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Abstract

We give theorems that can be used to upper bound the densities of packings of different spherical
caps in the unit sphere and of translates of different convex bodies in Euclidean space. These
theorems extend the linear programming bounds for packings of spherical caps and of convex
bodies through the use of semidefinite programming. We perform explicit computations, obtaining
new bounds for packings of spherical caps of two different sizes and for binary sphere packings.
We also slightly improve the bounds for the classical problem of packing identical spheres.

2010 Mathematics Subject Classification: 52C17, 90C22 (primary)

1. Introduction

How densely can one pack given objects into a given container? Problems of this
sort, generally called packing problems, are fundamental problems in geometric
optimization.

An important example having a rich history is the sphere packing problem.
Here, one tries to place equal-sized spheres with pairwise-disjoint interiors into
n-dimensional Euclidean space while maximizing the fraction of covered space.
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In two dimensions the best packing is given by placing open disks centered at
the points of the hexagonal lattice. In three dimensions, the statement that the
best sphere packing has density π/

√
18 = 0.7404 . . . was known as Kepler’s

conjecture; it was proved by Hales [21] in 1998 by means of a computer-assisted
proof.

Currently, one of the best methods for obtaining upper bounds for the density
of sphere packings is due to Cohn and Elkies [8]. In 2003, they used linear
programming to obtain the best-known upper bounds for the densities of sphere
packings in dimensions 4, . . . , 36. They almost closed the gap between lower and
upper bounds in dimensions 8 and 24. Their method is the noncompact version
of the linear programming method of Delsarte et al. [12] for upper bounding the
densities of packings of spherical caps on the unit sphere.

From a physical point of view, packings of spheres of different sizes are
relevant, as they can be used to model chemical mixtures which consist of multiple
atoms or, more generally, to model the structure of composite material. For more
about technological applications of these kinds of systems of polydisperse, totally
impenetrable spheres, we refer to Torquato [40, Ch. 6]. In recent work, Hopkins
et al. [26, 27] presented lower bounds for the densities of packings of spheres of
two different sizes, also called binary sphere packings.

In coding theory, packings of spheres of different sizes are important in the
design of error-correcting codes which can be used for unequal error protection.
Masnick and Wolf [32] were the first who considered codes with this property.

In this paper, we extend the linear programming method of Cohn and Elkies to
obtain new upper bounds for the densities of multiple-size sphere packings. We
also extend the linear programming method of Delsarte, Goethals, and Seidel to
obtain new upper bounds for the densities of multiple-size spherical cap packings.

We perform explicit calculations for binary packings in both cases using
semidefinite, instead of linear, programming. In particular, we complement
the constructive lower bounds of Hopkins, Jiao, Stillinger, and Torquato by
nonconstructive upper bounds. Insights gained from our computational approach
are then used to improve known upper bounds for the densities of monodisperse
sphere packings in dimensions 4, . . . 9, except 8. The bounds we present improve
on the best-known bounds due to Cohn and Elkies [8].

1.1. Methods and theorems. We model the packing problems using tools
from combinatorial optimization. All possible positions of the objects which we
can use for the packing are vertices of a graph, and we draw edges between
two vertices whenever the two corresponding objects cannot be simultaneously
present in the packing because they overlap in their interiors. Now every
independent set in this conflict graph gives a valid packing, and vice versa.
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To determine the density of the packing, we use vertex weights, since we want to
distinguish between ‘small’ and ‘big’ objects. For finite graphs, it is known that
the weighted independence number can be upper bounded by the weighted theta
number. Our theorems for packings of spherical caps and spheres are infinite-
dimensional analogs of this result.

Let G = (V, E) be a finite graph. A set I ⊆ V is independent if no two
vertices in I are adjacent. Given a weight function w : V → R>0, the weighted
independence number of G is the maximum weight of an independent set; that is,

αw(G) = max
{∑

x∈I

w(x) : I ⊆ V is independent
}
.

Finding αw(G) is an NP-hard problem.
Grötschel et al. [20] defined a graph parameter that gives an upper bound for αw

and which can be computed efficiently by semidefinite optimization. It can be
presented in many different yet equivalent ways, but the way that is convenient
for us is

ϑ ′w(G) = min M
K − (w1/2)(w1/2)T is positive semidefinite,
K (x, x) 6 M for all x ∈ V ,
K (x, y) 6 0 for all {x, y} 6∈ E where x 6= y,
M ∈ R, K ∈ RV×V is symmetric.

Here, we give a proof of the fact that ϑ ′w(G) upper bounds αw(G). In a sense,
after discarding the analytical arguments in the proofs of Theorems 1.2 and 1.3,
we are left with this simple proof.

THEOREM 1.1. For any finite graph G = (V, E) with weight function w : V →
R>0, we have αw(G) 6 ϑ ′w(G).

Proof. Let I ⊆ V be an independent set of nonzero weight, and let K ∈ RV×V ,
M ∈ R be a feasible solution of ϑ ′w(G). Consider the sum∑

x,y∈I

w(x)1/2w(y)1/2 K (x, y).

This sum is at least∑
x,y∈I

w(x)1/2w(y)1/2w(x)1/2w(y)1/2 =
(∑

x∈I

w(x)
)2

because K − (w1/2)(w1/2)T is positive semidefinite.
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The sum is also at most∑
x∈I

w(x)K (x, x) 6 M
∑
x∈I

w(x)

because K (x, x) 6 M and because K (x, y) 6 0 whenever x 6= y, as I forms an
independent set. Now, combining both inequalities proves the theorem.

Multiple-size spherical cap packings. We first consider packings of spherical
caps of several radii on the unit sphere Sn−1 = {x ∈ Rn : x · x = 1}. The spherical
cap with angle α ∈ [0, π] and center x ∈ Sn−1 is given by

C(x, α) = {y ∈ Sn−1 : x · y > cosα}.
Its normalized volume equals

w(α) = ωn−1(Sn−2)

ωn(Sn−1)

∫ 1

cosα
(1− u2)(n−3)/2 du,

where ωn(Sn−1) = (2π n/2)/Γ (n/2) is the surface area of the unit sphere. Two
spherical caps C(x1, α1) and C(x2, α2) intersect in their topological interiors if
and only if the inner product of x1 and x2 lies in the interval (cos(α1 + α2), 1].
Conversely, we have

C(x1, α1)
◦ ∩ C(x2, α2)

◦ = ∅ ⇐⇒ x1 · x2 6 cos(α1 + α2).

A packing of spherical caps with angles α1, . . . , αN is a union of any number of
spherical caps with these angles and pairwise-disjoint interiors. The density of the
packing is the sum of the normalized volumes of the constituting spherical caps.

The optimal packing density is given by the weighted independence number of
the spherical cap packing graph. This is the graph with vertex set Sn−1 × {1, . . . ,
N }, where a vertex (x, i) has weight w(αi), and where two distinct vertices (x, i)
and (y, j) are adjacent if cos(αi + α j) < x · y.

In Section 2, we will extend the weighted theta prime number to the spherical
cap packing graph. There we will also derive Theorem 1.2 below, which gives
upper bounds for the densities of packings of spherical caps. We will show that
the sharpest bound given by this theorem is in fact equal to the theta prime number.

In what follows, we denote by Pn
k the Jacobi polynomial P ((n−3)/2,(n−3)/2)

k of
degree k, normalized so that Pn

k (1) = 1. Jacobi polynomials are orthogonal
polynomials defined on the interval [−1, 1] with respect to the measure (1 −
u2)(n−3)/2du. See, for instance, Andrews et al. [1] for more information.
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THEOREM 1.2. Let α1, . . . , αN ∈ (0, π] be angles, and, for i , j = 1, . . . , N
and k > 0, let fi j,k be real numbers such that fi j,k = f j i,k and

∑∞
k=0 | fi j,k | < ∞

for all i , j . Write

fi j(u) =
∞∑

k=0

fi j,k Pn
k (u). (1.1)

Suppose that the functions fi j satisfy the following conditions.

(i) ( fi j,0 − w(αi)
1/2w(α j)

1/2)N
i, j=1 is positive semidefinite.

(ii) ( fi j,k)
N
i, j=1 is positive semidefinite for k > 1.

(iii) fi j(u) 6 0 whenever −1 6 u 6 cos(αi + α j).

Then the density of every packing of spherical caps with angles α1, . . . , αN on the
unit sphere Sn−1 is at most max{ fi i(1) : i = 1, . . . , N }.

When N = 1, Theorem 1.2 reduces to the linear programming bound for
spherical cap packings of Delsarte et al. [12]. In Section 4, we use semidefinite
programming instead of linear programming to perform explicit computations for
N = 2.

Translational packings of bodies and multiple-size sphere packings. We
now deal with packings of spheres with several radii in Rn . Theorem 1.3 presented
below can be used to find upper bounds for the densities of such packings. In fact,
it is more general, and it can be applied to packings of translates of different
convex bodies.

Let K1, . . . ,KN be convex bodies in Rn . A translational packing of K1, . . . ,KN

is a union of translations of these bodies in which any two copies have disjoint
interiors. The density of a packing is the fraction of space covered by it. There
are different ways to formalize this definition, and questions appear as to whether
every packing has a density and so on. We postpone further discussion on this
matter until Section 3, where we give a proof of Theorem 1.3.

Our theorem can be seen as an analog of the weighted theta prime number ϑ ′w
for the infinite graph G whose vertex set is Rn × {1, . . . , N } and in which
vertices (x, i) and (y, j) are adjacent if x+Ki and y+K j have disjoint interiors.
The weight function we consider assigns weight volKi to vertex (x, i) ∈ Rn×{1,
. . . , N }. We will say more about this interpretation in Section 3.

For the statement of the theorem, we need some basic facts from harmonic
analysis. Let f : Rn → C be an L1 function. For u ∈ Rn , the Fourier transform
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of f at u is

f̂ (u) =
∫
Rn

f (x)e−2π iu·x dx .

We say that function f is a Schwartz function (also called a rapidly decreasing
function) if it is infinitely differentiable, and if any derivative of f , multiplied
by any power of the variables x1, . . . , xn , is a bounded function. The Fourier
transform of a Schwartz function is a Schwartz function, too. A Schwartz function
can be recovered from its Fourier transform by means of the inversion formula:

f (x) =
∫
Rn

f̂ (u)e2π iu·x du

for all x ∈ Rn .

THEOREM 1.3. Let K1, . . . ,KN be convex bodies in Rn , and let f : Rn → RN×N

be a matrix-valued function whose every component fij is a Schwartz function.
Suppose that f satisfies the following conditions.

(i) The matrix
(

f̂i j(0)− (volKi)
1/2(volK j)

1/2
)N

i, j=1 is positive semidefinite.

(ii) The matrix of Fourier transforms
(

f̂i j(u)
)N

i, j=1 is positive semidefinite for
every u ∈ Rn \ {0}.

(iii) fi j(x) 6 0 whenever K◦i ∩ (x +K◦j) = ∅.
Then the density of any packing of translates of K1, . . . ,KN in the Euclidean
space Rn is at most max{ fi i(0) : i = 1, . . . , N }.

We give a proof of this theorem in Section 3. When N = 1, and when the convex
body K1 is centrally symmetric (an assumption which is in fact not needed), then
this theorem reduces to the linear programming method of Cohn and Elkies [8].

We apply this theorem to obtain upper bounds for the densities of binary sphere
packings, as we discuss in Section 1.3.

1.2. Computational results for binary spherical cap packings. We applied
Theorem 1.2 to compute upper bounds for the densities of binary spherical cap
packings. The results we obtained are summarized in the plots of Figure 1.

For n = 3, Florian [14, 15] provides a geometric upper bound for the density of
a spherical cap packing. He shows that the density of a packing on S2 of spherical
caps with angles α1, . . . , αN ∈ (0, π/3] is at most

max
16i6 j6k6N

D(αi , α j , αk),
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Figure 1. Upper bounds on the packing density for N = 2. The horizontal and
vertical axes represent the spherical cap angle; the colors indicate the density, or
in the case of plot (b) whether the SDP bound or the geometric bound is sharper.

where D(αi , α j , αk) is defined as follows. Let T be a spherical triangle in S2 such
that, if we center the spherical caps with angles αi , α j , and αk at the vertices of
T , then the caps intersect pairwise at their boundaries. The number D(αi , α j , αk)

is then defined as the fraction of the area of T covered by the caps.
In Figure 1(b), we see that for N = 2 it depends on the angles whether the

geometric or the semidefinite programming (SDP) bound is sharper. In particular,
we see that near the diagonal the semidefinite programming bound is at least as
good as the geometric bound; see also Figure 1(a).

We can construct natural multiple-size spherical cap packings by taking the
incircles of the faces of spherical Archimedean tilings. A sequence of binary
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packings is for instance obtained by taking the incircles of the prism tilings. These
are the Archimedean tilings with vertex figure (4, 4,m) for m > 3 (although
strictly speaking for m = 4 this is a spherical Platonic tiling). The question then
is whether the packing associated with the m-prism has maximal density among
all packings with the same cap angles π/m and π/2 − π/m, that is, whether the
packing is maximal. The packing for m = 3 is not maximal while the one for
m = 4 trivially is, since here there is only one cap size, and adding a ninth cap
yields a density greater than 1.

Heppes and Kertész [23] showed that the configurations for m > 6 are maximal,
and the remaining case m = 5 was later shown to maximal by Florian and
Heppes [16]. Florian [14] showed that the geometric bound given above is in
fact sharp for the cases where m > 6, and for the m = 5 case it is not sharp but is
still good enough to prove maximality (notice that, given a finite number of cap
angles, the set of obtainable densities is finite).

Now we illustrate that Theorem 1.2 gives a sharp bound for the density of the
packing associated to the 5-prism, thus giving a simple proof of its maximality.
The theorem also provides a sharp bound for m = 4, but whether it can provide
sharp bounds for the cases m > 6 we do not know at the moment. The numerical
results are not decisive.

We shall exhibit functions

fi j(u) =
4∑

k=0

fi j,k Pn
k (u)

which satisfy the conditions of Theorem 1.2 with f11(1) = f22(1) = 5w(α1) +
2w(α2), where

α1 = π5 , α2 = 3π
10
, w(α1) = 1

2

(
1− cos

π

5

)
, w(α2) = 1

2

(
1− cos

3π
10

)
.

For a sharp solution, the inequalities in the proof of Theorem 1.2 must be
equalities, so the fi j,k have to satisfy the following linear conditions.

0 = f11

(
cos

2π
5

)
= f11

(
cos

4π
5

)
= f ′11

(
cos

4π
5

)
= f12(0) = f22(−1).

The product (
f11,0 f12,0

f12,0 f22,0

)(
25w(α1) 10

√
w(α1)w(α2)

10
√
w(α1)w(α2) 4w(α2)

)
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equals(
25w(α1)

2 + 10w(α1)w(α2)
√
w(α1)w(α2)(10w(α1)+ 4w(α2))√

w(α1)w(α2)(25w(α1)+ 10w(α2)) 10w(α1)w(α2)+ 4w(α2)
2

)
.

For k = 1, . . . , 4 the product of the two matrices
( f11,k f12,k

f12,k f22,k

)
and(

w(α1)

(
5Pk(1)+ 10Pk

(
cos

2π
5

)
+ 10Pk

(
cos

2π
4

)) √
w(α1)w(α2)10Pk(0)

√
w(α1)w(α2)10Pk(0) w(α2)(2Pk(1)+ 2Pk(−1))

)

equals zero. This linear system together with the additional assumptions

0 = f11(−1) = f12

(
− 95

100

)
= f ′12

(
− 95

100

)
has a one-dimensional space of solutions from which it is easy to select one which
fulfills all requirements of Theorem 1.2.

For the remaining 13 Archimedean solids in dimension n = 3, we are only
able to show maximality of the packing associated to the truncated octahedron,
the Archimedean solid with vertex figure (6, 6, 5). Its density is 0.9056 . . . , the
geometric bound shows that the density is at most 0.9088 . . . , and using the
semidefinite program we get 0.9079 . . . as an upper bound. The first packing with
caps of angles arcsin(1/3) and arcsin(1/

√
3) which would be denser is obtained

by taking 19 of the smaller caps and 4 of the bigger caps, and it has density
0.9103 . . . . The upper bounds show however that it is not possible to obtain this
dense a packing, thus showing that the truncated octahedron packing is maximal.

We also used our programs to plot the upper bounds for N = 1, the classical
linear programming bound of Delsarte et al. [12], for dimensions n = 3, 4, and 5
in Figure 2. To the best of our knowledge these kinds of plots have not been made
before, and they seem to reveal interesting properties of the bound. For better
orientation, we show in the plots the packings where the linear programming
bound is sharp (see Levenshtein [29]; Cohn and Kumar [9] proved the much
stronger statement that these packings provide point configurations which are
universally optimal). The dotted line in the plot for n = 3 is the geometric bound,
and, since we know that both the geometric (see Florian [14]) and the semidefinite
programming bounds are sharp for the given configurations, we know that at these
peaks the bounds meet.

An interesting feature of the upper bound seems to be that it has some
periodic behavior. Indeed, the numerical results suggest that, for n = 3, the two
bounds in fact meet infinitely often as the angle decreases, and that between
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Figure 2. Upper bounds on the packing density for N = 1. The horizontal axis
represents the spherical cap angle and the vertical axis the packing density.

any two of these meeting points the semidefinite programming bound has a
similar shape. Although in higher dimensions we do not have a geometric bound,
the semidefinite programming bound seems to admit the same kind of periodic
behavior.

1.3. Computational results for binary sphere packings. We applied
Theorem 1.3 to compute upper bounds for the densities of binary sphere
packings. The results we obtained are summarized in the plot of Figure 3, where
we show bounds computed for dimensions 2, . . . , 5. A detailed account of our
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Figure 3. The horizontal axis represents the ratio between the radii of the small
and the large spheres. The vertical axis represents our upper bound. Our bounds
for dimensions 2, . . . , 5 are shown together.

approach is given in Section 5. We now briefly discuss the bounds presented in
Figure 3.
Dimension 2. Only in dimension 2 have binary sphere (that is, circle) packings
been studied in depth. We refer to the introduction in the paper of Heppes [22],
which surveys the known results about binary circle packings in the plane.

Currently, one of the best-known upper bounds for the maximum density of a
binary circle packing is due to Florian [13]. Florian’s bound states that a packing
of circles in which the ratio between the radii of the smallest and largest circles
is r has density at most

πr 2 + 2(1− r 2) arcsin(r/(1+ r))

2r
√

2r + 1
,

and that this bound is achieved exactly for r = 1 (that is, for classical circle
packings) and for r = 0 in the limit.

The question arises of which bound is better, our bound or Florian’s bound.
From our experiments, it seems that our bound is worse than Florian’s
bound, at least for r < 1. For instance, for r = 1/2 we obtain the upper
bound 0.9174426 . . . , whereas Florian’s bound is 0.9158118 . . . . Whether this
really means that the bound of Theorem 1.3 is worse than Florian’s bound, or just
that the computational approach of Section 5 is too restrictive to attain his bound,
we do not know.
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It is interesting to note that, for r = 1, that is, for packings of circles of one
size, our bound clearly coincides with that of Cohn and Elkies [8]. This bound
seems to be equal to π/

√
12, but no proof of this is known.

Dimension 3. Much less is known in dimension 3. In fact we do not know about
other attempts to find upper bounds for the densities of binary sphere packings in
dimensions 3 and higher.

Let us compare our upper bound with the lower bound by Hopkins et al. [26].
The record holder for r > 0.2 in terms of highest density occurs for r =
0.224744 . . . , and its density is 0.824539 . . . . Our computations show that there
cannot be a packing with this r having density more than 0.8617125 . . . , so this
leaves a margin of 5%.

Another interesting case is r =√2−1 = 0.414 . . . . Here the best-known lower
bound of 0.793 . . . comes from the crystall structure of sodium chloride NaCl. The
large spheres are centered at a face centered cubic lattice and the small spheres are
centered at a translated copy of the face centered cubic lattice so that they form
a jammed packing. Our upper bound for r = √2 − 1 is 0.813 . . . , less than 3%
away from the lower bound. Therefore, we believe that proving optimality of
NaCl might be doable.
Dimension 4 and beyond. In higher dimensions, even less is known about binary
sphere packings. We observed from Figure 3 that it seems that the upper bound
is decreasing: as the radius of the small sphere increases from 0.2 to 1, the
bound seems to decrease. This suggests that the bound given by Theorem 1.3
is decreasing in this sense, but we do not know a proof of this.

We also do not know the limit behavior of our bound when r approaches 0.
Due to numerical instabilities we could not perform numerical calculations in this
regime of r .

1.4. Improving the Cohn–Elkies bounds. We now present a theorem that
can be used to find better upper bounds for the densities of monodisperse
sphere packings than those provided by Cohn and Elkies [8]; our theorem is a
strengthening of theirs.

Fix ε > 0. Given a packing of spheres of radius 1/2, we consider its ε-tangency
graph, a graph whose vertices are the spheres in the packing, and in which two
vertices are adjacent if the distance between the centers of the respective spheres
lies in the interval [1, 1+ ε).

Let M(ε) be the least upper bound on the average degree of the ε-tangency
graph of any sphere packing. Our theorem is the following.

THEOREM 1.4. Take 0 = ε0 < ε1 < · · · < εm , and let f : Rn → R be a Schwartz
function such that the following hold.
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(i) f̂ (0) > vol B, where B is the ball of radius 1/2.

(ii) f̂ (u) > 0 for all u ∈ Rn \ {0}.
(iii) f (x) 6 0 whenever ‖x‖ > 1+ εm .

(iv) f (x) 6 ηk whenever ‖x‖ ∈ [1+ εk−1, 1+ εk) with ηk > 0, for k = 1, . . . ,m.

Then the density of a sphere packing is at most the optimal value of the following
linear programming problem in variables A1, . . . , Am:

max f (0)+ η1 A1 + · · · + ηm Am

A1 + · · · + Ak 6 U (εk) for k = 1, . . . ,m,
Ai > 0 for i = 1, . . . ,m,

(1.2)

where U (εk) > M(εk) for k = 1, . . . ,m.

In Section 6, we give a proof of Theorem 1.4, and we show how to compute
upper bounds for M(ε) using the semidefinite programming bounds of Bachoc
and Vallentin [4] for the sizes of spherical codes. There we also show how to use
semidefinite programming and the same ideas we employ in the computations for
binary sphere packings (see Section 5) to compute better upper bounds for the
densities of sphere packings.

In Table 1, we show the upper bounds obtained through our application of
Theorem 1.4. To better compare our bounds with those of Cohn and Elkies, in
Table 1 we show bounds for the center density of a packing, the center density of
a packing of unit spheres being equal to ∆/ vol B, where ∆ is the density of the
packing, and B is a unit ball.

We omit dimension 8 because for this dimension it is already believed that
the Cohn–Elkies bound is itself optimal, and therefore as is to be expected we
did not manage to obtain any improvement over their bound. We also note that
the bounds by Cohn and Elkies are the best-known upper bounds in all other
dimensions shown.

In dimension 3, the Cohn–Elkies bound is 0.18616, whereas the optimal sphere
packing has center density 0.17678. We can improve the Cohn–Elkies bound to
0.184559, which is also better than the upper bound 0.1847 due to Rogers [35].

2. Multiple-size spherical cap packings

In this section, we prove Theorem 1.2 and discuss its relation to an extension
of the weighted theta prime number for the spherical cap packing graph.
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Table 1. For each dimension, we show the best lower bound known, the bound by Cohn
and Elkies [8], and the upper bound coming from Theorem 1.4.

Dimension Lower bound Cohn–Elkies bound New upper bound
4 0.12500 0.13126 0.130587
5 0.08839 0.09975 0.099408
6 0.07217 0.08084 0.080618
7 0.06250 0.06933 0.069193
9 0.04419 0.05900 0.058951

2.1. Proof of Theorem 1.2. Let x1, . . . , xm ∈ Sn−1 and r : {1, . . . ,m} → {1,
. . . , N } be such that

m⋃
i=1

C(xi , αr(i))

is a packing of spherical caps on Sn−1.
Consider the sum

m∑
i, j=1

w(αr(i))
1/2w(αr( j))

1/2 fr(i)r( j)(xi · x j). (2.1)

By expanding fr(i)r( j)(xi · x j) according to (1.1), this sum is equal to

∞∑
k=0

m∑
i, j=1

w(αr(i))
1/2w(αr( j))

1/2 fr(i)r( j),k Pn
k (xi · x j).

By the addition formula (see for example Section 9.6 of Andrews et al. [1]) for
the Jacobi polynomials Pn

k , the matrix
(
Pn

k (xi · x j)
)m

i, j=1 is positive semidefinite.
From condition (ii) of the theorem, we also know that the matrix

(
fr(i)r( j),k

)m

i, j=1 is
positive semidefinite for k > 1. So the inner sum above is nonnegative for k > 1.
If we then consider only the summand for k = 0, we see that (2.1) is at least

m∑
i, j=1

w(αr(i))
1/2w(αr( j))

1/2 fr(i)r( j),0 Pn
0 (xi · x j) >

( m∑
i=1

w(αi)

)2

, (2.2)

where the inequality follows from condition (i) of the theorem.
Now, notice that, whenever i 6= j , the caps C(xi , αr(i)) and C(x j , αr( j)) have

disjoint interiors. Condition (iii) then implies that fr(i)r( j)(xi · x j) 6 0. So we see
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that (2.1) is at most

m∑
i=1

w(αi) fr(i)r(i)(1) 6 max{ fi i(1) : i = 1, . . . , N }
m∑

i=1

w(αi). (2.3)

So (2.1) is at least (2.2) and at most (2.3), yielding

m∑
i=1

w(αi) 6 max{ fi i(1) : i = 1, . . . , N }.

2.2. Theorem 1.2 and the Lovász theta number. We now briefly discuss
a generalization of ϑ ′w to infinite graphs and its relation to the bound of
Theorem 1.2. Similar ideas were developed by Bachoc et al. [3].

Let G = (V, E) be a graph, where V is a compact space, and let w : V → R>0

be a continuous weight function. An element in the space C(V×V ) of real-valued
continuous functions over V × V is called a kernel. A kernel K is symmetric if
K (x, y) = K (y, x) for all x, y ∈ V . It is positive if it is symmetric and if, for
any m ∈ N and for any x1, . . . , xm ∈ V , the matrix

(
K (xi , x j)

)m

i, j=1 is positive
semidefinite. The weighted theta prime number of G is defined as

ϑ ′w(G) = inf M
K − w1/2 ⊗ (w1/2)∗ is a positive kernel,
K (x, x) 6 M for all x ∈V ,
K (x, y) 6 0 for all {x,y} 6∈E where x 6= y,
M ∈ R, K ∈ C(V × V ) is symmetric.

(2.4)

One may show, mimicking the proof of Theorem 1.1, that ϑ ′w(G) > αw(G).
Let G = (V, E) be the spherical cap packing graph as defined in Section 1.1.

We will use the symmetry of this graph to show that (2.4) gives the sharpest bound
obtainable by Theorem 1.2.

The orthogonal group O(n) acts on Sn−1, and this defines the action of O(n) on
the vertex set V = Sn−1 × {1, . . . , N } by A(x, i) = (Ax, i) for A ∈ O(n). The
group average of a kernel K ∈ C(V × V ) is given by

K ((x, i), (y, j)) =
∫

O(n)
K (A(x, i), A(y, j)) dµ(A),

where µ is the Haar measure on O(n) normalized so that µ(O(n)) = 1. If (K ,
M) is feasible for (2.4), then (K ,M) is feasible too. This follows since, for each
A ∈ O(n), a point (x, i) has the same weight as A(x, i), and two points (x, i) and
(y, j) are adjacent if and only if A(x, i) and A(y, j) are adjacent. Since (K ,M)
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and (K ,M) have the same objective value M , and since K is invariant under the
action of O(n), we may restrict consideration to O(n)-invariant kernels (that is,
kernels K such that K (Au, Av) = K (u, v) for all A ∈ O(n) and u, v ∈ V ) in
finding the infimum of (2.4).

Schoenberg [36] showed that a symmetric kernel K ∈ C(Sn−1×Sn−1) is positive
and O(n)-invariant if and only if it lies in the cone spanned by the kernels (x, y)
7→ Pn

k (x · y). We will use the following generalization for kernels over V × V .

THEOREM 2.1. A symmetric kernel K ∈ C(V ×V ), with V = Sn−1×{1, . . . , N },
is positive and O(n)-invariant if and only if

K ((x, i), (y, j)) = fi j(x · y) (2.5)

with

fi j(u) =
∞∑

k=0

fi j,k Pn
k (u),

where
(

fi j,k
)N

i, j=1 is positive semidefinite for all k > 0 and
∑∞

k=0 | fi j,k | < ∞ for
all i , j = 1, . . . , N, implying in particular that we have uniform convergence
above.

Before we prove the theorem, we apply it to simplify problem (2.4). If K is an
O(n)-invariant feasible solution of (2.4), then K − w1/2 ⊗ (w1/2)∗ is a positive
O(n)-invariant kernel, and hence it can be written in the form (2.5). Using in
addition that Pn

0 = 1, problem (2.4) reduces to

ϑ ′w(G) = inf M
fi i(0)+ w(αi) 6 M for all 1 6 i 6 N ,
fi j(u)+ (w(αi)w(α j))

1/2 6 0 when −1 6 u 6 cos(αi + α j),

M ∈ R and
(

fi j,k
)N

i, j=1 positive semidefinite for all k > 0.

By substituting fi j,0 − (w(αi)w(α j))
1/2 for fi j,0, we see that the solution to this

problem indeed equals the sharpest bound given by Theorem 1.2.

Proof of Theorem 2.1. If we endow the space C(Sn−1) of real-valued continuous
function on the unit sphere Sn−1 with the usual L2 inner product, then, for f ,
g ∈ C(V ),

〈 f, g〉 =
N∑

i=1

∫
Sn−1

f (x, i)g(x, i) dω(x)
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gives an inner product on C(V ). The space C(Sn−1) decomposes orthogonally as

C(Sn−1) =
∞⊕

k=0

Hk,

where Hk is the space of homogeneous harmonic polynomials of degree k
restricted to Sn−1. With

Hk,i = { f ∈ C(V ) : there is a g ∈ Hk such that f (·, j) = δi j g(·)},
it follows that C(V ) decomposes orthogonally as

C(V ) =
∞⊕

k=0

N⊕
i=1

Hk,i .

Given the action of O(n) on V , we have the natural unitary representation on
C(V ) given by (A f )(x, i) = f (A−1x, i) for A ∈ O(n) and f ∈ C(V ). It follows
that each space Hk,i is O(n)-irreducible and that two spaces Hk,i and Hk′,i ′ are
O(n)-equivalent if and only if k = k ′. Let

{ek,i,l : k > 0, 1 6 i 6 N , and 1 6 l 6 hk}
be a complete orthonormal system of C(V ) such that ek,i,1, . . . , ek,i,hk is a basis of
Hk,i . By Bochner’s characterization [5], a kernel K ∈ C(V × V ) is positive and
O(n)-invariant if and only if

K ((x, i), (y, j)) =
∞∑

k=0

N∑
i ′, j ′=1

fi j,k

hk∑
l=1

ek,i ′,l(x, i)ek, j ′,l(y, j), (2.6)

where each
(

fi j,k
)N

i, j=1 is positive semidefinite and
∑∞

k=0 | fi j,k | <∞ for all i , j .
By the addition formula (see Ch. 9.6 of Andrews et al. [1]), we have

hk∑
l=1

ek,l(x)ek,l(y) = hk

ωn(Sn−1)
Pn

k (x · y)

for any orthonormal basis ek,1, . . . , ek,hk of Hk . It follows that

hk∑
l=1

ek,i ′,l(x, i)ek, j ′,l(y, j) = δi i ′δ j j ′
hk

ωn(Sn−1)
Pn

k (x · y),

and substituting this into (2.6) completes the proof.
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Bochner’s characterization for the kernel K , which we used above, usually
assumes that the spaces under consideration are homogeneous, so that the
decompositions into isotypic irreducible spaces are guaranteed to be finite. This
finiteness is then used to conclude uniform convergence. Since the action of O(n)
on V is not transitive, we do not immediately have this guarantee. We can still
use the characterization, however, since irreducible subspaces of C(V ) have finite
multiplicity.

3. Translational packings of bodies and multiple-size sphere packings

Before giving a proof of Theorem 1.3, we briefly present some technical
considerations regarding density. Here, we follow closely Appendix A of Cohn
and Elkies [8].

Let K1, . . . ,KN be convex bodies, and let P be a packing of translated copies
of K1, . . . ,KN ; that is, P is a union of translated copies of the bodies, any two
copies having disjoint interiors. We say that the density of P is∆ if for all p ∈ Rn

we have

∆ = lim
r→∞

vol(B(p, r) ∩ P)
vol B(p, r)

,

where B(p, r) is the ball of radius r centered at p. Not every packing has a
density, but every packing has an upper density given by

lim sup
r→∞

sup
p∈Rn

vol(B(p, r) ∩ P)
vol B(p, r)

.

We say that a packing P is periodic if there is a lattice L ⊆ Rn that leaves P
invariant, that is, which is such that P = x + P for all x ∈ L . In other words,
a periodic packing consists of some translated copies of the bodies K1, . . . ,KN

arranged inside the fundamental parallelotope of L , and this arrangement repeats
itself at each copy of the fundamental parallelotope translated by vectors of the
lattice.

It is easy to see that a periodic packing has a density. This is particularly
interesting for us, since in computing upper bounds for the maximum possible
density of a packing we may restrict ourselves to periodic packings, as it is known
(and also easy to see) that the supremum of the upper densities of packings can
be approximated arbitrarily well by periodic packings (see Appendix A in Cohn
and Elkies [8]).

To provide a proof of the theorem, we need another fact from harmonic
analysis, the Poisson summation formula. Let f : Rn → C be a Schwartz
function, and let L ⊆ Rn be a lattice. The Poisson summation formula states that,
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for every x ∈ Rn ,

∑
v∈L

f (x + v) = 1
vol(Rn/L)

∑
u∈L∗

f̂ (u)e2π iu·x ,

where L∗ = {u ∈ Rn : u · x ∈ Z for all x ∈ L} is the dual lattice of L and where
vol(Rn/L) is the volume of a fundamental domain of the lattice L .

Proof of Theorem 1.3. As observed above, we may restrict ourselves to periodic
packings. Let then L ⊆ Rn be a lattice, and let x1, . . . , xm ∈ Rn and r : {1, . . . ,
m} → {1, . . . , N } be such that

P =
⋃
v∈L

m⋃
i=1

v + xi +Kr(i)

is a packing. This means that, whenever i 6= j or v 6= 0, bodies xi +Kr(i) and v+
x j + Kr( j) have disjoint interiors. This packing is periodic and therefore has a
well-defined density, which equals

1
vol(Rn/L)

m∑
i=1

volKr(i).

Consider the sum

∑
v∈L

m∑
i, j=1

(volKr(i))
1/2(volKr( j))

1/2 fr(i)r( j)(v + x j − xi). (3.1)

Applying the Poisson summation formula, we may express (3.1) in terms of
Fourier transform of f , obtaining

1
vol(Rn/L)

∑
u∈L∗

m∑
i, j=1

(vol Kr(i))
1/2(vol Kr( j))

1/2 f̂r(i)r( j)(u)e2π iu·(x j−xi ),

where L∗ is the dual lattice of L .
Since f satisfies condition (ii) of the theorem, matrix

(
f̂r(i)r( j)(u)

)m

i, j=1 is
positive semidefinite for every u ∈ Rn . So the inner sum above is always
nonnegative. If we then consider only the summand for u = 0, we see that (3.1)



D. de Laat et al. 20

is at least

1
vol(Rn/L)

m∑
i, j=1

(volKr(i))
1/2(volKr( j))

1/2 f̂r(i)r( j)(0)

>
1

vol(Rn/L)

m∑
i, j=1

volKr(i) volKr( j)

= 1
vol(Rn/L)

( m∑
i=1

volKr(i)

)2

,

(3.2)

where the inequality comes from condition (i) of the theorem.
Now, notice that, whenever v 6= 0 or i 6= j , one has fr(i)r( j)(v + x j − xi) 6

0. Indeed, since P is a packing, if v 6= 0 or i 6= j , then the bodies xi + Kr(i)

and v+x j+Kr( j) have disjoint interiors. But then also Kr(i) and v+x j−xi+Kr( j)

have disjoint interiors, and then from (iii) we see that fr(i)r( j)(v + x j − xi) 6 0.
From this observation, we see immediately that (3.1) is at most

m∑
i=1

volKr(i) fr(i)r(i)(0) 6 max{ fi i(0) : i = 1, . . . , N }
m∑

i=1

volKr(i). (3.3)

So (3.1) is at least (3.2) and at most (3.3). Putting this all together, we get that

1
vol(Rn/L)

m∑
i=1

volKr(i) 6 max{ fi i(0) : i = 1, . . . , N },

proving the theorem.

We mentioned in the beginning of the section that Theorem 1.3 is an analog of
the weighted theta prime number for a certain infinite graph. The connection will
become clearer after we present a slightly more general version of Theorem 1.3.

An L∞ function f : Rn→ CN×N is said to be of positive type if f (x)= f (−x)∗

for all x ∈ Rn , and if for all L1 functions ρ : Rn → CN we have∫
Rn

∫
Rn
ρ(y)∗ f (x − y)ρ(x) dx dy > 0.

When N = 1, we have the classical theory of functions of positive type (see
for example the book by Folland [17] for background). Many useful properties of
such functions can be extended to the matrix-valued case (that is, to the N > 1
case) via a simple observation: a function f : Rn → CN×N is of positive type if
and only if for all p ∈ CN the function gp : Rn → C such that

gp(x) = p∗ f (x)p

is of positive type.
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From this observation, two useful classical characterizations of functions of
positive type can be extended to the matrix-valued case. The first one is useful
when dealing with continuous functions of positive type. It states that a continuous
and bounded function f : Rn → CN×N is of positive type if and only if, for every
choice x1, . . . , xm of finitely many points in Rn , the block matrix

(
f (xi− x j)

)m

i, j=1
is positive semidefinite.

The second characterization is given in terms of the Fourier transform. It
states that an L1 function f : Rn → CN×N is of positive type if and only if the
matrix

(
f̂i j(u)

)N

i, j=1 is positive semidefinite for all u ∈ Rn . So, in the statement
of Theorem 1.3, for instance, one could replace condition (i) by the equivalent
condition that f be a function of positive type.

When N = 1, the previous two characterizations of functions of positive type
date back to Bochner [6].

With this, we may give an alternative and more general version of Theorem 1.3.

THEOREM 3.1. Let K1, . . . ,KN be convex bodies in Rn , and let f : Rn →
RN×N be a continuous and L1 function. Suppose that f satisfies the following
conditions.

(i) The matrix
(

f̂i j(0)− (volKi)
1/2(volK j)

1/2
)N

i, j=1 is positive semidefinite.

(ii) f is of positive type.

(iii) fi j(x) 6 0 whenever K◦i ∩ (x +K◦j) = ∅.
Then the density of every packing of translates of K1, . . . ,KN in the Euclidean
space Rn is at most max{ fi i(0) : i = 1, . . . , N }.

Let V = Rn × {1, . . . , N }. Notice that the kernel K : V × V → R such that

K ((x, i), (y, j)) = fi j(x − y),

implicitly defined by the function f , plays the same role as the matrix K from
the definition of the theta prime number (see Section 2.2). For instance, this is a
positive kernel, since f is of positive type, and hence for any L1 function ρ : V →
R we have that∫

V

∫
V

K ((x, i), (y, j))ρ(x, i)ρ(y, j) d(x, i) d(y, j) > 0.

Theorem 3.1 can then be seen as an analog of the weighted theta prime number
for the packing graph with vertex set V that we consider.
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When one reads through the proof of Theorem 1.3, the one step that fails
when f is L1 instead of Schwartz is the use of the Poisson summation formula.
Indeed, sum (3.1) is no longer well defined in such a situation. The summation
formula also holds, however, under somewhat different conditions that are just
what we need to make the proof go through. The proof of the following lemma
makes use of the well-known interpretation of the Poisson summation formula as
a trace formula, which for instance is explained by Terras [39, Ch. 1.3].

LEMMA 3.2. Let f : Rn → CN×N be a continuous function of bounded support
and positive type. Then, for every lattice L ⊆ Rn , every x ∈ Rn , and all i , j = 1,
. . . , N , we have ∑

v∈L

fi j(x + v) = 1
vol(Rn/L)

∑
u∈L∗

f̂i j(u)e2π iu·x .

Proof. Since each function fi j is continuous and of bounded support, the
functions gi j : Rn/L → C such that

gi j(x) =
∑
v∈L

fi j(x + v)

are continuous. Indeed, the sum above is well defined, being in fact a finite sum
(since fi j has bounded support), and therefore gi j can be seen locally as a sum of
finitely many continuous functions.

Let us now compute the Fourier transform of gi j . For u ∈ L∗, we have that

ĝi j(u) =
∫
Rn/L

gi j(x)e−2π iu·x dx

=
∫
Rn/L

∑
v∈L

fi j(x + v)e−2π iu·x dx

=
∫
Rn

fi j(x)e−2π iu·x dx

= f̂i j(u).

So we know that

gi j(x) = 1
vol(Rn/L)

∑
u∈L∗

f̂i j(u)e2π iu·x (3.4)

in the sense of L2 convergence. Our goal is to prove that pointwise convergence
also holds above.
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To this end, we consider for i = 1, . . . , N the kernel Ki : (Rn/L)× (Rn/L)→
C such that

Ki(x, y) =
∑
v∈L

fi i(v + x − y).

Since each function fi i is of bounded support and continuous, each kernel Ki

is continuous. Since for each i we have that fi i(x) = fi i(−x) for all x ∈ Rn

(since f is of positive type), each kernel Ki is self-adjoint. Notice that the
functions x 7→ (vol(Rn/L))−1/2e2π iu·x , for u ∈ L∗, form a complete orthonormal
system of L2(Rn/L). Each such function is also an eigenfunction of Ki , with
eigenvalue f̂i i(u). Indeed, we have∫

Rn/L
Ki(x, y)(vol(Rn/L))−1/2e2π iu·y dy

= (vol(Rn/L))−1/2
∫
Rn/L

∑
v∈L

fi i(v + x − y)e2π iu·y dy

= (vol(Rn/L))−1/2
∫
Rn

fi i(x − y)e2π iu·y dy

= (vol(Rn/L))−1/2
∫
Rn

fi i(y)e2π iu·(x−y) dy

= f̂i i(u)(vol(Rn/L))−1/2e2π iu·x .

Since f is of positive type, the matrices of Fourier transforms
(

f̂i j(u)
)N

i, j=1,
for u ∈ Rn , are all positive semidefinite. In particular, this implies that the Fourier
transforms of fi i , for i = 1, . . . , N , are nonnegative. So we see that each Ki is a
continuous and positive kernel. Mercer’s theorem (see for instance Courant and
Hilbert [11]) then implies that Ki is trace-class, its trace being the sum of all its
eigenvalues. So, for each i = 1, . . . , N , the series∑

u∈L∗
f̂i i(u) (3.5)

converges, and, since each summand is nonnegative, it converges absolutely.
Suppose now that i , j = 1, . . . , N are such that i 6= j . Since the matrices of

Fourier transforms are nonnegative, for all u ∈ Rn , we have that the matrix(
f̂i i(u) f̂i j(u)

f̂i j(u) f̂ j j(u)

)

is positive semidefinite, and this in turn implies that | f̂i j(u)|2 6 f̂i i(u) f̂ j j(u)
for all u ∈ Rn . Using then the convergence of the series (3.5) and the
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Cauchy–Schwarz inequality, one gets∑
u∈L∗
| f̂i j(u)| 6

∑
u∈L∗

( f̂i i(u) f̂ j j(u))1/2 6
(∑

u∈L∗
f̂i i(u)

)1/2(∑
u∈L∗

f̂ j j(u)
)1/2

,

and we see that, in fact, for all i , j = 1, . . . , N the series∑
u∈L∗

f̂i j(u)

converges absolutely.
This convergence result shows that the sum in (3.4) converges absolutely and

uniformly for all x ∈ Rn/L . This means that the function defined by this sum is a
continuous function, and, since gi j is also a continuous function, and in (3.4) we
have convergence in the L2 sense, we must also then have pointwise convergence,
as we aimed to establish.

With this we may give a proof of Theorem 3.1.

Proof of Theorem 3.1. Using Lemma 3.2, we may repeat the proof of
Theorem 1.3 given before, proving the theorem for continuous functions of
bounded support. To extend the proof also to continuous L1 functions, we use the
following trick.

Let f : Rn → RN×N be a continuous and L1 function satisfying the hypothesis
of the theorem. For each T > 0, consider the function gT : Rn → RN×N defined
such that

gT (x) = vol(B(0, T ) ∩ B(x, T ))
vol B(0, T )

f (x),

where B(p, T ) is the ball of radius T centered at p.
It is easy to see that gT is a continuous function of bounded support. It is also

clear that it satisfies condition (iii) from the statement of the theorem. We now
show that gT is a function of positive type; that is, it satisfies condition (ii).

For this, pick any points x1, . . . , xm ∈ Rn . Let χi : Rn → {0, 1} be the
characteristic function of B(xi , T ), and denote by 〈φ,ψ〉 the standard inner
product between functions φ and ψ in the Hilbert space L2(Rn). Then

gT (xi − x j) = vol(B(0, T ) ∩ B(xi − x j , T ))
vol B(0, T )

f (xi − x j)

= vol(B(xi , T ) ∩ B(x j , T ))
vol B(0, T )

f (xi − x j)

= 〈χi , χ j 〉
vol B(0, T )

f (xi − x j).
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This shows that the matrix
(
gT (xi − x j)

)m

i, j=1 is positive semidefinite, being the
Hadamard product, i.e. entrywise product, of two positive semidefinite matrices.
We therefore have that gT is of positive type.

Now, gT is a continuous function of positive type and bounded support,
satisfying condition (iii). It is very possible, however, that gT does not satisfy
condition (i), and so the conclusion of the theorem may not apply to gT . Let us
now fix this problem.

Notice that gT
i j converges pointwise to fi j as T → ∞. Moreover, for all T >

0 we have |gT
i j(x)| 6 | fi j(x)|. It then follows from Lebesgue’s dominated

convergence theorem that ĝT
i j(0) → f̂i j(0) as T → ∞. This means that there

exists a number T0 > 0 such that for each T > T0 we may pick a number α(T )> 1
so that the function hT : Rn → CN×N such that

hT
ii(x) = α(T )gT

ii (x) for i = 1, . . . , N ,
hT

i j(x) = gT
i j(x) for i , j = 1, . . . , N with i 6= j

for all x ∈ Rn satisfies condition (i). We may moreover pick the numbers α(T ) in
such a way that limT→∞ α(T ) = 1.

It is also easy to see that each function hT is of positive type and bounded
support and satisfies condition (iii). Hence the conclusion of the theorem applies
for each hT , and so for every T > T0 we see that

MT = max{hT
ii(0) : i = 1, . . . , N }

is an upper bound for the density of any packing of translated copies of K1, . . . ,

KN . But then, since gT
ii (0) = fi i(0) for all T > 0, and since limT→∞ α(T ) = 1,

we see that
max{ fi i(0) : i = 1, . . . , N } = lim

T→∞
MT ,

finishing the proof.

4. Computations for binary spherical cap packings

In this section and in the next section, we describe how we obtained the
numerical results of Sections 1.2 and 1.3. Our approach is computational: to apply
Theorems 1.2 and 1.3, we use techniques from semidefinite programming and
polynomial optimization.

We start by briefly discussing the case of binary spherical cap packings. Next,
we will discuss the more computationally challenging case of binary sphere
packings.

It is a classical result of Lukács (see, for example, Theorem 1.21.1 in
Szegö [38]) that a real univariate polynomial p of degree 2d is nonnegative on the
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interval [a, b] if and only if there are real polynomials q and r such that p(x) =
(q(x))2+(x−a)(b− x)(r(x))2. This characterization is useful when we combine
it with the elementary but powerful observation (discovered independently by
several authors; see Laurent [28]) that a real univariate polynomial p of degree 2d
is a sum of squares of polynomials if and only if p(x) = v(x)T Qv(x) for some
positive semidefinite matrix Q, where v(x) = (1, x, . . . , xd) is a vector whose
components are the monomial basis.

Let α1, . . . , αN ∈ (0, π] be angles, and let d be an integer. Write v0(x) = (1, x,
. . . , xd) and v1(x) = (1, x, . . . , xd−1). Using this characterization together with
Theorem 1.2, we see that the optimal value of the following optimization problem
gives an upper bound for the density of a packing of spherical caps with angles α1,

. . . , αN .

Problem A. For k = 0, . . . , 2d , find positive semidefinite matrices
(

fi j,k
)N

i, j=1,
and, for i , j = 1, . . . , N , find (d+1)× (d+1) positive semidefinite matrices Qi j

and d × d positive semidefinite matrices Ri j that minimize

max
{ 2d∑

k=0

fi i,k : i = 1, . . . , N
}

and are such that (
fi j,0 − w(αi)

1/2w(α j)
1/2)N

i, j=1

is positive semidefinite and the polynomial identities

2d∑
k=0

fi j,k Pn
k (u)+ 〈Qi j , v0(u)v0(u)T〉

+ 〈Ri j , (u + 1)(cos(αi + α j)− u)v1(u)v1(u)T〉 = 0 (4.1)

are satisfied for i , j = 1, . . . , N . C

Above, 〈A, B〉 denotes the trace inner product between matrices A and B.
Problem A is a semidefinite programming problem, as the polynomial
identities (4.1) can each be expressed as 2d + 1 linear constraints on the
entries of the matrices involved. Indeed, to check that a polynomial is identically
zero, it suffices to check that the coefficient of each monomial 1, x, . . . , x2d is
zero, and for each such monomial we get a linear constraint.

In the above, we work with the standard monomial basis 1, x, . . . , x2d , but we
could use any other basis of the space of polynomials of degree at most 2d , both
to define the vectors v0 and v1 and to check the polynomial identity (4.1). Such a
change of basis does not change the problem from a formal point of view, but it
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can drastically improve the performance of the solvers used. In our computations
for binary spherical cap packings it was enough to use the standard monomial
basis. We will see in the next section, when we present our computations for the
Euclidean space, that a different choice of basis is essential.

We reported in Section 1.2 on our calculations for N = 1, and 2 and n = 3, 4,
and 5. The bounds, for the angles under consideration, do not seem to improve
beyond d = 25, so we use this value for d in all computations. To obtain these
bounds, we used the solver SDPA-QD, which works with quadruple precision
floating-point numbers, from the SDPA family [19]. To generate the input for
the solver, we wrote a SAGE [37] program using SDPSL [34]. Our programs are
contained in the examples folder in the source distribution of SDPSL; version 0.85
is available as a supplementary file (available at http://dx.doi.org/10.1017/fms.20
14.24) to this article, and the latest version can be obtained from the SDPSL [34]
website.

5. Computations for binary sphere packings

In this section, we discuss our computational approach to find upper bounds for
the density of binary sphere packings using Theorem 1.3. This is a more difficult
application of semidefinite programming and polynomial optimization techniques
than the one described in Section 4.

It is often the case in applications of sum of squares techniques that, if one
formulates the problems carelessly, high numerical instability invalidates the final
results, or even numerical results cannot easily be obtained. This raises questions
of how to improve the formulations used and the precision of the computations, so
that we may provide rigorous bounds. We also address these questions and, since
the techniques we use and develop might be of interest to the reader who wants to
perform computations in polynomial optimization, we include some details.

5.1. Theorem 1.3 for multiple-size sphere packings. In the case of multiple-
size sphere packings, Theorem 1.3 can be simplified. The key observation here is
that, when all the bodies Ki are spheres, then condition (iii) depends only on
the norm of the vector x . More specifically, if each Ki is a sphere of radius ri ,
then K◦i ∩ (x +K◦j) = ∅ if and only if ‖x‖ > ri + r j .

So in Theorem 1.3 one can choose to restrict oneself to radial functions. A
function f : Rn → C is radial if the value of f (x) depends only on the norm
of x . If f : Rn → C is radial, for t > 0 we denote by f (t) the common value of f
for vectors of norm t .

The Fourier transform f̂ (u) of a radial function f also depends only on the
norm of u; in other words, the Fourier transform of a radial function is also radial.
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By restricting ourselves to radial functions, we obtain the following version of
Theorem 1.3.

THEOREM 5.1. Let r1, . . . , rN > 0, and let f : Rn → RN×N be a matrix-valued
function whose every component fi j is a radial Schwartz function. Suppose that f
satisfies the following conditions.

(i) The matrix
(

f̂i j(0)−(vol B(ri))
1/2(vol B(r j))

1/2
)N

i, j=1 is positive semidefinite,
where B(r) is the ball of radius r centered at the origin.

(ii) The matrix of Fourier transforms
(

f̂i j(t)
)N

i, j=1 is positive semidefinite for
every t > 0.

(iii) fi j(w) 6 0 if w > ri + r j , for i , j = 1, . . . , N.

Then the density of any packing of spheres of radii r1, . . . , rN in the Euclidean
space Rn is at most max{ fi i(0) : i = 1, . . . , N }.

One might ask whether the restriction to radial functions worsens the bound of
Theorem 1.3. For spheres, this is not the case. Indeed, suppose that each body Ki

is a sphere. If f : Rn → RN×N is a function satisfying the conditions of the
theorem, then its radialized version, the function

f (x) =
∫

Sn−1
f (‖x‖ξ) dωn(ξ),

also satisfies the conditions of the theorem, and it provides the same upper
bound. This shows in particular that, for the case of multiple-size sphere packings,
Theorem 5.1 is equivalent to Theorem 1.3.

5.2. A semidefinite programming formulation. To simplify notation, and
because it is the case of our main interest, we now take N = 2. Everything in
the following also goes through for arbitrary N , with obvious modifications.

To find a function f satisfying the conditions of Theorem 5.1, we specify f
via its Fourier transform. Let d > 0 be an odd integer, and consider the even
function ϕ : R>0 → R2×2 such that

ϕi j(t) =
d∑

k=0

ai j,k t2k,

where each ai j,k is a real number and ai j,k = a j i,k for all k. We set the Fourier
transform of f to be

f̂i j(u) = ϕi j(‖u‖)e−π‖u‖2 .
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Notice that each f̂i j is a Schwartz function, so its Fourier inverse is also
Schwartz.

The reason why we choose this form for the Fourier transform of f is that it
makes it simple to compute f from its Fourier transform by using the following
result.

LEMMA 5.2. We have that∫
Rn
‖u‖2ke−π‖u‖

2
e2π iu·x du = k!π−ke−π‖x‖

2
Ln/2−1

k (π‖x‖2), (5.1)

where Ln/2−1
k is the Laguerre polynomial of degree k with parameter n/2− 1.

For background on Laguerre polynomials, we refer the reader to the book by
Andrews et al. [1].

Proof. With f (u) = ‖u‖2ke−π‖u‖
2 , the left-hand side of (5.1) is equal to f̂ (−x).

By [1, Theorem 9.10.3], we have

f̂ (−x) = 2π‖x‖1−n/2
∫ ∞

0
s2ke−πs2

Jn/2−1(2πs‖x‖)sn/2 ds,

where Jn/2−1 is the Bessel function of the first kind with parameter n/2 − 1.
Using [1, Corollary 4.11.8], we see that this is equal to

π−k Γ (k + n/2)
Γ (n/2)

e−π‖x‖
2

1 F1

(−k
n/2
;π‖x‖2

)
, (5.2)

where 1 F1 is a hypergeometric series.
By [1, (6.2.2)], we have

1 F1

(−k
n/2
;π‖x‖2

)
= k!
(n/2)k

Ln/2−1
k (π‖x‖2),

where (n/2)k = (n/2)(1+ n/2) · · · (k − 1+ n/2).
By substituting this in (5.2), and using the property that Γ (x + 1) = xΓ (x) for

all x 6= 0,−1,−2, . . . , we obtain the right-hand side of (5.1), as desired.

So we have

fi j(x) =
∫
Rn
ϕi j(‖u‖)e−π‖u‖2 e2π iu·x du =

d∑
k=0

ai j,k k!π−ke−π‖x‖
2
Ln/2−1

k (π‖x‖2).

Notice that it becomes clear that fi j is indeed real valued, as required by the
theorem.
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Consider the polynomial

p(t) =
d∑

k=0

ak t2k .

According to Lemma 5.2, if g(x) is the Fourier inverse of ĝ(u) = p(‖u‖)e−π‖u‖2 ,
then g(‖x‖) = q(‖x‖)e−π‖x‖2 , where

q(w) =
d∑

k=0

ak k!π−k Ln/2−1
k (πw2)

is a univariate polynomial. We denote the polynomial q above by F−1[p]. Notice
that F−1[p] is obtained from p via a linear transformation; that is, its coefficients
are linear combinations of the coefficients of p. With this notation, we have

fi j(x) = F−1[ϕi j ](‖x‖)e−π‖x‖2 .
Let

σ(t, y1, y2) =
2∑

i, j=1

d∑
k=0

ai j,k t2k yi y j . (5.3)

If this polynomial is a sum of squares, then it is nonnegative everywhere, and
hence the matrices

(
ϕi j(t)

)2

i, j=1 are positive semidefinite for all t > 0. This implies
that f satisfies condition (ii) of Theorem 5.1. (The converse is also true: that, if
the matrices

(
ϕi j(t)

)2

i, j=1 are positive semidefinite for all t > 0, then σ is a sum
of squares; For a proof see Choi et al. [7]. This fact is related to the Kalman–
Yakubovich–Popov lemma in systems and control; see the discussion in Aylward
et al. [2].)

Moreover, we may recover ϕ, and hence f̂ , from σ . Indeed, we have

ϕ11(t) = σ(t, 1, 0),
ϕ22(t) = σ(t, 0, 1), and
ϕ12(t) = (1/2)(σ (t, 1, 1)− σ(t, 1, 0)− σ(t, 0, 1)).

So we can express condition (i) of Theorem 5.1 in terms of σ . We may also
express condition (iii) in terms of σ , since it can be translated as

F−1[ϕi j ](w) 6 0 for all w > ri + r j and i , j = 1, 2 with i 6 j . (5.4)

If we find a polynomial σ of the form (5.3) that is a sum of squares, is such that(
ϕi j(0)− (vol B(ri))

1/2(vol B(r j))
1/2)2

i, j=1 (5.5)
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is positive semidefinite, and satisfies (5.4), then the density of a packing of spheres
of radii r1 and r2 is upper bounded by

max{F−1[ϕ11](0),F−1[ϕ22](0)}.
We may encode conditions (5.4) in terms of sums of squares polynomials

(see Section 4), and therefore we may encode the problem of finding a σ as above
as a semidefinite programming problem, as we show now.

Let P0, P1, . . . be a sequence of univariate polynomials, where polynomial Pk

has degree k. Consider the vector of polynomials v, which has entries indexed
by {0, . . . , bd/2c} given by

v(t)k = Pk(t2)

for k = 0, . . . , bd/2c. We also write V (t) = v(t)v(t)T.
Consider also the vector of polynomials m with entries indexed by {1, 2} × {0,

. . . , bd/2c} given by
m(t, y1, y2)i,k = Pk(t2)yi

for i , j = 1, 2, and k = 0, . . . , bd/2c.
Since σ is an even polynomial, it is a sum of squares if and only if there are

positive semidefinite matrices S0, S1 ∈ R(d+1)×(d+1) such that

σ(t, y1, y2) = 〈S0,m(t, y1, y2)m(t, y1, y2)
T〉 + 〈S1, t2m(t, y1, y2)m(t, y1, y2)

T〉.
From the matrices S0 and S1, we may then recover ϕi j and also F−1[ϕi j ]. A

more convenient way for expressing ϕi j in terms of S0 and S1 is as follows.
Consider the matrices

Y11 =
(

1 0
0 0

)
, Y22 =

(
0 0
0 1

)
, and Y12 =

(
0 1/2

1/2 0

)
.

Then
ϕi j(t) = 〈S0, V (t)⊗ Yi j 〉 + 〈S1, t2V (t)⊗ Yi j 〉

and

F−1[ϕi j ](w) = 〈S0,F−1[V (t)](w)⊗ Yi j 〉 + 〈S1,F−1[t2V (t)](w)⊗ Yi j 〉,
where F−1, when applied to a matrix, is applied to each entry individually.

With this, we may consider the following semidefinite programming problem
for finding a polynomial σ satisfying the conditions we need.

Problem B. Find (d + 1)× (d + 1) real positive semidefinite matrices S0 and S1,
and (bd/2c + 1) × (bd/2c + 1) real positive semidefinite matrices Q11, Q22,
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and Q12 that minimize

max{〈S0,F−1[V (t)](0)⊗ Y11〉 + 〈S1,F−1[t2V (t)](0)⊗ Y11〉,
〈S0,F−1[V (t)](0)⊗ Y22〉 + 〈S1,F−1[t2V (t)](0)⊗ Y22〉}

and are such that(〈S0, V (0)⊗ Yi j 〉 − (vol B(ri))
1/2(vol(B(r j))

1/2)2

i, j=1

is positive definite and the polynomial identities

〈S0,F−1[V (t)](w)⊗ Yi j 〉 + 〈S1,F−1[t2V (t)](w)⊗ Yi j 〉
+ 〈Qi j , (w

2 − (ri + r j)
2)V (w)〉 = 0 (5.6)

are satisfied for i , j = 1, 2 and i 6 j . C

Any solution to this problem gives us a polynomial σ of the shape (5.3) which
is a sum of squares and satisfies conditions (5.4) and (5.5), and so the optimal
value is an upper bound for the density of any packing of spheres of radius r1

and r2. There might be, however, polynomials σ satisfying these conditions that
cannot be obtained as feasible solutions to Problem B, since condition (5.6) is
potentially more restrictive than condition (5.4) (compare Problem B above with
the result of Lukács mentioned in Section 4). In our practical computations, this
restriction was not problematic, and we found very good functions.

Observe also that Problem B is really a semidefinite programming problem.
Indeed, the polynomial identities in (5.6) can each be represented as d + 1 linear
constraints in the entries of the matrices Si and Qi j . This is the case because
testing whether a polynomial is identically zero is the same as testing whether
each monomial has a zero coefficient and so, since all our polynomials are even
and of degree 2d , we need only check if the coefficients of the monomials x2k are
zero for k = 0, . . . , d .

5.3. Numerical results. When solving Problem B, we need to choose a
sequence P0, P1, . . . of polynomials. A choice which works well in practice is

Pk(t) = µ−1
k Ln/2−1

k (2π t),

where µk is the absolute value of the coefficient of Ln/2−1
k (2π t) with largest

absolute value. We observed in practice that the standard monomial basis
performs poorly.
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To represent the polynomial identities in (5.6) as linear constraints, we may
check that each monomial x2k of the resulting polynomial has coefficient zero.
We may use, however, any basis of the space of even polynomials of degree
at most 2d to represent such identities. Given such a basis, we expand each
polynomial in it and check that the expansion has only zero coefficients. The
basis we use to represent the identities is P0(t2), P1(t2), . . . , Pd(t2), which we
observed to work much better than t0, t2, . . . , t2d . Notice that no extra variables
are necessary if we use a different basis to represent the identities. We need
only keep, for each polynomial in the matrices F−1[V (t)](w), F−1[t2V (t)](w),
w2V (w), and V (w), its expansion in the basis we want to use.

The plot in Figure 3 was generated by solving Problem B with d = 31 using
the solver SDPA-GMP from the SDPA family [19]. To generate the solver input,
we wrote a SAGE [37] program using SDPSL [34] working with floating-point
arithmetic and precision of 256 bits; see the examples in the source distribution of
SDPSL for the source code. For each dimension 2, . . . , 5, we solved Problem B
with r1 = r/1000 and r2 = 1 for r = 200, 201, . . . , 1000; the reason we start
with r = 200 is that for smaller values of r the solver runs into numerical stability
problems. We also note that the solver has failed to solve some of the problems,
and these points have been ignored when generating the plot. The number of
problems that could not be solved was small though: for n = 2, all problems
could be solved; for n = 3, there were 6 failures; for n = 4, we had 18 failures;
and finally, for n = 5, the solver failed for 137 problems.

With our methods we can achieve higher values for d , but we noticed that
the bound does not improve much after d = 31. For instance, in dimension 2
for r1 = 1/2 and r2 = 1, we obtain the bound 0.9174466 . . . for d = 31 and the
bound 0.9174426 . . . for d = 51.

∗ ∗ ∗
In the previous account of how the plot in Figure 3 was generated, we swept

under the rug all precision issues. We generate the data for the solver using
floating-point arithmetic, and the solver also uses floating-point arithmetic. We
cannot therefore be sure that the optimal value found by the solver gives a valid
bound at all.

If we knew a priori that Problem B is strictly feasible (that is, that it admits
a solution in which the matrices Si and Qi j are positive definite), and if we had
some control over the dual solutions, then we could use semidefinite programming
duality to argue that the bounds we compute are rigorous; see, for instance,
Gijswijt [18, Ch. 7.2] for an application of this approach in coding theory.
However, we do not know that Problem B is strictly feasible; neither do we have
knowledge about the dual solutions. In fact, most of our approach to provide
rigorous bounds consists in finding a strictly feasible solution.
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A naive idea to turn the bound returned by the solver into a rigorous bound
would be to simply project a solution returned by the solver onto the subspace
given by the constraints in (5.6). If the original solution is of good quality, then
this would yield a feasible solution.

There are two problems with this approach, though. The first problem is that
the matrices returned by the solver will have eigenvalues too close to zero, and
therefore after the projection they might not be positive semidefinite anymore. We
discuss how to handle this issue below.

The second problem is that to obtain a rigorous bound one would need to
perform the projection using symbolic computations and rational arithmetic, and
the computational cost is just too big. For instance, we failed to do so even
for d = 7.

Our approach avoids projecting the solution using symbolic computations. Here
is an outline of our method.

(1) Obtain a solution to the problem with objective value close to the optimal
value returned by the solver, but in which every matrix Si and Qi j is positive
definite by a good margin and the maximum violation of the linear constraints
is very small.

(2) Approximate matrices Si and Qi j by rational positive semidefinite
matrices S̄i and Q̄i j having minimum eigenvalues at least λi and µi j ,
respectively.

(3) Compute a bound on how much constraints (5.6) are violated by S̄i and Q̄i j

using rational arithmetic. If the maximum violation of the constraints is small
compared to the bounds λi and µi j on the minimum eigenvalues, then we
may be sure that the solution can be changed into a feasible solution without
changing its objective value too much.

We now explain how each step above can be accomplished.
First, most likely the matrices Si , Qi j returned by the solver will have

eigenvalues very close to zero, or even slightly negative due to the numerical
method which might allow infeasible steps.

To obtain a solution with positive definite matrices, we may use the following
trick (see Löfberg [31]). We solve Problem B to find its optimal value, say z∗.
Then we solve a feasibility version of Problem B in which the objective function
is absent, but we add a constraint to ensure that

max{〈S0,F−1[V (t)](0)⊗ Y11〉 + 〈S1,F−1[t2V (t)](0)⊗ Y11〉,
〈S0,F−1[V (t)](0)⊗ Y22〉 + 〈S1,F−1[t2V (t)](0)⊗ Y22〉} 6 z∗ + η,
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where η > 0 should be small enough so that we do not jeopardize the objective
value of the solution, but not too small so that a good strictly feasible solution
exists. (We take η = 10−5, which works well for the purpose of making a plot.)
The trick here is that most semidefinite programming solvers, when solving a
feasibility problem, will return a positive definite solution — the analytical center
— if one can be found.

This partially addresses step (1), because, though the solution we find will
be positive definite, it might violate the linear constraints too much. To quickly
obtain a solution that violates the constraints only slightly, we may project our
original solution onto the subspace given by constraints (5.6) using floating-point
arithmetic of high enough precision. If the solution returned by the solver had
good precision to begin with, then the projected solution will still be positive
definite.

As an example, for our problems with d = 31, SDPA-GMP returns solutions
that violate the constraints by at most 10−30. By doing a projection using floating-
point arithmetic with 256 bits of precision in SAGE, we can bring the violation
down to about 10−70 without affecting much the eigenvalues of the matrices.

So we have addressed step (1). For step (2), we observe that simply converting
the floating-point matrices Si , Qi j to rational matrices would work, but then we
would be in trouble to estimate the minimum eigenvalues of the resulting rational
matrices in a rigorous way. Another idea of how to make the conversion is as
follows.

Say we want to approximate floating-point matrix A by a rational matrix Ā. We
start by computing numerically an approximation to the least eigenvalue of A.
Say λ̃ is this approximation. We then use binary search in the interval [λ̃/2, λ̃] to
find the largest λ so that the matrix A − λI has a Cholesky decomposition; this
we do using floating-point arithmetic of high enough precision. If we have this
largest λ, then

A = L LT + λI,

where L is the Cholesky factor of A − λI . Then we approximate L by a rational
matrix L̄ , and we set

Ā = L̄ L̄T + λI,

obtaining thus a rational approximation of A and a bound on its minimum
eigenvalue.

Our idea for step (3) is to compare the maximum violation of constraints (5.6)
with the minimum eigenvalues of the matrices. To formalize this idea, suppose
that constraints (5.6) are slightly violated by S̄i , Q̄i j . So, for instance, we have

〈S̄0,F−1[V (t)](w)⊗ Y11〉 + 〈S̄1,F−1[t2V (t)](w)⊗ Y11〉
+ 〈Q̄11, (w

2 − (2r1)
2)V (w)〉 = p, (5.7)
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where p is an even polynomial of degree at most 2d . Notice that we may compute
an upper bound on the absolute values of the coefficients of p using rational
arithmetic.

To fix this constraint, we may distribute the coefficients of p in the matrices S̄0

and Q̄11 (a very similar idea was presented by Löfberg [30]). To make things
precise, for k = 1, . . . , d , write

i(k) = min{bd/2c, k − 1},
j (k) = k − 1− i(k).

Pairs (i(k), j (k)) correspond to entries of the matrix V (w). Notice that the
polynomial (w2 − (2r1)

2)V (w)i(k) j (k) has degree 2k.
So the polynomials

R0 = F−1[V (t)00](w),
R1 = (w2 − (2r1)

2)V (w)i(1) j (1),

...

Rd = (w2 − (2r1)
2)V (w)i(d) j (d)

form a basis of the space of even polynomials of degree at most 2d . We may then
express our polynomial p in this basis as

p = α0 R0 + · · · + αd Rd .

Now, we subtract α0 from (S̄0)(1,0),(1,0) and αk from (Q̄11)i(k) j (k), for k = 1, . . . , d .
The resulting matrices satisfy constraint (5.7), and, as long as the αk are small
enough, they should remain positive semidefinite. More precisely, it suffices to
require that d ‖(α1, . . . , αd)‖∞ 6 µ11 and |α0| 6 λ0.

There are two issues to note in our approach. The first one is that it has to be
applied again twice to fix the other two constraints in (5.6). The applications do
not conflict with each other: in each one we change a different matrix Q̄i j and
different entries of S̄0. We have to be careful though that we consider the changes
to S̄0 simultaneously in order to check that it remains positive semidefinite.

The second issue is how to find bounds on the coefficients αk , since computing
them explicitly using symbolic computation is infeasible. One way to do this is to
consider the basis change matrix between the bases x2k , for k = 0, . . . , d , and R0,

. . . , Rd , which we denote by U . Then we know that

‖(α0, . . . , αd)‖∞ 6 ‖U−1‖∞‖p‖∞,
where ‖p‖∞ is the∞-norm of the vector of coefficients of p in the basis x2k .
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So, if we have an upper bound for ‖U−1‖∞, we are done. To quickly find such
an upper bound, we use an algorithm of Higham [25] (see also Higham [24])
which works for triangular matrices, like U . This bound proved to be good enough
for our purposes.

6. Improving sphere packing bounds

We now prove Theorem 1.4 and show how to use it in order to compute the
bounds presented in Table 1.

Proof of Theorem 1.4. Let x1, . . . , xN ∈ Rn and L ⊆ Rn be a lattice such that

⋃
v∈L

N⋃
i=1

v + xi + B

is a sphere packing, where B is the ball of radius 1/2 centered at the origin.
We may assume that, if i 6= j and v 6= 0, then the distance between the centers
of v+xi+B and x j+B is greater than 1+εm . Indeed, we could discard all xi that
lie at distance less than 1+εm from the boundary of the fundamental parallelotope
of L . If the fundamental parallelotope is big enough (and if it is not, we may
consider a dilated version of L instead), this will only slightly alter the density of
the packing, and the resulting packing will have the desired property.

Consider the sum
N∑

i, j=1

∑
v∈L

f (v + xi − x j). (6.1)

Using the Poisson summation formula, we may rewrite it as

1
vol(Rn/L)

N∑
i, j=1

∑
u∈L∗

f̂ (u)e2π iu·(xi−x j ).

By discarding all summands in the inner sum above except the one for u = 0,
we see that (6.1) is at least

N 2 vol B
vol(Rn/L)

.

For k = 1, . . . ,m, write Fk = {(i, j) : ‖xi − x j‖ ∈ [1+ εk−1, 1+ εk)}. Then we
see that (6.1) is at most

N f (0)+ η1|F1| + · · · + ηm |Fm |.



D. de Laat et al. 38

So we see that

N vol B
vol(Rn/L)

6 f (0)+ η1
|F1|
N
+ · · · + ηm

|Fm |
N
.

Notice that the left-hand side above is exactly the density of our packing. Now,
from the definition of M(ε), it is clear that, for k = 1, . . . ,m, we have

|F1|
N
+ · · · + |Fk |

N
6 M(εk),

and the theorem follows.

To find good functions f satisfying the conditions required by Theorem 1.4, we
use the approach from Section 5. We fix an odd positive integer d and specify f
via its Fourier transform, writing

ϕ(t) =
d∑

k=0

ak t2k

and setting
f̂ (u) = ϕ(‖u‖)e−π‖u‖2 .

Using Lemma 5.2, we then have that

f (x) = F−1[ϕ](‖x‖)e−π‖x‖2,
where

F−1[ϕ](w) =
d∑

k=0

akk!π−k Ln/2−1
k (πw2)

is a polynomial obtained as a linear transformation of ϕ.
Constraint (ii), requiring that f̂ (u) > 0 for all u ∈ Rn , can be equivalently

expressed as requiring that the polynomial ϕ should be a sum of squares.
Recalling the result of Lukács mentioned in Section 4, one may also express

constraint (iii) in terms of sums of squares: one simply has to require that there
exist polynomials p0(w) and q0(w) such that

F−1[ϕ](w) = −(p0(w))
2 − (w2 − (1+ εm)

2)(q0(w))
2.

In a similar way, one may express constraints (iv). For instance, for a given k,
we require that there should exist polynomials pk(w) and qk(w) such that

F−1[ϕ](w)e−π(1+εk−1)
2−η1 =−(pk(w))

2−(w−(1+εk−1))((1+εk)−w)(qk(w))
2,

and this implies (iv).
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So we may represent the constraints on f in terms of sums of squares, and
therefore also in terms of semidefinite programming, as we did in Sections 4
and 5. There is only the issue that now we want to find a function f that satisfies
constraints (i)–(iv) of the theorem and that minimizes the maximum in (1.2). This
does not look like a linear objective function, but, since by linear programming
duality this maximum is equal to

min f (0)+ y1U (ε1)+ · · · + ymU (εm)

yi + · · · + ym > ηi for i = 1, . . . ,m,
yk > 0 for k = 1, . . . ,m,

we may transform our original problem into a single minimization semidefinite
programming problem, the optimal value of which provides an upper bound for
the densities of sphere packings.

It is still a question how to compute upper bounds for M(ε). For this, we use
upper bounds on the sizes of spherical codes. A spherical code with minimum
angular distance 0< θ 6 π is a set C ⊆ Sn−1 such that the angle between any two
distinct points in C is at least θ . In other words, a spherical code with minimum
angular distance θ gives a packing of spherical caps with angle θ/2. We denote
by A(n, θ) the maximum cardinality of any spherical code in Sn−1 with minimum
angular distance θ .

For ε 6 (
√

5− 1)/2, we have

M(ε) 6 A(n, arccos t (ε)), where t (ε) = 1− 1
2(1+ ε)2 .

This follows from the proof of [10, Lemma 4.1], which we replicate here for the
convenience of the reader: suppose that x , y ∈ Rn are such that ‖x‖, ‖y‖ ∈ [1,
1+ ε] and ‖x − y‖ > 1. Then, by the law of cosines,

cos 6 (x, y) = ‖x‖
2 + ‖y‖2 − ‖x − y‖2

2‖x‖ ‖y‖ 6
‖x‖2 + ‖y‖2 − 1

2‖x‖ ‖y‖ .

The right-hand side is convex as a function of ‖x‖ or ‖y‖ individually, so it is
upper bounded by the maximal value at the four vertices of the square [1, 1+ ε]2.
Since ε 6 (

√
5− 1)/2, the maximum occurs for ‖x‖ = ‖y‖ = 1+ ε, which gives

the desired bound.
For the bounds of Table 1, we took d = 31. To compute upper bounds for A(n,

θ), we used the semidefinite programming bound of Bachoc and Vallentin [4].
The bounds we used for computing Table 1 are given in Table 2.
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Table 2. For each dimension considered in Table 1, we show here the sequence ε1 < · · · <
εm and the upper bounds U (εk) used in our application of Theorem 1.4.

Dimension (ε,U (ε)) pairs
3 (0.022753, 12), (0.054092, 13), (0.082109, 14), (0.113864, 15)
4 (0.008097, 24), (0.017446, 25), (0.025978, 26), (0.036951, 27)
5 (0.003013, 45), (0.008097, 46), (0.013259, 47), (0.017446, 48)
6 (0.002006, 79), (0.004024, 80), (0.006054, 81), (0.008097, 82)
7 (0.001001, 136), (0.002006, 137), (0.003013, 138), (0.004024, 139),

(0.005037, 140)
9 (0.003013, 373), (0.029233, 457), (0.030325, 459), (0.031421, 464),

(0.032520, 468), (0.033622, 473)

Finally, we mention that all numerical issues discussed in Section 5 also happen
with the approach we sketched in this section. In particular, the choices of
bases are important for the stability of the semidefinite programming problems
involved. We use the same bases as described in Section 5 though, so we skip a
detailed discussion here. Notice moreover that our bounds are rigorous, having
been checked with the same approach as that described in Section 5.

We refrained from performing similar calculations for higher dimensions for
two reasons. First, we expect that the improvements are only minor. Second,
the computations of the upper bounds for M(ε) in higher dimensions require
substantially more time, as one needs to solve the semidefinite programs with
a high accuracy solver; see Mittelmann and Vallentin [33].
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