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Abstract: Frequency Response Function (FRF) identification plays a crucial role in the design, the
control, and the analysis of complex dynamical systems, including thermal and motion systems.
Especially for applications that require long measurements, missing data samples, e.g., due to
interruptions in the data transmission or sensor failure, often occur. The aim of this paper is to
accurately identify nonparametric FRF models of periodically excited systems from noisy output
measurements with missing samples. The presented method employs a wavelet-based transformation
to address the identification problem in the time-frequency plane. A simulation example confirms that
the developed techniques produce accurate estimates, even when many samples are missing.
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1. INTRODUCTION

Non-parametric Frequency Response Function (FRF)
identification is of key importance in identifying complex
systems. FRF identification is considered a fast and in-
expensive approach to acquire thorough insight into the
system dynamics, while requiring only mild assumptions
on the actual system (Ljung et al., 1987).
Dealing with leakage errors, arising from the time-
frequency domain transformation of finite-length data
records, plays an important role in non-parametric iden-
tification. Among different non-parametric FRF identifi-
cation techniques, the Local Polynomial Method (LPM)
(Schoukens et al., 2009; Pintelon et al., 2010) has proven
particularly successful in many applications. This method
exploits the observation that leakage errors originate from
a transient phenomenon, which has smooth frequency
characteristics that depend on the system dynamics.
In many practical situations, measurements cannot be per-
formed without interruptions, leading to missing samples
in the data record. Missing samples may also be due to
sensor or communication link failure (Kar and Moura,
2009). Locally missing samples in the time-domain result
in a global and non-smooth perturbation in the frequency
domain (Ugryumova et al., 2014), which complicates the
use of standard identification algorithms.
Various non-parametric identification methods have been
developed to handle the missing samples problem. In
Barbé et al. (2012), missing samples are handled by esti-
mating an additional transient for each data gap. A similar
strategy is pursued in Schoukens et al. (2012) within an
extended LPM framework. The methods become infeasible
when the number of data gaps is large.
Different approaches have been developed that aim at
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estimating reconstructing the missing samples. In Stoica
et al. (2009), the missing samples are recovered via a
nonparametric iterative spectrum estimation scheme, but
system dynamics are not considered. In Ugryumova et al.
(2014), the LPM is extended by estimating the missing
time-domain samples along with the frequency-domain
system and transient parameters. The resulting estimation
problem is large-dimensional, especially for many missing
samples. In addition, due to the time-frequency domain
transform, estimation errors in the locally missing samples
result in global errors in the frequency-domain.
Another line of research has focussed on time-dependent
frequency analysis of non-stationary signals. In particu-
lar, the wavelet transform is widely used in, e.g., signal
processing, finite-element methods and image compression
(Daubechies, 1990), but is not applied for FRF identifica-
tion from incomplete data.
Although various techniques for identification from incom-
plete data exist, at present accurate FRF identification is
hampered by a lack of tractable methods that can deal
with a large number of missing samples. The aim of this
paper is to develop an FRF identification algorithm for
periodically excited systems that is applicable to data
records with many missing samples.
The main contributions of this paper are:

1. An algorithm that exploits the wavelet transform in
a LPM framework for the FRF estimation of linear
time-invariant (LTI) systems from incomplete data,

2. an analysis of bias and variance errors,
3. a verification of the method onto a simulation model.

Notations Operations X = Fx and x = HX denote the
Discrete Fourier Transform (DFT) of x and the inverse
DFT (IDFT) of X, where F and H denote the DFT and
IDFT matrices (Rao and Yip, 2018, Ch. 2), respectively.
Operator � denotes the element-wise product.
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estimating reconstructing the missing samples. In Stoica
et al. (2009), the missing samples are recovered via a
nonparametric iterative spectrum estimation scheme, but
system dynamics are not considered. In Ugryumova et al.
(2014), the LPM is extended by estimating the missing
time-domain samples along with the frequency-domain
system and transient parameters. The resulting estimation
problem is large-dimensional, especially for many missing
samples. In addition, due to the time-frequency domain
transform, estimation errors in the locally missing samples
result in global errors in the frequency-domain.
Another line of research has focussed on time-dependent
frequency analysis of non-stationary signals. In particu-
lar, the wavelet transform is widely used in, e.g., signal
processing, finite-element methods and image compression
(Daubechies, 1990), but is not applied for FRF identifica-
tion from incomplete data.
Although various techniques for identification from incom-
plete data exist, at present accurate FRF identification is
hampered by a lack of tractable methods that can deal
with a large number of missing samples. The aim of this
paper is to develop an FRF identification algorithm for
periodically excited systems that is applicable to data
records with many missing samples.
The main contributions of this paper are:

1. An algorithm that exploits the wavelet transform in
a LPM framework for the FRF estimation of linear
time-invariant (LTI) systems from incomplete data,

2. an analysis of bias and variance errors,
3. a verification of the method onto a simulation model.

Notations Operations X = Fx and x = HX denote the
Discrete Fourier Transform (DFT) of x and the inverse
DFT (IDFT) of X, where F and H denote the DFT and
IDFT matrices (Rao and Yip, 2018, Ch. 2), respectively.
Operator � denotes the element-wise product.

Frequency Response Function Identification from
Incomplete Data: A Wavelet-based Approach �

Nic Dirkx ∗,∗∗ Koen Tiels ∗∗ Tom Oomen ∗∗,∗∗∗

∗ ASML Research Mechatronics & Control, Veldhoven, The Netherlands
∗∗ Eindhoven University of Technology, Department of Mechanical Engineering,

Control Systems Technology, Eindhoven, The Netherlands
∗∗∗ Delft Center for Systems and Control, Delft University of Technology, Delft, The

Netherlands

Abstract: Frequency Response Function (FRF) identification plays a crucial role in the design, the
control, and the analysis of complex dynamical systems, including thermal and motion systems.
Especially for applications that require long measurements, missing data samples, e.g., due to
interruptions in the data transmission or sensor failure, often occur. The aim of this paper is to
accurately identify nonparametric FRF models of periodically excited systems from noisy output
measurements with missing samples. The presented method employs a wavelet-based transformation
to address the identification problem in the time-frequency plane. A simulation example confirms that
the developed techniques produce accurate estimates, even when many samples are missing.

Keywords: Frequency domain identification, non-parametric methods, missing data, transient
estimation, linear systems

1. INTRODUCTION

Non-parametric Frequency Response Function (FRF)
identification is of key importance in identifying complex
systems. FRF identification is considered a fast and in-
expensive approach to acquire thorough insight into the
system dynamics, while requiring only mild assumptions
on the actual system (Ljung et al., 1987).
Dealing with leakage errors, arising from the time-
frequency domain transformation of finite-length data
records, plays an important role in non-parametric iden-
tification. Among different non-parametric FRF identifi-
cation techniques, the Local Polynomial Method (LPM)
(Schoukens et al., 2009; Pintelon et al., 2010) has proven
particularly successful in many applications. This method
exploits the observation that leakage errors originate from
a transient phenomenon, which has smooth frequency
characteristics that depend on the system dynamics.
In many practical situations, measurements cannot be per-
formed without interruptions, leading to missing samples
in the data record. Missing samples may also be due to
sensor or communication link failure (Kar and Moura,
2009). Locally missing samples in the time-domain result
in a global and non-smooth perturbation in the frequency
domain (Ugryumova et al., 2014), which complicates the
use of standard identification algorithms.
Various non-parametric identification methods have been
developed to handle the missing samples problem. In
Barbé et al. (2012), missing samples are handled by esti-
mating an additional transient for each data gap. A similar
strategy is pursued in Schoukens et al. (2012) within an
extended LPM framework. The methods become infeasible
when the number of data gaps is large.
Different approaches have been developed that aim at
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estimating reconstructing the missing samples. In Stoica
et al. (2009), the missing samples are recovered via a
nonparametric iterative spectrum estimation scheme, but
system dynamics are not considered. In Ugryumova et al.
(2014), the LPM is extended by estimating the missing
time-domain samples along with the frequency-domain
system and transient parameters. The resulting estimation
problem is large-dimensional, especially for many missing
samples. In addition, due to the time-frequency domain
transform, estimation errors in the locally missing samples
result in global errors in the frequency-domain.
Another line of research has focussed on time-dependent
frequency analysis of non-stationary signals. In particu-
lar, the wavelet transform is widely used in, e.g., signal
processing, finite-element methods and image compression
(Daubechies, 1990), but is not applied for FRF identifica-
tion from incomplete data.
Although various techniques for identification from incom-
plete data exist, at present accurate FRF identification is
hampered by a lack of tractable methods that can deal
with a large number of missing samples. The aim of this
paper is to develop an FRF identification algorithm for
periodically excited systems that is applicable to data
records with many missing samples.
The main contributions of this paper are:

1. An algorithm that exploits the wavelet transform in
a LPM framework for the FRF estimation of linear
time-invariant (LTI) systems from incomplete data,

2. an analysis of bias and variance errors,
3. a verification of the method onto a simulation model.

Notations Operations X = Fx and x = HX denote the
Discrete Fourier Transform (DFT) of x and the inverse
DFT (IDFT) of X, where F and H denote the DFT and
IDFT matrices (Rao and Yip, 2018, Ch. 2), respectively.
Operator � denotes the element-wise product.
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2. PROBLEM FORMULATION

2.1 Missing samples identification problem

Consider the input-output relation in the frequency-
domain:

Y (k) = G(Ωk)U(k) + T (Ωk) +NY (k). (1)

Herein, U ∈ CNP is the DFT of the N -periodic input
signal u, for a number of P ≥ 2 periods with sample
length N . Y ∈ CNP is the DFT of the true output sig-
nal y obtained from time-domain measurements without
missing samples. Furthermore, G(Ωk) is the FRF of the
true to-be-identified LTI system, at the discrete frequency
Ωk = e−1i·2πk/NP , with k = 0, . . . NP − 1 the discrete
frequency bin. In this paper, the focus is on single-input
single-output (SISO) systems, but the presented tech-
niques can also be applied to multiple-inputs multiple-
ouputs (MIMO) systems. Term T in (1) is the transient
due to the difference between the initial and final condi-
tions of the data (Pintelon et al., 2010). Term NY ∈ CNP

is the DFT of the measurement noise. NY is assumed to be
circularly complex distributed, zero-mean, with variance λ
(Pintelon and Schoukens, 2012, Ch. 14).
Suppose that the output y is measured with interrup-
tions, causing a number of nm missing samples in its
measurement ym. The measurement is expressed as ym =
diag(w)y, w ∈ NNP , where

w[n] =

{
1 if the n-th sample is available
0 if the n-th sample is missing

.

The DFT of ym is expressed as Y m = T mY , where

T m = Fdiag(w)H. (2)

The presence of missing samples significantly complicates
the identification of G. Particularly, since T m is a full ma-
trix, all frequency lines in Y m contain data of all the miss-
ing samples. So, the locally missing samples in the time-
domain have a global impact in the frequency-domain.
Consequently, traditional frequency-domain methods that
rely on the frequency-separation principle (van Zundert
and Oomen, 2019), such as Emperical Transfer Function
Estimate (ETFE) method, and the LPM (Pintelon and
Schoukens, 2012) can no longer be used.
In this paper, a method is presented for the non-parametric
FRF identification of G from incomplete measurements.

2.2 Key idea: wavelet-based estimator

The main limitation in traditional frequency-domain iden-
tification methods originates from the fact that the DFT is
a global transform, which makes it unsuitable for analysis
of signals that exhibit local time-domain phenomena such
as missing samples.
The key idea of the identification method presented in
this paper is to employ a local wavelet-based transform
(Daubechies, 1990) rather than the global DFT transform.
In contrast to the DFT, the wavelet-based transform pro-
vides time-localized frequency information, enabling two-
dimensional analysis in the time-frequency plane. The ra-
tionale in view of the missing samples problem is that this
allows for FRF identification in the frequency dimension,
while the time-domain perturbation of the missing samples
can be isolated in the time dimension.
In the next section, concepts of wavelet-based transforma-
tion to the time-frequency plane are introduced, which are

exploited in the formulation of a wavelet-based estimator
in Section 4.

3. MISSING SAMPLES IN TIME-FREQUENCY

3.1 Wavelet-based transformation

The key step in isolating the time-domain perturbation of
the missing samples from the frequency-domain character-
istics of G and T in (1) is the transformation of the data
ym to the time-frequency plane. This is achieved via convo-
lution with a set of short-time oscillations with frequency
fj , referred to as the wavelet functions ψj , j = 1, . . . , nψ.

Definition 1. Consider a signal ym ∈ RNP with DFT Y m

and let ψj ∈ CNP denote the j-th wavelet function with
DFT Ψj. Let y

m
NP be the NP -periodic extension of ym,

ymNP [n] = ym[n− �n/(NP )�NP ], n ∈ N. (3)

The circular convolution zmj ∈ CNP of the signal ym with
the wavelet ψj at samples n = 0, . . . , NP −1 is defined as

zmj [n] := {ymNP � ψj}[n] :=
1

√
NP

NP−1∑
m=0

ψj [m] · ymNP [n−m]. (4)

The convolution (4) is also expressed as the frequency-
domain windowing operation

zmj = H(Ψj � Y m). (5)

Expression (5) shows that Ψj acts as frequency-domain
windowing function onto the data Y . The transform zj
reflects the evolution over time of the selected frequency
components within the local window, thus providing both
time- and frequency-localized information.
Missing samples in ym affect the transform zmj . The key
idea is to select a suitable wavelet function such that this
effect is local. This is considered next.

3.2 Wavelet selection

The aim of the wavelet-based transformation in Def. 1 is
to obtain a time- and frequency-domain localized repre-
sentation of the data ym, that enables isolating the effect
of the missing samples. As implied by Heisenberg-Gabor
uncertainty principle, see e.g. Gröchenig (2001), however,
there exist fundamental limitations to the accuracy that
can simultaneously be achieved in both the domains. The
selection of a wavelet therefore involves a trade-off, and its
choice is typically specific to the problem at hand.
In this paper, the following class of wavelets is considered.

Definition 2. Let fj denote a center frequency, ∆f ∈
{R : 1/(∆fTs) ∈ N} a design variable. Then, the wavelet

ψ
[p]
j ∈ CNP is defined as

ψ
[p]
j [m] = h[p][m] · e1i·2πfjTsm, m = 0, . . . , NP − 1.

where h[p] =
√
NP

p−1
(∆fTs)

pH(Fh)p, and h ∈ NNP

is given by h[m] =

{
1 if m ≤ 1/(∆fTs)
0 otherwise

. The exponent

p ∈ N denotes the element-wise exponent.
The following properties apply:

a) Ψ
[p]
j equals 1 at the center frequency fj,

b) Ψ
[p]
j is zero at frequencies fj ± α∆f , ∀α ∈ N,

c) |Ψ[p]
j | < |Ψ[p+1]

j | at all frequencies except at fj±α∆f ,

d) ψ
[p]
j := H(Ψ

[p]
j ) has finite time-domain support of

length lψ = p/(∆fTs), i.e., ψ
[p]
j [n] = 0 for n > lψ.

Remark 1. Transform (4) for ψ
[p]
j as defined in Def. 2 can

also be expressed in terms of the discrete-time Short-Time
Fourier Transform (Daubechies, 1990).

An example of a wavelet Ψ
[2]
j for j = 1, 2 and f1 = 1[Hz],

f2 = 2[Hz] is shown in Fig. 1, where N = 500, P =
1, Ts = 0.02[s],∆f = 0.5. The wavelet enables extracting
local frequency-information around fj within a local time-
window of lψ samples, see properties a) and d) in Def. 2.
Increasing parameter p improves the frequency-domain lo-
calization accuracy, at the cost of time-domain localization
accuracy, see properties c) and d), respectively.
A crucial property of the wavelets in Def. 2 is their com-
pact time-domain support, see property d). This enables
isolating the samples v in zmj [v] that are not affected by
the missing samples in ym. Precisely, these samples are
given by v ∈ V where V =

⋂nm

i=1 Vi, and

Vi =
{
v ∈ N : max(wm[i]−NP + lψ, 0) < v < wm[i]

or min(wm[i] + lψ, NP ) ≤ v ≤ NP
}
,

(6)

with wm ∈ Nnm the indices of the missing samples in ym.
The wavelets are applied to construct the time-frequency
plane representation in the next section.

3.3 Missing samples in the time-frequency plane

The transformation of incomplete data ym to the time-
frequency domain is illustrated in the following example.

Example 1. Consider a noiseless measurement ym of size
N = 500 of the output of a system G, with sampling time
Ts = 0.02[s]. Samples 220, . . . , 260 are missing. The system
is excited at frequencies 1, . . . , fnyq − 1Hz, with Nyquist

frequency fnyq = 1/(2Ts)Hz. A set of wavelets ψ
[2]
j with

fj = 1, . . . , fnyq − 1, and ∆f = 0.5 is selected according to
Def. 2. The result of wavelet convolution is illustrated in
Fig. 2 and explained in its caption.

The main result of the representation as shown in Fig. 2(b)
is that zmj [v], v ∈ V, provides unperturbed information
of the system G and the transient T in (1). In the next
section, the estimator is presented that enables accurate
identification of these two individual components.

4. WAVELET-BASED LPM

In this section, the wavelet-based algorithm is presented
for accurate FRF identification from incomplete measure-
ments. The method extends the existing the frequency-
domain LPM (Pintelon et al., 2011) to an estimator in the
time-frequency plane. A recapitulation of the traditional
LPM approach is presented first.

4.1 Traditional LPM and its limitations

The LPM (Pintelon et al., 2011) is an effective method for
FRF identification in case of complete data. This section
recapitulates the traditional LPM for N -periodic input
signals u, for P ≥ 2 periods, and without missing samples.
Consider input-output relation (1). For periodic excita-
tions u ∈ RNP , the DFT U ∈ CNP contains energy
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Fig. 1. Wavelets ψ
[2]
j in the time- (top) and frequency-domain (bot-

tom), for j = 1, 2. The wavelets extract frequency-information
around the frequencies f1, f2, respectively, within the finite
time-span of the wavelet, indicated by the grey box.

only at the excited frequency (EF) lines γkP with k =
0, . . . , �N/γ� − 1, and γ ∈ N a user-defined parameter
that controls the sparsity of the excitation grid. As such,
the system response G(Ωk)U(k) is zero at the non-excited
frequencies (NEF) lines γkP + q with q = 1, 2, . . . , γP −1,
and thus the output (1) at the NEF lines becomes

Y (γkP + q) = T (ΩγkP+q) +NY (γkP + q). (7)

The transient term is a rational function of the frequency
and can be locally approximated by low-order polynomials,

T (ΩγkP+q) = T (ΩγkP ) +

R∑
s=1

ts(γk)q
s +O(q), (8)

where O(q) = (1/
√
NP )O

(
(q/NP )R+1

)
is the remainder

of an (R + 1)-th order Taylor series expansion around
T (ΩγkP ), see Pintelon et al. (2010). Similarly, at the EF
lines, the output (1) is given by

Y (γkP ) = G(ΩγkP )U(γkP ) + T (ΩγkP ) +Ny(γkP ). (9)

The R+2 unknown plant and transient parameters around
the excited frequency kP are collected in

Θγk = [G(ΩγkP ) T (ΩγkP ) t1(γk) . . . tR(γk) ]
T
, (10)

and are estimated from the nr = 2(γP − 1) + 1 frequency
lines around frequency γkP . Choosing nr > R + 2,
the estimates are solved from the linear least squares
minimization problem,

Θ̂γk = argmin
Θγk∈CR+2

‖Y (γkP + r)−Kγk(r)Θγk‖22 , (11)

where r = [−γP + 1,−γP + 2, . . . , γP − 1]T , and

Kγk(r) =
[
U(γkP + r) r0 r1 . . . rR

]
. (12)

Asymmetric windows may be chosen close to the bound-
aries, see (Pintelon et al., 2010).
The LPM (11) hinges on the principle of frequency sep-
aration and local smoothness in the frequency-domain.
When missing samples are present, these properties no
longer apply. The method presented in this paper aims
at recovering these properties.

4.2 Wavelet-based LPM estimator

This section formulates the wavelet-based LPM estimator
that extends upon the traditional LPM method (11) for
the accurate identification in the presence of missing sam-
ples. The extension is twofold. First, the local estimation
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d) ψ
[p]
j := H(Ψ

[p]
j ) has finite time-domain support of

length lψ = p/(∆fTs), i.e., ψ
[p]
j [n] = 0 for n > lψ.

Remark 1. Transform (4) for ψ
[p]
j as defined in Def. 2 can

also be expressed in terms of the discrete-time Short-Time
Fourier Transform (Daubechies, 1990).

An example of a wavelet Ψ
[2]
j for j = 1, 2 and f1 = 1[Hz],

f2 = 2[Hz] is shown in Fig. 1, where N = 500, P =
1, Ts = 0.02[s],∆f = 0.5. The wavelet enables extracting
local frequency-information around fj within a local time-
window of lψ samples, see properties a) and d) in Def. 2.
Increasing parameter p improves the frequency-domain lo-
calization accuracy, at the cost of time-domain localization
accuracy, see properties c) and d), respectively.
A crucial property of the wavelets in Def. 2 is their com-
pact time-domain support, see property d). This enables
isolating the samples v in zmj [v] that are not affected by
the missing samples in ym. Precisely, these samples are
given by v ∈ V where V =

⋂nm

i=1 Vi, and

Vi =
{
v ∈ N : max(wm[i]−NP + lψ, 0) < v < wm[i]

or min(wm[i] + lψ, NP ) ≤ v ≤ NP
}
,

(6)

with wm ∈ Nnm the indices of the missing samples in ym.
The wavelets are applied to construct the time-frequency
plane representation in the next section.

3.3 Missing samples in the time-frequency plane

The transformation of incomplete data ym to the time-
frequency domain is illustrated in the following example.

Example 1. Consider a noiseless measurement ym of size
N = 500 of the output of a system G, with sampling time
Ts = 0.02[s]. Samples 220, . . . , 260 are missing. The system
is excited at frequencies 1, . . . , fnyq − 1Hz, with Nyquist

frequency fnyq = 1/(2Ts)Hz. A set of wavelets ψ
[2]
j with

fj = 1, . . . , fnyq − 1, and ∆f = 0.5 is selected according to
Def. 2. The result of wavelet convolution is illustrated in
Fig. 2 and explained in its caption.

The main result of the representation as shown in Fig. 2(b)
is that zmj [v], v ∈ V, provides unperturbed information
of the system G and the transient T in (1). In the next
section, the estimator is presented that enables accurate
identification of these two individual components.

4. WAVELET-BASED LPM

In this section, the wavelet-based algorithm is presented
for accurate FRF identification from incomplete measure-
ments. The method extends the existing the frequency-
domain LPM (Pintelon et al., 2011) to an estimator in the
time-frequency plane. A recapitulation of the traditional
LPM approach is presented first.

4.1 Traditional LPM and its limitations

The LPM (Pintelon et al., 2011) is an effective method for
FRF identification in case of complete data. This section
recapitulates the traditional LPM for N -periodic input
signals u, for P ≥ 2 periods, and without missing samples.
Consider input-output relation (1). For periodic excita-
tions u ∈ RNP , the DFT U ∈ CNP contains energy
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Fig. 1. Wavelets ψ
[2]
j in the time- (top) and frequency-domain (bot-

tom), for j = 1, 2. The wavelets extract frequency-information
around the frequencies f1, f2, respectively, within the finite
time-span of the wavelet, indicated by the grey box.

only at the excited frequency (EF) lines γkP with k =
0, . . . , �N/γ� − 1, and γ ∈ N a user-defined parameter
that controls the sparsity of the excitation grid. As such,
the system response G(Ωk)U(k) is zero at the non-excited
frequencies (NEF) lines γkP + q with q = 1, 2, . . . , γP −1,
and thus the output (1) at the NEF lines becomes

Y (γkP + q) = T (ΩγkP+q) +NY (γkP + q). (7)

The transient term is a rational function of the frequency
and can be locally approximated by low-order polynomials,

T (ΩγkP+q) = T (ΩγkP ) +

R∑
s=1

ts(γk)q
s +O(q), (8)

where O(q) = (1/
√
NP )O

(
(q/NP )R+1

)
is the remainder

of an (R + 1)-th order Taylor series expansion around
T (ΩγkP ), see Pintelon et al. (2010). Similarly, at the EF
lines, the output (1) is given by

Y (γkP ) = G(ΩγkP )U(γkP ) + T (ΩγkP ) +Ny(γkP ). (9)

The R+2 unknown plant and transient parameters around
the excited frequency kP are collected in

Θγk = [G(ΩγkP ) T (ΩγkP ) t1(γk) . . . tR(γk) ]
T
, (10)

and are estimated from the nr = 2(γP − 1) + 1 frequency
lines around frequency γkP . Choosing nr > R + 2,
the estimates are solved from the linear least squares
minimization problem,

Θ̂γk = argmin
Θγk∈CR+2

‖Y (γkP + r)−Kγk(r)Θγk‖22 , (11)

where r = [−γP + 1,−γP + 2, . . . , γP − 1]T , and

Kγk(r) =
[
U(γkP + r) r0 r1 . . . rR

]
. (12)

Asymmetric windows may be chosen close to the bound-
aries, see (Pintelon et al., 2010).
The LPM (11) hinges on the principle of frequency sep-
aration and local smoothness in the frequency-domain.
When missing samples are present, these properties no
longer apply. The method presented in this paper aims
at recovering these properties.

4.2 Wavelet-based LPM estimator

This section formulates the wavelet-based LPM estimator
that extends upon the traditional LPM method (11) for
the accurate identification in the presence of missing sam-
ples. The extension is twofold. First, the local estimation
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Fig. 2. (a) Wavelet-based convolution of a periodically extended signal ymNP with a wavelet ψj with center frequency f3, represented in the
time-domain (left column) and its frequency-domain counterpart (right column).
Left top: Signal ym (−) with locally missing samples (−). Left center: The convolution is visualized as a translation over time of the
wavelet ψj with respect to the signal , see (4). Left bottom: Transforms zmj = {ymNP � ψj} (−), and zj = {yNP � ψj} in case of

complete data (−). The perturbation due to the missing samples in zmj is isolated within the red box, whereas the samples outside

provide unperturbed information of the system G and the transient T in (1).
Right top: The DFT Y m (−) and the DFT Y (- -). Missing samples form a global perturbation in Y m. Right center: The DFT
Ψj . The energy of the wavelet is approximately localized around the center frequency f3.Right bottom: The DFT Zm

j has its energy
approximately concentrated around the center frequency f3.
(b) The transforms zmj , j = 1, . . . nψ , in the time-frequency plane. Only the unperturbed samples v ∈ V, see (6), are displayed.

criteria (11) are combined into a single global estimation
criterion, to account for the global effect of the missing
samples. Second, a global weighting matrix M̄ is intro-
duced that incorporates the wavelet-based transformation.
The estimation criterion is formulated as

ˆ̄Θ = argmin
Θ̄∈R2nΘ

∥∥M̄(Y m − K̄Θ̄)
∥∥2
2
. (13)

Herein, nΘ = nψ(R+2), and the parameters are given by

Θ̄ =


 �

([
ΘT

γ·1 . . . ΘT
γnψ

]T)

�
([

ΘT
γ·1 . . . ΘT

γnψ

]T)

 .

where Θγj is of the form (10). The global regressor K̄ is
defined as

K̄ =




01×nΘ 01×nΘ

K̃ 1i · K̃
01×nΘ 01×nΘ

InΘconj(K̃) −1i · InΘconj(K̃)


 ,

where InΘ
is an nΘ-sized exchange matrix, the zero rows

in K̄ correspond to the zero and Nyquist frequencies, and

K̃ =




Kγ·1(r)

. . .

Kγnψ (r)


 . (14)

The regressor submatrices Kγ·j(r) in (14) are of the form
(12), yet the local window is selected as r = [−�1/2γP −
1�,−�1/2γP − 2�, . . . , �1/2γP − 2�, �1/2γP − 1�].
By choosing the matrix M̄ in (13) as M̄ = I, the solution of
the global estimator (13) recovers that of the classical LPM
(11), given the same choice of r and R. Hence, (13) forms
a generalization of (11). The key point of formulation (13)
is that M̄ provides the additional freedom to incorporate

the time-frequency plane transformation. This is achieved

by setting M̄ =
[
MT

1 . . . MT
nψ

]T
, where

Mj = WHdiag(Ψj), j = 1, . . . , nψ. (15)

Herein, the wavelets Ψj are selected according to Def. 2.
Specifically, to obtain a sensible wavelet design, the center
frequencies of the wavelets are selected to coincide with the
EF lines via fj = γjP/(NTs). Additionally, the parameter
∆f is selected as ∆f = 1/2(fj+1 − fj). The rationale of
this selection is that, by Def. 2, property a), the wavelet
extracts local frequency-information around the j-th EF,
while interaction from the other EF lines is eliminated, see
property b).
The matrixW in (15) is a diagonal matrix that selects only
the data that are not affected by the missing samples,

[W]q,q =

{
1 if q ∈ V
0 otherwise

, q = 1, . . . , NP, (16)

where V is defined in (6).

Consider the following result.

Theorem 1. Consider a measurement ym with missing
samples, and its DFT Y m. Suppose that the contributions
due to the remainders O and measurement noise NY in (7)
and (8) are zero, such that Y = K̄Θ̄. Then, the solution
ˆ̄Θ to (13) is exact, i.e., ˆ̄Θ = Θ̄, if

i) M̄K̄ has full column rank,
ii) Mj(Y − Y m) = 0 for j = 1, . . . , nψ.

The proof is omitted to conserve space. The underlying
mechanism for the result in Thm. 1, is that, by condition ii)
the samples of zmj , see (5), that are affected by the missing
samples in ym are discarded from the estimation problem.
Condition ii) is satisified by (16). Additionally, condition

i) ensures that the remaining data are sufficiently infor-
mative to estimate the nΘ parameters.
The conditions i), ii) for exact identification in the sense
of Thm. 1 impose only mild requirements on matrix M̄
and hence on the selection of the wavelet function. In
the presence of remainders O and measurement noise Ny,
see (8) and (9), however, the wavelet design plays an
important role in the trade-off between variance and bias
errors. This is analyzed in the next sections.

4.3 Variance

The variance in the parameter estimates is generally
a complex nonlinear function of, amongst others, the
number and the location of the missing samples and
the choice of wavelet. To achieve low-variance estimates,
the number of retained samples in zmj should ideally be
maximized, as is implied by the following result.

Theorem 2. The variance of the estimates [ ˆ̄Θ]q, q =
1, . . . nΘ is upper-bounded by

var([Θ̄]q) ≤ σ̄(B̄)
[
P−1
Θ

]
q,q

≤
[
P−1
Θ

]
q,q

,

where B̄ = M̄HM̄ and [P−1
Θ ]q,q is the [q, q] entry of the

inverse of the information matrix,

PΘ =
2

λ
�
∑
i∈V

nψ∑
j=1

(
Hidiag(Ψj)K̄

)H (
Hidiag(Ψj)K̄

)
,

with Hi denoting the i-th row of H.

The proof is omitted to conserve space. Thm. 2 gives rise
to the formulation of the minimal variance estimator.

Corollary 3. Estimator (13) achieves minimal variance

for the wavelet Ψ
[0]
j , i.e., Ψ

[0]
j = 1NP . Its variance is

computed by var(Θ̄q) = [P−1
Θ ]q,q where,

PΘ =
2

λ
�
∑
i∈V

(
HiK̄

)H (
HiK̄

)
. (17)

Cor. 3 recovers the situation without wavelet function,
by which the transform (5) reduces to the IDFT. Indeed,
the IDFT has perfect time-domain localization, and hence
maximizes the size of V. However, the IDFT does not
provide frequency-domain localization, which has negative
impact on bias errors. This is analyzed next.

4.4 Bias

Bias in the parameter estimates due to the remainders O
in (8) plays a particularly important role in FRF identi-
fication when samples are missing. To see this, suppose
that the matrices M̄, K̄ are selected such that conditions
i), ii) in Thm. 1 hold. Then, when NY = 0, the parameter
estimate is expressed as

ˆ̄Θ = Θ̄ +
(
�
(
K̄HB̄K̄

))−1 �
(
K̄HB̄Ō

)
, (18)

where B̄ := M̄HM̄ , and Ō =
[
OT

1 . . . OT
nψ

]T
. Expression

(18) shows that matrix B̄, when non-diagonal, introduces
global coupling between the local estimates Θj , despite the

original decoupled (block-diagonal) structure of K̃ in (14).
Thus, matrix B̄ is an indicator of coupling and coupling-
induced bias errors in (13). Expressing matrix B̄ as

B̄ = M̄HM̄ =

nψ∑
j=1

diag(Ψj)
HFWHdiag(Ψj), (19)
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Fig. 3. The cross-diagonal entries of B̄ for p = 0 (−), p = 1 (−),
and p = 2 (−), as indicator for coupling . The coupling reduces
significantly for increasing values of p.

shows that the wavelet functions Ψj form the crucial
design parameters to shape the matrix B̄ and hence to
mitigate the bias errors. The following example demon-
strates the role of the wavelet in diagonalization of B̄.

Example 2. Consider the scenario of Example 1, for

wavelets ψ
[p]
j for p = 0, 1, 2. To visualize the achieved

diagonal dominance of the matrix B̄, see (19), its cross-
diagonal entries are depicted in Fig. 3.

Example 2 and (19) show that achieving (approximate)
diagonality of B̄ requires wavelet functions with good, or
in fact perfect, frequency-domain localization properties.
This observation, in conjunction with Cor. 3, indicates
that variance minimization and bias minimization require
the opposite wavelet functions, which once more illustrates
the inherent trade-off in wavelet selection.

5. SIMULATION STUDY

5.1 Simulation setup

The presented techniques applied for the identification
of a simulation model G with 2 highly and 2 lightly
damped modes, shown in Fig. 6. P = 10 periods are
measured, with sample length N = 500 and sampling time
Ts = 0.02[s]. The system exhibits a significant transient
for the entire duration of the measurement. The output
signal contains five data gaps, with in total nm = 625
missing samples. In addition, the output is perturbed
by measurement noise with variance λ = 10−2. The EF
lines are chosen at γkP, k = 1, . . . , 1/(2Ts) with sparsity
parameter γ = 2, and the spectral excitation magnitudes
are uniformly distributed over the EF lines. The wavelets
defined in Def. 2 are selected for the values p = 0, 1, 2,
giving rise to three different estimators. In all cases, the
LPM polynomial order is chosen as R = 2.

5.2 Identification results - noiseless case

First, identification in the noiseless case is considered,
i.e., NY = 0. The result of wavelet convolution, the

estimated plant, and transient for ψ
[2]
j are shown in Fig.

4. The estimate Ĝ accurately represents G. To analyze the
bias, the DFT of the estimated transient is depicted in
Fig. 5. Despite the high level of non-smoothness in Tm,
the estimated transient T̂ accurately matches the smooth
transient T . The larger errors around the first resonance
are due to the use of low-order (R = 2) polynomials. The
bias remains localized around the first resonance, which
indicates good frequency-localization.
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i) ensures that the remaining data are sufficiently infor-
mative to estimate the nΘ parameters.
The conditions i), ii) for exact identification in the sense
of Thm. 1 impose only mild requirements on matrix M̄
and hence on the selection of the wavelet function. In
the presence of remainders O and measurement noise Ny,
see (8) and (9), however, the wavelet design plays an
important role in the trade-off between variance and bias
errors. This is analyzed in the next sections.
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The variance in the parameter estimates is generally
a complex nonlinear function of, amongst others, the
number and the location of the missing samples and
the choice of wavelet. To achieve low-variance estimates,
the number of retained samples in zmj should ideally be
maximized, as is implied by the following result.

Theorem 2. The variance of the estimates [ ˆ̄Θ]q, q =
1, . . . nΘ is upper-bounded by
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)
,

with Hi denoting the i-th row of H.

The proof is omitted to conserve space. Thm. 2 gives rise
to the formulation of the minimal variance estimator.

Corollary 3. Estimator (13) achieves minimal variance

for the wavelet Ψ
[0]
j , i.e., Ψ

[0]
j = 1NP . Its variance is

computed by var(Θ̄q) = [P−1
Θ ]q,q where,

PΘ =
2
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(
HiK̄
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)
. (17)

Cor. 3 recovers the situation without wavelet function,
by which the transform (5) reduces to the IDFT. Indeed,
the IDFT has perfect time-domain localization, and hence
maximizes the size of V. However, the IDFT does not
provide frequency-domain localization, which has negative
impact on bias errors. This is analyzed next.

4.4 Bias

Bias in the parameter estimates due to the remainders O
in (8) plays a particularly important role in FRF identi-
fication when samples are missing. To see this, suppose
that the matrices M̄, K̄ are selected such that conditions
i), ii) in Thm. 1 hold. Then, when NY = 0, the parameter
estimate is expressed as

ˆ̄Θ = Θ̄ +
(
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(
K̄HB̄K̄

))−1 �
(
K̄HB̄Ō

)
, (18)

where B̄ := M̄HM̄ , and Ō =
[
OT

1 . . . OT
nψ

]T
. Expression

(18) shows that matrix B̄, when non-diagonal, introduces
global coupling between the local estimates Θj , despite the

original decoupled (block-diagonal) structure of K̃ in (14).
Thus, matrix B̄ is an indicator of coupling and coupling-
induced bias errors in (13). Expressing matrix B̄ as

B̄ = M̄HM̄ =

nψ∑
j=1

diag(Ψj)
HFWHdiag(Ψj), (19)
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Fig. 3. The cross-diagonal entries of B̄ for p = 0 (−), p = 1 (−),
and p = 2 (−), as indicator for coupling . The coupling reduces
significantly for increasing values of p.

shows that the wavelet functions Ψj form the crucial
design parameters to shape the matrix B̄ and hence to
mitigate the bias errors. The following example demon-
strates the role of the wavelet in diagonalization of B̄.

Example 2. Consider the scenario of Example 1, for

wavelets ψ
[p]
j for p = 0, 1, 2. To visualize the achieved

diagonal dominance of the matrix B̄, see (19), its cross-
diagonal entries are depicted in Fig. 3.

Example 2 and (19) show that achieving (approximate)
diagonality of B̄ requires wavelet functions with good, or
in fact perfect, frequency-domain localization properties.
This observation, in conjunction with Cor. 3, indicates
that variance minimization and bias minimization require
the opposite wavelet functions, which once more illustrates
the inherent trade-off in wavelet selection.

5. SIMULATION STUDY

5.1 Simulation setup

The presented techniques applied for the identification
of a simulation model G with 2 highly and 2 lightly
damped modes, shown in Fig. 6. P = 10 periods are
measured, with sample length N = 500 and sampling time
Ts = 0.02[s]. The system exhibits a significant transient
for the entire duration of the measurement. The output
signal contains five data gaps, with in total nm = 625
missing samples. In addition, the output is perturbed
by measurement noise with variance λ = 10−2. The EF
lines are chosen at γkP, k = 1, . . . , 1/(2Ts) with sparsity
parameter γ = 2, and the spectral excitation magnitudes
are uniformly distributed over the EF lines. The wavelets
defined in Def. 2 are selected for the values p = 0, 1, 2,
giving rise to three different estimators. In all cases, the
LPM polynomial order is chosen as R = 2.

5.2 Identification results - noiseless case

First, identification in the noiseless case is considered,
i.e., NY = 0. The result of wavelet convolution, the

estimated plant, and transient for ψ
[2]
j are shown in Fig.

4. The estimate Ĝ accurately represents G. To analyze the
bias, the DFT of the estimated transient is depicted in
Fig. 5. Despite the high level of non-smoothness in Tm,
the estimated transient T̂ accurately matches the smooth
transient T . The larger errors around the first resonance
are due to the use of low-order (R = 2) polynomials. The
bias remains localized around the first resonance, which
indicates good frequency-localization.
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Fig. 4. time-frequency plane results for ψ
[2]
j . Left: The transforms zmj [v], j = 1, . . . , nψ for samples v ∈ V. Center: Estimate Ĝ (surface) and

FRF of true system G (black). Right: Estimate of transient T .
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Fig. 5. The non-smooth transient DFT Tm (−), the smooth transient
T (−), and the estimate T̂ (×−) based on non-smooth data.
The estimate accurately represents the true smooth transient.
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Fig. 6. FRF of true system G (−), and the identification errors for
traditional LPM (−), wavelet-based LPM for p = 0 (−), p = 1
(−), and p = 2 (−). Traditional LPM yields large errors. For
the wavelet-based estimators, the errors for p = 0 are largest
due to coupling-induced bias. The errors for p = 1 and p = 2
are substantially smaller and of comparable magnitude.

5.3 Identification results - with noise

Next, the identification errors in the noisy case of the
three estimators and of the traditional LPM are compared
in Fig. 6. Traditional LPM achieves poor performance,
since it does not explicitly account for missing samples.
Among the wavelet-based estimators, the minimal vari-
ance estimator (p = 0) achieves lowest performance, since
its error is heavily affected by coupling-induced bias, re-
call Section 4.4. This underlines the necessity of using
frequency-localized wavelets. This is supported by the
errors for p = 1, 2, which are significantly smaller despite
the increased variance. The estimator with p = 2 achieves
lowest bias, which is observed from the small error around
the first resonance frequency.

6. CONCLUSIONS

The presented method enables accurate FRF identification
from data records with many missing samples. This is
realized by exploiting a wavelet-based transformation in

a LPM framework to achieve joint localization of the
missing samples in the time-domain, and of bias errors
in the frequency-domain. In contrast to most existing
algorithms, the problem-size of the presented method
reduces with an increasing number of samples. Simulation
results demonstrate good performance. Future work will
focus on extending theoretical results and experimental
validation.

REFERENCES
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