. The demonstrator acts as a valuable asset to the research goals of the client, having met
the success criteria by fulfilling all mandatory requirements and many optional requirements.

The value of the demonstrator was supported by the three phases undergone. First, a thorough analysis
of the client’s wishes was made, ensuring verification of the product. Second, we designed and implemented
the system while maintaining running documentation, ensuring the validation of the product. Third, we
carefully documented the system, ensuring that the client would be able to understand and build upon the
system after delivery.

One of the remarkable features of the system is its cross-platform design, due to the uniformity of the in-
terface across platforms. The level of abstraction allows any system component (sensor node, hub node, and
server) to be implemented straightforwardly on any platform, by using the software design presented in this
report. The system design can thus act as a framework for measurement systems, applicable outside the
scope of this specific context.

The client imposed strict wishes regarding the data model. Initially envisioned as ’one big table’, a rela-
tional data model has been designed. The data model intelligently couples the measuring data to a traceable
state of the system. The focus on traceability in the implementation allows for time-sensitive data analysis
afterwards.

Special effort has gone into ensuring the maintainability of the system. By writing test code, measuring
coverage, performing static code evaluation, and third party evaluation, we have created high quality source
code. This matches the goal of a demonstrator: to be easily continued upon.

To demonstrate the ability of the system, it has been deployed in two instances at IBM CAS. Both deploy-
ments were considered successful, as they already produced valuable measurement data in this early phase.
Additional testing and improvements are recommended to increase the reliability of the system. By combin-
ing cross-platform design, traceable data modeling, and following best coding practices, a valuable demon-
strator for data collection in the enterprise environment has been developed. The team is excited for the
demonstrator to potentially be transformed into a commercial product by future development teams.

87

A
INITIAL PROJECT DESCRIPTION AS

PROPOSED BY IBM IN MARCH 2015

A.1. BACKGROUND
Ubiquitous Computing and the Internet of Things are promising to have a disruptive effect on various do-
mains [6]. One of such domains is the Enterprise Environment, where it gets increasingly important for com-
panies to sense and personalize the (physical) working environment [7]. Effective personalization and sens-
ing of an office environment requires highly dense data, on both a spatial and a temporal dimension. E.g., one
would need to know how light intensity and temperature change throughout the floor of a building to enable
either an appropriate seating advice, or an appropriate modification of the temperature. Current Building
Management Systems do not allow for this detailed sensing, and are very expensive to change. Promising de-
velopments have been demonstrated in the fields of Agriculture, where low-cost sensing is allowing for highly
dense sensing in remote locations [9]. Moreover, Overeem et al. [10] demonstrated a system in which data
from embedded mobile phone sensors was successfully used to estimate ambient temperature.

A.2. PROJECT
The focus of this Bachelor Project is to create a demonstrator system in which these sensing technologies will
be employed in an enterprise environment. The system contains of 3 core components:

• Mobile Phone App: sensing ambient parameters, such as temperature, humidity, light intensity, noise
through the embedded phone sensors.

• Low-cost sensing devices: either Arduino or RaspPi based, measuring air quality, humidity, light inten-
sity, etc.

• Visualisation: a visualization component visualizing the state of a department floor as sensed by the
app and devices.

The Demonstrator will run within the IBM building in Amsterdam, at the Centre For Advanced Studies. IBM
personnel at the floor will be running the developed sensing app on their smartphone.

A.3. RESEARCH QUESTIONS (EXTRA)
Example research questions are:

• Is it possible to correlate the highly coarse sensing through smartphones and/or low-cost devices to the
measurements as done by the existing Building Management System?

• What is the optimal distribution between “fixed” low-cost devices and “mobile” sensors to guarantee
output and accuracy while minimizing the amount of fixed sensors needed?

89

90 A. INITIAL PROJECT DESCRIPTION AS PROPOSED BY IBM IN MARCH 2015

• What would be an optimal setup of such a sensing system: Cloud-Centric or Device Centric (the first
meaning a centralized cloud instance calculating derivatives from the sensed parameters, the latter
meaning local p2p networks of mobile and fixed devices, jointly deciding on what the most accurate
measurement in a specific “zone” would be)?

• Which other parameters could be measured or derived from embedded sensors in smartphones.

A.4. DELIVERABLES
• Architecture document (containing requirement analysis + basic design decisions)

• Demonstrator code + Documentation Company Supervision & embedding

The project will be part of the “Inclusive Enterprise” research line within IBM. Supervision and support
will come from the CAS Development team (2 architects, 5 BSc students), and the Innovation Center (5
developers). Materials such as IBM MobileFirst (development platform) and Raspberry Pi / Arduino de-
vices will be readily available at the department. Example code on how to connect sensors to those can
be found through IBM Developerworks, see e.g., http://http://www.ibm.com/developerworks/cloud/
library/cl-poseidon1-app/

http://http://www.ibm.com/developerworks/cloud/library/cl-poseidon1-app/
http://http://www.ibm.com/developerworks/cloud/library/cl-poseidon1-app/

B
QUALITY MODEL OF DESIGN GOALS

B.1. FUNCTIONAL SUITABILITY
The ability of the system to satisfy stated or implied needs (from stakeholders).

Functional Completeness
The ability of the system to correctly perform the functionalities it was designed to perform.

Functional Correctness
The ability of the system to provide (data) services with the needed degree of precision.

Functional Appropriateness
The ability of the system to perform functionality appropriate to its specified tasks and objectives.

B.2. MAINTAINABILITY
The ability of the system to allow maintenance and modification.

Modifiability
The ability for developers to modify the system, concerning factors such as code quality, decoupling, and co-
hesion.

Testability
The ability of developers and administrators to test the (new) functionality of the system.

Analyzability
The ability of administrators to monitor and analyze the performance of the system.

Reusability
The ability for developers to reuse (a component of) the system in building other systems.

Modularity
The ability of the system to be split up into discrete components.

B.3. PORTABILITY
The ability of the system to be ported to other contexts, or to handle a changing context.

Installability
The ability of the system to be deployed in a different environment.

91

92 B. QUALITY MODEL OF DESIGN GOALS

Adaptability
The ability of the system to adapt to changing infrastructure, such as in the case with many IoT systems.

B.4. RELIABILITY
The ability of the system to perform functions under specified conditions within a specified time window.

Maturity
The ability of the system to perform its tasks under normal conditions.

Fault Tolerance
The ability to handle the occurrence of faults, e.g. failing devices or measurement errors.

Recoverability
The ability of the system, in the event of a failure, to maintain data consistency, and to return to a stable state.

Availability
The ability of the system to maintain the availability of services and data.

B.5. EFFICIENCY
The ability of the system to efficiently use what it has at it (potentially) has to its disposal.

Resource Utilization
The ability to efficiently use the hardware, and to account for the constraints that this hardware imposes such
as durability and energy consumption.

Time Utilization
The ability of the system to perform the tasks with response and processing times and throughput rates within
the imposed time constraints.

Capacity
The ability of the system to utilize a product or a system parameter to a maximum in order to meet require-
ments.

Expense
The ability of the system to be cost effective.

B.6. COMPATIBILITY
The ability of the system to exchange information with other products, systems or components, and/or perform
its required functions, while sharing the same hardware and/or software environment.

Co-existence
The ability of the system to function in a common environment with other products, without having a detri-
mental impact on any other product.

Interoperability
The ability of the system to let two or more components exchange information and make use of this ex-
changed information.

B.7. USABILITY
The ability of the system to be used by the specified set of users.

Operability
The ability of the user to operate the system.

B.8. SECURITY 93

Usability Compliance
The ability of the system to follow logical standards and conventions related to usability, influencing the will-
fulness of the user to use the system.

User Interface Aesthetics
The ability of the system to offer the user interactions in a pleasing and satisfying manner.

B.8. SECURITY
The ability of the system to actively or passively defend itself from dangers and threats.

Confidentiality
The ability of the system components to securely communicate with each other.

Integrity
The ability of the system to verify the integrity of data, that messages are indeed valid and untampered with.

Authenticity
The ability of the system to verify that the claimed origin is indeed responsible for the tasks done and data
sent.

Accountability
The ability of the system to track the origin of data and performed tasks.

Non-repudiation
The ability of the system to enable the proving of actions or events to have taken place.

C
POSTGRESQL QUERIES

C.1. SCHEME CREATION

CREATE SCHEMA TSO;

C.2. SENSORTYPE TABLE CREATION

CREATE TABLE TSO. SensorType (
SensorTypeID SERIAL NOT NULL,
Model VARCHAR(127) NOT NULL,
Quantity VARCHAR(127) NOT NULL,
Unit VARCHAR(127) NOT NULL,
DefActive BOOL NOT NULL,
DefInterval INT NOT NULL,
PRIMARY KEY (SensorTypeID) ,
UNIQUE (Model , Quantity)

) ;

C.3. DEVICETYPE TABLE CREATION

CREATE TABLE TSO. DeviceType (
DeviceTypeID SERIAL NOT NULL,
Brand VARCHAR(127) NOT NULL,
Model VARCHAR(127) NOT NULL,
MarketingName VARCHAR(127) NOT NULL,
Category VARCHAR(127) NOT NULL,
PRIMARY KEY (DeviceTypeID) ,
UNIQUE (Brand , Model)

) ;

95

96 C. POSTGRESQL QUERIES

C.4. ENVIRONMENT TABLE CREATION

CREATE TABLE TSO. Environment (
EnvID SERIAL NOT NULL,
Timezone VARCHAR(127) NOT NULL,
Name VARCHAR(255) NOT NULL,
Latitude DOUBLE PRECISION NOT NULL,
Longitude DOUBLE PRECISION NOT NULL,
Elevation DOUBLE PRECISION NOT NULL,
PRIMARY KEY (EnvID)

) ;

C.5. SENSINGDEVICE TABLE CREATION

CREATE TABLE TSO. SensingDevice (
DeviceID SERIAL NOT NULL,
Name VARCHAR(255) NOT NULL,
DeviceTypeID INT NOT NULL,
LastConfigTime TIMESTAMP NOT NULL,
PRIMARY KEY (DeviceID) ,
FOREIGN KEY (DeviceTypeID) REFERENCES TSO. DeviceType (DeviceTypeID)

) ;

C.6. SENSINGDEVICECONFIGURATION TABLE CREATION

CREATE TABLE TSO. SensingDeviceConfiguration (
ConfigID SERIAL NOT NULL,
DeviceID INT NOT NULL,
ActivatedTime TIMESTAMP NOT NULL,
PRIMARY KEY (ConfigID) ,
UNIQUE (DeviceID , ActivatedTime) ,
FOREIGN KEY (DeviceID) REFERENCES TSO. SensingDevice (DeviceID)

) ;

C.7. SENSOR TABLE CREATION

CREATE TABLE TSO. Sensor (
SensorID SERIAL NOT NULL,
ConfigID INT NOT NULL,
SensorTypeID INT NOT NULL,
Position VARCHAR(255) NOT NULL,
PRIMARY KEY (SensorID) ,
UNIQUE (ConfigID , SensorTypeID , Position) ,
FOREIGN KEY (ConfigID) REFERENCES TSO. SensingDeviceConfiguration (ConfigID) ,
FOREIGN KEY (SensorTypeID) REFERENCES TSO. SensorType (SensorTypeID)

) ;

C.8. SENSORACTIVITY TABLE CREATION 97

C.8. SENSORACTIVITY TABLE CREATION

CREATE TABLE TSO. SensorActivity (
SensorID INT NOT NULL,
Time TIMESTAMP NOT NULL,
Active BOOLEAN NOT NULL,
Interval INT NOT NULL,
PRIMARY KEY (SensorID , Time) ,
FOREIGN KEY (SensorID) REFERENCES TSO. Sensor (SensorID)

) ;

C.9. HUB TABLE CREATION

CREATE TABLE TSO.Hub (
HubID SERIAL NOT NULL,
Name CHAR(127) NOT NULL,
DeviceTypeID INT NOT NULL,
PRIMARY KEY (HubID) ,
FOREIGN KEY (DeviceTypeID) REFERENCES TSO. DeviceType (DeviceTypeID)

) ;

C.10. SENSINGDEVICELOCATION TABLE CREATION

CREATE TABLE TSO. SensingDeviceLocation (
LocationID SERIAL NOT NULL,
EnvID INT NOT NULL,
Time TIMESTAMP NOT NULL,
DeviceID INT NOT NULL,
LocationX REAL NOT NULL,
LocationY REAL NOT NULL,
LocationZ REAL NOT NULL,
PRIMARY KEY (LocationID) ,
UNIQUE (DeviceID , Time) ,
FOREIGN KEY (EnvID) REFERENCES TSO. Environment (EnvID) ,
FOREIGN KEY (DeviceID) REFERENCES TSO. SensingDevice (DeviceID)

) ;

C.11. MEASUREMENT TABLE CREATION

CREATE TABLE TSO. Measurement (
SensorID INT NOT NULL,
Time TIMESTAMP NOT NULL,
LocationID INT NOT NULL,
HubID INT NULL,
Value DOUBLE PRECISION NOT NULL,
Tag VARCHAR(3) NOT NULL,
PRIMARY KEY (SensorID , Time) ,
FOREIGN KEY (SensorID) REFERENCES TSO. Sensor (SensorID) ,
FOREIGN KEY (LocationID) REFERENCES TSO. SensingDeviceLocation (LocationID) ,
FOREIGN KEY (HubID) REFERENCES TSO.Hub (HubID)

) ;

98 C. POSTGRESQL QUERIES

C.12. ENVIRONMENT TUPLE CREATION

INSERT INTO TSO. Environment
(timezone , name, lat i tude , longitude , elevation)
VALUES
(’GMT+1 ’ , ’IBM CAS Netherlands ’ , 0 , 0 , 0) ;

C.13. DROP ALL TABLES

DROP TABLE TSO. Measurement ;
DROP TABLE TSO. SensorActivity ;
DROP TABLE TSO. Sensor ;
DROP TABLE TSO. SensorType ;
DROP TABLE TSO. SensingDeviceConfiguration ;
DROP TABLE TSO. SensingDeviceLocation ;
DROP TABLE TSO. SensingDevice ;
DROP TABLE TSO.Hub;
DROP TABLE TSO. DeviceType ;
DROP TABLE TSO. Environment ;

C.14. DELETE ALL CONTENT

DELETE FROM TSO. Measurement ;
DELETE FROM TSO. SensorActivity ;
DELETE FROM TSO. Sensor ;
DELETE FROM TSO. SensorType ;
DELETE FROM TSO. SensingDeviceConfiguration ;
DELETE FROM TSO. SensingDeviceLocation ;
DELETE FROM TSO. SensingDevice ;
DELETE FROM TSO.Hub;
DELETE FROM TSO. DeviceType ;
DELETE FROM TSO. Environment ;

C.15. DROP SCHEME

DROP SCHEMA TSO;

D
DB2 QUERIES

D.1. SCHEME CREATION

CREATE SCHEMA TSO;

D.2. SENSORTYPE TABLE CREATION

CREATE TABLE TSO. SensorType (
SensorTypeID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1) ,
Model VARCHAR(127) NOT NULL,
Quantity VARCHAR(127) NOT NULL,
Unit VARCHAR(127) NOT NULL,
DefActive SMALLINT NOT NULL,
DefInterval INT NOT NULL,
PRIMARY KEY (SensorTypeID) ,
UNIQUE (Model , Quantity)

) ;

D.3. DEVICETYPE TABLE CREATION

CREATE TABLE TSO. DeviceType (
DeviceTypeID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1) ,
Brand VARCHAR(127) NOT NULL,
Model VARCHAR(127) NOT NULL,
MarketingName VARCHAR(127) NOT NULL,
Category VARCHAR(127) NOT NULL,
PRIMARY KEY (DeviceTypeID) ,
UNIQUE (Brand , Model)

) ;

99

100 D. DB2 QUERIES

D.4. ENVIRONMENT TABLE CREATION

CREATE TABLE TSO. Environment (
EnvID INT NOT NULL GENERATED BY DEFAULT AS IDENTITY (START WITH 1
INCREMENT BY 1) ,
Timezone VARCHAR(127) NOT NULL,
Name VARCHAR(255) NOT NULL,
Latitude DOUBLE PRECISION NOT NULL,
Longitude DOUBLE PRECISION NOT NULL,
Elevation DOUBLE PRECISION NOT NULL,
PRIMARY KEY (EnvID)

) ;

D.5. SENSINGDEVICE TABLE CREATION

CREATE TABLE TSO. SensingDevice (
DeviceID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1) ,
Name VARCHAR(255) NOT NULL,
DeviceTypeID INT NOT NULL,
LastConfigTime TIMESTAMP NOT NULL,
PRIMARY KEY (DeviceID) ,
FOREIGN KEY (DeviceTypeID) REFERENCES TSO. DeviceType (DeviceTypeID)

) ;

D.6. SENSINGDEVICECONFIGURATION TABLE CREATION

CREATE TABLE TSO. SensingDeviceConfiguration (
ConfigID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1) ,
DeviceID INT NOT NULL,
ActivatedTime TIMESTAMP NOT NULL,
PRIMARY KEY (ConfigID) ,
UNIQUE (DeviceID , ActivatedTime) ,
FOREIGN KEY (DeviceID) REFERENCES TSO. SensingDevice (DeviceID)

) ;

D.7. SENSOR TABLE CREATION

CREATE TABLE TSO. Sensor (
SensorID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1) ,
ConfigID INT NOT NULL,
SensorTypeID INT NOT NULL,
Position VARCHAR(255) NOT NULL,
PRIMARY KEY (SensorID) ,
UNIQUE (ConfigID , SensorTypeID , Position) ,
FOREIGN KEY (ConfigID) REFERENCES TSO. SensingDeviceConfiguration (ConfigID) ,
FOREIGN KEY (SensorTypeID) REFERENCES TSO. SensorType (SensorTypeID)

) ;

D.8. SENSORACTIVITY TABLE CREATION 101

D.8. SENSORACTIVITY TABLE CREATION

CREATE TABLE TSO. SensorActivity (
SensorID INT NOT NULL,
Time TIMESTAMP NOT NULL,
Active SMALLINT NOT NULL,
Interval INT NOT NULL,
PRIMARY KEY (SensorID , Time) ,
FOREIGN KEY (SensorID) REFERENCES TSO. Sensor (SensorID)

) ;

D.9. HUB TABLE CREATION

CREATE TABLE TSO.Hub (
HubID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1) ,
Name CHAR(127) NOT NULL,
DeviceTypeID INT NOT NULL,
PRIMARY KEY (HubID) ,
FOREIGN KEY (DeviceTypeID) REFERENCES TSO. DeviceType (DeviceTypeID)

) ;

D.10. SENSINGDEVICELOCATION TABLE CREATION

CREATE TABLE TSO. SensingDeviceLocation (
LocationID INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1) ,
EnvID INT NOT NULL,
Time TIMESTAMP NOT NULL,
DeviceID INT NOT NULL,
LocationX REAL NOT NULL,
LocationY REAL NOT NULL,
LocationZ REAL NOT NULL,
PRIMARY KEY (LocationID) ,
UNIQUE (DeviceID , Time) ,
FOREIGN KEY (EnvID) REFERENCES TSO. Environment (EnvID) ,
FOREIGN KEY (DeviceID) REFERENCES TSO. SensingDevice (DeviceID)

) ;

D.11. MEASUREMENT TABLE CREATION

CREATE TABLE TSO. Measurement (
SensorID INT NOT NULL,
Time TIMESTAMP NOT NULL,
LocationID INT NOT NULL,
HubID INT NULL,
Value DOUBLE PRECISION NOT NULL,
Tag VARCHAR(3) NOT NULL,
PRIMARY KEY (SensorID , Time , Tag) ,
FOREIGN KEY (SensorID) REFERENCES TSO. Sensor (SensorID) ,
FOREIGN KEY (LocationID) REFERENCES TSO. SensingDeviceLocation (LocationID) ,
FOREIGN KEY (HubID) REFERENCES TSO.Hub (HubID)

) ;

102 D. DB2 QUERIES

D.12. ENVIRONMENT TUPLE CREATION

INSERT INTO TSO. Environment
(timezone , name, lat i tude , longitude , elevation)
VALUES
(’GMT+1 ’ , ’IBM CAS Netherlands ’ , 0 , 0 , 0) ;

D.13. DROP ALL TABLES

DROP TABLE TSO. Measurement ;
DROP TABLE TSO. SensorActivity ;
DROP TABLE TSO. Sensor ;
DROP TABLE TSO. SensorType ;
DROP TABLE TSO. SensingDeviceConfiguration ;
DROP TABLE TSO. SensingDeviceLocation ;
DROP TABLE TSO. SensingDevice ;
DROP TABLE TSO.Hub;
DROP TABLE TSO. DeviceType ;
DROP TABLE TSO. Environment ;

D.14. DELETE ALL CONTENT

DELETE FROM TSO. Measurement ;
DELETE FROM TSO. SensorActivity ;
DELETE FROM TSO. Sensor ;
DELETE FROM TSO. SensorType ;
DELETE FROM TSO. SensingDeviceConfiguration ;
DELETE FROM TSO. SensingDeviceLocation ;
DELETE FROM TSO. SensingDevice ;
DELETE FROM TSO.Hub;
DELETE FROM TSO. DeviceType ;
DELETE FROM TSO. Environment ;

D.15. DROP SCHEME

DROP SCHEMA TSO;

E
COST ANALYSIS

As mentioned in the requirements (see 2.4.3), a cost analysis is requested by the client. A particular interest
is for the low-cost sensor node, as the smartphone application does not induce additional deployment costs
(except uploading the application). It is necessary that the cost includes supporting infrastructure.

In the cost analysis of the demonstrator, the costs of the server, the hubs, and the sensor node itself are taken
into account. The cost of electricity is not taken into account, with exception of the batteries of the sensor
node. The estimation assumes that four AA batteries producing 5V can power the device for a week (which is
a rather low bound). Because most of the electronics for the sensor node were ordered abroad, the dollar is
used as currency.

Bluemix: $0
IBM itself is responsible for the upkeep of their servers, and services they provide (e.g. database, web server).
Given the relatively small size of the demonstrator, its usage is negligible in cost.

Sensor Node: $17.41
The sensor node consists out of the Arduino board, a breadboard, sensors, wiring, and batteries (schematic
in figure 4.1). The cost estimation for each is as follows :

• 4 AA batteries: $1.281

• Breadboard and wiring: $3.982

• Sensors: $8.673

• Arduino Nano: $3.484

Hub : $0
Initially was planned to use Raspberry PI’s in the demonstrator (mentioned in 2.5). During implementation
however we stumbled upon a better solution: usage of the laptops of IBM. These also have both Bluetooth
and WiFi capabilities, and do not require any investments. Furthermore, due to network restrictions at IBM,
connecting unknown hardware with the network proved troublesome. These laptops did not need to be pur-
chased, nor is any special hardware needed.

Average low-cost sensor node cost: $17.41
This low average cost surpasses the initial requirements of below $100 (req. L4) and below $80 (req. L5). This

1http://www.ebay.com/itm/100-PCS-AA-1-5V-Duracell-Duralock-Alkaline-Batteries-Bulk-Wholesale-Exp-2021-/
400740322405 (retrieved 7 June 2015)

2http://www.ebay.com/itm/MB-102-830-Solderless-Breadboard-Tie-Points-65Pcs-Jumper-Cable-Wires-Arduino-New-/
181603575198 (retrieved 7 June 2015)

3As calculated in table 4.1
4http://www.ebay.com/itm/MINI-USB-Nano-V3-0-ATmega328P-CH340G-5V-16M-Micro-controller-board-for-Arduino-/
281626083826 (retrieved 7 June 2015)

103

http://www.ebay.com/itm/100-PCS-AA-1-5V-Duracell-Duralock-Alkaline-Batteries-Bulk-Wholesale-Exp-2021-/400740322405
http://www.ebay.com/itm/100-PCS-AA-1-5V-Duracell-Duralock-Alkaline-Batteries-Bulk-Wholesale-Exp-2021-/400740322405
http://www.ebay.com/itm/MB-102-830-Solderless-Breadboard-Tie-Points-65Pcs-Jumper-Cable-Wires-Arduino-New-/181603575198
http://www.ebay.com/itm/MB-102-830-Solderless-Breadboard-Tie-Points-65Pcs-Jumper-Cable-Wires-Arduino-New-/181603575198
http://www.ebay.com/itm/MINI-USB-Nano-V3-0-ATmega328P-CH340G-5V-16M-Micro-controller-board-for-Arduino-/281626083826
http://www.ebay.com/itm/MINI-USB-Nano-V3-0-ATmega328P-CH340G-5V-16M-Micro-controller-board-for-Arduino-/281626083826

104 E. COST ANALYSIS

is very promising for our demonstrator, which will comprise out of ±25 sensor nodes. This sums up to a total
cost of 25 x $17.41 = $435.25 for the demonstrator.

F
SONARQUBE CODE-STYLE DEVIATIONS

As mentioned in section 6.3.1, Sonarqube was used to manage the quality of the code. Among the points
of measurements in Sonarqube, it also includes a check of the code-style according to a specific standard.
In our project, we decided to deviate from this standard format and adopt our own self-defined code-style,
which is better readable and more line efficient, in our opinion. In this section you can find some pieces of
code conform the code-style as would be preferred by Sonarqube and conform the code-style as would be
preferred by us. The latter is used throughout the implementation of the system, which resulted in a false
negative influence on the results in section 6.3.2. In this appendix we provide the reader with argumentation
for valuing our preferred code-style over Sonarqube’s. First, in section F.1, we define the categories out of
which the deviations consist. Second, in section F.2, we provide the reader with two examples of deviations
of these categories.

F.1. CATEGORIES
The differences in both can be categorized into three categories:

• Comments at the end of lines: Sonarqube prefers that lines do not end with comments, even though it
bloats up the code, especially when importing modules, a less desired result in our opinion.

• Usage of tabulation characters: Sonarqube prefers that spaces are used, whereas the quickness and
ease of using tab characters is convenient, in our view.

• Trailing white spaces: Sonarqube prefers that lines never end with white spaces, which seems to make
sense. Though the usage of white spaces at the end of the lines in the form of empty lines was seen as
useful by us for specific commenting structures.

F.2. EXAMPLES
In this section we provide the reader with two examples, together showing code-style deviations of all three
categories stated in F.1.

One example of the differences between the preferences of Sonarqube and our own code-style is displayed in
respectively figure F.1 and F.2. We can see that the trailing comments that are preceded by tabs in lines 4-10
in figure F.2, allow for a more readable code if we compare it to the preferred code-style of Sonarqube, which
is displayed in figure F.1.

Another example of deviations between the preferences of Sonarqube and our own code-style is displayed
in respectively figure F.3 and F.4. In these images we can find a difference in the last item stated above; trailing
white spaces. The trailing white spaces used at line 3 in figure F.4 allow for - in our opinion - more readable
code in comparison to the preferred code-style of Sonarqube, which is displayed in figure F.3.

105

106 F. SONARQUBE CODE-STYLE DEVIATIONS

Figure F.1: Code according to the Sonarqube codestyle

Figure F.2: Code according to our preferred codestyle

Figure F.3: Code according to the Sonarqube codestyle

Figure F.4: Code according to our preferred codestyle

G
RAW SIG FEEDBACK

G.1. FIRST EVALUATION
Reviewer: Dennis Bijlsma (d.bijlsma@sig.eu)
Language: Dutch

De code van het systeem scoort ruim vier sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Unit
Interfacing en Unit Size.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld aantal
parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan abstractie. Daar-
naast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van de methode en in
de meeste gevallen ook tot langere en complexere methoden. Wat binnen dit systeem opvalt is dat er in
de C++ code een relatief groot aantal methoden zijn die als laatste parameter een boolean krijgen. Deze
wordt vervolgens gebruikt om eventueel een komma toe te voegen aan het resultaat. Hierdoor moet de
aanroeper al weten of er nog meer data komt. Een andere opzet hiervoor is om de methode een komma toe
te laten voegen als er al een element was. Hierdoor zou de interface eenvoudiger en makkelijker te gebruiken
worden. Het is aan te raden dit soort overwegingen mee te nemen in het ontwerp van dit soort API’s.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het opsplitsen van
dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen en
daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals bijvoorbeeld
de ’handle’-methode in de ’handle-sensing-device-identification’ module, zijn aparte stukken functionaliteit
te vinden welke ge-refactored kunnen worden naar aparte methodes. Commentaarregels zoals bijvoorbeeld
’// Check if a DeviceID is specified and is valid’ en ’// Make sure the device has a location’ zijn een goede
indicatie dat er een autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch te kijken naar
de langere methodes binnen dit systeem en deze waar mogelijk op te splitsen.

Het opsturen van zowel de schone versie als de versie met libraries geeft trouwens een goed beeld van het
project. Het is wellicht goed om in de versie met libraries ook duidelijk te documenteren welke stukken code
aangepast dienen te worden, en welke stukken code onderhouden worden door een externe partij. Dit zal
toekomstige ontwikkelaars ook helpen om deze zaken uit elkaar te houden.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te behouden tijdens de
rest van de ontwikkelfase. De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het
volume van de test-code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

107

mailto:d.bijlsma@sig.eu

108 G. RAW SIG FEEDBACK

G.2. SECOND EVALUATION
Reviewer: Dennis Bijlsma (d.bijlsma@sig.eu)
Language: Dutch

In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoudbaarheid
ongeveer gelijk is gebleven.
Op het niveau van de deelscores zien we een soortgelijk beeld als bij de eerste upload: Unit Size en Unit
Interfacing, die in de analyse van de eerste upload als verbeterpunt werden aangemerkt, scoren nog steeds
het laagste. Op beide aspecten zien we wel een kleine verbetering, maar dit heeft geen significante invloed
op de score gehad.
Uit deze observaties kunnen we concluderen dat het systeem weliswaar bovengemiddeld onderhoudbaar is,
maar dat de aanbevelingen van de vorige evaluatie beperkt zijn meegenomen in het ontwikkeltraject.

mailto:d.bijlsma@sig.eu

H
INFOSHEET

H.1. THE PROJECT
Project Title: The Sensitive Office (TSO)
Client Organization: IBM Center for Advanced Studies (IBM CAS)
Final Presentation: Monday July 6, 2015 at 13:30 PM

Description:
IBM CAS approached the TU Delft to create a demonstrator for a system that can measure environmental
quantities (e.g. temperature), and collect the data that is produced by these measurements in a specific con-
text. During the research phase, we evaluated existing solutions and studied literature pertaining to such
measurement systems. We extensively interviewed and discussed possibilities with the client. One of the
biggest challenges was the ambitious nature of the project, and the team’s initial inexperience with the hard-
ware. These challenges were overcome through responsible prioritization in collaboration with the stake-
holders in combination with a focus on iterative development. A framework for the solution was designed,
which can be implemented independent of platform, and is currently pending to be patented. The valid-
ity of this framework was then demonstrated by our own implementation. The system has been put under
heavy scrutiny throughout development, making use of a variety of unit test and coverage frameworks, third
party evaluation and a static code analysis tool. Two successful deployments were performed at IBM CAS,
demonstrating the ability of the system. The client will continue to develop the system based on our recom-
mendations for future work, potentially transforming the demonstrator into a commercial product.

H.2. THE PROJECT TEAM
DAAN RENNINGS

Interests: System Integration, Customer Interaction, Smartphone Applications
Roles: Lead Documentation, Developer, Quality Assurance, External Affairs, Final Presentation

SIMON KASSING

Interests: Information Systems, API Design, Open-source, Online Communities
Roles: Lead Developer, API Designer, Deployment Manager, Repository Manager, Documenter

H.3. CONTACT INFORMATION
Team Members: Daan Rennings (d.j.a.rennings@gmail.com)

Simon Kassing (s.a.kassing@gmail.com)
Client: Drs. Robert-Jan Sips (IBM Center for Advanced Studies, Amsterdam)
TU Coach: Prof. dr. ir. Geert-Jan Houben (SCT Department, Web Information Systems Group)

The final report for this project can be found at: http://repository.tudelft.nl

109

mailto:d.j.a.rennings@gmail.com
mailto:s.a.kassing@gmail.com
http://repository.tudelft.nl

BIBLIOGRAPHY

[1] P. R. Carlile, Transferring, translating, and transforming: An integrative framework for managing knowl-
edge across boundaries, Organization science 15, 555 (2004).

[2] T. Mens, Introduction and roadmap: History and challenges of software evolution (Springer, 2008).

[3] L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Computer networks 54, 2787 (2010).

[4] P. Brody and V. Pureswaran, The next digital gold rush: how the internet of things will create liquid, trans-
parent markets, Strategy & Leadership 43, 36 (2015).

[5] M. Dunnewind, S. A. Kassing, D. J. A. Rennings, and G. M. A. Wassenaar, Assessing network architectures
for sensor networks of ubiquitous devices, (2015).

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of things (iot): A vision, architectural ele-
ments, and future directions, Future Generation Computer Systems 29, 1645 (2013).

[7] R. J. Sips, A. Bozzon, G. Smit, and G. J. P. M. Houben, The inclusive enterprise: Vision and roadmap, ICWE
2015 (submitted) (2015).

[8] R. Z. Goetzel, R. J. Ozminkowski, L. I. Sederer, and T. L. Mark, The business case for quality mental health
services: why employers should care about the mental health and well-being of their employees, Journal
of Occupational and Environmental Medicine 44, 320 (2002).

[9] R. J. Sips, W.-J. Man, B. Havers, and G. J. Keizers, The poseidon project: An introduction, 3rd United
Nations World forum on Electronic Government .

[10] A. Overeem, J. R Robinson, H. Leijnse, G.-J. Steeneveld, B. P Horn, and R. Uijlenhoet, Crowdsourcing
urban air temperatures from smartphone battery temperatures, Geophysical Research Letters 40, 4081
(2013).

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks, Communica-
tions magazine, IEEE 40, 102 (2002).

[12] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, Wireless sensor networks for habi-
tat monitoring, in Proceedings of the 1st ACM international workshop on Wireless sensor networks and
applications (ACM, 2002) pp. 88–97.

[13] A. Milenković, C. Otto, and E. Jovanov, Wireless sensor networks for personal health monitoring: Issues
and an implementation, Computer communications 29, 2521 (2006).

[14] M. Srivastava, T. Abdelzaher, and B. Szymanski, Human-centric sensing, Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 176 (2012).

[15] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, Medusa: A programming framework for crowd-sensing
applications, in Proceedings of the 10th international conference on Mobile systems, applications, and
services (ACM, 2012) pp. 337–350.

[16] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma, Prism: platform for remote sensing
using smartphones, in Proceedings of the 8th international conference on Mobile systems, applications,
and services (ACM, 2010) pp. 63–76.

[17] C. Campolo, A. Iera, A. Molinaro, S. Y. Paratore, and G. Ruggeri, Smartcar: An integrated smartphone-
based platform to support traffic management applications, in Vehicular Traffic Management for Smart
Cities (VTM), 2012 First International Workshop on (IEEE, 2012) pp. 1–6.

111

112 BIBLIOGRAPHY

[18] ISO/IEC 25010:2011 (en), Systems and software engineering – Systems and software Quality Requirements
and Evaluation (SQuaRE) – System and software quality models, Standard (International Organization
for Standardization, Geneva, CH, 2011).

[19] ISO/IEC 9126-1:2001 (en), Software engineering – Product quality – Part 1: Quality model, Standard (In-
ternational Organization for Standardization, Geneva, CH, 2001).

[20] E. S. Yu, Towards modelling and reasoning support for early-phase requirements engineering, in Require-
ments Engineering, 1997., Proceedings of the Third IEEE International Symposium on (IEEE, 1997) pp.
226–235.

[21] K. Brennan et al., A guide to the business analysis body of knowledge (Babok Guide) (International Insti-
tute of business analysis, 2009).

[22] L. Rising and N. S. Janoff, The scrum software development process for small teams, IEEE software 17, 26
(2000).

[23] A. M. Davis, Operational prototyping: A new development approach, Software, IEEE 9, 70 (1992).

[24] D. Graham, E. Van Veenendaal, and I. Evans, Foundations of software testing: ISTQB certification (Cen-
gage Learning EMEA, 2008).

	Introduction
	Research
	Introduction
	Problem Definition and Analysis
	Problem Description
	Deliverables
	Existing Solutions
	Stakeholder Analysis
	Strategic Placement and Impact

	Design Goals
	Establishing a Quality Model
	Quality Model of Design Goals

	Requirements Analysis
	Requirement Criteria
	General Requirements
	Sensor Network Requirements
	Cloud Application Requirements
	Visualization Requirements
	Expectations and Success Criteria

	Context Constraints
	Hardware Constraints
	Hardware Choices
	Software Choices

	Development Methodology
	Adapted Scrum

	Design
	Introduction
	Architecture
	Overview
	Sensor Node Responsibilities
	Hub Node Responsibilities
	Server Responsibilities
	Database Responsibilities
	Backing of Design Choices

	Data Model
	Data Modeling Methodology
	Measurement Centric Requirements
	Device Centric Requirements
	Entity Relationship Model

	Implementation
	Introduction
	Sensor Node
	Hardware
	Software Dependencies
	Software Design
	Software Implementation

	Hub Node
	Software Dependencies and Hardware
	Software Design
	Software Implementation

	Server
	Hardware
	Software Dependencies
	Software Design
	Software Implementation

	Database
	Relational Scheme
	SensorType Table
	DeviceType Table
	Environment Table
	SensingDevice Table
	SensingDeviceConfiguration Table
	Sensor Table
	SensorActivity Table
	Hub Table
	SensingDeviceLocation Table
	Measurement Table

	Testing
	Introduction
	Test Plan
	Testing Guidelines
	Unit Testing
	Integration Testing
	System Testing

	Unit Testing Results
	Android Sensor Node
	Arduino Sensor Node
	Hub Node
	Server

	Integration Testing Results
	Smartphone UI
	Smartphone Data Persistence
	Component Dry-run
	Arduino to Unconnected Hub
	Arduino Data Persistence

	System Testing Results
	Deployment Overview
	Preliminary Deployment (June 12)
	Main Deployment (June 15)
	Deployment Analysis
	Deployment Conclusion

	Final Product Evaluation
	Introduction
	Requirements Evaluation
	General Requirements
	Sensor Network Requirements
	Cloud Application
	Visualization
	Evaluation Summary

	Code Quality
	Measuring Code Quality
	Sonarqube
	SIG Evaluation

	Process
	Introduction
	Overview
	Technical Process
	Development Tools
	Technical Challenges

	Actor Processes
	The Team
	The Client
	IBM Employees and Interns
	The Supervisor
	Coordinators

	Future Work
	Introduction
	General
	Communication Reliability Evaluation
	Efficient Communication Format
	Confidentiality, Integrity, Availability and Authenticity of Data

	Sensor Node
	Heartbeat
	Additional Phenomena
	Variable Indoor Location
	Low-cost Sensor Node Custom Hardware
	Smartphone Platform Independence
	Defect Detection
	Dynamic Addition and Removal of Sensors
	Proximity Detection
	Broader Platform Testing

	Hub Node
	Parallel Bluetooth Connection Handling
	Hub User Interface

	Server
	Refactor Handlers
	Management and Monitoring System
	Transactionalize Endpoints
	Time Synchronization
	Database Independence
	Database Improvements

	Visualization
	Passive Visualization
	Live visualization

	Conclusion
	Initial Project Description as Proposed by IBM in March 2015
	Background
	Project
	Research Questions (extra)
	Deliverables

	Quality Model of Design Goals
	Functional Suitability
	Maintainability
	Portability
	Reliability
	Efficiency
	Compatibility
	Usability
	Security

	PostGreSQL Queries
	Scheme Creation
	SensorType Table Creation
	DeviceType Table Creation
	Environment Table Creation
	SensingDevice Table Creation
	SensingDeviceConfiguration Table Creation
	Sensor Table Creation
	SensorActivity Table Creation
	Hub Table Creation
	SensingDeviceLocation Table Creation
	Measurement Table Creation
	Environment Tuple Creation
	Drop All Tables
	Delete All Content
	Drop Scheme

	DB2 Queries
	Scheme Creation
	SensorType Table Creation
	DeviceType Table Creation
	Environment Table Creation
	SensingDevice Table Creation
	SensingDeviceConfiguration Table Creation
	Sensor Table Creation
	SensorActivity Table Creation
	Hub Table Creation
	SensingDeviceLocation Table Creation
	Measurement Table Creation
	Environment Tuple Creation
	Drop All Tables
	Delete All Content
	Drop Scheme

	Cost Analysis
	Sonarqube Code-style Deviations
	Categories
	Examples

	Raw SIG Feedback
	First Evaluation
	Second Evaluation

	Infosheet
	The Project
	The Project Team
	Contact Information

	Bibliography

