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Abstract. In this paper we discuss some of the recent advances in the immersed boundary
(IB) method. More specifically, we show the application of this technique to problems with
strong fluid/structure interaction and to compressible flows using local mesh refinement.
These extensions are a must for the success of the IB method in industrial applications.

1 INTRODUCTION

Computer simulations are becoming an indispensable tool for the design and analysis
of complex systems; performance can be tested in advance in an inexpensive manner and
interactions among various independent parameters can be reproduced and studied in
a very controlled environment. Fluid dynamic effects however, owing to their inherent
complexity, have often been included using simplified models or empirical experimen-
tal correlations; flow simulations have been restricted to specific fields applications, e.g.,
aeronautics, and automotive engineering. The continuous growth of computing power is
encouraging engineers and designers to include high-fidelity computational fluid dynam-
ics (CFD) tools in the design and testing of new technological solutions. In spite of the
widespread use of CFD, there are still a number of difficulties that prevent its use as a
standard design tool. Among those, accurate predictions of turbulent flows and rapid
analysis of complex systems are two of the most critical ones, which are addressed in this
paper. For flows of industrial interest, usually around or inside bodies of complex shapes,
the generation of a high quality grid fitted to a complex three–dimensional object can
become extremely difficult and time-consuming; it can easily exceed the time needed to
obtain the flow solution. In addition, the resulting meshes are typically not guaranteed to
be orthogonal and this requires more complex solution algorithms. This results in a signif-
icant overhead in the per–cell operation count and, therefore, adds to the computational
cost.

Moreover, in some applications, the inherent motion of the boundaries creates an ad-
ditional complexity. If one or more parts of the object are in relative motion the solution
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procedure requires deformating or regenerating the body fitted grid, an extremely time
consuming process, which also requires the interpolation of the solution and might result
in a decrease of accuracy and degradation of the conservation properties.

Therefore, it is clear that a numerical procedure capable of handling complex geometric
configurations without resorting to body–fitted meshes would make a significant advance
in the application of CFD to industrially relevant applications, especially in the initial
design phase. The Immersed Boundary (IB) method has emerged in the last few years as
a suitable candidate for such a goal.

In the IB approach the presence of a complex boundary is replaced by a time–spatially
varying distribution of a forcing term which mimics the effect of the body on the flow. The
main advantage of this approach is that the forcing can be prescribed on a simple regular
mesh, thus retaining all the simplicity and efficiency of the methods developed in that
framework. The IB method has presently become a well established approach for CFD
analysis and several review papers [1, 2, 3] are now available in the literature showing its
reliability and efficiency. Moreover, the method has been applied with success to com-
pressible flows for a wide range of the Mach number [4]. In this paper we present the last
developments of the IB method, namely: the solution of strongly coupled fluid/structure
interaction problems and of 3D compressible flows using local mesh refinement.

2 FLUID/STRUCTURE INTERACTION

In order to obtain reliable numerical simulations of flows around complex objects with
also fluid–structure interaction (like the flow inside a mechanical heart valve), four ingre-
dients are needed: ı) an efficient Navier–Stokes solver, ıı) a reliable immersed boundary
technique, ııı) an accurate local force calculation and ıv) an ODE (ordinary differential
equation) solver coupled with the Navier–Stokes solver.

The first two points will only be shortly recalled here, having been already discussed
elsewhere [5, 6] and they will be only shortly summarized. Here we discuss the method
used to calculate the hydrodynamic loads (pressure and viscous forces exerted by the fluid
on the mimicked body) and the procedure for the integration of the ODE governing the
rigid body motion.

2.1 Navier–Stokes solver

The nondimensinal incompressible Navier–Stokes equations are discretized in space
using second-order-accurate central differences in conservative form. The resulting semi-
discrete system is discretized in time using a fractional–step method, where the viscous
terms are computed implicitly and the convective terms explicitly, yielding the following
equation:

û− un

∆t
= −αn∇pn − [γnH

n + ρnH
n−1] +

αn

2Re
∇2(û + un) + fn+1

2 , (1)
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where ∆t is the time step, u, p, and f are the nondimensional velocity, pressure, and
body force, and Re is the Reynolds number. H contains the nonlinear terms and the large
sparse matrix resulting from the implicit terms is inverted by an approximate factorization
technique. According to equation (1), the momentum equation is provisionally advanced
in time (predictor step) using the pressure at the previous level, giving an intermediate
non–solenoidal velocity field (û) which is projected onto a divergence-free vector field by
a gradient correction:

un+1 = un − αn∆t∇φ, (2)

the scalar φ being computed from the elliptic equation

∇2φ = −∇ · û
αn∆t

; (3)

the pressure is then computed by

pn+1 = pn + φ − αn∆t

2Re
∇2φ. (4)

The large–banded matrix associated with the elliptic equation (3) is reduced to a penta–
diagonal matrix using trigonometric expansions (FFT’s) in one spatial direction; the
resulting Helmholtz equations are then inverted using the FISHPACK package [7]. A
hybrid low–storage third–order Runge–Kutta scheme, with coefficients αn, γn, and ρn,
in which each ∆t is divided into three substeps, is used to advance the equations in
time; this procedure has the advantage of requiring only a two–level storage, like common
second–order schemes, while enjoying a stability limit up to CFL = ∆tU/∆x =

√
3.

More details are given in [5, 6, 8], the last one providing also the source codes and
several advanced tutorials.

2.2 Immersed boundary technique

The key idea of the immersed boundary (IB) method is the decoupling between the
geometry of the problem and the computational grid. In more details, if the flow around
the object B in figure 1 is to be computed in the rectangular domain Γ, a standard CFD
approach would require the generation of a grid in the region bounded by ∂B and ∂Γ; a
possible configuration is that of figure 1a. In the immersed boundary method, in contrast,
an underlying grid is laid on Γ regardless of the shape of the object B which is immersed in
the computational domain. The IB technique used in this work is based on that proposed
in [6, 1]. In a preliminary step, the geometry under consideration, namely, the object
B in figure 1, which is described by a closed curve in two dimensions (a closed surface
in three dimensions), is overlapped onto a Cartesian (non uniform) grid. Using the ray
tracing technique, the computational cells occupied entirely by the flow are tagged as
fluid cells; those whose centres lie within the immersed body are tagged as solid cells; the
remaining ones are finally tagged as interface cells. The effect of the body on the flow is
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accounted for by computing at each boundary element a fictitious forcing term (f) which
enforces the correct flow boundary condition on ∂B. The advantage of this approach is
that f can be prescribed on the regular grid and the need of a body-conforming mesh
is avoided. Let us define f(xs, t) as the force acting on the mimicked boundary element
whose position at time t is xs. Since the force is dependent on the fluid velocity, which
in general is unsteady, and the boundary itself could move, it turns out that both f and
xs are functions of time.

B B

ΓΓ

B B

Γ Γ

a) b)

y

η χ

x

Figure 1: Sketch of the domain discretization with a body conformal mesh a) and with the immersed
boundary method b).

A convenient expression for the forcing f was derived by Mohd-Yusof [9]; in particular,
if the momentum equation is discretized in time, we have

un+1 − un

∆t
= RHSn+1/2 + fn+1/2, (5)

where RHSn+1/2 contains the convective and viscous terms as well as the pressure gradient.
If now we ask which value of fn+1/2 will yield un+1 = Vn+1 on the immersed boundary
the answer is simply given by the equation below:

fn+1/2 = −RHSn+1/2 +
Vn+1 − un

∆t
. (6)

This forcing is direct in the sense that the desired value of velocity is enforced on the
boundary without any dynamical process and does not require any free parameter. There-
fore, at every time step, the boundary condition is satisfied regardless of the frequencies
in the flow. In addition, the forcing in equation (6) does not require additional CPU time
since it does not involve the computation of extra terms, and, when every term is com-
puted at the appropriate time, it does not influence the stability of the time integration
scheme.

As noted by Fadlun et al. [6], a possible problem is that the forcing f is applied to
the provisional velocity û which is afterward modified according to equation (2): while
this step is mandatory in order to satisfy the continuity equation, such a correction could
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change the velocity around the immersed boundary thus yielding an incorrect boundary
condition. However, it has been shown that the correction of equation (2) at the immersed
boundary is always small, (û − un+1)/û ≈ 10−3–10−4, and this error can be reduced to
round–off by two or three iterations of the time advancement process, i. e., equations (1)–
(4) (see Fadlun et al. [6], for more details). The problem was solved in a more elegant
way by Kim et al. [10] who, by modifying the continuity equation in the nodes around
the immersed boundary, added mass sources and sinks such as to cancel the correction of
equation (2) at the forced grid-points.

It is noteworhty that the above problem is not related to the immersed boundary
technique, but rather to its coupling with a projection method for the solution of the
Navier–Stokes equations.

2.3 Boundary reconstruction

It is important to note that the above expression for the forcing term would be correct
if the position of the unknowns on the grid coincided with that of the immersed boundary.
This is not true in general, because it would require the boundary to lie on coordinate
lines or surfaces, which is not the case for complex curvilinear geometries.

The different positions of the immersed boundary and unknown locations thus require
an interpolation of the solution, often referred to as boundary reconstruction. A simple
possibility is to compute the velocity value that, in a linear approximation, the point
closest to the boundary would have if the boundary had the velocity V. The corresponding
forcing for the Navier–Stokes equations is simply given by the expression (6) with the
imposed velocity V instead of V. This procedure is consistent with the overall second-
order accuracy of the scheme. However, it is very satisfactory (exact) only if the first
external points lie within the linear viscous sublayer. This is certainly true for a laminar
flow or for direct numerical simulations (DNS) of turbulent flows, but it is unlikely to
happen even for moderately high Reynolds number LES simulations. Possible strategies
to alleviate this problem are described in [11, 3].

2.4 Moving boundaries

In the previous section we have shown that, either directly of through the forcing f ,
the immersed boundary method essentially imposes the condition u = V at the boundary
of B. Depending on the behavior of V and on the position of the body with respect to
the grid, several additional difficulties might arise.

The simplest case is that of a fixed rigid body since it results V = 0 on ∂B, the compu-
tational nodes being tagged only once at the beginning of the simulation. It is noteworthy
that this does not necessarily prevent the body from moving since an appropriate refer-
ence frame can still compensate for the motion of B with respect to the grid. This is
the case of the unbaffled impeller stirred tank of Verzicco et al. [12] or the carangiform
motion of an airfoil by Blondeaux et al. [13], where the Navier–Stokes equations in non
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Figure 2: Illustration of the emergence of points from the solid to the fluid phase.

inertial reference frames were integrated.
The situation is different when the position of B changes relatively to the grid and when

the solid body withdraws from the fluid, grid points inside the body emerging into the
flow. The real difficulty is that some of the nodes that at the time tn are inside the body,
at the successive time step might become fluid cells, without having a valid time history
for the correct integration of the equations. In particular, if in figure 2 the surface moves
between tn and tn+1 downward, there are some newly emerged fluid points for which the
Navier–Stokes equations should be solved. For this integration to be possible, however,
several terms of the Navier–Stokes equations at time tn should be known and this is not
the case, for example, for point A. Following [14, 15] the problem can be alleviated by a
field extension strategy in which the interpolation procedure used in the previous section
is extended not only to the fluid velocity but also to those quantities required for the
integration of the equations (field reconstruction).

In particular, within the direct forcing approach [6], a newly emerged fluid point has a
correct value of velocity due to the body velocity conditions imposed at the previous time
step but an unphysical value of pressure. To overcome this problem, a particular care
about the pressure at the interface points has to be taken. In this case the field extension
would consists of a second-order geometrical reconstruction that involves the following
steps: ı) using a local search process starting from the fluid point closest to the boundary,
find a test point, on the normal to the boundary, such that all surrounding nodes are
in the fluid. ıı) the value of the pressure at the test point is calculated by a standard
trilinear interpolation involving the 8 surrounding points (in three–dimensions). ııı) the
pressure at the grid point closest to the boundary can then be computed by integrating
∂p/∂n = −∂Vn/∂t.
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2.5 Local load calculation

The computation of the surface pressure and shear stress is a key issue for non–
boundary conforming formulations, especially when applied to fluid–structure interaction
problems. In the present study, a linear interpolation strategy has been implemented
resulting in very smooth surface pressure and wall shear stress distributions, as shown
in [3].

The method starts with the geometrical description of the three-dimensional object,
as a triangulated closed surface. Then, the centroid and the area of each triangle are
computed and the position of the centroid is located with respect to the computational
domain. Using a local search process, starting from each centroid, a probe point on
the outgoing normal is selected so that all surrounding computational nodes are in the
fluid. Again, this step can be iterative, adjusting the distance from the boundary until
the above condition is met. The value of the pressure and velocity at the probe point
are calculated by a standard trilinear interpolation involving the 8 surrounding nodes (in
three dimensions) following exactly the field reconstruction procedure described in the
previous section.

The pressure and velocity being known for all probe points (and at all centroids of the
triangles discretizing the immersed boundary) the shear stress τw can be locally evaluated
and the global loads computed by integrating it over the immersed surface. The whole
procedure has been tested and validated versus well established results, see [3] for further
details.

2.6 ODE Solver and strong coupling scheme

The equation of motion for a rigid body can be written as:

Mẍ (t) + Cẋ(t) + Kx (t) = f [x (τ) , ẋ (τ) , ẍ (t)] , ∀τ ∈ 0 ≤ τ ≤ t (7)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f is the
vector of generalized hydrodynamic forces, and x is the vector of generalized structural
displacements.

In the present study, a strong coupling scheme is employed, where the fluid and the
structure are treated as elements of a single dynamical system, and all governing equa-
tions are integrated simultaneously in the time-domain. A fundamental complication
with the application of a time-domain approach to two-way, fluid-structure interaction
problems like the one described above, is that the prediction of the flow field and of the
hydrodynamic loads requires the knowledge of the motion of the structure and vice-versa.

Equation (7) can be rewritten in non-dimensional form, as a system of 2n first-order,
non-linear ODEs, n being the number of degrees-of-freedom of the structure:

ẏ (t) = F [y (τ) , ẏ (τ)] , ∀τ ∈ 0 ≤ τ ≤ t, (8)

where half of the vector F represents generalized velocities and the other half represents
generalized forces divided by the corresponding inertias. In general, the loads depend
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on y, explicitly, and on the history of the motion and the acceleration of the structure,
implicitly . For this reason Hamming’s 4th-order predictor-corrector method is used to
integrate equation (8) in time. The numerical procedure used to determine the current
value of the vector y is:

1. Let tj = j∆t denote the time at the j-th time step and

yj = y (tj) , ẏj = ẏ (tj) , Fj = F [y (tj)] (9)

2. Compute the predicted solution, pyj , and modify it, 1yj, using the local truncation
error, ej−1, from the previous time step:

pyj = yj−4 +
4

3
∆t

(
2 Fj−1 − Fj−2 + 2 Fj−3

)
, 1yj = pyj +

112

9
ej−1 (10)

3. Correct the modified, predicted solution as

k+1yj =
1

8

[
9 yj−1 − yj−3 + 3∆t

(
kFj + 2 Fj−1 − Fj−2

)]
(11)

where kFj = F
(

kyj
)

and k is the iteration index. Convergence is achieved when

the iteration error, ej =
∥∥∥ k+1yj − kyj

∥∥∥
∞

is less than a prescribed tolerance ǫ.

4. Compute the local truncation error, ej , and the final solution, yj , at step j,

ej =
9

121

(
k+1yj − pyj

)
, yj = k+1yj − ej (12)

and proceed to the next time step.

It is noteworthy that the procedure above requires information from four previous time
steps. Therefore, the Euler, Adams-Moulton, and Adams-Bashforth methods were used,
starting from the initial conditions, to provide such information.

The fluid solver is coupled with the structural solver as follows: ı) Find the predicted
location and velocity of the body using equation (10). ıı) Find the predicted fluid velocity
and pressure fields using the Navier–Stokes equations with the boundary conditions pro-
vided by step 1, and compute the resulting loads on the structure. ııı) Compute the new
location and velocity of the body using equation (11). ıv) Check for convergence. If ej is
greater than the prescribed tolerance, ǫ, repeat steps 2 to 4. If convergence is achieved,
find the final position and velocity of the body using equation (12), and the final fluid
pressure and velocity fields from the Navier–Stokes equations. In all computations re-
ported in this study, a tolerance of ǫ = 10−4 was used. The number of iterations required
for convergence at each time step varied from 1 to 4, depending on the stiffness of the
problem.
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It is noteworthy that for the present application (the dynamics of a bileaflet mechanical
heart valve) equation (7) has been solved with the matrices C and K set to zero. This
makes the problem much stiffer, since the motion of the leaflets is not smoothed by
friction or elastic bounds, leading to impulsive accelerations of the rigid bodies that need
extremely small time steps to be tracked accurately.

2.7 Heart valve dynamics at Re=3200

In this study we have considered the flow in a St. Jude Medical Standard aortic bileaflet
valve subjected to a pulsatile flow. The physiological pulsatile inflow was synthesized at
the Georgia Tech by Yoganathan (A.P. Yoganathan, personal communication) using a
left heart chamber simulator. The flow loop consisted of a pneumatic pulsatile system, a
reservoir, an aortic valve-mounting chamber, a mitral valve-mounting chamber, resistance
and compliance sections, a flow transducer, as well as ventricular and aortic pressure
transducers. The compliance and resistance sections of the loop were adjusted to maintain
the following conditions: heart rate of 70 beats/min, systolic duration of 300 ms, peak
systolic flow rate of 25 ℓ/min, cardiac output of 5 ℓ/min, and aortic pressure of 80-140
mmHg. The resulting flow and pressure waveforms are shown in figure 3a.
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Figure 3: a) Aortic flow and pressure waveforms. b) Physiological flow-rate, Repeak = 3200. c) Relative
angular displacement: Upper leaflet, Lower leaflet. d) Angular velocity: Upper
leaflet, Lower leaflet.

9



M. de Tullio et al.

Starting from the inflow waveform of figure 3a, the peak bulk velocity and all of the
nondimensional parameters were computed. In particular, considering the intake diameter
D = 0.0254 m and the peak bulk velocity U = 0.875 m/s, the peak Reynolds number is
Re = 6400 (with a kinematic viscosity of 3.5·10−6 m2/s). For computational economy, the
direct numerical simulation was performed at half of the physiological Reynolds number,
Re = 3200, using a mesh with 151x131x241 nodes, in the azimuthal, radial and axial
directions, respectively (a simulation at Re = 6400 on a twice finer grid is progress). The
inflow waveform was scaled in order to have Ub,peak = 1 and the nondimensional period
T = 15; figure 3b shows the inflow waveform for the three simulated cardiac cycles.

The leaflet dynamics is shown in figures 3c–d, where the relative angular displacement
and the angular velocity of the leaflets are plotted versus time. It can be noticed that the
motion of the leaflets is not always symmetric, especially during the closing phase, as ob-
served also in experiments (G.P. Romano, personal communication). These asymmetries
have a stochastic behavior that cannot be determined a priori and they are mostly due
to the turbulent nature of the decelerating flow. In contrast, during the opening phase,
the flow accelerates, turbulence is mostly suppressed, and the asymmetry in the leaflet
motion disappears. This feature can be best appreciated from figure 3d, which shows the
time evolution of the angular velocities of the leaflets.

The instantaneous streamlines and the vorticity for this simulation are given in figures
4 and 5. During the opening of the valve (figure 4), strong shear layers develop from the
tips of the leaflets, since the gaps between the leaflet tips and the housing are smaller than
in the case of a fully open valve. A strong shear layer is also generated from the central
gap between the two leaflets. Although the opening time is short, the strong shear layers
roll up quickly into two semitoroidal large vortices which move towards the sinus region.
This allows a relatively large motion of the vortices attached to the downstream part of
the valve. In the fully open position, a strong shedding from the leaflets is shown in figure
4d and 5a and small vortices are developed and shed. Moreover, the shear layers from
the housing roll up and generate small vortices, which interact with the recirculation zone
present in the sinus region. The closing phase is characterized by a different dynamics; in
fact, as shown in figure 5c, a large vortex behind each leaflet is released and the leaflets
reach the geometrically constrained fully closed position, the rebound from the housing
produces the squeezing of the fluid from the central gap between the two leaflets evidenced
by a mushroom–like structure. During the regurgitation phase (negative value of inflow
rate) strong leakages through the small gaps between the leaflets and the housing are
shown in figure 4a, which last until the accelerating phase starts and the valve opens
again.

A more detailed analysis of the flow and comparisons with ongoing experiments are in
progress. These preliminary results, however, already show how the flow (blood) dynamics
is severely altered by the presence of a mechanical valve, which initiates the phenomenon
of hemolysis and coagulation cascade; todate, prevention of these complications requires
lifelong anticoagulation therapy.
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Figure 4: Time sequence of the streamlines (left) and azimuthal vorticity contours (right) for the opening
phase. a) t/T=3.00, b) t/T=3.07, c) t/T=3.14, d) t/T=3.21.

Figure 5: Time sequence of the streamlines (left) and azimuthal vorticity contours (right) for the closing
phase. a) t/T=3.28, b) t/T=3.34, c) t/T=3.40, d) t/T=3.45.

11



M. de Tullio et al.

3 PRECONDITIONED SOLVER FOR COMPRESSIBLE FLOWS

3.1 Governing equations and numerical method

In this work, the Reynolds Averaged Navier–Stokes (RANS) equations, written in
terms of Favre mass-averaged quantities, are solved in conjunction with the low-Reynolds
number k − ω turbulence model [16]. Such equations are given in compact form as

Γ
∂Qv

∂τ
+

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
− ∂Ev

∂x
− ∂Fv

∂y
− ∂Gv

∂z
= D, (13)

where Q is the conservative variable vector, E, F , G and Ev, Fv, Gv indicate the inviscid
and viscous fluxes, respectively, and D is the vector of the source terms. A pseudo-time
derivative for the primitive variable vector Qv has been added to the left-hand-side in
order to use a time marching approach for both steady state and unsteady problems. the
preconditioning matrix, Γ, proposed in [17] is finally used to premultiply the pseudo-time
derivative in order to obtain an efficient iteration at all values of the Mach number.
Discretizing equation (13) by an Euler implicit scheme in the pseudo-time and approx-
imating the physical-time derivative by a second-order-accurate three-point backward
difference, the following equation in delta form is obtained:

S

[

I + ∆τMx
∂

∂x

(

Λx − RxI
∂

∂x

)

M−1
x + ∆τMy

∂

∂y

(

Λy − RyI
∂

∂y

)

M−1
y

+∆τMz
∂

∂z

(

Λz − RzI
∂

∂z

)

M−1
z

]

∆Qv = −∆τ

[
3Qr − 4Qn + Qn−1

2∆t
+ Rr

]

.

(14)

where r and ∆τ indicate the pseudo-time level and step, whereas n and ∆t indicate the
physical-time level and step, respectively. The steady residual is given as:

Rr =
∂(Er − Er

v)

∂x
+

∂(F r − F r
v )

∂y
+

∂(Gr − Gr
v)

∂z
− Dr, (15)

and the delta unknowns to be annihilated at each pseudo-time level are

∆Qv = Qv
r+1 − Qv

r. (16)

The pseudo- and physical-time terms are grouped together into a new term S,

S = Γ +
3

2

∆τ

∆t
P, P =

∂Q

∂Qv

, (17)

which has been factored out of the LHS in equation (14). The diagonalization procedure
of Pulliam and Chausee [18] has been employed, so that

S−1Av = MxΛxM
−1
x , S−1Bv = MyΛyM

−1
y , S−1Cv = MzΛzM

−1
z , (18)
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where Av = ∂E/∂Qv, Bv = ∂F/∂Qv, Cv = ∂G/∂Qv. Equation (14) is factorized and
solved by a BiCGStab method [19]. A collocated cell-centred finite volume space dis-
cretization is used. The convective terms at the RHS are discretized using either an
upwind flux-difference-splitting scheme with first-, second- or third-order accuracy, or a
second-order-accurate centred scheme. When computing flows with shocks, a total vari-
ation diminishing approach is employed using the minmod limiter function and either a
second- or a third-order accurate upwind scheme. The viscous terms are discretized by
second-order-accurate centred differences. The LHS convective term is always discretized
using a first-order upwind scheme, according to a deferred-correction approach. Finally,
the boundary conditions are treated explicitly.

3.2 Data structure

Local grid refinement (LGR) allows for efficient clustering of cells close to the immersed
boundary. The basic idea was recently introduced by Durbin and Iaccarino [20] for a
finite difference discretization and extended to a finite volume formulation by Iaccarino et
al. [21]. The following description of the algorithm refers to two dimensions, the extension
to three-dimensions being straightforward. An auxiliary structured grid is employed to
handle the data structure of the semi-structured locally refined grid (shown in figure 6).
The auxiliary grid covers the whole computational domain employing the finest mesh size
on the semi-structured grid. Therefore, each cell of the semi-structured grid is bounded
by the lines passing throught the vertices (i, j) and (i + ∆i, j + ∆j), see figure 6, where
the indeces i = 0, . . . , Ni and j = 0, . . . , Nj refer to the auxiliary (finest) grid and ∆i ≥ 1,
∆j ≥ 1 depend on (i, j). The major advantage of this approach with respect to classical
OCTREE-based and fully-unstructured algorithms lies in the economy and flexibility of
storing and retrieving connectivity informations, due to the presence of the auxiliary grid.
In particular, using an Ni × Nj auxiliary grid, only N < Ni × Nj cells belonging to the
semi-structured grid are defined using the two couple of indices (i, j) and (∆i, ∆j), with
a total memory requirement of 4 N integers. In addition, an array of integers, ID(i, j) is
needed to store the correspondence between the cells of the auxiliary and semi-structured
grids. All of the cells of the auxiliary grid not employed in the actual mesh, namely, those
included in the range [i : i + ∆i − 1] and [j : j + ∆j − 1], are tagged using the same cell
number. The total storage required for allocating ID(i, j) is, therefore, Ni ×Nj integers.
The connectivity information for each cell is retrieved by querying the array ID(i, j).

3.3 Semi-structured grid generation

Within the IB method, as described in section 2.2, the generation of semi-structured
grids is carried out by firstly creating the auxiliary (fine) grid and coarsening it in the
regions away from the immersed boundary. The advantage of this approach is that all
the cell-tagging (ray-tracing) needed for using the IB technique can be performed on a
structured grid, taking full advantage of the alignment of the cell centers and the grid
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Figure 6: LGR grid showing a cell P and its neighbors.

nodes. In the present implementation, starting from an auxiliary grid with uniform mesh
size, a structured grid is generated by recursively halving the mesh size at the immersed
boundary region, until an assigned target value is reached. This automatic refinement is
based on the following strategy. A tag funcion, generated using the ray tracing technique
as mentioned before, is used to mark the cells inside and outside the immersed body: an
integer value ±1 is assigned to fluid and solid cells, respectively. The gradient of this
function is different from zero only at the immersed boundary and depends on the local
grid size. The components of this gradient in the x and y directions are used to select the
rows of cells to be refined. The grid is refined until a user specified resolution is achieved
at the boundary. A smoothing function can be applied on the ±1 tagging function to
obtain a smeared interface allowing a smoother transition between the coarse and the
refined regions. By this procedure, the auxiliary grid is obtained. Then, starting from
such a grid, the semi-structured mesh is obtained by coarsening the cells in the regions far
from the boundaries until the maximum prescribed cell-size is achieved (see figure 7(a)).
In addition to such an automatic refinement, it is possible to define regions of the com-
putational domains to be refined, selecting the resolution of the refinement, like the wake
region in figure 7(b) and, finally, it is possible to refine on void surfaces, namely, surfaces
without solid or interface points, like the bow-shock shown in figure 7(c).

3.4 Interpolation method at the immersed surfaces

The application of the boundary conditions at the immersed surface is treated explicitly,
by assigning the values of the variables at the interface cells. At solid cells, the velocity
components are set to zero and, in the case of isothermal surfaces, the temperature is
set equal to the wall value. At the interface cells, the nearby wall is modeled with an off
wall boundary condition which consists of an interpolation of the flow variables, using the
computed values of the surrounding fluid cells and the imposed values at the wall. For
each interface cell it is possible to find Nnbr neighbouring fluid cells and Nib intersections
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(a) (c)(b)

Figure 7: Different steps of refinement: (a) automatic on the immersed boundary; (b) specified window
(wake); (c) external surface (shock).

of the faces of each cell with the immersed boundary. For the velocity components and
the temperature in the case of isothermal surface, the following interpolation formula is
used:

φint =
Nnbr∑

i

αi

q
φi +

Nib∑

j

βj

q
φj,wall, (19)

where φj,wall is the value of the flow variable to be imposed at the immersed surface,

q =
Nnbr∑

i

αi +
Nib∑

j

βj , (20)

and αi and βj are the inverse distances between the surrounding cell centers and the
interface cell center and between the wall intersections and the interface cell center, re-
spectively. It can be shown that in the one-dimensional case, this procedure coincides with
the linear interpolation scheme used in [6, 4]. The pressure gradient and the temperature
gradient, in case of an adiabatic surface, along the normal to the immersed surface, are
set to zero by assigning the corresponding flow field value at the interface cell.

3.5 Results

3.5.1 Unsteady flow past a heated circular cylinder

The unsteady two-dimensional low-Mach-number flow past a heated circular cylinder
has been chosen in order to validate both the unsteady terms and the correct implemen-
tation of the energy equations, since experimental [22] and numerical [23] investigations
indicate that the temperature fields has a significant influence on the flow pattern, expe-
cially when the ratio between the cylinder wall temperature Tw and the free-stream one
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T∞, T ∗ = Tw/T∞ exceeds 1.1. It has been found that, for a given Re∞, the vortex shed-
ding frequency, f , and thus the Strouhal number St = fD/U∞, decreases for increasing
values of T ∗.
The computational domain has the inlet and outlet boundaries located at xi = −10D
and xo = 40D, and the far-field boundaries located at yw = ±15D, the origin of the box
coinciding with the centre of the cylinder. Standard characteristic boundary conditions
have been imposed at inlet and outlet points, whereas free-shear wall boundary condi-
tions are imposed at the far-field points. For such a low Re problem, centred differences
are employed. Computations have been performed using a semi-structured, non uniform
mesh, with 41509 cells and 293647 faces. The grid is highly refined on the cylinder surface,
in order to solve the thermal boundary layer, and inside a box surrounding the cylinder
and the wake, so as to obtain a satisfactory resolution of the shedding phenomenon. The
auxiliary mesh is composed of 796 × 379 cells. The physical time step has been chosen
in order to have about 500 steps per period; about 250 inner iterations are needed to
reduce the residual to 10−6 at each time step. Figure 8 shows the computed values of the
Strouhal number, St, for Re∞ = 100, 120, 140 and T ∗ = 1.0, 1.1, 1.5, 1.8, as well as the
experimental results provided by Wang et al. [22] and Sabanca & Durst [23]: a very good
agreement is obtained; moreover the present results are comparable with those obtained
using the uniform auxiliary grid [4].
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Figure 8: Strouhal number vs Reynolds number for the usteady flow past a heated circular cylinder.

3.5.2 Incompressible flow past a sphere

The incompressible flow past a sphere has been computed to test the three dimensional
flow solver and the immersed boundary method. A single value of the free-stream Mach
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number, M∞ = 0.03, and four values of the Reynolds number (based on the sphere diam-
eter, D, the free-stream velocity, U∞), namely, 40, 60, 80, and 100, have been considered.
The computational domain is a box; to reduce the influence of boundary conditions on the
solution, the inlet and outlet boundary planes are located at xi = −40D and xo = 80D
and the far-field boundaries are located at yw = ±40D and zw = ±40D, the origin of the
box coinciding with the centre of the sphere. Standard characteristic boundary conditions
have been imposed at inlet and outlet points, whereas free-shear wall boundary conditions
are imposed at the far-field boundary points. The numerical results are obtained using
a 3rd-order accurate upwind spatial accuracy. Computations have been performed using
a semi-structured mesh with 231031 cells and 2182547 faces. The grid is refined around
the sphere surface, so as to have a good resolution of the boundary layer, and inside a
box surrounding the sphere and the wake, in order to describe accurately the separation
and wake regions. The auxiliary mesh contains 446× 199× 185 cells. A local view of the
mesh is given in figure 9. According to Batchelor [24], the flow around a sphere does

XY

Z

Figure 9: Local view of the grid.

not separate up to Re ≃ 24, and for increasing Reynolds number, the axial length of the
separation bubble grows linearly up to Re ≃ 100, see figures 10 and 11, which provide
the present results and experimental data for the length of the separation bubble and for
the drag coefficient.

3.5.3 Supersonic flow past a circular cylinder

The steady turbulent supersonic flow past a circular cylinder has been considered as
a suitable test case to validate the method for compressible flows with shocks. The flow
with M∞ = 1.7 and Re∞ = 2 × 105 has been computed, the inlet values of the turbu-
lence kinetic energy and specific dissipation rate being k/U2

∞ = 0.0009 and ωD/U∞ = 40,
respectively. For the considered values of M∞, a bow shock is formed upstream of the
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Figure 10: Length of the separation bubble vs. Re;
experimental data from [24].
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Figure 11: Drag coefficient vs. Re; eperimental
data from [25].

cylinder; the subsonic flow behind the shock close to the cylinder accelerates along its sur-
face forming a supersonic-flow region, enveloping the subsonic recirculation region behind
the cylinder, and two symmetric tail shocks are formed at the end of the separation region.
Results have been obtained using a rectangular computational domain with dimensions
[−10 D; 15 D]× [−10 D; 10 D], D being the diameter of the cylinder centred at the origin.
Standard characteristic boundary conditions have been imposed at the inlet and outlet
surfaces and free-shear wall boundary conditions are imposed at the far-field boundaries.
Numerical results are obtained using the third-order-accurate upwind scheme. Simula-
tions on a coarse grid have been performed at first to locate the position of the shocks,
approximatively. Based on such a solution, a new grid has been generated using the LGR
at shock regions. The final semi-structured grid has 75556 cells and 545699 faces, corre-
sponding to an auxiliary 1805×2159 mesh. A local view of the grid is shown in figure 12.
The Mach number contours are given in figure 13, showing that a clear description of the
shocks and of the wake are obtained, thanks to the local grid refinement in those regions.
The computed separation angle, measured clockwise from the leading edge, is equal to
113◦ and agrees well with the corresponding experimental datum, 112◦ [26]. Moreover,
the computed and experimental drag coefficients are equal to 1.41 and 1.43, respectively.
Finally, the computed pressure coefficient distribution along the surface of the cylinder is
provided in figure 14 together with the experimental data of [26]. All numerical results
agree very well with the numerical solutions obtained using the same numerical method
and a body-fitted grid [4] and reasonably well with the experimental.

4 CONCLUSIONS

In this paper the last developments of the immersed boundary method have been
presented, namely, the solution of strongly coupled fluid/structure interaction problems
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Figure 12: Local view of the grid for the case
M∞ = 1.7.
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Figure 13: Supersonic flow past a circular cylin-
der at M∞ = 1.7: Mach number contours (∆M =
0.08).

and of compressible flows using local mesh refinement. In all cases, the comparison of the
numerical results with experimental data demonstrates the effectiveness and versatility of
this approach.
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