
Self-Supervised Few Shot
Learning

Prototypical Contrastive Learning with
Graphs

Ojas Kishorkumar Shirekar

Self-Supervised
Few Shot
Learning

Prototypical Contrastive Learning with Graphs

by

Ojas Kishorkumar Shirekar

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday August 31, 2022 at 14:30.

Student number: 5225493
Project duration: July 1, 2021 – July 31, 2022
Thesis committee: Dr. ir. H. Jamali-Rad, TU Delft and Shell, Daily supervisor

Dr. ir. J. van Gemert, TU Delft, Advisor
Dr. E. Isufi, TU Delft, External committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This report, along with the two scientific articles present in it, is the culmination of the work I did for
my Master’s thesis. First, I would like to thank my supervisor and mentor, Dr. Hadi Jamali-Rad, for
the constant guidance and support. Much of this work would not have come to fruition if not for Hadi’s
drive and impeccable attention to detail. Not only has Hadi taught me whatever I know about the art of
research, but he also imparted valuable life lessons that will always stay with me.

I would like to express my gratitude to my parents and brother. Without whose support, under-
standing and encouragement, I would not have the privilege of being able to pursue my interests or
write this report while sitting in Delft.

Finally, I would like to thank the thesis committee chair, Dr. Jan van Gemert, for his fantastic
and exciting Deep Learning and Computer Vision classes that I always looked forward to attending. I
would also like to thank Dr. Elvin Isufi for their time and interest in my work, particularly during a busy,
sweltering summer.

I am glad to have met some of the brightest people I know in Delft, and some have become my
close friends. I cherish all my moments with them, especially the time spent in building 28. Thank you
for making this journey colourful.

Working through my thesis, I have realised that my passion for computer science and research
remains stronger than ever before.

This report has been structured to first show the two scientific articles containing the motivation,
explanations, methods developed, and experimental results. The chapters following the articles present
the fundamental concepts that have made this work a reality. The report has been designed to be as
self-contained as possible.

Ojas Kishorkumar Shirekar
Delft, August 2022

i

List of Publications

[1] Ojas Kishore Shirekar, Hadi Jamali-Rad, ”Self-Supervised Class-Cognizant Few-Shot Classifica-
tion”, Accepted at The 29th IEEE International Conference on Image Processing (IEEE ICIP), 2022.
arXiv: https://arxiv.org/abs/2202.08149, Code: https://github.com/ojss/c3lr.

[2] Ojas Kishore Shirekar, Anuj Singh, Hadi Jamali-Rad, ”Self-Attention Message Passing for Con-
trastive Few-Shot Learning”, submitted to IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2023.

ii

https://arxiv.org/abs/2202.08149
https://github.com/ojss/c3lr

Contents

Notation 2

1 Introduction 3

2 Scientific Article 1 (C3LR) 5

3 Scientific Article 2 (SAMPTransfer) 11

4 Deep Learning 22
4.1 Deep Feedforward Networks . 22
4.2 Activation Functions . 23
4.3 Loss Function. 24
4.4 Softmax . 24

4.4.1 Softmax and Cross-Entropy Loss . 25
4.4.2 Softmax vs Sigmoid . 25

4.5 Universal Approximation Theory. 26
4.6 Optimisation and Backpropagation . 26

4.6.1 Gradient Descent . 26
4.6.2 Backpropagation . 27

5 Convolutional Neural Networks 29
5.1 Convolution . 30
5.2 Pooling . 31
5.3 Kernels as Feature Extractors . 32

6 Basics of Geometric Deep Learning and Graph Neural Networks 34
6.1 Graphs . 34
6.2 Janossy Pooling . 34

6.2.1 A More Efficient Janossy Pooling . 35
6.2.2 Deep Sets. 36
6.2.3 Modelling Relations and Interactions . 37

6.3 Janossy Pooling and Self-Attention . 37
6.3.1 Query, Key and Value . 38

6.4 Graph Neural Networks . 39

7 Self Supervised Learning 42
7.1 Representation Learning . 43
7.2 Self-supervision with Images . 43
7.3 Contrastive Representation Learning . 44

7.3.1 SimCLR . 45

8 Few-Shot Learning 48
8.1 Formalising the Few-Shot Learning Problem . 49
8.2 Model Agnostic Meta Learning (MAML) . 50

8.2.1 Meta-training . 51
8.3 Prototypical Networks . 51

8.3.1 Re-interpretation of the Prototypical Classifier as a Linear Model 52
8.4 Unsupervised Few-Shot Learning . 52

8.4.1 CACTUs . 53
8.4.2 UMTRA . 53
8.4.3 ProtoTransfer . 54

iii

Contents iv

9 Optimal Transport 56
9.1 A brief historical context of Optimal Transport . 56
9.2 Discrete Optimal Transport. 57

9.2.1 Asssignment Problem . 57
9.2.2 Working with Asymmetric Distributions . 58
9.2.3 The Kantorovich relaxation. 58
9.2.4 Entropic Regularisation . 59
9.2.5 Sinkhorn-Knopp Algorithm . 60

10 C3LR: Additional Materials 61
10.1 Choice of Clustering Algorithm. 61
10.2 Shortcomings of C3LR . 63

10.2.1 Unstable Clusters. 63
10.2.2 Partial Compatibility with Gradient Based Learning. 64

11 SAMPTransfer: Additional Materials 65
11.1 Why SAMP? . 65

11.1.1 Link with C3LR . 66
11.1.2 SAMP in Action . 67

11.2 Shortcomings of SAMPTransfer . 67
11.2.1 Reliance on Batch Size . 67
11.2.2 Loss of Spatial Information. 67
11.2.3 Poor Scaling with Larger Backbones . 68

12 Conclusions 69
12.1 Future Work. 69
12.2 Conclusion . 69

Notation

Numbers and Arrays

𝑨 A matrix

diag(𝒂) A square, diagonal matrix with diagonal entries given by 𝒂

𝑰 Identity matrix with dimensionality implied by context

𝑰𝑛 Identity matrix with 𝑛 rows and 𝑛 columns

a A scalar random variable

𝘈 A tensor

𝒂 A vector

𝑎 A scalar (integer or real)

Linear Algebra Operations

det(𝑨) Determinant of 𝑨

𝑨⊤ Transpose of matrix 𝑨

𝑨 ⊙ 𝑩 Element-wise (Hadamard) product of 𝑨 and 𝑩

Indexing

𝐴𝑖,𝑗 or 𝑨(𝑖, 𝑗) Element 𝑖, 𝑗 of matrix 𝑨

a𝑖 Element 𝑖 of the random vector 𝐚

𝘈𝑖,𝑗,𝑘 Element (𝑖, 𝑗, 𝑘) of a 3-D tensor 𝘈

𝑎𝑖 Element 𝑖 of vector 𝒂, with indexing starting at 1

𝑎−𝑖 All elements of vector 𝒂 except for element 𝑖

𝑨∶,𝑖 Column 𝑖 of matrix 𝑨

𝑨𝑖,∶ Row 𝑖 of matrix 𝑨

𝘈∶,∶,𝑖 2-D slice of a 3-D tensor

Calculus

𝜕𝑓
𝜕𝒙 Jacobian matrix 𝑱 ∈ ℝ𝑚×𝑛 of 𝑓 ∶ ℝ𝑛 → ℝ𝑚

1

Notation 2

𝜕𝑦
𝜕𝑥 Partial derivative of 𝑦 with respect to 𝑥

∫ 𝑓(𝒙)𝑑𝒙 Definite integral over the entire domain of 𝒙

∫
𝕊

𝑓(𝒙)𝑑𝒙 Definite integral with respect to 𝒙 over the set 𝕊

∇𝒙𝑦 Gradient of 𝑦 with respect to 𝒙

∇2
𝒙𝑓(𝒙) or 𝑯(𝑓)(𝒙) The Hessian matrix of 𝑓 at input point 𝒙

𝑑𝑦
𝑑𝑥 Derivative of 𝑦 with respect to 𝑥

Sets and Graphs

(𝑎, 𝑏] The real interval excluding 𝑎 but including 𝑏

[𝑎, 𝑏] The real interval including 𝑎 and 𝑏

𝒢 A graph

ℝ The set of real numbers

𝔸\𝔹 Set subtraction, i.e., the set containing the elements of 𝔸 that are not in 𝔹

𝔸 A set

{0, 1, … , 𝑛} The set of all integers between 0 and 𝑛

{0, 1} The set containing 0 and 1

Datasets and Distributions

𝑿 The 𝑚 × 𝑛 matrix with input example 𝒙(𝑖) in row 𝑿𝑖,∶

𝑝data The data generating distribution

̂𝑝data The empirical distribution defined by the training set

𝒙(𝑖) The 𝑖th example (input) from a dataset

𝑦(𝑖) or 𝒚(𝑖) The target associated with 𝒙(𝑖) for supervised learning

1
Introduction

In recent years, deep learning models have become larger and increasingly demand more data to per-
form their tasks satisfactorily. However, few-shot learning has garnered increasing interest recently
because it underscores a fundamental gap between smart human adaptability and data-hungry super-
vised and unsupervised deep learning methods.

Today, machine learning models are capable of performing exceptionally well on a variety of
tasks. Machine learning models already perform better than humans in several image related tasks
such as object recognition, image super-resolution scaling, image analysis tasks in medicine and self-
driving cars. Not only this, we have seen an explosive growth of large language models such as GPT-3
(Brown et al. 2020) and LaMDA (Cohen et al. 2022), that are capable of generating coherent sentences
in a manner that was previously not seen.

Figure 1.1: As a human one can immediately figure out which object is most similar to the one bounded by
a red box, but machines are quite poor at this type of abstraction and learning. Image borrowed from (Lake,
Salakhutdinov, and Tenenbaum 2015).

However, even while being cognisant of these achievements, we must realise that most of the
leading approaches today (and state-of-the-art approaches from a few years ago) are also one of
the most data-hungry and parameter heavy approaches. To put this hunger into perspective, SEER

3

4

(Goyal et al. 2021) uses a model with 1.3 billion parameters and trains it with SWaV (Caron, Misra, et al.
2020). However, this number is not even close to the league in which large language models (LLMs)
operate. GPT-3 (Brown et al. 2020) has 175-billion parameters and this number has only increased.
Furthermore, such models require massive datasets such as ImageNet (Deng et al. 2009) for image
models and datasets such as The Pile (Gao et al. 2020) for language models.

On the contrary, humans possess two crucial aspects of conceptual knowledge: first, humans
generally require only a few examples from which they can learn natural or man-made concepts and
categories, whereas machine learning models, as we discussed, require excessive amounts of exam-
ples to perform at a similar level. Second, humans learn far richer abstractions that machine learning
models do not, and are capable of utilising these abstractions for a wide range of functions. A good
example of this in action is when children acquire language; for instance, for many verbs in English
the past tense is formed by adding “-ed” to the verb’s stem (e.g. walked). Although children may not
explicitly learn the past tense forms for every such word, they can still naturally regularise (and gener-
alise) the past tense form and reuse it as required (Marcus et al. 1992). Similarly a visual example is
shown in Figure 1.1, if a human is shown the object bounded int he red box they can immediately start
associating it with other similar objects (shown below the object in question). A human can naturally
parse major components of the object that make it what it is (a Segway1 for those wondering). For
instance, one can see the wheels and the handles which also happen to be components of a bicycle -
as a human this relationship is easy to notice. Humans can also use their abstractions to generate new
examples, parsing objects into their parts, and above all creating new abstractions based on existing
ideas and abstractions. Machine learning models, on the other hand, struggle with generalisation and
learning from fewer examples - this forms the core of the few-shot learning problem.

Inspired by the human ability to learn rich abstractions and relationships between objects from
just a few examples, we develop two self-supervised learning methods, C3LR and SAMPTransfer.
This body of work aims to learn rich abstractions from the relationships between multiple images and
uses those abstractions to tackle the few-shot learning problem. In both these works we strive to
develop techniques in order to mimic the hallmark of human adaptability which is to learn quickly from
a handful of examples.

1https://www.segway.com/

https://www.segway.com/

2
Scientific Article 1 (C3LR)

5

SELF-SUPERVISED CLASS-COGNIZANT FEW-SHOT CLASSIFICATION

Ojas Kishore Shirekar†, Hadi Jamali-Rad†⋆

† Faculty of EEMCS, Delft University of Technology (TU Delft), Delft, The Netherlands
⋆ Shell Global Solutions International B.V., Amsterdam, The Netherlands

ABSTRACT

Unsupervised learning is argued to be the dark matter of hu-
man intelligence1. To build in this direction, this paper focuses
on unsupervised learning from an abundance of unlabeled data
followed by few-shot fine-tuning on a downstream classifica-
tion task. To this aim, we extend a recent study on adopting
contrastive learning for self-supervised pre-training by incor-
porating class-level cognizance through iterative clustering
and re-ranking and by expanding the contrastive optimization
loss to account for it. To our knowledge, our experimenta-
tion both in standard and cross-domain scenarios demonstrate
that we set a new state-of-the-art (SoTA) in (5-way, 1 and
5-shot) settings of standard mini-ImageNet benchmark as well
as the (5-way, 5 and 20-shot) settings of cross-domain CDFSL
benchmark. Our code and experimentation can be found in
our GitHub repository: https://github.com/ojss/c3lr.

Index Terms— Few-shot classification, self-supervised
learning, contrastive learning.

1. INTRODUCTION

Few-shot learning has received an upsurge of attention recently
because it highlights a fundamental gap between human in-
telligence and data-hungry supervised deep learning methods.
We humans can learn in a self-supervised fashion and/or with
very little supervision. To tackle this challenge, few-shot clas-
sification is cast as the task of predicting class labels for a set
of unlabeled data points (query set) given only a small set of
labeled ones (support set). The query and support samples are
typically drawn from the same distribution. Few-shot classifi-
cation approaches are typically comprised of two sequential
phases [1–4]: (i) pre-training on an abundant dataset (some-
times called “base”), followed by (ii) fine-tuning on an unseen
dataset containing “novel” classes. Typically, the target classes
in pre-training and fine-tuning phases are mutually exclusive.
In this paper, we focus on self-supervised (also sometimes
interchangeably called “unsupervised” in the literature) setting
where we have no access to the class labels of the base dataset
in the pre-training phase or their distribution.

The authors thank Delft University of Technology and Shell Global
Solutions International B.V. for permission to publish this work.

1Yann LeCun’s note; Meta AI blog post on self-supervised learning.

The art here is to devise a synthetic class label assignment
technique and corresponding loss function in the pre-training
phase to efficiently transfer the learning to the fine-tuning
phase. To this aim, studies have proposed two different ap-
proaches. The first approach follows a meta-learning strategy
to create (synthetic) “tasks” similar to the the downstream
episodic training in the fine-tuning phase [5–7]. The second
one follows some sort of transfer learning approach, where
a representation learning step in the pre-training phase is fol-
lowed by episodic fine-tuning [1, 8, 9]. In the latter case,
typically a feature extractor (encoder) is trained using metric
learning to capture the global structure of the unlabeled data.
Next, a simple predictor (typically a linear layer) is adopted
in conjunction with the extractor for quick adaptation to the
novel classes in the fine-tuning phase. The better the feature
extractor captures the global structure of the unlabeled data,
the less the predictor requires training samples and the faster
it adapts itself to the unseen classes in the fine-tuning phase.

Recent studies [1, 9, 10] demonstrate that the second ap-
proach based on transfer learning outperforms meta-learning
based methods in cross-domain settings, where the training
and novel classes come from totally different distributions.
Their results also show that a properly-devised transfer learn-
ing based unsupervised approach comes pretty close to the
performance of a fully supervised counterpart [1, 3], some-
thing that we will also confirm through experimentation. Most
recently, a new state-of-the-art (SoTA) in self-supervised few
shot classification has been set by extending the prototypical
networks (ProtoNets) [11] using a contrastive loss [2]. This
approach (called ProtoTransfer [1]) constructs a contrastive
metric embedding that clusters unlabeled prototypical samples
and their augmentations. Inspired by this idea, we propose
class-cognizant contrastive learning (C3LR, Algorithm 1) to
further extend it to incorporate class-level insights from the
global structure of data. This is done via an unsupervised
iterative re-ranking and clustering step resulting in clusters of
unlabeled embeddings followed by a modified contrastive loss
now containing a term that specifically promotes this class-
level global structure. Our experimentation demonstrates that
C3LR outperforms its predecessor ProtoTransfer in (5-way, 1
and 5-shot) settings of Ominglot [12] and mini-Imagenet [13]
benchmarks by about 1% and 2%+, respectively. The per-
formance improvement goes up to 4.5% in the cross-domain

6

setting of the CDFSL benchmark [14]. As a result, to our
best knowledge, C3LR sets a new SoTA for most challenging
settings of mini-ImageNet and CDFSL benchmarks.

2. CLASS-COGNIZANT CONTRASTIVE LEARNING
(C3LR)

In this section, we first describe our problem formulation. We
then discuss the two phases of the proposed approach: self-
supervised pre-training and few-shot supervised fine-tuning.
The mechanics of the proposed approach and a sketch of the
training procedure is shown in Figure 1.

2.1. Preliminaries

Let us denote the training data of sizeM asDtr = {(xi, yi)}Mi=1

with (xi, yi) representing an image xi and its class label yi.
In the pre-training phase, we take L random samples from Dtr
and augment each sample Q times by drawing augmentation
functions ψq(.),∀q ∈ [Q] from the set A. This results in a
batch of size B = (Q + 1)L total samples. Note that the
data labels are unknown in the pre-training phase. In the
fine-tuning phase, we deal with the so-called episodic training
on a set of tasks T containing N classes each with K samples
per task drawn from the test dataset Dtst = {(xi, yi)}M

′

i=1 of
size M ′. From now on, we refer to this task construct as
(N -way, K-shot) denoted by (N,K). An episode consists of
a labeled support set, S, from which the model learns and an
unlabeled query set, Q, on which the model predicts. Note
that both S and Q contain a set of tasks of the form (N,K).

2.2. Self-Supervised Pre-Training

The fact that we do not have access to class labels calls for
a self-supervised pre-training stage. As discussed earlier, we
build upon the idea of employing contrastive learning for pro-
totypical transfer learning following the footsteps of [1]. The
high-level idea here is to not only enforce the latent embed-
dings of augmented images come close to that of the source
image in the embedding space (the classical contrastive set-
ting), but also enforce embeddings of the images belonging
to each cluster (and their augmentations) come closer to each
other, for which a preceding unsupervised cluster formation
step is required. This can help enforce similar classes into
separate clusters, which will in turn be used as additional infor-
mation in a modified two-term contrastive loss in Algorithm 1.
Let us walk you through the process in further details.

Algorithm 1 starts with batch generation (lines 2 to 7):
each mini-batch consists of L random samples {xi}Li=1 from
Dtr, where xi is treated as a 1-shot support sample for which
we create Q randomly augmented versions x̃i,q as query sam-
ples (line 5). This leads to a batch size ofB = (Q+1)L. Then
embeddings are generated by passing the samples through an
encoder fϕ network. This is where the first major modification
to ProtoTransfer [1] comes into play. Before the contrastive
loss comes into action, we apply re-ranking and clustering

Algorithm 1: Class-Cognizant Contrastive Learning (C3LR)

Require: L, Q, fϕ, A, α, d[·, ·]
1 while not done do
2 Sample minibatch {xi}Li=1

3 forall i ∈ {1, . . . , L} do
4 forall q ∈ {1, . . . , Q} do
5 x̃i,q = ψq(xi); ψq ∼ A.
6 end
7 end
8 R = ReRank

([
fϕ

(
{xi}Li=1

)
, fϕ

(
{x̃i, q}L,Q

i=1,q=1

)])
9 C = {C1,C2, . . . ,CP } ← HDBSCAN(R)

10 M = {mp}Pp=1; mp =

∑
xj∈Cp

xj

|Cp|

11 let r(i, q, p) = − log
exp(−d[fϕ(x̃i,q),mp])∑P

p=1 exp(−d[fϕ(x̃i,q),mp])

12 let ℓ(i, q) = − log
exp(−d[fϕ(x̃i,q),fϕ(xi)])∑L

k=1 exp(−d[fϕ(x̃i,q),fϕ(xk)])

13 L1 = 1
LQ

∑P
p=1

∑L
i=1

∑Q
q=1 r(i, q, p)

14 L2 = 1
LQ

∑L
i=1

∑Q
q=1 ℓ(i, q)

15 L = L1 + L2

16 ϕ← ϕ− α∇ϕL
17 end

(lines 8 to 10) to discover class-level global structure of data
and enforce similar classes into separate clusters in the em-
bedding space. Note that this step remains to be unsupervised
in that the class labels are not required. The re-ranking step
(line 8) makes use of the k-reciprocal nearest neighbors as the
distance metric between latent embeddings [15], which has
been shown to outperform the Euclidean distance [3] when
used for subsequent clustering. HDBSCAN clustering [16]
is then applied on the re-ranked embeddings R and returns a
set of clusters populated in C. HDBSCAN is versatile enough
to discover and create required number of clusters P . With
clusters at hand, we are now in a position to extend the stan-
dard loss proposed in [1] to contain a class-cognizant term
(in lines 11 and 13), with lines 12 and 14 reflecting on the
classical contrastive loss of ProtoTransfer [1]. This new loss
term L1 enables a progressive improvement in class-level clus-
ter formation and in turn learning similar representations for
cluster members, while L2 encourages clustering of the em-
beddings of the augmented query samples {fϕ(x̃i,q)} around
their prototypes {fϕ(xi)}. Here, both terms use an Euclidean
distance metric in the embedding space denoted by d[·, ·]. Fi-
nally, the new loss L = L1 +L2 is optimized with mini-batch
stochastic gradient decent with respect to the parameters ϕ of
the encoder networks fϕ.

2.3. Supervised Fine-Tuning

The pre-trained encoder fϕ will be used for the downstream
few-shot classification task. To this aim, following [1, 11], we

7

L

x1

x2

x3

xi’s augmented Q times

fϕ
Re-Ranking

R

HDBSCAN

C1

C2
C3

C

Pre-training

m1

fϕ(xi)

fϕ(x̃i,1)

fϕ(x̃i,2)

fϕ(x̃i,3)

m2

m3

S

Q

(N -way, K-shot) tasks
Supervised Fine-Tuning

fθ
c1

c2

c3

fϕ(x
q
i)

Fig. 1: C3LR schematic view and training procedure. In the figure, xq
i is an image sampled from the query set Q.

concatenate fϕ with a single-layer nearest-neighbor classifier
fθ (resulting in a similar architecture as in ProtoNet [11]) and
fine-tune this last layer. In this phase, we first calculate the
class prototypes cn (embeddings) for class n using the encoder
fϕ on the support set Sn:

cn =
1

|Sn|
∑

(xi,yi)∈Sn

fϕ(xi).

These prototypes are then used to initialize the classifier fθ
following [1].

3. EXPERIMENTATION

In this section, we first discuss our experimental setup; we
then present our numerical results.

3.1. Experimental Setup

Datasets. We conduct several in-domain experiments to bench-
mark C3LR. For this purpose, we make use of commonly
adopted datasets Omniglot [12] and mini-Imagenet [13] to
compare against unsupervised few-shot learning approaches.
Omniglot contains 1623 different handwritten characters bor-
rowed from 50 unique alphabets out of which we use 1028
characters for training, 172 for validation and 423 for test-
ing. We resize the grayscale images to 28× 28 pixels. Mini-
ImageNet contains 100 classes with 600 samples in each class
amounting to a total of 60, 000 images that we resize to 84×84
pixels. Out of the 100 classes, we use 64 classes for training,
16 for validation and 20 for testing. For both datasets, the
settings are the most commonly adopted ones in literature
[1, 3, 7, 13]. The augmentations (in A) used for the exper-
imentations follow [1]. We also compare our method on a
more challenging cross-domain few-shot learning (CDFSL)
benchmark [14]. This benchmark consists of four datasets
with increasing similarities to mini-ImageNet. In that order,
we have grayscale chest X-ray images from ChestX [17], der-
matological skin lesion images from ISIC2018 [18], satellite
aerial images from EuroSAT [19], and crop disease images
from CropDiseases [20]. We also use Caltech-UCSD Birds

(CUB) dataset [21] for further analysis of cross-domain perfor-
mance. CUB is composed of 11, 788 images from 200 unique
bird species. We use 100 images for training, 50 for validation
and 50 for test.

Training. The Conv4 model [13] is pre-trained on the
respective training splits of the datasets, with an initial learn-
ing rate of 0.001, multiplied by 0.5 every 25, 000 steps via the
Adam optimizer [22]. Based on the derivations in [11] and sim-
ilar usage in [1], we initialize the classification layer fθ with
weights set to Wn = 2cn and biases set to bn = −∥cn∥2. For
validation, we create 15 (N -way, K-shot) tasks using the vali-
dation split from which the corresponding validation accuracy
and loss are calculated. Experiments involving CDFSL bench-
mark follow [1, 14], where we pre-train a ResNet10 encoder
using C3LR on mini-ImageNet images of size 224× 224 for
400 epochs with the Adam optimizer and a constant learning
rate of 0.001.

Evaluation scenarios and baseline. Our testing scheme
uses 600 test episodes on which the pre-trained encoder (using
C3LR) is fine-tuned and tested. All our results indicate 95%
confidence intervals over 3 runs each with 600 test episodes.
The standard deviation values are thus calculated according
to the 3 runs to provide more solid measures for comparison.
For our in-domain benchmarks, we test on (5-way, 1-shot) and
(5-way, 5-shot) classification tasks. While our cross-domain
testing is done using (5-way, 5-shot) and (5-way, 20-shot)
classification tasks. We compare our performance with a suit of
recent self-supervised few-shot baselines such as ProtoTransfer
[1], UFLST [3], LASIUM [23] and CACTUS [6], to name a
few. Furthermore, we also compare with a set of supervised
approaches (such as MAML [5], ProtoNet [11] , etc.) the best
performing of which are obviously expected to outperform
ours as well as other self-supervised methodologies.

3.2. Performance Evaluation

In-domain evaluation. Table 1 summarizes our performance
evaluation results on Omniglot and mini-ImageNet datasets for
(N -way,K-shot) scenarios withN = 5 andK = 1, 5. The top

8

Table 3: Accuracy (%± std.) of (N -way, K-shot) classification on the CDFSL benchmark. Style: best and second best.

Method(N,K) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

ChestX ISIC EuroSAT CropDiseases

UMTRA-ProtoNet [1] 24.94 ± 0.43 28.04 ± 0.44 39.21 ± 0.53 44.62 ± 0.49 74.91 ± 0.72 80.42 ± 0.66 79.81 ± 0.65 86.84 ± 0.50

UMTRA-ProtoTune [1] 25.00 ± 0.43 30.41 ± 0.44 38.47 ± 0.55 51.60 ± 0.54 68.11 ± 0.70 81.56 ± 0.54 82.67 ± 0.60 92.04 ± 0.43

ProtoTransfer [1] 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32

C3LR (ours) 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31

ProtoNet [14] (sup.) 24.05 ± 1.01 28.21 ± 1.15 39.57 ± 0.57 49.50 ± 0.55 73.29 ± 0.71 82.27 ± 0.57 79.72 ± 0.67 88.15 ± 0.51

Pre+Mean-Cent. [14] (sup.) 26.31 ± 0.42 30.41 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 82.21 ± 0.49 87.62 ± 0.34 87.61 ± 0.47 93.87 ± 0.68

Pre+Linear [14] (sup.) 25.97 ± 0.41 31.32 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 79.08 ± 0.61 87.64 ± 0.47 89.25 ± 0.51 95.51 ± 0.31

Table 1: Accuracy (%± std.) for (N -way, K-shot) classifica-
tion tasks. Style: best and second best.

Omniglot mini-ImageNet

Method(N,K) (5,1) (5,5) (5,1) (5,5)

CACTUs-MAML [6] 68.84 ± 0.80 87.78 ± 0.50 39.90 ± 0.74 53.97 ± 0.70

CACTUs-ProtoNet [6] 68.12 ± 0.84 83.58 ± 0.61 39.18 ± 0.71 53.36 ± 0.70

UMTRA [7] 83.80 95.43 39.93 50.73
AAL-ProtoNet [24] 84.66 ± 0.70 89.14 ± 0.27 37.67 ± 0.39 40.29 ± 0.68

AAL-MAML++ [24] 88.40 ± 0.75 97.96 ± 0.32 34.57 ± 0.74 49.18± 0.47

UFLST [3] 97.03 99.19 33.77 ± 0.70 45.03 ± 0.73

ULDA-ProtoNet [25] - - 40.63 ± 0.61 55.41 ± 0.57

ULDA-MetaOptNet [25] - - 40.71 ± 0.62 54.49 ± 0.58

U-SoSN+ ArL [26] - - 41.13 ± 0.84 55.39 ± 0.79

LASIUM [23] 83.26 ± 0.55 95.29 ± 0.22 40.19 ± 0.58 54.56 ± 0.55

ProtoTransfer (L = 50) [1] 88.00 ± 0.64 96.48 ± 0.26 45.67 ± 0.79 62.99 ± 0.75

ProtoTransfer (L = 200) 88.37 ± 0.74 96.54 ± 0.41 44.17 ± 1.08 61.07 ± 0.82

C3LR (ours) 89.30 ± 0.64 97.38 ± 0.23 47.92 ± 1.2 64.81 ± 1.15

MAML [5] (supervised) 94.46 ± 0.35 98.83 ± 0.12 46.81 ± 0.77 62.13± 0.72

ProtoNet [11] (supervised) 97.70± 0.29 99.28 ± 0.10 46.44± 0.78 66.33± 0.68

MMC [27] (supervised) 97.68± 0.07 - 50.41 ± 0.31 64.39 ± 0.24

FEAT [4] (supervised) - - 55.15 71.61
Pre+Linear [1] (supervised) 94.30 ± 0.43 99.08 ± 0.10 43.87 ± 0.69 63.01 ± 0.71

section compares the performance of the proposed approach
(C3LR) with the most recent relevant self-supervised competi-
tors. As can be seen, for Omniglot, we outperform ProtoTrans-
fer [1] (which we build on) by about 1% in both K = 1, 5 shot
scenarios. We score the second overall best in (5-way, 1-shot)
falling behind UFLST [3]. For the mini-ImageNet benchmark,
to our knowledge, we set a new SoTA outperforming Proto-
Transfer by 2%+. Interestingly, our performance beats some
of the supervised baselines (bottom section of the table) adopt-
ing similar encoder architecture Conv4 for mini-ImageNet and
comes close to K = 5-shot performances on Omniglot. Obvi-
ously, the SoTA supervised few-shot learning approaches have
the advantage of having access to the all the labels, as such
due to the supervision signal, are expected to outperform the
unsupervised approaches like ours.

Cross-domain evaluation. So far we have demonstrated
that the proposed approach excels for in-domain scenarios.
The next step is to assess the performance under more chal-
lenging cross-domain scenarios (Table 2 and Table 3) where
we pre-train on a certain dataset in an unsupervised fashion,
then fine-tune and test on a different dataset. Table 2 illustrates

Table 2: Accuracy (%± std.) for (N -way, K-shot) classifica-
tion on mini-ImageNet with pre-training on CUB.

Training Testing (5,1) (5,5)

ProtoTransfer (L = 50) [1] ProtoTune [1] 35.37 ± 0.63 52.38 ± 0.66
ProtoTransfer (L = 200) ProtoTune 34.67 ± 0.84 51.45 ± 0.72
C3LR (ours) ProtoTune 39.61 ± 1.11 55.53 ± 1.42

the results of a Conv4 encoder trained on CUB and tested on
tasks derived from mini-ImageNet. Here again C3LR shows a
clear improvement of 3%+ compared to ProtoTransfer (with
pre-training sample sizes L = 50, 200). The important mes-
sage here is that the proposed approach enhances ProtoTransfer
in generalizing to truly unseen data. To further investigate the
performance on cross-domain scenarios, we next focus on
CDFSL benchmark [14] containing several datasets. Here, we
pre-train on mini-ImageNet and fine-tune and test on ChestX
[17], ISIC2018 [18], EuroSAT [19], and CropDiseases [20].
We compare the performance against ProtoTransfer and two of
its variants with UMTRA [7] as pre-training strategy (all pro-
posed in [1]). We also compare with a couple of closely related
supervised approaches from [14], for the sake of reference. As
can be seen, except for ChestX where we marginally come
short of ProtoTransfer, for the other three datasets we out-
perform the second best competitor (ProtoTransfer) by about
0.5%+ to 4.5%+ with the most significant improvement in
the case of EuroSAT. Interestingly, once again the performance
of C3LR is not far off that of the related supervised approaches
(bottom of the table) even sometimes outperforming the super-
vised approaches especially in (5-way, 20-shot) scenarios.

4. CONCLUDING REMARKS

Inspired by the idea of using contrastive learning for unsu-
pervised few-shot classification, we build upon the recently
proposed idea of ProtoTransfer [1] by incorporating class cog-
nizance through: (i) an unsupervised iterative re-ranking and
clustering step, followed by (ii) an adjusted optimization loss
formulation. We demonstrate that our proposed approach
(C3LR) offers considerable performance improvement above
its predecessor ProtoTransfer in both in/cross-domain few-shot
classification scenarios setting a new SoTA in mini-ImageNet
and CDFSL benchmarks.

9

5. REFERENCES

[1] Carlos Medina, Arnout Devos, and Matthias Grossglauser,
“Self-supervised prototypical transfer learning for few-shot clas-
sification,” arXiv preprint arXiv:2006.11325, 2020.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton, “A simple framework for contrastive learning of
visual representations,” in International conference on machine
learning. PMLR, 2020, pp. 1597–1607.

[3] Zilong Ji, Xiaolong Zou, Tiejun Huang, and Si Wu, “Unsu-
pervised few-shot learning via self-supervised training,” arXiv
preprint arXiv:1912.12178, 2019.

[4] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha, “Few-
shot learning via embedding adaptation with set-to-set func-
tions,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 8808–8817.

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-
agnostic meta-learning for fast adaptation of deep networks,” in
International conference on machine learning. PMLR, 2017,
pp. 1126–1135.

[6] Kyle Hsu, Sergey Levine, and Chelsea Finn, “Unsupervised
learning via meta-learning,” arXiv preprint arXiv:1810.02334,
2018.

[7] Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah, “Un-
supervised meta-learning for few-shot image classification,” Ad-
vances in neural information processing systems, vol. 32, 2019.

[8] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola, “Rethinking few-shot image classi-
fication: a good embedding is all you need?,” in European
Conference on Computer Vision. Springer, 2020, pp. 266–282.

[9] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and
Stefano Soatto, “A baseline for few-shot image classification,”
arXiv preprint arXiv:1909.02729, 2019.

[10] Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and
Hui Xue, “Self-supervised learning for few-shot image classifi-
cation,” in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021, pp. 1745–1749.

[11] Jake Snell, Kevin Swersky, and Richard Zemel, “Prototypical
networks for few-shot learning,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[12] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenen-
baum, “Human-level concept learning through probabilistic
program induction,” Science, vol. 350, no. 6266, pp. 1332–1338,
12 2015.

[13] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wier-
stra, et al., “Matching networks for one shot learning,” Advances
in neural information processing systems, vol. 29, 2016.

[14] Yunhui Guo, Noel CF Codella, Leonid Karlinsky, John R Smith,
Tajana Rosing, and Rogerio Feris, “A New Benchmark for Eval-
uation of Cross-Domain Few-Shot Learning,” arXiv preprint
arXiv:1912.07200, 2019.

[15] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li, “Re-
ranking person re-identification with k-reciprocal encoding,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1318–1327.

[16] Leland McInnes, John Healy, and Steve Astels, “hdbscan:
Hierarchical density based clustering.,” J. Open Source Softw.,
vol. 2, no. 11, pp. 205, 2017.

[17] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Moham-
madhadi Bagheri, and Ronald M Summers, “Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax
diseases,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 2097–2106.

[18] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre
Celebi, Stephen Dusza, David Gutman, Brian Helba, Aadi
Kalloo, Konstantinos Liopyris, Michael Marchetti, et al., “Skin
lesion analysis toward melanoma detection 2018: A challenge
hosted by the international skin imaging collaboration (isic),”
arXiv preprint arXiv:1902.03368, 2019.

[19] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth, “Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification,” 2017.

[20] Sharada P Mohanty, David P Hughes, and Marcel Salathé, “Us-
ing Deep Learning for Image-Based Plant Disease Detection,”
Frontiers in Plant Science, vol. 7, pp. 1419, 2016.

[21] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,
“The Caltech-UCSD Birds-200-2011 Dataset,” Tech. Rep. CNS-
TR-2011-001, California Institute of Technology, 2011.

[22] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Wei-
jia Wang, Bill Lin, and Ladislau Bölöni, “Unsupervised meta-
learning through latent-space interpolation in generative mod-
els,” arXiv preprint arXiv:2006.10236, 2020.

[24] Antreas Antoniou and Amos Storkey, “Assume, augment and
learn: Unsupervised few-shot meta-learning via random labels
and data augmentation,” arXiv preprint arXiv:1902.09884,
2019.

[25] Tiexin Qin, Wenbin Li, Yinghuan Shi, and Yang Gao, “Diversity
helps: Unsupervised few-shot learning via distribution shift-
based data augmentation,” arXiv preprint arXiv:2004.05805,
2020.

[26] Hongguang Zhang, Piotr Koniusz, Songlei Jian, Hongdong Li,
and Philip HS Torr, “Rethinking class relations: Absolute-
relative supervised and unsupervised few-shot learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 9432–9441.

[27] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin
Swersky, Joshua B Tenenbaum, Hugo Larochelle, and Richard S
Zemel, “Meta-learning for semi-supervised few-shot classifica-
tion,” arXiv preprint arXiv:1803.00676, 2018.

10

3
Scientific Article 2 (SAMPTransfer)

11

Self-Attention Message Passing for Contrastive Few-Shot Learning

Ojas Kishorkumar Shirekar1, Anuj Singh1, Hadi Jamali-Rad1,2

1TU Delft Delft, The Netherlands
2Shell Global Solutions International B.V., Amsterdam, The Netherlands

{o.k.shirekar, a.r.singh}@student.tudelft.nl, h.jamalirad@tudelft.nl

Abstract

A primary trait of humans is the ability to learn rich
representations and relationships between entities from just
a handful of examples without much guidance. Unsuper-
vised few-shot learning is an undertaking aimed at reducing
this fundamental gap between smart human adaptability
and machines. We present a contrastive learning scheme
for unsupervised few-shot classification, where we supple-
ment a convolutional network’s strong inductive prior with
a self-attention based message passing neural network to
exploit intra-batch relations between images. We also show
that an optimal-transport (OT) based task-awareness al-
gorithm generates task-representative prototypes that lead
to more accurate classification and aid in elevating the
robustness of pre-trained models. We show that our ap-
proach (SAMPTransfer) offers appreciable performance
improvements over its competitors in both in/cross-domain
few shot classification scenarios, setting new standards in
the miniImagenet, tieredImagenet and CDFSL benchmarks.

1. Introduction
In recent years, deep learning models have become larger

and demand massive amounts of training data to perform
their tasks satisfactorily. Meanwhile, few-shot learning has
garnered increasing interest recently because it underscores a
fundamental gap between smart human adaptability and data-
hungry supervised and unsupervised deep learning methods.
To address this gap, few-shot classification is cast as a task to
predict class labels for a set of unlabeled data points (query
set) given only a small set of labeled data points (support
set). Typically, the query and support data points are drawn
from the same distribution.

Few-shot classification methods usually consist of two se-
quential phases: (i) pre-training on a large dataset of “base”
classes, regardless of the training being supervised or unsu-
pervised. This is followed by (ii) fine-tuning on an unseen
dataset consisting of “novel” classes. Normally, the classes
used in the pre-training and fine-tuning are mutually exclu-
sive. In this paper, our focus is on the self-supervised setting

(also sometimes interchangeably called “unsupervised” in
the literature) where we have no access to the actual class
labels of the “base” dataset.

To this end, various methods have been proposed and are
broadly classified into two different approaches. The first
approach relies on the use of meta-learning and episodic
training that involves the creation of synthetic “tasks” to
mimic the subsequent episodic fine-tuning phase [1, 18, 25–
27, 31, 56]. The second method follows a transfer learning
approach, where the network is trained non-episodically to
learn optimal representations in the pre-training phase, and is
then followed by an episodic fine-tuning phase [16, 34, 43].
In this method, a feature extractor is trained to capture the
structure of unlabeled data using a form of representation
learning [6, 8, 34]. Next, a prediction layer (conventionally
a linear layer) is utilized in conjunction with the pre-trained
feature extractor for quick adaptation to the novel classes in
the fine-tuning phase. The better the feature extractor models
the distribution of the unlabeled data, the less the predictor
requires training samples, and the faster it adapts itself to
the unseen classes in the fine-tuning phase (also the testing
phase).

Furthermore, supervised approaches that follow the
episodic training paradigm may include a certain degree
of task awareness. Such approaches exploit the informa-
tion available in the query set during the training and test-
ing phases [3, 11, 57] to alleviate the model’s sample bias.
As a result, the model learns to generate task-specific em-
beddings by better aligning the features of the support and
query samples for optimal distance metric based label as-
signment. We also see a set of supervised approaches that do
not rely purely on convolutional feature extractors. Instead,
these approaches also use graph neural networks (GNN)
[28, 39, 55, 58] to model instance-level and class-level rela-
tionships. Additionally, GNN’s are equipped with the ability
to exploit the manifold structure of the novel class space and
then propagate labels from the support embeddings to the
unlabeled query embeddings [53]. However, the majority of
graph-based methods have eluded the unsupervised setting.

Several recent studies have questioned the necessity of

12

meta-learning for few-shot classification [4, 7, 16, 34, 41,
43, 62]. They report competitive performance on few-shot
benchmarks without episodic training or few-shot task-based
experiences during training. These methods follow the sec-
ond approach and aim to solve the few-shot learning problem
by fine-tuning a pre-trained feature extractor with a standard
cross-entropy loss. Some of these methods [13, 34, 43]
demonstrate that the transfer learning approach outperforms
meta-learning based methods in standard in-domain and
cross-domain settings, where training and novel classes come
from totally different distributions. Similarly, our approach
SAMPTransfer performs self-supervised pre-training on
an unlabeled training domain and can transfer to a few-shot
target domain task.

Many of the current unsupervised methods use a form of
contrastive learning [8] in their self-supervised pre-training
phase. Contrastive learning methods typically treat each
image in a batch as its own class. The only other images
that share the class are the augmentations of the image in
question. Such methods enforce similarity of representations
between pairs of an image and its augmentations (positive
pairs), while enforcing dissimilarity between all other pairs
of images (negative pairs) through a contrastive loss. Al-
though these methods work well, they overlook the possibil-
ity that within a randomly sampled batch of images, there
could be several images (apart from their augmentations)
that in reality belong to the same class. By applying the
contrastive loss, the network may inadvertently learn differ-
ent representations for such images and classes. To avoid
this problem, recent methods such as SimCLR use large
batch sizes to maximize the number of negative samples
[8]. However, there is still a failure to look beyond single
instances to learn the representations of images. To over-
come this pitfall, we propose SAMP-CLR in the pre-training
phase of SAMPTransfer, that uses a form of graph atten-
tion coupled with traditional feature extractors. This design
allows us to utilize the contrastive training scheme and simul-
taneously learn refined representations by looking beyond
single-image instances in a task. In the few-shot downstream
tasks, using graph attention also allows for a degree of task
awareness to be induced in the feature extractor by using
information from both support and query samples to better
align feature representations. We propose an optimal trans-
port based algorithm during the fine-tuning phase that aligns
the distributions of the support and query samples to improve
downstream adaptability of the pre-trained encoder, in a way
that requires no additional parameters. Our contributions
can be summarized as: (i) we propose a graph-based con-
trastive learning approach that helps learn representations
while looking beyond single instances, (ii) we propose an op-
timal transport based fine-tuning phase that enhances feature
refinement, which in turn helps in stabilizing and improv-
ing test time performance without the need for additional

trainable parameters, (iii) we show that our unsupervised
method outperforms its competitors on mini-ImageNet and
tieredImageNet (up to 7% and 5%), while remaining com-
petitive on the CDFSL-benchmark [22], (iv) we present a
detailed analysis supporting our claims and demonstrating
the robustness of our method.

2. Related Work
Self-Supervised learning. Self-supervised learning

(SSL) is an umbrella term for a set of unsupervised methods
that obtain supervisory signals from within the data itself,
more often than not by leveraging the underlying structure in
the data. The general technique of self-supervised learning is
to predict any unobserved (or property) of the input from any
observed part. Several recent advances in the SSL space have
made waves by eclipsing their fully supervised counterparts
[20]. Some examples of seminal works include SimCLR [8],
BYOL [21], SWaV [6], MoCo [23], and SimSiam [9]. Our
pre-training method SAMP-CLR is inspired by SimCLR and
ProtoTransfer [34].

Metric learning. Metric learning aims to learn a represen-
tation function that maps the data into an embedding space.
The distance between objects in the embedding space must
preserve their similarity (or dissimilarity) - similar objects
are closer, while dissimilar objects are farther. For example,
unsupervised methods based on some form of contrastive
loss, such as SimCLR [8] or NNCLR [17], guide objects
belonging to the same potential class to be mapped to the
same point and those from different classes to be mapped to
different points. This process generally involves taking two
crops of the same image and encouraging the network to emit
an identical representation for the two while ensuring that
the representations remain different from all other images
in a given batch. Note that in an unsupervised setting, each
image in a batch is its own class. Metric learning methods
have been shown to work quite well for few-shot learning.
AAL-ProtoNets [1], ProtoTransfer [34], UMTRA [27], and
certain types of graph neural networks [39] are excellent
examples that use metric learning for few-shot learning.

Graph Neural Networks for FSL. Since the first use
of graphs for FSL in [39], there have been several advance-
ments and continued interest in using graphs for supervised
FSL. In [39], each node corresponds to one instance (labeled
or unlabeled) and is represented as the concatenation of a
feature embedding and a label embedding. The final layer
of their model is a linear classifier layer that directly outputs
the prediction scores for each unlabeled node. There has
also been an increase in methods that use transduction. TPN
[33] is one of those methods that uses graphs to propagate
labels from labeled samples to unlabeled samples. Although
methods such as EGNN [28] make use of edge and node
features, earlier methods focused only on using node fea-
tures. Graphs are attractive as they can model intra-batch

13

Batch
Self-Attention Message Passing (SAMP)

p-message

passing steps

SAMP-CLR
fΩ = fθ ◦ fψ

Figure 1: SAMP-CLR schematic view and pre-training procedure. In the figure, xi,a is an image sampled from the augmented
set A. The p-message passing steps refine the features extracted using a CNN encoder.

Task Refined Features

Optimal Transport

Transported Support

OpT-Tune

Prototype-Classifier

fΩ

Figure 2: Features extracted from the pre-trained CNN are used to build a graph. Features refined using the pre-trained GAT
layer(s). Optimal Transport based fine-tuning algorithm aligns support features with query features.

relations and can be extended for transduction, as used in
[28, 33]. In addition to transduction and relation modeling,
graphs are highly potent as task adaptation modules. HGNN
[58] is an example where a graph is used to refine and adapt
feature embeddings. To the best of our knowledge, it must
be noted that most graph-based methods have been applied
in the supervised FSL setting and that we are the first to use
it in any form for unsupervised FSL.

3. Proposed Method (SAMPTransfer)
In this section, we first describe our problem formulation.

We then discuss the two subsequent phases of the proposed
approach: (i) self-supervised pre-training (SAMP-CLR),
and (ii) the optimal transport based few-shot supervised
fine-tuning (OpT-Tune). Together, these two phases con-
stitute our overall approach, which we have coined as
SAMPTransfer. The mechanics of the proposed pre-
training and fine-tuning procedures are illustrated in Figs. 1
and 2, respectively.

3.1. Preliminaries

Let us denote the training data of size D as Dtr =
{(xi, yi)}Di=1 with (xi, yi) representing an image and its
class label, respectively. In the pre-training phase, we

take L random samples from Dtr and augment each sam-
ple A times by randomly sampling augmentation functions
ζa(.),∀a ∈ [A] from the set A. This results in a mini-batch
of size B = (A+ 1)L total samples. Note that in the unsu-
pervised setting, we have no access to the data labels in the
pre-training phase. Next, we fine-tune our model episodi-
cally [48] on a set of randomly sampled tasks Ti drawn from
the test dataset Dtst = {(xi, yi)}D

′

i=1 of size D′. A task, Ti,
is comprised of two parts: (i) the support set S from which
the model learns, (ii) the query set Q on which the model is
evaluated. The support set S = {xsi , ysi }NKi=1 is constructed
by drawing K labeled random samples from N different
classes, resulting in the so-called (N -way, K-shot) settings.
The query set Q = {xqj}

NQ
j=1 then contains NQ unlabeled

samples. By convention, we denote the set Ti = S ∪Q with
(N,K).

3.2. Self-Attention Message Passing (SAMP)

Our network architecture consists of a convolutional
(CNN) feature extractor fθ and a message passing network
based on self-attention, fψ. The CNN feature extractor fθ,
parameterized by θ, is used to extract features V = fθ(X),
where V ∈ RB×d is the set of B features each of size
d and X ∈ RB×C×H×W is a batch of B images of size

14

C ×H ×W . To help refine the features and use batch-level
relationships, we create a graph G = Graph(V , e, γ) where
V is treated as a set of initial node features, e is the pair-
wise distance between all nodes based on a given distance
metric, and γ is a threshold on the values in e that deter-
mines whether two nodes will be connected or not. Note
that |G| = B, as we build the graph over the B samples in
our batch. We use a self-attention message passing neural
network (we call SAMP) fψ, parameterized by ψ, to refine
the initial feature vectors by exchanging and amalgamating
information between all pairs of connected nodes. From now
on, as can be seen in Figs. 1 and 2, we refer to the combi-
nation of the feature extractor fθ and the SAMP module fψ
as fΩ = fψ ◦ fθ where Ω = {θ, ψ} is the collection of all
parameters. The SAMP layers, fψ operate on the graph G.

To allow an effective exchange of information to refine
initial node features v, we make use of graph attention in a
slightly different manner than the standard graph attention
defined in [47]. The graph attention in [47] uses a single
weight matrix W that acts as a shared linear transformation
for all nodes. Instead, we choose to use scaled dot-product
self-attention as defined in [40, 46]. The major benefit of
this design choice is that it enhances the network with more
expressivity, as shown in [5, 29]. Notably, the use of three
separate representations (query, key, and value) instead of
just a single weight matrix to linearly transform the data is
key to modeling relationships between data points.

We apply p successive message passing steps similar to
[40, 47]. In each step, we pass messages between the con-
nected nodes of G and obtain updated features in V p+1,
at step p + 1. Here, the i-th row of V p+1 is given by
V p+1
i =

∑
j∈Ni

λpijW
pV p

j , where λij is the attention
score between the nodes i and j, W p is the message pass-
ing weight matrix at step p, and Ni denotes the set of
neighboring nodes of node i. In this way, λi,j allows our
update mechanism to flexibly weight every samples w.r.t
every other sample in the batch. We employ scaled dot-
product self-attention to compute attention scores, leading to:
λpij = softmax(W p

q V p
i (W p

k V p
j)T/

√
d) where W p

k and W p
q

are the weight matrices corresponding to the sending and
receiving nodes, respectively. To allow the message-passing
neural network to learn a diverse set of attention scores, we
apply H scaled dot-product self-attention heads in every
message-passing step and concatenate their results. To this
end, instead of using single weight matrices W p

q ,W
p
k and

W p, we use W p,h
q ,W p,h

k and W p,h all ∈ Rd/H×d for each
attention head, resulting in:

V p+1
i =

∑
j∈Ni

λp,1ij W p,1V p
j , . . . ,

∑
j∈Ni

λp,Hij W p,HV p
j

 ,
note that V p+1

i still has the same dimension Rd.

Algorithm 1: SAMP-CLR
Require: A, fθ , fψ , Ω, α, β, η, d[.], d′[.]

1 while not done do

2 Sample minibatch {xi}Li=1

3 Augment samples: x̄i,a = ζa(xi); ζa ∼ A.

4 Z, Z̄ ← fθ
(
{xi}Li=1

)
, fθ

(
{x̄i, a}L,Ai=1,a=1

)
5 V = [Z⊤, Z̄⊤]⊤, e = {d′[Vi,Vj],∀i, j ∈ [B]}
6 G ← Graph(V , e, γ)

7 G′ ← Graph(V ′, e′, γ) = fψ(G)
8 Z′, Z̄′ ← V ′

1:L,V
′
L+1:B

9 ℓ(i, a) = − log
exp(−d[Z̄(a−1)L+i,Zi])∑L

k=1
exp(−d[Z̄(a−1)L+i,Zk])

10 r(i, a) = − log
exp

(
−d

[
Z̄′

(a−1)L+i,Z
′
i

])
∑L

k=1
exp

(
−d

[
Z̄′

(a−1)L+i
,Z′

k

])
11 L1 = 1/LA

∑L
i=1

∑A
a=1 ℓ(i, a)

12 L2 = 1/LA
∑L
i=1

∑A
a=1 r(i, a)

13 L = βL1 + L2

14 Ω← Ω− η∇ΩL

15 end

3.3. Self-Supervised Pre-Training (SAMP-CLR)

The fact that we do not have access to the true class
labels of the training data underscores the need to use a
self-supervised pre-training scheme. As briefly discussed
in Section 1, we build on the idea of employing contrastive
prototypical transfer learning with some inspiration from
[34, 41]. Standard contrastive learning enforces embeddings
of augmented images to be close to the embeddings of their
source images in the representation space. The key idea
of SAMP-CLR is not only to perform contrastive learning
(the “CLR” component) on the source and augmented image
embeddings but also to ensure that images in the mini-batch
belonging to potentially the same class have similar embed-
dings. This is where the “SAMP” module comes to rescue,
enabling the model look beyond single instances and their
augmentations. SAMP allows the model to extract richer
semantic information across multiple images present in a
mini-batch. Concretely speaking, we apply a contrastive loss
on the SAMP refined features (generated by fψ), and on the
standard convolutional features (generated by fθ). Let us
walk you through the process in more detail.

Algorithm 1 begins with batch generation: each mini-
batch consists of L random samples {xi}Li=1 from Dtr,
where xi is treated as a 1-shot support sample for which we
create A randomly augmented versions x̃i,a as query sam-
ples (lines 2 to 3), leading to a batch size of B = (A+ 1)L.
Then embeddings Z ∈ RL×d and Z̄ ∈ RLA×d are gener-
ated (line 4) by passing the source images and augmented

15

images through a feature extraction network fθ, respec-
tively. We then construct G = Graph(V , e, α) with
V = [Z⊤, Z̄⊤]⊤ of size B × d concatenating source and
augmented image embeddings Z and Z̄ (line 5-6), e is the
vector of centered shift/scale-invariant cosine similarities
d′[.] (line 5) [45], and γ is defined earlier. The graph G is
then passed through the SAMP layer(s) fψ resulting in a up-
dated graph G′ with refined node features V ′ (line 7). V ′ is
spliced into the updated source image and augmented image
embeddings (Z ′ and Z̄ ′), respectively (lines 8). In lines 9
to 12, we then apply contrastive losses L1 (between Z and
Z̄) and L2 (between Z ′ and Z̄ ′). Here, L1 encourages the
feature extractor to cluster the embeddings of augmented
query samples Z̄ around their prototypes (namely, source
embeddings) Z, which in turn provides a good initial set of
embeddings for the SAMP projector module to refine. L2

enforces the same constraints as L1 but for embeddings gen-
erated by the SAMP layer. Both loss terms use a Euclidean
distance metric in the embedding space, denoted by d[.]. Fi-
nally, the overall loss is given by L = βL1 + L2, with β
being a scaling factor, is optimized with mini-batch stochas-
tic gradient descent w.r.t all the parameters in Ω = {θ, ψ}
and the learning rate η.

3.4. Supervised Fine-tuning (OpT-Tune)

We propose a two-stage supervised fine-tuning consist-
ing of (i) a transportation stage followed by (ii) a proto-
typical fine-tuning and classification stage. The transporta-
tion stage involves using optimal transport (OT) [12, 36].
As is sketched in Fig. 2, OT helps projecting embeddings
of the support set, Zs = fΩ({xsi}NKi=1) ∈ RNK×d, such
that they overlaps better with the query set embeddings,
Zq = fΩ({xqj}

NQ
j=1) ∈ RNQ×d upon transportation. This

increases the spread of Zs in the query set’s domain which
in turn creates more representative prototypes for each of the
N classes in S . We demonstrate, in Section 6 that this brings
about significant impact on the downstream classification
performance.

OT based feature alignment. We provide a basic in-
tuition for OT [12, 36] in the context of SAMPTransfer.
Let r ∈ RNK and c ∈ RNQ be two probability simplexes
defined over Zs

i ,∀i ∈ [NK] and Zq
j ,∀j ∈ [NQ], respec-

tively. r denotes the distribution of the support embeddings
allocated to each query embedding, whereas c denotes the
distribution of the query embeddings allocated to each sup-
port embedding. Consider Π(r, c) to be a set of NK×NQ
doubly stochastic matrices where all rows sum up to r and
all columns sum up to c as:

Π(r, c) =
{
π ∈ RNK×NQ

+ | π1NQ = r,π⊤1NK = c
}
. (1)

Intuitively, Π(r, c) is a collection of all transport “plans”,
where a transport plan is defined as a potential strategy spec-
ifying how much of each support embedding is allocated to

Algorithm 2: OpT-Tune
Require: d[·], Zs, Zq

1 Mi,j = d[Zs
i ,Z

q
j], ∀i ∈ [NK], j ∈ [NQ]

2 π⋆← Solving Eq. (2) using Sinkhorn-Knopp
3 π̂⋆i,j ← π⋆i,j /

∑
j π

⋆
i,j , ∀i ∈ [NK], j ∈ [NQ]

4 Solve Eq. (3)
Return: Ẑs

every query embedding and vice-versa. Our goal here is to
find the most optimal transport plan, out of all possible trans-
port plans Π(r, c), that allocates NK support embeddings
to NQ query embeddings with maximum overlap between
their distributions.

Given a cost matrix M , the cost of mapping Zs to Zq

using a transport plan π can be quantified as ⟨π,M⟩F and
the OT problem can then be stated as,

π⋆ = argmin
π∈Π(r,c)

⟨π,M⟩F − εH(π), (2)

where π⋆ denotes the most optimal transportation plan,
⟨·, ·⟩F is the Frobenius dot product, and ε is the weight
on the entropic regularizer H [12]. The cost matrix M quan-
tifies the overlap between the two distributions by measuring
the distance between each support and query embedding
pair: Mi,j = d[Zs

i ,Z
q
j]. The entropic regularization pro-

motes “smoother” transportation plans [12]. Equation (2)
is then solved using the time-efficient Sinkhorn-Knopp al-
gorithm. Notice that π⋆ is also referred to as Wasserstein
metric [12, 36]. To adapt Zs to Zq with cost matrix M , we
compute Ẑs as the projected mapping of Zs, given by:

Ẑs = π̂⋆Zq, (3)

π̂⋆i,j =
π⋆i,j∑
j π

⋆
i,j

,∀i ∈ [NK], j ∈ [NQ], (4)

where π̂⋆ is the normalized transport. The projected sup-
port embeddings Ẑs are an estimation of Zs in the region
occupied by the query embeddings Zq. Specifically, it is a
barycentric mapping of the support features Zs. Algorithm 2
shows this process in a succinct manner.

Prototypical classification. The projected support em-
beddings, Ẑs, are used for prototype creation and classifica-
tion of the query points. To this end, following [34, 44] we
concatenate fΩ with a single layer nearest mean classifier
fϕ (resulting in an architecture similar to ProtoNet [42]) and
only fine-tune this last layer. In this stage, for each class
k ∈ C in the support set, we compute the class prototype
ck for class k using the projected support embeddings Ẑs,k

belonging to class k:

ck =
1∣∣∣Ẑs,k

∣∣∣
∑

ẑ∈Ẑs,k

ẑ, for k ∈ C.

16

Following [34, 44], we initialize the classification layer
fϕ with weights set to Wk = 2ck and biases set to
bk = −∥ck∥2. To finetune this layer, we sample a subset of
supports from S and train fϕ with a standard cross-entropy
loss; more details are given in Section 4.

4. Experimental Setup
Datasets. To benchmark the performance of

SAMPTransfer, we conduct “in-domain” experimenta-
tion on two most commonly adopted few-shot learning
datasets: mini-ImageNet [48] and tieredImageNet [38].
Mini-ImageNet contains 100 classes with 600 samples in
each class. This equals a total of 60, 000 images that we
resize to 84 × 84 pixels. Out of the 100 classes, we use
64 classes for training, 16 for validation, and 20 for testing.
TieredImageNet is a larger subset of ILSVRC-12 [15] with
608 classes with a total of 779, 165 images of size 84× 84.
We use 351 for training, 97 for validation, and 8 for testing,
out of the 608 classes. The augmentation strategy follows
the one proposed in [2]. We also compare our method on a
recent more challenging “cross-domain” few-shot learning
(CDFSL) benchmark [22], which consists of several datasets.
This benchmark has four datasets with increasing similarities
to mini-ImageNet. In that order, we have grayscale chest
X-ray images from ChestX [51], dermatological skin lesion
images from ISIC2018 [10], aerial satellite images from Eu-
roSAT [24], and crop disease images from CropDiseases
[35]. We also used the Caltech-UCSD Birds (CUB) dataset
[49] for further analysis of cross-domain performance. The
CUB dataset is made up of 11, 788 images from 200 unique
species of birds. We use 100 classes for training, 50 for both
validation and testing.

Training strategy. In Fig. 1, as feature extractor, we use
the standard Conv4 model following [27, 34, 48]. It is fol-
lowed by a single SAMP layer with 4 attention heads. Note
that we also use a slightly modified version of the Conv4
network which we call Conv4b, where we increase the num-
ber of filters from (64, 64, 64, 64) to (96, 128, 256, 512) [19]
and average pool the final feature map returning a smaller
embedding dimension d = 512 instead of d = 1600. The
networks are pre-trained using SAMP-CLR on the respec-
tive training splits of the datasets, with an initial learning
rate of η = 0.0005, annealed by a cosine scheduler via the
Adam optimizer [30] and L = 128. Experiments involving
CDFSL benchmark follow [22, 34, 41], where we pre-train
a ResNet-10 encoder using SAMP-CLR on mini-ImageNet
images of size 224× 224 for 400 epochs with the Adam op-
timizer and a constant learning rate of η = 0.0001. Similar
to the Conv4 encoder, the ResNet-10 uses the same SAMP
configuration.

During validation and testing, as defined in Section 3.4,
we initialize and fine-tune fϕ for 15 iterations where we
sample a subset of examples from S in each iteration. For

validation, we create 15 (N -way, K-shot) tasks using the
validation split of the respective dataset.

Evaluation scenarios and baseline. Our testing scheme
uses 600 test episodes, each with 15 query shots per class,
on which the pre-trained encoder (SAMP-CLR) is fine-tuned
using OpT-Tune and tested. All our results indicate 95%
confidence intervals over 3 runs, each with 600 test episodes.
Therefore, the standard deviation values are calculated ac-
cording to the 3 runs to provide more concrete measures for
comparison. For our in-domain benchmarks, we test on (5-
way, 1-shot) and (5-way, 5-shot) classification tasks, while
our cross-domain testing is performed using (5-way, 5-shot)
and (5-way, 20-shot) classification tasks following [22]. We
compare our performance with a suite of recent unsuper-
vised few-shot baselines such as U-MlSo [60], C3LR [41],
Meta-GMVAE [31], and Revisiting UML [56] to name a few.
Furthermore, we also compare with a set of supervised ap-
proaches (such as MetaQDA [61] and TransductiveCNAPS
[3]), the best of which are expected to outperform ours and
other unsupervised methods.

Table 1: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation tasks. Style: best and second best.

mini-ImageNet

Method(N,K) Backbone (5,1) (5,5)

CACTUs-MAML [25] Conv4 39.90 ± 0.74 53.97 ± 0.70
CACTUs-Proto [25] Conv4 39.18 ± 0.71 53.36 ± 0.70
UMTRA [27] Conv4 39.93 50.73
AAL-ProtoNet [1] Conv4 37.67 ± 0.39 40.29 ± 0.68
AAL-MAML++ [1] Conv4 34.57 ± 0.74 49.18± 0.47
UFLST [26] Conv4 33.77 ± 0.70 45.03 ± 0.73
ULDA-ProtoNet [37] Conv4 40.63 ± 0.61 55.41 ± 0.57
ULDA-MetaNet [37] Conv4 40.71 ± 0.62 54.49 ± 0.58
U-SoSN+ArL [59] Conv4 41.13 ± 0.84 55.39 ± 0.79
U-MlSo [60] Conv4 41.09 55.38
ProtoTransfer [34] Conv4 45.67 ± 0.79 62.99 ± 0.75
CUMCA [54] Conv4 41.12 54.55
Meta-GMVAE [31] Conv4 42.82 55.73
Revisiting UML [56] Conv4 48.12 ± 0.19 65.33 ± 0.17
CSSL-FSL_Mini64 [32] Conv4 48.53 ± 1.26 63.13 ± 0.87
C3LR [41] Conv4 47.92 ± 1.2 64.81 ± 1.15
SAMPTransfer (ours) Conv4 55.75 ± 0.77 68.33 ± 0.66
SAMPTransfer⋆ (ours) Conv4b 61.02 ± 1.0 72.52 ± 0.68

Supervised Methods
MAML [18] Conv4 46.81 ± 0.77 62.13± 0.72
ProtoNet [42] Conv4 46.44± 0.78 66.33± 0.68
MMC [38] Conv4 50.41 ± 0.31 64.39 ± 0.24
FEAT [57] Conv4 55.15 71.61
SimpleShot [52] Conv4 49.69 ± 0.19 66.92 ± 0.17
Simple CNAPS [3] ResNet-18 53.2 ± 0.9 70.8 ± 0.7
Transductive CNAPS [3] ResNet-18 55.6 ± 0.9 73.1 ± 0.7
MetaQDA [61] Conv4 56.41 ± 0.80 72.64 ± 0.62
Pre+Linear [34] Conv4 43.87 ± 0.69 63.01 ± 0.71

17

Table 2: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation tasks. Style: best and second best.

tieredImageNet

Method(N,K) Backbone (5,1) (5,5)

C3LR [41] Conv4 42.37 ± 0.77 61.77 ± 0.25
ULDA-ProtoNet [37] Conv4 41.60 ±0.64 56.28 ± 0.62
ULDA-MetaOptNet [37] Conv4 41.77 ± 0.65 56.78 ± 0.63
U-SoSN+ArL [59] Conv4 43.68 ± 0.91 58.56 ± 0.74
U-MlSo [60] Conv4 43.01 ± 0.91 57.53 ± 0.74
SAMPTransfer (ours) Conv4 45.25 ± 0.89 59.75 ± 0.66
SAMPTransfer⋆ (ours) Conv4b 49.10 ± 0.94 65.19 ± 0.82

5. Performance Evaluation

In-Domain Experiments. Table 1 summarizes our per-
formance evaluation results on the mini-ImageNet dataset
for (N -way, K-shot) scenarios with N = 5 and K = 1, 5.
The top section compares the performance of the proposed
approach (SAMP-CLR) with the most recent unsupervised
competitors. We outperform our closest competitors by
approximately 7%+ and 2%+ in the (5-way, 1-shot) and
(5-way, 5-shot) settings, respectively. More interestingly,
our method matches or beats some of the supervised base-
lines (bottom section of the table), especially SimpleCNAPS
which uses a much more powerful ResNet-18 backbone.
Obviously, the state-of-the-art supervised few-shot learning
approaches have the advantage of having access to the true la-
bels. When it comes to tieredImageNet, our approach shows
considerable gains over recent competitors such as C3LR
[41] with a 3%+ improvement in the (5-way, 1-shot) setting
and a 5%+ improvement in the (5-way,5 shot) setting. As
such, SAMPTransfer sets a new state-of-the-art for both
tieredImageNet and mini-ImageNet datasets.

Cross-Domain experiments. We focus on the recent
CDFSL benchmark [22] to investigate the performance
of SAMPTransfer in cross-domain scenarios. This out-
come is summarize in Table 3. Here, we pre-train on mini-
ImageNet and fine-tune on ChestX [51], ISIC2018 [10],
EuroSAT [24], and CropDiseases [35]. We compare the
performance against C3LR[41], ProtoTransfer [34] along
with its two variants using UMTRA [27] (also proposed
in [34]), as well as ConFeSS [13] and ATA [50] - two of
the latest methods dedicated to solving the cross-domain
few-shot learning problem. Note that we also compare with
a couple of related supervised approaches from [22], as a
reference. Our method consistently keeps up with ConFeSS
[13], but scores higher in 5 and 20 shot CropDiseases tasks
by 2%+ and about 1%, respectively. Except for EuroSAT,
our method is consistently competitive (∼ 1% difference in
accuracy) to the performance of ConFeSS in ChestX and
ISIC. In ISIC, which is the second least similar dataset to
mini-ImageNet, our method is better by 1%+ in the (5-way,
20-shot) setting. Note that SAMPTransfer outperforms

Class 0
Class 1

Class 0
Class 1

Figure 3: Before (left) and after applying OT (right). ★, ●,
✖ mark prototypes, supports and queries, respectively.

another recent dedicated method ATA [50] in all CDFSL
benchmark settings.

6. Ablation Study and Robustness Analysis
Table 4 investigates the performance of the proposed

method against various choices of important hyperparame-
ters. We use the (5-way, 5-shot) mini-ImageNet benchmark
to analyze the robustness of our method and demonstrate the
importance of our design choices.
OpT-Tune is crucial. To illustrate the effect of using

OpT-Tune on the classification performance, we perform
experiments with OpT-Tune disabled. For a fair compari-
son, we use the same pre-trained models in the test runs with
OpT-Tune enabled or disabled. The best performing model
(a Conv4b) uses 1 SAMP layer with 4 attention heads and
a batch size of 128, resulting in accuracy of 72.52% with
OpT-Tune enabled. The same model, with OpT-Tune
disabled, loses 9% accuracy. Even with OpT-Tune dis-
abled, our method remains competitive with some of the
latest methods in Table 1. This observation suggests that the
process described in Section 3.4 is an efficient technique to
incorporate task awareness and improve the quality of pro-
totypes. This is further corroborated in Fig. 3 where a task
with N = 2 is used to show-case the effect of OpT-Tune.
We observe that the support embeddings are more evenly
spread out over the distribution of the query embeddings.
This is also backed by the DBI score [14] which increases
from 0.583 to 0.754 after OpT-Tune is applied.

SAMP layers and attention heads. In Table 4, we also
investigate the robustness of our method when the number
of SAMP layers (p) and attention heads (H) vary. The best
performance is achieved with a single SAMP layer with four
attention heads. Increasing p leads to a significant decrease
in performance; however, increasing H leads to a small
performance degradation. Notably, the observations here are
consistent with those reported in [40, 47].

Embedding dimension. We measure the performance of
the model in relation to two commonly used (by a majority
of the existing baselines) embedding dimensions: 512 and

18

Table 3: Accuracy (%± std.) of (N -way, K-shot) classification on the CDFSL benchmark. Style: best and second best.

Method(N,K) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

ChestX ISIC EuroSAT CropDiseases

UMTRA-ProtoNet [34] 24.94 ± 0.43 28.04 ± 0.44 39.21 ± 0.53 44.62 ± 0.49 74.91 ± 0.72 80.42 ± 0.66 79.81 ± 0.65 86.84 ± 0.50
UMTRA-ProtoTune [34] 25.00 ± 0.43 30.41 ± 0.44 38.47 ± 0.55 51.60 ± 0.54 68.11 ± 0.70 81.56 ± 0.54 82.67 ± 0.60 92.04 ± 0.43
ProtoTransfer [34] 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32
C3LR [41] 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31
SAMPTransfer (ours) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 81.58 ± 0.63 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

ConFeSS [13] (dedicated) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34
ATA [50] (dedicated) 24.43 ± 0.2 - 45.83 ± 0.3 - 83.75 ± 0.4 - 90.59 ± 0.3 -
ProtoNet [22] (sup.) 24.05 ± 1.01 28.21 ± 1.15 39.57 ± 0.57 49.50 ± 0.55 73.29 ± 0.71 82.27 ± 0.57 79.72 ± 0.67 88.15 ± 0.51
Pre+Mean-Cent. [22] (sup.) 26.31 ± 0.42 30.41 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 82.21 ± 0.49 87.62 ± 0.34 87.61 ± 0.47 93.87 ± 0.68
Pre+Linear [22] (sup.) 25.97 ± 0.41 31.32 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 79.08 ± 0.61 87.64 ± 0.47 89.25 ± 0.51 95.51 ± 0.31

Table 4: Ablation study of various parameters on accuracy.

Backbone p H L β OT Accuracy

Conv4b 1 4 64 1.0 ✓ 71.42 ± 0.73

Conv4b 1 4 64 0.7 ✓ 71.41 ± 0.71

Conv4b 1 8 64 1.0 ✓ 71.27 ± 0.75

Conv4b 1 8 64 0.7 ✓ 69.87 ± 0.72

Conv4b 2 1 64 0.7 ✓ 68.99 ± 0.71

Conv4b 2 4 64 0.7 ✓ 67.01 ± 0.69

Conv4 1 4 64 0.7 ✓ 69.61 ± 0.71

Conv4 1 4 64 1.0 ✓ 67.60 ± 0.62

Conv4 1 8 64 1.0 ✓ 63.59 ± 0.68

Conv4b 1 4 128 0.7 ✓ 72.52 ± 0.72

Conv4 1 4 128 0.7 ✓ 68.33 ± 0.71

Conv4 1 4 128 0.0 ✓ 52.81 ± 0.66

Conv4b 1 4 128 0.0 ✓ 72.44 ± 0.69

Conv4b 1 4 64 0.7 ✗ 64.29 ± 0.63

Conv4b 1 4 128 0.7 ✗ 63.47 ± 0.64

Conv4 1 4 64 0.7 ✗ 66.73 ± 0.65

Table 5: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation on mini-ImageNet with pre-training on CUB.

Training Testing (5,1) (5,5)

ProtoTransfer [34] ProtoTune 35.37 ± 0.63 52.38 ± 0.66
C3LR [41] ProtoTune 39.61 ± 1.11 55.53 ± 1.42
SAMPTransfer (ours) OpT-Tune 49.32 ± 0.75 56.10 ± 0.60

1600. As can be seen in Table 4, the network performs
best with an embedding dimension of 512. Performance is
notably lower with an embedding dimension of 1600. We
hypothesize that this behavior can be attributed to the lower
number of channels in the final feature map of a Conv4
network, which is limited to 64.

Effect of loss scaling factor β on L1. We observe that
when β = 0 the Conv4 based model suffers the most as it
loses 15% accuracy compared to β = 0.7, suggesting that
training the CNN with a contrastive loss is crucial. However,
the Conv4b model is not affected as strongly by the pres-
ence of this loss function. Regardless, we set β = 0.7 for
both models (Conv4 and Conv4b).

Cross-domain robustness. To further analyze the cross-

domain performance characteristics of our method, in ad-
dition to Table 3, we trained a Conv4 model on CUB and
tested it on tasks derived from mini-ImageNet. CUB consists
of 200 classes of only birds, while mini-ImageNet consists
of 64 classes, of which only 3 training classes are birds.
Thus, CUB has a diminished class diversity compared to
mini-ImageNet. Table 5 shows that our method retains bet-
ter transfer accuracy than other competing methods when
training classes are diversity constrained.

7. Concluding Remarks
Inspired by the human mind’s capacity to naturally make

relevant connections between entities, we developed a con-
trastive learning scheme for unsupervised few-shot classifica-
tion, where we supplemented a CNN’s strong inductive prior
with MPNNs to exploit intra-batch relations between im-
ages. Furthermore, we also showed that an optimal-transport-
based task-awareness algorithm can aid in elevating the ro-
bustness of pre-trained models. We show that our approach
(SAMPTransfer) offers appreciable performance improve-
ments over its competitors in both in/cross-domain few-shot
classification scenarios, setting new standards in the mini-
ImageNet, tieredImageNet and CDFSL benchmarks.

References
[1] Antreas Antoniou and Amos Storkey. Assume, augment and

learn: Unsupervised few-shot meta-learning via random la-
bels and data augmentation. arXiv preprint arXiv:1902.09884,
2019.

[2] Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. Advances in neural information processing
systems, 32, 2019.

[3] Peyman Bateni, Jarred Barber, Jan-Willem van de Meent,
and Frank Wood. Enhancing few-shot image classification
with unlabelled examples. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
2796–2805, 2022.

[4] Malik Boudiaf, Imtiaz Ziko, Jérôme Rony, José Dolz, Pablo
Piantanida, and Ismail Ben Ayed. Information maximiza-

19

tion for few-shot learning. Advances in Neural Information
Processing Systems, 33:2445–2457, 2020.

[5] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are
graph attention networks? arXiv preprint arXiv:2105.14491,
2021.

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. Advances
in Neural Information Processing Systems, 33:9912–9924,
2020.

[7] Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and
Hui Xue. Self-supervised learning for few-shot image classifi-
cation. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages
1745–1749. IEEE, 2021.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020.

[9] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15750–15758, 2021.

[10] Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman, Brian Helba,
Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al.
Skin lesion analysis toward melanoma detection 2018: A chal-
lenge hosted by the international skin imaging collaboration
(isic). arXiv preprint arXiv:1902.03368, 2019.

[11] Wentao Cui and Yuhong Guo. Parameterless transductive fea-
ture re-representation for few-shot learning. In International
Conference on Machine Learning, pages 2212–2221. PMLR,
2021.

[12] Marco Cuturi. Sinkhorn distances: Lightspeed computation of
optimal transport. Advances in neural information processing
systems, 26, 2013.

[13] Debasmit Das, Sungrack Yun, and Fatih Porikli. ConfeSS: A
framework for single source cross-domain few-shot learning.
In International Conference on Learning Representations,
2022.

[14] David L. Davies and Donald W. Bouldin. A cluster separation
measure. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-1(2):224–227, 1979.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[16] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran,
and Stefano Soatto. A baseline for few-shot image classifica-
tion. arXiv preprint arXiv:1909.02729, 2019.

[17] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. With a little help from my
friends: Nearest-neighbor contrastive learning of visual rep-
resentations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9588–9597, 2021.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages 1126–
1135. PMLR, 2017.

[19] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Boosting few-shot visual learning
with self-supervision. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 8059–8068,
2019.

[20] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu,
Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchin-
sky, Ishan Misra, Armand Joulin, and Piotr Bojanowski. Self-
supervised pretraining of visual features in the wild. 3 2021.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doer-
sch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020.

[22] Yunhui Guo, Noel CF Codella, Leonid Karlinsky, John R
Smith, Tajana Rosing, and Rogerio Feris. A New Benchmark
for Evaluation of Cross-Domain Few-Shot Learning. arXiv
preprint arXiv:1912.07200, 2019.

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020.

[24] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification, 2017.

[25] Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised
learning via meta-learning. arXiv preprint arXiv:1810.02334,
2018.

[26] Zilong Ji, Xiaolong Zou, Tiejun Huang, and Si Wu. Unsu-
pervised few-shot learning via self-supervised training. arXiv
preprint arXiv:1912.12178, 2019.

[27] Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah.
Unsupervised meta-learning for few-shot image classification.
Advances in neural information processing systems, 32, 2019.

[28] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D
Yoo. Edge-labeling graph neural network for few-shot learn-
ing. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11–20, 2019.

[29] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho,
Moontae Lee, Honglak Lee, and Seunghoon Hong. Pure
transformers are powerful graph learners. arXiv preprint
arXiv:2207.02505, 2022.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[31] Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju
Hwang. Meta-gmvae: Mixture of gaussian vae for unsuper-
vised meta-learning. In ICLR, 2021.

[32] Jianyi Li and Guizhong Liu. Few-shot image classifica-
tion via contrastive self-supervised learning. arXiv preprint
arXiv:2008.09942, 2020.

[33] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate la-
bels: Transductive propagation network for few-shot learning.
arXiv preprint arXiv:1805.10002, 2018.

[34] Carlos Medina, Arnout Devos, and Matthias Grossglauser.
Self-supervised prototypical transfer learning for few-shot

20

classification. arXiv preprint arXiv:2006.11325, 2020.
[35] Sharada P Mohanty, David P Hughes, and Marcel Salathé. Us-

ing Deep Learning for Image-Based Plant Disease Detection.
Frontiers in Plant Science, 7:1419, 2016.

[36] Gabriel Peyré, Marco Cuturi, et al. Computational optimal
transport: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

[37] Tiexin Qin, Wenbin Li, Yinghuan Shi, and Yang Gao.
Diversity helps: Unsupervised few-shot learning via dis-
tribution shift-based data augmentation. arXiv preprint
arXiv:2004.05805, 2020.

[38] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-shot
classification. arXiv preprint arXiv:1803.00676, 2018.

[39] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot
learning with graph neural networks. In International Confer-
ence on Learning Representations, 2018.

[40] Jenny Denise Seidenschwarz, Ismail Elezi, and Laura Leal-
Taixé. Learning intra-batch connections for deep metric learn-
ing. In International Conference on Machine Learning, pages
9410–9421. PMLR, 2021.

[41] Ojas Kishore Shirekar and Hadi Jamali-Rad. Self-supervised
class-cognizant few-shot classification. arXiv preprint
arXiv:2202.08149, 2022.

[42] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017.

[43] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? In European
Conference on Computer Vision, pages 266–282. Springer,
2020.

[44] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Car-
les Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and
Hugo Larochelle. Meta-Dataset: A Dataset of Datasets
for Learning to Learn from Few Examples. arXiv preprint
arXiv:1903.03096, 2020.

[45] Stijn Van Dongen and Anton J Enright. Metric distances
derived from cosine similarity and pearson and spearman
correlations. arXiv preprint arXiv:1208.3145, 2012.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Liò, and Yoshua Bengio. Graph attention
networks. In International Conference on Learning Repre-
sentations, 2018.

[48] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
Advances in neural information processing systems, 29, 2016.

[49] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

[50] Haoqing Wang and Zhi-Hong Deng. Cross-domain few-shot
classification via adversarial task augmentation. In Zhi-Hua

Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 1075–
1081. International Joint Conferences on Artificial Intelli-
gence Organization, 8 2021. Main Track.

[51] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common
thorax diseases. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2097–2106,
2017.

[52] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Lau-
rens van der Maaten. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019.

[53] Zhu Xiaojin and Ghahramani Zoubin. Learning from labeled
and unlabeled data with label propagation. Tech. Rep., Techni-
cal Report CMU-CALD-02–107, Carnegie Mellon University,
2002.

[54] Hui Xu, Jiaxing Wang, Hao Li, Deqiang Ouyang, and Jie
Shao. Unsupervised meta-learning for few-shot learning.
Pattern Recognition, 116:107951, 2021.

[55] Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin
Zhou, and Yu Liu. Dpgn: Distribution propagation graph net-
work for few-shot learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
13390–13399, 2020.

[56] Han-Jia Ye, Lu Han, and De-Chuan Zhan. Revisiting Unsu-
pervised Meta-Learning via the Characteristics of Few-Shot
Tasks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2022.

[57] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha.
Few-shot learning via embedding adaptation with set-to-set
functions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8808–8817,
2020.

[58] Tianyuan Yu, Sen He, Yi-Zhe Song, and Tao Xiang. Hybrid
graph neural networks for few-shot learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36,
pages 3179–3187, 2022.

[59] Hongguang Zhang, Piotr Koniusz, Songlei Jian, Hongdong
Li, and Philip HS Torr. Rethinking class relations: Absolute-
relative supervised and unsupervised few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9432–9441, 2021.

[60] Hongguang Zhang, Hongdong Li, and Piotr Koniusz. Multi-
level second-order few-shot learning. IEEE Transactions on
Multimedia, pages 1–1, 2022.

[61] Xueting Zhang, Debin Meng, Henry Gouk, and Timothy M.
Hospedales. Shallow bayesian meta learning for real-world
few-shot recognition. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
651–660, October 2021.

[62] Imtiaz Ziko, Jose Dolz, Eric Granger, and Ismail Ben Ayed.
Laplacian regularized few-shot learning. In International
conference on machine learning, pages 11660–11670. PMLR,
2020.

21

4
Deep Learning

Deep learning is an area of machine learning that uses Artificial Neural Networks (McCulloch and Pitts
1943) and has been applied to a wide variety of tasks such as image classification, object recognition,
activity recognition, 3D depth estimation, and various natural language processing (NLP) tasks. In stark
contrast to the classical machine learning approach of designing manual feature extraction methods,
deep learning focuses on creating algorithms that can automatically learn to extract relevant features.

4.1. Deep Feedforward Networks
Deep feedforward networks, also called feedforward networks, ormultilayer perceptrons (MLPs), are
essential deep learning models. The goal of a feedforward network is to approximate some ideal func-
tion 𝑓⋆. For example, a classifier 𝑦 = 𝑓⋆(𝒙) is a mapping between input 𝒙 to a category 𝑦. A feedforward
network has the ability to learn this mapping 𝒚 = 𝑓(𝒙; 𝜽) where 𝜽 is a set of learnt parameters that re-
sults in the best approximation of function 𝑓(𝒙; 𝜽) ≈ 𝑓⋆. In other words, neural networks are function
approximators.

These models are called feedforward because the information flows through the function that
evaluates 𝒙 and produces 𝒚. The process of passing the input 𝒙 through the function and through
intermediate computations is known as forward pass. We then use a loss function to measure the
difference between 𝑓⋆ and 𝑓 - that is, the difference between the ideal mapping 𝑓⋆ and the estimated
mapping 𝑓 . The parameters of the network, 𝜽, are updated in a backward pass based on some
optimisation criteria, given the guidance of the loss function.

𝒙1Input #1

𝒙2Input #2

𝒙3Input #3

𝒙4Input #4

𝒉1

𝒉2

𝒉3

𝒉4

𝒉5

𝒐1 Output

𝒐2 Output

𝒐3 Output

Hidden
layer

Input
layer

Output
layer

Figure 4.1: An MLP with a hidden layer consisting of 5 hidden units.

22

4.2. Activation Functions 23

Feedforward neural networks are called networks because they are typically composed of many
different functions. The model is associated with a directed acyclic graph that describes how the func-
tions are composed together. For example, we can have three functions 𝑓 (1), 𝑓 (2) and 𝑓 (3) connected
in a chain, to form 𝑓 = 𝑓 (1) ∘ 𝑓 (2) ∘ 𝑓 (3). Chain structures such as these are quite commonly used
structures of neural networks. Here, 𝑓 (1) is the first layer, 𝑓 (2) is the second layer and so on. The
final layer is called output layer, in this small example, 𝑓 (3) is the output layer. The training data and
training strategy determine what the output layer must produce for each given input 𝒙. Intermediate
layers such as 𝑓 (2) that do not directly produce the output 𝒚 are called hidden layers.

Each hidden layer of the network is typically vector valued. The dimensionality of these hidden
layers determines width of the model. Each element in the vector plays a role analogous to a neuron.
Instead of thinking of a layer as a vector-to-vector function, we can also think of the layer as consisting of
many units that act in parallel (Pinker and Prince 1988), each representing a vector-to-scalar function.
Figure 4.1 shows a small MLP with a single hidden layer. Each of the nodes in Figure 4.1 represents a
value in a vector; this implies that the input 𝒙 has a dimensionality of 4, the hidden layer (intermediate
values) has a dimensionality of 5 and the output has a dimensionality of 3.

Now, we must choose the form of our model, 𝑓(𝒙; 𝜽). Let us choose a linear model param-
eterised by 𝜽 consisting of 𝒘 and 𝑏, where 𝒘 provides the weights and 𝑏 provides the biases (or
intercepts):

𝑓(𝒙; 𝜽) = 𝑓(𝒙; 𝒘, 𝑏) = 𝒙⊤𝒘 + 𝑏. (4.1)

For the model in Figure 4.1 whose hidden layer has 𝒉 units, which are calculated by a function
𝑓 (1)(𝒙; 𝑾 , 𝒄) that is linear similar to the form of Equation (4.1). The values of these hidden units are
then used as input to the second layer, which is also the output layer of the network. The output layer is
also a linear function applied to 𝒉 rather than to 𝒙. The network now has two functions chained together
𝒉 = 𝑓 (1)(𝒙; 𝑾 , 𝒄) and 𝑦 = 𝑓(𝒉; 𝒘, 𝑏), with the complete model being 𝑓(𝒙; 𝑾 , 𝒄, 𝒘, 𝑏) = 𝑓 (2) (𝑓 (1)(𝒙)).
It should be noted that a model parameterised by 𝜽 implies that 𝜽 is a collection of all the weights and
biases present in the network.

Unfortunately, the complete model 𝑓 is a linear function of its input, since we have chosen both
𝑓 (1) and 𝑓 (2) to be linear. However, not all data spaces are linear. More often than not, they are
non-linear in nature; accordingly, we must introduce a non-linear function to describe the data and
its features. Most neural networks do so using an affine transformation controlled by the learned
parameters (such as 𝜽), followed by a fixed nonlinear function called an activation function.

4.2. Activation Functions
Activation functions decide whether or not a neuron (node in Figure 4.1) should be activated. More
specifically, they are differentiable operators to transform inputs to outputs and add some form of non-
linearity in the transformation. Formally, our hidden-layer output is now defined as:

𝒉 = 𝑔 ∘ 𝑓 (1) (𝒙)
= 𝑔 (𝑾 ⊤𝒙 + 𝒄) (4.2)

where 𝑾 is the linear transformation, 𝒄 the biases and 𝑔(⋅) is an activation function whose job is to
introduce some non-linearity. Previously, we had used a vector of weights and a scalar bias parameter
in Equation (4.1) to describe an affine transformation from a vector input to a scalar output. However,
now we are describing an affine transformation from a vector 𝒙 to a vector 𝒉, so an entire vector of
biases is needed.

One of the most widely used activation functions is ReLU (Rectified Linear Unit) (Fukushima
1975). This function simply returns the maximum between the given input value and zero, as given in
Equation (4.3). As such, this simple function has a minimal computation cost and can be performed
quite quickly.

𝑔 ∘ 𝑓(𝒙) = max (0, 𝑓 (1)(𝒙))
= max (0, 𝑾 ⊤𝒙 + 𝒄) (4.3)

4.3. Loss Function 24

(a) ReLU (b) Sigmoid (c) Tanh

Figure 4.2: Three common activation functions.

Another important and common function is the Sigmoid Equation (4.4) function. This function
maps the input value to a real number between (0, 1). In earlier forms of nerural networks (McCulloch
and Pitts 1943), scientists where interested in neurons that either fire or do not, and so used thresh-
olding units. A thresholding activation takes value 0 when its input is below a certain threshold and
takes value 1 if its input is higher than the threshold. Sigmoids, on the other hand, are smooth and
differentiable approximations of thresholding units; this is favourable to the gradient-based learning
adopted in today’s time. Sigmoids are used largely in output units when we want to interpret the output
as probabilities for binary classification problems.

sigmoid(𝒙) = 𝜎(𝒙) = 1
1 + exp(−𝒙) . (4.4)

Like the sigmoid function, the tanh (hyperbolic tan) function also squashes its inputs, mapping
them between −1 and 1:

tanh(𝒙) = 1 − exp(−2𝒙)
1 + exp(−2𝒙) . (4.5)

4.3. Loss Function
During training, for each training sample in the training set {𝒙𝑖, 𝑦𝑖}𝑁

𝑖=1 where 𝒙𝑖 is an input vector and
𝑦𝑖 is the corresponding label, we present the input 𝒙 to the neural network and compare the predicted
output of the network ̂𝑦𝑖 with the corresponding label 𝑦𝑖. We need to define a loss function to objectively
measure how much the predicted output of the network ̂𝑦𝑖 is different from the expected output 𝑦𝑖. For
regression problems, the quadratic loss function called the mean squared error (MSE) is calculated as
follows:

ℒ(̂𝑦, 𝑦) = 1
2‖𝑦 − ̂𝑦‖2 (4.6)

The loss function is calculated for each training example in the training set. The average of the
calculated loss functions for all training examples in the training set is called the cost function. For
MSE it is the average of the calculated loss functions for all training examples in the training set:

𝐽(𝜽) = 1
2𝑁

𝑁
∑
𝑖=1

‖𝑦𝑖 − ̂𝑦𝑖‖2 (4.7)

where 𝑁 is the total number of training samples. In the following Section 4.4 we shall see another loss
function that is important for multiclass classification.

4.4. Softmax
For convenience in the following section, we shall call the output of network 𝑓(𝒙; 𝜽) as 𝒐. Assume
that we have a loss function such as mean squared error loss (MSE). When working with multiclass
classification problems, where 𝒚 ∈ {1, … , 𝐾}; we expect the output of the model to be a vector of class
probabilities where each value tells us the probability that a sample belongs to a particular class. Note
that we generally employ the “one-hot” encoding mechanism where 𝒚 = (0, ..., 0, 1, 0, ..., 0). We can try

4.4. Softmax 25

to directly minimise the difference between 𝒐 and 𝒚. Although treating classification as a regression
problem may work well, it still lacks in two main ways:

• There is no guarantee that 𝒐 will sum up to 1 as we have come to expect from probabilities

• There is no guarantee that 𝒐 takes strictly non-negative values regardless of the sum of 𝒐

Both of these issues make the problem difficult to solve in addition to making the solution highly
sensitive to outliers. If we were to presume a positive linear dependency between the horsepower
of a car and the probability that someone will buy it, the probability might exceed 1 when it comes to
buying a Bugatti Chiron1! Of course, this breaks the mathematical and logical rules of probability theory;
therefore, we need a technique to map the values of 𝒐 between (0, 1).

One way to accomplish these goals (ensuring that the output sums up to 1 and its values are
non-negative), is to use an exponential function 𝑃(𝑦 = 𝑖) ∝ exp 𝑜𝑖. The exp function does ensure that
the output will always be non-negative. We can further normalise these values so that they add up to
1 by dividing each by the sum of the whole. This gives us the softmax function:

̂𝒚 = softmax(𝒐) where ̂𝑦𝑖 = exp(𝑜𝑖)
∑𝐾

𝑗=1 exp(𝑜𝑗)
. (4.8)

Note that the highest value in 𝒐 corresponds to the most likely class according to ̂𝒚. Softmax
also preserves the ordering of its arguments as shown in the example:

softmax⎛⎜
⎝

⎡⎢
⎣

8
5
0
⎤⎥
⎦

⎞⎟
⎠

= ⎡⎢
⎣

0.9523
0.0474

0
⎤⎥
⎦

.

4.4.1. Softmax and Cross-Entropy Loss
The softmax function gives us a vector ̂𝒚, which we can interpret as (estimated) conditional probabilities
of each class, given any input 𝒙, like 𝑃(𝑦 = class|𝒙). The cross-entropy loss measures the difference
between two probability distributions; in this case, it measures the difference between ̂𝒚 and 𝒚. The
cross-entropy loss is given as:

ℒ(𝒚, ̂𝒚) = −
𝐾

∑
𝑗=1

𝒚𝑗 log ̂𝒚𝑗. (4.9)

Note that the loss defined in Equation (4.9), has a lower bound of 0 when ̂𝒚 is a probability vector,
that is, no single entry is greater than 1, and hence its negative logarithm cannot be lower than 0. For
multiclass classification problems, the cost function is calculated as follows:

𝐽(𝜽) = − 1
𝑁

𝑁
∑
𝑗=1

𝐾
∑
𝑖=1

𝒚(𝒋)
𝒊 log(̂𝒚(𝒋)

𝒊) (4.10)

where 𝒚(𝒋)
𝒊 and ̂𝒚(𝒋)

𝒊 are the true and predicted output for the 𝑗th input sample 𝒙𝑗. To better understand
the origins of the cross-entropy loss, please refer to A. Zhang et al. (2021).

4.4.2. Softmax vs Sigmoid
The softmax and sigmoid functions are similar, as they help squeeze the network output within a certain
range. The softmax function operates on a vector input, while the sigmoid takes a scalar value as input.
In fact, the sigmoid function is a special case of the softmax function for a classifier with only two input
classes (binary classification problem). We can show this if we set the input vector to 𝒛 = [𝑥, 0] and
1https://www.bugatti.com/models/chiron-models/

https://www.bugatti.com/models/chiron-models/

4.5. Universal Approximation Theory 26

calculate the first output element with the usual softmax formula:

softmax(𝒛)1 = exp (𝑧1)
exp (𝑧1) + exp(𝑧2)

= exp(𝑥)
exp(𝑥) + exp(0)

= exp(𝑥)
exp(𝑥) + 1 divide numerator and denominator by exp (𝑥)

= 1
1 + exp(−𝑥)

4.5. Universal Approximation Theory
MLPs are of extreme importance in deep learning, as they form the basis for many applications and
advanced neural architectures. To do this, MLPs and neural networks, in general, must be able to
approximate a wide range of functions, given enough input data to learn from. Neural networks started
as a way to mimic the neural structure of the brain (McCulloch and Pitts 1943), and as we know our
brain is capable of complex statistical analysis, among other things. As such, a worthwhile question
to ask here is just how powerful can a deep neural network be? Fortunately for us, this question
has been answered several times in the context of MLPs and radial basis functions (RBF) (Micchelli
1986; Cybenko 1989; Hornik 1991). These works suggest that even with a single hidden layer, given
enough nodes and the right set of parameters 𝜽, we can potentially model any function. In simple terms,
having enough nodes and stacking enough affine transformations followed by non-linear transforms
repetitively, a neural network should be able to model a highly rich class of functions. Although neural
networks are capable of expressing arbitrary continuous functions, it may not be easy to learn the
function and its parameters.

4.6. Optimisation and Backpropagation
Until now, we have only discussed the forward pass of a neural network, where the network processes
the input 𝒙. However, to effectively approximate 𝑓⋆, a neural network must learn an ideal set of values
for the parameters, 𝜽. To do so, we must optimise the weights so that they are suitable for the task
and the data at hand. However, the optimisation algorithms used to train deep learning models differ
from traditional optimisation algorithms in multiple ways. In most machine tasks, we are concerned
with some performance measure 𝑃 , which is defined with respect to the test set and may very well be
intractable. Therefore, we optimise 𝑃 indirectly through a cost function 𝐽(𝜽).

Typically, the cost function is written as an average over the training set (see Section 4.3):

𝐽(𝜽) = 𝔼(𝒙,y)∼�̂�data
ℒ(𝑓(𝒙; 𝜽), 𝑦)

= 𝔼(𝒙,y)∼�̂�data
ℒ(̂𝑦, 𝑦) (4.11)

where ℒ is the loss function per sample, ̂𝑦 = 𝑓(𝒙; 𝜽) is the predicted output, the input is 𝒙 and ̂𝑝data is
the empirical (observed) distribution. In the straightforward supervised case, 𝑦 is the true target output.
It takes minimal effort to adapt this formulation to exclude 𝑦 as an argument, as we shall see this in
Chapter 7.

4.6.1. Gradient Descent
We begin by assuming that we have a function 𝑦 = 𝑓(𝑥) where 𝑥, 𝑦 ∈ ℝ and that it has a derivative 𝑓 ′(𝑥).
The derivative of a function gives its slope, also called gradient at a certain input point 𝑥. The gradient
indicates how adding a small change 𝜖 to 𝑥 will affect the output: 𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝜖𝑓 ′(𝑥). Gradient
descent is a first-order iterative optimisation algorithm used to find the local minimum or maximum of a
function (Robbins and Monro 1951; Kiefer and Wolfowitz 1952). The optimisation algorithm works by
iteratively moving in the direction of steepest descent, as defined by the negative of the gradient.

In Figure 4.3 the function 𝑓(𝑥) = 1
2 𝑥2 depends only on the input 𝑥 and has a derivative 𝑓 ′(𝑥) = 𝑥.

In order to find the minimum of 𝑓(𝑥) we must find the value of 𝑥 where 𝑓 ′(𝑥) = 0. The useful property of

4.6. Optimisation and Backpropagation 27

Figure 4.3: Gradient descent algorithm illustration for finding the minimum of a function 𝑓(𝑥) = 1
2 𝑥2. Beginning

with either positive of negative values of 𝑥, the gradient descent algorithm will find a minima at 𝑥 = 0 by moving
in the direction opposite the sign of the gradient given by 𝑓 ′(𝑥) = 𝑥. Figure courtesy of Goodfellow, Bengio, and
Courville (2016).

the gradient is that it tells us how to change 𝑥 to make a small change to 𝑦. For instance, we can infer
that 𝑓 (𝑥 − 𝜖 sign (𝑓 ′(𝑥))) ≪ 𝑓(𝑥) for a small 𝜖. Therefore, to reduce 𝑓(𝑥), we can begin this process
by starting with positive or negative values of 𝑥 and moving in the direction opposite to the sign of the
gradient 𝑓 ′(𝑥). The process is known as gradient descent, more specifically this update step reads:

𝑥′ = 𝑥 − 𝜖 sign (𝑓 ′(𝑥))
= 𝑥 − 𝜖 sign∇𝑥𝑓(𝑥) (4.12)

4.6.2. Backpropagation
The backpropagation as a learning algorithm was put forth by Rumelhart, Hinton, and Williams (1986),
and is firmly based on the concept of gradient descent. We discussed gradient descent in the context
of a simple function 𝑓(𝑥) that was dependent only on its input 𝑥, however, neural networks depend on
the input 𝒙 and a set of parameters 𝜽, 𝑓(𝒙; 𝜽). Furthermore, the learning goal of neural networks is not
to directly minimise the function 𝑓(𝒙; 𝜽). Rather, the goal of learning in neural networks is to minimise
the cost function (or loss function) given the training set.

Consider a network parameterised by 𝜽 = {𝒘, 𝑏}. The goal of backpropagation is to calculate
partial derivatives 𝜕𝐽/𝜕𝒘 and 𝜕𝐽/𝜕𝑏 of the cost function 𝐽 with respect to weight 𝒘 and bias 𝑏. To further
concretize the notion, we shall use the MSE loss from Section 4.3:

ℒ(̂𝒚, 𝒚) = 1
2‖𝒚 − ̂𝒚‖2 (4.13)

𝐽(𝜽) = 1
2𝑁

𝑁
∑
𝑖=1

ℒ(𝑓(𝒙; 𝜽), 𝒚) (4.14)

where 𝑁 is the total number of training samples. To calculate 𝜕𝐽/𝜕𝒘 and 𝜕𝐽/𝜕𝑏, we apply the chain rule
and calculate, in turn, the gradient of each intermediate variable and parameter. The first step is to
calculate 𝜕𝐽/𝜕ℒ which are the gradients of the cost function in Equation (4.14) with respect to the loss
term ℒ. Next, we must compute the gradient of the cost function with respect to the output variable ̂𝒚
according to the chain rule:

𝜕𝐽
𝜕 ̂𝒚 = 𝜕𝐽

𝜕ℒ × 𝜕ℒ
𝜕 ̂𝒚 . (4.15)

Now we can calculate the gradient 𝜕𝐽/𝜕𝒘, using the chain rule this yields:

𝜕𝐽
𝜕𝒘 = (𝜕𝐽

𝜕 ̂𝒚 × 𝜕 ̂𝒚
𝜕𝒘) . (4.16)

4.6. Optimisation and Backpropagation 28

where 𝜕�̂�/𝜕𝒘 = 𝒙. Notice that the order of calculations are now reversed relative to those performed
in the forward pass. Here we start with the output emitted by the neural network and work our way
backwards towards the parameters. We can repeat the above steps for computing 𝜕𝐽/𝜕𝑏. Intuitively,
this tells us how to update 𝒘 and 𝑏 in order to reduce 𝐽(𝜽).

We must also be aware of the fact that we optimise for the loss function ℒ, that is, we are trying
to find the optimal set of parameters 𝜽 that will give us the lowest value of the loss function across 𝑁
training samples. In other words, we are trying to find the minima of ℒ with respect to the input 𝒙 and
the parameters 𝜽. The gradient ∇𝜽𝐽 across all samples is given as:

∇𝜃𝐽(𝜽) = 1
2𝑁

𝑁
∑
𝑖=1

∇𝜽ℒ(𝑓(𝒙; 𝜽), 𝑦) (4.17)

where ∇𝜃𝐽(𝜽) is the average of the gradients of the loss function with respect to 𝒙 and 𝜽. The parameter
update using the gradient descent algorithm with step size 𝜂 can be written as

𝜽′ = 𝜽 − 𝜂∇𝜃𝐽(𝜽). (4.18)

However, this method is intractable for very large values of 𝑁 . Therefore, we choose to compute
gradients for a smaller set of 𝑚 samples such that 𝑚 ≪ 𝑁 :

∇𝜃𝐽(𝜽) = 1
2𝑚

𝑚
∑
𝑖=1

∇𝜽ℒ(𝑓(𝒙; 𝜽), 𝑦). (4.19)

This is the idea of stochastic approximation behind stochastic gradient descent (SGD). It is an ap-
proximation of the gradient from a small number of input samples (Bottou, Curtis, and Nocedal 2016).
The SGD update step in Equation (4.19) is similar to Equation (4.18).

Finally, for a network with 𝑙 layers, there are just as many gradients with respect to the loss
function ℒ:

𝜵𝜽ℒ(𝑓(𝒙; 𝜽), 𝑦) = [𝜕ℒ
𝜕𝑤(𝑙) , 𝜕ℒ

𝜕𝑏(𝑙) , 𝜕𝐿
𝜕𝑤(𝑙−1) , 𝜕ℒ

𝜕𝑏(𝑙−1) , … , 𝜕ℒ
𝜕𝑤(1) , 𝜕ℒ

𝜕𝑏(1)]
⊤

(4.20)

where 𝜵𝜽𝐿(𝑓(𝒙; 𝜽), 𝑦) is a vector of partial derivatives with respect to the weights in the neural network
model while 𝑤(𝑙) and 𝑏(𝑙) are the weights and biases of layer 𝑙.

5
Convolutional Neural Networks

Figure 5.1: An overview of the internals of CNNs. Image sourced from Matlab1

LeCun et al. proposed the novel convolutional neural network (CNN) architecture to tackle
computer vision tasks. The specific task LeCun et al. chose to solve was the recognition of handwritten
digits (today a similar dataset is the MNIST2 dataset). The LeNet-5 (LeCun et al. 1989) was inspired
by Neocognitron (Fukushima 1975; Fukushima and Miyake 1982) that allowed extraction of features
such as certain orientations, edges, and corners. The LeNet-5 was designed to use backpropagation
for learning and proved backpropagation allowed neural nets to be used in the real world. Yann LeCun
estimates that at one point this system was being used to read more than 10% of all cheques in the
U.S.A (Chow 2021).

CNNs were originally inspired by early findings in the study of natural biological vision. They
have since become the tools of choice in computer vision and as models of neural activity in visual
tasks (Eickenberg et al. 2017; Kuzovkin et al. 2018; Lindsay 2021). The CNN architecture and its
derivatives continue to be one of the best performing models (alongside newly minted vision transform-
ers (Dosovitskiy et al. 2020)) for computer vision tasks ranging from image classification to 3D depth
estimation.

Although CNNs were first introduced in 1989, it was AlexNet (Krizhevsky, Sutskever, and Hinton
2012) that really launched CNN-based models into the spotlight. AlexNet outperformed its competitors
by about 10% on the ImageNet (Deng et al. 2009) benchmark. Surpassing its competitors by such a
great margin, AlexNet and CNNs emerged as the dominant force in computer vision problems.
1https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
2http://yann.lecun.com/exdb/mnist/

29

https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
http://yann.lecun.com/exdb/mnist/

5.1. Convolution 30

An archetypal CNN (Figure 5.1) is made up of two major components, (i) a feature extractor
and (ii) a classification head. The feature extractor portion is made up of multiple convolutional layers,
followed by non-linear activation functions (Section 4.2) and finally some form of pooling is applied.
The classification head consists of an MLP that uses the output of a feature extractor, followed by
the application of the softmax function to get the class probabilities. We shall go over each of the
operations in the following sections.

5.1. Convolution
As the name implies, the basic building block of a CNN is a convolution operator, which we denote
by an asterisk ∗. In its most generic form, a convolution is an operation on two functions of a real-
valued argument. Suppose that we have a water-level sensor installed in a massive fish tank. Our
sensor provides a single output 𝑥(𝑡), the level of water in the tank at the time 𝑡. Now, our sensor is
not perfect and is somewhat noisy. To decrease the noise in the measurements, we take averages of
several measurements. The more recent the measurements, the more relevant they would be, so we
would rather want this to be a weighted average that gives more importance to recent measurements.
We can achieve this by using a weighting function 𝑤(𝑎), where 𝑎 is the age of a given measurement.
Applying the weighting function produces a new function called 𝑆, which provides a smooth estimate
of the water level in the tank:

𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎. (5.1)

This operation is called convolution and Equation (5.1) is often succinctly written as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡). (5.2)

In Equation (5.1) and Equation (5.2) 𝑥 is referred to as the input, the function 𝑤 is called the
kernel. In the terminology of the convolutional network, the output is termed feature map.

We can also use convolutions overmultiple axes simultaneously. If we choose a two-dimensional
image 𝑰 as input, it stands to reason that we would probably want to use a two-dimensional kernel 𝑲
over it:

𝑺(𝑖, 𝑗) = (𝑰 ∗ 𝑲)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑚, 𝑛)𝑲(𝑖 − 𝑚, 𝑗 − 𝑛). (5.3)

As convolution is a commutative operation, we can rewrite Equation (5.3) for a convenient im-
plementation:

𝑺(𝑖, 𝑗) = (𝑲 ∗ 𝑰)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑖 − 𝑚, 𝑗 − 𝑛)𝑲(𝑚, 𝑛). (5.4)

0 1 2

2 2 0

0 1 2

Figure 5.2: A two-dimensional
kernel.

The commutative property of convolution appears as we have
flipped the kernel relative to the input, in the sense that as 𝑚 in-
creases, the index into the input increases, but the index into the ker-
nel decreases. While useful for mathematical proofs, its not necessary
to do in terms of actual implementation. Instead, many neural network
libraries implement the cross-correlation function, which, for all in-
tents and purposes, is the same as a convolution without the kernel
being flipped:

𝑺(𝑖, 𝑗) = (𝑲 ∗ 𝑰)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑖 + 𝑚, 𝑗 + 𝑛)𝑲(𝑚, 𝑛). (5.5)

An example of a two-dimensional kernel is shown in Figure 5.2, and Figure 5.3a shows an
example of a discrete convolution using the kernel in Figure 5.2. The blue grid is the two-dimensional
input, also called the input feature map. To keep the drawing simple, a single input feature map is
shown; however, it is quite common to have multiple feature maps stacked on top of each other. The

5.2. Pooling 31

kernel slides over the input feature map and, at each location, we take a product between each element
of the kernel and the input element that coincides with it. The results of the products are summarised
to obtain the output at the current location (the centre of the kernel). This process can be repeated
using different kernels to generate as many output feature maps as required (Figure 5.4). It must be
noted that the kernel can be learnt through back-propagation.

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

(a) Computing the output values of a discrete convolution.

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

(b) Computing the output values of a 3 × 3 average pooling operation on a 5 × 5 input using 1 × 1
strides.

Figure 5.3: Examples of convolution and average pooling operations (Dumoulin, Visin, and Box 2016).

5.2. Pooling
In addition to the convolution operation described in Section 5.1, pooling operations make up another
important aspect of a CNN. Pooling operations are meant to reduce the size of the feature maps by
using some function to summarise regions of the feature map, such as taking the average or maximum
value of a collection of values in a feature map present in a window.

5.3. Kernels as Feature Extractors 32

+ + +

Figure 5.4: A convolution mapping from two input feature maps to three output feature maps using a 3×2×3×3
collection of kernels 𝐰. In the left pathway, input feature map 1 is convolved with kernel 𝐰1,1 and input feature
map 2 is convolved with kernel 𝐰1,2, and the results are summed together elementwise to form the first output
feature map. The same is repeated for the middle and right pathways to form the second and third feature maps,
and all three output feature maps are grouped together to form the output. Figure courtesy Dumoulin, Visin, and
Box (2016).

Pooling operations work similarly to a convolution by sliding a window across the input and apply-
ing a pooling function to the contents of the window. Pooling operations replace the linear combination
described by the kernel with some other function. Figure 5.3b shows an example of the average pool-
ing operation, which applies the averaging function on the contents of the sliding window. Similarly,
maximum pooling is another pooling operation that takes the maximum of the content present in the
sliding window.

5.3. Kernels as Feature Extractors
Each convolutional layer is characterised by the size of the kernels, the number of kernels, the padding,
and stride; the relationship between these components is not trivial to intuitively infer. Every kernel’s
weights act as a particular feature detector, and thus learning the kernel’s weights translates into learn-
ing the features. Figure 5.5 shows the types of features and patterns learnt by a fully trained model
in various layers. Note that as the number of layers increases, the network is learning more specific
and complex patterns. In layer 5 we can see the network as learnt the shape of a human head as well
those of digs and other animals. While in layer 2, we see that some generic lines and other shapes
have been learnt.

5.3. Kernels as Feature Extractors 33

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 5.5: Visualisation of features learnt in various layers by a fully trained CNN. Image from Zeiler and Fer-
gus (2013).

6
Basics of Geometric Deep Learning and

Graph Neural Networks

6.1. Graphs
In various branches of science, from biology to particle physics, graphs are often used as models of sys-
tems of relations and interactions. In this work, graphs are important as they engender a fundamental
type of permutation invariance.

A basic graph 𝒢 = (𝒱, ℰ) is a collection of nodes 𝒱 and edges ℰ ⊆ 𝒱 × 𝒱 between pairs of
nodes. Depending on the application or field, the nodes can also be called vertices, and the edges
can be called links or relations.

For the purpose of an intuitive explanation, we assume that the nodes are associated with 𝑠-
dimensional node features, denoted by 𝒙𝑢 for all 𝑢 ∈ 𝒱. Social networks are one of the most studied
and best examples of graphs in the real world. Here, nodes represent users, edges correspond to
friendship relations between them, and node features (𝒙𝑢 ∈ ℝ𝑑) model user information such as age,
location, last active time, etc. It should be noted that it is often possible to equip edges with features.

Figure 6.1: Two isomorphic
graphs.

A key property of graphs is that nodes in 𝒱 are not typically assumed
to be provided in any particular ordering, and thus, by extension, any oper-
ations performed on graph structures should not depend on any assumed
inherent ordering of nodes. The desirable property that functions acting on
graphs must possess is called permutation invariance, and implies that
for any two isomorphic graphs, the results of such functions must be identi-
cal. Isomorphism is an edge-preserving bijection between two graphs. The
two isomorphic graphs shown in Figure 6.1 are identical up to the reorder-
ing of their nodes.

Permutation invariance is important in SAMPTransfer(see Chapter 3). One of the main moti-
vations behind SAMPTransfer is to allow the network to learn from multiple samples made available
to the network in the form of a mini-batch. The ordering of the samples is of little interest to us, as we
are more concerned with learning by looking beyond single instances. The exact mechanism of this
will be explained in more detail in subsequent sections.

6.2. Janossy Pooling
Let us first illustrate the concept of permutation invariance on sets, a special case of graphs without
edges (ℰ = ∅). We illustrate this with the help of a framework provided to us in the form of Janossy
pooling (Murphy et al. 2018).

34

6.2. Janossy Pooling 35

Currently, there are a few ways to incorporate permutation invariance. The first is the “permute
and average” paradigm. It works by considering all possible permutations of input elements, then pass-
ing each permutation through a permutation-sensitive model or function, and then taking an average
of all the results. If two inputs 𝑿 and �̃� are permutations of each other, this process will give the same
result for both inputs. Mathematically, this can be written as follows:

̂𝑓(𝐗) = 1
|𝑇𝑛| ∑

𝜋∈𝑇𝑛

𝜙(𝜋 (𝐗)) (6.1)

where 𝑿 = [𝒙⊤
1 , … , 𝒙⊤

𝑛]⊤ is a stack of node features and has 𝑛 elements with 𝑑 dimensionality, 𝑇𝑛 is the
set of all permutations of 𝑛 elements, and 𝜙 is a permutation-sensitive model. Therefore, we construct
a permutation-invariant ̂𝑓 from a permutation-sensitive 𝜙.

This idea is called Janossy pooling and was first introduced by Murphy et al. (2018). Indeed,
it is a straightforward and easy way to achieve permutation invariance, but it happens to be very com-
putationally intensive. The computational cost is dominated by the sum over 𝑇𝑛 in Equation (6.1),
where the number of elements in 𝑇𝑛 is 𝑛!. As one can imagine, if 𝑿 is a mini-batch with very large 𝑛,
Equation (6.1) quickly becomes intractable.

Permutation-Sensitive Function 𝜙

Permutation-Sensitive Function 𝜙

Permutation-Sensitive Function 𝜙

Function ρ Output

Shared WeightsPermuting

Figure 6.2: ̂𝑓 comprises everything up to and including the sum. The function 𝜌 applied after the sum is optional
and does not need to follow any constraints to guarantee invariance because its input, ̂𝑓(𝑥), is already invariant.
Image courtesy of Wagstaff et al. (2022).

6.2.1. A More Efficient Janossy Pooling
To save computational costs, wemay give up the calculation of 𝑛! permutations. In the above Figure 6.2,
we look at all possible 𝑛-tuples from the set of 𝑛 elements; instead, we can consider all 𝑘-tuples where
𝑘 < 𝑛 (Murphy et al. 2018). We can then update Equation (6.1) as:

̂𝑓(𝑿) = 1
|𝑃 (𝑛, 𝑘)| ∑

𝑿{𝑘}

𝑓(𝑿{𝑘}) (6.2)

where 𝑿{𝑘} stands for a 𝑘-tuple of 𝑿.

Let us take a short example to understand how the count of values came about in Equation (6.2).
Consider the input set 𝑤, 𝑥, 𝑦, 𝑧 with 𝑛 = 4. When we set 𝑘 = 2, then our sum will be applied over all
2-tuples:

(𝑤, 𝑥), (𝑥, 𝑤), (𝑤, 𝑦), (𝑦, 𝑤), (𝑤, 𝑧), (𝑧, 𝑤), (𝑥, 𝑦), (𝑦, 𝑥), (𝑥, 𝑧), (𝑧, 𝑥), (𝑦, 𝑧), (𝑧, 𝑦)
A sum over all these tuples is clearly invariant to permutations of elements in the input set, that is,
each tuple appears exactly once in the sum no matter the order of individual elements. Therefore, the
number of 𝑘-tuples from a set of 𝑛 elements is:

𝑃(𝑛, 𝑘) = 𝑛!
(𝑛 − 𝑘)! (6.3)

For 𝑘 ≪ 𝑛, this gives us a much more tractable method. Setting 𝑘 = 𝑛 gives us the most
expressive and most expensive model. Setting 𝑘 = 1 gives us a model whose cost is linear in the size
of the input set. Increasing 𝑘 allows us to take into account higher-order interactions between elements
in the set; we will come back to this idea of interactions in Section 6.2.3.

6.2. Janossy Pooling 36

𝜙
𝜙
𝜙
𝜙
𝜙

ρ

(a) Janossy pooling with 𝑘 = 1 (Deep Sets)

𝜙
𝜙
𝜙
𝜙
𝜙
𝜙

ρ

(b) Janossy pooling with 𝑘 = 2

𝜙
𝜙
𝜙
𝜙

Attention

(c) Self-attention

Figure 6.3: Different variations of Janossy pooling. Permutation invariance is guaranteed by processing all com-
binations of 𝑘 elements and then aggregating via a sum (or softmax in the case of attention). Self-attention, a
variant of Janossy pooling with 𝑘 = 2, focuses on one node at a time (the darkest node here), computing an
output for this specific node. It is often employed for all nodes in parallel in a permutation-equivariant manner,
mapping sets of points to sets of points (J. Lee et al. 2019). Image borrowed from Wagstaff et al. (2022).

6.2.2. Deep Sets
When 𝑘 = 1 and we include the optional function 𝜌, we obtain a popular special case known as Deep
Sets (Zaheer et al. 2017). Zaheer et al. propose a neural architecture in which each input is first
transformed by a neural network model 𝜙 individually (see Figure 6.3a), then the results are aggregated
through a sum operator and further processed by a second neural network 𝜌.

The aforementioned functions produce a “global” graph-wise result, but we are frequently more
interested in functions that work “locally” or node-wise. In order to acquire the collection of latent node
features, for instance, we would wish to use some function to update the features in each node. In other
words, we may wish for a node-wise function to be permutation equivariant and want a permutation
invariant graph-wise function.

We can now generalise the notions of permutation-invariance and equivariance from sets to
graphs. In the generic setting ℰ ≠ ∅, the graph connectivity can be represented by a 𝑛 × 𝑛 adjacency
matrix 𝑨, defined as

𝑎𝑢𝑣 = {1 (𝑢, 𝑣) ∈ ℰ
0 otherwise . (6.4)

Note that now the adjacency and input (or feature) matrices 𝑨 and 𝑿 are “synchronised”, 𝑎𝑢,𝑣
specifies the adjacency information between the nodes described by the 𝑢th and 𝑣th rows of 𝑿. There-
fore, applying a permutation matrix 𝑷 to node features 𝑿 directly implies applying it to 𝑨’s rows and
columns, 𝑷 𝑨𝑷 ⊤. We then say that a graph-wise function 𝑓 is permutation invariant if

𝑓 (𝑷 𝑿, 𝑷 𝑨⊤) = 𝑓(𝑿, 𝑨) (6.5)

and a node-wise function 𝜌 is permutation equivariant if

𝜌 (𝑷 𝑿, 𝑷 𝑨𝑷 ⊤) = 𝑷 𝜌(𝑿, 𝑨) (6.6)

6.3. Janossy Pooling and Self-Attention 37

6.2.3. Modelling Relations and Interactions
SAMPTransfer has yet another fundamental idea that is essential for its success and operation. It is
able to exploit the interactions (or relations) between elements in a mini-batch, which really means that
we are trying to capture the fact that our model output may depend not only on the individual contribution
of each element, but it may be crucial to also take into account the fact that certain elements appear
together in the same set. Our goal is simply to model and use these interactions.

To illustrate this with a simple example, imagine the task of evaluating how well a set of ingre-
dients work together to cook a meal. Setting 𝑘 = 1 allows the function 𝜙 to consider related individual
attributes, but cannot detect conflicts between ingredients (e.g., garlic vs. caramel). A larger 𝑘 allows
𝜙 to see more than one item at a time, allowing it to make relational inferences about pairs of ingredi-
ents, allowing for a more expressive model of deliciousness. Considering 𝜙 as an encoder and 𝜌 as a
decoder, 𝜙 can encode information about interactions, which 𝜌 can use for decoding.

Similar to the above example, SAMPTransfer uses contrastive learning (see Section 7.3) in
order to learn to place semantically similar images closer together in an embedding space. When
we increase 𝑘, we give our model the expressivity to learn to recognise semantic similarities between
images and to explicitly take these relations into account. By allowing the model to consider relations
between images in a mini-batch, it can better decide which images belong closer together in the feature
space and in turn learn better discriminative semantic features. Bear in mind that the image is first
passed through a CNN (see Chapter 5), and all the other operations explained here are applied to the
flattened output of the CNN.

6.3. Janossy Pooling and Self-Attention
Many of the current neural architectures resemble Janossy pooling with 𝑘 = 2. Self-attention (Vaswani
et al. 2017) is one such algorithm that is also used in the context of graphs in SAMPTransfer. Self-
attention works by comparing two elements of a set at a time, usually by performing a scalar product.
The results of the scalar products are used as attention weights to aggregate information from differ-
ent points using a weighted permutation invariant sum. Although it is similar to binary (𝑘 = 2) Janossy
pooling, self-attention also uses softmax to ensure that the attention weights sum up to 1 (see Sec-
tion 4.4).

To substantiate the relationship between permutation-invariant binary Janossy pooling and self-
attention, we first define a natural extension of 𝑘-ary Janossy pooling from permutation invariance to
equivariance. In normal binary Janossy pooling, the function 𝜙 acts on every two-tuple, followed by the
sum-pooling operation. For the purpose of visualisation and intuition, we will write these two-tuples as
a matrix:

⎡
⎢⎢
⎣

𝜙(𝒙1, 𝒙1) 𝜙(𝒙2, 𝒙1) ⋯ 𝜙(𝒙𝑛, 𝒙1)
𝜙(𝒙1, 𝒙2) 𝜙(𝒙2, 𝒙2) ⋯ 𝜙(𝒙𝑛, 𝒙2)

⋮ ⋮ ⋱ ⋮
𝜙(𝒙1, 𝒙𝑛) 𝜙(𝒙2, 𝒙𝑛) ⋯ 𝜙(𝒙𝑛, 𝒙𝑛)

⎤
⎥⎥
⎦

(6.7)

If we pool over the entire matrix we get an invariant output. However, by pooling over each row
individually we get a permutation equivariant output. In general, we define 𝑘-ary equivariant Janossy
pooling as follows: the 𝑖th output is obtained by aggregating the overall (𝜙-transformed) 𝑘-tuples which
start with the element 𝒙𝑖. A second network 𝜌 may then further transform each output individually.
Mathematically, this reads as follows:

𝒛𝑖 = 𝑓𝑖(𝒙) = 𝜌 (∑
𝑗

𝜙(𝒙𝑖, 𝒙𝑗)) . (6.8)

In practise, however, the process is slightly more involved. Typically, 𝜙(𝒙𝑖, 𝒙𝑗) is divided into
attention weights 𝑎(𝒙𝑖, 𝒙𝑗) and values 𝑣(𝒙𝑗) and a softmax is applied on the attention weights. Fur-
thermore, the attention weights themselves would be born from the scaled dot-product between two
affine transformations called the query and key. However, the elegant view from the lens of binary

6.3. Janossy Pooling and Self-Attention 38

Janossy pooling remains clear. We shall come back to self-attention and its usage in SAMPTransfer
in later sections.

6.3.1. Query, Key and Value
We have already alluded to queries, keys, and values in Equation (6.8), these three entities form the
major components of self-attention. These entities are also what makes self-attention based GNNs
more expressive than the standard attention scheme (Equation (6.16)) (Dwivedi and Bresson 2020;
Brody, Alon, and Yahav 2021; Bronstein et al. 2021).

Every graph attention layer uses each input node 𝒙𝑖 in three different ways:

• It is compared to every other vector to establish the weights for its own output 𝒛𝑖

• It is compared to every other vector to establish the weights for the output of the 𝑗th vector 𝒛𝑗

• It is used as part of the weighted sum to compute each output vector once the weights have been
established.

These roles are called query, key, and value, respectively. Each input node 𝒙𝑖 is linearly trans-
formed three different times to derive a new vector for each of the roles. In other words, we use three
𝑑 × 𝑑 weight matrices 𝑾𝑞, 𝑾𝑘 and 𝑾𝑣 to compute three linear transformations:

𝒒𝑖 = 𝑾𝑞𝒙𝑖 𝒌𝑖 = 𝑾𝑘𝒙𝑖 𝒗𝑖 = 𝑾𝑣𝒙𝑖 (6.9)

these transformations allow the attention module a fair degree of flexibility, allowing it to project the
input to suit the roles they must be a part of.

The softmax function can be sensitive to very large input values. These kill the gradient, slow
down learning, or cause it to stop altogether. Since the average value of the dot product increases
with embedding dimension 𝑑, it helps to scale the dot product back a little to prevent the inputs to the
softmax function from growing too large.

𝑎′
𝑖,𝑗 = 𝒒⊤

𝑖 𝒌𝑗√
𝑑

𝑎𝑖,𝑗 = softmax (𝑎′
𝑖,𝑗)

(6.10)

Why
√

𝑑?

Consider a vector in ℝ𝑑 with all values 𝑐. Its Euclidean length is
√

𝑑𝑐. Therefore, we are dividing
out the amount by which the increase in dimension increases the length of the average vectors.

We then use the attention weights calculated in Equation (6.10), to compute a weight sum to
generate the output vector. Note that the output vector 𝒛𝑖 depends on 𝒗𝑗, ∀𝑗 however not every 𝒗𝑗
contributes equally to output 𝒛𝑖. The contribution to the output is controlled by the attention weight 𝑎𝑖,𝑗:

𝒛𝑖 = ∑
𝑗

𝑎𝑖,𝑗𝒗𝑗. (6.11)

As stated in Sections 6.2 and 6.4, self-attention is a special case of graph neural networks and
was first proposed by Vaswani et al. (2017). We can see this from Equations (6.8) and (6.11). We
can also view this from the message-passing perspective presented in Section 6.4 to realise that every
output is determined by all its neighbours; it is this structure that SAMPTransfer successfully makes
use of in order to “look” beyond single instances and refine features.

6.4. Graph Neural Networks 39

6.4. Graph Neural Networks
Now that we have described graphs and permutation invariant and equivariant functions, we can begin
to talk about Graph Neural Networks (GNNs). GNNs are perhaps among the most general class of
deep learning architectures in existence at this moment. Some deep learning architectures can be
understood as special cases of the GNN with additional geometric structure. As it happens, we have
already covered one such specific case, self-attention in Section 6.3.

Notice that in Section 6.3, the output of 𝑖th depends on all pairs of (𝑖, 𝑗). However, we can also
constrain this so that the 𝑖th output is more dependent on local nodes. This means that instead of
considering all pairs, the output of node 𝑖 instead depends on a smaller set of neighbours. We can
formalise this to define what we mean when a node is a “neighbour” of another node.

The neighbourhood of 𝑖 is defined as:

𝒩𝑖 = {𝑗 ∶ (𝑖, 𝑗) ∈ ℰ or (𝑗, 𝑖) ∈ ℰ} (6.12)

and the neighbourhood features as the multiset:

𝐗𝒩𝑖
= {{𝒙𝑗 ∶ 𝑗 ∈ 𝒩𝑖}}. (6.13)

Further generalising on our perspective developed in Section 6.2 and Section 6.3, we can specify
a function 𝜑(𝒙𝑖, 𝐗𝒩𝑖

) that is locality aware and can operate over a node and its neighbourhood. Then
a permutation equivariant function ℎ can be constructed by applying 𝜑 to every node’s neighbourhood
separately:

ℎ(𝐗, 𝑨) =
⎡
⎢⎢
⎣

𝜑(𝒙1, 𝐗𝒩1
)

𝜑(𝒙2, 𝐗𝒩2
)

⋮
𝜑(𝒙𝑛, 𝐗𝒩𝑛

)

⎤
⎥⎥
⎦

. (6.14)

As ℎ is constructed by applying a shared function 𝜑 to each node locally, its permutation equiv-
ariance rests on the output of 𝜑 being independent of the ordering of the nodes in 𝒩𝑖. Therefore, if 𝜑
is built to be permutation invariant, then this property will be satisfied. Observe that the role 𝜑 plays
here is that of ̂𝑓 in Equation (6.1) and role played by ℎ is similar to that of 𝑓 in Equation (6.8).

Figure 6.4: By applying a permutation-invariant function 𝜑 to every neighbourhood. In this case, 𝜑 is applied
to the features 𝒙𝑏 of node 𝑏 as well as the multiset of its neighbourhood features, 𝐗𝒩𝑏 = {{𝒙𝑎, 𝒙𝑏, 𝒙𝑐, 𝒙𝑑, 𝒙𝑒}}.
Applying 𝜑 in this manner to every node’s neighbourhood recovers the rows of the resulting matrix of latent fea-
tures 𝐙 = ℎ(𝐗, 𝑨). Image modified from (Bronstein et al. 2021).

AGNN is a optimisable transformation on the attributes of a graph (nodes, edges, global context)
that preserves permutation invariance. Based on our discussion in Section 6.2.2, we consider a graph
to be specified with an adjacencymatrix𝑨 and node features𝐗. Wewill discuss GNN architectures that
are permutation equivariant functions ℎ(𝐗, 𝑨) constructed by applying shared permutation invariant

6.4. Graph Neural Networks 40

Convolutional Message-passing

Figure 6.5: A visualisation of the dataflow for the three flavours of GNN layers, 𝑔. We use the neighbourhood of
node 𝑏 from Figure 6.4 to illustrate this. Left-to-right: convolutional, where sender node features are multiplied
with a constant, 𝑐𝑢𝑣; attentional, where this multiplier is implicitly computed via an attention mechanism of the
receiver over the sender: 𝛼𝑖𝑗 = 𝑎(⃗𝑥𝑖, ⃗𝑥𝑗); and message-passing, where vector-based messages are computed
based on both the sender and receiver: �⃗�𝑖𝑗 = 𝜓(⃗𝑥𝑖, ⃗𝑥𝑗). Image modified from (Bronstein et al. 2021).

functions 𝜑(𝒙𝑖, 𝐗𝒩𝑖
) where 𝐗𝒩𝑖

is the neighbourhood of 𝒙𝑖. This local function 𝜑 can be referred to as
“diffusion”, “propagation”, or “message-passing”, and the computation ℎ is referred to as a GNN layer.

There are three types of GNN layers that are most common, in all three of them permutation
invariance is satisfied by aggregating features from 𝐗𝒩𝑖

(potentially transformed by another function
𝜓) with some permutation-invariant function ⨁, and then updating the features of node 𝑖, by means
of some function 𝜑. Usually, 𝜑 and 𝜓 are learnable affine transformations with activation functions (see
Chapter 4) and ⨁ is an operation such as sum, mean, or max. These operations are analogous to
pooling functions discussed in Section 5.2.

In the convolutional kind of GNNs (Kipf and Welling 2016), the features of the neighbourhood
nodes are directly aggregated with fixed weights,

𝑧𝑢 = 𝜑 (𝒙𝑖, ⨁
𝑗∈𝒩𝑖

𝑐𝑖𝑗𝜓 (𝒙𝑗)) . (6.15)

Here, 𝑐𝑖𝑗 specifies the importance of node 𝑖 to node 𝑗’s representation.

In the attentional scheme (Veličković et al. 2018; Brody, Alon, and Yahav 2021), the interactions
are implicit.

𝑧𝑖 = 𝜑 (𝒙𝑢, ⨁
𝑗∈𝒩𝑖

𝑎 (𝒙𝑖, 𝒙𝑗) 𝜓 (𝒙𝑗)) (6.16)

Here, 𝑎 is a learnable self-attention mechanism that computes the importance coefficients 𝛼𝑖𝑗 =
𝑎(𝒙𝑖, 𝒙𝑗) implicitly. They are often softmax-normalised across all neighbours. If the aggregation op-
eration ⨁ is summation, then the aggregation is a linear combination of the neighbourhood node fea-
tures, but the weights are feature-dependent. The reader is urged to recognise the similarities between
Equation (6.16) and Equation (6.8).

Finally, themessage-passing type amounts to computing arbitrary vectors (“messages”) across
edges,

𝑧𝑖 = 𝜑 (𝒙𝑖, ⨁
𝑗∈𝒩𝑖

𝜓 (𝒙𝑖, 𝒙𝑗)) (6.17)

Here, 𝜓 is a learnable message function, computing 𝑗’s vector sent to 𝑖, and the aggregation can be
considered as a form of message passing on the graph.

It should be noted that the relationship between the three approaches is as follows convolution
⊆ attention ⊆ message-passing. The attentional mechanism can represent convolutional GNNs by an
attention-mechanism implemented as a lookup table 𝑎(𝒙𝑖, 𝒙𝑗) = 𝑐𝑖𝑗. Message-passing can represent
both convolutional and attentional GNNs where the messages are only the sender node’s features:
𝜓(𝒙𝑖, 𝒙𝑗) = 𝑐𝑖𝑗𝜓(𝒙𝑗) for convolutional GNNs and 𝜓(𝒙𝑖, 𝒙𝑗) = 𝑎 (𝒙𝑖, 𝒙𝑗) 𝜓(𝒙𝑗) for attentional GNNs.

6.4. Graph Neural Networks 41

SAMPTransfer makes use of the attentional semantics in the message-passing context to implement
its GNN, however, the implementation of the attention mechanism follows (Vaswani et al. 2017) instead
of the mechanism suggested in (Veličković et al. 2018).

7
Self Supervised Learning

In recent years, the field of artificial intelligence has progressed leaps and bounds at an astronomical
rate. However, the vast majority of progress has been made in the supervised domain, where we
have massive amounts of carefully labelled data available. Such models perform extremely well in the
singular task for which they were trained.

However, the reality is such that we cannot always possess massive amounts of labelled data
for a given task at hand. There are some tasks for which there are simply not enough high-quality
labelled data. Examples of such tasks include modelling esoteric languages for which we do not have
enough resources or several image classification tasks in themedical domain. Furthermore, supervised
learning has shown us that it is constrained when it comes to building easily generalisable models. The
idea is that if AI systems can gain a more nuanced understanding of the reality beyond what is specified
and constrained by training labels, they will ultimately be closer to human-level understanding.

Figure 7.1: In self-supervised learning, the system is trained to predict hidden parts of the input (in gray) from
visible parts of the input (in green).

42

7.1. Representation Learning 43

Self-supervised learning (SSL) is currently the most promising form of unsupervised learning
alternative to supervised learning, which is perhaps capable of guiding AI systems to learn general
knowledge and an approximate form of common sense. Self-supervision typically involves formulating
a specialised supervised task to predict only a subset of information from the rest (see Figure 7.1).
This idea has been used extensively in language modelling. The default task of a language model is to
predict the next word given a sequence of words (or a partial sentence). We then use the trained model
to help us solve another related task. This concept is called transfer learning, where we the pre-train
the model on a large dataset, then save the weights and apply it to another possibly related problem.
Often we may also want to fine-tune the saved model weights by training it for a few epochs at a slow
learning rate on the dataset pertinent to the new problem. The pre-training can be either supervised or
unsupervised; however, we shall only be focusing on the unsupervised (self-supervised) aspect. It is
also worth noting that most self-supervised training schemes focus on representation learning, and
we shall cover this in a bit more detail in Section 7.1.

SEER (Goyal et al. 2021), a research project from Meta AI, made use of SWaV (Caron, Misra,
et al. 2020) to train a computer vision model that has outperformed state-of-the-art supervised models
on tasks such as image classification, object detection and image segmentation. SEER’s performance
demonstrates quite conclusively that SSL methods can excel at computer vision tasks while learning
generalisable features. The work done on SEER parallels the work being done in the NLP field for
a while now, where state-of-the-art models frequently use billions of parameters and train using SSL
methods on huge datasets.

7.1. Representation Learning
The performance of machine learning methods is highly dependent on the choice of data representation
(or features) on which they are applied. For that reason, much of the actual effort in deploying machine
learning algorithms goes into the design of preprocessing pipelines and data transformations that result
in a representation of the data that can support effective machine learning. Our goal with representation
learning is to allow the model to learn robust representations with minimal human interference.

Representation learning aims to train machine learning algorithms to learn useful representa-
tions, e.g. interpretable representations, useful latent features, or allow transfer learning to be used.
Deep neural networks can be considered representation learning models that typically encode informa-
tion that is projected into a different subspace. These representations are then usually passed on to a
linear classifier to, for instance, train a classifier.

At a high level, a network has two components:

1. an encoder (also called a feature extractor in Figure 5.1)

2. and a linear classifier.

The encoder transforms the input data and projects them into a subspace that we refer to as latent
space. Then the representation (output of the encoder) is passed to a linear classifier. Typically,
in a supervised setting, we would like to map representations to labels, which a classical classifier
would do. However, representation learning aims at mapping representations to other representations.
These learned representations are often dense and compact; they can also generalise to similar data
modalities. In other words, these representations can transfer well for other tasks and have been the
principal method for solving problems in which data annotations are hard or even impossible to obtain.
The learned representations are stored in the weights of the model, Figure 7.2 shows a small example
where the hidden layers have learnt to recognise specific components of an image. One can save
these learnt weights and reuse them for other tasks.

7.2. Self-supervision with Images
As mentioned above in this text, self-supervision usually involves formulating a specialised supervised
task; this task is also called a pretext task. However, we normally do not care about the performance
of the model on this artificial task. Rather, we are more concerned with the intermediate learned repre-

7.3. Contrastive Representation Learning 44

Figure 7.2: Deep neural networks combine simple concepts to learn representations and derive complex struc-
tures in a hierarchical pipeline. Each layer refines information from the previous layer. Finally, the classifier
takes the transformed representation and draws boundaries between classes. See Figure 5.5 for more. Image
from (Goodfellow, Bengio, and Courville 2016).

Figure 7.3: We have three images 𝒙1, 𝒙2 and 𝒙3. The first two images depict a dog, and the third image depicts
a cat. The network should ideally learn to place the dogs closer together (𝒛1 and 𝒛2) in the representation space
and the cat (𝒛3) farther away from the dogs.

sentations with the hope that this representation carries with it good semantic or structural meanings
that be beneficial to a wide variety of real word tasks.

For example, we might rotate images at four random angles and train a model to predict how
each image has been rotated. Here, the task of predicting rotations is the pretext task, so the actual
accuracy on this task is irrelevant to us (Gidaris, Singh, and Komodakis 2018). Instead, we expect the
model to learn high-quality latent representations that are useful for other real-world tasks. However,
this is not the only way, and in the next section we shall discuss one of the most popular techniques in
this space.

7.3. Contrastive Representation Learning
The goal of contrastive representation learning is to learn a feature subspace in which similar (pos-
itive) pairs of data items stay close to each other while dissimilar (negative) pairs are farther apart.
Contrastive learning can be applied to both supervised and unsupervised settings. For unsupervised
learning, contrastive learning remains one of the most powerful approaches to self-supervised learning.

7.3. Contrastive Representation Learning 45

Figure 7.4: SimCLR works by augmenting an image twice and ensuring their representations are close to each
other while being farther away from representations of other augmented images.

When working in a supervised setting, it is easy to find positive pairs of the data; one only needs
to fetch images that are associated with the same true label. However, in an unsupervised setting,
we have no such label information; therefore, we must get creative in order to teach the network what
constitutes as a positive pair of images. This brings us to one of the most intuitive techniques, SimCLR
(T. Chen et al. 2020).

7.3.1. SimCLR
The idea behind SimCLR is quite simple and elegant. An image 𝒙 is randomly sampled from the dataset,
and then two random transformations are applied to the image to obtain two augmented images 𝒙𝑖 and
𝒙𝑗. Each image is passed through the encoder to obtain the representations 𝒛𝑖 and 𝒛𝑗, respectively.
The goal here is to maximise the similarity between 𝒛𝑖 and 𝒛𝑗, see Figure 7.4 for a small overview of
SimCLR. Figure 7.5 shows a few examples of the type of image transformations used by SimCLR.

In order to train the network to bring the said representations closer, we first measure the sim-
ilarity between them using a similarity metric such as cosine similarity or Euclidean distance. The
cosine similarity metric between 𝒛𝑖 and 𝒛𝑗 is given as

𝑠𝑖,𝑗 = 𝒛⊤
𝑖 𝒛𝑗

(‖𝒛𝑖‖ ∥𝒛𝑗∥)
(7.1)

We calculate the pairwise cosine similarity between each augmented image in amini-batch using
Equation (7.1). Figure 7.6 shows an example of what positive pairs might look like. In the ideal case,
the similarity between all positive pairs must be high and low between all negative pairs.

Next, we use pairwise cosine similarities to calculate the loss. The loss is called NT-Xent (nor-

7.3. Contrastive Representation Learning 46

(a) Original (b) Crop and resize (c) Sobel filtering (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Crop, resize (and
flip)

Figure 7.5: Illustrations of data augmentation operators. (Original image cc-by: Von.grzanka)

Figure 7.6: This figure shows a set of images on the left being transformed using functions 𝑡 and 𝑡′ giving us
pairs of positve images shown on the right. Image from (Silva 2021).

malised temperature-scaled cross-entropy loss) or NCE (noise contrastive estimator) and is given as

ℓ(𝑖, 𝑗) = − log
exp (𝑠𝑖,𝑗/𝜏)

∑2𝑛
𝑘=1 𝟙[𝑘≠𝑖] exp (𝑠𝑖,𝑘/𝜏)

(7.2)

where 𝜏 is the temperature scaling factor. The reader is urged to recognise the similarities between
Equation (7.2) and Equation (4.8). Equation (7.2) is indeed just the normal softmax (Equation (4.8))
with an additional temperature scaling factor.

Normally a mini-batch of 𝑛 samples is randomly sampled, since the contrastive pretext task is
defined on pairs of augmented images derived from the mini-batch, it results in a total of 2𝑛 data points.
The negative samples are not sampled explicitly. Instead, given a positive pair, the other 2(𝑛 − 1)
augmented samples in a mini-batch are treated as negative samples.

You can choose 𝜏 to be any value; higher values of 𝜏 will lead to a “softer” output distribution of
probabilities, for example, [0.01, 0.01, 0.98]. As 𝜏 approaches 0, it will lead to a distribution “sharper”, for
example, [0.2, 0.2, 0.6]. A distribution of “softer” implies that the model is less confident in its predictions,

7.3. Contrastive Representation Learning 47

while “sharper” implies that the model is very confident. A low temperature (< 1) discourages predic-
tions from collapsing to a uniform distribution, which is undesirable. When we talk about collapse, we
are talking about representation collapse. Representation collapse is a phenomenon where in the
network outputs the same representation regardless of the input, as one can imagine if every pair of
images has the same representation, the loss would be incredibly low. However, if the network returns
the same representation for all input, its not very useful for downstream tasks that require the features
to be discriminative and have semantic information.

Intuition for Temperature

The temperature parameter penalises the larger logits more than the smaller logits. The expo-
nential function is an “increasing function”. So, if a term is already large, penalising it by a small
amount would make it much smaller (% wise) than if that term were small.

8
Few-Shot Learning

A good machine learning model often requires training with a large number of samples. Humans, on
the contrary, learn new concepts and skills much faster and more efficiently. Children who have only
seen cats and birds a few times can quickly tell them apart. People who know how to ride a bike are
likely to discover how to ride a motorcycle quickly with little or even no demonstration. Is it possible to
design a machine learning model with similar properties - can we have it learn new concepts and skills
quickly with a few training examples? That is essentially what few-shot learning methods aim to solve.

Despite notable advances in the field of artificial intelligence, two essential aspects of human con-
ceptual intelligence have consistently eluded machine learning and artificial intelligence (AI) systems.
First, for most interesting kinds of natural and man-made categories of entities, humans can learn a
new concept from just one or a few handful examples, whereas many AI models would require sev-
eral thousands of examples to perform satisfactorily. Second, people learn far richer representations
than machines do, even for seemingly simple concepts. Humans use these representations for a wide
variety of tasks such as creating new entities based on the exemplars, classifying objects into parts,
grasping relations between concepts, and creating new abstract categories (concepts) by combining
existing ideas and concepts. These rich representations also allow us to differentiate between entities.
In stark contrast to this, the best machine learning models and neural networks cannot perform these
additional functions using their specialised learnt representations. The challenge arises when we wish
for AI models to learn new concepts and representations from few examples and ensure that these
representations are abstract and flexible.

In this body of work the focus is on few-shot classification of images. Few-shot classification is
cast as a task of predicting class labels for a set of unlabelled data points (query set) given only a small
set of labelled data points (support set). Typically, the query and support data points are drawn from
the same distribution.

Few-shot classification methods typically consist of two sequential phases: (i) pre-training on a
large dataset of “base” classes, regardless of whether the training is supervised or unsupervised. This
is followed by (ii) fine-tuning on an unseen dataset consisting of “novel” classes. Normally, the classes
used in the pre-training and fine-tuning are mutually exclusive. In this paper, our focus is on the self-
supervised (also sometimes interchangeably called “unsupervised” in the literature) setting where we
have no access to the actual class labels of the “base” dataset.

To this end, various methods have been proposed and broadly categorised under two different
approaches:

• Meta-learning. Where an algorithm “learns how to learn” and aims to find a quickly generalisable
model

48

8.1. Formalising the Few-Shot Learning Problem 49

• Transfer Learning. Where the model is trained to learn optimal representations that are gener-
alisable with minimal updates

The first approach, meta-learning, relies on episodic training that involves creating synthetic
“tasks” to mimic the downstream episodic fine-tuning phase (Finn, Abbeel, and Levine 2017; Hsu,
Levine, and Finn 2018; Antoniou and Storkey 2019; Ji et al. 2019; Khodadadeh, Boloni, and Shah 2019;
D. B. Lee et al. 2021; Ye, Han, and Zhan 2022). The second method follows a transfer learning ap-
proach, where the network trained non-episodically to learn optimal representations in the pre-training
phase, which is then followed by an episodic fine-tuning phase (Dhillon et al. 2019; Medina, Devos,
and Grossglauser 2020; Tian et al. 2020). In this method, a feature extractor (encoder) is trained us-
ing a form of metric learning to capture the structure of the unlabelled data. Next, a simple predictor
(conventionally a linear layer) is utilised in conjunction with the pre-trained feature extractor for quick
adaptation to the novel classes in the fine-tuning phase. The better the feature extractor captures the
global structure of the unlabelled data, the less the predictor requires training samples and the faster it
adapts itself to the unseen classes in the fine-tuning phase (also the testing phase).

We also see a set of supervised approaches that do not rely purely on a convolutional feature
extractor. Instead, these approaches alsomake use of graphs and graph neural networks (Satorras and
Estrach 2018; Kim et al. 2019; Yang et al. 2020; Yu et al. 2022). Using a graph neural network (GNN)
can help in modelling instance-level and class-level relationships. Graphs can also help propagate
labels between labelled and unlabelled samples, this was proposed by Xiaojin and Zoubin (2002) and
has been applied by Liu et al. (2018) in their work. However, it should be noted that graph-based
methods have eluded the unsupervised setting.

Several recent studies have questioned the necessity of meta-learning for few-shot classifica-
tion (Dhillon et al. 2019; Boudiaf et al. 2020; Medina, Devos, and Grossglauser 2020; Tian et al. 2020;
Ziko et al. 2020; D. Chen et al. 2021). They report competitive performance on few-shot benchmarks
without episodic training or few-shot task-based experiences during training. These methods follow the
second approach and aim to solve the few-shot learning problem by fine-tuning a pre-trained feature ex-
tractor with a standard cross-entropy loss. Some of these methods (Medina, Devos, and Grossglauser
2020; Tian et al. 2020; Das, Yun, and Porikli 2022) in the space demonstrate that the transfer learning
approach outperforms meta-learning based methods in standard in-domain and cross-domain settings
- where the training and novel classes come from totally different distributions.

8.1. Formalising the Few-Shot Learning Problem
In a few-shot setting, the model aims to generalise well and quickly enough on a variety of new and
potentially unseen tasks after being trained for optimal performance on various learning tasks. Each
task is associated with a dataset 𝒟, containing both inputs and true labels. The model parameters of
an optimal generalisable model are defined as follows:

𝜽⋆ = argmin
𝜽

𝔼𝒟∼𝑝data
[ℒ𝜽(𝒟)] (8.1)

First, we look at how 𝒟 is structured in a standard supervised few-shot setting. Consider a
labelled dataset of size 𝑀 , 𝒟 = {(𝒙𝑖, 𝑦𝑖)}𝑀

𝑖=1 of images 𝒙𝑖 and class labels 𝑦𝑖. This dataset 𝒟 is
divided into three disjoint subsets: {𝒟tr ∪ 𝒟val ∪ 𝒟tst} ∈ 𝒟, referring to the training, validation, and
test subsets, respectively. Next, we define a set of randomly sampled tasks 𝒯𝑖 drawn from the training
dataset 𝒟tr = {(𝒙𝑖, 𝑦𝑖)}𝑀 tr

𝑖=1 of size 𝑀 tr. A task, 𝒯𝑖, is comprised of two parts: (i) the support set
𝒮 from which the model learns, (ii) the query set 𝒬 on which the model is evaluated. The support
set 𝒮 = {𝒙𝑠

𝑖 , 𝑦𝑠
𝑖 }𝑁𝐾

𝑖=1 is constructed by drawing 𝐾 labelled random samples from 𝑁 different classes,
resulting in the so-called (𝑁 -way, 𝐾-shot) settings. The query set 𝒬 = {𝒙𝑞

𝑗}𝑁𝑄
𝑗=1 then contains 𝑁𝑄

unlabeled samples. By convention, we denote the set 𝒯𝑖 = 𝒮 ∪ 𝒬 with (𝑁, 𝐾). The model is expected
to quickly learn the optimal parameters from the 𝑁𝐾 support data points and apply the learnt weights
to classify the 𝑁𝑄 unlabelled query data points, on which performance is evaluated. Figure 8.1 shows
1https://www.borealisai.com/research-blogs/tutorial-2-few-shot-learning-and-meta-learning-i/

https://www.borealisai.com/research-blogs/tutorial-2-few-shot-learning-and-meta-learning-i/

8.2. Model Agnostic Meta Learning (MAML) 50

Figure 8.1: An example of (3-way, 2-shot) image classification. Image from Borealis AI1

(3-way, 2-shot) training tasks, it should be noted that even during testing (downstream classification
task) the model is presented with tasks that are in the same (3-way, 2-shot) form as the training tasks.

8.2. Model Agnostic Meta Learning (MAML)

Figure 8.2: MAML tries to
find optimal generalised
weights, by first finding op-
timal weights in the inner
learning phase. Image from
(Finn, Abbeel, and Levine
2017).

Meta-learning is most commonly understood as “learning to learn”, which
refers to the process of improving a learning algorithm over multiple learn-
ing episodes and was first proposed by Schmidhuber (1987). On the
contrary, conventional ML improves model predictions on multiple data in-
stances. During base learning, an inner learning algorithm solves a task
such as image classification, defined by a dataset and an objective. During
meta-learning, an outer algorithm updates the inner learning algorithm so
that the model it learns improves an outer objective. The learning episodes
of the base task, namely tuples of the image 𝒙𝑖 and associated label 𝑦𝑖, can
be seen to provide the instances that the outer algorithm needs to learn the
base learning algorithm

MAML is a gradient-based meta learning method. It is a technique
that works with any model that learns through gradient descent. It trains
a model to find an optimal set of weights that can be quickly adapted to a
new task, through a few gradient descent steps. The meta-learner tries to
find an initial set of weights that are not only useful for adapting to various
problems, but also can be adapted quickly (in a small number of steps) and efficiently (using only a
few examples). Figure 8.2 illustrates how MAML should work at meta-test time. We are looking for a
pre-trained parameter that can reach near-optimal parameters for every task in one or a few gradient
steps.

This approach is fairly simple and has several advantages. It does not make any assumptions
about the form of the model. It is quite efficient - no additional parameters are introduced for meta-
learning, and the learner strategy uses a known optimisation process (gradient descent), rather than
having to come up with one from scratch. It can also be easily applied to a number of domains, including
classification, regression, and reinforcement learning. However, it can be computationally expensive
due to the use of higher-order gradients, as we will see.

8.3. Prototypical Networks 51

8.2.1. Meta-training
More formally, we define a base model to be a neural network 𝑓𝜽 with meta-parameters 𝜽. We want
to learn an initial 𝜽⋆ = 𝜽0 that, after a small number 𝑛 of gradient update steps on data from a support
set 𝒮𝑏 to obtain 𝜽𝑛, the network performs well on the query set of that task 𝒬𝑏. Here, 𝑏 is the index of a
particular task 𝒯𝑏. The 𝑛 gradient update steps form what is known as the inner-loop update process.
The updated base-network parameters after 𝑖 steps on data from the support task 𝒮𝑏 can be expressed
as

𝜽𝑏
𝑖 = 𝜽𝑏

𝑖−1 − 𝜂∇𝜽ℒ𝑆𝑏
(𝑓𝜽𝑏

𝑖−1
) , (8.2)

where 𝜂 is the learning rate, 𝜽𝑏
𝑖 are the weights of the base network after 𝑖 steps with task 𝒯𝑏, ℒ𝑆𝑏

(𝑓𝜽𝑏
𝑖−1

)
is the loss on the support set of task 𝑏 after (𝑖 − 1) (the previous step) update steps. Assuming that our
task batch (a batch of tasks instead of images) size is 𝐵 we can define a meta-objective, which can be
expressed as:

ℒ𝑚𝑒𝑡𝑎 (𝜽0) =
𝐵

∑
𝑏=1

ℒ𝒬𝑏
(𝑓𝜽𝑏𝑛(𝜽0)) , (8.3)

where we explicitly show the dependence of 𝜽𝑏
𝑛 on 𝜽0, given by unrolling Equation (8.2). The meta-

objective in Equation (8.3) measures the quality of an initialisation 𝜽0 in terms of the total loss of using
that initialisation over a collection of tasks (i.e. a batch of tasks). This meta objective is now minimised
to optimise the initial parameter value 𝜽0, this 𝜽0 contains within it the across-task experiences and
knowledge. This process of optimising for the meta-objective is called the outer-loop update process.
The resulting update process is given by:

𝜽0 = 𝜽0 − 𝛽∇𝜽
𝐵

∑
𝑏=1

ℒ𝒬𝑏
(𝑓𝜽𝑏

𝑁(𝜽0)) , (8.4)

where 𝛽 is a learning rate and ℒ𝒬𝑏
denotes the loss on the query set for task 𝒯𝑏. For more details,

please refer to (Finn, Abbeel, and Levine 2017; Antoniou, Edwards, and Storkey 2018).

8.3. Prototypical Networks
Prototypical networks are a type ofmetric learningmodels. The core idea inmetric learning is similar to
nearest neighbours algorithms (𝑘-NN classifier and 𝑘-means clustering) and kernel density estimation.
The goal of Metric Learning is to learn a representation function that maps objects into an embedded
space. The distance in the embedded space should preserve the objects’ similarity; similar objects
get closer, and dissimilar objects get far away. The similarity metric is learnt by a kernel function 𝑓𝜽,
parameterised by 𝜽. The distances measured by the kernel function are converted into probabilities on
a set of labels 𝑦𝑖∀𝑖 by means of a softmax or sigmoid function. Both C3LR and SAMPTransfer make
use of prototypical networks for classification because this method is simple, yet robust, as evidenced
by the performance of C3LR and SAMPTransfer.

Prototypical networks learn a non-linear function, 𝑓𝜽, that maps the input to a feature vector in
an embedding space (or representation space) using a parameterised neural network in a supervised
manner. The embeddings of the 𝐾-shots for each of the 𝑁 -classes are averaged to compute the
class prototypes. Traditionally, a prototype is an entity that is the archetypal form of “something”, for
example, Boeing 7772 jets are prototypes of modern large passenger jets. Here, a class prototype 𝒄𝑘
plays a similar role; it is a feature vector that is defined for every class 𝑘 ∈ 𝒞, as the mean vector of the
embedded support set samples in class 𝑘, and is calculated as:

𝒄𝑘 = 1
|𝒮𝑘| ∑

(𝒙𝑖,𝑦𝑖)∈𝒮𝑘

𝑓𝜽(𝒙𝑖). (8.5)

The distribution over classes for a given query input 𝒙 is a softmax over the inverse of the
distances between the embedding of the query data and the prototype vectors:

𝑃(𝑦 = 𝑘|𝒙) = softmax (−𝑑(𝑓𝜃(𝒙), 𝒄𝑘)) = exp(−𝑑(𝑓𝜃(𝒙), 𝒄𝑘))
∑𝑘′∈𝒞 exp(−𝑑(𝑓𝜃(𝒙), 𝒄𝑘′)) (8.6)

2https://www.boeing.com/commercial/777/

https://www.boeing.com/commercial/777/

8.4. Unsupervised Few-Shot Learning 52

Figure 8.3: Few-shot prototypes 𝒄𝑘 are computed as the mean of embedded support examples for each class.
Image sourced from (Snell, Swersky, and Zemel 2017).

where 𝑑 can be any distance function, as long as it is a differentiable operation to allow gradient-based
learning. In the original work, Snell, Swersky, and Zemel (2017) use the Euclidean distance metric.

Learning is carried out by minimising the negative log likelihood 𝐽(𝜽) and performing stochastic
gradient descent over the same to update the kernel’s parameters 𝜽:

𝐽(𝜽) = − log𝑃𝜽(𝑦 = 𝑘|𝒙). (8.7)

8.3.1. Re-interpretation of the Prototypical Classifier as a Linear Model
As explained by Snell, Swersky, and Zemel (2017), Prototypical Networks can be re-interpreted as a
linear classifier applied to a learned representation 𝑓𝜽(𝒙). Using the Euclidean distance 𝑑(𝒛𝑖, 𝒛𝑗) =
∥𝒛𝑖 − 𝒛𝑗∥

2 in Equation (8.6) makes the model equivalent to a linear model and the output logits can be
expressed as:

− ‖𝑓𝜽(𝒙) − 𝒄𝑘‖2 = −𝑓𝜽(𝒙)⊤𝑓𝜽(𝒙) + 2𝒄⊤
𝑘 𝑓𝜽(𝒙) − 𝒄⊤

𝑘 𝒄𝑘
2𝒄⊤

𝑘 𝑓𝜽(𝒙) − 𝒄⊤
𝑘 𝒄𝑘 = 𝑾 ⊤

𝑘 𝑓𝜽(𝒙) + 𝑏𝑘, where 𝑾𝑘 = 2𝒄𝑘 and 𝑏𝑘 = −𝒄⊤
𝑘 𝒄𝑘 (8.8)

Based on Equation (8.8), we can see that the 𝑘th unit of an equivalent linear layer therefore has
weights 𝑾𝑘 = 2𝒄𝑘 and biases 𝑏𝑘 = −𝒄⊤

𝑘 𝒄𝑘 = − ‖𝒄𝑘‖2, which are both differentiable with respect to 𝜽
as they are a function of 𝑓𝜽. Snell, Swersky, and Zemel (2017) hypothesise that this linear classifier is
effective because all the required non-linearity can be learnt within the embedding function 𝑓𝜽.

This interpretation also allows us to create a task-specific linear classifier layer for each episode
where the layer weights are initialised based on the equivalent weights and biases of the prototypical
network as defined above and in Equation (8.8). Subsequently, this layer can then be optimised as
usual on the given support set. When computing the update for 𝜽, we allow gradients to flow through
the Prototypical Network-equivalent linear layer; we may also freeze the embedding network 𝑓𝜽 if we
only wish to train the Prototypical Network-equivalent linear layer.

8.4. Unsupervised Few-Shot Learning
So far, we have only discussed few-shot learning in a supervised setting. However, a more challenging
scenario is the unsupervised setting. Recall that the dataset in the supervised setting is given as
𝒟 = {(𝒙𝑖, 𝑦𝑖)}𝑀

𝑖=1 which implies that we have the true class labels 𝑦𝑖 available during training time. In
the unsupervised setting, we no longer have access to the true labels during the training period.

Then a question naturally arises: How do we create valid tasks (see Section 8.1) if we do not
have access to the true labels? This is an important question; consider Figure 8.1 where we illustrate
(3-way, 2-shot) shots, we see that each of the 3 classes has exactly 2 samples. Tasks like this would
be difficult to create without labels. To overcome this, we shall discuss some creative methods in the
following sections.

8.4. Unsupervised Few-Shot Learning 53

8.4.1. CACTUs
CACTUs was one of the first methods aimed at solving the unsupervised few-shot learning problem
(Hsu, Levine, and Finn 2018). CACTUs uses MAML as part of its training mechanism to obtain a gen-
eralisable model. CACTUS also retains the episodic task-based training strategy introduced by MAML
(Finn, Abbeel, and Levine 2017). Unlike MAML, however, a major aspect of CACTUs is dedicated to a
clever task creation technique, as it cannot be fed standard tasks, as discussed above. The idea of

...,

, ...

,

,

2a. cluster embeddings multiple times

embedding function

1. run embedding learning

test
train

3. run meta-learning on tasks

2b. automatically construct tasks without supervision

, ..., meta-learner learning procedure

Figure 8.4: Illustration of CACTUs, image from (Hsu, Levine, and Finn 2018).

CACTUs is to use a separate embedding learning algorithm ℰ on 𝒙𝑖 ∈ 𝒟 to produce embeddings {𝒛𝑖}.
It then uses 𝑘-means clustering on {𝒛𝑖} 𝑃 times to generate a set of partitions 𝒫𝑃 = {𝒞𝑃 }. CACTUs
can technically make use of any self-supervised (more generally, unsupervised) representation learn-
ing method to train ℰ. Hsu, Levine, and Finn (2018) choose to use DeepCluster (Caron, Bojanowski, et
al. 2018), BiGAN (Berthelot et al. 2018), ACAI (Donahue, Krähenbühl, and Darrell 2016), and InfoGAN
(Xi Chen et al. 2016).

CACTUs then samples a partition, 𝒫, randomly from the set of partitions {𝒫𝑃 }, following which
a cluster 𝒞𝑛 is randomly sampled from the partition 𝒫. The cluster sampling process is carried out 𝑁
times for each of the classes desired in a (𝑁 -way, 𝐾-shot) task. Similarly, the process is repeated for 𝑄
query images. Finally, the randomly sampled support and query images are used to create a synthetic
task that is fed into MAML.

A major concern here is that CACTUs is dependent on bigger models, like AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), using powerful self-supervised learning methods on a small dataset like
mini-ImageNet. The embeddings (representations) generated by this larger model are then used to
create synthetic tasks to train a simpler Conv4 architecture. It has been known for quite some time that
larger models consistently offer better performance and representations (K. He, X. Zhang, et al. 2015;
Dosovitskiy et al. 2020), these better representations indirectly aid a smaller Conv4 to learn better. The
entire premise in the few-shot learning space is to learn a generalisable model quickly. Therefore, by
using parameter heavy models and computationally intensive algorithms we defeat the purpose of a
self-contained end-to-end few-shot learning algorithm.

8.4.2. UMTRA
Unsupervised Meta-learning with Tasks constructed by Random sampling and Augmentation (UMTRA),
is another method that uses a MAML style training strategy with inner and outer objectives in an un-
supervised fashion. Unlike CACTUs (Section 8.4.1), the focus of UMTRA is not on generating ideal
tasks. Instead, the idea behind UMTRA can be summarised in one line; it is an unsupervised method
that uses augmentations of the images in a given episode to create a valid query set. This allows it to
generate a “labelled” query set for the outer objective and can perform well if we span the entire space
of the classes.

The functioning of UMTRA is illustrated in Figure 8.5, where𝑁 data points are randomly sampled,
each of the 𝑁 random samples is given its own unique class label. Subsequently, each sample 𝒙𝑖 is
augmented using an augmentation function 𝒜 that gives an augmented image 𝒙′

𝑖. The reason this
works is that each augmented image will share its class label with the original image. Therefore, the
outer objective will always have samples of the same class available for it to learn from.

8.4. Unsupervised Few-Shot Learning 54

𝑥′1 𝑥′2 𝑥′3
... 𝑥′n

 () () () () ()

𝑥1 𝑥2 𝑥3
... 𝑥n

Updated
Model

1 2 3 ... N

ℒ Update
Model
Parameters
based on
outer loss

1 2 3 ... N

ℒ

Model

Sample N data points 𝑥′i = (𝑥i)

Figure 8.5: We start from a dataset of unlabelled data. The training data is created by randomly choosing 𝑁
samples 𝒙𝑖 from the dataset. The query data is created by applying the augmentation function 𝒜 to each sam-
ple from the training data. Image borrowed from (Khodadadeh, Boloni, and Shah 2019).

8.4.3. ProtoTransfer
Until now, we have discussed CACTUs and UMTRA, both of which use Model Agnostic Meta Learning
(MAML) and episodic training to solve the few-shot classification problem. However, several recent
studies have questioned the necessity of meta-learning for few-shot classification (Dhillon et al. 2019;
Boudiaf et al. 2020; Medina, Devos, and Grossglauser 2020; Tian et al. 2020; Ziko et al. 2020; D. Chen
et al. 2021). They report competitive performance on few-shot benchmarks without episodic training or
few-shot task-based experiences during training. These methods follow an approach where they aim
to solve the few-shot learning problem using transfer-learning. First, they pre-train a feature-extractor
and then fine-tune a simple classification layer (usually a linear layer) with standard cross-entropy loss.
In fact, both our methods (C3LR and SAMPTransfer) are based on this paradigm and comfortably
outperform unsupervised/supervised MAML based methods.

Some of thesemethods (Medina, Devos, andGrossglauser 2020; Tian et al. 2020; Das, Yun, and
Porikli 2022) in the space demonstrate that the transfer learning approach outperforms meta-learning
based methods in standard in-domain and cross-domain settings, where the training and novel classes
come from totally different distributions.

One such method that we shall focus on is ProtoTransfer (Medina, Devos, and Grossglauser
2020). Unlike CACTUs and UMTRA ProtoTransfer does not rely on a task-based episodic training
regime and does not use MAML for its training. Instead, ProtoTransfer uses a form of contrastive
representation learning that is similar to and inspired by SimCLR. ProtoTransfer consists of two phases:
(i) pre-training on a large dataset of “base” classes. This is followed by (ii) fine-tuning on an unseen
dataset consisting of “novel” classes.

Medina, Devos, and Grossglauser (2020) call their pre-training method ProtoCLR, and in prin-
ciple it is extremely similar to SimCLR. ProtoCLR uses the original image, 𝒙𝑖, and 𝑄 augmentations,
{�̃�𝑖,𝑞}𝑄

𝑞=1. In order to learn the metric embedding function, 𝑓𝜽(⋅), a contrastive loss is used here to
ensure that all 𝑄 augmentations have the same representation as the original image. SimCLR on the
other hand, uses two augmentations of the same image and ensures similarity between them by means
of a contrastive loss. Although not the same, one can see that ProtoCLR is very inspired by methods
such as SimCLR.

8.4. Unsupervised Few-Shot Learning 55

𝑓𝜃(𝒙𝑖)

𝑓𝜃(�̃�𝑖,1)

𝑓𝜃(�̃�𝑖,2) 𝑓𝜃(�̃�𝑖,3) 𝑓𝜃(𝒙2)

𝑓𝜃(𝒙1)

𝒄1

𝒄2 𝒄3𝑓𝜃(𝒒)

(a) Self-Supervised Prototypical Pre-Training (b) Prototypical Fine-Tuning & Inference

Figure 8.6: Self-Supervised Prototypical Transfer Learning. (a): In the embedding, original images 𝒙𝑖 serve as
class prototypes around which their 𝑄 augmented views �̃�𝑖,𝑞 should cluster. (b): Prototypes 𝒄𝑘 are the means
of embedded support examples for each class 𝑛 and initialise a final linear layer for fine-tuning. An embedded
query point 𝒒 is classified via a softmax over the fine-tuned linear layer. Image sourced from (Snell, Swersky,
and Zemel 2017).

Link between self-supervision and an episode

Consider a mini-batch that contains 𝑛 random samples {𝒙𝑖}𝑖=1…𝑛 from the training set 𝒟tr. As
our self-supervised setting does not assume any knowledge about the base class labels 𝒚 ∈ 𝒟tr,
we treat each sample as its own class. Thus, each sample 𝒙𝑖 serves as a 1-shot support sample
and class prototype. For every prototype 𝒙𝑖, 𝑄 randomly augmented samples �̃�𝑖,𝑞 are used as
query samples.

Following the ProtoCLR pretraining phase, we have a fine-tuning phase called ProtoTune and
it is a supervised phase. In the fine-tuning phase, the learnt embedding 𝑓𝜽(⋅) is used to address the
target problem of few-shot image classification, where we are presented with test tasks episodically,
each with their own support and query. ProtoTune is based on the linear layer interpretation of the
Prototypical classifier (see Section 8.3.1). It uses each task’s support set to initialise the linear classifier
and fine-tune it on subsets of the support set for some iterations, randomly sampling different subsets
of support images in each iteration.

ProtoTransfer was chosen as the base for C3LR and SAMPTransfer due to its robustness and
simplicity of self-supervision. Although both C3LR and SAMPTransfer are inspired by ProtoTransfer,
the similarities only extend to their shared self-supervised nature and in the case of SAMPTransfer
there is a reimagined network and fine-tuning phase based on optimal transport that has the potential
to be useful even outside of few-shot learning.

9
Optimal Transport

In most decisions pertaining to life and sciences, the “shortest path” approach acts as the guiding
strategy. Whenever a commodity, a person, a single bit of information, or any entity that is available at
a given point and needs to be sent to a target point, one should ideally favour a way that uses the least
effort possible. Typically, one would achieve this by moving an entity along a straight line from point
A to point B on a plane. The theory of optimal transport (OT) generalises that intuition in the case
where, instead of moving only item at a time, we are concerned with the problem of simultaneously
moving several items (or a distribution) from configuration onto another.

As vacation planners can attest, planning the transportation for a group of individuals involved in
the event, with the added constraint that they reach a given target configuration upon arrival, is consider-
ably more tortuous than carrying it out for a single individual. In fact, thinking in terms of groups or rather
distributions requires more advanced mathematical thinking and formalism, which was first explored by
Monge (1781). Regardless of how complicated this formalism might be, it has deep rooted connections
to our daily life. Transportation, whether it be of people, goods, or information, rarely involves moving
items. All major problems in economics, such as supply chain logistics, production planning, or ware-
housing, involve moving distributions, and that motif consistently appears in all seminal references on
optimal transport.

SAMPTransfer uses an optimal transport based module in the fine-tuning phase to “transport”
the support set embeddings into the domain of the query set embeddings. The transportation step
“moves” the support embeddings in such a way that they overlap more areas of the query embedding
domain, more specifically, we are trying to align the support embedding distribution with the query em-
beddings. This transportation step is followed by prototypical classification which makes use of the
transported support embeddings. Using the transported support embeddings allows to create proto-
types that are more representative of the items they are archetypes of.

9.1. A brief historical context of Optimal Transport
The inception of optimal transport began in the late 18th century under the rule of Louis XVI, around
1781, almost a decade before the French revolution of 1789. The French physicist and mathematician
GaspardMonge1 was the first to formulate themathematical problem of “Excavation and embankments”
(“Mémoire sur la théorie des déblais et des remblais”) - how to transport soil during the construction
of forts and roads with minimal transport expenses. But what does shoveling dirt have to do with AI,
statistics, or machine learning? Interestingly, the framework devised by Monge provides a formulation
for comparing probability distributions. Let us think of probability density functions as piles of dirt, where
the “height” of the pile corresponds to the probability density at that point, and the shoveling of dirt
between the piles as moving probability from one point to another, at a cost proportional to the distance
1https://mathshistory.st-andrews.ac.uk/Biographies/Monge/

56

https://mathshistory.st-andrews.ac.uk/Biographies/Monge/

9.2. Discrete Optimal Transport 57

between these two points.

The modern form of optimal transport and the one that is in use today in various applications was
first formulated by the nobel laureate Leonid Vitaliyevich Kantorovich2, the father of linear programming.
It was his work in 1942 which cast the transportation as a probablistic measure on a metric space 𝒳,
where in a measure 𝛼 is the intial one that needs to be transported to the second and final measure
𝛽, that is, the desired distribution after transportation. A transportation plan, as it is called by Leonid
Kantorovich, is also some probability measure 𝜋 on the Cartesian product of the space with itself 𝒳×𝒳.
We shall go into a bit more depth in later sections of this chapter.

It would be several years later that this theory was rediscovered because of the work of Brenier
(1991) and others that this theory provided a crucial basis for research, with strong links to convexity,
partial differential equations, and statistics. Today, researchers in computer science disciplines, imag-
ing, and more generally data scientists recognise that optimal transport theory grants powerful tools to
study distributions in an abstract context, such as comparing readily available distributions.

9.2. Discrete Optimal Transport
Since our work mostly deals with atomic items, we chose to focus on the discrete formulation instead
of the continuous formulation, although it must be noted that the concepts spoken about here do not
change drastically in the continuous domain.

9.2.1. Asssignment Problem

Figure 9.1: Non-unique assignments. The other solution is dashed. Image sourced from (Peyré, Cuturi, et al.
2019).

In its most basic form, OT can be viewed as an assignment problem between sets of entities,
that is, among all possible configurations, which is the best? This question is quite restrictive in the
sense that we can only work with two sets of the same total size, that is, an initial set and a target set.

Each set can be represented as a histogram (or vector) 𝒓, that belongs to the probability simplex
- the components of the vector sum up to 1:

𝒓 ∈ {𝑥 = (𝑥1, …, 𝑥𝑁) ∈ ℝ𝑁 ∶
𝑁

∑
𝑖=1

𝑥𝑖 = 1} (9.1)

If we consider 𝐂𝑖,𝑗 as the cost of moving an element from 𝑖 to 𝑗, then the quantity we wish to
minimise is ∑𝑖 𝐂𝑖,𝜎(𝑖) , where 𝜎 is a permutation of the set {1, … , 𝑁}. This permutation represents an
assignment of the bin 𝑖 of the first histogram to the output positions 𝑗 in the second histogram.

In this form optimal transport is fundamentally a combinatorial problem, and may be summarised
as: How can we assign every element 𝑖 ∈ {1, … , 𝑁} to elements 𝑗 ∈ {1, … , 𝑁} in order to minimise
∑𝑖 𝐂𝑖,𝜎(𝑖).

The result of this search is called optimal assignment. As you may have already guessed,
there can be 𝑁! possible solutions to this problem; therefore, as 𝑁 grows, this problem quickly becomes
intractable. An important aspect is that this assignment is not unique. Figure 9.1 is an example where
two elements are assigned to two other elements that together form the four corners of a square.
2https://www.nobelprize.org/prizes/economic-sciences/1975/kantorovich/biographical/

https://www.nobelprize.org/prizes/economic-sciences/1975/kantorovich/biographical/

9.2. Discrete Optimal Transport 58

9.2.2. Working with Asymmetric Distributions
Requiring two equally sized histograms is a very strong constraint, hardly any real-world problems
present themselves in this manner. By expanding the previous problem definition to a broader class of
histograms, we obtain the Monge problem. In this version of the problem, several points 𝒙𝑖 can map
to the same 𝑦𝑗 and their weights will be summed.

Figure 9.2: The Monge problem. Image from (Peyré, Cuturi, et al. 2019).

In this case, the mapping between inputs and outputs is no longer a combinatorial permutation,
but a surjectivemap 𝜋. If points {𝒙1, … , 𝒙𝑛} have weights 𝒓 = (𝑟1, … , 𝑟𝑛) and points {𝑦1, … , 𝑦𝑚} have
weights 𝒄 = (𝑐1, … , 𝑐𝑚), 𝜋 must verify:

∀𝑗 ∈ {1, … 𝑚}, 𝑐𝑗 = ∑
𝑖∶𝜋(𝑥𝑖)=𝑦𝑗

𝑎𝑖 (9.2)

Surjective functions

A surjective function is a function 𝑓 that maps an element 𝒙 to every element 𝑦; that is, for every
𝑦, there is an 𝒙 such that 𝑓(𝒙) = 𝑦. In other words, every element of the function’s codomain is
the image of at least one element of its domain. It is not required that 𝒙 be unique; the function
𝑓 may map one or more elements of 𝑋 to the same element of 𝑌 .

Even with this formulation, it does not make our job easier, the mass conservation constraint
stated in Equation (9.2) must be satisfied, while our problem still remains an assignment problem. We
are still assigning element 𝒙𝑖 to element 𝒚𝑗.

9.2.3. The Kantorovich relaxation
Even with the above extension, this formulation of the optimal transport problem is still too constrained
to be practically useful in many cases. As alluded to earlier in Section 9.1, in 1942 Leonid Kantorovich
was instrumental in making OT viable for practical use. Kantorovich introduced a key idea, which is
to relax the deterministic portion of the transportation. Points in the source histogram (or domains or
distributions), 𝒙𝑖, no longer have to map to a single target point and can be fragmented into partial
assignments, this is called mass splitting.

Relaxation

Relaxation refers to the modelling strategy in mathematical optimisation and associated fields.
Relaxation stands to be the approximation in relation to the difficult problem with regard to a
nearby problem which stands to be easy to compute/solve.

This new relaxed formulation is much more suitable for real-world situations, such as logistical
problems. Hitchcock (1941) stated a version of this problem as follows: When several factories supply
a product to a number of cities, we seek the least costly means of distribution. Due to freight rates and
other expenses, the cost of a ton of product to a particular city will vary according to the factory that
supplies it and will also vary from city to city.

To reflect this change, we will slightly modify our previous formulation by replacing the permuta-
tion function 𝜎 by a coupling matrix 𝝅 = 𝝅𝑖𝑗 ∈ ℝ𝑛×𝑚

+ . In Figure 9.3, each 𝝅𝑖𝑗 would be the weight of

9.2. Discrete Optimal Transport 59

Figure 9.3: Factories with different supply capacities have to deliver goods to cities with various demands.

the arrow from factory 𝑖 to city 𝑗. As we have mentioned earlier, 𝒓 is a probability simplex, the same is
applicable to 𝒄. With this established, all possible assignments can be written as:

𝚷(𝒓, 𝒄) = {𝝅 ∈ ℝ𝑛×𝑚
+ ∣ 𝝅𝟏𝑚 = 𝒓, 𝝅⊤𝟏𝑛 = 𝒄} . (9.3)

𝚷(𝒓, 𝒄) contains all non-negative 𝑛 × 𝑚 matrices for which all rows sum up to 𝒓 and all columns
sum up to 𝒄. This makes 𝚷(𝒓, 𝒄) a polytope of 𝒓 and 𝒄, representing a polyhedral set of 𝑛×𝑚 matrices.
𝚷(𝒓, 𝒄) is then essentially a collection of transport plans (coupling matrix) of which some are better
than others. Keep in mind that both 𝒓 and 𝒄 can only be accessed through a finite set of samples each,
in Figure 9.3 that means a limited set of factories and cities.

Polytope

The word polytope is used to mean a number of related, but slightly different, mathematical
objects. A convex polytope may be defined as the convex hull of a finite set of points that are
always bounded. “Convex” implying that there is a minimum point.

Cuturi (2013) also gives a probabilistic interpretation for 𝚷(𝒓, 𝒄): for 𝐴 and 𝐵 two multinomial
random variables taking values in {𝒙1, … , 𝒙𝑛} and {𝒚1, … , 𝒚𝑚} each with distribution 𝒓 and 𝒄, respec-
tively, the set 𝚷(𝒓, 𝒄) contains all possible joint probabilities of (𝐴, 𝐵). Any matrix 𝝅 ∈ 𝚷(𝒓, 𝒄) can be
identified with a joint probability for (𝐴, 𝐵) such that 𝑝(𝐴 = 𝑖, 𝐵 = 𝑗) = 𝑝𝑖𝑗.

Given a cost matrix 𝑪, the cost of mapping 𝒓 to 𝒄 using a transport plan (or joint probability) 𝝅
can be quantified as ⟨𝝅, 𝑪⟩𝐹 , we can now formulate the problem in a much cleaner fashion:

𝝅⋆ = min
𝜋∈𝚷(𝑟,𝑐)

∑
𝑖,𝑗

𝑪𝑖,𝑗𝜋𝑖,𝑗 = min
𝝅∈𝚷(𝑟,𝑐)

⟨𝝅, 𝑪⟩𝐹 (9.4)

where 𝝅⋆ is the optimal transport plan and ⟨⋅, ⋅⟩𝐹 is the Frobenius dot product. When the cost matrix is
based on a valid distance metric, the optimum 𝝅⋆ is known as Wasserstein distance. It is basically
a distance between two probability distributions. It is sometimes also called earth mover distance as
it can be interpreted as how much “dirt” you have to move to change one “landscape” (distribution) in
another.

9.2.4. Entropic Regularisation
Regularising the optimal transport problem was originally proposed by Hitchcock (1941). It is a method
for approximating solutions to the optimal transport problem by adding a regularising term to the
objective function in Equation (9.4).

9.2. Discrete Optimal Transport 60

We start by defining the entropy of the coupling matrix, 𝝅:

ℍ(𝝅) = − ∑
𝑖𝑗

𝝅𝑖𝑗 log𝝅𝑖𝑗. (9.5)

In information theory, the entropy of a random variable is the average level of “information”, “surprise”,
or “uncertainty” inherent to the variable’s possible outcomes. Based on this understanding, a matrix
with low entropy will be sparser, with most of its non-zero values concentrated in a few points. Con-
versely, a matrix with high-entropy will be smoother, with the maximum entropy achieved with a uniform
distribution of values across its elements. With a regularisation coefficient 𝜀, we can include this in the
optimal transport problem to encourage smoother coupling matrices:

𝝅⋆ = min
𝜋∈𝚷(𝑟,𝑐)

⟨𝝅, 𝑪⟩𝐹 − 𝜀ℍ(𝝅) (9.6)

subject to 𝝅𝟏 = 𝒓
𝝅⊤𝟏 = 𝒄.

By increasing the value of 𝜀, the resulting coupling matrix will be smoother, and as 𝜀 → 0 the
coupling matrix will be sparser (or sharper) and the solution will be closer to that of the original relaxed
OT problem in Equation (9.4). The intuition behind entropy regularisation is similar to the temperature-
normalised cross-entropy (NT-Xent) discussed in Section 7.3.1.

The addition of this entropic regularisation makes this optimisation problem convex. Therefore,
there is a unique optimal solution 𝝅⋆. It can be shown that the solution to this regularised problem has
the following form:

∀(𝑖, 𝑗) ∈ {1, …, 𝑛} × {1, …, 𝑚}, 𝝅𝑖,𝑗 = 𝐮𝑖𝑲𝑖,𝑗𝐯𝑗, 𝝅 = diag(𝐮)𝑲 diag(𝐯) (9.7)

where 𝑲 is a kernel matrix where 𝑲𝑖,𝑗 = exp (−𝑪𝑖,𝑗/𝜀) calculated with 𝑪 and 𝐮 and 𝐯 are unknown
scaling variables. The formulation in Equation (9.7) is important because we now have an explicit
formula for an optimal coupling matrix.

9.2.5. Sinkhorn-Knopp Algorithm
The problem in Equation (9.7) is known as the matrix scaling problem, we are trying to find two scaling
diagonal matrices, 𝐮 and 𝐯, that when multiplied with 𝑲 give 𝝅. It must be noted that 𝝅 is what we call
a doubly stochastic matrix, by extension diag(𝐮)𝑲 diag(𝐯) is also doubly stochastic. We can find
these diagonal matrices by alternatively updating 𝐮 and 𝐯 using Sinkhorn’s algorithm:

𝐮(𝑘+1) = 𝒓
𝑲𝐯(𝑘) (9.8)

𝐯(𝑘+1) = 𝒄
𝑲⊤𝐮(𝑘+1) (9.9)

This simple iterative method of approaching the double stochastic matrix, alternately rescales all
rows and all columns of 𝝅 to sum to 1. The convergence proof of this algorithm is attributed to Sinkhorn
and Knopp (1967). The algorithm not only converges, but does so at a linear rate. Since these iterations
are solving a regularised version of the original problem, the corresponding Wasserstein distance that
results is sometimes called the Sinkhorn distance. It is easy to see that these iterations form a sequence
of linear operations. Therefore, it is straightforward for deep learning models to backpropagate through
these iterations; in other words, the Sinkhorn-Knopp algorithm is differentiable.

Following a paper by Cuturi (2013) called “Sinkhorn distances: Lightspeed computation of opti-
mal transport” that showed Sinkhorn updates were efficient and scalable approximations to OT, there
has been renewed interest in the community. Several performant ideas in the self-supervised learning
space, such as SWaV (Caron, Misra, et al. 2020) and SeLa (Asano, Rupprecht, and Vedaldi 2019)
have made use of the Sinkhorn-Knopp algorithm in their methods. Furthermore, the supervised few-
shot learning space has also seen the usage of Sinkhorn-Knopp in methods like PT-MAP (Hu, Gripon,
and Pateux 2021) which use the algorithm to assign labels to unlabelled query samples.

10
C3LR: Additional Materials

This chapter deals with the justification of certain design choices made for C3LR (Chapter 2), that could
not be covered in the original article due to space constraints. The algorithm from the article is made
available here for convenience.

Algorithm 1: Class-Cognizant Contrastive Learning (C3LR)
Require: 𝐿, 𝑄, 𝑓𝜙, 𝒜, 𝛼, 𝑑[⋅, ⋅]

1 while not done do
2 Sample minibatch {𝒙𝑖}

𝐿
𝑖=1

3 forall 𝑖 ∈ {1, … , 𝐿} do
4 forall 𝑞 ∈ {1, … , 𝑄} do
5 �̃�𝑖,𝑞 = 𝜓𝑞(𝒙𝑖); 𝜓𝑞 ∼ 𝒜.
6 end
7 end
8 𝐑 = ReRank([𝑓𝜙 ({𝒙𝑖}𝐿

𝑖=1) , 𝑓𝜙 ({�̃�𝑖, 𝑞}𝐿,𝑄
𝑖=1,𝑞=1)])

9 𝒞 = {𝑪1, 𝑪2, … , 𝑪𝑃 } ← HDBSCAN(𝐑)
10 ℳ = {𝐦𝑝}𝑃

𝑝=1; 𝐦𝑝 =
∑𝑥𝑗∈𝑪𝑝 𝑥𝑗

|𝑪𝑝|

11 let 𝑟(𝑖, 𝑞, 𝑝) = − log exp(−𝑑[𝑓𝜙(�̃�𝑖,𝑞),𝐦𝑝])
∑𝑃

𝑝=1 exp(−𝑑[𝑓𝜙(�̃�𝑖,𝑞),𝐦𝑝])

12 let ℓ(𝑖, 𝑞) = − log exp(−𝑑[𝑓𝜙(�̃�𝑖,𝑞),𝑓𝜙(𝒙𝑖)])
∑𝐿

𝑘=1 exp(−𝑑[𝑓𝜙(�̃�𝑖,𝑞),𝑓𝜙(𝒙𝑘)])

13 ℒ1 = 1
𝐿𝑄 ∑𝑃

𝑝=1 ∑𝐿
𝑖=1 ∑𝑄

𝑞=1 𝑟(𝑖, 𝑞, 𝑝)
14 ℒ2 = 1

𝐿𝑄 ∑𝐿
𝑖=1 ∑𝑄

𝑞=1 ℓ(𝑖, 𝑞)
15 ℒ = ℒ1 + ℒ2
16 𝜙 ← 𝜙 − 𝛼∇𝜙ℒ
17 end

10.1. Choice of Clustering Algorithm
As we can see from Algorithm 1 and Chapter 2, the re-ranking and clustering steps are crucial to its
functioning. The purpose of this section is to show why HDBSCAN (McInnes, Healy, and Astels 2017)
was chosen in combination with the 𝑘-reciprocal Jaccardian distance (Zhong et al. 2017). To motivate
our choices we shall refer to Table 10.1.

61

10.1. Choice of Clustering Algorithm 62

Method Clustering Algorithm UMAP UMAP ℝ⋅ 𝐿 𝐵 Avg Test Acc (%)

ProtoCLR None 7 - 50 200 60.66
ProtoCLR None 7 - 200 800 62.32
C3LR (Oracle) None 7 - 200 800 66.86
C3LR 𝐾-means (𝐾 = 5) 3 3 200 800 62.14
C3LR 𝐾-means (𝐾 = 5) 7 - 200 800 62.19
C3LR 𝐾-means (𝐾 = 10) 7 - 200 800 61.69
C3LR 𝐾-means (𝐾 = 25) 3 3 200 800 62.68
C3LR 𝐾-means (𝐾 = 25) 7 - 200 800 63.60
C3LR HDBSCAN 3 3 200 800 62.46
C3LR HDBSCAN 7 - 200 800 62.44
C3LR HDBSCAN + 𝑘-rJd 3 2 200 800 63.79
C3LR HDBSCAN + 𝑘-rJd 7 - 200 800 64.81

Table 10.1: Table comparing design choices for C3LR though accuracy (%) on (5-way, 5-shot) classification
tasks. 𝐿 is number of source images, 𝐵 is the total number of images including augmentations. Style: best and
second best.

Table 10.1 shows the performance of C3LRwith 𝐾-means and HDBSCAN as clustering algorithms
of choice. The best performing variant of C3LR is the oracle variant, this variant of the model provided
access to the true labels of the data. The true labels allowed the creation of the ideal cluster centres.
To understand why this is, we shall elaborate on lines 9 and 10 in Algorithm 1. In line 9, HDBSCAN
processes the embeddings and groups them, when we say that an element belongs to cluster 𝐂𝑝 it
also implies that 𝐂𝑝 functions as a predicted label for that element. Instead of using predicted labels,
the oracle variant uses actual labels. Since we know the actual grouping of elements, we can calculate
the ideal cluster centres on line 10. The purpose of the oracle model is to gauge the potential maximum
performance that could be achieved using the training algorithm in question if the model were given
all available label information without changing any other aspects of the training algorithm. It gives
us a theoretical maximum that we know the training regime is capable of reaching. Ideally we want
non-oracle models to be as close as possible to the performance of the oracle variant.

As shown in Table 10.1, the 𝐾-means algorithm has been tested with various values of 𝐾.
We tried values of 𝐾 that seemed reasonable, however the results were not promising and were the
same as that of ProtoCLR. The choice of 𝐾 was kept to at most 25, because we wanted a cluster to
have sufficient samples for the calculation of loss ℒ1. Choosing the ideal value for 𝐾 is also an addi-
tional overhead; for example, a value of 𝐾 that works well with mini-ImageNet may not work well for
tieredImageNet. We were unable to test the combination of 𝐾-means with 𝑘-reciprocal Jaccardian dis-
tance (𝑘-rJd) because the implementation of 𝐾-means in Scikit-learn does not take a custom distance
matrix as input (Pedregosa et al. 2011).

With the shortcomings of 𝐾-means in mind, we wanted to use a smarter clustering algorithm
that could take custom distance matrices and automatically discover the ideal number of clusters in a
given batch of size 𝐵. We decided to explore HDBSCAN (McInnes, Healy, and Astels 2017) as it can
find clusters with variable densities and is also less prone to noise than DBSCAN (Ester et al. 1996;
Schubert et al. 2017).

Choosing HDBSCAN did not immediately pay off; however, we did notice that the performance
of C3LR was more stable with HDBSCAN since we no longer needed to determine the optimal number
of clusters required by trial and error. The stability given to us by HDBSCAN gave us the confidence to
investigate other changes in C3LR that could improve performance. A natural thought was to refine the
neighbourhood of each sample so that it is close to elements that are similar to itself, since this would
allow HDBSCAN to discover better clusters. Therefore, we took inspiration from the method developed
by Ji et al. (2019) and utilised 𝑘-reciprocal Jaccardian distance (𝑘-rJd) based re-ranking of elements
(Zhong et al. 2017). 𝑘-rJd takes into account the reciprocal relationship between data points and is

10.2. Shortcomings of C3LR 63

therefore a stricter rule to measure whether two feature vectors match or not, thereby aiding HDBSCAN
in finding better clusters.

It is well known that both 𝐾-means and HDBSCAN suffer from the curse of dimensionality (Kriegel,
Kröger, and Zimek 2009; McInnes, Healy, and Astels 2017); to mitigate the effects of dimensionality,
we explored the use of UMAP (McInnes, Healy, and Melville 2018) prior to the re-ranking and clustering
steps on the lines 8 − 9. The idea was to apply UMAP to 𝑓𝜙(𝒙) ∈ ℝ1600 and reduce the dimensionality
to ℝ3 or ℝ2. Unfortunately, we did not see significant performance improvements. The results of this
are also given in Table 10.1. The column “UMAP ℝ⋅” refers to the number of UMAP dimensions.

10.2. Shortcomings of C3LR
Although C3LR is better than its competitors, it still has some shortcomings that we shall discuss in this
section.

10.2.1. Unstable Clusters
As discussed in Section 10.1, we decided to use HDBSCAN as it provided a relatively more stable
performance than 𝐾-means. However, HDBSCAN frequently generated massive clusters, as there is
no way to constrain how many elements can be placed in a cluster. This meant that members of certain
clusters were not really similar, leading to a sub-optimal effect of loss ℒ1 on the learning process. From
Section 10.2.2 and Figure 10.1 we can see the sheer amount of points classified as noise hovers
around the 400 mark. It must be noted that C3LR has an effective batch size 𝐵 = 800, this means in
every training iteration roughly half the data was discarded as noise by HDBSCAN. Only the remaining
amount of data played an active role in calculation of ℒ1. Moreover, running the HDBSCAN algorithm
for every batch is a time consuming and computationally heavy process.

5k 10k 15k 20k

Training Iteration
0

100

200

300

400

500

N
oi

se
 C

ou
nt

Figure 10.1: This graph shows the amount of points clustered as noise by HDBSCAN. We can see that roughly
400 points are always classified as noise, even after 20, 000 training iterations.

10.2. Shortcomings of C3LR 64

10.2.2. Partial Compatibility with Gradient Based Learning
A major drawback of C3LR is that the re-ranking and clustering steps are not compatible with gradient
based learning. This means that any operations performed by these steps are not recorded in the
computational graph tracked by PyTorch (Paszke et al. 2019). A computational graph keeps track of
all mathematical operations performed on a variable; during backpropagation this computational graph
is used to calculate the gradients. Due to this, information that is valuable to the model is lost between
lines 8 and 9. The loss ℒ1 is partially able to address this issue, however, it is far from ideal.

Figure 10.2: Two UMAP plots showing the clusters generated by HDBSCAN (McInnes, Healy, and Astels 2017).
Notice the massive yellow (left) and blue (right) clusters, it is unlikely all elements in them are truly similar. Un-
fortunately, due to the variable number of clusters generated by HDBSCAN, the legend is shown as a continuous
colour scale to avoid repetition of colours. Cluster “−1” contains noisy points.

11
SAMPTransfer: Additional Materials

This chapter covers the motivation for SAMPTransfer’s design choices as well as additional experi-
ments with different types of graph neural networks.

Based on the discussion in Chapter 10, there are three main issues with C3LR that we have to
address:

1. There is no constraint on the amount of elements that can be placed within a cluster

2. It is computationally heavy to compute new clusters in each training step

3. Partial compatibility with gradient-based learning hinders the network’s learning ability (previous
knowledge about re-ranking and clustering does not carry over).

These problemswith C3LR formed the basis for certain design choices with respect to SAMPTrans-
fer. In order to tackle problem (1) and (2), we do away with the clustering step and instead rely on
self-attention based message passing (SAMP) to discover and refine features that belong to the same
overarching class. In C3LR, the re-ranking and clustering steps were used to find similar data points in
a batch. The same can be achieved by means of a SAMP layer. SAMP is able to detect similar images
in a batch which replaces clustering and re-ranking. It does this by creating a graph out of the image
embeddings and then running a message-passing step. This also allows it to further refine their fea-
tures to bring them even closer together, which was previously explicitly enforced through a modified
contrastive loss ℒ1 in C3LR. Coming to problem (3), as described in Chapter 6, graph neural networks
are fully compatible with gradient based learning and optimisation.

11.1. Why SAMP?
Table 11.1 shows the performance of three different types of GNNs. Before arriving on SAMP, we also
tested the dynamic edge convolutions (Wang et al. 2019) and LatentGNN (S. Zhang, X. He, and Yan
2019) layers.

Backbone GNN Type Accuracy
Conv4 EdgeConv (2019) 57.76 ± 0.81
Conv4 LatentGNN (2019) 61.07 ± 0.66
Conv4 SAMP 64.67 ± 2.65

Table 11.1: Comparision between three types of GNN layers. Accuracy (% ± std.) values are for (5-way, 5-shot)
mini-ImageNet classification tasks.

We chose the EdgeConv layer because it has the ability to dynamically update the graph at

65

11.1. Why SAMP? 66

(a) CNN features. (b) SAMP refined features.

Figure 11.1: Each point is an image representation that has three neighbours which are its augmentations. The
UMAP plot on the left shows features generated by the Conv4b backbone, the points are clearly more spread
out. The flattened output of the Conv4b backbone are used as input to the SAMP layer. The UMAP plot on the
right generated by using the SAMP layer outputs.

every step. EdgeConv was originally developed to be used in processing 3D point cloud data, where it
was meant to grasp the 3D structure and relations between the points of a scanned item. We expected
it to perform well with image feature vectors; however, due to the data changing too rapidly between
training steps, it proved challenging for the EdgeConv layer to learn the similarities and relationships
between images.

The next layer that we tested was the LatentGNN layer (S. Zhang, X. He, and Yan 2019). It was
developed for the express purpose of modelling non-local contextual relations between visual feature
maps. The key idea is to introduce a latent space to reduce the complexity of the graph, which allows
the use of a low-rank representation for the graph affinity matrix. S. Zhang, X. He, and Yan (2019)
insert this layer at intermediate points in a ResNet-50 and ResNet-101 (K. He, X. Zhang, et al. 2015).
The layer projects square feature maps to latent space as feature vectors and then applies message
passing steps to refine the feature vectors and finally converts them back to square feature maps for
further processing by convolution blocks. Although this layer showed promising results, it requires a
LatentGNN layer to be placed between convolutional layers, making a simple Conv4 unreasonably
complex. However, the results were close enough to C3LR and other competitors that it made natural
sense to explore this direction further.

Ultimately, we arrive at a variant of the graph attention (GAT) layer (Veličković et al. 2018) that
we have coined as SAMP. Layers similar to SAMP have been formulated under various names by (Brody,
Alon, and Yahav 2021; Seidenschwarz, Elezi, and Leal-Taixé 2021), among others. To the best of our
knowledge, no one seems to have used it in the context of unsupervised few-shot learning. It is simpler
to use than LatentGNN (S. Zhang, X. He, and Yan 2019) and with minimal tuning the performance was
within the margin of error of C3LR.

11.1.1. Link with C3LR
In C3LR the re-ranking and clustering steps are used to find similar images in the embedding space and
the loss ℒ1 is used to bring these similar images closer together. In essence, we are looking beyond
single instances by using these two steps. In SAMPTransfer, both these steps can be replaced by a
SAMP layer. Conceptually, a SAMP layer is looking for similar images present in the batch and bringing
them closer together by refining the features of the similar images. It doesn’t need amodified contrastive
loss to do so and instead only needs a standard contrastive loss (T. Chen et al. 2020).

11.2. Shortcomings of SAMPTransfer 67

0
1

(a) UMAP plot of CNN features.

0
1

(b) UMAP plot of SAMP refined features.

Figure 11.2: The figure on the left shows the CNN features of a support and query set from (2-way, 5-shot) task
drawn from the mini-ImageNet validation set. Note that there are 15 query samples per class. The figure on the
right shows the SAMP refined features where we can see two clearly separated clusters of points whereas on the
right there are a few stray orange points. We choose 𝑁 = 2 so that the effect of SAMP is more prominent and
immediately visible.

11.1.2. SAMP in Action
In Figure 11.1 the plot on the right shows image augmentations tightly grouped around the source
image. From this we can infer that the SAMP layer is able to recognise similar images and refine their
features so that they are closer in the representation space.

Similar to Figure 11.1, Figure 11.2 shows the embeddings of a support and query set in a (2-way,
5-shot) task. We can see that the CNN features on the left aren’t as separable, several orange dots are
in the area of the green cluster. However, when the CNN features are passed through a SAMP layer we
can see that clusters form that are almost perfectly separable, indicating that the SAMP layer is working
by looking beyond single instances and has learnt to refine features as required. The legend is not
shown as there 64 classes on the figure.

11.2. Shortcomings of SAMPTransfer
Although SAMPTransfer puts forth an impressive performance, there are still some problems that
need to be addressed.

11.2.1. Reliance on Batch Size
Like other contrastive learning approaches, such as SimCLR (T. Chen et al. 2020), SAMPTransfer
too needs a reasonable batch size to be performant. SimCLR achieves its best performance with a
batch size of 8192 (T. Chen et al. 2020), similarly we too notice that as our batch size is increased from
64 to 128 there is a noticeable benefit. This is because a larger batch size means access to a greater
number of negative pairs that can be used in the contrastive loss. Some methods like MoCo (K. He,
Fan, et al. 2020) and NNCLR (Dwibedi et al. 2021) make use of a memory module that helps reduce
dependence on the batch size.

11.2.2. Loss of Spatial Information
Currently, the SAMP layers work on the flattened feature maps generated by the convolutional encoder.
Although, this design is not inherently wrong it does lose the spatial information present in the 2-d
feature maps. For example, this could be important when working on features extracted from two
images depicting a cat and a bobcat1. Information regarding the specifics about the shape of their ears
or body could all be lost with the flattening operation.
1https://www.nationalgeographic.com/animals/mammals/facts/bobcat

https://www.nationalgeographic.com/animals/mammals/facts/bobcat

11.2. Shortcomings of SAMPTransfer 68

Backbone 𝑝 𝐻 𝐿 𝛽 OT Accuracy

Conv4b 1 4 64 1.0 3 71.42 ± 0.73
Conv4b 1 4 64 0.7 3 71.41 ± 0.71
Conv4 1 4 64 0.7 3 69.61 ± 0.71
Conv4 1 4 64 1.0 3 67.60 ± 0.62
Conv4 1 8 64 1.0 3 63.59 ± 0.68
Conv4b 1 4 128 0.7 3 72.52 ± 0.72
Conv4 1 4 128 0.7 3 68.33 ± 0.71
Conv4 1 4 128 0.0 3 52.81 ± 0.66
Conv4b 1 4 128 0.0 3 72.44 ± 0.69

Resnet-12 1 2 128 0.7 3 69.83 ± 0.71
ResNet-18 1 2 128 0.7 3 70.91 ± 0.69
ResNet-50 1 2 128 0.7 3 74.05 ± 0.64
Resnet-12 1 4 128 0.7 3 71.93 ± 0.73
ResNet-18 1 4 128 0.7 3 71.2 ± 0.68
ResNet-50 1 4 128 0.7 3 73.27 ± 0.68

Table 11.2: Ablation study of various parameters on accuracy.

11.2.3. Poor Scaling with Larger Backbones
We see that SAMPTransfer scales poorly with larger backbones such as ResNet-12, ResNet-18, and
ResNet-50 (K. He, X. Zhang, et al. 2015). The results for these backbones are shown in Table 11.2,
which is a slightly modified table present in Chapter 3. From Table 11.2, we can see that only the largest
ResNet, ResNet-50 manages to outperform a much smaller Conv4b network.

Although it is natural to presume that scaling to a larger backbone would also improve perfor-
mance (K. He, X. Zhang, et al. 2015; Goyal et al. 2021), we see the opposite in action here. We
hypothesise that this could be due to sub-optimal hyperparameters, including the choice of optimiser.
However, due to the lack of time and resources we were unable to extensively investigate this be-
haviour.

12
Conclusions

12.1. Future Work
Based on the limitations of our approaches discussed in Chapter 10 and Chapter 11, we have some fu-
ture directions for future research. One of the simplest directions to explore would be to swap the SAMP
layer in favour of Graph Attention V2 (Brody, Alon, and Yahav 2021) or Non-Parametric Transformers
(Kossen et al. 2021). Both these methods claim to be more powerful than the variety of attention we
are using in SAMP, and it would be interesting to see if these methods can learn to refine embeddings
better than SAMP.

We also think that a memory module would be beneficial for SAMPTransfer, so that it can
learn the manifold of the data space better. Similar to NNCLR (Dwibedi et al. 2021) or MoCo (K. He, X.
Zhang, et al. 2015), SAMPTransfer could access examples that were seen in previous batches and
use it to learn better semantic features. Another related possibility is to use a memory bank to learn
prototypes based on the dataset. With each batch that is seen by the network, this memory bank can be
updated with more representative prototypes. The prototypes can then be used in downstream tasks
and even be fine-tuned if required. Furthermore, we could build a graph based memory system that
can summarise and keep track of relations between seen entities. The summarisation process could
involve storing prototypes as a graph, along with a few (< 5) examples each. These relations can be
exploited during the training or testing process to find the optimal representation or class, respectively.

It is also worth exploring different kinds of pre-text tasks for self-supervision. One particularly
interesting pre-text task would be a form of masked image modelling (K. He, Xinlei Chen, et al. 2022;
Xie et al. 2022) with the aid of graphs. The high-level idea is to make patches out of each of the input
images in the batch and have the network reconstruct it. We continue using the SAMP layer so that the
network learns to reconstruct images by using information available in other images. The hope is that
the network would be forced to look beyond single instances and “borrow” information available from
other images in the batch.

12.2. Conclusion
Inspired by the humanmind’s propensity to quickly learn rich representations and relationships between
known and unknown elements, this body of work introduces two novel ideas for self-supervised few-
shot learning namely SAMPTransfer and C3LR.

C3LR looks beyond single instances by incorporating class cognisance through: (i) an unsuper-
vised iterative re-ranking and clustering step, followed by (ii) an adjusted optimisation loss formulation.
We demonstrate that our proposed approach (C3LR) offers considerable performance improvement
over its predecessor ProtoTransfer in both in-domain benchmarks like mini-ImageNet and Omniglot.
C3LR also showcases competitive performance on the more challenging cross-domain few-shot learn-

69

12.2. Conclusion 70

ing (CDFSL) benchmark.

While in SAMPTransfer, the proposed method utilises a variant of the graph attention network
that we call SAMP in a contrastive learning scheme. The SAMP layer helps the model look beyond a
single instance and find other similar items in an entire batch and jointly refine their embeddings. SAMP
allows the model to extract richer semantic information across multiple images present in a mini-batch.
Unlike C3LR, SAMPTransfer no longer requires the re-ranking and clustering steps, making it more
computationally efficient. Furthermore, SAMPTransfer also proposes the use of OpT-Tune, an opti-
mal transport based task adaptation framework which helps in aligning support and query embeddings
during test time without requiring any trainable parameters. With OpT-Tune, we prove that fine-tuning
does not have to be unremarkable, instead it can play an active role in elevating the robustness of a
pre-trained network.

Through SAMPTransfer and C3LR, we have successfully shown that unsupervised few-shot
learning can match the performance some of latest supervised methods. By having these approaches
look beyond single instances, we mimicked a form of the human learning process and applied it to the
unsupervised few-shot learning problem. With both these methods, we firmly believe to have taken a
step forward in the long and arduous journey to close the gap between human and machine.

Bibliography

[1] Gaspard Monge. “Mémoire sur la théorie des déblais et des remblais”. In: Mem. Math. Phys.
Acad. Royale Sci. (1781), pp. 666–704 (cit. on p. 56).

[2] Frank L Hitchcock. “The distribution of a product from several sources to numerous localities”. In:
Journal of mathematics and physics 20.1-4 (1941), pp. 224–230 (cit. on pp. 58, 59).

[3] Leonid Kantorovich. “On the transfer of masses (in Russian)”. In: Doklady Akademii Nauk 37.2
(1942), pp. 227–229 (cit. on pp. 57, 58).

[4] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous ac-
tivity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133 (cit. on pp. 22, 24,
26).

[5] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The annals of
mathematical statistics 22 (3 Sept. 1951), pp. 400–407. ISSN: 0003-4851. DOI: 10.1214/
AOMS / 1177729586. URL: https : / / projecteuclid . org / journals / annals - of -
mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-
Method/10.1214/aoms/1177729586.full (cit. on p. 26).

[6] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regression Function”. In:
The annals of mathematical statistics 23 (3 Sept. 1952), pp. 462–466. ISSN: 0003-4851. DOI:
10.1214/AOMS/1177729392. URL: https://projecteuclid- org.tudelft.idm.
oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-
3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.
1214/aoms/1177729392.full%20https://projecteuclid- org.tudelft.idm.
oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-
3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.
1214/aoms/1177729392.short (cit. on p. 26).

[7] Richard Sinkhorn and Paul Knopp. “Concerning nonnegative matrices and doubly stochastic
matrices”. In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–348. ISSN: 00308730. DOI:
10.2140/PJM.1967.21.343 (cit. on p. 60).

[8] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural network”. In: Biological
Cybernetics 1975 20:3 20 (3 Sept. 1975), pp. 121–136. ISSN: 1432-0770. DOI: 10.1007/
BF00342633. URL: https://link-springer-com.tudelft.idm.oclc.org/article/
10.1007/BF00342633 (cit. on pp. 23, 29).

[9] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition”. In: Competition and cooperation in neural nets.
Springer, 1982, pp. 267–285 (cit. on p. 29).

[10] Charles A. Micchelli. “Interpolation of scattered data: Distance matrices and conditionally positive
definite functions”. In: Constructive Approximation 1986 2:1 2 (1 Dec. 1986), pp. 11–22. ISSN:
1432-0940. DOI: 10.1007/BF01893414. URL: https://link-springer-com.tudelft.
idm.oclc.org/article/10.1007/BF01893414 (cit. on p. 26).

[11] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by
back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 27).

[12] Jurgen Schmidhuber. “Evolutionary Principles in Self-Referential Learning. On Learning now to
Learn: The Meta-Meta-Meta...-Hook”. Diploma Thesis. Technische Universitat Munchen, Ger-
many, 14 May 1987. URL: http://www.idsia.ch/~juergen/diploma.html (cit. on
p. 50).

[13] Steven Pinker and Alan Prince. “On language and connectionism: Analysis of a parallel dis-
tributed processing model of language acquisition”. In: Cognition 28 (1-2 Mar. 1988), pp. 73–
193. ISSN: 0010-0277. DOI: 10.1016/0010-0277(88)90032-7 (cit. on p. 23).

[14] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of Con-
trol, Signals and Systems 1989 2:4 2 (4 Dec. 1989), pp. 303–314. ISSN: 1435-568X. DOI: 10.

71

https://doi.org/10.1214/AOMS/1177729586
https://doi.org/10.1214/AOMS/1177729586
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://doi.org/10.1214/AOMS/1177729392
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.full%20https://projecteuclid-org.tudelft.idm.oclc.org/journals/annals-of-mathematical-statistics/volume-23/issue-3/Stochastic-Estimation-of-the-Maximum-of-a-Regression-Function/10.1214/aoms/1177729392.short
https://doi.org/10.2140/PJM.1967.21.343
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/BF00342633
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF00342633
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF00342633
https://doi.org/10.1007/BF01893414
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF01893414
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF01893414
http://www.idsia.ch/~juergen/diploma.html
https://doi.org/10.1016/0010-0277(88)90032-7
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Bibliography 72

1007/BF02551274. URL: https://link-springer-com.tudelft.idm.oclc.org/
article/10.1007/BF02551274 (cit. on p. 26).

[15] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural Com-
putation 1 (4 Dec. 1989), pp. 541–551. ISSN: 0899-7667. DOI: 10.1162/NECO.1989.1.4.541
(cit. on p. 29).

[16] Yann Brenier. “Polar factorization and monotone rearrangement of vector-valued functions”. In:
Communications on Pure and Applied Mathematics 44.4 (June 1991), pp. 375–417. ISSN: 1097-
0312. DOI: 10.1002/CPA.3160440402. URL: https://onlinelibrary-wiley-com.
tudelft . idm . oclc . org / doi / full / 10 . 1002 / cpa . 3160440402 % 20https : / /
onlinelibrary- wiley- com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.
3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/
10.1002/cpa.3160440402 (cit. on p. 57).

[17] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural Networks
4 (2 Jan. 1991), pp. 251–257. ISSN: 0893-6080. DOI: 10.1016/0893-6080(91)90009-T
(cit. on p. 26).

[18] Gary F Marcus et al. “Overregularization in language acquisition”. In: Monographs of the society
for research in child development (1992), pp. i–178 (cit. on p. 4).

[19] Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial databases
with noise.” In: kdd. Vol. 96. 34. 1996, pp. 226–231 (cit. on p. 62).

[20] Zhu Xiaojin and Ghahramani Zoubin. “Learning from labeled and unlabeled data with label propa-
gation”. In: Tech. Rep., Technical Report CMU-CALD-02–107, Carnegie Mellon University (2002)
(cit. on p. 49).

[21] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on pp. 4, 29).

[22] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. “Clustering High-Dimensional Data: A Survey
on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering”. In: ACM Trans.
Knowl. Discov. Data 3.1 (Mar. 2009). ISSN: 1556-4681. DOI: 10.1145/1497577.1497578.
URL: https://doi-org.tudelft.idm.oclc.org/10.1145/1497577.1497578 (cit. on
p. 63).

[23] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830 (cit. on p. 62).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by F.
Pereira et al. Vol. 25. Curran Associates, Inc., 2012. URL: https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b- Paper.pdf (cit. on
pp. 29, 53).

[25] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances
in neural information processing systems 26 (2013) (cit. on pp. 59, 60).

[26] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional Networks”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 8689 LNCS (PART 1 Nov. 2013), pp. 818–833. ISSN:
16113349. DOI: 10.48550/arxiv.1311.2901. URL: https://arxiv.org/abs/1311.
2901v3 (cit. on p. 33).

[27] Kaiming He, Xiangyu Zhang, et al. “Deep Residual Learning for Image Recognition”. In: (Dec.
2015). URL: http://arxiv.org/abs/1512.03385 (cit. on pp. 53, 66, 68, 69).

[28] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level concept
learning through probabilistic program induction”. In: Science 350.6266 (Dec. 2015), pp. 1332–
1338. ISSN: 10959203. DOI: 10.1126/SCIENCE.AAB3050/SUPPL{_}FILE/LAKE-SM.
PDF. URL: https://www.science.org (cit. on p. 3).

[29] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization Methods for Large-Scale Ma-
chine Learning”. In: (June 2016). DOI: 10.48550/arxiv.1606.04838. URL: https://
arxiv.org/abs/1606.04838 (cit. on p. 28).

[30] Xi Chen et al. “Infogan: Interpretable representation learning by information maximizing genera-
tive adversarial nets”. In: Advances in neural information processing systems 29 (2016) (cit. on
p. 53).

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF02551274
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF02551274
https://doi.org/10.1162/NECO.1989.1.4.541
https://doi.org/10.1002/CPA.3160440402
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/cpa.3160440402
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/cpa.3160440402
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/cpa.3160440402
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/cpa.3160440402
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/cpa.3160440402%20https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/cpa.3160440402
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1145/1497577.1497578
https://doi-org.tudelft.idm.oclc.org/10.1145/1497577.1497578
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/arxiv.1311.2901
https://arxiv.org/abs/1311.2901v3
https://arxiv.org/abs/1311.2901v3
http://arxiv.org/abs/1512.03385
https://doi.org/10.1126/SCIENCE.AAB3050/SUPPL{_}FILE/LAKE-SM.PDF
https://doi.org/10.1126/SCIENCE.AAB3050/SUPPL{_}FILE/LAKE-SM.PDF
https://www.science.org
https://doi.org/10.48550/arxiv.1606.04838
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1606.04838

Bibliography 73

[31] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learning”. In: arXiv
preprint arXiv:1605.09782 (2016) (cit. on p. 53).

[32] Vincent Dumoulin, Francesco Visin, and George E P Box. “A guide to convolution arithmetic for
deep learning”. In: (Mar. 2016). DOI: 10.48550/arxiv.1603.07285. URL: https://arxiv.
org/abs/1603.07285v2 (cit. on pp. 31, 32).

[33] IanGoodfellow, Yoshua Bengio, and AaronCourville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016 (cit. on pp. 27, 44).

[34] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional net-
works”. In: arXiv preprint arXiv:1609.02907 (2016) (cit. on p. 40).

[35] Michael Eickenberg et al. “Seeing it all: Convolutional network layers map the function of the
human visual system”. In: NeuroImage 152 (May 2017), pp. 184–194. ISSN: 1053-8119. DOI:
10.1016/J.NEUROIMAGE.2016.10.001 (cit. on p. 29).

[36] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adapta-
tion of deep networks”. In: International conference on machine learning. PMLR. 2017, pp. 1126–
1135 (cit. on pp. 49–51, 53).

[37] Leland McInnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density based clustering.”
In: J. Open Source Softw. 2.11 (2017), p. 205 (cit. on pp. 61–64).

[38] Erich Schubert et al. “DBSCAN revisited, revisited: why and how you should (still) use DBSCAN”.
In: ACM Transactions on Database Systems (TODS) 42.3 (2017), pp. 1–21 (cit. on p. 62).

[39] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot learning”. In:
Advances in neural information processing systems 30 (2017) (cit. on pp. 52, 55).

[40] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017) (cit. on pp. 37, 38, 41).

[41] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing systems 30
(2017) (cit. on p. 36).

[42] Zhun Zhong et al. “Re-ranking person re-identification with k-reciprocal encoding”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 1318–1327
(cit. on pp. 61, 62).

[43] Antreas Antoniou, Harrison Edwards, and Amos Storkey. “How to train your MAML”. In: arXiv
preprint arXiv:1810.09502 (2018) (cit. on p. 51).

[44] David Berthelot et al. “Understanding and improving interpolation in autoencoders via an adver-
sarial regularizer”. In: arXiv preprint arXiv:1807.07543 (2018) (cit. on p. 53).

[45] Mathilde Caron, Piotr Bojanowski, et al. “Deep clustering for unsupervised learning of visual fea-
tures”. In: Proceedings of the European conference on computer vision (ECCV). 2018, pp. 132–
149 (cit. on p. 53).

[46] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised representation learning by
predicting image rotations”. In: arXiv preprint arXiv:1803.07728 (2018) (cit. on p. 44).

[47] Kyle Hsu, Sergey Levine, and Chelsea Finn. “Unsupervised learning via meta-learning”. In: arXiv
preprint arXiv:1810.02334 (2018) (cit. on pp. 49, 53).

[48] Ilya Kuzovkin et al. “Activations of deep convolutional neural networks are aligned with gamma
band activity of human visual cortex”. In: Communications Biology 2018 1:1 1 (1 Aug. 2018),
pp. 1–12. ISSN: 2399-3642. DOI: 10.1038/S42003-018-0110-Y. URL: https://www-
nature-com.tudelft.idm.oclc.org/articles/s42003-018-0110-y (cit. on p. 29).

[49] Yanbin Liu et al. “Learning to propagate labels: Transductive propagation network for few-shot
learning”. In: arXiv preprint arXiv:1805.10002 (2018) (cit. on p. 49).

[50] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold approximation and
projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426 (2018) (cit. on p. 63).

[51] Ryan L. Murphy et al. “Janossy Pooling: Learning Deep Permutation-Invariant Functions for
Variable-Size Inputs”. In: 7th International Conference on Learning Representations, ICLR 2019
(Nov. 2018). URL: https://arxiv.org/abs/1811.01900v3 (cit. on pp. 34, 35).

[52] Victor Garcia Satorras and Joan Bruna Estrach. “Few-Shot Learning with Graph Neural Net-
works”. In: International Conference on Learning Representations. 2018. URL: https://openreview.
net/forum?id=BJj6qGbRW (cit. on p. 49).

[53] Petar Veličković et al. “Graph Attention Networks”. In: International Conference on Learning Rep-
resentations. 2018. URL: https://openreview.net/forum?id=rJXMpikCZ (cit. on pp. 40,
41, 66).

https://doi.org/10.48550/arxiv.1603.07285
https://arxiv.org/abs/1603.07285v2
https://arxiv.org/abs/1603.07285v2
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/J.NEUROIMAGE.2016.10.001
https://doi.org/10.1038/S42003-018-0110-Y
https://www-nature-com.tudelft.idm.oclc.org/articles/s42003-018-0110-y
https://www-nature-com.tudelft.idm.oclc.org/articles/s42003-018-0110-y
https://arxiv.org/abs/1811.01900v3
https://openreview.net/forum?id=BJj6qGbRW
https://openreview.net/forum?id=BJj6qGbRW
https://openreview.net/forum?id=rJXMpikCZ

Bibliography 74

[54] Antreas Antoniou and Amos Storkey. “Assume, augment and learn: Unsupervised few-shot meta-
learning via random labels and data augmentation”. In: arXiv preprint arXiv:1902.09884 (2019)
(cit. on p. 49).

[55] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. “Self-labelling via simultaneous
clustering and representation learning”. In: arXiv preprint arXiv:1911.05371 (2019) (cit. on p. 60).

[56] Guneet SDhillon et al. “A baseline for few-shot image classification”. In: arXiv preprint arXiv:1909.02729
(2019) (cit. on pp. 49, 54).

[57] Zilong Ji et al. “Unsupervised few-shot learning via self-supervised training”. In: arXiv preprint
arXiv:1912.12178 (2019) (cit. on pp. 49, 62).

[58] Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. “Unsupervised meta-learning for few-
shot image classification”. In: Advances in neural information processing systems 32 (2019) (cit.
on pp. 49, 54).

[59] Jongmin Kim et al. “Edge-labeling graph neural network for few-shot learning”. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 11–20 (cit. on
p. 49).

[60] Juho Lee et al. “Set Transformer: A Framework for Attention-Based Permutation-Invariant Neural
Networks”. In: International Conference on Machine Learning (ICML) (2019) (cit. on p. 36).

[61] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf (cit. on p. 64).

[62] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport: With applications to data
science”. In: Foundations and Trends® in Machine Learning 11.5-6 (2019), pp. 355–607 (cit. on
pp. 57, 58).

[63] Yue Wang et al. “Dynamic graph cnn for learning on point clouds”. In: Acm Transactions On
Graphics (tog) 38.5 (2019), pp. 1–12 (cit. on p. 65).

[64] Songyang Zhang, XumingHe, and Shipeng Yan. “Latentgnn: Learning efficient non-local relations
for visual recognition”. In: International Conference onMachine Learning. PMLR. 2019, pp. 7374–
7383 (cit. on pp. 65, 66).

[65] Malik Boudiaf et al. “Information maximization for few-shot learning”. In: Advances in Neural In-
formation Processing Systems 33 (2020), pp. 2445–2457 (cit. on pp. 49, 54).

[66] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901 (cit. on pp. 3, 4).

[67] Mathilde Caron, IshanMisra, et al. “Unsupervised learning of visual features by contrasting cluster
assignments”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 9912–9924
(cit. on pp. 4, 43, 60).

[68] Ting Chen et al. “A simple framework for contrastive learning of visual representations”. In: In-
ternational conference on machine learning. PMLR. 2020, pp. 1597–1607 (cit. on pp. 45, 66,
67).

[69] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale”. In: (Oct. 2020). DOI: 10.48550/arxiv.2010.11929. URL: https://arxiv.org/
abs/2010.11929v2 (cit. on pp. 29, 53).

[70] Vijay PrakashDwivedi and Xavier Bresson. “AGeneralization of Transformer Networks toGraphs”.
In: (Dec. 2020). DOI: 10.48550/arxiv.2012.09699. URL: https://arxiv.org/abs/
2012.09699v2 (cit. on p. 38).

[71] Leo Gao et al. “The pile: An 800gb dataset of diverse text for language modeling”. In: arXiv
preprint arXiv:2101.00027 (2020) (cit. on p. 4).

[72] Kaiming He, Haoqi Fan, et al. “Momentum contrast for unsupervised visual representation learn-
ing”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 9729–9738 (cit. on p. 67).

[73] Carlos Medina, Arnout Devos, and Matthias Grossglauser. “Self-supervised prototypical transfer
learning for few-shot classification”. In: arXiv preprint arXiv:2006.11325 (2020) (cit. on pp. 49,
54).

[74] Yonglong Tian et al. “Rethinking few-shot image classification: a good embedding is all you need?”
In: European Conference on Computer Vision. Springer. 2020, pp. 266–282 (cit. on pp. 49, 54).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/arxiv.2010.11929
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/abs/2010.11929v2
https://doi.org/10.48550/arxiv.2012.09699
https://arxiv.org/abs/2012.09699v2
https://arxiv.org/abs/2012.09699v2

Bibliography 75

[75] Ling Yang et al. “Dpgn: Distribution propagation graph network for few-shot learning”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 13390–
13399 (cit. on p. 49).

[76] Imtiaz Ziko et al. “Laplacian regularized few-shot learning”. In: International conference on ma-
chine learning. PMLR. 2020, pp. 11660–11670 (cit. on pp. 49, 54).

[77] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention networks?” In: arXiv
preprint arXiv:2105.14491 (2021) (cit. on pp. 38, 40, 66, 69).

[78] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges”. In: (2021). URL: http://arxiv.org/abs/2104.13478 (cit. on pp. 38–40).

[79] Da Chen et al. “Self-supervised learning for few-shot image classification”. In: ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2021, pp. 1745–1749 (cit. on pp. 49, 54).

[80] RonyChow.Yann Lecun: An early AI prophet. Dec. 2021. URL: https://www.historyofdatascience.
com/yann-lecun/ (cit. on p. 29).

[81] Debidatta Dwibedi et al. “With a little help from my friends: Nearest-neighbor contrastive learning
of visual representations”. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2021, pp. 9588–9597 (cit. on pp. 67, 69).

[82] Priya Goyal et al. “Self-supervised Pretraining of Visual Features in the Wild”. In: (Mar. 2021).
DOI: 10.48550/arxiv.2103.01988. URL: https://arxiv.org/abs/2103.01988v2
(cit. on pp. 4, 43, 68).

[83] Yuqing Hu, Vincent Gripon, and Stéphane Pateux. “Leveraging the feature distribution in transfer-
based few-shot learning”. In: International Conference on Artificial Neural Networks. Springer.
2021, pp. 487–499 (cit. on p. 60).

[84] Jannik Kossen et al. “Self-Attention Between Datapoints: Going Beyond Individual Input-Output
Pairs in Deep Learning”. In: arXiv:2106.02584 (2021) (cit. on p. 69).

[85] Dong Bok Lee et al. “Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning”.
In: ICLR. 2021 (cit. on p. 49).

[86] GraceW. Lindsay. “Convolutional Neural Networks as aModel of the Visual System: Past, Present,
and Future”. In: Journal of Cognitive Neuroscience 33 (10 Sept. 2021), pp. 2017–2031. ISSN:
0898-929X. DOI: 10.1162/JOCN_A_01544. URL: https://direct-mit-edu.tudelft.
idm . oclc . org / jocn / article / 33 / 10 / 2017 / 97402 / Convolutional - Neural -
Networks-as-a-Model-of-the (cit. on p. 29).

[87] Jenny Denise Seidenschwarz, Ismail Elezi, and Laura Leal-Taixé. “Learning intra-batch connec-
tions for deep metric learning”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 9410–9421 (cit. on p. 66).

[88] Thalles Santos Silva. “A Few Words on Representation Learning”. In: https://sthalles.github.io
(2021). URL: https://sthalles.github.io/a-few-words-on-representation-
learning/ (cit. on p. 46).

[89] Aston Zhang et al. “Dive into Deep Learning”. In: arXiv preprint arXiv:2106.11342 (2021) (cit. on
p. 25).

[90] Aaron Daniel Cohen et al. “LaMDA: Language Models for Dialog Applications”. In: (2022) (cit. on
p. 3).

[91] Debasmit Das, Sungrack Yun, and Fatih Porikli. “ConFeSS: A Framework for Single Source
Cross-Domain Few-Shot Learning”. In: International Conference on Learning Representations.
2022. URL: https://openreview.net/forum?id=zRJu6mU2BaE (cit. on pp. 49, 54).

[92] Kaiming He, Xinlei Chen, et al. “Masked autoencoders are scalable vision learners”. In: Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. 2022, pp. 16000–
16009 (cit. on p. 69).

[93] Edward Wagstaff et al. “Universal approximation of functions on sets”. In: Journal of Machine
Learning Research 23.151 (2022), pp. 1–56 (cit. on pp. 35, 36).

[94] Zhenda Xie et al. “Simmim: A simple framework for masked image modeling”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 9653–9663
(cit. on p. 69).

[95] Han-Jia Ye, Lu Han, and De-Chuan Zhan. “Revisiting Unsupervised Meta-Learning via the Char-
acteristics of Few-Shot Tasks”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-

http://arxiv.org/abs/2104.13478
https://www.historyofdatascience.com/yann-lecun/
https://www.historyofdatascience.com/yann-lecun/
https://doi.org/10.48550/arxiv.2103.01988
https://arxiv.org/abs/2103.01988v2
https://doi.org/10.1162/JOCN_A_01544
https://direct-mit-edu.tudelft.idm.oclc.org/jocn/article/33/10/2017/97402/Convolutional-Neural-Networks-as-a-Model-of-the
https://direct-mit-edu.tudelft.idm.oclc.org/jocn/article/33/10/2017/97402/Convolutional-Neural-Networks-as-a-Model-of-the
https://direct-mit-edu.tudelft.idm.oclc.org/jocn/article/33/10/2017/97402/Convolutional-Neural-Networks-as-a-Model-of-the
https://sthalles.github.io/a-few-words-on-representation-learning/
https://sthalles.github.io/a-few-words-on-representation-learning/
https://openreview.net/forum?id=zRJu6mU2BaE

Bibliography 76

gence (2022), pp. 1–1. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2022.3179368. URL: https:
//ieeexplore.ieee.org/document/9786650/ (cit. on p. 49).

[96] Tianyuan Yu et al. “Hybrid Graph Neural Networks for Few-Shot Learning”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 36. 3. 2022, pp. 3179–3187 (cit. on p. 49).

https://doi.org/10.1109/TPAMI.2022.3179368
https://ieeexplore.ieee.org/document/9786650/
https://ieeexplore.ieee.org/document/9786650/

	Notation
	Introduction
	Scientific Article 1 (C3LR)
	Scientific Article 2 (SAMPTransfer)
	Deep Learning
	Deep Feedforward Networks
	Activation Functions
	Loss Function
	Softmax
	Softmax and Cross-Entropy Loss
	Softmax vs Sigmoid

	Universal Approximation Theory
	Optimisation and Backpropagation
	Gradient Descent
	Backpropagation

	Convolutional Neural Networks
	Convolution
	Pooling
	Kernels as Feature Extractors

	Basics of Geometric Deep Learning and Graph Neural Networks
	Graphs
	Janossy Pooling
	A More Efficient Janossy Pooling
	Deep Sets
	Modelling Relations and Interactions

	Janossy Pooling and Self-Attention
	Query, Key and Value

	Graph Neural Networks

	Self Supervised Learning
	Representation Learning
	Self-supervision with Images
	Contrastive Representation Learning
	SimCLR

	Few-Shot Learning
	Formalising the Few-Shot Learning Problem
	Model Agnostic Meta Learning (MAML)
	Meta-training

	Prototypical Networks
	Re-interpretation of the Prototypical Classifier as a Linear Model

	Unsupervised Few-Shot Learning
	CACTUs
	UMTRA
	ProtoTransfer

	Optimal Transport
	A brief historical context of Optimal Transport
	Discrete Optimal Transport
	Asssignment Problem
	Working with Asymmetric Distributions
	The Kantorovich relaxation
	Entropic Regularisation
	Sinkhorn-Knopp Algorithm

	C3LR: Additional Materials
	Choice of Clustering Algorithm
	Shortcomings of C3LR
	Unstable Clusters
	Partial Compatibility with Gradient Based Learning

	SAMPTransfer: Additional Materials
	Why SAMP?
	Link with C3LR
	SAMP in Action

	Shortcomings of SAMPTransfer
	Reliance on Batch Size
	Loss of Spatial Information
	Poor Scaling with Larger Backbones

	Conclusions
	Future Work
	Conclusion

