ANALYSIS OF MIXED-MODE FRACTURE IN CONCRETE
v By Jan G Rots! and René de Borst?

Apstract: A smeared crack model that covers tensile softening in
mode I and shear softening in mode II fracture is described. In addition,
the model provides for unloading and reloading and for multiple crack
formation. Particular forms of tension and shear softening functions and

" relations with more conventional models are discussed. Two examples
involving mixed-mode fracture in notched, unreinforced concrete beams
have been included to demonstrate the versatlhty of the model. The
results indicate that the addition of shear softening is essential to obtain
realistic results in the post-peak regime since the classical approach
based on a constant shear retention factor then results in a too stiff
behavior. The results furthermore demonstrate that snap-back behavior
may occur in strain- softemng concrete under quasistatic loading condi-
tions, Attention is also given to the possibility of hour-glass formation
when constitutive laws 1nvolv1ng softening are deployed in a finite
element model, ‘ °

INTRODUCTION

The development of powerful finite element codes for analyzing con-
crete structures has very much stimulated the interest in constitutive laws
for concrete. At present, a considerable number of models are available for
the behavior of concrete under compressive stresses, for the long-term
behavior of concrete, for simulating crack initiation and propagation, etc.
With regard to the latter, Hillerborg et al. (1976) and BaZant and Oh (1983)
have developed sophisticated tensile softening formulations to simulate the
mode I cracking behavior of concrete, which have subsequently been
implemented in a number of finite element codes (e.g., Crisfield 1986;
Glemberg 1984; Ingraffea and Gerstle 1985; Leibengood et al. 1986; Rots et
al. 1984, 1985; William and Sture 1985).

Less attention has been paid to the modeling of shear transfer across a
crack. Indeed, some formulations exist for modeling crack dilatancy (e.g:,
BaZant and Gambarova 1980; Reinhardt and Walraven 1982), but almost all
numerical applications deploy a so-called shear retention factor p (Suidan
and Schnobrich 1973) to model aggregate interlock. This is a rather coarse
method, especially when we consider that B is usually assigned a constant
value, so that there is a linear ascending relation between shear stress
increment and shear strain increment across the crack. Some researchers
have considered the assumption of a constant shear retention factor too
crude (e.g., Cedolin and Dei Poli 1977; Kolmar and Mehlhorn 1984) and
have made it a descending function of the crack normal strain, assigning it
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a zero or almost zero value for large crack strains. But even with this
improvement, we still face the anomaly that for large crack strains a large,
constant shear stress is being transmitted across the crack. To remedy this,
a shear softening relation will be used herein for mode II crack propaga-
tion.

The discrepancy between the sophisticated constitutive models devel-
oped for cracks and the coarse models used in finite element analysis,
especially when the smeared crack approach is adopted, is partly due to
the specific smeared crack model deployed in most finite element codes.
Recently, de Borst and Nauta (1984,1985) and Rots et al. (1985) have
proposed a smeared crack formulation which obviates a number of
objections that adhere to the standard smeared crack approach. This
model, which provides for multidirectional cracking owing to rotation of
the principal stress axes after primary crack formation and which is
independent of the constitutive model for the intact concrete between the
cracks, is also well-suited for the implementation of sophisticated soften-
ing relations, both in°tension (mode I) and in shear (mode II). For this
reason the paper starts with a review of the crack model and softening
relations used. Next, two mixed-mode fracture analyses displaying tensile
and shear softening will be presented, along with a discussion about the
existence of shear fracture.

Two other aspects to which we will draw attention is snap-back
behavior, which may occur in concrete structures, and the danger of
hour-glassing when softening-type constitutive laws are deployed in a finite
element model. It has been demonstrated that such phenomena may easily
occur when a tensile softening relation is employed (de Borst and Nauta
1985; de Borst 1986; Crisfield 1986; Rots 1985b). We will indicate that the
difficulties are even greater in the presence of shear softening.

Smearep Crack MoODEL

The fundamental feature of the smeared crack model employed is a
decomposition of the total strain increment into a concrete strain incre-
ment Ae“® and a crack strain increment Ag®":

AB == AE® 4 AE™ L.ttt e 1)

As pointed out by Litton (1974) and de Borst and Nauta (1984,1985) the
crack strain increment Ae®" may also be composed of several contribu-
tions:

AT = ABST A AET A oeioeoiieee et ¥)

in which Ae{” = strain increment owing to a primary crack; Ae§” = strain
increment owing to a secondary crack, and so on.

The relation between the crack strain increment of a particular crack
(either primary or secondary) and the stress increment is conveniently
defined in the coordinate system, which is aligned with the crack. This
necessitates a transformation between the crack strain increment AeS” of
crack n in the global x, y and z coordinates and a crack strain increment
Aef, which is expressed in local coordinates. Restricting the treatment to
a two-dimensional configuration (which is not essential), we observe that a

1740



S:rack only has a normal strain increment Aef (mode I) and a shear strain
increment Avy;y” (mode II), so that

cro._. cr er\T
Ael = (Ael Ay e reaenny e 3)

n

in which the superscript T denotes a transpose. The relation between Asj”
and AeS” reads

Ay = NN AR L “4)
cos? 9, —~sin §, cos 8,
with N, = sin? 9, sind, cos8, ..ol (5)
2sin 9, cos 9, cos*9, —sin?9,

in WhiCl’.l 1‘},,' = inclination angle of the normal of crack » with the x axis.
Substitution of Eq. 5 into Eq. 2 gives for multiple cracks

Ag” = N, Ae] + N, Ae§
For the derivation of the stress-strain law of the system of cracks and

concrete, it is convenient to assemble all the crack strain increments,
which are expressed in their own local coordinate system in a vector Aec"

A€ = (Ae] AYT Aed AYy . )T o )

Introducing the matrix N, ‘ ‘ , :

N o= [N NG o e (8)

we observe that we can rewrite Eq. 7 as

AT = INACT | it e 9
In a similar way, we can define a vector As,

As, = (As; AL)T ..., JRTRTSUR [T TOORRRRS (10)

with As, the normal and At, the shear stress increment in crack n of the
integration point. The vector As, which assembles all the stress increments
with respect to their own local coordinate system, then reads:

As = (As; Aty Asy Aty )T e retterner e et rrsatie .. (1Y)

The relation between the stress increment in the global coordinate system
Ao and the stress vector As can subsequently be derived to be

To complete the system of equations, we need a constitutive model for
the intact concrete and a stress-strain relation for the smeared cracks. For
the concrete between the cracks we assume a relationship of the following
structure ‘

AG =D AE L itiiiiiiiiii i e e (13)

with the matrix D¢ containing the instantaneous moduli of the concrete.
As attention is focused on the behavior of concrete under tensile stresses,
D<° has simply been assumed to be the elasticity matrix, but analyses have

1741



already been performed with elastoplastic (de Borst and Nauta 1985) and
visco-elastic (de Borst and van den Berg 1986) concrete properties.

In a similar way, we can define a relation between the crack strain
increment Ae$” of crack n and the stress increment As,, in that crack. In this
paper a relation is assumed, which formally reads:

AS, =D AT ..vierieiereieeiieiee e (14)

with Di" a 2*2 matrix. For the derivation of the stress-strain relation of the
cracked concrete, it is agam convenient to assemble all the matrices DS in
one matrix D", Wthh is defined as

Dy 0 - .
D"=| 0 DY ] ..................................................... (15)
so that the relation between As and Ae® reads
O b L VAP O P (16)

Using Eqgs. 1,9, 12, 13 and 16 we can develop the stress-strain relation
for the cracked concrete:

Ac = [D* — D°ND* + NTD“’N)“NTD“’]AE ........................ 17

Independently, a similar framework for a smeared crack model was
recently developed by Riggs and Powell (1986), following the original ideas
of Litton (1974).

MopE | TensiLE SOFTENING AND MoDE || SHEAR SOFTENING

In the previous sub-section, Eq. 14, which relates the crack strain
increment AeS" and the stress increment As,, was introduced without
specifying the crack constitutive matrix D" . The framework of the mode)
permits D& to be nonsymmetric, which for instance occurs in dilatancy
theories for sliding along preexisting macrocracks (e.g., BaZant and
Gambarova 1980; Reinhardt and Walraven 1982). However, in this paper
attention is focused on fracture initiation and propagation rather than on
sliding along existing fracture planes. In such cases the crack strains are
relatively small and the off-diagonal terms in DS are expected to be less
important. Consequently, the off-diagonal terms have been set equal to
zero in the sample problems to be shown, so that D reduces to:

cr DI 0
D = [ A D”:| ............................................................. (18)

in which D! = mode I tensile softemng modulus and D = mode II shear
softening modulus.

Considering the tensile softening modulus D! first, we observe that this
modulus may be related to three basic tensile softenmg parameters, viz.,
the direct tensile strength f., , the fracture energy G/ (defined as the amount

of energy required to create one unit of area of a mode I crack) and the
shape of the tensile softening diagram. In this paper the tensile softening
diagram proposed by Cornelissen et al. (1986) has been adopted (Fig. 1).
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A shear softening formulation is less common than a tensile softening
formulation, but can be set up along similar lines. The shear softening
modulus D¥ in Eq. 18 might also be related to three parameters, viz., an
ultimate shear stress r, transferred across the crack, a fracture energy G¥
(defined as the amount of energy required to create one unit of area of a
pure mode II crack) and a specific shape of the shear softening diagram.
Here applications are restricted to a bilinear shape of the shear softening
diagram, in particular to a diagram linearly ascending to the ultimate stress
7, » followed by a linear descending branch, as shown in Fig. 2.

The present formulation assumes fracture to be initiated normal to the
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axis of the principal tensile stress. A direct consequence of this crack
initiation criterion is that the shear stress across the crack is zero at the
onset of cracking, which explains why the shear softening diagram of Fig.
2 starts in the origin. Only upon subsequent rotation of the principal stress
axes a shear stress may develop across the crack faces until its maximum
level 7, whereafter the shear softening branch is entered.

The fracture energy values are assumed to be fixed material properties.
In mode 1 this postulate seems to be justified because experimental data
show that the energy required to fracture mode I specimens is fairly
proportional to the surface area generated, However, in mode II fracture
this question is far from resolved. Nevertheless, we have adopted the
assumption that the fracture energy released in mode II fracture is also a
material property because it is simple and more realistic than a constant
shear retention factor, which in fact prohibits energy from being dissipated
in mode II fracture.

In a smeared crack environment fracture is usually assumed to be
distributed over a certain crack band width A, which is related to the
particular finite element configuration. Consequently, the fracture energy
should be released over this width to obtain finite element results that are
objective with regard to mesh refinement. With respect to the mode I
fracture energy this has been achieved by adjusting the tensile softening
modulus D’ and the stress-free crack normal strain ¢, (see Fig. 1) to A,
following the crack band theory of BaZant and Oh (1983). A similar
procedure has been adopted to control mesh-objective release of the mode
II fracture energy. Assuming a constant shear strain distribution over the
crack band, the mode II fracture energy is represented by the integral of
the shear softening diagram multiplied by the crack band width. For the
triangular shear softening diagram of Fig. 2 this results in a stress-free
crack shear strain v, equal to

2GII
T, h

u

Yu =

UNLOADING, CLOSING AND REOPENING CRACKS

Fracture localization involves simultaneous unloading of adjacent ele-
ments and localization can only be captured accurately if the model
includes provisions for unloading in addition to softening. Indeed, smeared
crack analyses are known to exhibit quite a number of cracks that unload,
even close and sometimes reopen again in a later stage of the loading
process (de Borst and Nauta 1985; Crisfield 1986; Leibengood et al. 1986;
Rots et al. 1985).

In this study unloading and reloading phenomena have been modeled
using a secant approach, which implies that upon unloading the stress
follows a straight line back to the origin. This procedure has been adopted
both for mode I and for mode II fracture, as indicated in Figs. 1 and 2.
Again, any coupling between mode I and mode II behavior has been
ignored, so that it is possible for a crack to soften in mode I and unload in
mode II, to unload in mode I and soften in mode II, to soften in both
modes, or to unload in both modes.

Complete closing of a crack has been assumed when both the crack
normal stress and the crack normal strain vanish. This, however, need not
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be true for the crack shear stress and the crack shear strain; therefore,
these quantities are stored upon closing. Once closed, the crack is
subjected to compression and the elastic behavior is recovered.

A closed crack is permitted to reopen when the stress normal to the
crack again becomes tensile. In the tensile softening diagram the crack
then follows the secant branch until the residual tensile strength, where-
after the softening branch is entered, The behavior in mode II upon
reopening is a different issue. It is likely that the principal stresses will
rotate while the crack is closed, so that the crack shear stress that exists
upon reopening differs significantly from the crack shear stress that existed
upon closing. The following procedure, which appeared to be numerically
stable, has been adopted. The starting point in the shear softening diagram
was assumed to be given by the crack shear stress upon reopening and the
crack shear strain which was stored upon closing. Because of the stress
rotations during the closed state this crack shear stress/crack shear strain
combination will not be positioned on the prescribed shear softening
diagram of Fig. 2. For this reason, the crack was assumed to soften in
mode II immediately upon reopening, following a different shear softening
diagram than the one prescribed but consuming the same amount of mode
IT fracture energy. The peak of this adapted shear softening diagram was
assumed to correspond with the crack shear stress/crack shear strain
combination upon reopening and the stress-free strain of the diagram was
assumed to be given by Eq. 19 with the crack shear stress upon reopening
substituted instead of the prescribed ultimate stress r, .

ReLaTiON witH OTHER CRACK SHEAR FORMULATIONS

Within smeared crack models not based upon a decomposition of the
total strain increment into concrete and crack strain increment it has
become accepted practice to represent the shear stiffness of cracked
concrete by means of a shear retention factor B, indicating the percentage of
the initial elastic shear capacity retained after cracking. Hence, the, elastic
shear modulus G is reduced to BG once the material has cracked (8 =< 1).

The shear retention factor B can be related to the crack shear modulus
DM of the present model by considering that the stiffness BG is associated
with the total strain increment, whereas the crack shear modulus D7 is
associated solely with the crack strain increment. Furthermore, the strain
decomposition of Eq. 1 implies that the present model assumes concrete
and crack to be connected in series, so that the following stiffness relation
holds:

The shear softening formulation further bears some similarities to the
frictional slip model proposed by Willam and Sture (1985). Their model is
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FIG. 4. Load versus CMSD Computed for Three Different Crack Shear Representa-
tions (Shaded Area Denote Range of Experimental Results)

primarily meant to simulate shear band formation in multiaxial compres-
sion, whereas the present model is directed toward mixed-mode fracture
occurring in the tension-tension and tension-compression quadrants of the
principal stress space. This emerges from the fact that Willam and Sture
(1985) assume the softening to start in mode II, while the present model
assumes the softening to start in mode I and only considers the mode II
effects because of subsequent rotation of stresses. In the former case the
shear stress upon fracture initiation reaches a maximum rather than being
zero, and the value of the mode II fracture energy may be higher.

SiNGLE-NOTCHED SPECIMEN

The first example concerns an unreinforced single-notched beam which
has been tested by Arrea and Ingraffea (1982). Fig. 3 shows the finite
element idealization. The beam has been analyzed using eight-noded plane
stress elements, which have been integrated using nine-point Gaussian
quadrature. In the transition region between the coarse part and the fine
part of the mesh, three-point integrated six-noded triangles were used. The
beam had a thickness of 156 mm. Fig. 3 indicates that the loading
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conditions are nonsymmetric, which implies that the fracture propagating
from the notch will show opening as well as sliding (mixed-mode).
Consequently,_both tensile softening and shear softening are of interest.

In the experiment the load was applied at point C of the steel beam AB
an_d _was .controlled by a feedback mechanism with the Crack Mouth
Sliding Displacement (CMSD) as a control parameter. A numerical anal-
ogy thereof is the “‘indirect displacement control’’ scheme recently devel-
oped by de Borst (1986). Indirect displacement control differs from the
standayd arc-l.ength control schemes (Crisfield 1981; Ramm 1981; Riks
1?79) in that it involves a constraint equation based on a few dominant
ghsplaccment parameters rather than on a global norm of displacement
increments. Tl}is technique has proved to be essential for stabilizing the
post-peal_< regime in case of stronglocalizations that occur in crack
propagation. Consequently, the analyses have been performed under
indirect displacement control, with the CMSD being the control parame-
ter.

The concrete has been modeled as linearly elastic in compression with a
Young’s modulus E, = 24,800 N/mm? and a Poisson ratio v = (.18, This
approach is justified because the compressive stresses remain low enough
to avoid nonlinearity in compression. The mode I crack parameters have
been assigned the following values: tensile strength f,, = 2.8 N/mm? , mode
I fracture energy G+ = 75 J/m? and intercrack threshold-angle o = 60° (de
Borst and Nauta 1985). The crack band width has been estimated as h =
20.3 mm.

Three analyses have been performed. First, a constant shear retention
factor By = 0.2 has been adopted, which corresponds to a linear ascending
branch in the crack shear diagram with a stiffness modulus D§ = 2,627
N/mm? (compare Eq. 21). In the other two analyses the same initial shear
retention factor has been employed, but shear softening has been added in
the form of the triangular shear softening diagram of Fig. 2. The mode-1I
fracture energy values for these two analyses have been assumed to be GF
= 75 J/m? and G¥ = 10 J/m?, respectively, whereas in both cases the
ultimate crack shear stress was 7, = 0.5 N/mm?.

Fig. 4 shows that the computational result for the load-CMSD response
nicely falls within thé experimental scatter when shear-softening is added,
whereas a deviation occurs in the post-peak regime when a constant shear
retention factor is employed. The analysis with the constant shear reten-
tion factor yields about the same limit load, but shows far too little
softening in the post-peak regime, which is entirely due to the fact that the
shear stress across the cracks is allowed to increase indefinitely. For some
integration points we even observed a crack shear stress amounting to 15
N/mm?, which is unrealistic, since any confinement in the form of
compression normal to the crack was lacking. The addition of local shear
softening clearly turns out to be essential for producing global softening for
structures that fail in mixed-mode fracture.

In addition to the load-CMSD response, the load-CMOD response has
been recorded, as shown in Fig. 5 (CMOD .= Crack Mouth Opening
Displacement). Initially, the CMOD is negative, but at peak load the notch
starts opening and the ultimate CMOD is two times the uitimate CMSD.
This indicates that the fracture propagates in a combination of mode I and
mode II with mode I prevailing. ‘
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If the steel beam of the test rig is assumed to be infinitely stiff, the
vertical displacement of the point of load application C can be recalculated
from the vertical displacements of points A and B (Fig. 3). This results in
the load-deflection curves of Fig. 6, which exhibit a violent snap-back
behavior. This snap-back explains why direct displacement control cannot
produce a fully converged solution after peak load (De Borst 1986). Only
with indirect CMSD control (or perhaps with CMOD control) and a full
Newton-Raphson iterative procedure can a fully converged solution be
obtained in the vicinity of the peak load. Unfortunately, the experimental
load-deflection curves have not been reported by Arrea and Ingraffea
(1982), so that a direct comparison with the experimental results is not
possible.

Nevertheless, Figs. 4 to 6 show that the solution could not be continued
until the load had dropped to zero. This is because at a certain stage in the
post-peak regime two negative pivots were found upon factorizing the
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tangent stiffness matrix, whereafter a converged solution could no longer
be obtained. An eigenvalue analysis was performed and for the analysis
with G¥ = 75 J/m? two negative eigenvalues (with the eigenmodes plotted
in Fig. 7) resulted. One of the eigenmodes has a physical meaning as it
represents the fracture localization that has developed over the entire
depth of the beam. The other eigenmode is of a numerical nature because
it represents a spurious hour-glass mode of only one element at the top of

Spurious hour-glass modes pose a serious problem because they may

1749



easily cause divergence of the iterative procedure. Dodds et al. (1982) were
probably the first to recognize the possibility of hour-glassing when
performing finite element analyses of crack propagation. Based on their
experiences using a simple crack model with a sudden stress drop upon
fracture, they recommended to abandon the reduced four-point Gaussian
quadrature and to employ nine-point Gaussian quadrature instead. How-
ever, later studies based on more advanced tensile softening models have
indicated that the nine-point scheme may also give rise to hour-glass
modes (de Borst 1986; Crisfield 1986; Rots 1985b). The present study
confirms this, and the problems have been found to be even greater
because of the allowance for multidirectional cracking and shear softening.

The low value for the mode 1I fracture energy G¥ = 10 J/m? yields an
even more pronounced structural softening than Gff = 75 J/m? (Figs. 4 to
6). However, the peak load does not seem to be markedly affected, which
indicates that mode I effects prevail before peak. The same trend was
observed upon an increase of G¥ (e.g., GF = 500 J/m?) and upon an increase
of the ultimate crack shear stress 7, . Again, the peak load was not markedly
affected and deviations were found only during the post-peak regime.

This section is concluded with the crack pattern of Fig. 8, which has
been obtained for G¥ = 75 J/m?.

DouBLE-NOTCHED SPECIMEN

The second specimen, tested by BaZant and Pfeiffer (1986), bears
similarities to the preceding one, but has a pair of symmetric notches
instead of a single notch. Furthermore, the concentrated vertical loads
were applied even closer to the notches, so as to produce an even narrower

| 14d/12

+— {ine of anti-symmetry

2d/3 D

d=304.8 mm

steel beam

FIG. 9. Finite Element Discretization for Double-Notched Specimen
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region of high, mode II intensity. Fig. 9 shows the finite element idealiza-~
tion, which could be confined to one half of the beam because of
antisymmetry, The antisymmetry was introduced by means of dependence
relations. The beam had a thickness of 38.1 mm. In an attempt to avoid
spurious hour-glass modes exhibited by the quadratic elements, we have
resorted to linear four-noded elements with four-point Gaussian quadra-
ture. Just as in the preceding analysis, the beam has been analyzed under
CMSD control, and a full Newton-Raphson procedure has been adopted.

The concrete has again been modeled as linearly elastic in compression
with a Young’s modulus E, = 25,000 N/mm? and a Poisson ratio v = 0.2.
The mode I crack parameters have been taken as tensile strength f,, = 3

||

F/15

FIG. 11. Elgen-Displacement Field at Peak Load
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N/mm? ; mode I fracture energy G5 = 75 J/m?; and intercrack threshold
angle o = 60° (de Borst and Nauta 1985). The crack band width was
estimated as 4 = 12.7 mm. Again, three analyses are reported, one analysis
corresponding to a constant shear retention factor By = 0.2 (D§ = 2,604
N/mm?) and two analyses with shear softening with mode II fracture
energy values of GF = 75 J/m? and G} = 10 J/m?, respectively. For the
latter two computations the ultimate shear stress was taken as T, = 0.5
N/mm? and the initial shear retention factor was taken as 8 = 0.2,

Fig. 10 shows the computational results in terms of load-deflection
curves for the loading point C of steel beam AB (Fig. 9). The deflection is
defined as the difference between the vertical displacements of point C and
of the center of antisymmetry, point D. The behavior is fairly similar to
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that of the preceding beam. Again, the constant shear retention factor
yields too little softening. It even yields a spurious ascending branch in the
post-peak regime, whereas the analyses including shear softening do not.
The numerical prediction of the peak load appears to correspond well with
the experimental value (F = 44.8 kN) and does not seem to be sensitive to
the adopted representation for the shear transfer across the crack.

The finite element results for the analysis with G¥ = 75 J/m? will now be
considered in somewhat greater detail, At peak load an eigenvalue analysis
of the tangent stiffness matrix was performed, which resulted in one
negative eigenvalue with the eigenmode of Fig. 11, showing that the
fracture localization has developed only partially at peak. After peak, the
load was decremented and the solution could be continued up to the point
where the load-deflection curve is terminated, Then, a second negative
pivot was encountered upon factorizing the tangent stiffness matrix and a
truly converged solution could no longer be obtained. An eigenvalue of the
tangent stiffness matrix yielded two negative eigenvalues, with the eigen-
modes plotted in Fig. 12. Similar to the analysis of the preceding beam, one
eigenmode is of a physical nature and represents the fracture localization,
which has continued propagating towards the opposite notch. The other
eigenmode again represents a spurious hour-glass mode, which occurred
because the group of elements surrounding a particular node was com-
pletely cracked. Obviously, the use of four-point integrated linear elements
instead of nine-point integrated quadratic elements does not seem to
eliminate the possibility of hour-glass mechanisms.

The eigenmodes in Figs. 11 and 12 reveal that the fracture discontinuities
(there are two of them because of antisymmetry) first propagate slightly
sideways from the notches and then continue to propagate in the vertical
direction towards the opposite notch. This observation is in line with the
crack pattern of Fig. 13. The crack pattern exhibits quite a number of
multiply cracked sampling points, which indicates that stress rotations
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after primary cracking have been significant, even though shear softening
has been added.

Does Mobe Il CoNcrReTE FRACTURE ExisT?

A lively discussion currently centers around the issue of whether mode
II (shear) fracture in concrete exists or not. Based on their experiences
with the single-notched specimen geometry of Fig. 3, Arrea and Ingraffea
(1982) and Ingraffea and Gerstle (1985) conclude that concrete fractures in
mode I even if a high, mode Il intensity is present. More recently, Ingraffea
and Panthaki (1985) have sharpened this conclusion by presenting finite
element results for the double-notched shear beam tested by BaZant and
Pfeiffer (Fig. 9), which reveal that this specimen must have failed in mode
I also. This contrasts with the observations by BaZant and Pfeiffer (1986),
who state that “‘failure is due essentially to shear fracture (mode II)”".

It is striking that our results for the single-notched beam of Arrea and
Ingraffea (1982) and the double-notched beam of BaZant and Pfeiffer (1986)
exhibit a fairly similar fracture localization pattern. In both cases the
cracks first propagate slightly curvilinearly and then continue to propagate
in a vertical direction, Furthermore, close examination of the finite
element outputs revealed that the mode I fracture energy was released
much quicker than the mode II fracture energy in both cases, which
suggests that fracture predominantly propagates in mode I.

Nevertheless, a pure mode I fracture has not occurred. This, of course,
only happens if mode II displacements are suppressed completely, i.e., if
a constant shear retention factor 8 = 1 is adopted. For the beam of Bazant
and Pfeiffer (1986), such an additional analysis has been undertaken, and it
resulted in the fracture localization shown in Figs. 14 and 15. The
curvilinear cracks are more pronounced and isolated cracking occurs in the
middle of the specimen because of the existence of horizontal tensile
stresses, as was demonstrated before by Rots (1985a). This behavior
closely resembles the prediction by Ingraffea and Panthaki (1985) and
bears similarities with the failure mode in the Brazilian split cylinder test.
Since the present study indicates that the use of a constant shear retention
factor should be rejected, especially when it is equal to 1, a pure mode I
mechanism 'is not believed to represent the fracture mechanism that has
occurred in the tests. .

More information regarding the question above might be obtained by
considering the energy balance. Ignoring energy dissipation by mecha-
nisms other than fracture, the energy supplied to a specimen, which is
represented by the integral load(s) versus displacement(s) at the loading
point(s), should balance the fracture energy times the area which has
fractured. In the mixed-mode experiments of Arrea and Ingraffea (1982)
and BaZant and Pfeiffer (1986), the final fracture surface has been re-
corded, but the overall load-displacement curves have not been published.
Consequently, a mode I, mode II or combined mixed-mode fracture energy
value, which is needed in case of strain-softening finite element predic-
tions, cannot be directly. extracted from the experimental results,
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FIG. 14. Fracture Localization for. g = 1
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FIG. 15. Crack Pattern for g = 1

CONCLUSIONS

A shear softening formulation was incorporated in a recently proposed
smeared crack model (de Borst and Nauta 1984, 1985; Rots et al. 1985). In
this paper a simple bilinear relation was adopted for the shear softening
model, but the framework of the crack model permits implementation of a
wide variety of formulations. ,

The present shear softening formulation has been set up along lines
similar to those of the tensile softening model by BaZant and Oh (1983). It

1755



involves a maximum shear stress 7,, which can be transferred, and a
fracture energy G¥ , which can be dissipated in mode II crack propagation,
as material parameters and a definition of the shape of the shear softenmg
curve,

The present shear softening formulation has been applied to two
notched, unreinforced beams. Comparison with experimental data clearly
demonstrates that the results of the computations including shear softening
are superior to the results obtained with a conventional constant sheer
retention factor, since the computations with a constant shear retention
factor showed much too little structural softening in the post-peak regime.

The computational results further show that snap-back behavior may
occur under quasistatic loading conditions when softening stress-strain
laws are employed. This observation has been made before by Crisfield
(1986) and by de Borst (1986) for tension softening models, but holds even
stronger when a shear softening model is included in the analysis.

A serious problem that may arise during calculations with softening
models is the occurrence of hour-glass modes. This was noticed first by
Dodds et al. (1982), who demonstrated that four-point Gaussian integration
is not suitable for smeared crack analysis with eight-noded elements. The
present study indicates also that the eight-noded element with a nine-point
integration scheme and the four-noded bilinear element with four-point
integration are not free from this phenomenon. It has been demonstrated
that these hour-glass mechanisms may even dominate the response in the
post-peak regime, especially when shear softening is added or when we
permit multiple crack formation.

The present study does not reveal the existence of pure mode II fracture
in concrete; neither does it support the assertion that concrete always
fractures in mode 1. It rather shows a mixed-mode mechanism with tensile
softening effects prevailing before peak and shear softening effects gradu-
ally become more important in the post-peak regime.
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