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a soft prosthetic wrist in
joint-space
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'Department of Information Technology and Electrical Engineering, Universita degli Studi di Napoli
Federico II, Naples, Italy, ?Cognitive Robotics Department of Engineering, Delft University of
Technology, Delft, Netherlands

The development of advanced control strategies for prosthetic hands is essential
for improving performance and user experience. Soft prosthetic wrists pose
substantial control challenges due to their compliant structures and nonlinear
dynamics. This work presents a learning-based impedance control strategy
for a tendon-driven soft continuum wrist, integrated with the PRISMA HAND
Il prosthesis, aimed at achieving stable and adaptive joint-space control. The
proposed method combines physics-based modeling using Euler-Bernoulli
beam theory and the Euler-Lagrange approach with a neural network trained to
estimate unmodeled nonlinearities. Simulations achieved a Root Mean Square
Error (RMSE) of 3.04x10™* rad and a settling time of 3.1s under nominal
conditions. Experimental trials recorded an average RMSE of 2.7x107 rad
and confirmed the controller’'s ability to recover target trajectories under
unknown external forces. The method supports compliant interaction, robust
motion tracking, and trajectory recovery, positioning it as a viable solution for
personalized prosthetic rehabilitation. Compared to traditional controllers like
Sliding Mode Controller (SMC), Model Reference Adaptive Controller (MRAC),
and Model Predictive Controller (MPC), the proposed method achieved superior
accuracy and stability. This hybrid approach successfully balances analytical
precision with data-driven adaptability, offering a promising pathway towards
intelligent control in next-generation soft prosthetic systems.

prosthetic hand, euler-Bernoulli beam, euler, Lagrange method, soft robotics,
impedance control

1 Introduction

The development of prosthetic hands has significantly advanced over the years, yet
achieving natural and precise control remains a challenge. The main challenge in controlling
soft continuum prosthetic hands stems from their inherent flexibility, which requires
highly precise and adaptive control to execute a wide range of tasks effectively. Traditional
control methods struggle to manage the non-linear dynamics and varying stiffness of
these prosthetics. By integrating Neural Network (NN) into a control framework, it is
possible to achieve a more responsive and intelligent system that can learn from interactions
and adjust its behavior accordingly, thereby improving the overall functionality of the
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prosthetic hand (Gohari et al., 2025). The challenges associated
with prosthetic hand motions include issues related to compliance,
stability, and the ability to perform a wide range of tasks with varying
degrees of precision. The proposed NN-based impedance controller
aims to address these shortcomings by leveraging machine learning
techniques to optimize the control parameters in real-time, allowing
for a more fluid and natural user experience. In this work, we employ
an NN-based impedance controller that aims to bridge this gap
by leveraging the adaptability and learning capabilities of NNs to
enhance the control of soft continuum prosthetic hands.

The hand has
witnessed a growing shift towards anthropomorphic design

evolution of prosthetic technologies
principles that emphasize dexterity, adaptability, and user-
centered control Sulaiman et al. (2024). Among these developments,
tendon-driven soft continuum wrists have emerged as a promising
solution due to their inherent compliance, lightweight structure,
and ability to mimic the nuanced mobility of a human wrist. Such
continuum designs can enhance the functional range of prosthetic
hands and enable smoother, more intuitive manipulation of objects.
However, exploiting their full potential requires advanced control
strategies that account for the nonlinearities introduced by tendon
elasticity, joint flexibility, and external disturbances.

Traditional position-based controllers often fall short in
regulating movements within continuum mechanisms, as they
assume rigid-link dynamics and fail to accommodate the variable
mechanical impedance of soft structures. Impedance control,
which modulates the dynamic relationship between force and
motion, offers a compelling alternative by introducing compliant
behavior that is crucial for safe and adaptable interaction with
uncertain environments. Nonetheless, defining precise impedance
parameters in systems characterized by nonlinear dynamics remains
a significant challenge, particularly when implemented in real-time
and under unpredictable loading conditions.

To address this gap, the current research proposes a learning-
based impedance controller for a soft continuum tendon driven
wrist attached to a PRISMA HAND II prosthesis. The kinematic
model of the wrist is developed using the Euler-Bernoulli beam
theory, capturing the bending behavior of the compliant structure,
while the dynamic model is formulated via the Euler-Lagrange
approach to account for system inertia and actuator influence.
An NN is integrated within the control loop to estimate the
nonlinear components of the impedance model, thereby enhancing
the controller’s ability to compensate for unmodeled disturbances
and time-varying system dynamics. This study further substantiates
the controller’s effectiveness through detailed simulation studies and
hardware testing. Evaluations focus on key performance metrics
such as Root Mean Square Error (RMSE), steady-state error, and
settling time, offering a comprehensive view of the controller’s ability
to ensure accurate and responsive motion regulation. A comparison
study of the proposed controller with similar controllers are carried
out to showcase the advantages of the proposed controller. By
combining physics-based modeling with data-driven learning, this
work contributes to the advancement of hybrid control strategies
that bridge analytical rigor with adaptability, paving the way toward
more intelligent and intuitive prosthetic systems.

In this manuscript, the term soft robotics refers specifically
to the tendon-driven prosthetic wrist system characterized by its
compliant materials and continuum-like structure. Unlike rigid
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robotic mechanisms, this system integrates flexible tendons, elastic
springs, and segmented discs that enable smooth, adaptive motion,
and elastic deformation. The soft nature of the wrist is captured
through its nonlinear dynamic behavior and modeled using
Euler-Bernoulli beam theory, reflecting the challenges of controlling
a compliant, continuum-based actuator. The organization of
this paper is as follows: Section2 reviews the current state
of control strategies in prosthetic systems and highlights the
limitations motivating this work. Section 3 introduces the proposed
impedance control framework, including the mechanical design,
mathematical modeling, and neural network integration. Section 4
presents the results of simulation studies conducted under varied
mechanical and force conditions. Section 5 reports on experimental
validation, showcasing real-world robustness of the controller.
Section 6 compares the proposed approach with established control
strategies such as Sliding Mode Controller (SMC), Model Reference
Adaptive Controller (MRAC), and Model Predictive Controller
(MPC). Finally, Section 7 summarizes the findings and outlines
future directions for enhancing system performance and user
personalization.

2 State of art

Advancements in robotics and human-machine interfaces have
paved the way for the development of prosthetic systems that
are not only functional but also adaptive and responsive to
dynamic environments. In particular, soft prosthetic devices have
gained attention for their ability to interact safely and comfortably
with biological tissues, offering enhanced compliance and reduced
mechanical impedance. However, controlling these devices in a way
that mirrors natural joint behavior remains a significant challenge.
This paper explores a novel approach that integrates alearning-based
impedance control strategy within a soft prosthetic wrist, focusing
on joint-space coordination to emulate human-like movements.
The proposed method leverages machine learning algorithms to
fine-tune impedance parameters in real-time, adapting to varying
conditions and user intentions. By embedding intelligence directly
into the control architecture, the system achieves a more nuanced
and personalized response to external forces and user input. This
innovation not only enhances motion fidelity and responsiveness but
also holds promise for broad applications in wearable robotics and
rehabilitation technologies. The implementation highlights a shift
toward smarter, more intuitive prosthetic solutions that bridge the
gap between mechanical performance and human adaptability.

Esquivel-Ortiz (2021) focused on enhancing grasp stability
in upper-limb prosthetics. The work introduced an impedance
control algorithm that dynamically adjusted to uncertainties
such as object friction and contact points. Using the SynGrasp
simulation environment, the study modeled various grasping
configurations and evaluated the stability of grasps before and after
perturbations. The results demonstrated improved grasp quality
and adaptability under external disturbances. However, the research
highlighted a gap in real-time implementation and the need for
hardware validation to confirm simulation outcomes. Ferrante
(2023) proposed a novel framework called AIC-UP that decodes
human motor intent, including joint position, stiffness, and
damping from surface Electromyography (EMG) signals. The
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system incorporated muscle-tendon unit models to estimate joint
impedance and implemented these estimates on a simulated 1-DoF
prosthetic wrist. Simulation results showed better control over both
kinematics and impedance, but the study acknowledged limitations
in decoding accuracy due to the noisy nature of EMG signals. The
authors pointed out the need for improved signal processing and
real-world testing to bridge the gap between simulation and practical
deployment.

Wang et al. (2022) developed a prosthetic bionic hand system
that combined myoelectric pattern recognition with adaptive control
strategies. Their system used linear discriminant analysis (LDA) to
classify SEMG signals and control a five-fingered prosthetic hand
with linear servo motors. While not a pure impedance controller,
the system incorporated compliance through mechanical design
and feedback loops. The prosthetic hand achieved an average
classification accuracy of 96.59% and performed well in grasping
tests involving 15 objects of varying shapes and sizes. The study
emphasized the need for integrating impedance modulation to
further enhance adaptability and reduce cognitive load on users
during dynamic tasks. In the domain of soft robotics, Mazare et al.
(2022) proposed an Adaptive Variable Impedance Control (AVIC)
strategy for a modular soft robot manipulator. The controller
was designed using an adaptive back-stepping sliding mode
approach and implemented in configuration space to handle model
uncertainties and external forces. The system was benchmarked
against sliding mode and inverse dynamics PD controllers, showing
superior performance in stabilizing position errors and mitigating
external disturbances. Despite its effectiveness, the study noted the
complexity of tuning multiple control parameters and the lack of
experimental validation on physical soft robotic platforms.

A hybrid impedance-admittance control strategy was explored
by Rhee et al. (2023) to improve manipulator performance in
environments with varying stiffness. Although the study focused on
rigid manipulators, its findings are relevant to soft robotics due to
the shared need for compliance. The controller dynamically switched
between impedance and admittance modes based on environmental
feedback, achieving better stability and accuracy in both simulation
and physical experiments. The authors suggested that future work
should explore how such hybrid strategies could be adapted for soft-
bodied systems, where contact dynamics are more complex and less
predictable. A study by Ferrante et al. (2024) introduced the AIC-
UP framework, which estimates joint stiffness and damping from
surface EMG signals using muscle-tendon models. Implemented on
a simulated prosthetic wrist, the controller demonstrated superior
robustness to muscle coactivation compared to NN-based kinematic
decoders. However, the study acknowledged limitations in decoding
accuracy due to EMG signal variability and emphasized the need for
real-time hardware validation.

Shi et al. (2025) proposed a bio-signals-free control system
for prosthetic hands using imitation learning, bypassing traditional
EMG-based methods. Their system used a wrist-mounted camera
and tactile sensors to autonomously grasp and release objects.
The model, trained on a small dataset of human demonstrations,
achieved over 95% success in real-world grasping tasks. However,
the study noted the need for broader generalization across users
and object types. Mora et al. (2024) presented a low-cost, real-
time system for recognizing nine common grasping postures using
sEMG signals and a machine learning approach. By extracting
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just two features from Myo armband data and applying a GPU-
optimized multi-layer perceptron, the model achieved a 73%
recognition accuracy across subjects. The method offered a robust,
efficient solution for prosthetic hand control and human-robot
interaction. Garcia-Ortiz et al. (2024) introduced a model-based
predictive control (MBPC) strategy to improve dexterity and energy
efficiency of prosthetic hands. The work applied linear identification
techniques to model the dynamic behavior of prosthetic fingers,
which is then used to implement a generalized predictive control
(GPC) algorithm. Experimental validation on a test bench showed
that the proposed control system can accurately manage finger
positions, anticipate future movements, and minimize power
consumption.

Lai et al. (2025) introduced a 3D-printed hydrogel-based SEMG
electrode array for prosthetic control. The soft, stretchable electrodes
improved skin conformity and signal fidelity, enabling more
accurate decoding of hand gestures. Integrated with an Al-based
classifier, the system achieved real-time control of a prosthetic hand.
Despite its success, the authors highlighted challenges in long-term
durability and signal drift under motion artifacts. Wu et al. (2023)
developed an adaptive impedance control algorithm for dexterous
hand-object interaction. Their admittance-based controller adjusted
parameters based on object dynamics and was deployed on a
multi-fingered robotic hand. Experimental results showed effective
force regulation across objects with varying stiffness. However, the
study lacked real-world prosthetic integration and called for further
testing in unstructured environments. Khan and Li (2024) proposed
a discrete-time sliding mode impedance controller for pneumatic
soft robots. Their controller regulated overshoot and vibration
during deactuation, a common issue in soft actuators. Tested
on a 6-chambered parallel soft robot, the system outperformed
traditional SMCs in damping and settling time. The authors noted
the need for real-time embedded implementation and broader task
generalization.

Stolzle et al. (2024) combined Electroencephalogram (EEG)
based motor imagery with impedance control to guide soft robots.
Their system used a Cartesian impedance controller to translate
brain signals into end-effector motion. Despite using only three EEG
channels, users achieved 66% task success in setpoint regulation. The
study demonstrated the feasibility of brain-controlled soft robots
but acknowledged the low signal-to-noise ratio of EEG and the
need for improved classification accuracy. Mountain et al. (2024)
introduced a grasping force adaptation algorithm for a cable-driven
prosthetic hand using Youla-parameterization and iterative learning
control. The impedance controller adjusted grasp stiffness based
on tactile feedback, improving performance across object weights.
While effective, the method required extensive training data and
computational resources, limiting its real-time applicability.

A study by Gao etal. (2025) reviewed human-machine interfaces
for soft robotic systems, emphasizing the role of impedance control
in enhancing interaction safety and adaptability. The paper surveyed
recent advances in sensor integration, algorithmic control, and
wearable interfaces. It identified a research gap in multi-modal
sensor fusion and the need for standardized benchmarking in
soft prosthetic applications. Jadav and Palanthandalam-Madapusi
(Jadav and Palanthandalam-Madapusi, 2024) proposed a variable
impedance control algorithm that adapts to divergent force
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fields without relying on Jacobian inversion. Tested on a 7-
DOF KUKA arm and a simulated human arm, the controller
demonstrated faster relearning and improved stability. While
promising, the method’s application to soft or prosthetic systems
remains unexplored, presenting a clear direction for future work.
A review by Rajashekhar and Prabhakar (2025) explored human-
robot interaction in soft robotics, highlighting impedance control
as a key enabler of safe collaboration. The paper discussed
input/output modalities, actuator design, and ethical considerations.
It emphasized the lack of standardized HRI protocols for soft
prosthetics and called for interdisciplinary research bridging
materials science, control theory, and user-centered design.

Several studies have explored the use of NN and impedance
control in prosthetics. For instance, a chronological overview of
control strategies for prosthetic hands highlights the application
of NN in estimating muscular contraction levels and controlling
impedance parameters was demonstrated in (Naidu et al., 2008).
Additionally, research on soft-synergy prosthetic hands Basumatary
and Hazarika (2020) has demonstrated the potential of NN-based
controllers in improving force modulation and grasp performance.
Another study (Portnova-Fahreeva et al, 2023) introduced
an autoencoder-based myoelectric controller, showcasing the
effectiveness of NN in managing high-dimensional prosthetic hand
systems. These studies collectively underscore the potential of NN-
based impedance controllers in enhancing the functionality and
user experience of soft continuum prosthetic hands.

The exploration of utilizing an NN-based impedance controller
for the regulation of movements in a soft continuum prosthetic
hand is driven by the need for enhanced dexterity and adaptability
in prosthetic devices. Traditional control methods often fail to
provide the nuanced control required for complex tasks, particularly
in dynamic environments. By integrating NNs into the control
framework, it is possible to achieve a more responsive and
intelligent system that can learn from interactions and adjust its
behavior accordingly, thus improving the overall functionality of the
prosthetic hand. The problem statement focuses on the limitations
of existing control strategies for soft continuum prosthetic hands,
which often struggle to replicate the intricate movements of a natural
hand. These challenges include issues related to compliance, stability,
and the ability to perform a wide range of tasks with varying
degrees of precision. The proposed NN-based impedance controller
aims to address these shortcomings by leveraging machine learning
techniques to optimize the control parameters in real-time, allowing
for a more fluid and natural user experience.

3 Methodology

The design of the proposed soft wrist segment, as detailed in
Sulaiman et al. (2024a) is connected to a prosthetic hand named
"PRISMA HAND IT (Liu et al., 2019), comprises five rigid discs, five
springs, and five flexible tendons, as depicted in Figure 1a along with
rigid disc dimensions in Figure 1b. Figure 1c illustrates the bending
configuration of the soft wrist segment with length [, radius r, a
bending angle of a, division angle with respect to horizontal axes
0, and the rotation angle of the bending plane, y.

The springs and tendons are integrated into the rigid discs and
secured to a solid platform. The positioning of the end effector
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in relation to the curvature of the wrist is determined through
the principles of Euler-Bernoulli beam theory, as referenced in
(Heetal., 2013). Dynamic model of the wrist section was determined
using Lagrange equation as cited in (Liu et al, 2019) and used
in Impedance control strategy. Desired bending angles («), rate
of bending angles (&), and derivative of rate of bending angles
(&) were fed to the impedance controller as shown in Figure 2.
The impedance controller was designed assuming a predominantly
capacitive environment, where stiffness plays a central role in
interaction dynamics.

The transformation matrix (T), which defines the pose of disc
five relative to the base disc one, is given in Equation 1

T= (1)
0 1

where rotation matrix, R is obtained as given in Equation 2

Eyca+s’y  cyspca—cysy  cysa
R =Rot(z,y)Rot(y,a) Rot(z,~y) = | cyspca—cysy  s*pca+c’y  spsa
—cysa —syca ca
2

where s represents the arc-length parameter of the segments (s =
0 corresponds to the base disk and s=1 denotes the end disk).
Translational matrix P is given in Equation 3.

P=[x y Z]T: [é(l—cos%)cosy é(l—cos%)siny ésin%]
3)
The kinetic energy of the wrist section’s motion is determined
by computing the time derivatives of the position vectors
provided in Equation 3. The corresponding velocity expressions
are given as follows:

@—l[ssin&cos —l(l—cosﬂ)cos ]@
dit a 1Ty 1)@
—l(l—cosﬁ>sin _)/
P AR
dy 1 sa I sa do
< L == in — si - = — — i —_ 4
o “[ssm i sin y “(1 cos ; )smy] 7 (4)

1 s Y

Z(1=cos2 'l

+oc< cos l)cosydt
I

d—z—l<scosﬂ— sinﬁ)@
dt « I a1/t

The kinetic energy of the primary backbone (central tendon) of the

soft wrist, denoted as Ej;, can be expressed as follows:

(N[ dx\?, (dy\? dzz]
=3[ () +(2) + (§) ] @
Here, p and A denote the density and cross-sectional area of the wrist

section, respectively. By substituting Equation 4 into Equation 5, the
kinetic energy is obtained as shown in Equation 6.

1 da\2, 1 dy\?
Ekl = gmllz(E> K1+§mllz<a> KZ (6)

Here, m, represents the mass of the primary backbone, while K,
and K, are the kinetic energy equivalent factors. The kinetic energy
coefficients K, and K, are determined as shown in Equations 7, 8.

K, = (® + 60— 12 sin o + 6a cos &) /o (7)
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Soft wrist section (a) Conceptual design of wrist section attached to hand (b) Dimension of disc (c) Bending structure of wrist section.
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From Equations 7, 8, the coefficients K; and K, can be expressed

as functions of the bending angle «. These equations can

be further simplified using a least squares fit, as shown in
n(a, @) Equations 9, 10.

K, = —0.00426a2 — 0.00277a + 0.15085 9)
FIGURE 3
Dynamic block.

K, = —0.05567a’ +0.23280 + 0.006216a — 0.00406 (10)
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FIGURE 4

Regression graphs.
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The transformation between Cartesian space and joint space can

be expressed as given in Equation 11:

q, = racos(y)

q, = racos(—y+0)

q; = racos(y+0)
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Here, g; (i=1,2,3) denotes the length of each driving wire, and
r represents the distance from each secondary backbone to the
primary backbone, assuming the secondary backbone tendons are
equidistant from the primary backbone. The angular separation is
given by 0 = 2?” The driving velocities are obtained by differentiating
Equation 11, and are expressed as given in Equation 12:

@:rcos( )@—rtxsin( )@

dr Y Y at

d d
%:rcos(—y+9)%+rocsin(—y+9)d—); (12)
d d

_;; :rcos(y+9)%—rocsin(y+9)d—);

The secondary backbone consisted of four tendons. However, for
analytical purposes, the tendons located on each side during motion
are treated as a single tendon. For instance, when the tendons
rotate in the direction of ulnar deviation, tendons four and five
are considered as one, while tendons one and two are treated as
two distinct tendons. The total kinetic energy E, of the secondary
backbone, composed of four tendons, is given in Equation 13.

Ejp = Eyyy + By (13)
where E;;; = E,, and the second component, Ej,, arises from the
driven kinetic energy as given in following Equation 14:

1 dq,\*> (dag,\* [dg,)?
b= 3m{ () (%) (%]

(14)
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FIGURE 6

Motion of wrist (a) Radial-1 (b) Radial-2 (c) Ulnar-1 (d) Ulnar-2 (e) Flexion-1 (f) Flexion-2 (g) Extension-1 (h) Extension-2.
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Error in bending angles during simulation.

Substituting Equation 12 in Equation 14, we obtain the
following Equations 15-18

rom g (5 Voo S (F) ] 00
K =1 [cos? (y) + cos? (=y + 0) + cos? (y + 6)] (16)

K, =r*a[-sin(2y) +sin(2(—=y+0)) —sin (2 (y + 0))] (17)
K = r*a? [sin? (y) + sin? (= + 0) + sin® (y + 0)] (18)

where m, is the mass of the secondary backbone and Kj, K, and Kj
are kinetic energy equivalent factors. The kinetic energy of the discs
can be obtained as given in Equation 19:

1 (da)2, 1 _[(dyY’
E :—m<—)K+—m<— K 19
R AN T A R T (19)
Frontiers in Robotics and Al

Here, m; denotes the mass of a disk, and K and K, are the kinetic
energy equivalent factors. If the parameters n and h are known, the
coeflicients K and K, can be expressed as functions of the bending
angle a. Assuming n = 5 and h = 15mm, the expressions for K, and
K can be simplified using a least squares fit, as shown in Equations
20, 21:

K, = (-0.00043a> - 0.00031a + 0.01435) /2 (20)

K, = (~0.00394¢ +0.015750% + 0.00131 — 0.00047) /2 (21)

For a continuum robot, the total potential energy consists of two
components: elastic potential energy and gravitational potential
energy. In this context, the gravitational component is considered
negligible in comparison to the elastic potential energy. The elastic
energy E,, associated with the wrist section and characterized by
Youngs modulus E and area moment of inertia I, is given in
Equation 22:

E =2—Elcx2

,= 2 (22)

The Lagrange equation governing the dynamics of the wrist section
is expressed as in Equation 23:

d 9 9E. 95 .
——— - +=—=Q,(=12) (23)
dt op; dp;  Ip; G

where Q; represents the generalized force of system, E; = Ey; + Ej, +
E;s, py = aand p, = y. The dynamical Eq. of the wrist is obtained as
given in Equation 24:

2

&
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Constant force applied to prosthetic hand.

where Mij, CU’KU’DU are moment of inertia, Coriolis, stiffness,
actuation matrix elements respect to each rotation angle. In the
context of planar motion, where y = 0, we determined the Equation

of motion as given in Equation 25:

M (&) &+ C(a)? + Ko = DF (25)
where:
D =rcos(y)
K= AEI
l
1 JK JK. K,
C= —g <4m2[28_0(1> +3m2<a—;>+3m3<a—6>
M= % (4m, Ky + 3m, K, + 3m;Ky)

Let us consider the following dynamic Equation 26 of a
continuum wrist section with two sub sections with masses m,; and
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m, respectively, Young’s modulus (E), moment of inertia (I), energy
coefficients (K;, i = 1,2,.6), and actuation force or torque applied to
the soft prosthetic wrist system (u)

M(a)a+C(a, )+ Ka=u~f,, (26)
where  M(a) = DIllMH((x), Cla, &) = DIII Cyy(a, @), K=
DIKy;. My, = 3 (4m, PK, +3m, Ky + 3m,K), Cp, =

aK. aK, —
52 +3my=2), Ky = 4TEI, D, =R are the inertia

matrix, Coriolis matrix, stiffness matrix, and actuation matrix of
the system respectively. f,, is the external force acting on system.
A feedback linearization was achieved by choosing u as given in
Equation 27:

L g 22
< (dm F= + 3m,

u=M(a)y+n(a,q) (27)
where n(a, &) = Cla, &)& + Ka.
M@a=M@y-f,, (28)
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FIGURE 10
Impulse force applied to prosthetic hand.

Equation 28 can be rewritten as given in Equation 29:

b'c:y—M(oc)’lfext (29)

In order to achieve an impedance behavior, y was chosen as given in
Equation 30:

(30)

where @ =a;—a and M, D, K, are desired values of inertia,
damping, and stiffness of the system at closed loop respectively.
Equation 29 can be rewritten as given in Equations 31-33:

i = M" (Myétg + Dyb+ Ky@) - M(a)™ f,, (31)
Md(.).( = Md&d+Dd&+Kdd_MdM(“)71 ext (32)
Ma+Dy&+K @ =F,, (33)

where F,, =M;M(®)'f, .

dynamics in a closed-loop system. When an external force is

Equation 33 represents the error

exerted on the system, it exhibits compliance. Once the external
force is removed, the system returns to its original position,
resulting in the error approaching zero. In our approach, we trained
an NN to determine n(a,&) to reduce the computational time
during simulation and experimental studies. Figure 3 represents
the detailed view of the dynamic block shown in Figure 2. Inertia
matrix, M is dependent on « values. NN block receives « and & as
inputs and predicts n(«, &) values.

4 Result and discussion

the
performance of the proposed controller in different scenarios.

Simulation studies were conducted to determine
We have acquired the input-output dataset from a conventional
impedance control scheme developed for the same wrist section.
The data was obtained through simulation studies and experimental
validations, and was subsequently used to train an NN for improved
control performance. We utilised an NN with feed-forward back

propagation configuration, trained using bending angles as the
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input and obtained n(a, &) from the NN block.The NN architecture
used in this study was selected based on empirical evaluation
and prior experience with similar control tasks in soft robotics.
A feedforward network with three hidden layers comprising
5, 7, and 10 neurons respectively was implemented, using the
Levenberg-Marquardt backpropagation algorithm for training.
This configuration was chosen to balance model complexity
and training efficiency, ensuring sufficient capacity to capture
the nonlinearities in the impedance model without overfitting.
The choice of layer sizes reflected a balance between model
expressiveness and computational efficiency, particularly given
the real-time requirements of the prosthetic control system. While
more complex architectures (e.g., deeper networks or convolutional
layers) were considered, initial trials indicated diminishing returns
in performance relative to increased training time and resource
demands. Preliminary trials with shallower architectures (e.g.,
single or two-layer networks) resulted in higher RMSE and slower
convergence, while deeper networks introduced unnecessary
computational overhead without significant performance gains. The
Levenberg-Marquardt backpropagation scheme was chosen for its
rapid convergence properties in small-to medium-sized networks,
making it well-suited for the regression tasks involved.

Tansig function and Levenberg Macquardt were used as the
activation function and back propagation technique respectively.
Regression scheme of the NN training is given in Figure 4.
The regression scheme showcased an accuracy of 99.99% as
evident from Figure 4.

The performances of the NN with respect to training,
validation, and test data are shown in Figure 5. Values of gradient
and momentum (mu) were obtained as 1.08x107'* and 1x
1072 respectively. The lower values of gradient and momentum
showcased the successful convergence of the NN. Although a full
hyperparameter search was not conducted due to computational
constraints, the selected architecture consistently achieved high
accuracy across training, validation, and test sets, with regression
values exceeding 0.999 and minimal gradient and momentum
values. These results indicated successful convergence and
generalization.

The wrist segment was considered to be flexing from its original
position (without carrying prosthetic hand) to a final bending angle
of 0.6 radians in all directions relative to the disc connected to the
hand as shown in Figure 6.

The errors in deflections obtained during the simulations
without the presence of external disturbances (nominal condition)
are shown in Figure 7.

Average values of RMSE, settling time, and steady state
error were obtained as 3.04x107*rad, 3.1s, and 1.25x 107*rad
respectively. To examine how changes in spring stiffness affect the
systemy’s behavior, a simulation study was performed by varying
the stiffness values within a + 20% range of the nominal value
as shown in Figures 8a,b. The average values of RMSE, settling
time, and steady-state error for the reduced stiffness scenario were
measured as 3.16 x 10~ rad, 3.2s, and 1.33 x 10 *rad, respectively.
Similarly, for the increased stiffness scenario, the average values of
RMSE, settling time, and steady-state error were found to be 2.99 x
10%rad, 3.1s,and 1.10 x 10"*rad, respectively.

Simulations were conducted to study the performance of the
proposed controller in the presence of a constant force and a shock
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TABLE 1 Scenarios.

Scenario Settling Steady-
time (s) state error
Normal 3.04x 1074 rad 3.1 1.25x 107 rad
Increased load 3.45x 10" rad 3.7 1.74x 10" rad
Increased 2.99%x 1074 rad 3.1 1.10x 10* rad
stiffness
Decreased 3.16x 1074 rad 32 1.33x 107 rad
stiffness
Constant force 4.25x 10" rad 8 2.04x10"*rad
Impulsive force 3.87x10*rad 3.5 1.97x 10 rad

TABLE 2 Comparison study.

Parameters SMC MRAC MPC ‘ Impedance

Fabricated model.

RMSE 6.0 x 1.2% 2.1x 3.04x 10" rad
107 rad 107 rad 107 rad
Settling time (s) 1.5 2.8 1.2 3.1
Steady state error 1.3x 1.3x 0.4x 1.25x 107 rad
107 rad 107 rad 107 rad
Driver 2 Driver 1
Motors
Arduino
FIGURE 13
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FIGURE 14
Experimentation setup.

force as shown in Figures 9, 10 respectively. A constant force of 1N
is applied to the mid-section of the prosthetic hand, perpendicular
to the direction of motion, for a duration of 2s starting at t = 2s.
Additionally, an impulsive force of 1N is applied to the wrist section
for a duration of 0.5s starting at t = 1. The errors obtained during
the motions are shown in Figures 11a,b. The average values of RMSE,
settling time, and steady-state error during the application of the
constant force scenario were measured as 4.25x 10"*rad, 8s, and
2.04 x 10 *rad, respectively. Similarly, during the application of the
impulsive force, the average values of RMSE, settling time, and
steady-state error were found to be 3.87 x 10 *rad, 3.5s, and 1.97 x
10™*rad, respectively.

A stability test was conducted by increasing the load on the
hand by 50% to evaluate the controller’s robustness under higher
external forces. The system’s behavior remained consistent with
previous observations, maintaining stability and converging within
approximately 3.7s with RMSE and steady state errors of 3.45x
10~*rad and 1.74 x 10~* rad respectively, as illustrated in Figure 12.

Across all the scenarios such as the nominal conditions, and
stiffness variations, differences in performance measured in terms
of RMSE, settling time, and steady-state error are minimal. This
indicated that the chosen closed-loop parameters (as defined in
Equation 33) were robust to variations in system parameters.
Figure 11 explored the system’s response to external forces. In
Figure 11a, a constant force of 1 N was applied (refer to Figure 9),
while in Figure 11b, an impulsive force of 1 N was applied at
1s (refer to Figure 10). In the first case, the ascending ramp
influenced the transient phase of the error evolution (up to 3 s),
while the constant force affected the steady-state behavior. Since the
objective was to resist external disturbances, it is notable that during
the constant phase, the error reached only 4 x 10~* rad for an applied
force of 1 N, a significant force for highly compliant systems making
this an acceptable result. During the descending ramp, as the force
returned to zero, the system entered an oscillatory state. This was
expected, as the closed-loop system behaved like a mass-damper-
spring system, and force variations naturally induced oscillations.
In the second case, the oscillatory behavior persisted throughout the
entire error evolution, due to the impulsive force applied during the
transient phase at 1 s. In both cases, the steady state was not a fixed
value but a permanent oscillatory condition caused by the selected
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closed-loop parameters. However, the oscillation was negligible.
Although the control action reflected an oscillatory behavior, the
amplitude was sufficiently low that it did not pose any risk to the
actuators, especially considering that the control signal was filtered
before being transmitted to the motors.

Table 1 presents a comparison of the RMSE, settling time,
and steady-state error across different test scenarios. The normal
scenario served as the baseline, with moderate values for all metrics.
When theload on the hand is increased by 50%, the system exhibited
a higher RMSE and steady-state error, along with a longer settling
time, indicating reduced performance under heavier external forces.
In contrast, increasing the stiffness slightly improved both RMSE
and steady-state error, suggesting enhanced precision and control.
Decreasing the stiffness leads to a marginal increase in RMSE
and settling time, reflecting a slight degradation in performance.
Under the constant force scenario, the system showed the highest
RMSE and the longest settling time, highlighting the significant
impact of sustained external disturbances on stability and accuracy.
The impulsive force scenario also resulted in elevated RMSE and
steady-state error, though the system recovered more quickly, as
indicated by a shorter settling time compared to the constant force
case. Overall, the controller demonstrated robustness across varying
conditions, with performance variations aligning with the nature
and intensity of the applied disturbances.

4.1 Comparison with other controllers

The performance of the neuro-impedance controller was
compared with other controllers developed for the wrist section.
Results obtained using an SMC (Sulaiman et al., 2025b), an MRAC
(Sulaiman et al., 2025a), and an MPC (Schetter et al., 2025)
developed for the wrist section were compared with the results
obtained using the proposed controller. RMSE, settling time and
steady state error were compared to analyse the performances of the
controllers as given in Table 2.

To ensure a meaningful comparison between control strategies,
the cost function adopted in the MPC framework was carefully
designed to balance tracking accuracy and control effort. The cost
function is defined as:

](Zk) = ]x (Zk) +]Au (Zk) +]£ (Zk) (34)
where ], (z;) penalizes the state error, J,,(z;) penalizes the change
in control actions (i.e., control effort), and J,(z;) accounts for
constraint violations. The weighting parameters were selected to
emphasize position tracking over velocity regulation, aligning
with the performance objectives of prosthetic wrist control. The
prediction and control horizons were set to 10 and 5, respectively.
The kinematic and dynamic models used in the MPC design
were consistent with those presented in this study, starting from
Equation 28, where & =y was considered, and the corresponding
state-space representation was derived. In contrast, the SMC
strategy was designed using a Piecewise Continuous Control (PCC)
model, with the control input divided into two components: u =
Ugg + U, The equivalent control u,, was derived using Filippov’s
convexification and Utkins method (Utkin and Vadim, 2004)
to ensure sliding motion, while the switching control u,, was
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FIGURE 15
Motions of hand during experimentation (a—c) Ulnar (d—f) Radial (g—i) Flexion (j—l) Extension.

formulated based on a Lyapunov function V= %(72 to guarantee  conditions, the impedance controller was specifically designed to
attractivity to the sliding surface and minimize chattering. Although ~ handle external disturbances in a highly compliant mechanical
MPC and SMC demonstrated strong performance under nominal  system. Its ability to modulate interaction forces in real time makes it
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Comparison of bending angles during experimentation.

particularly suitable for soft prosthetic applications, where stability
and adaptability under unpredictable loads are critical. Therefore,
while MPC and SMC offer advantages in terms of settling time
or control precision, the impedance controller provides superior
robustness and trajectory recovery in dynamic environments.
While the MPC controller achieved the shortest settling time
of 1.2, slightly outperforming the proposed impedance controller’s
3.1s, the proposed impedance controller demonstrated superior
performance in terms of accuracy and stability. Specifically, it
achieved a significantly lower RMSE of 3.04 x 10~* rad compared to
6.0 x 10> rad for SMC, 1.2 x 1073 rad for MRAC, and 2.1 x 103 rad
for MPC. Additionally, the steady-state error of the impedance
controller was 1.25 x 10™*rad, which was notably lower than those
of SMC and MRAC, and comparable to MPC. These results
highlighted the effectiveness of the proposed impedance controller
in delivering precise and stable control, even though its settling
time was marginally longer than that of the MPC approach. While
the proposed impedance controller achieved a settling time of
3.1's under nominal conditions and up to 8 s under disturbance
scenarios, the duration reflected a deliberate trade-off between
response speed and compliance. In tendon-driven soft prosthetic
wrists, rapid actuation can compromise system stability and user
safety, particularly during interaction with unpredictable external
forces. The controller was designed to prioritize smooth trajectory
recovery and robust force modulation, which were essential for
intuitive and safe operation in real-world prosthetic applications.
Although alternative controllers such as MPC, SMC, and MRAC
demonstrate shorter settling times (ranging from 1.2 to 2.8 s), they
did not match the impedance controller’s performance in terms of
RMSE and steady-state accuracy. These metrics were critical for
ensuring precise motion tracking and minimizing long-term drift.

4.2 Experimental validation and conclusion

The fabricated model of the wrist section integrated with
prosthetic hand is shown in Figure 13 and experimental set up
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is depicted in Figure 14. An ArUco marker attached to the hand
enabled the tracking of its positions throughout the experiments.
The setup comprised four stepper motors, two motor drivers,
a 3D depth camera, and an Arduino controller for real-time
functionality. Furthermore, ROS and MATLAB softwares were
utilized for tracking the ArUco poses and implementing the control
scheme, respectively. Tendons one and two were engaged for
radial deviation of the wrist, while tendons four and five managed
movements in the ulnar direction. Additionally, tendons one and
four were responsible for extension motions, whereas flexion was
governed by tendons two and 5. The lowest disc (disc 1) was
secured to a stable platform, and the highest disc (disc 5) was
connected to the hand. Motions in all directions are illustrated
in Figures 15a - 1, while the trajectories associated with these
motions are presented in Figure 16. During the experimentation,
the average RMSE values for deflection, settling time, and steady-
state error across all directions were recorded as 2.7 x 10 2rad,
4.35s,and 1.8 x 10 % rad, respectively. The findings clearly indicated
that the error values observed during the experimental phase
were significantly greater than those recorded in the simulation
study. A primary factor contributing to the increased error
margin in the experimental phase was the lower stiffness of
the springs used in the wrist segment. we have also assessed
the adaptability of the controller under the influence of external
unknown forces.

Experimental validations were carried out by applying external
unknown forces by pulling the hand to the opposite directions while
the hand is moving in various directions as shown in Figure 17. An
external force was exerted on the hand to shift it in the opposite
direction (at 0.5 s) and after the application of the external force the
hand retained the trajectory and reached the desired bending angle
(0.6 rad) as shown in Figure 18.

During the application of a constant external force, the
system exhibited a RMSE of 1.07x 10 'rad, a settling time of
2.62s, and a steady-state error of 0.03x 10 'rad. Although the
RMSE, settling time, and steady-state error values observed during
the application of force were slightly higher compared to the
nominal case, all values remained well within acceptable tolerance
limits. This indicates that the proposed impedance controller
maintained robust performance even under external disturbances.
During experimental validation, the controller consistently ensured
convergence of the error, demonstrating its effectiveness in
preserving system stability and accuracy in the presence of
external forces.

Across all trials, the system’s position consistently exceeded
the reference signal, a behavior attributed to the high mechanical
compliance of the structure and progressive spring degradation
resulting from repeated experimental cycles. The phenomenon
suggested that the system occasionally failed to maintain its
intended position, leading to minor bending effects. In all cases,
the error peak remained within an acceptable range, reaching a
maximum of 0.08 rad. Notably, the oscillatory behavior observed
in simulation was absent in the experimental data, primarily
due to the filtering of the control signal prior to actuator
input, as previously discussed. The force was introduced during
the transient phase, consistent with the conditions used in
simulation. A minor undershoot observed at approximately 1.5 s
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FIGURE 17
Motions of hand in presence of force during experimentation (a—d) Ulnar (e—h) Radial (i-1) Flexion (m-p) Extension.

indicated a rapid recovery of the system once the external force
was removed.

5 Conclusion and scope for future
work

This study presented a novel learning-based impedance control
strategy for a tendon-driven soft continuum wrist integrated with
the PRISMA HAND II prosthetic system. By employing an NN
to estimate nonlinear impedance components, and modeling the
wrist using Euler-Bernoulli beam theory and the Euler-Lagrange
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method, the controller effectively addressed the challenges of
compliance, adaptability, and nonlinear dynamics inherent in soft
prosthetic systems. Simulation studies demonstrated high accuracy
with low RMSE values, minimal steady-state errors, and efficient
settling times. Experimental validation confirmed the controller’s
robustness in the presence of external disturbances and variations
in system parameters, although performance slightly decreased due
to mechanical limitations in hardware.

This research introduced a novel impedance control framework
that integrates neural network-based prediction within a physics-
grounded model of a soft continuum wrist for prosthetic
applications. Across six simulated scenarios including nominal
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settings, variable spring stiffness, and external force applications
the controller consistently achieved RMSE values ranging from
2.99x 107 rad to 4.25x 107 rad, settling times between 3.1 s and
8s, and steady-state errors under 2.04 x 10~*rad, showcasing its
adaptability and precision. Experimental trials, despite increased
mechanical uncertainties, demonstrated an average RMSE of 2.7 x
107 rad, convergence within 4.35s, and steady-state error of
1.8%x 1072 rad, affirming the controller’s robustness in real-world
conditions. Notably, under constant external force, the system
maintained stability with an RMSE of 1.07 x 10~! rad and returned
to trajectory within 2.62s. When benchmarked against SMC,
MRAC, and MPC approaches, the proposed strategy achieved the
lowest RMSE and competitive steady-state accuracy, underscoring
its advantage in managing soft prosthetic systems with high
nonlinearity and external perturbations.These findings support
the viability of integrating machine learning with physics-based
modeling to develop intelligent prosthetic control systems that offer
more natural and responsive movement. The proposed controller
marks a significant step toward bridging the gap between rigid
control mechanisms and the nuanced demands of soft prosthetics.
Future work may focus on enhancing the mechanical properties
of the wrist structure, expanding user adaptability through closed-
loop human feedback, and implementing the controller in broader
wearable and assistive robotics platforms. To address the concern
regarding response speed, future work will focus on optimizing the
controller’s dynamic parameters such as stiffness and damping gains,
and exploring hybrid control strategies that integrate predictive or
adaptive components. These enhancements aim to reduce settling
time while preserving the compliance and robustness that define
the impedance control framework.
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