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Abstract

This work addresses cross-view camera pose estimation,
i.e., determining the 3-Degrees-of-Freedom camera pose of
a given ground-level image w.r.t. an aerial image of the lo-
cal area. We propose SliceMatch, which consists of ground
and aerial feature extractors, feature aggregators, and a
pose predictor. The feature extractors extract dense features
from the ground and aerial images. Given a set of can-
didate camera poses, the feature aggregators construct a
single ground descriptor and a set of pose-dependent aerial
descriptors. Notably, our novel aerial feature aggregator
has a cross-view attention module for ground-view guided
aerial feature selection and utilizes the geometric projec-
tion of the ground camera’s viewing frustum on the aerial
image to pool features. The efficient construction of aerial
descriptors is achieved using precomputed masks. Slice-
Match is trained using contrastive learning and pose es-
timation is formulated as a similarity comparison between
the ground descriptor and the aerial descriptors. Compared
to the state-of-the-art, SliceMatch achieves a 19% lower
median localization error on the VIGOR benchmark using
the same VGG16 backbone at 150 frames per second, and
a 50% lower error when using a ResNet50 backbone.

1. Introduction

Cross-view camera pose estimation aims to estimate the

3-Degrees-of-Freedom (3-DoF) ground camera pose, i.e.,

planar location and orientation, by comparing the captured

ground-level image to a geo-referenced overhead aerial im-

age containing the camera’s local surroundings. In prac-

tice, the local aerial image can be obtained from a reference

database using any rough localization prior, e.g., Global

Navigation Satellite Systems (GNSS), image retrieval [19],

or dead reckoning [13]. However, this prior is not nec-

essarily accurate, for example, GNSS can contain errors

up to tens of meters in urban canyons [2, 48, 49]. The

cross-view formulation provides a promising alternative to

* indicates equal contribution.
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Figure 1. SliceMatch identifies for a ground-level image (a) its
camera’s 3-DoF pose within a corresponding aerial image (b).
It divides the camera’s Horizontal Field-of-View (HFoV) into

‘slices’, i.e., vertical regions in (a). After self-attention, our novel

aggregation step (c) applies cross-view attention to create ground

slice-specific aerial feature maps. To efficiently test many candi-

date poses, the slice features are aggregated using pose-dependent

aerial slice masks that represent the camera’s sliced HFoV at that

pose. The slice masks for each pose are precomputed. All aerial

pose descriptors are compared to the ground descriptor, resulting

in a dense scoring map (d). Our output is the best-scoring pose.

ground-level camera pose estimation techniques that require

detailed 3D point cloud maps [31] or semantic maps [3,43],

since the aerial imagery provides continuous coverage of

the Earth’s surface including the area where accurate point

clouds are difficult to collect. Moreover, acquiring up-to-

date aerial imagery is less costly than maintaining and up-

dating large-scale 3D point clouds or semantics maps.

Recently, several works have addressed cross-view cam-

era localization [55] or 3-DoF pose estimation [33, 36,

44, 50]. Roughly, those methods can be categorized into

global image descriptor-based [50, 55] and dense pixel-

level feature-based [33, 36, 44] methods. Global descriptor-

based methods take advantage of the compactness of the

image representation and often have relatively fast infer-

ence time [50, 55]. Dense pixel-level feature-based meth-
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ods [33, 36, 44] are potentially more accurate as they pre-

serve more details in the image representation. They use

the geometric relationship between the ground and aerial

view to project features across views and estimate the cam-

era pose via computationally expensive iterations. Aiming

for both accurate and efficient camera pose estimation, in

this work, we improve the global descriptor-based approach

and enforce feature locality in the descriptor.

We observe several limitations in existing global

descriptor-based cross-view camera pose estimation meth-

ods [50,55]. First, they rely on the aerial encoder to encode

all spatial context and the aerial encoder has to learn how

to aggregate local information, e.g., via the SAFA mod-

ule [34], into the global descriptor, without accessing the

information in the ground view or exploiting geometric con-

straints between the ground-camera viewing frustum and

the aerial image. Second, existing global descriptor-based

methods for cross-view localization [50, 55] do not explic-

itly consider the orientation of the ground camera in their

descriptor construction. As a result, they either do not esti-

mate the orientation [55] or require multiple forward passes

on different rotated samples to infer the orientation [50].

Third, existing global descriptors-based methods [50, 55]

are not trained discriminatively against different orienta-

tions. Therefore, the learned features may be less discrimi-

native for orientation prediction.

To address the observed gaps, we devise a novel, accu-

rate, and efficient method for cross-view camera pose es-

timation called SliceMatch (see Figure 1). Its novel aerial

feature aggregation explicitly encodes directional informa-

tion and pools features using known camera geometry to ag-

gregate the extracted aerial features into an aerial global de-

scriptor. The proposed aggregation step ‘slices’ the ground

Horizontal Field-of-View (HFoV) into orientation-specific

descriptors. For each pose in a set of candidates, it aggre-

gates the extracted aerial features into corresponding aerial

slice descriptors. The aggregation uses cross-view attention

to weigh aerial features w.r.t. to the ground descriptor, and

exploits the geometric constraint that every vertical slice in

the ground image corresponds to an azimuth range extrud-

ing from the projected ground camera position in the aerial

image. The feature extraction is done only once for con-

structing the descriptors for all pose candidates, resulting in

fast training and inference speed. We contrastively train the

model by pairing the ground image descriptor with aerial

descriptors at different locations and orientations. Hence,

the model learns to extract discriminative features for both

localization and orientation estimation.

Contributions: i) A novel aerial feature aggregation

step that uses a cross-view attention module for ground-

view guided aerial feature selection, and the geometric rela-

tionship between the ground camera’s viewing frustum and

the aerial image to construct pose-dependent aerial descrip-

tors. ii) SliceMatch’s design allows for efficient implemen-

tation, which runs significantly faster than previous state-of-

the-art methods. Namely, for an input ground-aerial image

pair, SliceMatch extracts dense features only once, aggre-

gates aerial descriptors at a set of poses without extra com-

putation, and compares the aerial descriptor of each pose

with the ground descriptor. iii) Compared to the previous

state-of-the-art global descriptor-based cross-view camera

pose estimation method, SliceMatch constructs orientation-

aware descriptors and adopts contrastive learning for both

locations and orientations. Powered by the above designs,

SliceMatch sets the new state-of-the-art for cross-view pose

estimation on two commonly used benchmarks.

2. Related Work
Here, we review the work most related to SliceMatch.

Cross-view image retrieval is the task of finding match-

ing aerial image patches from a reference database for a

query ground image. The location of the retrieved aerial

patch can be used as a localization estimate for the query

image [17, 46, 47]. In general, this task is done by creating

a global image descriptor for the query ground image and

each reference aerial patch [10,18,21,34,37,40,51,54,55].

Different approaches have been proposed to build discrim-

inative descriptors. CVM-Net [10] uses NetVLAD [1] to

build viewpoint invariant descriptors. In [34], spatial at-

tention modules are used to extract corresponding features

across views. L2TLR [51] exploits the positional encoding

of Transformers [41] to learn geometric correspondences

between the ground and aerial view. TransGeo [53] uses

attention-guided non-uniform cropping to only pay atten-

tion to informative regions in Transformers. Apart from ad-

vanced architectures, several works [16, 26, 34, 36, 40] have

tried to synthesize one view using another to bridge the do-

main gap between the ground and aerial images. Besides,

some works [34, 38, 45] use the geometric relationship be-

tween vertical lines in the ground image and azimuth di-

rections in the aerial image to ease the learning or to esti-

mate the orientation of the ground camera [35, 36, 54]. A

few works have tried to explicitly enforce feature locality

in global representations [29, 45], but they assume that the

camera is located at the center of the aerial image. This lim-

its the generalization of these methods to pose estimation.

Cross-view camera pose estimation works [33, 36, 42,

50, 55] go a step further than retrieval and aim to deter-

mine the location and orientation of the ground camera in

the matching aerial image. A landmark graph matching-

based method is used in [42], but a separate object detec-

tor is needed. In [52], the semantic segmentation of the

ground-level image is compared to the ground-level seman-

tic map predicted from the aerial image for estimating the

location and orientation of the ground camera. Recently,

[55] proposes a model that first retrieves an aerial image
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for a query image and then uses a multilayer perceptron to

regress the query’s location using the global image descrip-

tors. Later, [50] formulates the localization problem as a

multi-class classification problem and their model produces

a dense multi-modal distribution to capture localization am-

biguity. [33] projects the dense aerial features to ground

perspective view based on homography and iteratively esti-

mates the ground camera pose using Levenberg–Marquardt

algorithm [15, 22]. However, the iterative process is com-

putationally expensive (e.g. ∼ 2 frames per second [33])

and it requires an accurate initial estimate to converge to

a good local optimum. In [44], the ground image is fused

with LiDAR data for iterative pose estimation. [36] samples

aerial patches in the retrieved aerial image and applies a pro-

jective transformation on each sampled patch. Localization

is achieved by selecting the location of the patch with the

highest similarity to the ground image in the feature space.

However, the computation increases linearly with the num-

ber of sampled locations. Lastly, [11] estimates only the

orientation using the known location of the ground camera

in the aerial image. So far, existing end-to-end methods are

either global image descriptor-based [50, 55] or dense local

feature-based [11, 33, 36, 44]. We argue that enforcing the

right amount of feature locality in global image descriptors

can be a promising direction toward the accuracy and run-

time requirements of autonomous driving [27].

Bridging ground and aerial views is relevant in many

other research directions. For example, ground-to-Bird’s-

Eye-View (BEV) semantic mapping [25,28,30] tries to map

the semantics in the ground perspective view to BEV given

the known ground camera pose and intrinsics. [28] intro-

duces a dense Transformer layer to condense the ground im-

age features along the vertical dimension and then predicts

features along the depth axis in a polar coordinate system.

[25] lifts the ground features along the depth dimension and

then projects them to BEV. In [30], a Transformer is used

for the ground image column-to-BEV polar ray mapping. A

few works [20,32] synthesize ground-level panoramas from

aerial images. All aforementioned works utilize the geo-

metric relationship between the ground-level camera’s frus-

tum and BEV. Indoor localization using floor maps [8,9,23]

is also a relevant research direction. LaLaLoc [9] renders

the ground view using the 2D floor plan and optimizes the

ground camera pose estimation using the global representa-

tion of the ground-level query image and the global repre-

sentation of the rendered view. LaLaLoc++ [8] removes the

need for explicit modeling or rendering in [9] by introduc-

ing a global floor plan comprehension module. LASER [23]

constructs a geometrically-structured latent space by aggre-

gating viewing ray features for Monte Carlo Localization in

2D point cloud floor maps. It needs the occupancy bound-

aries information (e.g. walls) to form the 2D point cloud in-

put. Thus it is not directly generalizable to aerial imagery.

3. Methodology

We explain the cross-view camera pose estimation task,

our SliceMatch method, and its novel aggregation step.

3.1. Cross-View Camera Pose Estimation

Given a ground-level image Ig and a square overhead

aerial image Ia that contains the local surroundings of Ig ,

we aim to determine the 3-DoF pose, ξ = (u, v, θ), of the

ground camera that captured Ig . Here, (u, v) ∈ [0, 1]2 are

the image coordinates in Ia, and θ ∈ [0, 360◦) is the camera

orientation, i.e., the angle from the North direction clock-

wise to the center line (the ‘front’ direction) of the ground

camera projected onto the aerial view. Ground images can

either be panoramic or have a limited HFoV. Similar to [33],

we assume that the ground camera’s pitch and roll are small.

3.2. SliceMatch Overview

SliceMatch explicitly separates feature extraction and

aggregation, where the latter exploits geometric knowledge

on how the ground camera’s viewing frustum projects on the

aerial image. In SliceMatch, pose estimation is formulated

as an efficient process that compares aerial descriptors for a

set Ξ = {ξ1, · · · , ξK} of K candidate poses to the ground

image descriptor. During training, the set consists of Ktrain

poses at a fixed uniform grid in 3-DoF pose space. During

inference, we use Ktest poses (Ktest > Ktrain), and the

predicted pose is the candidate for which its aerial descrip-

tor is most similar to the ground descriptor. See Figure 2 for

an overview of the method. We discuss each step next.

Feature extractor: Input images Ig and Ia are first

mapped to feature maps, zg = fg(Ig) ∈ R
H×W×C and

za = fa(Ia) ∈ R
L×L×C , where fg and fa can be any con-

volutional backbone (e.g. VGG [39] or ResNet [7]). We

adopt the commonly used setup that fg and fa have the

same architecture without weight-sharing [50,55]. We seek

translational equivariance in our encoders, and thus do not

focus on Vision Transformers [5] in this work.

Feature aggregator: Our novel aggregator step ef-

ficiently constructs a single ground and multiple pose-

dependent aerial descriptors from the extracted image fea-

tures through the use of ‘slices’. In our work, each slice

represents a non-overlapping range in the azimuth view-

ing direction, and is used to aggregate the local image fea-

tures within that azimuth range. In the ground view, a slice

thus corresponds to a vertical rectangular region in the im-

age/feature map, and in the aerial view, it is a triangle-

shaped region extending from a candidate pose (see Fig-

ure 1). This will be explained in more detail in Section 3.3.

We refer to an aggregated feature in a single slice as a

ground/aerial slice descriptor, containing the visual infor-

mation for that viewing direction. Likewise, we refer to a

ground/aerial global descriptor as the concatenation of the
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Figure 2. The SliceMatch pipeline. The input to SliceMatch is a pair a ground-aerial image pair and a set of K candidate ground camera

poses. SliceMatch consists of ground and aerial feature extractors, feature aggregators, and a pose predictor. In the shown output image,

we overlayed the matching scores for all poses on the input aerial image. The predicted pose is the one with highest score.

slice descriptors of all pose-relative orientations, represent-

ing the full HFoV of the ground camera.

Concretely, the extracted feature maps zg and za are

fed into our heterogeneous feature aggregators, as shown

in Figure 2. The ground aggregator aggg(zg) generates a

set1 Δ̂g = {d̂1g, · · · , d̂Ng } of C-dimensional slice descrip-

tors d̂ng for N azimuth directions, where N is a hyperpa-

rameter for the number of slices. The ground global de-

scriptor dg = Concat(d̂1g, · · · , d̂Ng ) is thus a vector of length

D = N ·C. The aerial aggregator agga(za, Δ̂g,Ξ) receives

the aerial features za, the ground slice descriptors Δ̂g , and

the set of K poses Ξ. It generates Δa = {d1a, · · · , dKa }, the

set of K pose-dependent aerial global descriptors dka ∈ R
D.

Section 3.3 will discuss both aggregators in detail.

Pose predictor: The pose predictor receives the ground

global descriptor dg , and the set Δa that contains the K
aerial global descriptors corresponding to the candidate

poses in set Ξ. We compute the cosine similarity ck be-

tween dg and all dka ∈ Δa and, during inference, use

ξk corresponding to the highest similarity value ckmax =
max(c1, · · · , cK) as the predicted pose. Note that simi-

lar to [50], we obtain a heatmap that can express multi-

modal pose estimation ambiguity, which can be beneficial

for downstream fusion.

Loss Function: We modify the infoNCE loss [24] from

contrastive representation learning [12] to train SliceMatch.

Using K = Ktrain training poses, our loss L is defined as,

L = − log

(
exp(cGT /τ)

α
K

∑K
k=1 exp(c

k/τ) + exp(cGT /τ)

)
. (1)

1Note that we use d̂ and Δ̂ (with hat) to indicate slice descriptors/sets,

and d and Δ (without hat) to indicate global descriptors/sets.

In Equation (1), α is our introduced hyperparameter that

weighs the contribution of K poses to the learning. Variable

cGT is the cosine similarity between dg and dGT
a at ξGT ,

and ck is that between dg and dka at ξk. Hyperparameter τ
is proposed in [24]. The original infoNCE loss in [24] can

be acquired using α = K. With L, we contrast the ground

truth pose with Ktrain other poses at different locations and

orientations, thus the model learns to extract discriminative

features for both location and orientation prediction.

3.3. Geometry-Guided Cross-View Aggregation

Here, we describe the novel aggregation step in more de-

tail. Unlike the SAFA module [34] used in [50, 55], our

aggregation uses geometric knowledge on how the views

should spatially relate. Ground-to-aerial attention further

improves quality, as the visual information in each ground

slice informs what aerial features are relevant to produce

the corresponding aerial slice descriptors, thus promoting

shared features specific to each viewing direction.

3.3.1 Ground Feature Aggregator

To summarize the important features in each vertical slice

in the ground camera’s viewing frustum, we construct our

ground feature aggregator aggg(zg) with a self-attention

module and a feature slicer. Since not all information in

ground image Ig will be present in the aerial image Ia
(e.g. sky and transient objects), the self-attention module

re-weighs zg along the spatial dimensions H and W ,

z′g = Mg � zg, Mg = Sigmoid(Conv1×1(zg)). (2)

Here, Mg is a learned mask with shape H ×W × 1 that

re-weighs the ground feature map zg into z′g . The Sigmoid
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operation enforces the weights in Mg are between 0 and 1.

The � denotes element-wise multiplication, with the ability

to broadcast the mask Mg over all channels of zg .

The ground slicer then divides z′g into N vertical slices,

cutting the feature map along the horizontal (azimuth) di-

rection. For each slice, a normalized slice descriptor is

computed by averaging all features within the slice and

applying L2 normalization. This results in the set Δ̂g =

{d̂1g, · · · , d̂Ng } of N ground slice descriptors. Each slice lo-

cal descriptor thus represents the model’s attended feature

in the corresponding vertical slice (i.e. an azimuth range)

in the ground camera’s viewing frustum. The ground global

descriptor is obtained by concatenating all N ground slice

descriptors, i.e. dg = Concat(d̂1g, · · · , d̂Ng ).

3.3.2 Aerial Feature Aggregator

The aerial aggregator agga(za, Δ̂g,Ξ) has a similar role as

the ground aggregator, but its feature selection is also condi-

tioned on the ground slice descriptors Δ̂g using a cross-view

attention module and the set of poses Ξ for geometry-guided

feature aggregation.

Cross-view attention: Since in the ground view most

content that is seen in the aerial view will be occluded, we

propose a cross-view attention module to specifically ex-

tract the aerial features that should match the visible con-

tent of each ground slice. In detail, we match the C-

dimensional aerial feature zi,ja at each spatial location (i, j)
with 1 ≤ i ≤ L, 1 ≤ j ≤ L in the aerial feature map za to

each ground slice descriptor d̂ng ∈ Δ̂g to acquire a similarity

score map Sn of size L× L, where Sn,i,j = Sim(d̂ng , z
i,j
a ).

In total, there are N similarity score maps, i.e. one for each

ground slice descriptor. Then, we treat each Sn as extra fea-

tures and concatenate it along the feature dimension with

aerial feature map za [50], and use these extended features

to produce a cross-view attention mask,

Mn
a = Sigmoid(Conv1×1(Concat(za, Sn))). (3)

We thus get in total N cross-view masks Mn
a . Each of

these denotes the importance of the aerial features w.r.t. the

n-th ground slice descriptor d̂ng . Finally, we re-weigh za for

each ground slice descriptor, giving us N re-weighted aerial

feature maps z′na of size L× L× C, i.e. z′na = Mn
a � za.

Geometry-guided feature aggregation: Finally, the K
pose-dependent aerial descriptors dka can be constructed for

the candidate poses in Ξ. For each pose ξk, we can precom-

pute N aerial slice masks Pk,n ∈ [0, 1]L×L, 1 ≤ n ≤ N .

The slice mask Pk,n expresses the geometry of the ground

camera’s viewing frustum in the aerial feature map for the

n-th orientation slice, assuming that the camera would have

the k-th pose. Each cell in the slice mask contains a value

in the range [0, 1] proportional to how much of that cell in-

tersects this frustum, so 1.0 for fully contained cells, 0.0 for

cells fully outside the frustum, and an intermediate value for

cells that partially overlap.

With the slice masks, the n-th aerial slice descriptor at

pose k can be computed efficiently. For each of the C chan-

nels, we compute a weighted average over all of the L × L
spatial locations (i, j) in the feature map z′na , using the ele-

ments of slice mask Pk,n as weights. After L2 normaliza-

tion, we obtain aerial slice descriptor d̂k,na ,

d̂k,na = Norm
( 1∑

i,j Pk,n
i,j

∑
i,j

(Pk,n � z′na
)
i,j

)
. (4)

Analogous to the ground view, the k-th pose’s global de-

scriptor is obtained using dka = Concat(d̂k,1a , · · · , d̂k,Na ).

Efficient implementation: A benefit of our proposed

architecture is that the computational complexity of most

operations is independent of the number of candidate poses

K. The main cost to increase K, and therefore improve ac-

curacy by testing more diverse poses at inference time, is

to add more precomputed slice masks, and perform the ad-

ditional multiplications and normalizations for Equation (4)

and the final cosine similarity comparison. These are sim-

ple operations that can be highly optimized and parallelized

in the implementation, and we will show that testing more

candidate poses does not increase our runtime.

4. Experiments

We first introduce the used datasets and the evaluation

metrics. After that, our implementation details and ablation

studies are presented. Finally we quantitatively and qualita-

tively compare SliceMatch to state-of-the-art baselines.

4.1. Datasets

VIGOR dataset [55] contains geo-tagged ground-level

panoramas and aerial images collected in 4 cities in the US.

As defined in [55], each ground panorama has 1 positive

and 3 semi-positive aerial images. An aerial image is posi-

tive if the ground camera’s location is within the aerial im-

age’s center quarter area, otherwise, it is semi-positive. Im-

portantly, we found that the original ground truth locations

in [55] can contain errors up to 3 meters due to the use of

wrong ground resolutions (0.114m/pixel) of the aerial im-

ages, thus we created and use here corrected labels, see

details in Supplementary Material. For training and test-

ing our method and baselines, we use positive aerial im-

ages and corrected ground truth (we reran all baselines since

quantitative results with the new labels differ slightly from

those reported in the literature). We adopt the same-area and

cross-area splits from [55] to test the model’s generalization

to new measurements in the same cities and across different

cities. Besides, we use the same-area training dataset of

New York as a tuning split for the ablation study.
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(a) VIGOR example 1 (b) VIGOR example 2 (c) VIGOR example 3 (d) KITTI example 1 (e) KITTI example 2

Figure 3. Qualitative evaluation of SliceMatch on VIGOR [55] and KITTI [6,33]. Top row: input ground image. Bottom row: GT and

pose estimation results overlayed on input aerial image. Red shading indicates highest similarity score between the ground descriptor and

the aerial descriptors among all orientations at that location. (c) shows a SliceMatch failure: the best match is in the wrong mode.

KITTI dataset [6] contains ground-level images with a

limited HFoV taken by a moving vehicle from different tra-

jectories at different times and [33] augmented the dataset

with aerial images. We use their split. The Training and

Test1 sets are different measurements from the same region,

while the Test2 set has been captured in a different region.

4.2. Evaluation Metrics

We follow the convention of [50] and report the mean

and median error in meters between the predicted and

ground truth location over all test image pairs. Similarly,

for orientation prediction, we report the mean and me-

dian absolute angular difference between the predicted and

ground truth orientation in degrees. Following [33], for the

KITTI dataset, we additionally include the recall under a

certain threshold for longitudinal (driving direction) and lat-

eral localization error, and orientation estimation error. Our

thresholds are set to 1m and 5m for localization and to 1°

and 5° for orientation estimation.

4.3. Implementation Details

As in [50, 55], we use VGG16 [39] up to stage 5 for the

feature extractors fg and fa. The pooling operation of the

last layer is removed. The spatial size of Ig is 320× 640 on

VIGOR dataset and 256× 1024 on KITTI dataset, and that

of Ia is 512 × 512 on both datasets. This results in feature

maps with H×W = 20×40 / 16×64 on VIGOR / KITTI,

L× L = 32× 32, and C = 512. The feature extractors do

not share their weights and are pre-trained on ImageNet [4].

In Equation (2) and (3), Conv1×1 consists of two sequential

convolution layers with a kernel size of 1 and a ReLU ac-

tivation in between. During training, SliceMatch is trained

end-to-end using Adam optimizer [14] with a learning rate

of 1 × 10−5, and we use a batch size of 4. To get a set of

candidate camera poses Ξ, we use poses at a uniform grid of

7× 7 locations × 16 orientations on VIGOR, and 5× 5 lo-

cations × 16 orientations on KITTI during training. For in-

ference, we use 21×21×64 and 15×15×64 poses, respec-

tively. This results in Ktrain = 784 and Ktest = 28224 on

VIGOR, and Ktrain = 400 and Ktest = 14400 on KITTI.

4.4. Baselines

We compare SliceMatch to state-of-the-art global

descriptor-based methods Cross-View Regression (CVR)

[55] and Multi-Class Classification (MCC) [50] on the

VIGOR dataset2. Since CVR does localization with known

orientation and, in [50], MCC mainly focuses on local-

ization, we compare SliceMatch to baselines for localiza-

tion with known orientation and also for 3-DoF pose es-

timation. Following [50], we train CVR [55] for local-

ization only (not retrieval) as it gives better localization

results. On the KITTI dataset, SliceMatch is compared

to dense local feature-based fine-grained image retrieval

method DSM [35], and to iterative camera pose estimation

method LM [33]. In [33], the LM method is trained and

tested with a 20° prior on the ground camera’s orientation.

We adopt the same setting and additionally provide the re-

sults with LM and SliceMatch trained and tested with un-

known orientation. On both datasets, baselines are trained

with inputs with the same size as used for SliceMatch.

4.5. Ablation Study

Before other experiments, we test on the VIGOR tuning

set using α ∈ {2, 4, 8, 16,K} for the loss of Equation (1),

and tune the number of slices N . We find α = 4 gives

the best result, yielding 0.48m improvement on the mean

2We re-trained and evaluated the existing baselines on our corrected

ground truth locations (see Section 4.1 and our Supplementary Mate-

rial). The improved ground truth and code for our model are available

at https://github.com/tudelft-iv/SliceMatch.
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localization error for our model compared to α = K in

the original infoNCE loss [24]. If the number of slices N
is small, the mean and median localization and orientation

estimation errors increase (see Table 1). The model with

N = 1 cannot infer orientation. When the width of the

ground feature map W is not a multiple of N , we interpolate

the ground feature map zg to acquire d̂ng . However, it can be

seen that the performance saturates above 16 slices. Next,

we tested SliceMatch without cross-view attention by drop-

ping the concatenated Sn in Equation (3). Table 1 shows

that including our proposed cross-view attention module

brings a boost to both localization and orientation estima-

tion performance. Thus, we include cross-view attention

and use α = 4 and N = 16 in our main experiments.

Cross-View ↓ Location (m) ↓ Orientation (°)
N Attention Mean Median Mean Median

1 X 12.73 11.51 - -

4 � 9.47 7.47 51.49 32.96

8 � 9.16 6.81 37.68 15.58

16 � 7.60 5.23 29.27 9.22
32 � 8.14 5.31 32.01 10.31

16‡ � 8.08 5.44 31.05 11.02

16 X 7.93 5.81 29.50 12.32

Table 1. Location and orientation error for different slice num-
ber N values on the VIGOR tuning split. ‡ indicates model

trained with original infoNCE loss [24]. Best performance in bold.

4.6. Same-Area Generalization

We test model generalization to new panoramic and lim-

ited HFoV ground images within the same area on VIGOR

and KITTI. As shown in Table 2 Same-Area, SliceMatch

surpasses CVR [55] and MCC [50] in terms of both local-

ization with known orientation and 3-DoF camera pose es-

timation. Compared to MCC, in which location-wise dis-

criminative features are learned, SliceMatch contrasts the

learned global descriptors with aerial descriptors at different

locations and orientations. Hence, it is more discriminative

especially w.r.t. orientations, and has a 19% and 68% reduc-

tion in the median localization and median orientation error

when the orientation of test ground images is unknown. We

use VGG16 as our main backbone for a fair comparison to

the baselines, though we note our localization and orienta-

tion error decreases even further when using ResNet50 as

backbone. We show in Figure 3b that SliceMatch can ex-

press its multimodal uncertainty when the observed scene

has a symmetric layout. However, it sometimes picks can-

didate poses at a wrong mode, resulting in large errors (see

Figure 3c). Over all test samples, SliceMatch has a substan-

tially lower median error than its mean error for both local-

ization and orientation estimation, indicating that the mean

is skewed by such outliers. In practice, SliceMatch’s mul-

timodal uncertainty could be resolved by applying down-

stream a probabilistic temporal filter on its output [ 50].

As shown in Table 3 Same-Area, on the KITTI dataset,

both camera pose estimation methods, LM [ 33] and

SliceMatch, surpass the fine-grained image retrieval-based

method DSM [35]. When the orientation prior is present,

SliceMatch has 34% and 62% lower mean and median lo-

calization error than LM [33], and its recall@1m and re-

call@5m is higher than that of LM [33 ] for localization in

both lateral and longitudinal directions. Notably, since the

ground images in KITTI view in the driving direction with

a limited HFoV, finding the location along the longitudi-

nal direction is more challenging than that for the lateral

direction. Thus, recall for longitudinal direction is consid-

erably lower than that for lateral direction, and this trend ap-

plies to all compared methods. The iterative refinement LM

method [33] shows its advantage in orientation prediction

when the strong orientation prior is present. We highlight

that SliceMatch can work without this prior. In contrast,

LM [33] relies on the projection of dense local features from

the aerial view to ground view [33] and does not work when

there is no same scene captured in the projected view and

the ground view (see Table 3).

4.7. Cross-Area Generalization

Generalization to new ground images in different areas

is a more difficult task than that in the same area since the

test area can look very different from the training area (e.g.

different cities in the VIGOR dataset). As shown in Ta-

ble 2 Cross-Area, SliceMatch generalizes well under this

challenging setting in terms of both localization and ori-

entation estimation, while we observe more degeneration

in the cross-area test performance of MCC [ 50]. MCC’s

feature decoder receives the full scene information from its

encoder, while SliceMatch divides the observed scene into

slices and seeks per-slice discriminative features, resulting

in more robustness against the change of the scene. Again,

using a ResNet50 backbone further improves our results.

On KITTI Test2 set (Table 3 Cross-Area), SliceMatch

achieves a lower median localization error than LM [ 33]

when the 20° orientation prior is present in both training

and testing. But our mean error is higher than LM [ 33]

by 0.92m and LM [33] surpasses SliceMatch in orientation

prediction when a strong prior is available. SliceMatch per-

forms considerably better when no orientation prior is avail-

able as LM [33] gets stuck in local optima.

4.8. Runtime Analysis

We compare the runtime of SliceMatch to that of base-

lines on the same hardware, a single NVIDIA Tesla V100

GPU. For all baselines, we use the released code from their
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Same-Area Cross-Area

Aligned ↓ Location (m) ↓ Orientation (°) ↓ Location (m) ↓ Orientation (°)
Model Backbone Images Mean Median Mean Median Mean Median Mean Median

CVR [55] VGG16 � 8.99 7.81 - - 8.89 7.73 - -

MCC [50] VGG16 � 6.94 3.64 - - 9.05 5.14 - -

SliceMatch (ours) VGG16 � 5.18 2.58 - - 5.53 2.55 - -

MCC [50] VGG16 X 9.87 6.25 56.86 16.02 12.66 9.55 72.13 29.97

SliceMatch (ours) VGG16 X 8.41 5.07 28.43 5.15 8.48 5.64 26.20 5.18

SliceMatch (ours) ResNet50 X 6.49 3.13 25.46 4.71 7.22 3.31 25.97 4.51

Table 2. Location and orientation estimation errors on VIGOR [55]. Aligned Images means the ground image orientation is known.

For unaligned images, the models estimate the 3-DoF ground camera pose. Best performance in bold.

↓ Location (m) ↑ Lateral (%) ↑ Long. (%) ↓ Orien. (°) ↑ Orien. (%)
Model Area Prior Mean Median r@1m r@5m r@1m r@5m Mean Median r@1° r@5°

DSM [35] Same 20° - - 10.12 48.24 4.08 20.14 - - 3.58 24.44

LM [33] Same 20° 12.08 11.42 35.54 80.36 5.22 26.13 3.72 2.83 19.64 71.72
SliceMatch (ours) Same 20° 7.96 4.39 49.09 98.52 15.19 57.35 4.12 3.65 13.41 64.17

LM [33] Same X 15.51 15.97 5.17 25.44 4.66 25.39 89.91 90.75 0.61 2.89

SliceMatch (ours) Same X 9.39 5.41 39.73 87.92 13.63 49.22 8.71 4.42 11.35 55.82

DSM [35] Cross 20° - - 10.77 48.24 3.87 19.50 - - 3.53 23.95

LM [33] Cross 20° 12.58 12.11 27.82 72.89 5.75 26.48 3.95 3.03 18.42 71.00
SliceMatch (ours) Cross 20° 13.50 9.77 32.43 86.44 8.30 35.57 4.20 6.61 46.82 46.82

LM [33] Cross X 15.50 16.02 5.60 25.60 5.64 25.76 89.84 89.85 0.60 2.65

SliceMatch (ours) Cross X 14.85 11.85 24.00 72.89 7.17 33.12 23.64 7.96 31.69 31.69

Table 3. Location and orientation estimation error and recall on KITTI [6, 33]. Prior means the orientation is known with a certain

amount of noise. Long. and Orien. are abbreviations for Longitudinal and Orientation, respectively. Best performance in bold. The results

for DSM [35] are taken from [33] and we used the trained LM model provided by [33] for its evaluation.

authors. CVR [55] and MCC [50] are implemented in Ten-

sorFlow, LM [33] and our SliceMatch in PyTorch. The

frames per second (FPS) are calculated by taking the av-

erage inference time per input pair over all test samples.

On VIGOR, SliceMatch achieves an FPS of 167, which is

considerably faster than global descriptor-based baselines:

50 FPS for CVR [55] for localization only, 29 FPS / 3 FPS

for MCC [50] for localization only / pose estimation. On

KITTI, SliceMatch runs at 156 FPS, while the local feature-

based iterative method, LM [33] has 0.59 FPS. Importantly,

the runtime of SliceMatch remains nearly constant as the

number of used candidate poses K increases (we tested K
up to 1× 106), see details in Supplementary Material.

5. Conclusion
We have introduced SliceMatch, a novel, accurate, and

efficient method for cross-view 3-DoF camera pose esti-

mation. By splitting the HFoV into slices, our architecture

can learn discriminative features in terms of both localiza-

tion and orientation estimation. Our proposed aggregation

can select the relevant aerial image features for each ground

view slice through cross-view attention, and we observe fur-

ther accuracy gains by reweighing the terms in the infoNCE

loss. With the same VGG backbone, SliceMatch achieves

19% and 62% lower median localization error than the pre-

vious state-of-the-art on the VIGOR and KITTI datasets. A

better backbone improves SliceMatch’s performance even

further, e.g. with ResNet50 its 50% lower median error on

VIGOR sets a new state-of-the-art. To construct the global

descriptor for a candidate pose, only an efficient weighted

averaging over the aerial features is needed using precom-

puted masks (which represent the ground camera’s frustum

geometry in the aerial view), achieving inference at more

than 150 FPS. SliceMatch can include available priors in its

candidate poses, e.g. for an initial orientation estimate, but

does not require it. Future work will explore adapting pose

candidates for temporal filtering and sensor fusion.
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