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(GMC) functions, which elevates the performance ceiling of DRL agents, achieving an average performance
improvement of 21.43%, 1.08%, 2.76%, by augmenting five-year, one-year and three-month data, respectively.
Additionally, RL-ADN incorporates the Tensor Power Flow solver, significantly reducing the computational

burden of power flow calculations during training without sacrificing accuracy, maintaining voltage magnitude
with an average error not exceeding 0.0001%. The effectiveness of RL-ADN is demonstrated using distribution
networks with size varying, showing marked performance improvements in the adaptability of DRL algorithms
for ESS dispatch tasks. Furthermore, RL-ADN achieves a tenfold increase in computational efficiency during
training, making it highly suitable for large-scale network applications. The library sets a new benchmark in
DRL-based ESSs dispatch in distribution networks and it is poised to advance DRL applications in distribution
network operations significantly. RL-ADN is available at: https://github.com/ShengrenHou/RL-ADN and https:
//github.com/distributionnetworksTUDelft/RL-ADN.

1. Introduction
1.1. Motivation

Energy Storage Systems (ESSs) play a pivotal role in modern distri-
bution networks, offering enhanced flexibility essential for addressing
uncertainties brought by Distributed Energy Resources (DERs) inte-
gration [1]. Optimizing ESS dispatch strategies is crucial for distri-
bution system operators (DSOs) to fully harness this flexibility [2].
However, the dynamic and sequential nature of optimal operation deci-
sions, responding to fluctuating prices and varying electricity demands,
poses a significant challenge. Traditional model-based approaches of-
ten struggle with real-time decision-making due to their reliance on
predefined forecasts or complex probability functions to manage uncer-
tainties [3]. Deep Reinforcement Learning (DRL) emerges as a potent
model-free solution for such fast-paced, sequential decision-making
scenarios, with successful applications in diverse fields like game-
playing [4], robotics control [5], industry control [6]. Applied to
distribution energy systems, DRL transforms these operational chal-
lenges into a Markov Decision Process (MDP), exhibiting impressive
results in various energy tasks [7-9]. DRL’s strength lies in its adapt-
ability and capability for real-time decision-making, trained in sim-
ulators and then applied to real-world scenarios. This necessitates
robust and accurate simulation environments to prevent duplication
and provide benchmark frameworks for the development of efficient
DRL algorithms.

Therefore, we introduce RL-ADN, an open-source library specifically
tailored for DRL-based optimal ESSs operation in distribution networks.
It meets diverse research needs while providing customization options
for research tasks, ensuring both flexibility and standardization.

1.2. Related work

The RL field has grown significantly, thanks in part to open-source
universal simulation environments and benchmark frameworks, like
GYM for game-playing [4]. However, this trend is less pronounced in
energy system research groups. The absence of such resources hampers
the development and integration of DRL algorithms in energy system
operation areas. Table 1 offers a comparative analysis of function-
alities in open-sourced energy system environments. Many existing
environments address specific challenges but are often too tailored for
broader application [10,11]. For instance, a microgrid environment
is developed to test the performance of DRL algorithms in [11]. The
task of formulated MDP is to minimize the power unbalance and
operational cost by dispatching distributed generators and ESSs. In
the research [12], a distribution network environment is open-sourced
to facilitate solving active voltage control problems based on multi-
agent RL algorithms. AndesGYM [13] developed an environment for
frequency control problems in power systems, which leverages the
modeling capability of ADNES and Gym environment. The task is set
to minimize the deviations of the frequency value in a given time
scope. Consequently, these environments do not lend themselves easily

to customization or alterations essential for different or broader re-
search objectives. This specificity leads to fragmentation in the research
community, as studies operate in isolation without a standardized
benchmark or a universally adaptable toolset.

CityLearn [14] provides an environment for simulating DRL algo-
rithms in charge of operating building energy systems, in either a
centralized (single-agent) or decentralized (multi-agent) way. Focusing
on exploring the dynamics inside the building, it ignored the grid-level
dynamic. GridLearn [15] is further developed to investigate mitigating
over-voltages in the distribution network level by demand response in
the buildings. Both two packages simplified the original MDP tasks,
by discrete continuous decisions into discrete actions and ignoring
the power flow calculation in the distribution networks. PowerGrid-
World [16] is a framework for researchers to customize multi-agent
environments of power networks, which could integrate existing RL
libraries like RLLIb and OPEN-AI BASELINES. PowerGridWorld could
work in two ways to implement the multi-agent feature: centralized
training and distributional execution, distributional training, and exe-
cution. In the environment, OPENDSS is used as an interface to execute
the power network operation. Gird20P [17] is developed to support
training an intelligent agent to run a transmission network and has
served as a benchmark environment for a series of LZRPN competitions.
Grid20P provided the flexibility for grid modifications, observations,
and actions. However, both PowerGridWorld and Grid20P necessitate
extensive power flow calculations during offline training, typically
a bottleneck in DRL training, since RL agents need to explore the
environments to converge, requiring a large amount of interaction.
The mentioned electricity network environments are mainly built based
on standard iterative methods, i.e. Newton-Raphson method, which is
time-consuming, rendering them unsuitable for integration with DRL
algorithms training.

GYM-ANM [18] is an open-source environment for solving oper-
ation problems in distribution networks, with the primary purpose
of using RL algorithms to reduce energy loss (including generation
curtailment storage, and transmission losses) under the operation viola-
tion constraints. GYM-ANM provides flexibility for customizing energy
components, research tasks, network topology, etc. Specifically, it uses
a customized simplified power flow simulator to encapsulate the dy-
namics of a distributional network, which can accelerate the training
speed of RL agents significantly. However, the limitations of GYM-
ANM are also obvious, as the implemented power flow calculation
algorithm cannot precisely track the dynamic of physical distribution
networks, impeding the transition from simulation to reality for the
trained RL agents. Therefore, an advanced power flow calculation
algorithm remains a significant imperative to avoid being hindered by
the extensive computational demands as well as to reflect the dynamics
of physical distribution networks accurately.

Moreover, the key to leveraging DRL for optimal dispatch strategies
lies in training with diverse historical data, particularly in environ-
ments with uncertain renewable generation, load consumption, and
price profiles. The broader the training scenarios, the higher the DRL
agents’ performance ceiling [11]. However, collecting diverse data
for specific distribution networks remains challenging, limiting the
practical integration of DRL algorithms.
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Summary of literature in environments of distribution network operation. The content of the table strictly aligns with the novelty we include: power flow integration, data

augmentation, benchmark optimality, and flexibility assessment.

Work Research task Power flow integration Data augmentation Flexibility and customization capabilities
[11] Optimal energy system scheduling X X X
[12] Voltage regulation v X X
CityLearn [14] Building Energy Management X X v
GridLearn [15] Building Energy Management X X v
PowerGridWorld [16] Power Network Operation v X v
Grid20P [17] Transmission Network Configuration v X v
GYM-ANM [18] Distribution Network Operation v X v
[3] Microgrid operation X X X
[19] EV energy management X X X
[20] Microgrid Control v X X
[21] Microgrid operation v X v
[22] Economic dispatch X X X
[23] Power system emergency control v X v
[24] Voltage Control v X X
RL-ADN Optimal ESSs dispatch in distribution network v v v

1.3. Contributions

This paper presents RL-ADN, an open-source library for DRL-based
optimal ESSs dispatch in active distribution networks. RL-ADN accom-
modates a wide range of research objectives (i.e., different optimization
objectives functions such as congestion management and optimal dis-
patch) while offering unprecedented customization capabilities. This
flexibility extends to the modeling of distribution network topologies
and the integration of various types of ESSs, thereby allowing for the
creation of tailored MDPs. RL-ADN incorporates a novel data aug-
mentation module using a Gaussian Mixture Models-Copula (GMC)
approach, enhancing the diversity of training scenarios and thereby
the performance of DRL algorithms. Additionally, it introduces the
Tensor Power Flow solver, drastically reducing computation time for
power flow calculations tenfold, without sacrificing accuracy [25,26].
RL-ADN also provides four state-of-the-art (SOTA) DRL algorithms and
a model-based approach with perfect forecasts as a standard baseline
for comparison. In summary, RL-ADN sets a new standard in DRL-based
ESS dispatch with its innovative features, flexibility, and efficiency.
The proposed environment paves the way for more effective and ac-
curate DRL applications in energy distribution networks, representing
a significant advancement in the field.

2. Background
2.1. Optimal ESS dispatch tasks in distribution networks

ESSs dispatch tasks are inherently sequential decision-making prob-
lems. The aim is to minimize operational costs while adhering to
constraints that ensure the safe and efficient operation of the distri-
bution network. Such constraints might include maintaining specific
voltage magnitude and current levels, state of charge (SOC) operation
constraints, etc. This involves responding to market prices, network
conditions, and renewable stochastic generation. The ESSs dispatch
problem is typically cast as optimization problems with a general
mathematical optimization formulation defined by (1)-(3):

Minimize:

f(x) where x is the decision variable. 0
Subject to:
gx)<y (Grid-level constraints) (2)

b(x) < z (Energy storage system constraints) (3)

The objective function f(x) varies based on different tasks, ranging
from minimizing operation cost based on dynamic pricing to regulating
voltage magnitude or integrating multiple goals [27]. The effective
dispatch of ESSs is crucial, considering the uncertainties in renewable

generation, load consumption, and price fluctuations. The constraints
are categorized into grid-level (2) and ESS-level (3) based on the
specific requirements of the tasks. Some tasks may prioritize network
reliability and incorporate more stringent constraints on voltage mag-
nitude and current levels, while others may focus solely on profit
maximization. This flexibility in formulation allows for a wide array of
approaches, each tailored to meet the specific needs and priorities of
different energy optimization tasks. Detailed mathematical formulation
for a template task can be found in Appendix A.

2.2. MDP formulation and reinforcement learning

In RL-ADN, these sequential decision-making problems can be refor-
mulated as a MDP, defined by the tuple (S, A, P, R,y), where S denotes
the state space, A represents the action space, P is the state transition
probability function, R signifies the reward function, and y stands for
the discount factor.

A policy, z(a,|s,), determines the selection of action 4, for a given
state s5,. The agent’s objective is to ascertain a policy that maximizes
the expected discounted cumulative return, represented as J(r) =
E,.. [Z;O y’rt], in which 7 is the length of the control horizon.

The formulated MDP possesses a continuous action space, making it
unsuitable for direct solutions using value-based DRL algorithms [28].
Policy-based DRL algorithms are often employed to address continuous
action spaces, as they directly tackle such continuous action domain
problems. The architectures of state-of-the-art (SOTA) policy-based DRL
algorithms such as DDPG [29], TD3 [30], SAC [31], and PPO [32] are
depicted in Fig. 1.

» DDPG and TD3: Both are deterministic algorithms that maintain
a policy for action sampling and Q-networks, Q,(s,,q,), to guide
policy network updates. Specifically, TD3, as an enhancement
of DDPG, incorporates dual Q-networks and employs delayed
updates, mitigating the Q-network’s overestimation bias inherent
in DDPG.

PPO: As an on-policy algorithm, PPO addresses policy optimiza-
tion challenges in RL. PPO curtails extensive policy updates by
adopting a clipped objective function, ensuring minimal devia-
tion of the new policy from the previous one. A value function
Vy(s) is leveraged to guide the policy iteration. This mecha-
nism circumvents the necessity of learning rate adjustments and
achieves superior sample efficiency compared to conventional
policy gradient techniques [32].

SAC: SAC is an off-policy actor-critic framework that integrates
the maximum entropy reinforcement learning paradigm. By sup-
plementing the typical reward with an entropy component, SAC
promotes exploration, thereby achieving a harmonious balance
between exploration and exploitation. This algorithm utilizes a
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Fig. 1. Architecture of policy-based DRL algorithms. (a) Deep Deterministic Policy Gradient (DDPG), (b) Twin Delayed DDPG (TD3), (c¢) Proximal Policy Optimization (PPO), (d)

Soft Actor-Critic (SAC).

soft value function, dual Q-functions, and a policy network. With
iterative updates, SAC strives to formulate a stochastic policy
that is both optimal and exploratory, ensuring robustness and
efficiency across diverse tasks.

Building on the policy gradient theorem, both the policy, z(q,ls,),
and its associated critic networks, Qy(s;,a,) or V,(s), can be updated.
It is worth noting that the update methods can vary depending on the
specific algorithm. A comprehensive discussion of these algorithms is
available in [33].

By interacting with the artificial environment, the DRL agent seeks
to define the optimal ESSs dispatch in active distribution networks. The
two-phase approach, offline training followed by online deployment,
equips the agent to address the stochastic nature of optimal ESSs dis-
patch tasks. In the offline training phase, the DRL agent gleans insights
from the interaction and executes self-learning, refining its decision-
making. During the subsequent online deployment, it leverages these
insights to navigate complexities, ensuring more robust and adaptive
solutions. The environment’s partially observable nature, often due to
communication constraints, necessitates meticulous state selection from
the full observation set. Overly complex states will decrease the signal-
to-noise ratio, while overly simplistic states could overlook essential
dynamics. Both scenarios can undermine the learning efficacy and
policy performance. To provide flexibility in designing state spaces, RL-
ADN facilitates the easy customization of state spaces, a topic further
explored in the subsequent sections.

3. RL-ADN framework
3.1. Overview

The architecture of the RL-ADN environment, depicted in Fig. 2,
consists of three layers: Data Source, Configuration, and Interaction
Loop. Primary data feed into Configuration Layer to build DRL en-
vironments, integrating components like Data Manager, Distribution
Network Simulator, and ESSs Models. These components are integrated
into the environment within the Interaction Loop, while a DRL al-
gorithm, chosen to control the agent, is initialized simultaneously.!
Then, the DRL agent interacts with the environment in search of the
optimal policy. The proposed RL-ADN framework’s versatility allows
for modeling highly tailored tasks, with modifications to components
yielding unique MDPs for distinct ESSs dispatch tasks.

1 State-of-the-art policy-based algorithms such as DDPG, SAC, TD3, and PPO
are incorporated into the framework.

Data Source Layer

I Time Series Data

1. Time Series Load Data

2. Time Series Price Data

3. Time Series Renewable
Generation Data

Battery Parameter
Data

Characteristics of Battery

Distribution
Network Data

1. IEEE Format Node Data

2. IEEE Format Line Data

Configuration Layer

Data Manager '»*"v

D ——
Data Augmentation !

Interaction Loop Layer

(GridTensor

ESSs Model
Simulator of the

Distribution Network
(with Laurent power flow)

Simulator of the
Distribution Network

Agent Environment

a

select_a()
—\—0 step()

update_net()

L

Fig. 2. Framework of the RL-ADN package. Configuration data for the distribution
network and the ESSs are selected from data sources. Subsequently, corresponding

[Sx+l’rr]

time-series data undergo preprocessing. Through Configuration Layer, the environment
is constituted of the distribution network, ESSs, and data manager.

3.2. Data source layer

The Data Source Layer provides primary data for building the frame-
work and training the DRL agent. Data are categorized into time-series
data, distribution network data, and ESSs parameter data. Time-series
data include load profiles, price profiles, and renewable generation
profiles in a standard format. These data are processed by the Data
Manager for training or can be selected for further augmentation.
Distribution network data comprises node and line data, with nodes
specifying slack and PQ bus locations and lines detailing topology
and characteristics like resistance and reactance, which are stored in
CSV format. This data is crucial for building the distribution network
simulator. ESSs parameter data, detailing capacity, charge/discharge
limitation, and degeneration costs, are used to construct the ESSs
model. The framework includes standard 25, 34, 69, and 123 node
distribution network data, along with corresponding time-series data
and ESSs data from previous research [10]. Users can use this data for
training or customize their own model following the provided standard
format.
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3.3. Configuration layer

3.3.1. Data manager

The Data Manager plays a crucial role in managing time-series
data, such as active and reactive power demand (pﬁ, qﬁ), electricity
price (p,), and renewable power generation (p,.’i, qf,) for specific epochs
(T,t € T). Previous research approaches to data management have
been case-specific and labor-intensive, adding complexity and potential
data quality issues. RL-ADN adopts a streamlined approach, standard-
izing various data preprocessing tasks, and ensuring data integrity and
efficient handling. The workflow of the Data Manager is detailed in
Appendix B.1.

3.3.2. Data augmentation

In RL-ADN, Data Augmentation module plays a pivotal role in
enhancing the robustness and generalizability of the trained policy by
artificially expanding the diversity of the historical time-series data.
With data augmentation, RL-ADN exposes the model to a broader set
of scenarios, promoting adaptability and performance in varied and
unforeseen situations.

The Data Augmentation module is designed to generate synthetic
time-series data, capturing the stochastic nature of load in the power
system and reflecting realistic operational conditions. The Data Aug-
mentation module interacts with the Data Manager to retrieve the
necessary preprocessed data and then applies its augmentation algo-
rithms to produce an augmented dataset. The output is a synthetic yet
realistic dataset that reflects the variability and unpredictability inher-
ent in distribution network systems. This enriched dataset is crucial for
training RL agents, providing them with a diverse range of scenarios
to learn from and ultimately resulting in a more adaptable and robust
decision-making policy. The workflow of Data Augmentation module is
described in Appendix B.2.

3.3.3. Distribution network simulator

For a distribution network, node-set A and the line set £ define
the topology. Each of the node i € N and lines /;; € L specify its
attributes. A specific subset 53,3 ¢ N describes ESSs connected to the
distribution network nodes. Importantly, the number of ESSs delineates
the resulting state space S and action space A.

The main function of the Distribution Network Simulator is to
calculate power flow when a new scenario is fed into the environment,
performing as the main part of the state transition function for the for-
mulated MDP task. Based on the provided distribution network config-
uration data, we offer two modules, PandaPower and GridTensor,
to create the Distribution Network Simulator. PandaPower provides
the traditional iterative methods while GridTensor [26] integrates a
fast Tensor Power Flow for calculating the distribution network state
presented by the voltage magnitudes, currents and power flowing in
the lines.

3.4. Interaction loop layer

For each time step ¢ in an episode, the agent obtains the current
state s, and determines an action g, to be executed in the environment.
Once g, is received, the environment will execute step function to
execute power flow and update the status of ESSs and the distribution
network, which is counted as the consequence of the action at the
current time step 7. Then, based on these resultant observations, the
reward r, is calculated by the designed reward calculation block. Next,
the Data Manager in the environment samples external time-series
data of the next time step ¢ + 1, including demand, renewable energy
generation, and price, emulating the stochastic fluctuations of the envi-
ronment. These external variables are combined with updated internal
observations, performing as the resultant transition of the environment.

Users can freely design the build-state block, facilitating an in-
depth exploration of how different states influence the performance of
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algorithms on various tasks. In a similar vein, the cal-reward block
can be tailored according to different optimal tasks. For the conve-
nience of our users, our framework provides a default state pattern and
reward calculation.

3.5. MDP design

3.5.1. State space design

State space design is vital as it directly impacts the efficacy of the
agent’s learning process. The chosen state space S should be concise
yet descriptive enough to facilitate effective policy learning.

In the RL-ADN framework, the environment collects a compre-
hensive range of measurements at each timestep 7. Using all these
measurements to represent the state s, in the MDP is plausible but
fraught with challenges. Such an approach might not be practical in
real-world distribution networks due to potential data unavailability.
Moreover, by including all measurements, the state space could be-
come noise-prone, making state exploration more intricate and possibly
hindering agent performance.

Thus, feature engineering is pivotal in designing state s,. The RL-
ADN framework offers the flexibility to tailor state space. The get-
obs block fetches available measurements, while the build-state
block lets users customize states. Generally, the state s, encompasses
both endogenous and exogenous features. Exogenous features cap-
ture external dynamics, like uncertainties in renewable energies, con-
sumption, and pricing, within an episode. Meanwhile, endogenous
features track internal dynamics governed by distribution network
rules and energy component behaviors, e.g., power flow and ESS’s
SOC update rules. Moreover, some ancillary information, such as the
current time-step in a trajectory, has proven crucial in MDP state
representation [27].

3.5.2. Action space design

Focusing the optimal ESS dispatch tasks, the action g, at time ¢ is
denoted as g, = [pqu,lmeﬁ], symbolizing the charging or discharging
directives for the m,, ESS connected to node m in the distribution
network.

3.5.3. Transition function

In a MDP, the transition function encapsulates the dynamics that
govern the system’s progression from one state to another. The transi-
tion mechanism is bifurcated into two essential components. The first
is endogenous distribution network and energy component dynamics.
These are calculated based on physical laws, i.e., power flow calcula-
tion, SOC update rules, rooted in the network’s topology, the variations
in active and reactive power at different nodes, and the parameters
of ESSs models. The second is exogenous variable evolution, which
involves modeling the temporal fluctuations in renewable energy gener-
ation, market prices, and load demand, leveraging daily historical data.
The transition probability function P is mathematically represented as:

P(SH-]a R,'St,A,) =
Pr{S =541 R =r|S=s.4=a}. (4)

Traditionally, constructing a precise mathematical representation of
P has been challenging due to the inherent complexities and uncer-
tainties in both endogenous and exogenous variables. Reinforcement
Learning (RL) offers a way around this by learning the ambiguous
model through interaction.?

2 Model-free RL algorithms obviate the need for explicit knowledge of P,
enabling the agent to learn optimal policies through interaction with the
environment.
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3.5.4. Reward function

The reward function serves as a critical component for guiding the
agent’s learning process. The environment offers a reward signal r, to
the agent, quantifying the quality of each action taken. The design of
this reward function is inherently tied to the specific objectives of the
task at hand®. Our framework incorporates a cal-reward block that
allows researchers to easily customize the reward signal for various
optimal ESS dispatch challenges.

3.6. Data augmentation model

The RL-ADN framework incorporates Gaussian mixture models
(GMM) and Copula functions for data augmentation [34,35]. The
GMM is a probabilistic model that assumes data originates from a
blend of multiple Gaussian distributions, each characterized by unique
means and covariances. This model can adeptly capture the complex
and multi-modal nature of time series data in distribution networks,
which often exhibit intricate patterns due to fluctuating load demands
and renewable energy generation. Complementing the GMM, Copula
functions are utilized to encapsulate the time-correlation structure
between multiple time-step data in a defined period, independent of
their marginal distributions. This dual approach ensures a compre-
hensive and realistic augmentation of time-series data in distribution
network operations. In our framework, three augmentation methods
are provided: GMM, t-Copula, and Gaussian Copula [36].

The integration of GMM and Copula functions (GMC) in the RL-ADN
framework marks a significant advancement in creating robust and
reliable environments for training reinforcement learning agents. This
approach adeptly handles the complexities and uncertainties inherent
in power distribution networks, enhancing the quality of training data
and the effectiveness of the resulting policies.

3.7. Tensor power flow

Conventional power flow calculations often rely on iterative meth-
ods like the Newton-Raphson algorithm. This becomes a computational
bottleneck, especially in the context of training DRL agents, which
requires numerous evaluations of power flow. In the proposed frame-
work, we address the computational bottleneck associated with tradi-
tional power flow calculations by incorporating a Tensor Power Flow
algorithm [26]. This efficiency approach is achieved by linearizing the
power flow equations using a Laurent series expansion, simplifying the
nodal current calculations in the distribution network [25]. By doing
so, we facilitate frequent power flow evaluations necessary for training
RL agents without the computational burden.

The Tensor Power Flow method considers constant power and
impedance loads, integrating the ZIP load model directly into the
power flow analysis. This approach allows for the inclusion of various
types of loads and renewable energy sources without the need for
iterative approximation methods typically used in traditional power
flow analysis. As a result, our algorithm achieves rapid convergence
and permits a more streamlined and scalable RL training process. The
elimination of iterative computation not only expedites the power flow
assessment but also enhances the RL agent’s ability to quickly adapt
and learn, thereby improving the overall efficiency and effectiveness
of the framework.

4. Benchmark scheme and experiments
4.1. Optimal ESSs dispatch task and MDPs

RL-ADN framework introduces a foundational optimal ESSs dis-
patch case while the mathematical formulation of the case is shown

3 The default reward functions are presented in Section 4.1.
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Fig. 3. Modified IEEE-34 Node bus test system with distributed PV generation and
EESs. The ESSs are placed at the end of each feeder to increase the number of voltage
magnitude issues experienced.

in Appendix A. This default case aims to minimize the operational
costs for DSOs while ensuring compliance with the distribution net-
work and ESSs operation constraints. The template case offers re-
searchers and practitioners a springboard, enabling them to design
bespoke benchmarks tailored to unique ESSs dispatch challenges.

In the provided case, a modified 34-node IEEE test distribution
network is leveraged to build the Distribution Network Simulator,
as illustrated in Fig. 3. Strategic placement of the ESSs on nodes
12, 16, 27, and 34, which have over- and under-voltage issues. The
objective remains to minimize the operational cost while upholding
voltage magnitude constraints. Consequently, the state and reward
functions are constructed as below: the state s, is described as s, =
[P,ﬁtlme N,p,,SOC,fﬂmeB], incorporating both endogenous and exoge-
nous features. The design of A adheres to the optimal goal and multiple
constraints:

+ Charge and Discharge Bounds: ESSs have inherent physical
limitations. The action g, is confined within a range, considering
these physical constraints.

» State-of-Charge (SOC) Dependency: Actions must respect the
current SOC of each ESS. The ‘step’ function ensures this by
adjusting the charge/discharge commands based on SOC levels.

» Voltage Magnitude Regulation: ESS actions should maintain
voltage within predefined limits. Direct enforcement is infeasible;
hence, we employ soft constraints via penalty rewards for voltage
violations.

Thus, the reward function is defined as the combination of energy
arbitrage profits and the penalty of the voltage magnitude violations in
the distribution network. Mathematically, this is expressed as:

r=py [ 3 (P,ﬁ,)] si-o [2 cmﬁ,(vm,,)] : ®)

meN meB

where C,,, is constraint violation functions [3]:

V-v
Cm,,=min{0,(—2_-|V0—Vm,z|>}’vmeB~ (6)

where ¢ is a trade-off parameter between energy arbitrage and voltage
stability.

4.2. Bench-marking approach

To assess performance, we formulate the optimal ESS dispatch
problem as a model-based optimization problem, with ESS dispatch
decisions as the primary variables. Historical data — including renew-
able generation, load consumption, and market prices — are treated as
perfect forecasts and inputted into the optimization model. Solving this
model yields a globally optimal solution, serving as a benchmark for
evaluating DRL-derived strategies. Following previous research [10],
we can assess the efficiency of DRL algorithms by defining performance
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Table 2
Summary - Parameters for DRL algorithms and the
MDP.
y =0.995
PPO Alg, Optimizer = Adam

Learning rate=6e — 4
Batch size = 4096
GAE parameter(4) = 0.99

y =0.995

Optimizer = Adam
Learning rate=6e — 4
Batch size = 512

Replay buffer size = 4e5

DDPG, TD3 Alg.

7 =0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size =512
Entropy=auto

SAC Alg.

o = 400
" =50 kW, p? = —50 kW,
S0C” =08, 50C? =02,

Reward

ESSs

<

Voltage limit =105 0v=095

bound:
CDRL - Copt
C

opt

Performance Bound = @
Where Cpg; is the operational cost of the dispatch strategy derived
from DRL agents, while C,, is that derived from the global optimal
solution. The closer the DRL decisions align with this benchmark, the
higher the efficacy of the RL agents. We incorporate SOTA DRL algo-
rithms capable of handling continuous action spaces, such as DDPG,
PPO, SAC, and TD3, as our benchmark DRL algorithms.

Following prior research [3], our simulation dataset comprises elec-
tricity market prices from the Netherlands, augmented with consump-
tion and PV generation data at a 15-minute resolution. Hyperparameter
settings for the utilized DRL algorithms are detailed in Table 2. We
compare the performance of these DRL algorithms against global opti-
mal solutions obtained by formulating Nonlinear Programming (NLP)
problems, solved using the Pyomo package [37].

5. Results
5.1. Performance of DRL algorithms on template optimal dispatch task

Fig. 4 displays the average total reward, operational cost, and the
number of voltage magnitude violations during the training process
for DDPG, SAC, TD3, and PPO algorithms. Results shown in Fig. 4
are obtained as an average of over five random seeds. The average
total reward increases rapidly during the training, while simultane-
ously, the number of voltage magnitude violations decreases. This is a
typical training trajectory of DRL algorithms solving optimal dispatch
formulated MDP tasks, especially for those using penalty as a reward.
At the beginning of the training process, the DNN’s parameters are
randomly initialized, and as a consequence, the actions defined usu-
ally are random discharge/charge decisions, causing a high number
of voltage magnitude violations, thus introducing a huge magnitude
penalty term in reward (5). Such a reward acts as an indicator to guide
updating the DNN’s parameters, resulting in higher quality actions,
primarily learning to reduce voltage magnitude violations. Then, after
reducing the violations, DRL algorithms learn to improve the actions
toward increasing and minimizing the operational costs. All these DRL
algorithms converged at around 1000 episodes. The total reward of
these algorithms converged at 7.5 + 0.02. Notice that even converged,
the operational cost shown in Fig. 4(b) will not remain the same because
the different daily load and price profiles are sampled during the
training. After the last training episode, the penalty voltage magnitude
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Fig. 4. (a) Average total reward as in (5). (b) Operational cost or first term of reward in
(5). (¢) Cumulative penalty for voltage magnitude violations or second term of reward
in (5), all during training.

violation penalty for these DRL algorithms was reduced to a value of
no more than 1 as is shown in Fig. 4(c). This result shows that DRL
algorithms can effectively learn from interactions, reducing the number
of voltage magnitude violations while minimizing the operational costs
by learning to dispatch the ESSs correctly.

Fig. 5 shows the dispatch decisions and SOC changes of the ESS,
connected to node 16 in a typical daily operation. These decisions are
defined by DDPG, TD3, PPO, and SAC, as well as the global optimality
benchmark solution provided by solving the NLP formulation consid-
ering the perfect forecast. Decisions provided by all DRL algorithms
all responded to the dynamic prices during the day. On this day, PPO
and SAC perform better than DDPG and TD3. Between 1:00-5:00, when
the electricity price is low, PPO and SAC dispatch the ESS in charging
mode, which is similar to the decisions from the NLP solver. However,
DDPG and TD3 fail to learn to act efficiently with the low prices in
these timeslots. During the afternoon, all DRL algorithms charge ESSs
between low-price slots while discharging between high-price time slots
(see Fig. 5(b) and (c)). However, Both DRL algorithms fail to capture the
price fluctuations perfectly, compared to the decisions from NLP with
full observation of the future. For instance, DDPG performs best among
all DRL algorithms between 14:00 and 20:00 but fails to capture the
price fluctuations well in the morning. PPO generally performs well
during the whole day’s operation but defines conservative decisions
from 6:00 to 14:00.

Compared to the solution provided by NLP, all DRL algorithms
converge to a local optimum after training in the current historical
dataset. This performance can be caused by the limited scenarios in the
training dataset, which hinder the implication of DRL algorithms in the
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Fig. 5. Dispatch decisions obtained by DRL algorithms and NLP for the ESS connected
to node 16.

realistic optimal dispatch operation. In the next section, we show how
the performance of DRL algorithms is significantly influenced by using
the data augmentation model incorporated in the RL-ADN framework.

5.2. Impacts of data augmentation on performance of DRL algorithms

The original data and results generated by the GMC model are
depicted in Fig. 6. The GMC model captured the original patterns of
peaks and valleys and diverse scenarios between different nodes in the
testing distribution network. For instance, in the original data, the daily
consumption profiles at around noon are diverse, where some nodes
equipped with ESSs have negative load consumption (discharged),
while others show peaks of daily consumption. The developed GMC
model replicates such diversity.
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Fig. 7. Original and GMC generated load profiles. The color of the profiles corresponds
to the sum of daily consumption.

Fig. 7 shows the original and generated data distribution shape.
Both original and generated data have a long tail distribution. The
shape of the GMC augmentation model’s distribution matches the orig-
inal data’s shape. Therefore, the generated data profiles can enhance
the scenario diversity without losing the original distribution and time
correlation in the original dataset.

Table 3 presents the average reward, voltage magnitude violation
penalty, and performance bounds for DRL algorithms on a separate 30-
day test dataset. These algorithms, trained on primary datasets of 1
month, 3 months, and 1 year, were further augmented to 1 year and
5 years to examine the effects of data augmentation within the RL-ADN
framework. Consistency in training parameters was maintained across
1000 episodes, and the results include 95% confidence intervals.

Initially, the performance of DRL algorithms using 1-month data
was suboptimal. For example, the PPO algorithm’s highest performance
bound was below 70% (69.1%). However, post-augmentation, there
was a significant improvement: PPO’s performance increased to 84.0%
and 85.9% with 1-year and 5-year data augmentation, respectively.
When trained on 3-month primary data, DRL algorithms demonstrated
good performance, which was further enhanced with data augmenta-
tion. For instance, TD3 improved from 80.6% to 82.2% with 1-year
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Table 3

Mean and 95% confidence bounds for reward, violation penalty and performance bound.
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Primary dataset Augmented dataset Reward [-]

Violation penlaty [-]

Performance bound [%]

One month No augmentation DDPG (3.40+0.86) DDPG (0.0+0.0) DDPG (51.1+6.7)
PPO (5.91+0.91) PPO (-0.002+0.001) PPO (69.1+4.8)
SAC (4.825+0.62) SAC (0.0+0.0) SAC (62.5+4.1)
TD3 (3.49+0.88) TD3 (0.0+0.0) TD3 (52.4+7.0)
augment 1 year DDPG (9.55+0.88) DDPG (-1.05+-0.77) DDPG (82.8+1.1)
PPO (11.625+0.92) PPO (-0.039+-0.01) PPO (84.0+1.0)
SAC (9.95+0.63) SAC (-0.25+-0.01) SAC (83.4+0.5)
TD3 (10.565+0.91) TD3 (-0.09+-0.01) TD3 (83.9+0.9)
augment 5 year DDPG (7.37+0.92) DDPG (-0.32+-0.22) DDPG (76.35+4.31)
PPO (12.59+0.88) (PPO-2.10+-0.69) PPO (85.9+1.07)
SAC (8.25+0.69) SAC (-0.18+-0.09) SAC (79.58+1.93)
TD3 (8.02+0.91) TD3 (-0.96+-0.41) TD3 (78.82+2.67)
Three Month No augmentation DDPG (8.54+0.99) DDPG (0.0+0.0) DDPG (80.4+2.3)
PPO (6.73+0.97) PPO (0.0+0.0) PPO (73.5+4.2)
SAC (6.92+0.72) SAC (0.0+0.0) SAC (74.3+3.1)
TD3 (8.60+0.92) TD3 (0.0+0.0) TD3 (80.6+2.1)
augment 1 year DDPG (9.38+0.99) DDPG (0.0+0.0) DDPG (82.5+1.4)
PPO (9.68+0.94) PPO (0.0+0.0) PPO (83.0+1.0)
SAC (7.78+0.55) SAC (0.0+0.0) SAC (78.0+1.9)
TD3 (9.24+0.92) TD3 (0.0+0.0) TD3 (82.2+1.4)
augment 5 year DDPG (9.24+0.89) DDPG (0.0+0.0) DDPG (82.19+1.4)
PPO (8.72+0.97) PPO (0.0+0.0) PPO (81.01+3.1)
SAC (6.02+0.71) SAC (0.0+0.0) SAC (69.71+3.75)
TD3 (8.45+0.95) TD3 (0.0+0.0) TD3 (80.20+3.32)
One year No augmentation DDPG (7.061+0.93) DDPG (-0.01+0.0) DDPG (75.0+3.7)

PPO (8.173+1.02)
SAC (7.302+0.84)
TD3 (7.325+1.03)
DDPG (7.58+0.79)
PPO (8.91+0.87)
SAC (8.47+0.86)
TD3 (7.99+0.99)

augment 5 year

PPO (0.0+0.0)
SAC (0.0+0.0)
TD3 (0.0+0.0)
DDPG (0.0+0.0)
PPO (0.0+0.0)
SAC (0.0+0.0)
TD3 (0.0+0.0)

PPO (79.3+2.8)
SAC (76.1+3.2)
TD3 (76.2+3.8)
DDPG (77.20+2.76)
PPO (81.44+1.71)
SAC (80.26+2.12)
TD3 (78.72+2.90)

augmentation. Similarly, algorithms trained on one-year primary data
showed good performance with minimal test set violations, and aug-
mentation yielded incremental performance gains, as seen with PPO’s
increase from 79.3% to 81.44%. These results underscore the sig-
nificance of data augmentation in enhancing the adaptation of DRL
algorithms to varied market conditions, particularly for algorithms like
DDPG and TD3. In scenarios with limited original datasets, the data
augmentation module in the RL-ADN framework can substantially raise
the performance ceiling of DRL algorithms.

However, a concerning observation was the increase in voltage
magnitude violations in the 1-month data set trained algorithms post-
augmentation, particularly notable with the 5-year augmentation. This
could be attributed to the augmented data increasing scenario diver-
sity but not altering the data distribution, as illustrated in Fig. 7. In
such cases, while DRL algorithms perform better within the existing
data distribution, they may incur violations in extreme scenarios not
encountered during training. Notably, algorithms trained on more di-
verse datasets (three-month and one-year) exhibited better control over
voltage violations. This is likely because these datasets encompassed
the extreme scenarios present in the test sets. Yet, when comparing per-
formance, algorithms trained on the one-year dataset displayed a lower
performance ceiling than those trained on the three-month dataset.
This suggests that while the one-year data provides a more diverse
training environment, leading to potentially better generalization, it
also presents a slower learning curve due to its complexity.

Generally, results indicate that in scenarios with limited original
datasets, the data augmentation module in the RL-ADN framework can
substantially raise the performance ceiling of DRL algorithms. More-
over, the distribution of data and the diversity of scenarios significantly
impact the performance of DRL algorithms. Scenario diversity raises
the performance ceiling, while data distribution affects the training
difficulty and performance in extreme scenarios. While augmentation
improves overall performance, it introduces complexities like increased
violation penalties, especially when the primary dataset has a limited
data distribution.
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Fig. 8. Training time for DRL algorithms with Tensor Power Flow and Panda Power.
The 34-node distribution network is used as a benchmark.
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Fig. 9. Voltage magnitude calculated by Tensor Power Flow and Panda Power. The
34-node distribution network is used as a benchmark.

5.3. Enhancement of computation efficiency

The performance comparison between Tensor Power Flow and Pan-
daPower power flow was conducted across multiple scale distribution
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Table 4
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Average calculation time comparison between Tensor Power Flow and Panda Power power flow for different scale distribution

networks.

Distribution networks Tensor power flow

Panda power

Power flow [ms]

Env. steps [ms]

Power flow [ms] Env. steps [ms]

25 Nodes 0.59 2.81
34 Nodes 0.61 2.830
69 Nodes 0.88 2,99
123 Nodes 0.97 3.43

28.08 30.30
29.42 30.502
28.72 31.46
37.22 38.51

networks with node sizes: 25, 34, 69, and 123. The summarized results
in Table 4 indicate a distinct computational advantage for the Ten-
sor Power Flow method over PandaPower. First, Tensor Power Flow
consistently maintained its efficiency, taking less than 1 ms across all
node sizes. This starkly contrasts with PandaPower, which requires
approximately 28 to 37 ms. In the smallest node size (25 nodes), Tensor
Power Flow is about 47 times faster than PandaPower when solving
one-time power flow. As the node size grows to 123, the efficiency
margin increases, with Tensor Power Flow being nearly 38 times faster.

For executing one-time environment iteration, Tensor Power Flow’s
time ranges from 2.8 to 3.4 ms, while PandaPower’s duration extends
from 30 to 38 ms. This indicates that, on average, Tensor Power Flow
is about ten times faster than PandaPower in processing environment
steps, regardless of the node size. Overall, the Tensor Power Flow
displays a significant computational edge, particularly as the node size
expands. This relative efficiency is pivotal in training DRL algorithms
in large-scale distribution networks. The ability of the Tensor Power
Flow to consistently outpace PandaPower across different node sizes
underscores its scalability, making it a more versatile choice for varied
applications.

The comparison between Tensor Power Flow and Panda Power flow
algorithms across different DRL algorithms showcases significant time
differences in training for the same number of episodes as shown in
Fig. 8. A clear trend emerges from the data: the Tensor Power Flow
consistently outperforms PandaPower in terms of computational effi-
ciency. For the SAC algorithm, the Tensor Power Flow is approximately
4.4 times faster than the PandaPower flow. Similarly, for DDPG, the
Tensor Power Flow method shows a speedup of around 5.2 times. The
TD3 algorithm with the Tensor Power Flow technology is about 4.8
times faster. The most pronounced difference is observed in the PPO
algorithm, where Tensor Power Flow is significantly faster, clocking
at approximately 9.1 times the speed of PandaPower. PPO requires
2200 min for training, making it the least efficient in this scenario. This
is because PPO is an off-policy algorithm that cannot fully use the past
experiences in the replay buffer, resulting in the lowest data efficiency
and training speed. On the other hand, DDPG emerges as the fastest,
closely followed by TD3 and then SAC.

In conclusion, the Tensor Power Flow demonstrates a clear com-
putational advantage across all tested algorithms. While the choice of
algorithm also affects the training time, with PPO consistently taking
the longest, the underlying power flow technology plays a crucial
role in determining the overall efficiency. These findings can guide
researchers and practitioners in making informed decisions when se-
lecting the most efficient combination of power flow technology and
reinforcement learning algorithm.

Fig. 9 displays the voltage magnitude results of a 34-node dis-
tribution network from Tensor Power Flow and PandaPower flow,
respectively. The voltage magnitude results from both algorithms re-
main almost the same magnitude, with an average error of no more
than 0.0001%. Such high precision from Tensor Power Flow can track
the real voltage dynamics accurately. Moreover, integrating Tensor
Power Flow with the developed environment can significantly save
the time cost for a large magnitude power flow iteration during the
training. Thus, our framework can accelerate the training speed of DRL
algorithms without losing simulation precision.
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6. Discussion

The RL-ADN environment offers enhanced flexibility and customiza-
tion, surpassing existing frameworks like CityLearn and GYM-ANM,
which exhibit limited adaptability in modeling complex distribution
networks. CityLearn focuses on building-level energy management,
simplifying grid-level dynamics, while GYM-ANM lacks precision for
complex network modeling. These limitations restrict the effectiveness
of RL agents in real-world deployment. In contrast, RL-ADN provides
extensive customization options, allowing researchers to model com-
plex network topologies, integrate diverse ESSs, and design tailored
MDPs. This flexibility helps bridge the sim-to-real gap, as demonstrated
by RL-ADN'’s ability to adapt to complex pricing and load conditions
more effectively than traditional frameworks.

The proposed RL-ADN environment includes a data augmentation
module based on a GMC approach, significantly enhancing training
scenario diversity and improving DRL performance. Unlike other frame-
works that converge to local optima due to limited data, RL-ADN
enables agents to learn from a broader range of scenarios, resulting
in more effective policies. This addresses a key limitation of frame-
works like PowerGridWorld and Grid20P, where limited data diversity
restricts real-world applicability.

Existing environments, such as those using PandaPower, face high
computational demands, reducing efficiency for DRL training.
PandaPower-based solutions can take tens of milliseconds for each
power flow iteration, becoming a bottleneck during training. RL-ADN
integrates the Tensor Power Flow solver, which achieves a tenfold
increase in speed compared to PandaPower, greatly accelerating DRL
training without sacrificing accuracy. Fig. 9 shows that Tensor Power
Flow results closely match those results from PandaPower, ensuring
realistic and efficient training.

While RL-ADN demonstrates significant advancements, there are
limitations to its current implementation. One key challenge is the gap
between simulation and reality, as building an accurate distribution
network simulator is difficult [38]. This can lead to discrepancies when
deploying RL agents trained in simulation to real-world environments.
Another limitation is the potential difficulty in extending RL-ADN to
integrated energy systems, such as transportation or hydrogen net-
works [39]. These systems introduce additional layers of complexity
and require further development to handle their unique dynamics and
computational requirements. Future work will focus on addressing
these limitations by enhancing the accuracy of the distribution network
simulations and extending the framework to integrated energy systems,
including transportation and hydrogen, to improve the applicability
and robustness of RL-ADN in diverse real-world conditions.

Overall, RL-ADN sets a new benchmark in applying DRL to dispatch
ESSs tasks in distribution networks, offering a comprehensive solution
that addresses the limitations of existing environments.

7. Conclusion

This paper unveiled RL-ADN, an open-sourced library tailored for
designing and implementing DRL environments for optimal ESS dis-
patch challenges in modern distribution networks. We highlighted the
potential of advanced DRL algorithms, showcasing their capacity to
yield near-optimal decisions. The first significant innovation of our
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approach is the seamless integration of the Tensor Power Flow, which
offers unparalleled computational advantages over traditional methods,
achieving more than tenfold faster. Another innovation is that RL-
ADN integrates the Gaussian mixture model and Copula functions to
augment the training dataset, thus further improving the performance
ceiling for DRL algorithms. We believe RL-ADN presents a unique and
extensive platform for future DRL research in energy systems. This
research underscores the potential of a modular, customizable, and
efficient RL environment to address the complexities of the energy
landscape. We anticipate that RL-ADN will inspire a new wave of
studies in the energy domain, leveraging its adaptability and precision.
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Appendix A. Mathematical formulation of optimal ESS dispatch
tasks

The template energy arbitrage task can be formulated by using
the nonlinear programming (NLP) formulation given by (8)—(14). The
objective function in (1) is extended to (8), aiming to minimize the
total operational cost over the time horizon 7, comprising the cost of
importing power from the main grid. The operational cost p, at time slot
t is settled according to the balancing market prices p, in EUR/MWh.

min P (PD +PB PPV)At . (8)
P8 meBNET {IGZ; [ 'mg;‘\, et
Subject to:
Z an,r - Z (Pmn,r + R'm’lIr%m,t) + Pnlu;,t
nmeL mneL
PV S _ pD
+P, [ + P, =P) VmeNNVeT 9
Z Qnm,r - Z (an.r + anl,%m,t) + Qi,r = Q,ﬁ,r
nmeL mneL
Vme N VIeT 10)
Vrr%,r - Vnzt = Z(Rmn PmnA,t + ananﬁz) +
2 2472
Ry, + X, )1, Vmn € N, VteT (11
22 _ p2 2
Vm,rlmn,r = Pmm + an’,Vm,n eN,VteT (12)
—B
S0Cy, =S0CE _ | +n2P? At/E, Vme BNteT 13)

—B
soc? < socy, < soc, Vme BNteT (14)

—B

PE<Pl <P, Vme BYteT (15)
=2

VE<Va <V VmeN,VteT (16)
5 -2

0< Imn,t <I,, Vmne LNteT (17)

S _ NS _

Py, =05, =0 vme N\{1},VreT (18)

The grid level constraints are modeled using the power flow for-
mulation shown in (9)-(12) in terms of the active P, , power, reactive

11

Energy and Al 19 (2025) 100457

power Q,,,, and current magnitude 7, , of lines, and the voltage magni-
tude V,,, of nodes. (16) and (17) enforce the voltage magnitude and line
current limits, respectively, while (18) enforces that only one node is
connected to the substation. The energy storage system constraints are
modeled by (13)-(15). Eq. (13) models the dynamics of the ESSs’ SOC
on the set /3, while (14) enforces the SOC limits. Hereafter, it is assumed
that the ESS m € B is connected to node m, thus, B C . Finally,
(15) enforces the ESSs discharge/charge operation limits, Notice that
to solve the above-presented sequential decision problem, all long-term
operational data (e.g., expected PV generation and consumption) must
be collected to properly define the EESs’ dispatch decisions, while the
power flow formulation must also be considered to enforce the voltage
and current magnitude limits.

Appendix B. Workflows for modules in RL-ADN

B.1. Data manager workflow

GeneralPowerDataManager modular, is a unified data man-
ager. Designed for automation, this class standardizes various data
preprocessing tasks as follows:

Loads time-indexed data directly from standard CSV files.
Classifies columns pertaining to active and reactive power, re-
newable energy generation, and electricity pricing autonomously.

Clean and check the data, filling in missing values, ensuring data
continuity and integrity.

Segregates the dataset into distinct training and test sets based on
temporal delineation.

Offers utility methods, such as select-timeslot—-data and
select-day-data, enabling precise data extraction tailored to
the RL training needs.

When the GeneralPowerDataManager class is initialized, it
undergoes a series of operations: it verifies the data’s integrity, replaces
any NaN values, and partitions the dataset into training and testing
parts as required. These preliminary tasks ensure that data quality is
maintained and provide ease of access and utilization for subsequent
RL training processes.

B.2. Data augmentation workflow

The augmentation process involves several sophisticated statistical
techniques, outlined as follows:

The ActivePowerDataManager class, a subclass of the Gen-
eralPowerDataManager, preprocesses the input data, fills
missing values through interpolation, and restructures the data
into an appropriate format for augmentation.

A Gaussian Mixture Model (GMM) is fitted to the marginal distri-
bution of historical active power data for each node and time step,
capturing the underlying distribution of power consumption.
The Bayesian Information Criterion (BIC) is employed to select
the optimal number of components for each GMM, ensuring that
the model complexity is balanced against the goodness of fit.

A Copula-based approach is then applied, which models the de-
pendency structure between different nodes and time steps, al-
lowing for the generation of synthetic data points that maintain
the correlation observed in historical data.

The augment_data method leverages the GMM and Copula to
produce new data samples, which are then transformed from the
probabilistic space back to the power data scale.



S. Hou et al.

The TimeSeriesDataAugmentor modular interacts with the
data manager to retrieve the necessary preprocessed data, and then
applies its augmentation algorithms to produce an augmented dataset.
The output is a synthetic yet realistic dataset that reflects the variability
and unpredictability inherent in power systems. This enriched dataset
is crucial for training RL agents, providing them with a diverse range
of scenarios to learn from and ultimately resulting in a more adaptable
and robust decision-making policy.

Upon completion of the augmentation process, the synthetic data
is saved to a CSV file, facilitating easy integration into the training
pipeline. This automated and sophisticated data augmentation pro-
cedure enhances the RL-ADN framework’s capability to train more
effective and resilient RL agents for the distribution network ESSs
operations.

Data availability

The data is available within the package https://github.com/Sheng
renHou/RL-ADN/tree/main/rl_adn/data_sources.
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