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ABSTRACT

We construct a stereo vision system mounted on
a micro air vehicle applying two high resolution
consumer grade cameras. The system hardware
and mechanical configuration are presented. A
novel image processing algorithm specifically
suited for high resolution stereo images is de-
scribed, and its properties are discussed. Empiri-
cal data from outdoors flight experiments is pre-
sented, showing both successful and unsuccess-
ful attempts at extracting depth information from
the stereo images. The results highlight several
important design aspects to consider when build-
ing a stereo vision system for use in micro air
vehicles.

1 INTRODUCTION

Depth information is essential for representing real world
structures in three dimensions. Depth information repre-
sented as a set of 3D points in a known frame of reference is
called a point cloud. Point clouds or other 3D representations
are essential for autonomous robot operations, since avoid-
ing obstacles, planning routes or manipulating objects in the
environment is impossible without 3D information about the
surroundings.

Depth data can be obtained, for example, with laser range
finders or time of flight (TOF) cameras. However, these meth-
ods may not be suitable for micro air vehicles (MAVs) due to
weight and cost limitations.

Stereo vision provides point clouds by first finding the
matching features from two images taken from two known
but different locations. The difference between the matching
features is called disparity. Disparity can be converted to a
metric distance when the geometric transformation between
the images is known. The features are usually block shaped
areas in the images. The most difficult part in stereo vision is
finding the matching features in the image pairs. Many of the
current methods struggle with featureless surfaces, see e.g.
[1]

Low resolution stereo imaging as used in [2] and [3] has
the advantage of fast processing and low latency, critical for
real time applications. For instance, low-resolution imaging
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can be used for attitude estimation and navigation when dis-
tance to the features is generally under Sm and surfaces have
unique texture. On the other hand, these systems are not ideal
for mapping areas with small featured surfaces from more
than 5m away since the low resolution cameras cannot dis-
tinguish texture at distance. This performance is highly de-
pendent on the construction of the stereo camera and the sur-
face in question: plainly painted wall might not have enough
features no matter how close the camera is, and the wall
of the building with large features might have enough tex-
ture for low resolution stereo matching even from more than
20m away. High-resolution stereo imaging can be applied to
obtain reliable depth information from feature poor environ-
ments such as sand, grass or asphalt surfaces. Another advan-
tage of high resolution images is that they can also be used
for tasks such as texture analysis or marker detection. The
downside is increased computation time, which makes high
resolution data challenging to use in real time applications.
In this work, we apply a lightweight, low-cost, stereo camera
system built from high-resolution consumer grade cameras to
collect depth data. The stereo vision system is mounted on
a MAV. Our goal is to apply the system to support the ac-
tivities of an unmanned ground vehicle (UGV) by providing
information on terrain features and formation in areas that
the UGVs own sensors cannot reach. The remainder of the
paper is organized as follows: in Section 2, we present the
MAV hardware construction including the stereo camera sys-
tem and give a brief overview of the theory of stereo imaging.
In Section 3, the image processing techniques developed in
this work specific to the use of high-resolution cameras are
presented. Their differences to other state-of-the-art meth-
ods are discussed. In Section 4, empirical data collected from
MAV test flights with the stereo camera system are presented.
The data highlight several important design aspects that have
an effect on stereo imaging performance. Finally, Section 5
concludes the paper.

2 METHODS

The MAV applied in this work is shown in Figure 1. It
is built from carbon fiber honeycomb plate and carbon fiber
tubing. The arms and their connections are from a commer-
cial kit but the rest of the hardware has been cut from carbon
fiber plates.

The system consists of subsystems which each handle
their specific tasks. The main PC coordinates all the subpro-
cesses. The layout and communication hierarchy is presented
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Figure 2: The physical layout of the components of the MAV
system.

in Figure 3. The physical placement of the systems can be
seen in Figure 2.

We are using the open source Arducopter [4] as our flight
controller. An additional inertial measurement unit (IMU)
is used for the camera attitude estimation. The IMU unit is
built from Arm M4 microcontroller and Invesense MPU-6050
accelerometer and gyroscope. MAV location is sensed with
a global positioning system (GPS) sensor. The GPS sensor
consists of a Yuan10 receiver with RTKIib open source RTK-
GPS software[5] in the main PC. The positional error of the
GPS is usually smaller than 0.5m in motion, but can be as
high as 10m when close to ground or buildings. The closer
analysis of the positioning system can be found in [6].

The stereo camera is built by mounting two standard con-
sumer cameras on a sandwiched honeycomb composite plate.
This mounting ensures that the cameras share a common
plane. A similar setup is used e.g. in [7]. Our stereo rig has
a baseline of 219 mm, compared with 700 mm in [7].We use
a small baseline because our MAV could not accommodate a
larger camera rig. The cameras are running custom firmware
that provides software triggering, raw image capturing and
basic scripting capabilities. The cameras are triggered by a
simple script running in the camera firmware. The camera rig
is shown in Figure 4. Cameras are mounted in such a way
that we get a maximal baseline with minimal space usage;
however this results in a different shutter sweep direction be-
tween the cameras. Because we were using the raw images
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Figure 3: A schematic of the onboard hardware and their con-
nections.

Figure 4: The onboard camera rig.

provided by the custom firmware, we were able to get 10bit
images without cropping and other corrections done by the
original firmware. However, this also meant that we had to do
the factory calibration ourselves, which involved the geomet-
ric rectification of the images and removing the dead or stuck
pixels from the images. The cameras also had varying trig-
gering delay to the trigger signal. Constant delay was roughly
700ms which was compensated in the camera triggering code,
but the variance of this delay proved to be a critical aspect on
the experimental data. The triggering difference between the
cameras for a sample of ten image pairs is presented in Figure
5.

To perform any kind of mapping, we need to define our
coordinate systems and be able to transform data from the
sensor plane into the map coordinates. Image processing
must be done in a frame relative to the sensor plane and
map information is most conveniently represented in a global
frame of reference. In the case of the stereo camera, we
need at least three coordinate systems: the image, camera and
global coordinate systems. The origin of the image coordi-
nate system is at the principal point, which is in the middle
of the sensor. Image coordinates have units in pixels. The
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Figure 5: Triggering time differences measured from ten im-
age pairs.
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Figure 6: The coordinate systems applied.

camera coordinate system has its origin at the focal point of
the camera. The global coordinate system is a fixed earth-
centered frame. The coordinate systems are presented in Fig-
ure 6, where the coordinate axes with subscript sens, cam and
glob represent the image, camera and the global coordinate
frames, respectively.

Stereo camera is calibrated to rectify the images so that
both of the images appear as if they only have translation in
horizontal (X) direction. This means that if a feature is found
at coordinate [z1,y1] on the left image, it will found on the
right image at a coordinate [z + d, y1] where the term d is
called the disparity. Stereo camera calibration also includes
the traditional single camera calibration where the lens dis-
tortions are compensated.

There are several methods for finding disparities between
images. One of these methods is called block matching.
Block matching works by selecting a small rectangular block
from the left image and slides it horizontally over the right
image, calculating correlation over each position. An alterna-
tive version of this typically used in low-resolution systems
is the sum of absolute differences, where instead of correla-
tion, difference between the blocks in the images is used. The

point of maximal correlation or the minimal point of summed
absolute differences is chosen as the disparity between the
images at the origin of the block.

Once the disparity between the images has been calcu-
lated at several points, the pixel units in disparities d are con-
verted to metric depth z according to[8, p. 175]

def

i=a (1)
This equation is valid in the special case when the cameras are
on the same plane. The baseline d, is the distance between the
camera centers. When this information is combined with the
focal length f and disparity d we can calculate depth in me-
ters. The focal length f is determined by camera calibration
in pixel units.

By this process, we have obtained the metric depth data
on the camera coordinate frame. The data is then converted
to the global coordinate frame. This requires knowing the
rotation and translation of the cameras when the images were
taken. Sensor data from GPS, IMU, etc. are used to estimate
the rotation and translation parameters.

3 IMAGE PROCESSING

Image processing was first tested with readily available
tools like the machine vision toolbox [9]. However, these
tools were not always able to handle high resolution data
or resulted in low quality image matching. Due to this, we
implemented our own stereo matching algorithm specifically
suitable for high-resolution images.

We apply a block matching algorithm to find the dispari-
ties between the images. Our approach works iteratively, al-
ternating the block size and using the information gained on
previous steps to constrain the search areas. The idea behind
this method was to utilize all available data with little concern
at computation times and concentrate on computational effi-
ciency at a later stage. The algorithm is described in Figure 7.
The process begins by loading the images from the disk, fol-
lowed by the camera calibration procedures which involve the
geometric rectification and correcting for faulty pixels. Af-
ter the calibration steps, we use principal component analysis
(PCA) to reduce the RGB color channels to an monochrome
image. The disparity between the images is searched with the
block matching algorithm. When the disparity is found, the
disparity image is converted to point cloud format in global
coordinates.

3.1 RGB to monochrome conversion

Stereo vision algorithms are generally implemented on
monochrome images as this reduces calculation time. There-
fore, our RGB data needs to be converted to monochrome.
Traditionally, the RGB image is converted to monochrome
by summing the color channels with different gains, roughly
equivalent to discarding hue and saturation information from
the image. We applied windowed PCA [10] over the whole
image in this work. This method finds optimal multipliers
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Figure 7: The algorithm for calculating point clouds from stereo images.

for each color channel by computing the PCA transformation
to each window so that local contrast is maximized. Com-
parison of the traditional monochrome conversion and PCA
transformation can be seen in Figure 8. The figure shows the
worst case scenario for the traditional RGB conversion and
has been designed to illustrate a special case when the tra-
ditional conversion is not viable. The figure also includes a
comparison with a real photograph. Differences are visible in
places where colors such as red and green are close to each
other. Traditional conversion results in low contrast between
the two colors whereas PCA transformation enhances the dif-
ferences.

Original image Original image

Conventional conversion

PCA transformation

Synthetic

Figure 8: RGB to monochrome conversion for a synthetic
(left column) and real image (right column). The source im-
age is shown on the top row. The middle row shows the tra-
ditional RGB conversion of the source image and the bottom
row the converesion with the windowed PCA transform.

The processing takes 5 seconds for an 8Mpix image with
and 17-3990 processor using a window size of 40 pixels. The
algorithm was implemented usingMatlab’s builtin PCA trans-
formation.

3.2 Block matching

We use a block matching algorithm for solving the dis-
parity between the images. A diagram of our block matching
algorithm is shown in Figure 9. This algorithm corresponds
to the Searching the disparity part of the whole image pro-
cessing procedure shown in Figure 7. The block matching
algorithm works iteratively by first calculating an initial esti-
mate for the image using low resolution and large block sizes.
The following iterations will use decreasing block sizes and
higher resolution. The decision to replace the results from
the previous rounds is done based on cost functions that de-
termine the quality of the match. The algorithm is essen-
tially correlation based block matching with heuristic deci-
sion making between different block sizes. The algorithm be-
gins by setting initial values for disparity and the uncertainty
of each pixel. In the next phase, the algorithm chooses the
block size and resolution to be used in calculation. The search
window in the other image will scale according to the uncer-
tainty for that particular disparity. Then, normalized cross
correlation is used to calculate the correlation of the block
over the search window. This is followed by calculating the
different cost functions or descriptors for the disparity. The
rest of the algorithm computes heuristic values based on the
cost functions for deciding if the disparity calculated in this
iteration is better than the one calculated last time. The de-
cision logic is illustrated in the lower part of the Figure 7.
For example, in the case where two out of four of the cost
functions indicate that the new disparity value would be bet-
ter than the previously calculated disparity, the old value will
be updated with a new disparity value if the window size used
was smaller for the new window. The old estimate will also
be updated if three or more of the four cost functions indi-
cate that the new estimate is better. The whole algorithm will
iterate as long as the percentage of points updated is over a
stopping threshold.

The cost functions used in this work fall into two cate-
gories. The first category contains pixel based functions, and
the other category contains functions that need to be con-
verted to pixels from an unitless quantity, such as correlation.
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Uncertainty in pixel units can be converted to a metric uncer-
tainty through the same equations that are used for converting
the disparity.

Pixel based cost functions penalize the match if it has too
many peaks that are caused e.g. by repetitive texture. Results
from larger block size will be preferred if they do not have the
multi peak correlation. Standard deviation with the neighbor-
ing disparity values is used to penalize noisy pixel values. In
other words, smooth estimates are preferred. One cost func-
tion is the pixel size. Because we drop the image resolution
for the larger block sizes, the pixels will be larger. This results
in different pixel sizes between block sizes and the cost func-
tion encodes a preference of smaller block sizes over larger
blocks. The non pixel based cost functions were the corre-
lation of the found peak, and the signal to noise ratio of the
peak. They were converted to the pixel scale by constant mul-
tipliers, which were experimentaly determined. This ratio is
calculated by dividing the correlation peak height with the
standard deviation. This ensures that high correlations that
clearly stand out from the surroundings are preferred over a
high correlation only, which might result from simply flat col-
ored surfaces.

The algorithm we developed resembles the semi-global
block matching (SGM) technique used by Hirschmuller et al.
[11]. The key difference between our algorithms is in the cost
functions used to quantify the match quality. Hirschmuller et
al. use only local standard deviation to penalize bad matches
whereas our algorithm employs multiple cost functions to de-
scribe the match quality. The iterative structure where re-
sults from different block sizes are used also differs. We are
using results from multiple levels to ensure that even large
surfaces without many distinctive features will get matched
correctly. With a small window size, these large surfaces
will not be properly matched as the small window does not
contain enough texture for finding the match. Using large
windows mitigates this problem although it creates new prob-
lems with small details being lost on the edges. This is why
decision heuristics are implemented to favor good matches
from smaller block sizes if it is found on the area of the larger
block.

3.3 Performance

The algorithm was implemented so that it could be dis-
tributed to multiple computers acting as a calculation clus-
ter. The software was running on Matlab and the calculation
was distributed through serialized structures sent through Ze-
roMQ [12], an open source library providing a transport layer
for distributed applications.

Average calculation times in a cluster with two Intel i7
3770 processors and Nvidia GTX680 graphics cards was 15-
20 minutes for complete processing of one image pair. The
current code has not been performance optimized, but it will
scale well with the addition of more hardware to calculation.
As the algorithm runs iteratively, initial results are available
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Figure 10: Original image and disparity extracted from the
stereo pair in good conditions.

in under one minute with the current setup. For the rest of the
time, the estimate is refined to produce a more accurate end
result.

4 EXPERIMENTAL RESULTS

In this section, we present some of the best and worst re-
sults obtained with our algorithm. Comparing the end results
highlights important design aspects that must be taken into
account when designing a stereo vision system for use in a
MAV. We also present a comparison of our algorithm to the
SGM technique of [13]. Figure 10 presents the performance
of the disparity calculation in ideal conditions when there is
sufficient texture and the triggering of the cameras does not
have large time difference. This results in a smooth disparity
estimate with only a small amount of missing data due to bad
matching.

Figure 11 presents the point cloud extracted from the dis-
parity image seen in Figure 10. Points on the lower left edge
are missing due to estimate being too inaccurate. Small errors
are also present on the upper right corner where the spike in
height is not present in the real terrain. Axes are scaled to 10
m. There is no visible warping on the point cloud caused by
the inaccurate triggering of the cameras.

Figure 12 present the system’s performance in poor con-
ditions. The matching itself is good but there is a clear trend
visible towards the lower left corner. This is a good exam-
ple of a case where the assumed camera calibration is invalid
because cameras were triggered at different times and the po-
sition and attitude of the cameras does not correspond to the
calibrated positions. This often results in a valid looking dis-
parity image, but the point cloud reveals heavy distortions.
Compensating was attempted by forcing the mean disparity to
correspond to the height of the MAV but this correction only
applies to the incorrect baseline and does not fix the possible
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Figure 9: An activity diagram for the disparity search algorithm. Each of the operations is performed for the whole image.

Figure 11: Point cloud extracted from disparity image.

camera rotation between the images. Knowledge of the exact
camera triggering times would be required to correct for these
erTors.

Figure 13 shows the point cloud extracted from the dis-
parity image in Figure 12. The effect of assuming an invalid
calibration is clearly visible in this figure, as can be seen from
the distorted surface. In reality, the ground plane seen in the
figure should be flat.
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Figure 12: Original image and the disparity extracted from a
stereo image pair in poor conditions.

We tested our algorithms performance against an imple-
mentation of SGM [14]. According to the software documen-
tation, the implementation is based on [13]. The comparison
is presented in Figure 14 We used the image pair that was
earlier presented in Figure 10. We used a block size of 17px,
with search window size of 64x304px with other values left
at their default values. It can be seen that our method man-
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Figure 13: A point cloud extracted from a disparity image
when an invalid camera calibration is applied.
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Figure 14: Comparing Matlab implementation of semi global
block matching to our algorithm.

ages to find a more complete disparity estimate. However,
it is worth noting that SGM took 12seconds to calculate the
results on a single PC as our method took roughly 15 min-
utes running on two processors and one GPU. The result in-
dicates that there may be cases where our algorithm outper-
forms SGM. However, a fair comparison requires testing with
more input images and is a topic for future work.

5 CONCLUSION

We applied high-resolution, low-cost consumer grade
cameras to build a lightweight stereo camera system mounted
on a MAV. Specialized algorithms were developed to extract
depth information from the high-resolution images. We were
able to extract high quality depth data from low textured sur-
faces like dirt roads, sand piles and grass. High resolution
stereo vision was useful in identifying features and making
the system compact without making the field of view too nar-
Tow.

In flight altitudes exceeding 10m, the quality of the point
clouds decreased. This was due to the features being too
small. This can be seen as increasingly noisy depth estimates
for low featured surfaces. Another drawback was caused by
the use of the consumer grade cameras which did not trig-
ger accurately at the same time. This resulted in the stereo
calibration assumed in the image processing phase being in-
accurate. Inaccuracy in camera calibration was often not crit-
ical when the altitude was low as the disparities were small,
but when altitude was more than 10m, the results degraded
heavily. We identified several important factors that should
be taken into account when designing a stereo camera sys-
tem for use in a MAV. The single most important factor is
to trigger the cameras at precisely the same time. Even dif-
ferences as small as 100ms can cause significant errors when
the cameras are moving at typical MAV speeds. Using mul-
tiple block sizes proved to be useful while matching images
with low texture. High computation times were expected as
the goal of this work was not to make a real time stereo vi-
sion system, but to explore the possibilities of the high res-
olution stereo vision. This work is a summary of one of the
authors Masters thesis [15]. The algorithm development and
data gathering was done during year 2013. In future work, we
will concentrate on using machine vision cameras with accu-
rate hardware-level triggering. We are also planning to test
how low textured surfaces can be matched using low resolu-
tion cameras with a narrow field of view. In addition, compu-
tation is faster for lower resolution images. Smaller cameras
also enable us to use a longer baseline to compensate for the
smaller resolution.
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