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Summary

Brain-Computer Interfaces (BCIs) open avenues for communication among individuals unable to use

voice or gestures. Silent speech interfaces are one such approach for BCIs that could offer a trans-

formative means of connecting with the external world. Performance on imagined speech decoding

however is rather low due to, amongst others, data scarcity and the lack of a clear starting point of

the imagined speech in the brain signal. We investigate whether using electroencephalography (EEG)

signals from articulated speech can be used to improve imagined speech decoding in two ways: we

investigate whether articulated speech EEG signals can be used to predict the end point of the imagined

speech and use the articulated speech EEG as extra training data for speaker-independent imagined

vowel classification. Our results show that using EEG data from articulated speech did not improve

classification of vowels in imagined speech, probably due to high variability in EEG signals amongst

speakers.
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1
Introduction

Neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS) or conditions like locked-in

syndrome frequently result in profound muscular impairment, rendering patients incapable of voluntary

muscle movement and consequently unable to articulate speech [47]. This profound physical debilitation

presents significant obstacles for individuals affected by these conditions when attempting to engage in

effective communication with their external environment.

Brain-computer interfaces (BCIs) have emerged as a potential avenue to address this issue [47].

By analysing brain activity, BCI systems could facilitate communication solely based on the patient’s

thoughts. A promising approach in this context involves using imagined speech (covert speech), wherein

an individual imagines to produce speech without any muscle movement nor audible or articulated

(spoken) speech. By decoding and interpreting these neural signals, BCIs hold promise for enabling

communication with patients affected by ALS and multiple sclerosis (MS), bypassing the physical

limitations imposed by their conditions. Electroencephalography (EEG) is an non-invasive, low-cost

technique widely used to capture the electrical signals generated by neural activity, which can be

analyzed to understand both imagined and articulated speech [8, 5].

Research on imagined speech from EEG has focused on classifying small sets of stimuli, e.g., vowels

(English [22], Dutch [28, 24], Japanese [54], Spanish [46]) and isolated words (“yes” and “no” [35], nine

Russian words [53]). For the task of classifying EEG data of imagined speech, many different machine

and deep learning techniques have been used, including, support vector machine [12], linear discriminant

analysis [30], random forest [16], vanilla deep neural networks (DNNs) [42], and convolutional neural

network (CNN) [14, 13]). However, deep learning models require large amounts of data to properly

generalize for a given problem without having issues with overfitting [48] which often is not available

for this type of EEG data. Moreover, different discriminative features extracted from the EEG signals

have been used (e.g., wavelet domain features [25, 43] and common spatial patterns (CSP) [33,

55]). Nevertheless, no combination of classifier and features has proven to consistently achieve high

decoding performances [13]; although Residual Network (ResNet) algorithms [53, 42] have been found

to outperform other CNN algorithms on imagined speech classification tasks in both robustness and

practicability.

Classifying imagined speech using EEG is however a challenging task, with classification results close

to chance level [11, 16]. Being a non-invasive solution, the recording made using an EEG is not optimal,

inducing noise from, for example, blinks or muscle movement in the data [18]. Moreover, there is a

lack of imagined speech EEG data. Although different databases have been released[22, 24, 16, 38],

they differ in the number of speakers, language, the absence or presence of articulated speech, and

differences in the recording set-up, e.g., the number of channels used to record the EEG signals (e.g., 6

for Coretto et al.[16] and 62 for DAIS [24]). DaSalla et al. [22] includes 3 subjects that each performed

3 tasks for imagined speech, creating a dataset of /a/ and /u/ vowels in the English language with a no

action state task as a control. Dekker et al. introduces the Delft Articulated and Imagined Speech (DAIS)

[24] that will be used in this thesis. The DAIS dataset includes both imagined and articulated speech
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2

EEG data and audio data for the articulated speech for a total of 20 subjects. 15 prompts are included

for each subject for both imagined and articulated speech, consisting of 5 Dutch vowels and 10 Dutch

words. Coretto et al. [16] contains 5 words containing the vowels /a/ /e/ /i/ /o/ and /u/ in the Spanish

language for 15 subjects of imagined speech EEG data. Each subject in the dataset repeated each

word 50 times in a random order. Nguyen et al. [38] introduces a dataset of 15 subjects of imagined

speech EEG data.

On top of the difference between available datasets, EEG signals vary a lot, especially between different

subjects [26]. This makes it difficult for models to generalize and validate their performance. A further

difficulty is the lack of an accurate ground truth: it is not easily verifiable if the subject performed the

imagined task correctly, as is the case with articulated speech. A roundabout way of testing whether

participants complied with the task of imagining speech is to visually investigate whether structural

differences exist between the event-related potentials (ERPs) of the EEG signals for rest and imagined

speech or run a classification task predicting whether an EEG signal came from the rest state or imagined

speech [24]. Besides these difficulties, the prompts used to gather the data from the subjects also

influences the results greatly, making different datasets hard to compare. Vowels for example can be

found easier to classify than complete words [15].

Research suggests that imagined speech production can be seen as interrupted articulated speech

production without the actual muscle movement required for producing sound [36]. In other words,

the onset of imagined and articulated speech is comparable, meaning that the part before the sound

production of articulated speech is similar to imagined speech.

Figure 1.1 shows the averaged event related potentials (ERP) for participant #12 from the DAIS dataset

for rest (top panel), imagined (middle panel) and articulated (bottom panel) speech [24]. Comparing

the three ERP signals shows clear differences between the EEG data of the rest segment, imagined

speech, and articulated speech. For rest (top panel) only background EEG activity was found. For

both imagined and articulated speech activity is observed around 0.25 - 0.3 seconds, which is followed

by a broad peak/trough (depending on the channel) starting at 500 ms for articulated speech. This

corresponds to start of the articulated speech and is therefore associated with the movement of the

articulators.

Figure 1.1: Averaged event related potentials (ERP) for Participant 12 from the DAIS dataset for rest (top panel), imagined

(middle panel) and articulated (bottom panel) speech[24].
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In this work, it is investigated whether EEG data captured from articulated speech can be used to

improve classification accuracy and generalization of EEG data captured from imagined speech in two

ways: It is investigated whether articulated speech EEG signals can be used to predict the end point of

the imagined speech in the EEG signal and whether using the articulated speech EEG as additional

training data improves speaker-independent imagined vowel classification.

The overall aim for this thesis is to explore the viability of using articulated speech EEG data for improving

classification results on imagined speech EEG vowel data in the Dutch language. For this, multiple

questions need to be answered first.

• What model architecture works best for this use case?

• When removing the sound production part of articulated speech, is it similar enough to imagined

speech to be used together in a vowel EEG data classifier?

• Is it possible to mark the start of speech within an EEG signal, using only the EEG signal as a

guide?

The approach to answer these questions consists of 2 main parts. First a model needs to be created that

can mark the start of speech, or more precisely, the end of ”pre-speech”. Pre-speech is considered to

be the part of speech that occurs before audible speech is produced. In this work a model is presented

that marks the start of speech within an EEG signal. The model is trained on articulated speech EEG

data, using the accompanying audio data as a guide during training.

The second part then consists of combining articulated and imagined speech EEG data. This is done in

multiple ways, first the data is naively combined without any extra pre-processing steps. This is then

compared to combining the data after isolating the pre-speech part in both the imagined and articulated

EEG data.

Before the main experiments can be run, a shorter pilot experiment is run in which multiple different

model types are compared. The models compared are a support vector machine (SVM) [17], random

forest (RF) [29], K-nearest Neighbour (KNN), long short-term memory model (LSTM) and a convolutional

neural network (CNN). The best model from this pilot experiment is then used for the main experiments.

In all main experiments, performance is compared on different numbers of channels, to investigate

whether there is an influence of the number and location of the electrodes from which the EEG signals

are collected on imagined and articulated speech EEG classification. Muscle movement could influence

the classification of articulated speech, but is not present in imagined speech. Taking smaller subsets

of EEG electrodes, focused more on the regions of the brain that are active during imagined speech

production, like Wernickes’s region [9], can limit the influence of muscle movement on classification

performance.



2
Background

This chapter will focus on information and techniques used throughout the rest of this thesis. Terminology

and standard methods and frameworks are explained here.

2.1. Vowel Articulation
Vowels are articulated by opening up the vocal tract. Which vowel is produced depends on 3 main

parameters: the rounding of the lips, height of the tongue and position of the tongue from front to back

in the mouth. Besides these 3, vowels can further be separated based on length and whether a single

mouth position is used to articulate them (monophtongs) or 2 mouth positions are used (diphthongs).

To schematically display this, the vowel quadrant is introduced. Figure 2.1 shows this quadrant for the

dutch language. In here, the vowel extremes are put on the corners of the quadrant. The Horizontal axis

represents the height of the tongue, the vertical axis represents the amount that the mouth is opened

for that vowel.

Figure 2.1: Vowel quadrant for the Dutch language, left shows the steady-state and right shows the diphtongs [27].

2.2. EEG Data
Brain activity can be recorded using Electroencephalography (EEG) in a non-invasive way [20]. This

is done by placing electrodes on a subject’s head. The placement of these electrodes is commonly

done according to the international standardized 10-20 system. This system defines two axes, from

the nasion (bone above the nose) to the inion (bone lump on the back of the head) and the lateral

(left to right) axis. The positions are coded by an alphanumerical combination. Even numbers indicate

placement on the right brain half, odd numbers indicate placement on the left brain half. Letters are

used to denote the placement from front to back on the brain: Fp (pre-frontal), F (frontal), C (central), P

(parietal) and O (occipital). Figure 2.2 shows the schematic layout of this system.

Areas of interest for speech are Broca’s area and Wernicke’s area [9]. Broca’s area lies around the

frontal lobe . This area is associated with the motor functions of speech production and articulation,

4



2.2. EEG Data 5

Figure 2.2: Electrode layout of international standardized 10-20 64-channel EEG capture [50]

as well as the correct use of words for both spoken and written language. Wernicke’s area lies in the

posterior superior temporal lobe and is connected to Broca’s area. This area is associated with language

processing. Figure 2.3 shows these locations highlighted in the brain.

Figure 2.3: Location of Broca’s area and Wernicke’s area within the brain. [1]

2.2.1. Brainwaves
Brainwaves are oscillating voltages within the brain and are widely classed as 5 different types [6]:

Delta, Theta, Alpha, Beta and Gamma. An overview is given of the frequency bands and their relation

to speech production and perception [34]:

• Theta band: between 4 and 8 Hz. These waves become active when the phonemic restoration

effect occurs within in the brain [32]. This is when the brain tries to fill in the gaps if a phoneme is not

heard properly due to for example noise. Theta waves can also help with identifying consonants

[40].

• Alpha band: between 8 and 12 Hz. Associated with speech perception. Differs between imagined

and articulated speech. Alpha waves are stronger in articulated speech than they are in imagined

speech [31].

• Beta band: between 12 and 35 Hz. Associated with muscle movement for the articulated part of

speech [7].

• Gamma band: from 35 Hz and up. Associated with both articulated and imagined speech. Different
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locations of the brain are active in this region for articulated and imagined speech however [44].

Figure 2.4 shows an example of these different brainwaves.

Figure 2.4: Example of the different types of brainwave [6]

2.2.2. Preprocessing and Data Cleaning
After EEG signals have been recorded, they need to be pre processed to remove any signals and noise

that are not wanted within the data. This consists of three main parts: Signal filtering, removal of artifacts

and channel selection.

Artifact Removal and Filtering
Artifacts are part of the signal that are not directly related to the source of interest, in this case brain

activity. Examples of artifacts are electromagnetic interference, power line hum, oscillations from the

instrumentation used. These types of electrical artifacts are effectively removed using the correct

combination of high pass, low pass and notch/band pass filters as stated earlier.

Another type of artifact often come across in the EEG data is high voltage spikes due to for example

muscle movement while blinking, swallowing or eye movement of the subject. These are harder to filter

as they are transient, not present in every data point and often of significantly higher magnitude that

the signals of interest. In this case it can be considered to leave out the data points containing these

artifacts altogether.

Channel Reconstruction
The last EEG data pre-processing step to be discussed in this section is channel selection and bad

channel detection. When working with EEG data it is often best to use the most amount of channels

available unless you are targeting a specific part of the brain, for example when focusing on parts of

the brain responsible for speech production. However sometimes during recording errors can occur in

certain channels. It is important to detect and handle these errors before doing any further analysis.

Detecting bad channels can often be done by simply looking at the raw waveform. Figure 2.5 shows an

example of EEG data containing a bad channel. Channel 53 in this case contains no discernible signal,

only noise.
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Figure 2.5: Example of EEG data containing a bad channel, in this case channel 53.[2]

In some cases it is sufficient to drop bad channels from the dataset. However, this is not always wanted.

For example in cross-subject analyses you want to have the same data dimensions for each subject.

In this case a single bad channel for one subject would mean you have to drop that channel for every

other subject as well, unnecessarily wasting clean data. In this case interpolating the bad channel could

be a better option. Figure 2.6 shows EEG data with a bad channel in red, before interpolation on the

left side, where the signal is almost flat except for some noise, and after interpolation on the right side

where the signal is more similar to the signal from the other EEG channels.

Figure 2.6: Example of EEG data containing a bad channel (red) before and after interpolation of the bad channel.[2]

2.3. Machine Learning Models
In this thesis several models are tried and used, both classical machine learning (ML) and deep learning

(DL) models. This section will go over how these models function.

2.3.1. Support Vector Machine
A Support Vector Machine (SVM) works in concept by assuming that the input vector can be non-linearly

mapped to a high dimensional feature space, in which then a linear decision boundary can be created

[17]. This allows data that normally cannot be separated in a linear way to still be categorized. Figure

2.7 shows how an SVM transforms the data such that it can be categorized using a linear decision

boundary. The data shown is only separable using a non linear curve, but after the SVM performs its

transform, the problem space is transformed in such a way that now the data is separable in a linear
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way.

Figure 2.7: Example of how an SVM creates a linear decision boundary in non-linearly separable data [3]. Left image shows the

two classes of data, which in the middle image are categorisable by a curve as a decision boundary. The right image shows the

data after the SVM applied its transform, now the data is linearly separable.

SVM models can use different types of kernel functions: linear, nonlinear, polynomial, radial basis

function (RBF) and sigmoid. This kernel is what performs the transform. Most commonly RBF is used

as a kernel function [51].

2.3.2. Random Forest
The Random Forest (RF) algorithm is a type of decision tree algorithm. An RF model creates multiple

decision trees within arbitrary subspaces of the input data [29]. This divides the feature space of the

data over multiple trees, making each tree focus on its own small subset of features of the data. The

idea is that these trees in different subspaces perform their classification in different ways from each

other, based on different features, so that when they are combined they will complement each other.

This way the complete forest can have higher accuracy and generalization than any single tree in the

forest could achieve. Classification using random forest models is done by letting each smaller decision

tree make its own prediction, which are then used to determine a majority vote, combining the output of

each tree in one single output.

2.3.3. k-Nearest Neighbour
K-Nearest Neighbour is the simplest machine learning algorithm to be discussed. It works by the

assumption that samples from the same category can be found close to each other in the input space.

Classification is done by a majority vote. This works by comparing a to be classified sample (from for

example the test set) to a number of already known samples (from for example the training set). The

model will look at the label of the k number of closest neighbours to the input sample. The label that is

most prevalent, in other words the label for which the majority of samples ”voted”, is then also assumed

to be the category of this new sample. Figure 2.8 shows this process. The number of neighbours to

consider, K, is the only hyper parameter to choose for this model. A smaller k will make a model more

likely to over fit and produce unstable decision boundaries, while a larger k can make the model lose

too much detail, but creates smoother decision boundaries.
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Figure 2.8: Example of a sample being classified by a KNN model. A k-number of known points closest to the new sample is

considered. The label that is most common between these will be the label of the new sample [4].

To determine how close 2 different samples are to each other, a distance metric is needed. This metric

gets smaller the closer 2 samples are alike. For example for samples lying in n dimensional space, the

Euclidean distance between them can be used given by the formula

dEuclidean(i, j) =

√√√√ n∑
t=1

(it − jt)2

Where i and j are the samples to be compared. Other commonly used distance metrics are the

Minkowski distance, of which Euclidean distance is a special case where q = 2, given by

dMinkowski(i, j) =
q

√√√√ n∑
t=1

(it − jt)q

and the Manhattan distance, which is a special case of Minkowski distance where q = 1, given by

dManhattan(i, j) =

n∑
t=1

(it − jt)

When using a KNN model for EEG however, these metrics can not be used. The reason for this is that

not just simple samples are compared, but complete time series are compared to each other. Instead

of the aforementioned distance metrics, another type of similarity measure is used, Dynamic Time

Warping.

Dynamic Time Warping
Dynamic time warping (DTW) [45] is a measurement of similarity between two signals, even if they do

not perfectly sync up. This can be used as a distance metric for a KNN model when working with time

series data, which can then be used to compare samples to each other during majority voting. With
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DTW, the time indices of the two time series are aligned such that the Euclidean distance between the

signals is minimized. This becomes the optimization problem

DTW (X,Y ) = min
π∈A(X,Y )

 ∑
(i,j)∈π

d(Xi, Yj)
q

 1
q

Here A(X,Y ) is the set of all possible paths between signals X and Y. π is the alignment path for these

signals. A path should always start with both start indices of the signals, and should always end with

both end indices of the signals. All indices of both signals should appear at least once in a path.

2.3.4. Long Short-Term Memory Model
The Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN). By using gated

memory cells, it can be used to learn information over longer time scales compared to simple recurrent

neural networks. LSTM models are therefor useful for time series classification tasks, such as speech

recognition [41].

An LSTM model is made up of multiple LSTM cells. Within each cell, there are 3 gates: the input, output

and forget gate. These gates control how information is passed through the cell. For the gates a sigmoid

σ(x) activation function is often used, which is defined as follows:

σ(x) =
1

1 + e−x

The activation of the gates determines which information of the previous time steps is kept in the cell

state and which is forgotten. This is what makes an LSTM model stand out from a standard Recurrent

Neural Network (RNN) model and what allows for the long term connections within the data to be

remembered by the model.

Figure 2.9 shows an overview of an LSTM memory cell. In here, x denotes the input to the layer, h the

hidden state and c the cell state.

Figure 2.9: Memory cell of an LSTM recurrent neural network model. [10].

Listing 2.1 shows how everything is put together in equation form for a forward pass of an LSTM model.

Here t indicates the current time step, it, ot and ft represent the activation vectors for the input, output

and forget gates respectively. ht represents the hidden state for time step t. c′t and ct represent the cell

input activation and cell state vectors respectively. � is the element wise multiplication of 2 vectors.
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W ∈ Rh×d, U ∈ Rh×h and b are the weight matrices and bias vector that are learned during training

of the model. The size depends on the input vector size (d) of and the size of the hidden state for the

model (h).

it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
ft = σ(Wfxt + Ufht−1 + bf )
c′t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c′t
ht = ot � tanh(ct)

(2.1)

2.3.5. Convolutional Neural Network
A convolutional neural network (CNN) consists of 3 main layer types. A convolution layer and a pooling

layer that focus on feature extraction and a fully connected layer that is used to make predictions from

these features. This section will cover each of these layers.

Convolutional Layer
The convolutional layer does most of the heavy lifting of a CNN model. A convolutional layer consists of

3 components: the input data, a filter (also known as a kernel) and a feature map. When using time

series EEG data as an input, the input to the convolutional layer has 2 dimensions: the length in time

steps of a sample and the number of features per time step.

A kernel is one of the trainable parameters in a CNN model. A kernel can be considered a feature

detector. Features in this context are completely abstract and learned by the model during training.

During convolution, the kernel moves across the input signal looking for a certain feature within its

receptive field. The output of a convolutional layer is the convolution product of the input signal with

the kernel. A convolutional layer can consist of many of these kernels, which can result in a higher

dimensionality on the output than the input signal.

There are 3 main hyper parameters that can be tuned for a convolutional layer. First, the kernel size

is an important hyper parameter. This determines the window size of the kernel, essentially dictating

the time frame in which a kernel looks for features. Second, the kernel count determines how many

different kernels are used independently on the input signal. The last main hyper parameter is stride.

Stride in essence is the distance, in number of time steps, that a kernel will jump over to the next time

frame that it considers. Higher strides result in a smaller output vector of the convolutional layer.

Pooling Layer
The pooling layer is a down sampling layer and most often found between subsequent convolutional

layers. As stated before, using multiple kernels can result in a higher dimensionality on the output of a

convolutional layer than the input. The pooling layer is then used to bring this down again.

A pooling layer works in a similar way to a convolutional layer. It also runs a kernel across the input

signal, but instead of containing weights, the kernel applies an aggregate function to the input signal.

Most commonly used aggregate functions are max pooling and average pooling. Max pooling takes the

highest value of each time step to send to the output. Average pooling calculates the average value

within its receptive field and puts that into the output array.

Fully Connected Layer
A fully connected layer is added to a CNN to perform the actual task of classification or regression on

the features that are extracted by the convolutional and pooling layers. This layer is the same as used in

classical neural networks. For classification, the number of output neurons correspond to the number of

classes to classify. A softmax activation is used on this layer for classification. For regression problems,

1 output neuron is used.



3
Methodology

This chapter will focus on the methods used to combine articulated and imagined speech EEG data.

First a detailed overview is given of the dataset used. After that, that the general pre-processing steps

are discussed that are then applied to the data for each experiment. The first experiment to be discussed

is the pilot experiment, in which multiple models are compared to each other on articulated speech EEG

data vowel classification. From this experiment, the best model is chosen and used for all remaining

experiments. After this, a method is introduced to separate the pre-speech section from the rest of

the EEG data using a model trained on the articulated EEG data. Finally the experimental setup is

introduced. Here the remaining comparison experiments are explained, that explore the usage of

articulated speech in classification of imagined speech data.

3.1. Database
This thesis uses the Delft Articulated and Imagined Speech (DAIS) dataset [21], which consists of EEG

signals of imagined and articulated Dutch and speech from 20 native Dutch subjects, 6 male and 14

female [24]. The subjects were asked to imagine and articulate speech of 15 prompts: five vowels (/a:,

e:, i, o:, u/ where “:” indicates long vowels) and 10 words. The 5 vowels constitute the different corners

of the Dutch vowel quadrant. The 10 words are 5 Dutch word-pairs that are also words when read

backwards (with english translations provided), each vowel is part of one word pair:

• taal and laat for /a:/ (“language” and “late”)

• leeg and geel for /e:/ (“empty” and “yellow”)

• niet and tien for /i/ (“not” and “ten”)

• toon and noot for /o:/ (“tone” and “note”)

• soep and poes for /u/ (“soup” and “cat”)

Figure 3.1 shows the Dutch vowel quadrant with the available vowels marked in red.

12
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Figure 3.1: Dutch vowel quadrant with the vowels available in the DAIS dataset marked in red. The vertical axis represents how

open the mouth is to produce the sound and the horizontal axis represents the position of the tongue elevation.

The EEG signals were recorded over 62 channels, placed according to the standard 10-20 international

system [39] using the TMSi SAGA 64+ and with a BrainWave EEG Cap at a sampling frequency of

1024 Hz and the TMSi SAGA interface for MATLAB. The SAGA docking station was located outside the

sound-attenuating room. Impedances were kept below 50kΩ. The audio is sampled at 44.1 kHz.

Each participant completed 20 runs of 15 trials, one for every prompt (i.e., the 15 Dutch vowels and

words), where a trial consisted of 4 successive segments: rest, reading of the prompt, imagining to

produce the prompt, and articulating the prompt. Each run was followed by (another) 2s rest. Each

EEG recording is divided into 2s segments, for each prompt [24].

3.2. Data Pre-processing: Filtering
First, the EEG data was band-pass filtered (Second order Butterworth filter) using a high-pass filter at

1 Hz and a low-pass filter at 40 Hz to limit any electrical noise, such as power line noise, present in

the signal. Artifacts such as blinks and muscle movement are removed where possible by using the

low-pass filter. If it is not possible to remove the artifact from the EEG data frame, the whole frame is

discarded.

Lastly, when dropping channels from the EEG data for the different experiments that are discussed in

3.6.1, the channels must be re-referenced to each other by subtracting the average of all remaining

channels combined from each channel.

3.3. Pilot Experiments: Model Selection
A number of pilot experiments were done to determine the best model type to use for all further

experiments. In these pilot experiments we compared support vector machine (SVM), K-nearest

neighbour (KNN) and random forest (RF) machine learning models as well as Long short-term memory

(LSTM) and Convolutional Neural Networks (CNN) deep learning models on articulated speech vowel

classification. The deep learning (DL) models, (LSTM and CNN) can be used directly on the pre-

processed EEG signals. The machine learning (ML) models (SVM, KNN and RF) need some adaptation

to work with the time series data from the EEG channels. Performance for all models is measured

in accuracy as correct predictions divided by total number of test samples. After all filtering steps as

discussed in section 3.2 a total of 356 training samples and 83 test samples remain.

Time Series K-Nearest Neighbour
A KNN works by comparing a distance value between multiple samples. Dynamic Time Warping

(DTW)[45] is used as a distance measurement for the KNN algorithm. With this distance measurement,

the KNN algorithm can be applied as normal: k-number of samples from the training set are compared

to the given sample. The label for the unknown sample is then determined by a majority vote from the

k-nearest samples found in the training set. For the pilot experiment a k of 7 is used. This number is

chosen such that no tie can occur, and every class could be represented at least once in the majority

vote.
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Time Series Random Forest
The time series variant of the random forest algorithm works by extracting features from a given window.

The features extracted per window are the mean, standard deviation and the slope. The total number

of features for this random forest is then 3 times the number of windows that fit the data. A standard

random forest tree is then trained with these features as input data. Since every channel in the EEG data

needs to be considered as a separate feature, the model needs to be adapted to work with multivariate

data. To do this, one of these trees is made for each feature (EEG channel) in the data. Each feature

tree then comes up with a classification result, considering only the feature (channel) they are assigned.

The overall classification result for the model is then determined by a majority vote from all these feature

trees. For example, consider a dataset consisting of 6 EEG channels. In this case 6 feature trees are

created that all focus on a single channel. 4 of the 6 trees then classify their channel with label ”A”,

while the other 2 classify their channel as label ”B”. The overall model will then output ”A” as the label

for the overall sample, as label ”A” has gotten 4 votes versus only 2 votes for sample ”B”.

Time Series SVM
The adaption of the SVM model for time series is comparable to that of the KNN model. A different

type of internal metric needs to be used in order to compare the different samples. For this experiment,

global alignment kernels (GAK)[19] are used, which is a form of DTW, as used for the KNN.

3.4. Final Model Architecture
Based on the pilot experiments described in section 3.3, the best-performing model is chosen for the

experiments reported here. The model used is a CNN model with an input size of 2048 timesteps with a

variable number of features. The feature count per timestep depends on the number of EEG channels

used, as each channel is considered to be a separate feature. The model consists of three repeated

convolutional layers followed by global average pooling and finally a fully connected prediction layer,

similar to commonly used convolutional models for time series classification [49]. Each convolutional

layer has batch normalization and a dropout of 25% to prevent overfitting with rectified linear activation

at each layer.

Two versions of the CNN model were created: one for the classification task (Experiment 2 below) and

one for the start-of-articulated-speech/end-of-imagined speech detection task (Experiment 1 below).

The speech detection model, being a regression model, has one single output neuron that outputs the

estimated start of speech time, while the classification model has one neuron for each vowel class to

predict.

3.5. Predicting the End Point of Imagined Speech
To separate the imagined speech from possible noise in the EEG frame, a model is made to detect

where imagined speech ends. While there is no ground-truth for the endpoint in imagined speech

available, for articulated speech, it is known when speech starts, and the time stamps of the speech are

aligned with the EEG signal of the articulated speech. It is assumed that the starting point of articulated

speech is the end of the preparations to speak, and then is taken as the end point of the imagined

speech.

To determine at which timestamp speech starts for each data sample, SileroVAD, a neural network

based voice activity detection (VAD) algorithm [52], is applied to the speech files provided in the DAIS

dataset. From this, a timestamp is extracted at which speech starts in the articulated speech. The

period in the EEG signal prior to this point we refer to as “pre-speech”. A CNN model was trained with

articulated speech EEG signal segments as input and the timestamps obtained from the VAD as target,

transforming this into a regression problem. The model trained for 150 epochs.

Figure 3.2 shows an example of a segment of articulated speech (bottom left) and the accompanying

EEG signal (top left). The blue vertical line marks the onset of speech as provided by the VAD. The top

right panel shows the EEG signal after removing the EEG signals after the speech onset, i.e., it only

shows the “pre-speech” EEG signal. Here the difference can be seen between the pre-speech only and

full EEG inputs to the models.
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Figure 3.2: Left panels: EEG segment of articulated speech (top) and the acoustic signal (bottom); Right panels: EEG signal of

the “pre-speech”, after cutting the segment at the start of speech (vertical line).

3.6. Experimental Setup
For the experiments the vowel data (a:, e:, i, o:, u) is used. Data of five participants was excluded:

Participants #9 and #13 were excluded because they are left-handed, participants #7 and #17 were

excluded because their signals contained multiple noisy channels, and participant #2 because a large

part of the articulated speech trials were rejected as they contained eye blinks, causing an imbalance in

the number of covert speech trials vs. the articulated speech trials. For participant #1, channel FC2

disconnected during the experiment and was deleted. For the other 19 participants, data from all 62

EEG-channels is available.

After dropping faulty segments and subjects, a total of 1291 articulated speech segments and 1412

imagined speech segments remain. This gives per vowel an average of 258 segments for articulated

speech and 282 segments for imagined speech and per subject an average of 86 segments for articulated

speech and 94 segments for imagined speech.

The experiments were run in a speaker-independent scenario. Articulated and imagined data are both

split in an 80% training split and 20% test split. This results in 1039 articulated and 1130 imagined

speech training samples and 252 articulated speech and 282 imagined speech test samples. These

sets are added together for the combined data experiments, resulting in a total of 2169 training samples

and 534 test samples for those experiments. The same training and test sets were used for both the

detection and classification experiment. Each experiment is repeated 5 after which an average accuracy

is computed.

3.6.1. EEG Channel Selection
In both the speech detection and vowel classification experiments, we compare performance on the

vowel EEG signals from four sets of electrodes:

• Channel Set 6: 6 channels {F3, F4, C3, C4, P3, P4}. Following the Coretto database [16], we

use 6 channels, which is the lowest number used in any database of imagined speech.

• Channel Set 8: 8 channels {Fz, C3, Cz, C4, Pz, PO7, Oz, PO8} as used in [5]. These channels

are chosen as they are close to Broca’s and Wernicke’s regions of the brain, which is assumed to

produce good quality imagined speech-based EEG signals [5].

• Channel Set 16: 16 channels {F7, F5, FT7, FC5, FC3, FC1, T7, C5, C3, Cz, C4, TP7, CP5, CP3,

P5, P3} that are located on specific areas of the cortex that are known to be involved in language

processing. These 16 channels were also used in the validation study reported in [24].
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• Channel Set 62: All available channels are used.

Each channel subset is run 5 times for each combination of train and test data (articulated, imagined

and combined data) as discussed in Section 3.6.3.

3.6.2. Predicting end point of imagined speech
In the first experiment, we aim to predict the starting point of the articulated speech. Four models were

trained to predict the start of the speech signal in the EEG of the articulated speech, one model for each

channel set. The same training and test data are used for the different channel sets. We evaluate the

models’ performance on the articulated speech test set, in terms of the Mean Squared Error (MSE) of

the difference in timestamp between the target timestamp and predicted timestamp in milliseconds. An

average MSE value is calculated over the five runs of each model.

3.6.3. Using articulated speech EEG for improving imagined speech EEG classifi-
cation

Several experiments were run: 1) a model was trained and tested on the articulated speech EEG to set

an upper-bound for the task of imagined Dutch vowel classification from EEG; 2) a model was trained

and tested on the imagined speech EEG to set a baseline; 3) two cross-experiments where the model

trained on articulated speech EEG is tested on the imagined speech EEG and vice versa were carried

out. 4) To investigate whether using EEG from articulated speech during training improves imagined

vowel classification, the articulated speech EEG training data and the imagined speech EEG training

data were combined to train a combined model for each channel set. This model was tested on both

the imagined and articulated speech test sets.

Under the assumption that the pre-speech part for imagined and articulated speech is similar, the end

point of the imagined speech is predicted from the imagined speech EEG using the prediction model, and

used the pre-speech part of the imagined speech and articulated speech EEG to train the four models.

The same experiments are then run as done with the full EEG signal, but only using the pre-speech

of the imagined and the pre-speech of the articulated speech EEG. The models are evaluated using

accuracy on the 5-vowels classification task.

3.7. T-SNE Analysis
After the experiments described above are run, some more insight in to what the model is doing is

needed to help understand the results. For this t-SNE analysis [37] is done on the layers within a

given model. First an analysis is done on a model trained and tested with articulated speech EEG data

containing all channels. This is then compared to a model trained and tested on imagined speech data

containing all channels, to see how the 2 types of data differ from each other when used in a model. The

training and testing procedure is the same as for the other experiments. The same pre-processing steps

are applied and the same datasets are used as for the articulated and imagined speech experiments as

described in section 3.6.3. For legibility, a smaller subset of subjects was used. Only subject 1, 3 4 5

and 6 are considered. A total of 63 samples are used for imagined speech analysis and 99 samples are

used for articulated speech.



4
Experimental Results

4.1. Initial Model Comparison
Table 4.1 shows the accuracies together with the standard deviation of the models used in the model

exploration experiment when classifying articulated speech vowels using all channels on full EEG frames.

It can be seen that from the basic ML (KNN, RF and SVM) models, the KNN model scores the best on

average, although a high standard deviation is observed. The SVM scores just slightly above chance

level of 20 %. The RF model scores comparable to the LSTM model, but the LSTM model has a lower

standard deviation. The CNN model scores highest overall with an average of 49% and a standard

deviation of 2.8%. This makes it the best choice to use for all other experiments.

Table 4.1: The accuracy and Stdev for articulated speech vowel classification task of the 5 models tested in the pilot experiment.

Model KNN SVM RF LSTM CNN

Accuracy (%) 32.2 23.3 28.4 28.1 49.0

std dev (%) 7.5 3.8 3.3 1.8 2.8

4.2. Predicting the End point of Imagined Speech
Table 4.2 shows the MSE and standard deviation (Stdev) of the difference (in milliseconds) between the

ground-truth timestamp of start time in the articulated speech EEG signal and the predicted timestamp

for the four models with different channel sets. First, with increasing number of channels, the MSE and

standard deviation reduce, although the smallest standard deviation was found for the model with only

6 channels. Importantly, all models show relatively good prediction results, with a maximum MSE of

only 5.65 ms, which is a lot less than the duration of a single vowel sound, which is around 300 ms in

this dataset. This indicates that the start of speech can be predicted from the EEG signal of articulated

speech within a relatively small margin.

Table 4.2: The MSE and Stdev of the predicted start of the articulated speech (in ms).

Channels Set 6 Set 8 Set 16 Set 62

MSE (ms) 5.65 5.20 4.17 2.55

std dev (ms) 0.23 0.53 0.46 0.41

4.3. Using articulated speech EEG for improving imagined speech
EEG classification

Tables 4.3 and 4.4 show the classification results of the different models on the EEG of articulated and

imagined speech in terms of accuracy together with the standard deviation for each channel subset

17
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when the full EEG signal is used (Table 4.3) and when only the pre-speech is used (Table 4.4) for

the four different channel sets. The results are grouped by the type of training and test data used

(articulated, imagined or a combination) and the number of channels.

The results for experiment 1 show a baseline of 53.8% accuracy for speaker-independent articulated

Dutch vowel classification when all available channels and the full EEG segments are used. This can

be viewed as an upper bound for the imagined vowel classification task. This performance drops to

43.9% when only the pre-speech part of the segments is used. The information related to articulation in

the EEG signal is thus needed for improved classification of articulated vowels. Interestingly however,

this is still much higher than any of the imagined speech results, suggesting that there is a non trivial

difference between the pre-speech part of articulated speech and imagined speech.

The results for experiment 2 show a baseline of 24.8% accuracy for speaker-independent imagined

Dutch vowel classification when all available channels and the full EEG segments are used. This

increases to 27% accuracy when only using the pre-speech part of the EEG segment, although this still

falls within 1 standard deviation from the baseline. Chance level in all cases is 20%.

The results from experiment 3 show a worse performance for models trained on the other type of data

than with which they are evaluated. One thing to note for these cross-experiments however, is that the

pre-speech only models perform better than the models trained on full EEG segments.

The final experiment investigated whether combining training data from articulated and imagined speech

was beneficial for vowel classification. The results show that overall there is little benefit when training

on both articulated and imagined speech EEG for classification of both imagined and articulated speech,

with the exception of the imagined speech all-channels full-EEG model, which in fact gave the best

performance on imagined vowel classification across all models.

Table 4.3: Accuracy (in %) of the classification experiments using the full EEG frames, grouped by channel sets used.

Test Training 6 Chan. 8 Chan. 16 Chan. All Chan.

art. art. 28.4± 1.0 31.0± 0.9 45.5± 2.2 53.8± 4.9
art. img. 25.5± 0.8 27.4± 1.4 26.5± 1.7 30.1± 4.1
art. combined 28.8± 2.4 30.3± 1.8 42.0± 2.2 43.2± 2.9
img. art. 25.3± 1.7 23.9± 0.5 23.6± 1.3 24.8± 2.1
img. img. 24.1± 1.6 24.8± 1.2 27.1± 2.7 24.8± 1.8
img. combined 25.8± 2.0 24.9± 1.6 25.1± 1.4 27.5± 1.7
combined combined 26.1± 0.8 25.5± 1.5 30.5± 1.3 30.4± 1.0

Table 4.4: Accuracy (%) of the classification experiments using the pre-speech, grouped by channel sets used.

Test Training 6 Chan. 8 Chan. 16 Chan. All Chan.

art. art. 29.7± 1.7 32.5± 1.6 37.3± 3.3 43.9± 2.3
art. img. 27.5± 2.7 25.8± 1.6 27.6± 2.7 29.4± 1.2
art. combined 28.0± 2.1 29.8± 1.9 33.9± 2.5 39.4± 2.9
img. art. 23.9± 0.8 24.4± 1.0 23.9± 1.7 26.1± 2.6
img. img. 24.9± 1.3 25.6± 0.9 25.7± 1.4 27.0± 2.4
img. combined 24.1± 0.8 25.9± 1.6 25.2± 0.8 25.9± 0.9
combined combined 24.8± 0.7 26.2± 1.6 26.8± 1.6 27.8± 1.4
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4.4. T-SNE Analysis
Figure 4.1 shows the t-SNE analysis result for articulated speech. The left image shows the data points

grouped by classification targets, with red for /a:/, green for /o:/, blue for /e:/, yellow for /i/ and orange for

/u/. The right image shows the same data points, but grouped by speaker. Figure 4.2 shows the same

for imagined speech.

From figure 4.1 it can be seen that clustering happens for the different classification targets on the

articulated speech model. This clustering is not present when looking at figure 4.2 for the imagined

speech model. Interestingly however, when labeling the points per speaker, it can be seen that the

data for each speaker clusters together for the imagined speech model. This is less obvious for the

articulated speech model, suggesting that the imagined speech model internally models the difference

between speakers instead of the difference between classification targets, while the articulated speech

model does the opposite.

Figure 4.1: Left panel: t-SNE result of articulated speech model, grouped by classification target. Right panel: t-SNE result of

articulated speech model, grouped by speaker.

Figure 4.2: Left panel: t-SNE result of imagined speech model, grouped by classification target. Right panel: t-SNE result of

imagined speech model, grouped by speaker.



5
Discussion and Conclusion

The aim of this thesis is to use articulated speech EEG data to improve classification results on imagined

speech EEG data. First, multiple classification models are compared to each other, to pick the best one

for further experiments. This resulted in the use of a CNN model. After that, an onset of articulated

speech detection model is created which is then used to mark the end of imagined speech in the

imagined speech EEG segments. This is done to try and separate useful information in the EEG signal

from noise by removing anything that is not considered to be articulated speech. The experiment

investigating the viability of such a model showed potential for a speech detection model based on EEG

signals instead of audio signals when used on articulated speech EEG data in a speaker-independent

way. The EEG signal before articulation onset is referred to as “pre-speech”. One assumption made

in this thesis, is that this model can then be used to mark the point in the EEG data where imagined

speech ends. Due to the lack of ground truth data, this assumption however cannot be validated. Future

research could investigate the performance of this approach in a speaker-dependent scenario. Using a

speaker-dependant model could more accurately capture the useful information in the imagined speech

EEG data, as the between-speaker variability in the EEG signals is removed completely this way.

In a second experiment, it is investigated whether combining articulated and imagined speech EEG

without extra processing steps improves imagined speech vowel classification. This does not improve

the classification results, and in most cases even deteriorates the model performance. These results

indicate that articulated and imagined speech can not be used together without extra processing steps.

A possibility for this is the presence of motor functions for speech in articulated speech that are not

present in imagined speech. A model can use these extra signals to help classification in articulated

speech, which then does not translate into imagined speech classification.

After this, an experiment was done to investigate if using only the pre-speech part of articulated speech

EEG data makes it more compatible with the imagined speech EEG data for use in training a classifier.

The result from this experiment again shows no improvement to the classification results. This further

suggests that articulated speech cannot be used to increase the amount of data available for imagined

speech classification.

Overall the results on speaker-independent imagined vowel classification are in line with other research

where the focus is on speaker-independent models [23]. From the results of experiment 3 in Tables

4.3 and 4.4, it can be seen that there is usable information in the pre-speech part of articulated speech

EEG data as all results are above chance level. Nevertheless, in general using pre-speech only did not

improve vowel classification of imagined nor articulated speech. However, there are two interesting

findings. For the all-channels model trained on imagined vowel EEG and tested for imagined vowel

classification, using only the pre-speech gave an improvement over using the full EEG, suggesting

there is information in the full signal that is unnecessary and reduces performance. This is in line with

the second interesting finding: the 16-channel model trained on imagined speech outperforms the all-

channels model on imagined speech vowel classification. Also here, using less data improved imagined

vowel classification. Future research should focus on investigating what information is necessary for
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improved imagined vowel classification and what information is better removed from the EEG signal.

The lack of an improvement when using pre-speech EEG is not in line with the assumptions made

in this thesis based on the literature: the difference between imagined speech EEG and the phase

before speech in articulated speech EEG is too different to be used together to train a classifier.This

can be seen from the classification results of full EEG frames compared to pre-speech only frames in

articulated speech. While the pre-speech only frames score lower than the full frames, suggesting some

data is lost when removing the articulation part of speech from the EEG frame, they still score much

higher than any imagined speech classification models in this thesis, further accentuating the non trivial

difference between articulated and imagined speech. Although, of course, it cannot be excluded that

the speech onset detection in EEG algorithm used in this thesis is not working well enough for imagined

speech. However, due to a lack of ground truth, this cannot be verified.

When looking at the t-SNE analysis plots, one thing that is noticeable for the articulated speech model is

that some vowels cluster together more than others. For example, /a:/ and /u/ cluster far away from each

other, while /o:/ and /u/ cluster together more. This suggests that /a:/ and /u/ are easier to distinguish

from each other by a classifier than /o:/ and /u/ are. This also corresponds with their relationship to

each other on the dutch vowel quadrant, as /o:/ and /u/ lay on the same side and /a:/ and /u/ lay on

opposite sides, with regards to tongue position. This indicates that the position of the tongue is encoded

somewhere in the articulated speech EEG data.

Another thing to notice from the t-SNE plots is the lack of clustering for vowels in imagined speech, but

the presence of clustering in subjects. For articulated speech this is the opposite. This further confirms

the high variability between subjects in imagined speech data, and indicates further research should

focus on speaker dependant models.

To conclude, the data scarcity problem in imagined speech EEG classification cannot easily be solved by

adding more data from articulated speech EEG. Instead, research focus should lie on investigating what

information in the EEG signal to use for imagined speech classification, and better ways to generalize

the EEG signals across speakers. A good place to start is comparing the pre-speech part of articulated

speech to imagined speech in a speaker-dependant way, to get a better idea of how these signals

exactly differ from each other.
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