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Abstract 
This study aims to establish a framework for the growing number of trend analyses that have been 

performed on river flows in Europe. Most studies apply statistical trend test to fixed periods with 

relatively short records. Fixed periods are crucial for trend testing, as they provide an appropriate 

visualisation in a geographical sense. However, short-term changes can often be inconsistent with long-

term trends. This study adopts two methods of trend testing. First, a trend analysis is performed over 

five fixed periods with an identical end  year, on a varying number of stream gauges based on record 

length availability. Afterwards, a temporal sensitivity analysis is performed, whereby trends are 

estimated on all combinations of start and end year. This method is performed on stream gauges with at 

least 60 years of record length. These two methods are performed on an encompassing set of 

hydrological signatures, with the intent to capture the temporal sensitivity in all aspects of the 

streamflow regime. The results of the fixed period analysis display distinct but coherent spatial patterns 

for each signature. Furthermore, the results reveal a considerable amount of temporal variability in all 

signatures. This temporal sensitivity is elucidated further by the results of the temporal sensitivity 

analysis, which shows that trend analyses are extremely sensitive to the choice of both the start and end 

year of the considered period. The study provides a reference for comparison of both past, present and 

future studies. The temporal sensitivity analysis is shown to be a powerful tool and is recommended for 

future trend analysis studies to contextualize the short-term trends. 
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Executive summary 
Water can be considered the most crucial element of life on Earth. All living organisms require water 

for their survival. Thus, effective water management is one of the most important scientific fields. 

Additionally, water management has become significantly more topical in the past decades. There has 

been a growing global concern that the hydrological cycle is intensifying as a direct result of 

anthropogenic climate change. River floods and droughts are already among the costliest natural 

hazards, and they will become more frequent as a result of the intensifying of the hydrological cycle. 

Understanding changes in the hydrological cycle, and more specifically streamflow has become one of 

the most important challenges in modern hydrology. Reliable information on patterns in these changes 

enables the identification of changes in the streamflow regime influenced by large scale processes such 

as climate change. Hydrological changes occur in many different forms, spanning a wide range of both 

time scales and spatial dimensions. The present study aims to analyse past trends in various aspects of 

the streamflow regime. The main objective of this research is to analyse spatial and temporal patterns 

and trends in the entire streamflow regime.  

An extensive literature review has been conducted to gain sufficient knowledge of the overall topic and 

the scientific areas relevant to this research. The fundamental aspects of the streamflow regime, and the 

overarching hydrological cycle are analysed. From there, the existing literature regarding the two largest 

concerns of water management is explored. These two concerns are fluvial flooding and droughts. The 

most important aspects of the streamflow regime are researched and the hydrological signatures that are 

relevant to these aspects are investigated. 

An encompassing set of hydrological signatures is drafted. This set aims to capture the most important 

aspects of the streamflow regime, across all stages of flow. These hydrological signatures are then 

determined on a dataset of nearly 1200 stream gauges in western Europe. These stream gauges vary 

greatly in both record length and contributing catchment area. Trends in these signatures are analysed 

using the Mann-Kendall test and the Theil-Sen slope estimator. First on five fixed periods with an 

identical end year, this provides a good visualisation of both spatial and temporal patterns in these trends. 

Finally, a temporal sensitivity analysis is conducted to contextualise the consistency of short-term trends 

with long-term trends. 

The results show that most signature display a high degree of variability in both the magnitude and 

direction of trends. This variability can be seen on both the spatial-and-temporal scale. Similarities 

across different signatures are also found. The most recent years of the analyses (i.e., 2015 – 2019) show 

a relatively high degree of consistency of short-term trends in long-term trends. This implies that 

signatures of these years are significantly high or low, that trends are consistent. The results of the 

temporal sensitivity analysis visualise the patterns of the variability in trends, both in magnitude and 

direction. 

The research concludes that the interpretation of trend analyses has to be well substantiated. This is done 

by  highlighting the intricate patterns of temporal variability across various signatures in the streamflow 

regime. In order to correctly interpret hydrological trend studies, one must investigate the large number 

of influencing factors. Examples of these factors are climate change, multidecadal oscillation patterns 

and anthropogenic influences. The results in this study can be used for future studies which intend  to 

delve deeper into more specific parts of the streamflow regime to indicate how the streamflow has 

broadly changes and how these changes are highly variable in both the spatial and temporal scale. Future 

research should expand on this research by attempting to explain the driving mechanisms of the temporal 

variability and thereby developing more sophisticated and innovative methods of trend detection that 

consider temporal variability and its driving mechanisms.  
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1. Introduction 
Effective water management is one of the most vital aspects to life on Earth. River floods are one of the 

costliest natural hazards, with the global annual average losses being estimated at $104 billion (’Desai 

et al., 2015). Additionally, droughts are among the costliest and recurring natural hazards as well (Peña‐

Angulo et al., 2022). There is a growing global concern that the hydrological cycle is intensifying as a 

direct result of anthropogenic climate change (Allan et al., 2020). This intensifying of the hydrological 

cycle is causing changes to the streamflow regime. Therefore, there is a growing demand for 

observational streamflow data which can be used to identify emerging trends in river flows. This 

streamflow data and emerging trends should also be compared with future projections from climate 

models. 

This demand has led to a large number of hydrological studies being focused on trend analyses using 

observational streamflow data. Over the past decade there has been a surge of studies that have 

investigated different aspects of streamflow across a wide variety of regions and spatial scales. Studies 

such as (Blöschl et al., 2019; Mangini et al., 2018) have investigated trends in the magnitude of floods 

across Europe over the past decades. (Berghuijs, Woods, et al., 2016; Blöschl et al., 2017) have studied 

the timing and seasonality of flooding across the United States and Europe respectively. Fluvial flooding 

has received significantly more attention than fluvial droughts due to its more direct and visible impact, 

but research on droughts has been conducted. (Barker et al., 2016; Hisdal et al., 2001; Peña‐Angulo et 

al., 2022) are examples of studies investigating patterns of hydrological droughts. 

There has been a large increase in the number of hydrological studies that focus exclusively on networks 

of near-natural catchments with long high-quality data. The purpose of this focus is to connect trends to 

climate change and/or variability rather than direct anthropogenic influences (e.g. dams, water removal 

for irrigation or domestic consumption). These disturbances can obscure the climate change signal. 

Studies by (Frei et al., 2015; Stahl et al., 2010) are focused on networks of near-natural catchments in 

the United States and Europe respectively. There also exist studies that focus on the impact of 

anthropogenic influences, such as (Vorogushyn & Merz, 2013). These studies are often focused on a 

single catchment or river to assess the impact of anthropogenic disturbances.  

One fundamental problem with observational streamflow data is the relatively short duration of most 

streamflow records. (Kundzewicz & Robson, 2004) states that at least 50 years of record is necessary 

for proper climate change detection. In Europe, the majority of streamflow records are 50 years or 

shorter, starting from the 1970s or later. Combined with the desire of using only near-natural catchments 

this leads to relatively low spatial coverage. In trend analyses this means that study periods are selected 

to maximize both the spatial and temporal coverage (Mangini et al., 2018).The most recent periods 

provide the greatest spatial coverages and are therefore given the most attention. 

One crucial consideration in the interpretation of the results from these studies is the fact that a trend in 

any fixed period, however long it might be, may not be representative. Trends can be heavily influenced 

by multi-decadal variability and/or oscillations. The underlying reasons for these oscillations in 

streamflow are not immediately clear. They are often not actively sought after or only briefly mentioned 

in studies. Furthermore, there is a widespread belief that the past is no longer indicative of the future. 

This is represented by the statement “stationarity is dead” (Milly et al., 2008). This statement is 

questioned by both (KOUTSOYIANNIS, 2003; Montanari & Koutsoyiannis, 2014), which show that 

streamflow generally shows long-term persistence. The physical interpretation of this long-term 

persistence may prove to be difficult. However, it is visible that trends can be influenced by (multi) 

decadal scale variations that are driven by physical process which are often well understood. For 

example, (Steirou et al., 2017) provides a literature review of links between large scale circulation 
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pattern and streamflow in Central Europe. The review paper displays the abundance of studies linking 

atmospheric circulation patterns to streamflow variability in various parts of the world. 

As a result of the sensitivity of linear trends to these multidecadal oscillations or other influencing 

patterns, the idea of conducting multi temporal trend analyses has gained more attention in the recent 

years. (Hisdal et al., 2001) investigates four different time periods with a similar ending year to detect 

spatial and temporal changes in streamflow droughts. Both (Frei et al., 2015; Stahl et al., 2010) have 

investigated multiple fixed periods to detect interdecadal variability in streamflow developments.  

However, there does not exist a recent study that applies a multi-temporal trend testing method at a 

larger scale in Europe. As mentioned previously, past studies have mainly focused on flooding rather 

than each aspect of the streamflow regime and the different stages of flow (low, average and high flow). 

This study aims to investigate spatial patterns and temporal trends in a number of hydrological signatures 

that represent all aspects of the streamflow regime, during each stage of flow. Furthermore, patterns of 

multidecadal variability in these signatures are characterized to examine its impact on the observed 

linear trends in fixed periods. The present study is meant to serve as a benchmark against which the 

findings of past and future studies can be evaluated. 

This paper is organized in the following way. Section 2 provides the research framework, providing a 

more detailed description of the problem statement and stating the research objectives. Section 3 gives 

a review of the literature study that was performed to properly conduct this research. Section 4 describes 

the methodology of the trend testing. Section 5 presents the results and section 6 provides a discussion 

on the implications of these results. Finally, conclusions are drawn. 
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2. Research framework 
This section elaborates on the underlying motivation and structure of this study. It provides a clear 

roadmap of the entire research. A comprehensive exposition is provided of the problem statement, which 

serves as the motivation for this research, elucidating its context and significance. Based on this problem 

statement, multiple research objectives are drafted. These research objectives are then supported by 

several research questions which are formulated to help achieve the research objectives. 

2.1 Problem statement and societal relevance 
Water can be considered the most crucial element of life on this planet. All organisms on earth, including 

humans, require water for their survival. Therefore, it is vital to ensure that there is an adequate supply 

and availability of freshwater resources. Since a few decades, water scarcity has become a major threat 

to livelihood and a large confining factor to socio-economic developments in increasing parts of the 

world (Liu et al., 2017). There has been a large increase in water demand globally, mainly due to factors 

such as rapid population growth and economic development. On the other hand, climate change has led 

to higher concerns regarding the increase in river floods. This increase is a result from the increased 

water holding capacity of a warmer atmosphere (Field, 2012). Fluvial flooding is among the costliest 

natural hazards globally. The estimated global annual average losses due to fluvial flooding are $104 

billion (’Desai et al., 2015), and these are expected to increase with the rapid population growth, 

economic development and urbanization. The main factor of these increases being rapid climatic 

changes. 

So it is known that there are ever more increasing concerns regarding many aspects of global water. Due 

to these concerns, the scientific fields of water management and hydrology is becoming more and more 

relevant as time passes. The key to effective water management is a deep understanding of the 

hydrological cycle, which describes the continuous movement, or circulation, of water in the Earth-

Atmosphere system. Figure 1 displays the many processes, fluxes and storages of the hydrological cycle.  

 

Figure 1: Global hydrological fluxes (1000 km3/year) and storages (1000 km3) with natural and anthropogenic cycles from 

(Oki & Kanae, 2006). Big vertical arrows show total annual precipitation and evapotranspiration over land and ocean (1000 

km3/year), which include annual precipitation and evapotranspiration in major landscapes (1000 km3/year) presented by small 

vertical arrows; parentheses indicate area (million km2).The direct groundwater discharge, which is estimated to be about 

10\% of total river discharge globally, is included in river discharge. 
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About 2.5 % of the total water on Earth is considered to be fresh water, and most of this fresh water is 

stored as either glaciers or deep groundwater. Figure 1 shows that the amount of water stored in rivers 

is just 2000 km3, which is significantly less than the annual water withdrawal of 3800 km3/year. 

However, the total water storage in rivers is not an appropriate measure. This is because, unlike most 

other natural resources, water has a closed circular nature. This means that when water evaporates from 

the sea or open water surfaces, it changes from liquid form to gas form. This gas form is commonly 

known as clouds. The water within these clouds eventually recondenses as precipitation and, through 

different pathways, will find its way back into the rivers. From there  it flows into the sea and open water 

surfaces, where it will evaporate again, restarting the cycle once again. Thus creating a closed 

hydrological cycle. This indicates that using the 45500 km3/year of annual river discharge would be a 

more accurate measure of water availability. 

As mentioned previously, there are also the growing concerns regarding fluvial flooding. (Field, 2012) 

critically assessed the scientific literature focusing on climate change and the global impact resulting 

from these events. The IPCC report defines many different types of floods, including fluvial (river) 

floods, coastal floods, flash floods and urban floods. Each of these floods are often hazardous, not only 

to human life, but also to flora, fauna and the overall environment. Floods are affected by several aspects 

of the climate system (Kundzewicz et al., 2014; Kundzewicz & Robson, 2004). The largest influencing 

factor is precipitation. The intensity, duration and timing of precipitation all influence streamflow and 

floods. Temperature patterns, which can cause phenomena such as snow/ice melt and soil freezing are 

large are also large influencing factors. Floods are also affected by the environmental, or drainage basin 

conditions, such as the soil moisture content. All of these phenomena are in a way affected by climate 

changes and have led to flood regime changes around the globe.  

When considering the annual river discharge, also known as streamflow, as the most relevant measure 

for water resources and water management, extensive and deep knowledge about the hydrological and 

streamflow regimes is crucial. The streamflow regime is the characteristic pattern of a river’s flow, 

timing, quantity and variability (Poff et al., 1997). In simpler terms, it is the description of how water 

flows through the river. In modern hydrology, elucidating temporal and spatial patterns of hydrological 

change has become one of the most essential challenges (Stahl et al., 2010). Elucidating these temporal 

and spatial patterns provides an understanding of trends which have occurred over the past decades. 

Comparing trends over different time periods gives insight into whether short-term changes are 

consistent with long-term changes. These trends and patterns can be linked to observed climate forcing 

data from the same period to better understand the relationship between climate forcings and changes in 

the streamflow. Analysing and visualising trends in the streamflow regime of the past decades and 

subsequently linking them to climate forcings is essential for appropriately predicting future trends. This 

better understanding can  thus serve as a baseline for future water management. 

Hydrological changes occur in many different forms, spanning a wide range of both time scales and 

spatial dimensions. The most common method to investigate these changes is by defining and 

determining hydrological signatures, such as the annual maximum flow . These hydrological signatures 

in turn can be used on a wide range of applications. In order to obtain sufficient knowledge about the 

hydrological state of rivers, hydrological signatures should be selected that encapsulate the entire 

streamflow regime. (McMillan, 2020) provides an extensive review of various hydrological signatures 

and their respective applications and (Olden & Poff, 2003) examines a large number of hydrological 

signatures, analysing them on both relevance and redundancy. Many studies often tend to focus on one 

aspect of the streamflow regime and select signatures which are relevant to that specific aspect. There 

seems to be a lack in studies which create an encompassing set of hydrological signatures to characterize 

the entire streamflow regime and subsequently analyse these signatures on spatial and temporal patterns. 
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2.2 Research objectives and research questions 
As mentioned above, understanding the hydrological state of rivers and potential changes in this state is 

essential for effective water management. A broad and deep knowledge of both the hydrological cycle 

and the streamflow regime is crucial. This can be achieved by analysing past trends in various aspects 

of the streamflow regime. The main objective of this research is to analyse spatial and temporal patterns 

and trends in the entire streamflow regime. As mentioned above, there appears to be a lack of an 

encompassing and parsimonious set of hydrological signatures to characterize the entire streamflow 

regime. This research also aims to fill this knowledge gap and create an appropriate set of hydrological 

signatures to characterise the streamflow regime. This second research objective will support and 

substantiate the main research objective. Finally, this research aims to identify potential decadal-scale 

variability in streamflow trends over multiple overlapping time periods. This will be done to demonstrate 

the sensitivity of a trend analysis to the choice of time period. In summary, the research objectives can 

be written down as one main objective, with two underlying and supporting objectives.  The objectives 

are defined as: 

• Analyse spatial patterns and temporal and trends in river flows, considering the entire 

streamflow regime. 

o Create a proper set of hydrological signatures to characterize the streamflow regime. 

o Identify decadal-scale variability in streamflow trends across the streamflow regime. 

In order to accomplish these research goals, multiple research questions have been drafted, these 

research questions are divided over the three research objectives. The research objectives will be 

accomplished by answering the following questions:  

• Analyse spatial and temporal patterns and trends in river flows 

o Can change be detected in the river flow characteristics over the past decades? 

o How have the river flow characteristics changed over the past decades? 

o What spatial patterns can be detected regarding the changes in flow characteristics? 

 

• Create a proper set of hydrological signatures to characterize the streamflow regime. 

o What are the most important aspects of the streamflow regime? 

o What are the most commonly used hydrological signatures? 

o How to select a sufficient number of signatures, whilst avoiding redundancy? 

 

• Identify decadal-scale variability in streamflow trends across the streamflow regime. 

o Do differences in trends occur when analysing them across different time periods? 

o How consistent are trends in different signatures across different time periods? 

o Are short-term changes representative of the magnitude and direction of long-term 

change? 

A crucial aspect of this research is that no expectations and/or hypotheses are stated, the aim is not to 

answer specific questions about hydrological changes. The aim of this research is to show how the entire 

streamflow regime in Western Europe has changed. This is done over several time periods to show 

whether these trends are sensitive to the choice of time period.  
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3. Literature review 
In order to gain sufficient knowledge of the overall topic and the scientific areas relevant to this research, 

an extensive literature review is carried out. This section describes the phenomena found during the 

literature review. The findings of this study are important to the research in a number of ways. Firstly, 

they are intended to provide an adequate level of knowledge of the methods commonly applied in 

hydrological trend analysis studies. This will ensure that, for example, decisions regarding assumptions 

and methods are well founded. Secondly, this literature review serves as an inspiration for this research. 

Whilst all the methods, concepts and phenomena that have been analysed in the past can be found in 

this literature review, it is also important to identify potential gaps in knowledge that can be filled by 

this research.  

3.1 Hydrological cycle in the changing climate 
Water is unique among natural resources due to its circular nature (Allan et al., 2020; Oki & Kanae, 

2006). Evaporation from oceans and other open water surfaces converts liquid water to a gas form, 

which then recondenses and returns to the oceans or other water surfaces through  various pathways. An 

overview of the hydrological cycle has already been shown in Figure 1. 

The hydrological cycle is influenced by natural factors, such as variations in solar activity and volcanic 

eruptions, as shown by (Allan et al., 2020). Furthermore, paleoclimatic records demonstrate significant 

changes in the past. (Buckley et al., 2010; Haug et al., 2003). However, it is evident that anthropogenic 

activities increasingly dominate changes in the hydrological cycle (Allan et al., 2020; Oki & Kanae, 

2006). This is occurring indirectly through climate response to greenhouse gas emissions and directly 

from groundwater extractions and land surface interference (Abbott et al., 2019). While global mean 

precipitation changes are mainly determined by changes in the global energy, regional changes can be 

attributed to the transport of water vapor and dynamic processes. Changes in weather patterns are 

dependent on heating and cooling patterns in Earth's atmosphere and across the planet’s surface. Future 

climate project (Field, 2012; Intergovernmental Panel on Climate Change, 2014) suggest that 

precipitation frequency, intensity and duration, among other water cycle characteristics will undergo 

changes.  

Precipitation is the primary source of water for rivers, and changes in precipitation variability directly 

impact the amount of water flowing into rivers. Understanding changes in precipitation variability is 

crucial for comprehending the hydrological cycle’s response to global warming and its effects. 

Precipitation variability refers to the fluctuations in the amount, intensity, and frequency of rain, snow, 

or other forms of precipitation over a particular area and time period. These fluctuations have major 

societal, agricultural and environmental relevance (Pendergrass et al., 2017). Precipitation variability 

also connects the extreme precipitation events (i.e. floods and droughts). It is commonly assumed that 

precipitation variability remains unaffected in a warming climate (Hawkins & Sutton, 2011; Thompson 

et al., 2015). Or that the precipitation mean and variability change at the same pace (Gellens & Roulin, 

1998). 

The aim of (Pendergrass et al., 2017) is to formulate a complete theory on how precipitation is affected 

by a warming climate. Precipitation variability is quantified by its standard deviations and analysed 

through a set of model simulations that were subject to a single forcing scenario. The analysis focuses 

on model simulations driven by a significant increase in greenhouse gas forcing along with changes in 

aerosol forcing. In the majority models the precipitation variability increases robustly over almost all 

land areas in response to anthropogenic warming. For longer timescales (i.e. interannual and longer) the 

forced increase may be compensated for or amplified by natural variability. In the majority of the 

models, the change in precipitation variability is more significant than the change in mean precipitation 

and less significant than the change in moisture and extreme precipitation. Over large spatial and 

temporal scales, the increased precipitation variability is a robust emergent aspect of the hydrological 

cycle that is changing due to anthropogenic climate warming. Further research in both theoretical work 



7 

 

and impact studies is needed to enhance and link the comprehension of changes in mean precipitation, 

variability, and extremes. These extreme precipitation events are further elaborated on in the following 

sections of this report.   

3.2 Fluvial flooding 
As mentioned in section 2.1, river floods are among the costliest natural risks. The study by (Blöschl et 

al., 2020) examines the current flood rich period from a long perspective. It is shown that the past three 

decades were among the most flood-rich periods in Europe in the past 500 years. The risks and costs are 

expected to increase due to phenomena  such as climate change, rapid urbanization and economic growth 

(Winsemius et al., 2016). Due to these growing concerns and risks, there has been a large number of 

studies focused on a variety of aspects of fluvial flooding.  

Understanding studies on fluvial flooding starts with the most basic concept: the definition of a flood. A 

flood, in layman terms, is defined as an overflow of water into normally dry land. (Field, 2012; 

Kundzewicz et al., 2014) define floods as: “the overflowing of the normal confines of a stream or other 

body of water or the accumulation of water over areas that are not normally submerged. Floods include 

river (fluvial) floods, flash floods, urban floods, pluvial floods, sewer floods, coastal floods, and glacial 

lake outburst floods.” Both of these definitions give the physical definition of flooding.  

A flood is a physical phenomenon. This presents several challenges when analysing flooding. The main 

reason is that these physical events hold little to no statistical significance. Consequently, floods are 

commonly characterised using specific quantitative criteria or thresholds associated with hydrological 

parameters. These definitions serve as a foundation for analysing historical flood data, identifying trends 

and investigating the impact of floods. As floods can vary significantly in terms of magnitude, duration 

and frequency, these statistical definitions provide a mean to analyse and compare different flood events. 

In general, two statistical methods are used to define floods and derive time series of flood events. The 

first method is the annual maximum flow (AMF) (Blöschl et al., 2019). The second method is the peak 

over threshold approach (POT) (Mangini et al., 2018; Petrow & Merz, 2009). A comparison of the two 

methods is outlined by (Cunnane, 1973; Madsen et al., 1997). The AMF method consists of determining 

the highest yearly discharge values, creating the AMF time series. The primary benefit of this method is 

the fact that two successive flood events can be considered independent. However,  the AMF method 

has a disadvantage in that it can neglect smaller flood events as they are not the highest flow event in 

that respective year (Mangini et al., 2018). These smaller events can still hold a significant societal 

relevance. The POT approach establishes a threshold value which is considered as a flood event. The 

POT series then consists of flood peaks exceeding this predefined threshold.  With this method it is 

important to ensure that POT events are independent, i.e. that events do not occur on the recession curve 

of the preceding event. The POT approach allows for the detection smaller flood events and the detection 

of trends in the mean number of flood events per year. The POT approach is also denoted as the partial 

duration series (PDS) method. 

Flood studies generally concentrate on one of these two methods. The most common approach is the 

AMF method. This is largely due to the availability of records. A disadvantage, that both the AMF 

method and the POT approach share is that these statistical events are not necessarily large enough to 

physically inundate the floodplains. These two methods have limited usefulness for characterizing actual 

overbank floods because these physical flood events occur, on average less frequently than once per 

year (Wolman & Miller, 1960).  An alternative method is therefore proposed by (Collins et al., 2022) 

wherein the 10 largest AMF flows observed in a 50-year period. These flood events have empirical 

return periods ranging from approximately 5 years (10th largest event) to 50 years (largest event). This 

method aims to identify the actual overbank flows and therefore the river flows which are the most 

relevant for actual damages. 



8 

 

Regardless of how a flood is defined, there is a wide variety of types of analysis and corresponding 

methods for studying fluvial flooding. There are several aspects of fluvial flooding, each of which has 

received different levels of attention from researchers. The aspect that has been researched the most is 

the magnitude of flooding, which is also the most straightforward characteristic.  

An example of a study conducting analyses on the magnitude of fluvial flooding is given by (Blöschl et 

al., 2017). It claims to be the first study to provide coherent large-scale observational evidence of flood 

discharge changes at the continental scale (European continent). Previous studies were not 

representative of Europe, as stream gauges were mainly concentrated in Western-Europe. Therefore, a 

trend analysis is performed on the most comprehensive dataset of flood observations in Europe (Hall et 

al., 2015).  (Bertola et al., 2020) further extends this magnitude trend analysis, using the same database 

and developing selection criteria to ensure comparability with (Blöschl et al., 2017). While the first 

study only examines changes in the magnitude of the AMF events, this study aims to assess the changes 

in small versus big floods by looking at the corresponding flood quantiles. In addition to this, the effect 

of catchment area is also assessed by comparing changes in flood quantiles for different catchment areas. 

The results from (Blöschl et al., 2017) & (Bertola et al., 2020) are given by Figures 2 and 3 respectively. 

 

Figure 2: Observed regional trends of river flood discharges in Europe (1960 - 2010) by (Blöschl et al., 2019). Blue indicates 

increasing flood discharges and red denotes decreasing flood discharges (in per cent change of the mean annual flood 

discharge per decade). 
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Figure 3: Flood trends in Europe: small vs big floods by (Bertola et al., 2020). The panels show the median of the posterior 

distribution of the regional relative trends of flood quantiles in time (i.e. the percentage change in per cent per decade). 

Positive trends in the magnitude of flood quantiles are shown in blue, and negative trends in red. Circle size is proportional 

to the width of the 90 % credible intervals. Results are shown for the median flood (i.e. T = 2 years), in panels (a, b), and for 

the 100-year flood, in panels (c, d). Flood trends refer to a small catchment area (i.e. 100 km2 ) in (a, c) and to a large 

catchment area (i.e. 10 000 km2 ) in panels (b, d). 

Looking at the two figures, the similarity is very clear. The data show a clear regional pattern in flood 

magnitude trends across Europe, with increasing floods in north-western Europe and decreasing floods 

in eastern Europe. In smaller catchments the 100-year flood increases more than the median flood, while 

the opposite is observed in medium and large catchments.  

Another aspect of fluvial flooding that is often studied is the timing of floods. There are several ways to 

study the timing of floods. (Blöschl et al., 2017) investigates the timing of the AMF events in a year to 

assess whether the timing of river floods has shifted. Circular statistics are then  used to determine the 

average date of occurrence, the concentration of events around that date, and to estimate trends in the 

timing of river floods based on Julian dates for each stream gauge. (Bayliss & Jones, 1993; Mardia, 

1975) This approach accounts for the cyclical nature of annual flood occurrence and provides valuable 

insights into temporal patterns of  hydrological phenomena. 

A common method to study the timing of floods is to analyse the river flood seasonality. River flood 

seasonality refers to the recurring patterns of timing of river floods within a year. It involves identifying 

when in the year a river is most likely to experience increased water levels that result in flooding. The 

river flood seasonality reflects the  relative importance of  different flood-generating mechanisms 

(Collins, 2019). Changes in flood seasonality can indicate and explain changes in flood-generating 

mechanisms. Inferring these different flood-generating mechanisms is crucial for understanding past, 

present and future flood risks. (Berghuijs, Hartmann, et al., 2016; Berghuijs, Woods, et al., 2016) provide 

such analyses for Europe and the United States respectively. Both studies follow roughly the same 

approach. First, the mechanisms that can cause flooding are defined. The mechanisms are (i) extreme 

precipitation, (ii) soil moisture excess and (iii) snowmelt. These mechanisms are then described by 

simple process descriptions to characterise the seasonality. The seasonality statistics of floods and the 
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driving mechanisms are then calculated are calculated by using the circular statistics mentioned above. 

An example of the seasonality characteristics floods and flood-generating mechanisms characterized by 

circular statistics is shown in Figure 4. 

 

Figure 4: The seasonality characteristics of floods and flood-generating mechanisms characterized by circular statistics for 

the Reuss river by (Berghuijs et al., 2019) . The dates of occurrence of each year, Di,k (day of year), fall on the unit circle (here 

only shown for floods). These dates are used to derive the mean cosine and sine components, xi and yi and thus to estimate the 

mean date of flooding. The concentration, Ri (dimensionless), expresses how tightly occurrences are clustered around the mean 

date, and the subscripts indicate the process of interest (f = flood, p = precipitation, m = soil moisture excess, and s = 

snowmelt). The cosine and sine components of the flood generating mechanisms are used to infer their relative importance as 

flood drivers by comparing their seasonality statistics. 

With these seasonality statistics, the final step is to estimate the relative importance of each mechanism 

by solving the following set of linear equations: 

 

where αi indicates the relative importance of each flood driver (with [0 ≤ αi ≤ 1]), and xi and yi are the 

average cosine and sine components of the dates of occurrence. 

3.3 Droughts 
Droughts are also among the most damaging and most costly recurring natural hazards, with devastating 

economic, ecological and political impacts (Ide, 2018; von Uexkull et al., 2016; D. A. Wilhite & 

Pulwarty, 2017). Changes in drought severity, frequency, duration and timing will have major 

implications for water management. With the projected global temperature increase, scientists agree that 

extreme droughts will become more frequent. Drought can be considered as a normal, recurrent climatic 

phenomenon (Hisdal et al., 2001). 

Drought is by definition a relative term, which is applicable to any climate region. Like floods, droughts 

can also be defined in a variety of ways. Droughts are most commonly defined as streamflow or 

precipitation deficits relative to average conditions. However, this is not the only definition of droughts, 
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and a discussion of different drought definitions can be found in (Dracup et al., 1980; D. A. Wilhite & 

Glantz, 1985). Characterising droughts, both in terms of severity and risk is a difficult task. This is 

because droughts are rarely confined to a single location. Instead, droughts often affect large regions 

and extend over long periods such as months, years or even decades (Van Loon & Laaha, 2015). 

Another reason why droughts are difficult to characterise is the fact that drought evolution is influenced 

by a wide variety of hydrometeorological variables, such as precipitation, runoff, evaporation, 

transpiration and antecedent soil moisture content (Mishra & Singh, 2010; Sheffield et al., 2012). Four 

types of droughts are given by (Peña‐Angulo et al., 2022) : agricultural droughts, hydrological droughts, 

meteorological droughts and  socioeconomic droughts. Among these four types, hydrological droughts 

are the most relevant for policy makers and hydrologists due to the societal reliance on water availability 

in river systems (Van Loon & Laaha, 2015).  

The first pan-European study on droughts was conducted by (Briffa et al., 1994), who examined summer 

(June-August) moisture variability across Europe for 1892-1991 using the Palmer Drought Severity 

Index (PDSI) (Palmer, 1965). Prior to the publication of (Briffa et al., 1994) the PDSI had been widely 

used to study the nature of drought over the United States, but there had been no studies based on the 

method outside of the US. This work was largely prompted by the extensive nature of the drought that 

affected large parts of Europe from 1988 to 1992 (Marsh & Monkhouse, 1993; Tselepidaki et al., 1992). 

Despite its title, the PDSI represents the full range of moisture conditions, from extremely wet to 

extremely dry. It was created as a meteorological index expressing regional moisture supply, 

standardised in relation to local climatological norms. It therefore does not represent effective drought 

in absolute terms. The PDSI is based on a water balance calculation and requires a number of arbitrary 

assumptions (Palmer, 1965). Using a principal component analysis (Jolliffe & Cadima, 2016), nine 

regions are identified based on the spatial coherence of the PDSI. The study concludes that there has 

been a slight, but consistent increase in moisture supply over the entire period, although this is not 

statistically significant. The PDSI data which is described by (Briffa et al., 1994) was meant to serve as 

a useful resource for further climate studies.  

The first data and trend analysis study based on actual streamflow data in Europe is conducted by (Hisdal 

et al., 2001). In this study, a pan-European dataset of more than 600 daily streamflow records is analysed 

to detect spatial and temporal patterns in streamflow droughts. The two different methods described in 

the previous section, being AMS and PDS are studied over four different time periods. The aim of this 

paper was to answer the question of whether hydrological droughts have become more severe or more 

frequent.  The paper states that for a consistent analysis of droughts, it is necessary to distinguish 

between summer and winter droughts. Summer droughts are caused by a lack of precipitation and high 

evaporation. Winter droughts are by precipitation that is being stored as snow. The distinction is made 

because these types of droughts have different implications for water management. Five drought 

parameters are defined in the study, being annual maximum drought duration (AMD), annual  cumulated  

duration  of  all  drought  events (ACD),   annual  maximum  deficit  volume  standardised  by  seasonal  

mean  flow (AMV), annual  cumulated  deficit  volume  standardised  by  seasonal  mean  flow (ACV) 

and number  of  drought  events  per  year (NV). In most of the catchments no significant trends are 

found, but distinct regional different are found across all time periods. Large areas where less severe 

drought conditions can be explained by an increase in precipitation are found and more severe drought 

conditions due to a decrease in precipitation. In addition to the trend analysis, the influence of the chosen 

time period is investigated. The temporal scale of a trend analysis is important when assessing the trend. 

What appears to be an increasing trend over a ‘short’ period of observation may be part of a long- term 

fluctuation and therefore cannot be seen as evidence of anthropogenic climate change, nor can it be used 

as a baseline for future predictions. It is concluded that, despite several reports of droughts in Europe at 

the time, there is no clear evidence that drought conditions have generally become more or less severe. 

This study dates back than two decades. A similar, more recent study is given by (Peña‐Angulo et al., 

2022). In this study a hydrological drought is defined as a period with streamflow below a predetermined 
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threshold. The Standardised Streamflow Index (SSI) is used to identify hydrological drought events 

(Barker et al., 2016). This index compares hydrological droughts irrespective of streamflow magnitude 

or river system characteristics. The study identifies six homogeneous regions representing the changes 

in monthly streamflow across Europe. The differences observed in these clusters are expected to 

correspond to different physical mechanisms controlling the  climate and streamflow variability in the 

regions. The findings of the study indicate that there are no homogeneous streamflow trends in space 

nor over months at the continental scale. Again the findings of the study show that there are large spatial 

and temporal differences in streamflow across Europe. In general, the monthly streamflow as 

characterised by the SSI showed a negative trend in southern and central Europe. A positive trend was 

observed in northern Europe. The study also reveals distinct patterns at the monthly scale. These changes 

in streamflow are generally consistent with the spatial patterns of changes in hydrological droughts. This 

suggests that hydrological droughts in Europe are not homogeneous, and therefore result from different 

driving mechanisms. 

 

3.4 Natural flow regime (Streamflow regime) 
The natural flow regime, also known as the streamflow regime, is a fundamental aspect of river 

ecosystems. Understanding the streamflow regime is vital for water management and maintaining the 

river ecosystem health. The streamflow regime refers to the variation in streamflow over different 

timescales. More precisely, the  streamflow regime describes exactly how a river flows. The importance 

of streamflow in the hydrological cycle has been mentioned in section 2.1. Thus, understanding the 

streamflow regime is essential for a better understanding of the hydrological cycle. (Poff et al., 1997) 

provides a detailed and comprehensive study on the streamflow regime. The natural flow of a river can 

vary on time scales from hours to years, or even decades. A deep understanding of this regime requires 

many years of observational data from a stream gauge. Streamflow regimes show regional patterns, 

which are largely determined by factors such as river size and by geographic variation in climate, 

geology, topography, and vegetative cover. There are five critical components of the streamflow regime 

that regulate processes in river ecosystems: the magnitude frequency, duration, timing and rate of change 

of hydrological conditions (Poff & Ward, 1989; Richter et al., 1996; Walker et al., 1995). 

The magnitude of discharge at a given time interval is the amount of water moving through the river at 

a given location per unit of time. The magnitude can be either absolute or relative discharge. 

The frequency of occurrence refers to the number of times the streamflow is above or below a certain 

threshold. Frequency of occurrence is inversely related to magnitude of discharge (Poff et al., 1997). 

The higher the magnitude, the lower the frequency of occurrence. For example, a 50-year flood is 

exceeded on average once every 50 years resulting in a frequency of 0.02. The magnitude of the average 

or median flow from a timeseries has a frequency of occurrence of 0.5. 

The duration is the period of time is associated with a specific flow condition. Duration can also be an 

absolute period (hours, days) or relative period (% of year). 

The timing, also known as the  predictability, of streamflow refers to the regularity with which a specific 

flow event occurs. This regularity can be defined informally or formally and with respect to different 

timescales (POFF, 1996). This means that flow events can occur with a low or high seasonal 

predictability. 

The rate of change, also known as the flashiness, of streamflow refers to the rate at which the 

streamflow changes from one magnitude to another. Flashy rivers have rapid rates of change, while 

stable rivers have slow rates of change. 

All streamflow is ultimately derived from precipitation, but will always be a combination of surface 

water, groundwater and subsurface water. Climate, geology, topography, soils, and vegetation influence 
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both the supply of water and the pathways by which precipitation reaches the river channel. Hydrograph 

peaks, which are the river’s response to precipitation events, are generated collectively by overland flow 

and shallow subsurface flow. In contrast, baseflow, which is the supply of water to a river during periods 

of low precipitation, is generated by deeper groundwater flows. Variability in precipitation intensity, 

timing and duration, combined with the effects of terrain, soil texture and plant evapotranspiration on 

the hydrological cycle combine to create diverse local and regional flow patterns. 

3.5 Hydrological signatures 
Hydrological signatures are metrics that are created to quantify aspects of the streamflow response. 

Linking these signatures to the actual underlying hydrological processes enables many applications such 

as analysis of hydrological change, selection hydrological model structure and identification of 

dominant processes. A comprehensive literature review is provided by (McMillan, 2020). The review 

states that many hydrological signatures are not process-based and that knowledge of signature-process 

relationships is scattered among studies. Rather than being linked to hydrological processes, signatures 

often focus on capturing elements of the streamflow regime that are relevant to ecological applications 

(Clausen & Biggs, 2000). The review paper catalogues more than 50 hydrological signatures 

representing processes seen in the hydrological cycle such as evapotranspiration, snowmelt, infiltration 

excess and baseflow. The majority of signatures reviewed demonstrate how signatures can enable 

hydrologists to make the most out of streamflow data. Without requiring data which is less widely 

available, such as soil moisture. The review is structured using hydrological process classes (Anderson 

& McDonnell, 2005). For each process class, hydrological signatures are found in the existing literature. 

The review is restricted to hydrological signatures that can be derived using only streamflow and 

precipitation data, where rainfall data is used to interpret the signatures, but not used by itself. These 

data types are selected because they are the most commonly available to hydrologists. It is recognised 

that more complex findings can be derived from experimental catchments with detailed datasets, 

including tracers and soil moisture data. However, as such data sets are typically not available for large 

scales, both temporally and spatially, these are not considered in the review. Figure 5 shows a summary 

of all the signatures considered in the review, their distribution across over the processes and timescales 

and whether they quantify the process or test for its occurrence. 

 

Figure 5: Numbers of signatures available to characterize each process, split by timescale (event or seasonal), and whether 

the signature quantifies the process or tests for its occurrence by (McMillan, 2020) 

Figure 5 shows a significant variability in signature coverage. Surface processes, i.e. ET, snow, 

permafrost, infiltration and saturation excess have no signatures on the event timescale. Groundwater 

storage, connectivity and partitioning all benefit from a diverse range of signatures. These processes are 

related to the split between fast and slow hydrological processes. In general, there are more signatures 
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related to the seasonal scale than to the event scale. In addition to these findings, the review also proposes 

a new signature typology. The 5 proposed types are: 

1. Time series visuals 

2. Quantified event dynamics 

3. Quantified seasonal dynamics 

4. Seasonal statistics 

5. Mini-model 

The review also shows that a hydrological signature is often related to multiple processes, making it 

difficult to use signature values to characterise catchment processes. On the other hand, there are also 

many signatures that focus on similar characteristics of the streamflow regime. Given the number of 

different ways in which streamflow can be characterised, hydrologists have adopted a variety of 

approaches, resulting in a large number of competing hydrological signatures (Olden & Poff, 2003). 

Hydrologists are faced with the difficult task of choosing from an abundance of available hydrological 

signatures. Creating the question: What minimum subset of hydrological signatures is required to 

adequately describe the most important aspects of the streamflow regime?  

(Olden & Poff, 2003) undertakes a comprehensive review of the available hydrological signatures for 

characterising the streamflow regime. The review examines 171 published hydrological signatures in 

search of a reduced set to describe the streamflow regime. The 171 signatures are grouped into the five 

categories discussed in the previous section of this report. A principal component analysis (Jolliffe & 

Cadima, 2016) (PCA) extracted from the 171 x 171 correlation matrix is used to examine the 

intercorrelation patterns of the hydrological signatures. Figure 6 shows the two-dimensional ordination, 

which illustrates the major intercorrelation patterns between the signatures. The correlation between any 

two indices is related to the cosine of the angle between their index axes, i.e. between the vectors joining 

the origin and the index positions in Euclidean space. 
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Figure 6: Ordination from the principal component analysis by (Olden & Poff, 2003). Correlations between  indices  are  

interpreted  as  the  cosine  of  the  angle  between their  index-axes  (i.e.  between  the  vectors  joining  the  origin  and the  

index  positions  in  Euclidean space) 

Figure 6 demonstrates a large variability in the degree of correlation between the signatures, although 

the majority of the signatures are highly correlated (either negatively or positively). A large number of 

signatures are located in the upper left and upper right quadrants. The transferability of the signatures is 

assessed by identifying signatures that consistently describe dominant patterns of variation for ‘stream 

types’ with distinctly different streamflow characteristics. The ten streamflow types of (POFF, 1996) are 

reduced to six distinctive types to capture a range of streamflow regimes that occur around the globe. 

The six types are: 

1. Harsh intermittent 

2. Intermittent flashy or runoff 

3. Snowmelt 

4. Snow and rain 

5. Stable groundwater 

6. Perennial flashy or runoff 

This review provides a statistically based framework to aid in the selection of hydrological signatures. 

By focusing on intercorrelation between signatures hydrologists can select a subset of optimal signatures 

based on the hydroclimatic region, or stream type. Using this framework will maximise the information 

provided by the subset of signatures while minimising the degree of redundancy. However, this approach 

should only be used as an aid in the selection of hydrological signatures. It should be used in conjunction 

with more intuitive selection criteria based on the particular research questions of interest. 
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4. Methodology 
In order to answer the research questions and achieve the research objectives, a research plan is carefully 

drawn up. As mentioned in section 2.1, this research is a data and trend analysis study. Data analysis is 

the process of inspecting, modelling and transforming data with the aim of discovering meaningful 

information (Kudyba, 2014). This meaningful information is then used for a wide variety of purposes, 

such as supporting decision making or drawing conclusions. The entire research process for this specific 

study is roughly visualised in Figure 7. 

 

Figure 7: General flowchart of the research plan 

4.1 Data collection 
Typically, data analysis studies begin with data collection. Hydrological studies can often be quite spread 

out spatially and temporally (McMillan, 2020). These large spatial and temporal scales can make the 

actual generation of data practically impossible, especially with the desire for time series of at least 50 

years. Fortunately, the process of measuring streamflow has been performed for centuries, making it 

possible to perform hydrological analyses over periods as long as 500 years such as (Blöschl et al., 2020; 

Glaser et al., 2010). However, as mentioned in chapter 1, the most recent periods provide the greatest 

spatial coverage. 
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As mentioned in chapter 1, the importance of measuring hydrological data is immense. Effective water 

management would not be possible without proper data measurement (Stewart, 2015). Many datasets 

containing either hydrological data or climate data have been created in recent decades.  Examples of 

this include the Global Runoff Data Centre (GRDC) dataset (Stahl et al., 2010), the E-OBS dataset 

(Cornes et al., 2018) and the European Flood Database  (Hall et al., 2015). A crucial part of the 

management of these datasets are the FAIR (Findable, Accessible, Interoperable and Researchable) 

principles. These principles have been formulated to improve the infrastructure that supports the reuse 

of data. The intent of these principles is to act as a guideline for stakeholders to ensure the reusability of 

their data (Wilkinson et al., 2016). 

For this study a dataset was provided by my supervisor. This decision was made because the process of 

data collection, although an important part of any data analysis study, was considered to be outside the 

scope of this study. Mainly because the process of data collection can be very time consuming. Even 

though the dataset has been  provided, steps still need to be taken to gather information about the dataset 

and the individual time series, which are described in section 4.2. 

4.2 Exploratory data analysis and data pre-processing 
It is crucial to work with highest quality data possible. Problems such as instrument errors, changes in 

measurement techniques or typographical errors can cause apparent changes in a data series. An 

exploratory data analysis (EDA) is used to identify potential problems in the data. The concept of EDA 

was first formulated by (Tukey, 1962). An  exploratory data analysis looks at the data from as many 

angles as possible with the aim of uncovering interesting features or possible problems in the data 

(Morgenthaler, 2009). 

The main use of the EDA in this study is to examine the raw data to identify features such as data 

problems (outliers, missing data) , temporal patterns (seasonality, trends) and the data structure (date 

format, units). A detailed visual examination of each data series is unfeasible and unnecessary for this 

study, due to the sheer number of time series in the dataset. For each country two data series are selected 

at random and visually examined. In addition to gaining a better understanding of the dataset as a whole, 

there were three main conclusions can be drawn from the EDA. Firstly, some time series have missing 

data, i.e. no data was measured on certain dates. Secondly, there are different writing dates in the data 

structure. And finally, all  the time series have different temporal ranges, meaning that the record lengths 

of the time series. These problems are all dealt with during data pre-processing. 

Data preprocessing is one of the essential steps in a data analysis study (García et al., 2016). Data 

preprocessing is also the first step in the Knowledge Discovery from Datasets process (KDD) (Han et 

al., 2022). Data preprocessing is performed in the programming language Python, using the integrated 

development environment PyCharm. All of the preprocessing steps are elaborated on in this chapter, the 

actual Python code is shown in Appendix B  

Data preprocessing is one of the essential steps in a data analysis study (García et al., 2016). Data 

preprocessing is also the first step in the Knowledge Discovery from Datasets process (KDD) (Han et 

al., 2022). All of the data pre-processing steps, as well as with the data and trend analyses are performed 

in the Python programming language, using the PyCharm integrated development environment. All of 

the preprocessing steps are explained in this chapter, the actual Python code is presented in Appendix B  

First, each individual time series is given an identifier in Python. This is done to facilitate further 

analyses and to organise the data properly. The most common and well supported method of writing 

date entries is in the datetime format. However, a number of time series have the dates written in serial 

datetime. This format uses integers to indicate the number of days that have elapsed since the first of 

January 1900. These serial datetime values are converted to regular datetime values to facilitate the 

analysis. 
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Once the date values have been converted to the desired format, the data series are checked for temporal 

coverage. The phenomenon of missing data has been discussed extensively for a long period of time 

(Schafer & Graham, 2002).  A review on the processing of missing hydrological data is given by (Gao 

et al., 2018). The study proposes a number of methods for the imputing of missing data, such as singular 

spectrum analysis (SSA) and autoregressive and moving average models (ARMA). It is decided that  

implementing these methods is outside the scope of this study. Instead of these data imputation methods, 

a data coverage threshold of 300 days is set. 300 days is about 80% of a year. This means that years with 

less than 300 days of data are not considered in the data-and-trend analysis. 

4.3 Catchment characteristics and time series information (Study area and time series 

overview) 
The dataset contains hydrological data from a total of 1184 stream gauges in five countries. The 

hydrological data is expressed in mean daily discharge in cubic metres per second [m3/s]. The 

contributing catchment area is the region from which surface water drains into the river. This 

contributing catchment area is necessary for the normalization of streamflow, which is described in 

section 4.5. For 1160 of the stream gauges, the contributing catchment area is known. The distribution 

of the stream gauges and their contributing catchment areas is shown in Table 1 

Area <km2 Belgium France Germany Luxemburg Netherlands Total 

1 0 0 0 0 0 0 

10 5 3 3 0 0 11 

25 9 6 25 0 0 40 

50 5 25 55 0 3 88 

100 37 48 97 2 2 186 

250 49 115 178 3 0 345 

500 21 82 89 7 1 200 

1000 7 48 46 3 0 104 

2500 7 50 38 2 1 98 

5000 1 23 15 2 0 41 

10000 0 11 2 0 0 13 

25000 3 6 6 0 1 16 

50000 0 5 1 0 1 7 

100000 0 1 4 0 0 5 

250000 0 0 5 0 1 6 

Total 144 423 564 19 10 1160 

Table 1: Streamflow dataset catchment area distribution 

To gain insight about the temporal ranges of all of the stream gauges, all of the years contained within 

each individual time series. This provides information on the number of available time series for each 

year, as well as the record lengths and the start years of the time series. The histograms of these 

distributions are plotted in Figure 8. 
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Figure 8: Histograms showing the distribution of: data availability per year, record lengths of the time series, start years of the 

time series. The cumulative distribution function (CDF) is given by the orange lines. The number of time series is given by the 

left y-axis and the CDF by the right y-axis. 

The choice is made to perform the trend analysis on five fixed time periods. Period 1 is the so-called 

reference period has a temporal range from 2000-2019. From this reference period, each period adds a 

decade to the temporal range. This results in the periods: Period 1 (2000-2019), period 2 (1990 – 2019), 

period 3 (1980 - 2019), period 4 (1970 - 1980) and period 5 (1960 – 2019). The spatial coverage of each 

period is shown in Figure 9 

 

Figure 9: Spatial coverage of each respective period. (n is the number of stream gauges) 

4.4 Selection of hydrological signatures 
Hydrological signatures are metrics that quantify aspects of streamflow response (McMillan, 2020). 

There are many different aspects regarding streamflow response, and the utility of hydrological 

signatures for describing these aspects has led to increased application in riverine studies. Another result 

of this is the increase in the amount of  existing hydrological signatures (Gao et al., 2009). Many of 

these signatures are often focused on the same aspect of the streamflow regime, becoming redundant 

relative to each other. (Olden & Poff, 2003) addresses this this issue and provides a comprehensive 

review of 171 hydrological signatures. The paper highlights patterns of redundancy among these 

signatures. With these concerns in mind, a list of hydrological signatures is drafted. These are the 

signatures which are calculated in the data analysis part of this research. This section substantiates not 

only the final selection of hydrological signatures, but also the selection process.  
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As mentioned in section 2.2, the main objective of this research is to provide an overview of the temporal 

changes and spatial differences in streamflow in western Europe. In order to achieve this objective, the 

final selection of hydrological signatures should be representative of the entire streamflow regime. (Poff 

et al., 1997) and (Richter et al., 1996) state that there are five main aspects that describe the streamflow 

regime. These are: magnitude, frequency, duration, timing and rate of change. These aspects “can be 

used to characterise the entire range of flows and specific hydrologic phenomena, such as floods or low 

flows, which are critical to the integrity of river ecosystems”. Four of these aspects are selected as being 

relevant to this research. The rate of change is determined to be irrelevant for this research, as the main 

application of this component is ecosystem influence (Richter et al., 1998), which is outside the scope 

of this research. To fully capture the streamflow regime, the distinction is made between the three stages 

of fluvial flow. These stages are low flow, medium flow and high flow. Combining the four aspects of 

the hydrological regime with the three stages of river flow would result in a selection of 12 hydrological 

signatures. However, the frequency, timing and duration of average flow are not feasible signatures to 

analyse and are therefore not considered. This results in a selection of 9 hydrological signatures which 

describe the full hydrological regime for this study.  

• Annual Minimum Flow of 7 consecutive days (AmF7) [mm/year] 

• Average Daily Flow (ADF) [mm/year] 

• Annual Maximum Flow (AMF) [mm/year] 

• Low Flow Pulse Count (LFPC) [counts/year] 

• High Flow Pulse Count (HFPC) [counts/year] 

• Low Flow Pulse Duration (LFPD) [days] 

• High Flow Pulse Duration (HFPD) [days] 

• Julian date of AmF7 [-] 

• Julian date of AMF [-] 

 

Annual Minimum Flow of 7 consecutive days (AmF7) 

This signature represents the annual minimum total flow over any 7 consecutive days in mm/year. This 

signature is determined annually.  

Average Daily Flow (ADF) 

This signature represents the average daily flow in mm/year. This signature is determined annually. 

Annual Maximum Flow (AMF) 

This signature represent the annual maximum flow on a single day in mm/year. This signature is 

determined annually.  

Low Flow Pulse Count and Duration (LFPC & LFPD) 

These signatures represent the frequency and duration of the low flow stage. Low flow pulses are defined 

as periods where the streamflow drops below the 25th percentile. Both the number of occurrences and 

the mean duration of these periods are determined annually.  

High Flow Pulse Count and Duration (HFPC &HFPD) 

These signatures represent the frequency and duration of the high flow stage. High flow pulses are 

defined as periods where the streamflow rises above the 75th percentile. Both the number of occurrences 

and the mean duration of these periods are determined annually.  

Julian date of AmF7 and AMF 
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These signatures are the dates of occurrence of the AmF7 and AMF events. They are also determined 

annually. 

4.5 Data analysis (calculation of signatures) 
In this section the calculation of each signature is briefly explained. Several  Python functions are written 

to calculate all the signatures. In order to ensure smooth computation, all of the functions have a similar 

structure and the input for all of the functions is identical. Every function takes a single pre-processed 

timeseries as input. The complete Python code can be found in Appendix B.  

The AmF7 magnitude signature occurs over seven consecutive days. So each data entry is checked to 

see if it is surrounded by ‘data containing days’. If this is the case, a list is created containing the 

streamflow of 7 consecutive days. The minimum value is determined for each year. This value is saved 

as the AmF7 magnitude signature and the date of occurrence as the AmF7 timing. The AMF is somewhat 

easier to determine as it occurs over only one day. The maximum value of daily streamflow is determined 

annually, and the date of occurrence is saved as the AMF timing. The ADF value is calculated by taking 

the average of the data each year. 

The pulse signatures are somewhat more complicated to determine. Over the entire length of the time 

series, the 1st and 3rd quartile are determined. These values represent the low flow threshold and high 

flow threshold respectively. A low flow pulse is defined as a period when the streamflow magnitude 

reaches below the 1st quartile and a high flow pulse is defined as a period when the streamflow magnitude 

reaches above the 3rd quartile. For both low-and-high flow pulses, the number of pulses and the average 

duration of these pulse are determined annually. 

All of the signatures are determined using Python and stored in a data frame for each individual time 

series. The magnitude signatures are normalised by dividing by the catchment area and converted to 

units of mm/year. These data frames are then used to perform the trend analyses. All of the Python code 

related to the data analysis is shown in Appendix B 

4.6 Trend analysis 
As mentioned above, the trend analysis is performed on five fixed periods. Therefore, the data frames 

are filtered according to their temporal coverage. If a time series contains both the start and end year of 

the period, it is used for the trend analysis of that period.  

The non-parametric Mann-Kendall (MK) test, combined with the Theil-Sen slope estimator for trend 

estimation (KENDALL, 1938; Mann, 1945; Sen, 1968). The MK test is considered to be a robust non-

parametric test. (Kunkel et al., 1999) states that “This non-parametric test is particularly useful for 

analysis of extreme climate events that are not necessarily normally distributed”. The MK test is based 

on the number of pairs of data entries within the time series for which the difference is either positive 

(increasing) or negative (decreasing) rather than on the actual magnitude of these differences. This 

minimises the effect of extreme values in the data. A brief summary of the MK test will be given later 

in this section. 

The Theil-Sen slope estimator is given by: 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗  − 𝑥𝑖

𝑗 − 𝑖
) 

This is a non-parametric slope estimator. The choice is made for a non-parametric slope estimator 

because it does not assume a distribution of the data, but only that the data is independent. Since the 

signatures are determined annually, it is safe to assume that the data is independent. This estimator is 

also chosen for robustness and insensitivity to missing data and outliers(Rousseeuw & Leroy, 1987). 

The trend estimator β is given by the median of the slopes between all possible pairs in the time series. 
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The two timing signatures have to be treated differently than the other signatures because they are 

circular in nature and can occur throughout the year. Because of this circularity, all calculations relating 

to the trend analysis of the timing signatures are performed using circular statistics (Bayliss & Jones, 

1993; Mardia, 1975). Circular statistics is a specialised sub-discipline of statistics used to analyse data 

with cyclical or angular properties. Circular statistics is tailored to data sets that repeat in a circular 

manner, which is the case for the timing signatures as these signatures wrap around the period of a year. 

For circular statistics, the Theil-Sen slope estimator is given by: 

 

Where k makes the adjustment for the circular nature of the dates, ensuring that the smallest slope is 

selected between the pairs. 

 

4.7 Temporal sensitivity analysis 
In addition to the trend analyses with the different fixed periods, the MK test is used on all possible 

combinations of start and end years.  The original Mann-Kendall statistic S is given by: 

𝑆 = ∑𝑎𝑖𝑗𝑏𝑖𝑗  [−],  𝑎𝑖𝑗 = 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) , 𝑏𝑖𝑗 = 𝑠𝑔𝑛(𝑦𝑗 − 𝑦𝑖) 

The S statistic denotes sum of the differences between all possible pairs in the data values. The range of 

S is dependent on the amount of data values within the time series. Under the null hypothesis that there 

is no trend within the time series: 

 

The Z score is the standardised value, given by: 

 

This Z score is determined for each signature, using stream gauges that contain at least 60 years of data. 

This selection corresponds with the stream gauges of the fifth fixed period, as shown in Figure 9(e). The 

number of stream gauges for this analysis is n = 236 The Z score is averaged across all stream gauges. 

The entire trend analysis is performed in Python using the Python package pyMannKendall, written by 

(Hussain & Mahmud, 2019). The Python code is shown in Appendix B. 
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5. Results 
As mentioned in the previous chapter, the trend analysis is performed on nine signatures over five 

different time periods with an identical end year. The spatial coverage of each period is shown in Figure 

9. To keep the presentation of the results as consistent as possible, all the results of the trend slope 

estimation are presented and described in an identical manner. First, the results of each period are 

presented in a scatter plot with an underlying map of western Europe. The location of each point 

represents the location of the stream gauge, and the colour of the bubble represents both the magnitude 

and direction of the trend. Positive trends are presented as blue circles and negative trends as presented 

as red circles. The meaning of positive and negative trends is unique for each signature and will therefore 

be given at each signature, as well as the units of the estimated slope. 

Additionally, a violin plot showing the distribution of the trends is given. A violin plot is a statistical 

graphic for comparing probability distributions. It is like a box plot, with the addition of a rotated kernel 

density estimation on each side (Hintze & Nelson, 1998). For each trend analysis, the total range of the 

estimated trend values is given. The first quartile, median and third quartile are represented by vertical 

lines in the violin plot. The range of the violin plot is determined based on the maximum absolute trend 

values for each period. This means that the range will be different for each period. This choice was made 

in order to show the shape of the trend distribution, rather than the magnitude of trends. The percentage 

of positive and negative trends is given. The trends are tested for statistical significance at a significance 

level of (α = 0.10) but since the focus of this research is analysing variability in trends, they are not 

actively mentioned. The distributions between positive-and-negative trends for each trend analysis are 

shown in the tables of Appendix A 

To appropriately compare the results between the periods, the trend analysis is also performed on only 

gauges with at least 60 years of record length. These gauges are selected and then the analysis is 

performed over the five different time periods. The methodology described above is applied on these 

analyses as well to maintain consistency. 
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5.1 AmF7 timing 

 

Figure 10: Trend results for the timing of the AmF7  event. Scatterplot on the left shows the location of the trends and the violin 

plot on the right shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles 

represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 

1960-2019. 
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These graphs show the trends in the timing of the AmF7 event for the different time periods in 

[days/year]. Negative trends, which are shown by the red circles, represent an ‘earlier in year’ trend. 

Positive trends, which are shown by the blue circles indicate a positive (forwards in time). 

Period 1 shows more positive trends than negative trends, with the percentage of positive trends being 

63.9 %  and the percentage of negative trends being 34.2 %. The trend slopes range from -5.1 days/year 

to  6.5 days/year with a median value of 0.5 days/year. Over the entire period, this translates to -100 

days and 130 days. Most parts of the study area show mainly positive trends, which is also visible from 

the histogram. A decreasing pattern can be seen from south to north for the entire study area. The 

southern parts of the study area display the largest positive trends. The further north in the study area, 

the smaller these trends become, with the most northern parts also showing more negative trends. 

Looking at the graphs of the second period, it can be seen from both the histogram and the map plot that 

the distribution between positive and negative trends is more evenly distributed compared to the first 

period. The percentage of positive trends being 52.0 % and the percentage of negative trends being 

43.4%. The absolute trend values are smaller for the second period, ranging from -3.6 days/year to 3.3 

days/year. As noted before, the area generally shows an even distribution between positive and negative 

trends. However, the western part of the study area shows slightly more positive trends and the eastern 

/ northeastern parts show slightly more negative trends. 

The graphs of the third period are significantly different than the first two periods. There are now 

significantly more negative trends than the first periods, with the percentage of positive trends being 

18.5 % and the percentage of negative trends being 78.2 %. In addition to this shift in trend direction, 

the absolute values of the trends have remained the same. The trends range from -2.8 days/year to 3.5 

days/year with a median value of -0.4 days/year. 

The graphs of the fourth period are similar to those of the third period, showing again the dominant 

negative trend pattern. The percentage of positive trends being 10.7 % and the percentage of negative 

trends being 87.5 %. The trends range from -1.7 days/year to 2.8 days/year with a median value of -0.6 

days/year. 

The graphs of the fifth period are again similar to those of the third and fourth period. The percentage 

of negative trends being 8.9 % and the percentage of negative trends being 89.8 %. The trends range 

from -1.4 days/year to 2 days/year with a median value of -0.5 days/year. 
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Figure 11: Trend results for the timing of the AmF7  event, using only stream gauges with record length of at least 60 years. 

Scatterplot on the left shows the location of the trends and the violin plot on the right shows the distribution of trends over the 

entire study area. Blue circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 

2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the timing of the AmF7 event, using only the gauges which are available 

for the fifth period. These graphs are meant to the show the impact of the selected temporal range on a 

trend analysis. 

The results of the first period show mostly positive trends, with the percentage of positive trends being 

65.1 % and the percentage of negative trends being 33.6 %. The trends range from -3.4 days/year to 6.1 

days/year with a median value of 0.6 days/year. 

The results of the second period are similar to those of the first period, with a more even distribution of 

positive and negative trends. The percentage of positive trends being 49.4 % and the percentage of 

negative trends being 46.4 %. The absolute values of the trends have become smaller, ranging from -2.7 

days/year to 3.3 days/year with a median value of 0.0 days/year. 

The results of the third period are significant different from the two preceding periods. The entire study 

area shows mostly negative trends for the third period/ The percentage of positive trends being 11.9 % 

and the percentage of negative trends being 86.0 %. In addition to this, the absolute values have not 

become smaller. The trends range from -2.6 days/year to 3.5 days/year with a median value of -0.6 

days/year.  

The results of the fourth period are similar to those of the third period, showing an even higher 

percentage of negative trends. The percentage of positive trends being 7.7 % and the percentage of 

negative trends being 91.0 %. The absolute values of the trends have become slightly smaller. The trends 

range from -1.7 days/year to 2.8 days/year with a median value of -0.6 days/year. 

Finally, the results of the fifth period are similar to those of the two preceding periods. Showing mostly 

negative trends, the percentage of positive trends being 8.9 % and the percentage of negative trends 

being 89.8 %. The absolute values of the trends have become slightly smaller, ranging from -1.4 

days/year to 2.0 days/year. 

When comparing the results across all periods there are significant differences between the results and 

a coherent pattern can be found. The first period shows mostly positive trends. When moving further 

back in time, the trends become predominantly negative for all of the gauges considered. In addition to 

this, the trend values become smaller when moving back in time. This is mainly because the temporal 

range increases, and the trends are determined in slope values (i.e. over time unit). The temporal range 

of the trends in the first period is -3.4 days/year to 6.1 days/year, which translates to -70 days to 120 

days over the entire period. For the fifth period,  the temporal range translates to -90 days to 120 days 

over the entire period. 
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5.2 AMF timing 

 

Figure 12: Trend results for the timing of the AMF  event. Scatterplot on the left shows the location of the trends and the 

violin plot on the right shows the distribution of trends over the entire study area. Blue circles represent positive trends and 

red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, 

period 5: 1960-2019. 
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These graphs show the trends in the timing of the AMF event for the different time periods in [days/year]. 

Negative trends, which are shown by the red circles, represent an ‘earlier in year’ trend. Positive trends, 

which are shown by the blue circles indicate a positive trend (forwards in time) 

Period 1 shows slightly more negative trends than positive trends ranging from  -4.4 days per year to  

6.5 days/year and a median value of -0.4 days/year. Over the entire period this translates to -90 days and 

130 days. It is difficult to see a clear spatial pattern in the trends, as they are quite evenly distributed 

across the study area. The Southern and Western parts of the study area show mostly positive trends, 

along with a small area in the North-Eastern part of the study area. The central and eastern parts of the 

study area show mostly negative trends, especially the smaller area in the east. The percentage of 

positive trends for period 1 is 39.4 %. The percentage of negative trends for period 1 is  59.2 % 

When looking at the graph of the second period, distinct differences can be seen when comparing it to 

the second.  The first major difference which is clearly visible from the plotted map is the fact that the 

entire  study area now displays dominantly positive trends, especially in the central and western part. 

Secondly, looking at the histogram it can be seen that the trends are overall smaller compared to the first 

period. The trends range from -2.4 days/year to 3.0 days per year with a median value of 0.4 days/year. 

The percentage of positive trends for period 2 is  65.3 %. The percentage of negative trends for period 

2 is  31.6 % 

From the results of the third period, it is difficult to see a clear spatial pattern in the trends, similar to the 

results of the first period. There are more negative trends than positive trends, especially in the central 

and  Eastern parts of the study area. Also more white circles are noticeable when compared to the first 

two periods, indicating more trends which are close to 0. This can also be seen from the distribution 

portrayed by the histogram. In addition to this, the values of the slope have again become smaller. The 

trends for the third period range from -2.3 days/year  to 1.9 days/year with a median value of  -0.2 

days/year.  The percentage of positive trends for period 3 is  33.4 %. The percentage of negative trends 

for period 3 is  60.5 % 

The fourth period displays mostly negative trends, except for a small area in the central part of the study 

area. When looking at the spatial distribution of trends, the fourth and the third period show a similar 

pattern, with again a more noticeable number of white circles when compared to the first two periods. 

The absolute values of the trends have again become smaller, the trends in the fourth period range from 

-1.6 days/year to 1.1 days/year. The percentage of positive trends for period 4 is  34.0 %. The percentage 

of negative trends for period 4 is  59.2 % 

The fifth period displays a clear spatial pattern. The trends are mostly positive, especially in the central 

part of the study area, or in this case the western part of Germany since the spatial coverage is mostly in 

Germany for this period. The Eastern part shows more negative trends, which is consistent with the first 

four periods for this area. The absolute values have again become smaller, now ranging from -0.8 

days/year to 0.9 days/year. The percentage of positive trends for period 5 is  59.3 %. The percentage of 

negative trends for period 5 is  36.0 % 
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Figure 13: Trend results for the timing of the AMF  event, using only stream gauges with record length of at least 60 years. 

Scatterplot on the left shows the location of the trends and the violin plot on the right shows the distribution of trends over the 

entire study area. Blue circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 

2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the timing of the AMF event, using only the gauges with a record length 

> 60 years. These graphs are meant to the show the impact of the selected temporal range on a trend 

analysis. 

The results of the first period show mostly negative trends, both the histogram and map plot. The 

percentage of positive trends for period is 30.2 % and the percentage of negative trends being 68.9 %. 

The trends range from -4.0 days/year to 5.1 days/year with a median value of -0.8 days/year. 

The results of the second period differ significantly from those of the first period, with the trends being 

more evenly distributed, even having slightly more positive trends. The percentage of positive trends 

for period 2 is  57.4 % with the percentage of negative trends being 38.3 %. The absolute trend values 

have become smaller. The trends range from -2.0 days/year to 3.0 days/year with a median value of 0.2 

days/year. 

The results of the third period then show again more negative trends over the stream gauges. The 

percentage of positive trends being 33.2 % and the percentage of negative trends being 59.6 %. The 

absolute values of the trends have decreased, but only for the positive trends. The trends range from -

2.3 days/year to 1.9 days/year with a median value of -0.1 days/year. 

The results of the fourth period are in line with those of the third period, again showing mostly negative 

trends. The percentage of positive trends being 37.3 % and the percentage of negative trends being 55.8 

%. The absolute values of the trends has become smaller, trends range from -1.6 days/year to 1.1 

days/year with a median value of  -0.1 days/year. 

The results of the fifth period show mostly positive trends over the gauges, with the percentage of 

positive trends being 59.3 % and the percentage of negative trends being 36.0 %. The absolute values 

of the trends has become slightly smaller compared to the fourth period. The trends range from -0.8 

days/year to 0.9 days/year with a median value of 0.1 days/year. 

Looking at the results across all periods, there are significant differences between the results but a 

coherent pattern in these differences is not found. Three periods are found with mostly negative trends, 

being period 1,3 and 4. Two periods are found with mostly positive trends, being period 2 and 4. One 

pattern can be found is the fact that the absolute values of the trends become smaller over each period. 

This is mainly because the temporal range increases, and the trends are determined in slope values (i.e. 

over time unit). The temporal range of the trends is from -4 days/year to 5 days/year, which translates 

to -80 days to 100 days over the entire period. For the fifth period the temporal range translates to -60 

days to 60 days. 
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5.3 AmF7 magnitude 

 

Figure 14: Trend results for the timing of the AmF7 magnitude. Scatterplot on the left shows the location of the trends and the 

violin plot on the right shows the distribution of trends over the entire study area. Blue circles represent positive trends and 

red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, 

period 5: 1960-2019. 
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These graphs show the trends in the magnitude of the AmF7 event for the different time periods in 

absolute values [mm/year]. Negative trends, which are shown by the red circles, represent decreasing 

magnitude. Positive trends, which are shown by the blue circles, represent increasing magnitudes.  

The results of the first period show a clear spatial pattern across the entire study area. Nearly of all the 

trends are negative, with the percentage of significant positive trends being 9.4 % and the percentage of 

negative trends being 90.5 %. The trends range from -0.34 mm/year to 0.19 mm/year, with a median 

value of -0.03 mm/year. From the violin plot, it is seen that the vast majority of the trends is relatively 

close to the median value with q1 = -0.04 mm/year and q3 = -0.01 mm/year. Indicating that 50% of all 

trends are within this range. These values are significantly smaller than the largest outliers. 

The results of the second period show a more even distribution compared to the first period, with the 

percentage of positive trends being 36.7 % and the percentage of negative trends being 62.2 %. The 

western part of the study area shows mostly positive trends, along with a small cluster of stream gauges 

in the north/eastern part of the study area. But most of the area is dominated by negative trends. The 

absolute values of the trends have become smaller compared to the trends of the first period. The trends 

range from -0.25 mm/year to 0.15 mm/year with a median value of -0.00 mm/year. From the violin plot 

it becomes visible that the distribution of the trends has also become more concentrated. The trends are 

now closer to the median value with q1 = 0.01 mm/year and q3 = 0.00 mm/year. 

The results of the third period clearly shows a pattern dominated by negative trends similar to those of  

the first period. The percentage of positive trends being 11.9 % and the percentage of negative trends 

being 88.1 %. The absolute values of the trends have stayed the same with the trends ranging from -0.39 

mm/year to 0.08 mm/year with a median value of -0.01 mm/year. The shape of the violin plot is also 

very similar to that of the second period but shifted to the left (i.e. towards more negative trends), with 

q1 = -0.020mm / year and q3 = -0.00 mm/year. 

The results of the fourth period show a bit more positive trends, but the entire study area is still 

dominated by negative trends. The percentage of positive trends being 27.0 % and the percentage of 

negative trends being 72.6 %. The absolute values of the trends have become significantly smaller, 

ranging from -0.08 mm/year to 0.06 mm/year with a median value of -0.00 mm/year. From the shape of 

the violin plot, it is clearly visible that the distribution of the trends is relatively more dispersed than for 

the preceding periods, with q1 = -0.01 mm/year and q3 = 0.00 mm/year. 

The results of the fifth period are similar to those of the fourth period, with the map plot not showing 

major differences relative to the fourth period. The percentage of positive trends is 31.4 % and the 

percentage of negative trends is 68.3 %. This small shift in the distribution is mainly due to the fact that 

more catchments with negative trends than positive trends were eliminated when moving from period 4 

to period 5. The absolute values of the trends have decreased slightly, ranging from 0.05 mm/year to 

0.03 mm/year with a median value of -0.00 mm/year. The shape of the violin plot shows that the 

distribution of the trends has become slightly more dispersed compared to the distribution of the 

preceding periods, with q1 = -0.01 mm/year and q3 = 0.00 mm/year. 
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Figure 15: Trend results for the AmF7 magnitude, using only stream gauges with record length of at least 60 years. Scatterplot 

on the left shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study 

area. Blue circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-

2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the magnitude  of the AmF7 event, using only the gauges which are 

available for the fifth period. These graphs are meant to the show the impact of the selected temporal 

range on a trend analysis. 

The results of the first period show mostly negative trends for the entire study area. The percentage of 

positive trends is 8.9% and the percentage of negative trends is 91.1 %. The trends range from -0.21 

mm/year to 0.19 mm/year with a median value of -0.03 mm/year.  The violin plot shows that the 

distribution of the trends is quite concentrated, with q1 = -0.04 mm/year and q3 =  = -0.01 mm/year. 

The results of the second period show a more even distribution of the trends, both in the map plot and 

the violin plot. However, most of the trends are still negative, the percentage of positive trends being 

34.0 % and the percentage of negative trends being 65.5 %. The absolute values of the trends have 

become smaller compared to the first period, ranging from -0.10 mm/year to 0.15 mm/year with a 

median value of -0.005 mm/year. The distribution of the trends is slightly more concentrated than for 

the first period, with q1 = -0.016 mm/year and q3 = 0.003 mm/year. 

The results of the third period are more similar to those of the first period than to those of the second 

period. The results show mostly negative trends, with the percentage of positive trends being 11.9 % 

and the percentage of negative trends being 88.1 %. The absolute values of the trends have become 

slightly smaller compared to the second period, ranging from -0.09 mm/year to 0.08 mm/year with a 

median value of -0.01 mm/year. The violin plot shows a more dispersed distribution of trends compared 

to the previous periods, with q1 = -0.02 and q3 = -0.01 mm/year.  

The results of the fourth period show slightly more positive trends when compared to the third period. 

The percentage of positive trends is 26.2 % and the percentage of negative trends is 73.4 %. The absolute 

values have become significantly smaller when compared to the preceding periods. Trends range from 

-0.06 mm/year to 0.05 mm/year with a median value of -0.00 mm/year. The relative spread of the 

distribution has remained similar to that of the third period, as shown by the shape of the violin plot. q1 

= 0.01 mm/year and q3 = 0.00 mm/year. 

The results of the fifth period again show an increase in positive trends when compared to the previous 

period. The percentage of positive trends is 31.4 % and the percentage of negative trends is 68.2 %. The 

absolute values of the trends have decreased very slightly, ranging from -0.05 mm/year to 0.03 mm/year, 

with a median value of -0.0 mm/year. The distribution of the trends, as shown by the violin plot, has 

remained has also remained similar, with q1 = -0.01 mm/year and q3 = 0.00 mm/year. 
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5.4 ADF magnitude 

 

Figure 16:  Trend results for the timing of the ADF magnitude. Scatterplot on the left shows the location of the trends and the 

violin plot on the right shows the distribution of trends over the entire study area. Blue circles represent positive trends and 

red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, 

period 5: 1960-2019. 
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These graphs show the trends in the magnitude of the ADF for the different time periods in absolute 

values [mm/year]. Negative trends, which are shown by the red circles, represent decreasing magnitude. 

Positive trends, which are shown by the blue circles, represent increasing magnitudes. 

The results of the first period show a very clear pattern in the trends across the entire study area. Almost 

the entire study area shows mostly negative trends, with the exception being the southwestern part of 

the study area, where there are slightly more positive trends. The percentage of positive trends is 6.9 % 

and the percentage of negative trends is 93.1 % Trends range from -0.28 mm/year to 0.02 mm/year with 

a median value of -0.01 mm/year. This shows, along with the shape of the violin plot that the largest 

negative outlier is very large compared to the rest of the trend values. When looking at the violin plot, 

it can be seen that the distribution of trends is actually quite concentrated, with q1 =   -0.02 mm/year 

and q3 = -0.01 mm/year. 

The results of the second period shows a large increase in stream gauges displaying a positive trend, 

with the percentage of positive trends being 30.6 % and the percentage of negative trends being 69.4 %. 

This increase is visible across the entire southern part of the study area. The trends range from -0.011 

mm/year to 0.09 mm/year, with a median value of -0.01 mm/year.  The violin plot shows that the 

distribution of the trends is a bit more dispersed compared to the first period, with q1 =  -0.01 mm/year 

and q3 = 0.00 mm/year. 

The results of the third period are similar to those of the first period rather than to the second period. 

The entire study are shows mostly negative trends with almost no positive trends to be found. The 

percentage of positive trends is 3.4 % and the percentage of negative trends is 96.6 %. The absolute 

values of the trends have become slightly smaller, ranging from -0.13 mm/year to 0.04 mm/year, with a 

median value -0.01 mm/year. The relative spread of the trends is similar to that of the second period but 

shifted more towards the negative trends. With q1 = 0.01 mm/year and q3 =  -0.00 mm/year. 

The results of the fourth period show slightly more positive trends compared to the third period. The 

percentage of positive trends is 22.7 % and the percentage of negative trends is 77.3 %. The absolute 

values of the trends have become significantly smaller compared to the third period, ranging from -0.03 

mm/year to 0.03 mm/year, with a median value of -0.00 mm/year. The violin plot shows that the trends 

have become relatively more dispersed, with q1 = 0.00 mm/year and q3 = 0.00 mm/year. 

The results of the fifth period a similar pattern to the fourth period. The percentage of positive trends is 

22.9 % and the percentage of negative trends is 77.1 %. The absolute values of the trends have become 

smaller compared to the previous periods, ranging from -0.01 mm/year to 0.01 mm/year, with a median 

value of -0.002 mm/year. The violin plot shows that the trends have become relatively more dispersed, 

with q1 = 0.003 mm/year and q3 = 0.003 mm/year. 
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Figure 17:  Trend results for the ADF magnitude, using only stream gauges with record length of at least 60 years. Scatterplot 

on the left shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study 

area. Blue circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-

2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the magnitude  of the ADF, using only the gauges which are available 

for the fifth period. These graphs are meant to the show the impact of the selected temporal range on a 

trend analysis. 

The results of the first period show mostly negative trends over the entire study area. The percentage of 

positive trends is 3.0 % and the percentage of negative trends is 97.0 %. The violin plot shows that the 

distribution of the trends is close together. With the exception to this being the large negative outlier, 

trends range from -0.03 mm/year to 0.01 mm/year with a median value of -0.01 mm/year. 

The results of the second period show a large increase in stream gauges showing a positive trend. The 

percentage of positive trends is 28.1 % and the percentage of negative trends is 71.9 %. So the entire 

study area is still dominated by negative trends, with the southern parts showing more positive trends 

compared to the first period. The absolute values of the trends has also become smaller and the shape of 

the violin plot shows a more dispersed distribution, which is mainly due to the elimination of the large 

negative outlier of period 1. Trends range from -0.03 mm/year to 0.02 mm/year with a median value of 

-0.02 mm/year. 

The results of the third period are similar to those of the first period, showing almost exclusively negative 

trends. The percentage of positive trends is 3.4 % and the percentage of negative trends is 96.6 %. An 

interesting thing which is visible from the violin plot is the fact that there is once again a large negative 

outlier present in the results. The shape of the violin plot therefore shows a more concentrated 

distribution. However, the absolute values of the trends have also become larger. Trends range from -

0.011 mm/year to 0.01 mm/year, with a median value of 0.01 mm/year. 

The results of the fourth period showcase a slight increase in the positive trends across the southern part 

of the study area. The percentage of positive trends is 17.6 % and the percentage of negative trends is 

82.4 %. This shows that there is also an increase in significant negative trends. The absolute values of 

the trends have become smaller compared to the previous periods, ranging from -0.03 mm/year to 0.01 

mm/year, with a median value of -0.00 mm/year. 

The results of the fifth period shows a slight increase in positive trends compared to the previous period, 

along with a small decrease in negative trends. The percentage of positive trends is 22.9 % and the 

percentage of negative trends is 77.1 %. The shape of the violin plot shows the most dispersed 

distribution of the trends, but this can mainly be attributed to the smaller absolute values of the trends. 

Trends range from -0.01 mm/year to 0.01 mm/year, with a median value of -0.002 mm/year. 
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5.5 AMF magnitude 

 

Figure 18: Trend results for the AMF magnitude. Scatterplot on the left shows the location of the trends and the violin plot on 

the right shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles 

represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 

1960-2019. 
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These graphs show the trends in the magnitude of the AMF event for the different time periods in 

absolute values [mm/year]. Negative trends, which are shown by the red circles, represent decreasing 

magnitude. Positive trends, which are shown by the blue circles, represent increasing magnitudes.  

The results of the first period show mostly negative trends, with some clusters of positive trends in the 

southern parts of the study area. The percentage of positive trends is 18.8 % and the percentage of 

negative trends is 80.7 %. The shape of the violin plot shows a well concentrated distribution of the 

trends, with a large negative outlier. The trends range from -1.83 mm/year to 0.32 mm/year, with a 

median value of -0.059 mm/year. 

The results of the second period are almost identical to those of the first period when looking at the map 

and violin plot. The percentage of positive trends is 17.9 % and the percentage of negative trends is 81.6 

%, again confirming the similarity between the results of the two period. Interestingly enough, both the 

positive and the negative outlier which are already visible in the results of the first period has become 

larger for the second period. Trends range from -2.07 mm/year to 0.44 mm/year, with a median value of 

0.057 mm/year. The shape of the violin plot is also practically identical to the first period. 

The results of the third period do show significant differences when compared to the previous periods. 

The trends have now shifted further into the negative direction, eliminating the positive clusters which 

are visible in the results of the previous periods. The percentage of positive trends is 9.5 % and the 

percentage of negative trends is 90.1 %. The absolute values of the trends have become smaller, ranging 

from -0.080 mm/year to 0.16 mm/year, with a median value of -0.054 mm/year. 

The results of the fourth period are vastly different from those of the previous periods. The distribution 

between positive and negative trends is now nearly even, with the percentage of positive trends being 

48.1 % and the percentage of negative trends being 50.8 %. This even distribution is also shown by the 

shape of the violin plot. The violin plot also shows a very large outlier in the positive direction. The 

absolute values for the trends have generally become smaller, ranging from -0.25 mm/year to 1.68 

mm/year, with a median value of -0.000 mm/year. 

The results of the fifth period are similar to those of the fourth period, with a slight increase in positive 

trends and a decrease in negative trends. The percentage of positive trends being 55.5 % and the 

percentage of negative trends being 43.6 %. These changes are mainly due to the elimination of 

catchments from period 4 or 5. Whether these changes hold for the same catchments is further analysed 

in the next section. The absolute values of the trends have become smaller, with the exception being the 

large outlier in the positive direction which is also visible in period 4. Trends range from -0.11 mm/year 

to 1.58 mm/year. 
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Figure 19: Trend results for the AMF magnitude, using only stream gauges with record length of at least 60 years. Scatterplot 

on the left shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study 

area. Blue circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-

2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the magnitude of the AMF event, using only the gauges which are 

available for the fifth period. These graphs are meant to the show the impact of the selected temporal 

range on a trend analysis. 

The results of the first period show mostly negative trends, with a small cluster of positive trends in the 

southern part of the study area. The percentage of positive trends is 15.3 %  and the percentage of 

negative trends is 84.3 %. The shape of the violin plot shows that the trends are quite dispersed, with 

the exception being the large outlier in the negative direction. The trends range from   -1.09 mm/year to 

0.31 mm/year, with a median value of -0.07 mm/year. 

As in the previous section, the results of the second are very similar to those of the first period, however 

some more differences can be seen with the smaller number of stream gauges considered. Negative 

trends have become slightly more dominant over the entire study area, with the percentage of positive 

trends being 10.6 % and the percentage of negative trends being 86.8 %. The shape of the violin plot 

shows that the absolute values of the negative trends have become significantly larger and have 

decreased slightly for the positive trends, further confirming the shift towards negative trends. The trends 

range from -2.07 mm/year to 0.15 mm/year, with a median value of -0.06 mm/year. 

The results of the third period are similar compared to the previous periods, the major difference is the 

decrease in significant trends, both in the negative and positive direction. The percentage of positive 

trends is 10.6 % and the percentage of negative trends is 88.5 %. Both the map and the violin plot seem 

to display more negative trends, but these trends have overall become less significant. In addition to this, 

the absolute values of the trends have decreased in the negative direction whilst remaining the same in 

the positive direction. Trends range from -0.46 mm/year to 0.16 mm/year, with a median value of -0.05 

mm/year. 

The results of the fourth period are, as also described in the previous section, vastly different from those 

of the previous periods. While the majority of the trends are still negative there is a significant increase 

in positive trends, as shown by the map and violin plot. The percentage of positive trends is 41.6 %  and 

the percentage of negative trends is 57.5 %. This also indicates a decrease in the significance of all the 

trends. The violin plot shows a large outlier in the positive direction, while the absolute values of trends 

in the negative direction have decreased slightly compared to those in period 3. The trends range from -

0.21 mm/year to 1.67 mm/year, with a median value of -0.003 mm/year. 

The results of the fifth period are similar to those of the fourth period, but now the majority of the trends 

is positive. The percentage of positive trends is 55.5 % and the percentage of negative trends is 43.6 %. 

The violin plot is near identical to the one of the fourth period, showing a slight decrease in the absolute 

values of the trends. Trends range from -0.11 mm/year to 1.58 mm, with a median value of 0.00 mm/year. 
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5.6 Low flow pulse count 

 

Figure 20: Trend results for the LFPC. Scatterplot on the left shows the location of the trends and the violin plot on the right 

shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles represent 

negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These figures show the results from the trend analysis on the LFPC signature. Trends are originally 

determined in counts per year. In order to make these trends less abstract, they are plotted as the percent 

change in mean LFPC per year. So for the first period, the mean of the LFPC signature over 20 years is 

taken and the trends are plotted relative to this value. Negative trends, which are shown by the red 

circles, represent decreasing counts (i.e. less occurrences). Positive trends, which are shown by the blue 

circles, represent increasing counts (i.e. more occurrences). White circles represent stream gauges for 

which the analysis found a trend of zero. 

The results of the first period show that there mostly positive trends or no trends over the entire study 

area. The eastern and northern parts of the study area display dominantly positive trends and the eastern 

and southern parts display mostly no trends. The percentage of positive trends is 46.4 % and the 

percentage of negative trends is 23.1 %. The shape of the violin plot supports the fact that there exists 

mostly positive trends or no trends. Trends range from -9.12 %/year to 13.16% per year with a median 

value of 0.00 %/year. These ‘relative’ trend ranges translate to roughly -180 % and 260% of the mean 

value over 20 years. This seems impossible but it is not. This is further elaborated upon in the discussion. 

The violin plot also shows the large amount of stream gauges which trend is determined at exactly zero. 

The results from the second period show a large increase in negative trends compared to the first period. 

The entire study area is now dominated by negative and no trends, with a large decrease in positive 

trends compared to the first period. The percentage of positive trends is 27.4 % and the percentage of 

negative trends is 33.9 %. This indicates a higher percentage of no trends, which is also visible from the 

map and violin plot. The relative trend values have become smaller, ranging from -8.26 %/year to 8.77 

%/year with a median value of 0.00 %/year. 

The results of the third period show a clear pattern across the entire study area. The entire area is 

dominated by positive trends and compared to the previous periods, a lot of the white circles have 

disappeared. The percentage of positive trends is 67.5 % and the percentage of negative trends is 7.0 %. 

The violin plot also demonstrates the clear dominance of the positive trends. The relative trend values 

have become slightly smaller, ranging from -7.22 %/year to 5.71 %/year with a median value of 0.97 

%/year. 

The results of the fourth period show a slight decrease in the relative number of positive trends, shifting 

more towards no trends. Whether this is due to the elimination of stream gauges that display a positive 

trend from period 3 is investigated in the next section. The percentage of positive trends is 46.7 %  and 

the percentage of negative trends is 12.9 %. The relative values of the trends have become smaller in 

both directions, ranging from -5.36 %/year to 4.40 %/year with a median value of 0.00 %/year. 

The results of the fifth period are similar to those of the fourth period, showing mostly no trends and 

positive trends across all stream gauges. The percentage of positive trends is 61.4 % and the percentage 

of negative trends is 13.6 %. The relative values of the trends have become smaller compared to the 

previous periods, ranging from -3.32 %/year to 3.28 %/year with a median value of 0.44 %/year. 
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Figure 21: Trend results for the LFPC, using only stream gauges with record length of at least 60 years. Scatterplot on the left 

shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study area. Blue 

circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 

3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the LFPC, using only the gauges which are available for the fifth period. 

These graphs are meant to the show the impact of the selected temporal range on the trend analysis. 

The results of the first period clearly show that the trends are mostly positive across all of the gauges. 

The percentage of positive trends is 52.3 % and the percentage of negative trends is 19.1 %. The shape 

of the violin plot also shows that a large part of the stream gauges display no trend. Trends range from 

-9.12 %/year to 13.16 %/year, with a median value of 0.55 %/year. 

The results of the second period show a clear shift in the distribution in the trends. There is no dominant 

pattern across the stream gauges, which is also shown by the shape of the violin plot. The percentage of 

positive trends is 28.9 % and the percentage of negative trends is 30.2 %. This indicates that the majority 

of trends is exactly zero. The relative trend values have become smaller, ranging from -8.26 %/year to 

8.77 %/year with a median value of 0.00 %/year. 

The results of the trend period show the most pronounced pattern across all stream gauges. The majority 

of stream gauges show positive trends, with a few stations in between displaying no trend. The 

percentage of positive trends 67.7 % and the percentage of negative trends is 6.8 %. The shape of the 

violin plot also shows this distribution, along with the fact that the relative values of trends have stayed 

similar. The outliers have decreased slightly most of the values have a similar order of magnitude 

compared to the previous period. The trends range from -7.22 %/year to 5.71 %/year with a median 

value of 0.93 %/year. 

The results of the fourth period show an increase in gauges displaying no trends and  a decrease in 

positive trends. The percentage of positive trends is 46.8 % and the percentage of negative trends is 13.3 

%. The violin plot shows that the number of gauges displaying positive trends is higher than the number 

of gauges displaying negative trends, which is in line with the results of the previous period. The relative 

values of the trends have decreased slightly compared to those of the third period. The trends range from 

-5.36 %/year to 4.40 %/year with a median value of 0.00 %/year. 

The results of the fifth period are similar to those of the third period, both the map and violin plot. The 

trends across all gauges are mostly positive, with the percentage of positive trends being 61.4 % and the 

percentage of negative trends being 13.6 %. This indicates that the number of stations which show no 

trend has decreased compared to the previous period. The relative trends have become smaller, ranging 

from -3.32 %/year to 3.28 %/year. 
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5.7 High flow pulse count 

 

Figure 22: Trend results for the HFPC. Scatterplot on the left shows the location of the trends and the violin plot on the right 

shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles represent 

negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These figures show the results from the trend analysis on the HFPC signature. Trends are originally 

determined in counts per year. In order to make these trends less abstract, they are plotted as the percent 

change in mean HFPC per year. So for the first period, the mean of the HFPC signature over 20 years is 

taken and the trends are plotted relative to this value. Negative trends, which are shown by the red 

circles, represent decreasing counts (i.e. less occurrences). Positive trends, which are shown by the blue 

circles, represent increasing counts (i.e. more occurrences). White circles represent stream gauges for 

which the analysis found a trend of zero. 

The results of the first period show clear spatial patterns in the trends for the HFPC. Across the entire 

study are there are mostly negative trends. This is mainly visible in the more central parts of the study 

area. The southwestern and eastern parts of the study area also show a large amount of stream gauges 

with no trend. The percentage of positive trends is 11.7 % and the percentage of negative trends is 55.8 

%. The  trends are distributed quite closely together, with the exception of one large outlier in the 

negative direction. Trends range from -13.89 %/year to 5.01 %/year with a median value of -0.60 %/year. 

The results of the second period are almost opposite compared to the results of the first period. Across 

the entire study area, there are now mostly gauges with no trends or positive trends. The positive trends 

dominate in the central parts of the study area, with the outer parts showing mostly gauges with no trend. 

The percentage of positive trends is 46.0 % and the percentage of negative trends is 12.3 %. The shift in 

distribution is also clearly visible when comparing the shape of the violin plots. The violin plot of the 

second period looks like a mirrored version of the violin plot of the first period. The relative trend values 

have become significantly smaller, ranging from -5.97 %/year to 3.99 %/year with a median value of 

0.00 %/year. 

The results of the third period are less pronounced compared to those of the previous periods, but 

similarity can be seen with the first period rather than the second period. Most of the stream gauges 

display no trend, with negative trends appearing the most after that. The percentage of positive trends is 

12.4 % and the percentage of negative trends is 38.5 %. The relative trend values have become slightly 

smaller, ranging from -4.97 %/year to 2.42 %/year with a median value of 0.00 %/year. 

The results of the fourth period are, similar to the third period, less pronounced than the results of the 

first two periods. For this period, the similarity is found with the results of the second period. The 

percentage of positive trends is 34.0 % and the percentage of negative trends is 15.2 %. Again showing 

that most gauges show no trend in this period. The relative trend values have become slightly smaller in 

the negative direction and slightly larger in the positive direction. Trends range from -3.01 %/year to 

2.95 %/year, with a median value of 0.00 %/year. 

The results of the fifth period show mostly stream gauges with no trend, along with some positive trends. 

The percentage of positive trends is 35.2 % and the percentage of negative trends is 13.1 %. The shape 

of the violin plot is similar to those of period 2 and 4, with smaller relative trend values. Trends range 

from -0.83 %/year to 2.35 %/year with a median value of 0.00 %/year. 
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Figure 23: Trend results for the HFPC, using only stream gauges with record length of at least 60 years. Scatterplot on the left 

shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study area. Blue 

circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 

3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the HFPC, using only the gauges which are available for the fifth period. 

These graphs are meant to the show the impact of the selected temporal range on the trend analysis. 

Looking at the results of the first period, it is visible that most of these selected gauges show negative 

trends, with a significant number of gauges also displaying no trend. The percentage of positive trends 

is 13.6 % and the percentage of negative trends is 52.3 %. This pattern is similar to the pattern described 

in the previous section, containing all the stream gauges. The relative trends for the selected gauges 

range from -5.49 %/year to 5.01 %/year with a median value of -0.52 %/year. 

A shift in pattern is seen similar to the one described in the previous section. For the second period, the 

gauges display mostly positive trends or no trend. The percentage of positive trends is 34.5 % and the 

percentage of negative trends is 15.7 %. This more even distribution is also shown by the shape of the 

violin plot. The relative trend values have decreased significantly for both directions. Trends range from 

-2.14 %/year to 2.37 %/year with a median value of 0.00 %/year. 

The majority of positive trends which are visible in the results of the second period have disappeared in 

the results of the third period, showing mostly negative trends or no trend. The percentage of positive 

trends is 11.5 % and the percentage of negative trends is 42.1 %. This distribution is also shown by the 

violin plot, the shape of which is similar to the one of the first period. The relative trend values have 

stayed practically the same order of magnitude. Trends range from -2.47 %/year to 1.98 %/year with a 

median value of 0.00 %/year. 

The results of the fourth period are more similar to the results of the second period rather than the third 

period. Most of the stream gauges show positive trends or no trend. The percentage of positive trends is 

37.8 % and the percentage of negative trends is 15.0 %. For these selected gauges these are the first 

results that show a dominantly positive trend pattern. The relative trend values have become smaller in 

the negative direction and larger in the positive direction. Trends range from -1.41 %/year to 2.72 %/year 

with a median value of 0.00 %/year. 

The results of the fifth period show an increase in stream gauges with no trend and a decrease in stream 

gauges with trends, in both directions. The percentage of positive trends is 35.2 % and the percentage 

of negative trends is 13.1 %. The shape of the violin plot is similar to the one of the fourth period, with 

a higher concentration of gauges at exactly zero, further supporting the shift towards no trend. The 

relative trend values have become smaller in both directions. The trends range from -0.83 %/year to 2.35 

%/year with a median value of 0.00 %/year. 
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5.8 Low flow pulse duration 

 

Figure 24: Trend results for the LFPD. Scatterplot on the left shows the location of the trends and the violin plot on the right 

shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles represent 

negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These figures show the results from the trend analysis on the LFPD signature. Trends are originally 

determined in days per year. In order to make these trends less abstract, they are plotted as the percent 

change in mean LFPD per year. So for the first period, the mean of the LFPD signature over 20 years is 

taken and the trends are plotted relative to this value. Negative trends, which are shown by the red 

circles, represent decreasing duration (i.e. shorter). Positive trends, which are shown by the blue circles, 

represent increasing duration (i.e. longer). White circles represent stream gauges for which the analysis 

found a trend of zero.  

The results of the first period show almost exclusively positive trends across the entire study area, with 

a few gauges showing no trend. The percentage of positive trends is 93.9 % and the percentage of 

negative trends is 3.7 %. The shape of the violin plot further supports this finding. Apart from a large 

outlier on the negative side, almost no gauges show negative trends. The trends range from –11.36 

%/year  to 12.66 %/year with a median value of 3.45 %/year. 

The results from the second period still show a majority of positive trends across the entire study area. 

However when looking at the map and violin plot, it becomes visible that there are significantly more 

gauges showing negative trends compared to the first period. The percentage of positive trends is 68.2 

% and the percentage of negative trends is 27.8 %/year. The relative trend values have also become 

smaller in both directions. Trends range from -8.53 %/year to 7.83 %/year with a median value of 0.65 

%/year. 

The results of the third period again show a higher portion of positive trends compared to the second 

period. The percentage of positive trends is 86.9 % and the percentage of negative trends is 2.0 %. When 

examining both the map and violin plot, it becomes visible that, in relation to their respective ranges, 

the trends are smaller compared to those of the first period. The range of the relative trends has also 

become smaller. Trends range from -6.03 %/year to 5.25 %/year with a median value of 1.19 %/year. 

The results of the fourth period show a shift towards smaller positive trends along with an increase in 

gauges showing negative trends or no trend. Whether this shift can be attributed to the elimination of 

gauges from period 3 to period 4 is difficult to say. This will be investigated in the next section. The 

percentage of positive trends is 64.4 % and the percentage of negative trends is 28.8 %. This shift comes 

with a general decrease in the range of the trend values, as well as a decrease of the positive trend values 

relative to this range. The trends range from -4.45 %/year to 4.05 %/year with a median value of 0.37 

%/year. 

The results of the fifth period show an almost even distribution between gauges showing positive trends, 

negative trends or no trend. This is most likely attributed to the elimination of gauges from period 4 to 

period 5 but this is further analysed in the next section. The percentage of positive trends is 55.5 % and 

the percentage of negative trends is 35.6 %. The range of the relative trend values has decreased in both 

the negative and positive direction. Trends range from -3.09 %/year to 2.56 %/year with a median value 

of 0.14 %/year. 
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Figure 25: Trend results for the LFPD, using only stream gauges with record length of at least 60 years. Scatterplot on the left 

shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study area. Blue 

circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 

3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These graphs show the trends in the LFPD signature, using only the gauges which are available for the 

fifth period. These graphs are meant to the show the impact of the selected temporal range on the trend 

analysis. 

The results of the first period show almost exclusively positive trends across all the selected gauges. The 

percentage of positive trends is 94.0 % and the percentage of negative trends is 5.1 %. This indicates 

that a large number of gauges have positive trends with a p-value below α = 0.10. Except for one large 

outlier on the negative side, the trend values are concentrated close to the median value. Trends range 

from -11.36 %/year to 12.66 %/year with a median value of 3.04 %/year. 

The results of the second period show an increase in gauges showing negative trends and no trends. In 

addition to this, there is a decrease in both the number of stations showing a positive trend and in the 

actual magnitude of this trend. The percentage of positive trends is 66.4 % and the percentage of negative 

trends is 29.4 %. As mentioned, the range of the relative trend values has become smaller in both 

directions. Trends range from -8.53 %/year to 7.83 %/year with a median value of 0.55 %/year. 

The results of the third period are more similar to the results of the first period rather than the results of 

the second period. This becomes visible from both the map and the violin plot. The percentage of 

positive trends is 83.0 % and the percentage of negative trends is 13.6 %. The range of the relative trends 

has again become smaller in both directions. Trends range from -6.03 %/year to 5.25 %/year with a 

median value of 1.05 %/year. 

The results of the fourth period have become significantly less pronounced than the results of the third 

period. There is both a more even distribution between positive and negative trends, as well as a decrease 

in the range of the relative trend values. The percentage of positive trends is 60.9 % and the percentage 

of negative trends is 30.9 %. The trends range from -4.45 %/year to 3.05 %/year with a median value of 

0.30 %/year. 

The results of the fifth period are similar to those of the fourth period, becoming even less pronounced 

and more evenly distributed between positive and negative trends. The percentage of positive trends is 

55.5 % and the percentage of negative trends is 35.6 %. Trends range from -3.09 %/year to 2.56 %/year 

with a median value of 0.14 %/year. 
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5.9 High flow pulse duration 

 

Figure 26: Trend results for the HFPD. Scatterplot on the left shows the location of the trends and the violin plot on the right 

shows the distribution of trends over the entire study area. Blue circles represent positive trends and red circles represent 

negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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These figures show the results from the trend analysis on the HFPD signature. Trends are originally 

determined in days per year. In order to make these trends less abstract, they are plotted as the percent 

change in mean HFPD per year. So for the first period, the mean of the HFPD signature over 20 years 

is taken and the trends are plotted relative to this value. Negative trends, which are shown by the red 

circles, represent decreasing duration (i.e. shorter). Positive trends, which are shown by the blue circles, 

represent increasing duration (i.e. longer). White circles represent stream gauges for which the analysis 

found a trend of zero.  

The results of the first period show mostly negative trends across the entire study area. There are some 

clusters of positive trends in the more southern and western parts of the study area. The percentage of 

positive trends is 26.7 % and the percentage of negative trends is 72.2 %. The violin plot show that the 

trend distribution is quite dispersed, along with one large outlier on the negative direction. The trends 

range from -12.00 %/year to 4.37 %/year with a median value of -0.80 %/year. 

The results of the second pattern show nearly the same pattern as seen in the first period but less 

pronounced. The percentage of positive trends is 32.2 % and the percentage of negative trends is 65.7 

%. The range of the relative trend values has decreased in the negative direction and increased in the 

positive direction.  Trends range from -3.86 %/year to 7.55 %/year with a median value of -0.33 %/year. 

The results of the third period show an increase in the portion of negative trends and a decrease in the 

range of the relative trend values compared to the previous periods. The percentage of positive trends is 

13.7 % and the percentage of negative trends is 85.6 %. The trends range from -3.38 %/year to 3.91 

%/year with a median value -0.56 %/year.  

The results of the fourth period are significantly different than the results of the previous periods. The 

distribution, while still dominated by negative trends is much more even and less pronounced. The 

percentage of positive trends is 37.4 % and the percentage of negative trends is 60.5 %. The range of 

the relative trend values has decreased slightly in both directions. The trends range from -2.27 %/year 

to 3.64 %/year with a median value of -0.12 %/year. 

The results of the fifth period are similar to those of the fourth period. Most stream gauges show a 

negative trend, but the distribution is much more even than for the first three periods. From the map plot 

it becomes visible that there is an increase in stream gauges that show no trend. The percentage of 

positive trends is 27.1% and the percentage of negative trends is 72.0 %. The range of the relative trend 

values has decreased significantly. Trends range from -0.87 %/year to 0.97 %/year with a median value 

of -0.25 %/year. 
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Figure 27: Trend results for the LFPD, using only stream gauges with record length of at least 60 years. Scatterplot on the left 

shows the location of the trends and the violin plot on the right shows the distribution of trends over the entire study area. Blue 

circles represent positive trends and red circles represent negative trends. Period 1: 2000-2019, period 2: 1990-2019, period 

3: 1980-2019, period 4: 1970-2019, period 5: 1960-2019. 
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The results of the first period show almost exclusively negative trends across the selected stream gauges. 

The percentage of positive trends is 11.1 % and the percentage of negative trends is 88.9 %. The large 

outlier in the negative direction was not among the selected stream gauges so therefore the shape of the 

violin plot shows a more even distribution, especially in the negative direction. The trends range from -

5.97 %/year to 2.70 %/year with a median value of -1.58 %/year. 

The results of the second period show a more even distribution between negative and positive trends 

across the selected stream gauges. The percentage of positive trends is 34.5 % and the percentage of 

negative trends is 64.3 %. The range of the relative trend values has decreased slightly in both directions. 

The trends range from -2.67 %/year to 2.73 %/year with a median value of   -0.26 %/year. 

The results of the third period are again more similar to those of the first period rather than the second 

period. Showing a high percentage of negative trends across the selected stream gauges. The percentage 

of positive trends is 11.1 %  and the percentage of negative trends is 88.9 %. In both directions the range 

of the relative trend values has decreased. The trends range from -2.48 %/year to 1.08 %/year with a 

median value of -0.52 %/year. 

The results of the fourth period then is more similar to the results of the second period rather than those 

of the third period. Looking at the violin plot, a more even distribution between positive and negative 

trends is visible, while still being dominated by negative trends. The percentage of positive trends is 

30.5 % and the percentage of negative trends is 68.7 %. The range of the trends has decreased in the 

negative direction and remained almost identical in the positive direction. The trends range from -1.15 

%/year to 1.06 %/year with a median value of -0.20 %/year. 

The results of the fifth period are similar to those of the fourth period. Most stream gauges show a 

negative trend, but the distribution is much more even than for the first three periods. From the map plot 

it becomes visible that there is an increase in stream gauges that show no trend. The percentage of 

positive trends is 27.1 % and the percentage of negative trends is 72.0 %. The range of the relative trend 

values has decreased significantly. Trends range from -0.87 %/year to 0.97 %/year with a median value 

of -0.25 %/year. 
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5.10 Temporal sensitivity analysis 

 

Figure 28: Multi-temporal trend analysis for each signature. Mann-Kendall test applied and average Z-score shown for each 

possible combination of start year (x-axis) and end year (y-axis). Red representing negative trends and blue representing 

positive trends. Only gauges with at least 60 years of data are used (n = 235) 

Figure 28 shows the heatmaps that contain the average Z-scores for each possible combination of start-

and-end year. The multi-temporal trend analysis is performed on the 235 stream gauges which contain 

at least 60 years of data. This selection corresponds to the stream gauges shown in Figure 9(e), which 

are almost exclusively located in Germany. The average Z-score across all gauges is calculated and 

represented by the colour of the cell. Each cell represents the combination of the start year on the x-axis 

and the end year on the y-axis. Red cells represent negative trends and blue cells represent positive 

trends. These heatmaps are described per signature. 

The heatmap of the AmF7 timing shows a clear pattern. For nearly all combinations of start and end 

years, the average Z value is negative. The two exceptions to this being trends with a start year after 

1990 of and end year before 1990. In these clusters, the negative trends are significantly less pronounced 

and for a handful of combinations, the trends are positive.  

The heatmap of the AMF timing shows a more complex pattern compared to the AmF7 timing. Trend 

results are dependent on the choice of start year, regardless of the end year. The trend from 1999 – 2019, 

which coincided with period 1, is positive. Trends with a start year around 1990 are positive. Starting 

years between 1973 – 1985 show negative trends. Then positive trends around start year 1972 and 

negative trends around start year 1970. Trends with a start year prior to 1969 are negative. ‘Horizontal 

clusters’ are less clear but can be seen around end year 2000 (towards negative) and 2010 (towards 

positive). 
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In the AmF7 magnitude, all trends with an end year before 1990 are positive. Overall, the later the end 

year, the more negative the trend. There are two vertical clusters of positive trends around the start years 

of roughly 1962, 1972 and 1990. These positive trends all become less pronounced, and eventually 

negative as the end year becomes later. Irrespective of start year, all trends that end in 2019 are negative. 

The trends in the ADF magnitude are almost identical to the trends in the AmF7 magnitude, with the 

positive ‘vertical’ clusters being slightly larger. 

The AMF magnitude trends are different slightly different than its counterparts. A much clearer pattern 

is seen in the heatmap. All trends with a start year prior to roughly 1975 are positive and all trends with 

a start year after 1975 are all negative. Additionally, a pattern is visible for each start year. The later the 

end year (i.e. the longer the period) the more negative the trend becomes. For the starting years prior to 

1975 this means the positive trends become less pronounced and for the start years after 1975 this means 

the negative trends become more pronounced. 

Trends in LFPC, with an end year after 1990, irrespective of start year, are almost exclusively positive. 

The exception to this is trends with a start year around 1990, which display slight negative trends for 

each end year. A similar pattern is seen around start years of roughly 1972, however these combinations 

show mostly less pronounced trends in the positive direction. Trends with a start year of  2019 are almost 

all positive, with the exception at the start years around 1990. 

The trends in the HFPC show a more complex pattern than the trends in the LFPC. Almost all trends 

with  a start year before 1975 show positive trends. As the end year becomes later, and thus the periods 

become longer, the positive trends become slightly less pronounced. Trends with a start year roughly 

around 1980 are negative for most end year. Then a large positive cluster is seen around start year 1990. 

These trends gradually become less pronounced as the start year becomes later (i.e. shorter periods). 

Regardless of the start year, trends in the LFPD are positive for the end years of 2015 - 2019. Trends 

with an end year prior to 2015 show an alternating pattern based on the start year. Trends with a starting 

year between 1960 – 1965 are negative for end years prior to 2015. Then the starting years 1965 – 1970 

display almost exclusively positive trends for end years prior to 2015. This pattern continues to the start 

year of 1995 – 1999. 

The trends in the HFPD are opposite to the ones in LFPD. Regardless of the start year, the trends are 

almost exclusively negative for the end years of 2010 – 2019. Trends with an end year prior to 2010 

show an opposing alternating pattern between positive and negative compared to the LFPD. However, 

in the HFPD, the positive trends are slightly less pronounced and the negative trends are more dominant. 
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6. Discussion 
The three research objectives of this study are defined as: 

• Analyse spatial patterns and temporal trends in river flows, considering the entire streamflow 

regime. 

o Create a proper set of hydrological signatures to characterize the streamflow regime. 

o Identify decadal-scale variability in streamflow trends across the streamflow regime. 

To achieve these objectives, the methodology described in Chapter 4 of this report is applied to 

hydrological signatures described in section 4.4. This section discusses the implications of the results 

from these trend analyses. This discussion is meant to help achieve the research objectives and support 

the answers to the research questions. It is important to remember that no hypotheses and/or expectations 

are stated. The research is purely focused on showing the changes in the streamflow regime and temporal 

variability herein. Each signature will be discussed separately and afterwards some general insights and 

implications are discussed. Finally, answers to the research questions are given. 

6.1 Timing signatures 
When looking at the first period of the AMF timings trend results, a clear spatial pattern is discernible. 

Across the entire study area there exist mostly negative trends, with almost 70% of the gauges displaying 

a negative trend. This dominance is especially visible in the central and eastern regions of the study area. 

The exception to this are the more southern regions of the study area, where the distribution is more 

even. This implies that overall, the AMF event is occurring earlier in the year.  

Interestingly, the pattern completely changes when moving to the second period. There are mostly 

positive trends visible, with small areas in the eastern part of the study area still showing negative trends. 

65% of all gauges display a positive trend. Considering that positive trends indicate later AMF timings 

in the year, this sudden shift in direction can be the result of very early AMF timings for a period during 

the decade of 1990-2000.  

This sensitivity is further demonstrated by the results of periods 3, 4 and 5. Periods 3 and 4 show similar 

trends to the first period (i.e. mostly negative trends) and the fifth period showing similar trends to the 

third period (i.e. mostly positive trends). The spatial pattern remains consistent over the time periods, 

although it becomes less pronounced. However, making a spatial comparison is challenging, given the 

considerable number of eliminated stream gauges in each period. These significant differences in the 

trend distribution imply that the AMF timing trend analysis is sensitive to the selection of time period. 

The results with only gauges that contain at least 60 years of data show the temporal sensitivity in the 

AMF timing. 70 % of the gauges display a negative trend in the first period. This dominance of negative 

trends is consistent with the trends in period 3 and 4, but in period 2 and 5 almost 60 % of the gauges 

display a positive trend. This interdecadal variability is also displayed in the heatmap of the AMF timing, 

where this oscillating pattern is also visible. Interestingly, the pattern is quite consistent over the end 

years of the analysis. This implies that the AMF timing trends are more sensitive to the choice of start 

year than the choice of end year. 

The results of the first period for the AmF7 timings show that across almost the entire study area, positive 

trends are dominant with 64 % of the gauges displaying a positive trend. A small area in the Northeastern 

part is showing more negative trends.  This implies that for the first period, the AmF7 event generally 

occurs later in the year.  

The results of the second period are still similar to the results of the first period but the trend distribution 

is now much more even. From period 3 and onwards, a shift in the trend patterns becomes clearly visible. 

From period 3 and onwards, the trends across the gauges are mostly negative. The percentage of negative 

trends increases gradually with each period, with 90% negative trends in period 5. 
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The results for gauges with at least 60 years of data also show this pattern of mainly positive trends  

transitioning to mainly negative trends. The percentage of negative trends in the first period is 34%, 

which gradually increases to a percentage of 90% in period 5. This pattern is also shown in the heatmap 

of the AmF7 timing. The heatmap shows a consistent pattern among most combinations of start and end 

year, with the exception of the short-term trends with start or end year 1990. This implies that the AmF7 

timing is less sensitive to the choice of the time period than the AMF timing. 

Similar to the AMF timing, the estimated trend slopes become smaller as the time period increases. On 

comparing the trend ranges from the AMF timing and the AmF7 timing, it is observed that the trend 

values for the AmF7 timing are higher for each period. This suggests that the shift in timing for the 

minimum flow event is greater than the shift in timing for the maximum flow event. This raises the 

question of whether this is expected? The AMF and AmF7 events are polar opposites, indicating the 

timing of high and low flow respectively. A key difference between the two signatures is the fact that 

the AmF7 occurs over seven consecutive days and the AMF event occurs on a single day. This makes 

the AMF event more susceptible to ‘random’ extreme events and the AmF7 event more predictable. This 

means that trends in the timing of the AmF7 event will be more pronounced than for the AMF event. 

6.2 Magnitude signatures 
The spatial pattern that is found in the trends of the magnitude of the AmF7 event is opposite to the one 

of the AmF7 timing trends. For the first period, the entire study displays 91% negative trends. This 

means that the magnitude of the AmF7 event has decreased over the period 2000-2019 for almost all of 

the stream gauges. The second period displays more positive trends, with 37 % of the trends displaying 

positive trends. 

The higher number of positive trends is not visible in period 3, that displays 89 % negative trends. The 

fourth and fifth period show slightly more positive trends, but the majority of the trends remain negative. 

Whether this is due to the elimination of stream gauges with a negative trend is investigated using only 

the stream gauges with at least 60 years for each period. 

The results for gauges with at least 60 years display the same pattern across the periods. The majority 

of the stream gauges display a negative trend for each period. With period 2 having the lowest percentage 

of negative trends at 66 % and period 1 the highest at 91 %. This implies that the AmF7 trends are 

relatively robust to the choice of time period. However, when looking at the heatmap of the AmF7 trends, 

it is seen that this statement is not entirely true. This heatmap shows that for the end year of 2019, the 

AmF7 trend is not sensitive to the choice of time period. However, this is not consistent with earlier end 

years. From end years prior to 2015, the trends show interdecadal fluctuations between negative and 

positive, with positive vertical clusters around the start year of 1990, 1970 and 1960. This illustrates the 

sensitivity to the selection of both start and end year for this signature.  

For each period, the spatial patterns in the ADF trends are very similar to the spatial patterns in the 

AmF7 trends, with the ADF showing even higher percentages of negative trends in each period. In 

addition to this, the trends are less pronounced in the ADF than in the AmF7. This is to be expected, 

since the ADF is based on the average flow and the AmF7 is based on the low flow. Low flow is an 

extreme event, therefore trends will be more pronounced than for the average conditions.  

As with the AmF7 trends, the gauges with at least 60 years of data confirm the temporal pattern in the 

ADF trends. The heatmap of the ADF trends shows an identical pattern to the heatmap of the AmF7 

trends. All of this implies that the low flow magnitude and the medium flow magnitude are varying in 

tandem to each other. 

The AMF magnitude trends, are similar to the AmF7 and ADF trends in the first three periods, with the 

percentage of negative trends being 90% for the third period. However, in the fourth and fifth period the 

percentage of positive trends increases significantly, which is not seen for the AmF7 and the ADF. The 

fifth period even shows more positive trends than negative trends, with a percentage of 56%. 
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This pattern can also be seen from the gauges with at least 60 years of data, as well as the heatmap with 

all possible combinations. A clear pattern is visible from the heatmap, showing positive trends for 

combinations with a start year prior to 1975. This implies that the short-term negative trends in the AMF 

are not consistent with the long-term trends, which are generally positive. 

These similarities across the magnitude signatures imply a high degree of consistency in magnitude 

trends across the three stages of flow. This implies that the shape of the streamflow magnitude 

distribution does not change, it merely shifts towards higher or lower values. The accordance in trend 

direction for the three magnitude signatures is determined across the stream gauges is determined for 

each period and shown in Table 2. 

 
Table 2: Number of stream gauges that have the same direction in the magnitude signatures. 

In the first three periods, or until 1980, the accordance in trend direction is relatively high. For the period 

1980-2019 80% of the stream gauges show similar trend directions in the magnitude signatures. This 

means that the shape of the magnitude distribution is not changing, but the distribution is moving as a 

whole towards wetter or drier conditions. This implies that the streamflow magnitude is not intensifying. 

However, the degree of accordance in trend direction greatly decreases in periods 4 and 5. For the period 

1960-2019 just 40% of the stream gauges show similar trend directions in the magnitude signatures. In 

contrast to the shorter periods, this means that the shape of the distribution is changing, which implies 

that the streamflow magnitude is intensifying. This sudden ‘shift’ in accordance also becomes visible 

from the sensitivity heatmaps. There is more similarity between magnitude signatures with a start year 

after 1980 than periods with a start year before 1980. 

Across all of the periods, the smallest trends are found in the ADF, followed by the AmF7. The AMF 

trends are the largest absolute trend values. This is to be expected. The average flow is expected to 

display the smallest trends because it is not an extreme event. The difference in absolute trend values 

between the AmF7 and AMF magnitude is explained simply by the fact that the magnitude of high flow 

is obviously higher than the magnitude of low flow. Furthermore, the trend values of these signatures 

could be plotted as a percentage of the mean to analyse which trends are relatively more pronounced. 

In period 4 of the AMF trends a large outlier in the positive direction appears, which is absent in the 

preceding periods. Initially, this anomaly may appear to be a data error or a mistake in the trend analysis. 

To address this issue, the data is plotted alongside the estimated trend line for each period in Figure29:

 

Figure 29: AMF series of stream gauge 1431, with the estimated trend from each period 
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Figure 29 demonstrates significant fluctuations in both trend direction and magnitude. The largest 

positive trend is given by a slope of 1.67 mm/year and the largest negative slope is given by a slope of 

-2.07 mm/year. These differences show how sensitive a trend analysis can be to the choice of the time 

period and that estimated trends have to be interpreted carefully. This observation is revisited in a later 

section of this chapter. 

6.3 Frequency signatures 
Before discussing the results in the signatures based on low and high flow pulses, it is crucial to restate 

how these signatures are determined. This is done because they are slightly more abstract than the other 

signatures and therefore require extra attention. As explained in section 4.5, the low and high flow pulses 

are determined based on the first and third quartile of the streamflow data. This means that the upper 

and lower threshold are set at the streamflow magnitude where 25% of the data is above and beneath it 

respectively. This means that this threshold cannot be determined annually since this would result in an 

identical number of pulse counts each year. Therefore, it was decided to determine these threshold values 

over the entire length of each individual timeseries and then determine each signature annually. The 

consideration was whether to determine this threshold for each of the five periods respectively, but 

ultimately the choice was made for the entire length of the time series. This because it more accurately 

reflects the physical low-and-high flow conditions at each stream gauge. Finally, the magnitude 

signatures are normalized by dividing the streamflow with the contributing catchment area. In order to 

normalize the pulse signatures, the estimated trend is divided by the mean value and plotted as a 

percentage of the mean value per year. This eliminates some of the abstractness of the trends. This 

approach can result in trend values that appear implausible. This will be discussed in more detail shortly. 

In the first period, LFPC trends are positive in 46% gauges across the entire study area.  Furthermore, 

there is a large number of stream gauges (31%) that display a trend of exactly zero, or rather no trend. 

This implies that many stream gauges do not display a (statistically significant) trend, or this trend is 

not detected using the methodology of this research. This is a recurring phenomenon in the pulse count 

signatures and will be discussed later in this section. Looking closer at the map plot, it becomes visible 

that stream gauges are somewhat clustered based on the direction of their trend. This implies that the 

changes in low flow pulses are consistent in the region that they are located in. 

Period 2 shows mainly gauges with negative trends or no trends. This implies that for the period of 1990-

2000, many stream gauges will have high annual LFPC values. The clusters which were mentioned are 

harder to detect for this period than for the first period, this is most likely attributed to the increase in 

stream gauges with no trend. The third period shows mostly positive trends, with a percentage of 68%. 

The results of the fourth and fifth periods display mostly positive trends, similar to the third period. 

The gauges with at least 60 years of data show a similar temporal pattern across the periods. With the 

first period showing 52% positive trends, the second period being evenly distributed and period 3, 4 and 

5 mostly positive trends. This pattern is also clear from the heatmap, which shows a relatively consistent 

pattern across all combinations. With the exception of two negative clusters around combinations 1960 

– 1990 and start year 1990, all of the trends in LFPC are positive. 

The results of the first period of the HFPC show a more distinct spatial pattern compared to the LFPC. 

Firstly, the majority (56%) of the trends is negative, which is opposite to the LFPC signature. This is 

logical since the HFPC and LFPC are exact opposites of each other. The negative trends have clustered 

in both the southern and the northern part of the study area. In the eastern part of the study area there is 

a majority of stream gauges that display no trend. This further supports the finding of spatial clustering 

of pulse count from the LFPC signature. The clusters are both more pronounced and larger in the HFPC 

when compared to the LFPC. 

The majority of the stream gauges within period 2 display either a positive trend (46%) or no trend 

(42%). This is parallel to the results of the LFPC in the second period, which further supports the contrast 
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between the two signatures. This parallel temporal pattern further continues in period 3, where the 

majority of trends in the HFPC is either zero or negative. Trends in the HFPC are generally less 

pronounced than the trends in the LFPC. In both of the last two periods, 50% of gauges show a trend of 

exactly zero. Interestingly, there are more gauges displaying a positive trend in these final two periods, 

35% for both periods. This implies that for the long-term trends, the LFPC and HFPC move in the same 

direction. 

The gauges with at least 60 years of data also show this fluctuating pattern in the HFPC trends. This 

pattern also becomes visible from the heatmap of the HFPC trends. The heatmap also shows that the 

trends in HFPC are relatively robust to the choice of end year, but sensitive to the choice of start year of 

the analysis. 

As mentioned previously, the trends in the pulse count signatures might seem implausible. The trend 

range in the LFPC over the first period translates to -180 % and 260 % of the mean value. These trends 

are shown in the Figure 30 and 31 respectively: 

 

Figure 30: LFPC values and estimated trend for the Apfelstaedt at Georgenbach 

 

Figure 31: LFPC values and estimated trend for the Schwabach river 

From Figures 30 and 31 it becomes clear that these high relative trend slopes are in fact possible. Both 

of these stream gauges have multiple years in which the LFPC value is zero and this causes the mean 

value to be low. When these values of zero are located at the beginning or end of the period this will 

result in a positive or negative trend respectively. This trend will then be relatively high compared to the 

mean value.  

Secondly, the most obvious finding of the results in the pulse count signatures is the large number of 

stream gauges where the trend is estimated to be exactly zero. This number is significantly different than 

all of the other signatures. This implies that, for these two signatures specifically, there are many stream 

gauges which do not have a (significant) trend across the multiple time periods. However, it can also 
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imply that trends in the frequency of low and high flow frequency are hard to find using these signatures. 

This would be because of the interaction between the signatures and the Theil-Sen slope estimator. This 

interaction is best described with the help of the Figure 32 

 

 

Figure 32: LFPC values and estimated trends for the Oise at Creil 

Figure 32 shows the observed values for the LFPC and estimated trends for a single stream gauge. Many 

of the trends are estimated to be exactly zero. The values of the LFPC and HFPC are whole integers. 

This means that the value of 2 years can be exactly the same. This mean that the slope between a pair 

can be exactly zero for multiple pairs. Since the estimated trend slope is defined as the median of the 

slopes between all possible pairs, the possibility exists that this median value is exactly zero. Thus 

resulting in many stream gauges that display a trend of exactly zero. 

Overall, the temporal patterns visible for the LFPC and HFPC are parallel to each other, which means 

that negative trends in the low flow signature generally mean positive trends in the high flow signature. 

This supports the arguments made previously for a more general shift of the streamflow magnitude 

distribution rather than a change of shape in the distribution. Alternatively, the changes in pulse count 

signatures can also mean changes in the variability of streamflow. An increase in HFPC does not 

necessarily mean an increase in the streamflow magnitude, it can also imply that the streamflow has 

become ‘flashier’. In order to correctly assess what these changes imply for the overall streamflow 

developments the results of the duration signatures have to be discussed first. 

However, as with the magnitude signatures, there seems to be a sudden shift in trend accordance around 

the start year 1980. Trend accordance in the frequency signatures is given by parallel trends. For 

example, an increase in the number of low flow pulses would be in accordance with a decrease in the 

number of high flow pulses. Looking at Figure 28(f) and 28(g) a clear difference is seen between periods 

starting before and after 1980.  

Periods starting after 1980 have mostly parallel trends, which means that the trends are in accordance 

with each other. This implies that the streamflow frequency distribution is not intensifying. However, 

periods starting before 1980 show a different combination, showing mostly positive trends in both the 

LFPC and HFPC, which means more low flow periods and more high flow periods. This implies an 

intensifying of the streamflow frequency distribution. 

6.4 Duration signatures 
94% of stream gauges show a positive trend in LFPD for the first period. This dominance is consistent 

over the five periods, with the percentage of positive trends gradually decreasing to 56% in the fifth 

period. Mostly positive trends in the LFPD imply that overall, the low flow periods have become longer 

over the time period. In combination with the trends in the LFPC, which were also mostly positive across 

most periods, this would indicate that the low flow pulses occur more often in the year and also last 
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longer. This combination suggests an increase in the overall number of days of low streamflow for most 

gauges. 

The gauges with at least 60 years confirm this pattern of mostly positive trends over all periods. 

However, the heatmap shows a much more complex and heterogeneous pattern over all combinations. 

The top of the heatmap, which corresponds to an end year of 2019, indeed shows that the trends are 

mostly positive for all start years of the analysis. However, this finding is inconsistent for start years 

prior to 2015. For those combinations, the trend value is dependent to the choice of start year. An almost 

cyclical pattern is found. This implies that the LFPD values in the years of 2015-2019 are so large 

compared to past years, that the trends are more robust to the choice of start year. 

The HFPD trends in period 1 show almost exclusively negative trends in the eastern part of the study 

area and a small area in the central / southern part of the study area shows a cluster of positive trends. 

Around 70% of the gauges in the first period show a negative trend. Similar to the pulse count signatures, 

the trend direction of the HFPD is opposite to the LFPD. In addition to this, the trends are much less 

pronounced in their relative values. The majority of stream gauges showing negative trends remains 

consistent over all periods.   

This temporal pattern is even more pronounced in the gauges with at least 60 years of data. However, 

the same inconsistency that was found in the LFPD heatmap is also found in the HFPD  heatmap, albeit 

less pronounced. Regardless of the start year, all trends with an end year between 2015 – 2019 show a 

negative trend. This implies that the HFPD values in the years of 2015-2019 are so small compared to 

past years, that the trends are more robust to the choice of start year. The earlier end year show an 

alternating pattern similar to that of the LFPD, with the opposite direction. This pattern is less discernible 

than in the LFPD. This is most likely a result of the aforementioned sensitivity of high flows to ‘random’ 

extreme events. 

The parallel found in the trends of the pulse count signatures is also found in the pulse duration 

signatures. This implies that for most of the stream gauges, the duration of the high flow pulses has 

decreased and the duration of the low flow pulses has decreased. Overall, the trends in the LFPD are 

more pronounced than the trends in the HFPD. An increase in LFPD and a decrease in HFPD means 

that the low flow pulses have become longer and the high flow pulses shorter. This implies that the low 

flow conditions have become steadier and the high flow conditions have become flashier. 

6.5 Overall insights and implications 
There are a number of insights that are consistent across all the trend analyses in the present study. In 

general, the estimated trend slopes decrease over time, i.e. the estimated trend slopes become smaller 

when analysed over longer time period. This phenomenon can be explained by a number of factors 

related to both the properties of the dataset and the nature of the hydrological processes. Firstly, the daily 

streamflow data on which the trend analysis is performed can be highly variable due to a number of 

factors. When the data is analysed over a longer period, these short-term variations tend to average out, 

resulting in smaller trend values. This goes hand in hand with the fact that shorter time periods are more 

susceptible to the influence of random variability. This increased variability can lead to larger apparent 

trends. Furthermore, hydrological systems are affected by natural climate variability patterns, which will 

be discussed later in this section. These patterns operate on different time scales and can potentially 

influence the trend analyses over time. 

The second major insight is found in the sensitivity heatmaps of the signatures of all signatures. Across 

all signatures except the AmF7 timing, it is clearly visible that there are more ‘vertical trend clusters’ 

rather than ‘horizontal trend clusters. This show that the trend analysis is more sensitive to the choice of 

the start year of the period rather than the choice of the end year. This implies that in the period 1960-

2000 there have been more clusters of dry or wet years than in the more recent years. However, there is 

one horizontal cluster which is found across multiple signatures, being the horizontal cluster around the 
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most recent end years. In four signatures, the AmF7, the ADF, the LFPD and the HFPD, a similar pattern 

is found across all combinations. Firstly, all of these combinations display a fluctuating pattern between 

positive and negative trends based on the start years of the analysis. Additionally, this pattern remains 

consistent for all end years prior to the most recent years (2015 – 2019). For these end years, the trend 

is homogeneous for all start years of the analysis. The similar pattern in this combination of signatures, 

along with the homogeneity, implies that the most recent years have shown significantly dry years. 

To further indicate these sensitivity patterns in the choice of both start and end year, timeseries of two 

hydrological signatures are plotted, along with the corresponding Z-statistic, for a single stream gauge. 

These plots are shown in Figure 33 and 34 

 

Figure 33: LFPD series and MK trends for the Buchenbach at Leutenbach. Upper plot (a) shows the observed values of the 

LFPD and the bottom (b) graph shows the Z-statistic of the MK trend with end years 2019 and 2010. 

 

Figure 34: AmF7 series and MK trends for the Rhine at Lobith. Upper plot (a) shows the observed values of the AmF7 and 

the bottom (b) graph shows the Z-statistic of the MK trend with record length of 20 years. 
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Figure 33 shows the LFPD signatures of the river Buchenbach at Leutenbach and two series of MK 

trend results. Trend values are determined at multiple start years but have an identical end year. The end 

years are 2019 and 2010 for the two series respectively. From Figure 28, it is seen that the Z-values are 

positive for all combinations with end year 2019. This is also seen in Figure 33(b), where all Z-values 

are positive for the series with end year 2019. However, for the periods with end year 2010 the Z-values 

are significantly smaller for each start year, and even negative for the most recent years. Interestingly, 

the shape of the trend series are similar to each other. 

Figure 34 shows the observed AmF7 series for the Rhine at Lobith and a MK series consisting of periods 

with a record length of 20 years. Each circle in the MK series represents the trend of the preceding 20-

year period (e.g. circle at 1940 represents the period 1920-1940). This graph shows that, for a single 

stream gauge, the temporal variability in signatures is still visible. There also seems to be a somewhat 

quasi-cyclical pattern in the trend results. How this cyclical pattern can be investigated further will be 

discussed shortly in a following section. 

Change is detected in every aspect of the streamflow regime. In one way or another, all of the signatures 

display some sort of change across the periods. However, these changes do not necessarily imply that 

there has been a long-term trend in the characteristics of the streamflow regime. These changes have 

already been discussed extensively in this chapter. An overall assessment of how the river flow 

characteristics have changed is impossible to make. This is because there is no combination that is 

consistent across all the analyses, both in spatial-and-temporal patterns. These spatial patterns and 

differences in temporal trends are distinctive for their respective signature. However, a good degree of 

coherency is found between the signatures of annual low, average and high flow on the short-term. This 

implies that these aspects of the streamflow regime are broadly varying in the same manner. Therefore, 

this study suggests that there is little evidence for the divergence between low- and-high flow extremes 

(i.e. wet getting wetter and dry getting drier). These findings are in line with the findings by (Hannaford 

et al., 2013) 

Achieving the second research objective and answering the corresponding research questions is not as 

straightforward as initially thought. The most important aspects of the streamflow as stated by (Poff et 

al., 1997) are generally accepted across hydrological studies. However, as stated by (Gao et al., 2009; 

McMillan, 2020; McMillan et al., 2017) there are a great number of hydrological processes and 

corresponding hydrological signatures. It is vital for a hydrological trend analysis study to clearly state 

the research objectives and to accurately select hydrological signatures for the respective objective. All 

hydrological signatures are initially created for a specific purpose and therefore not a single one of them 

is redundant. Overall, the most commonly used signatures are the ones which are the least abstract and 

the most straightforward to interpret. A proper set of hydrological signatures to characterize the 

streamflow regime has been created in this study. However, hydrological signatures should always be 

chosen based on specific objectives of a hydrological study. (McMillan et al., 2017) provides five 

guidelines for selecting hydrological signatures. Additionally, (Olden & Poff, 2003) can be used to 

investigate possible redundancy between signatures. 

The temporal sensitivity analysis indicates, for each signature respectively, how consistent the trends 

are for all combinations of start-and-end years. There is just one signature which displays a 

homogeneous pattern in the heatmap. This signature is the AmF7 timing, which shows almost only 

negative trends. All of the other heatmaps show a certain degree of heterogeneity, which visually shows 

the high degrees of variability in the signatures. The aforementioned similarity in the patterns of AmF7, 

ADF, LFPD and HFPD implies that the short-term trends with more recent end years are relatively 

consistent with the long-term trends. However, this consistency of short-term trends with long-term 

trends is not visible for analyses with end years prior to 2015. This means that the years 2015 – 2019 

are significantly dry, that all of the trend analyses will show consistency when ending in these years. For 

sake of explanation, this is called a ‘horizontal cluster’, as it appears horizontally on the heatmap. One 

interesting finding is that there appear to be significantly fewer horizontal clusters than vertical clusters. 
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Vertical clusters are found around start years that also show consistency in short-term and long-term 

trends. Notable vertical clusters are found around 1970, 1980, and 1990. 

An interesting method to investigate this is by using the Fast Fourier Transform (FFT). In short, this 

method involves analysing a signal's frequency components by transforming it from the time domain to 

the frequency domain. The Fast Fourier Transform efficiently computes these frequency components, 

providing valuable insights into the underlying patterns and characteristics of the signal. The power 

density spectrum can then be computed to investigate the relative power of a certain frequency in the 

signal (i.e. how much of the signal’s variance can be explained by that frequency). To visualize this, this 

is performed on the AMF series of a single stream gauge. Figure 35 shows the results of this FFT. 

 

Figure 35: FFT for the AMF of a single stream gauge. Top graph shows the detrended signal and the bottom graph the power 

density spectrum. Red dots in the graph correspond to the frequencies of the five fixed periods. 

Of all the fixed periods, the 60-year period has the highest value on the power density spectrum, which 

implies that it explains the most variance in the signal. This somewhat agrees with the results from the 

temporal sensitivity analysis. The top left of the heatmap shows that for the 60-year period, an average 

Z score of around zero is found, which aligns with a period of 60 years. The FFT method is worth 

mentioning, as it can provide even more detailed insights into the temporal patterns in hydrological 

signatures. However, in this research it is performed very exploratory. Gaining useful insights from the 

FFT method on a large dataset requires a lot of additional work, which was considered outside the scope 

of this research. 

The largest overall implication that this study provides is the large amount of temporal variability in 

hydrological trend analyses. This study elucidates the importance of carefully interpreting analysed 

trends, which is most likely due to the large number of factors influencing the trend analysis. Trends 

will be different across different time periods. The importance of different driving mechanisms has to 

be considered when interpreting different changes in the streamflow regime (Berghuijs & Slater, 2023; 

Mediero et al., 2015). When analysing climate driven trends, the choice should be made to assemble a 

dataset of near-natural streamflow records (Stahl et al., 2010). There are many different factors that 

influence streamflow developments and many considerations that must be considered. This analysis 

forms a reference point against which the results of existing and future studies can be assessed.  
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7. Conclusion 
The results of this study demonstrate a considerable amount of temporal variability in trends across most 

signatures. Fixed periods are crucial for trend analyses, as they provide an appropriate visualization and 

quantification of trends on a geographical sense. However, these fixed periods represent just one cell in 

the temporal sensitivity analysis. The considerable variation seen in the figure of the temporal sensitivity 

analysis suggests that an extrapolation of both short-and-long-term trends is not justified in most cases. 

An extrapolation, into the past of the future can easily lead to wrong interpretations or false trend 

patterns. This study has shown how interdecadal variability has influenced short-term trends and their 

consistency with long-term trends in western Europe. This is true for more recent short-term trends, but 

also short-term trends from the past. In many signatures, the direction and strength of trends are 

dependent on the choice of start year, end year or both.  

In the more recent years of the dataset, there has been a higher degree of consistency across short-and-

long-term trends. Whether this homogeneity will continue to exist in the future is a mystery. As 

mentioned, an extrapolation of these trends, both in the past or the future is not justified. Additionally, 

this homogeneity exists in a multitude of signatures. This indicates that the signatures chosen in this 

study are relatively coherent with each other and properly describe the changes of the entire streamflow 

regime as a whole. There will always be specific applications for each signature and the streamflow is 

influenced by too many factors and phenomena to develop in a truly homogenous manner. 

The high amount of temporal variability and inconsistency across trends shown by this research 

elucidates the necessity of contextualising short-term trends. The multi-temporal approach used in this 

study is recommended for use in future hydrological trend analysis studies. The signatures provided in 

this study serve as a good baseline to broadly assess the changes in the streamflow regime across a larger 

area. The results in this study can be used for future studies which intend to delve deeper into more 

specific parts of the streamflow regime to indicate how the streamflow has broadly developed and how 

these changes are highly variable in both the spatial and temporal scale. Future research should expand 

on this research by attempting to explain the driving mechanisms of the temporal variability and thereby 

developing more sophisticated and innovative methods of trend detection that consider temporal 

variability and its driving mechanisms.  

One obstacle is that long records are sparse and often less desirable for trend analysis due to 

inhomogeneities caused by anthropogenic influence. Unfortunately, there is just one true solution for 

this obstacle, which is patience. With time, the number of stream gauges that have a long record length 

will increase and the spatial coverage with it. Ideally, a dataset of near natural catchments should be 

used for the analysis, both on short-term and long-term trends. Where these are unavailable, other 

methods, such as reconstruction methods from precipitation or model simulations can be used. 

  



73 

 

8. Bibliography 
 

Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., Hannah, D. M., 

Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., 

Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., … Pinay, G. (2019). Human domination of 

the global water cycle absent from depictions and perceptions. Nature Geoscience, 12(7), 533–

540. https://doi.org/10.1038/s41561-019-0374-y 

Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., 

Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., & Zolina, O. (2020). Advances 

in understanding large‐scale responses of the water cycle to climate change. Annals of the New 

York Academy of Sciences, 1472(1), 49–75. https://doi.org/10.1111/nyas.14337 

Anderson, M. G., & McDonnell, J. J. (Eds.). (2005). Encyclopedia of Hydrological Sciences. Wiley. 

https://doi.org/10.1002/0470848944 

Barker, L. J., Hannaford, J., Chiverton, A., & Svensson, C. (2016). From meteorological to 

hydrological drought using standardised indicators. Hydrology and Earth System Sciences, 20(6), 

2483–2505. https://doi.org/10.5194/hess-20-2483-2016 

Bayliss, A. C., & Jones, R. C. (1993). Peaks-over-threshold flood database: Summary statistics and 

seasonality. 

Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., & Kirchner, J. W. (2019). The Relative 

Importance of Different Flood‐Generating Mechanisms Across Europe. Water Resources 

Research, 55(6), 4582–4593. https://doi.org/10.1029/2019WR024841 

Berghuijs, W. R., Hartmann, A., & Woods, R. A. (2016). Streamflow sensitivity to water storage 

changes across Europe. Geophysical Research Letters, 43(5), 1980–1987. 

https://doi.org/10.1002/2016GL067927 

Berghuijs, W. R., & Slater, L. J. (2023). Groundwater shapes North American river floods. 

Environmental Research Letters, 18(3), 034043. https://doi.org/10.1088/1748-9326/acbecc 

Berghuijs, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating 

mechanisms across the United States. Geophysical Research Letters, 43(9), 4382–4390. 

https://doi.org/10.1002/2016GL068070 

Bertola, M., Viglione, A., Lun, D., Hall, J., & Blöschl, G. (2020). Flood trends in Europe: are changes 

in small and big floods different? Hydrology and Earth System Sciences, 24(4), 1805–1822. 

https://doi.org/10.5194/hess-24-1805-2020 

Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, 

A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., 

Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., … Živković, N. (2017). Changing climate 

shifts timing of European floods. Science, 357(6351), 588–590. 

https://doi.org/10.1126/science.aan2506 

Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., 

Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., 

Chirico, G. B., Claps, P., Frolova, N., Ganora, D., … Živković, N. (2019). Changing climate both 

increases and decreases European river floods. Nature, 573(7772), 108–111. 

https://doi.org/10.1038/s41586-019-1495-6 



74 

 

Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., 

Llasat, M. C., Macdonald, N., Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Bělínová, 

M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., … Wetter, O. (2020). Current European 

flood-rich period exceptional compared with past 500 years. Nature, 583(7817), 560–566. 

https://doi.org/10.1038/s41586-020-2478-3 

Briffa, K. R., Jones, P. D., & Hulme, M. (1994). Summer moisture variability across Europe, 1892–

1991: An analysis based on the palmer drought severity index. International Journal of 

Climatology, 14(5), 475–506. https://doi.org/10.1002/joc.3370140502 

Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M., Nam, L. C., 

Wichienkeeo, A., Minh, T. T., & Hong, T. M. (2010). Climate as a contributing factor in the 

demise of Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107(15), 6748–

6752. https://doi.org/10.1073/pnas.0910827107 

Clausen, B., & Biggs, B. J. F. (2000). Flow variables for ecological studies in temperate streams: 

groupings based on covariance. Journal of Hydrology, 237(3–4), 184–197. 

https://doi.org/10.1016/S0022-1694(00)00306-1 

Collins, M. J. (2019). River flood seasonality in the Northeast United States: Characterization and 

trends. Hydrological Processes, 33(5), 687–698. https://doi.org/10.1002/hyp.13355 

Collins, M. J., Hodgkins, G. A., Archfield, S. A., & Hirsch, R. M. (2022). The Occurrence of Large 

Floods in the United States in the Modern Hydroclimate Regime: Seasonality, Trends, and Large‐

Scale Climate Associations. Water Resources Research, 58(2). 

https://doi.org/10.1029/2021WR030480 

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An Ensemble 

Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical 

Research: Atmospheres, 123(17), 9391–9409. https://doi.org/10.1029/2017JD028200 

Cunnane, C. (1973). A particular comparison of annual maxima and partial duration series methods of 

flood frequency prediction. Journal of Hydrology, 18(3–4), 257–271. 

https://doi.org/10.1016/0022-1694(73)90051-6 

’Desai, B., ’Maskrey, A., ’Peduzzi, P., ’De Bono, A., & ’Herold, C. (2015). Making Development 

Sustainable: The Future of Disaster Risk Management, Global Assessment Report on Disaster 

Risk Reduction. 

Dracup, J. A., Lee, K. S., & Paulson, E. G. (1980). On the definition of droughts. Water Resources 

Research, 16(2), 297–302. https://doi.org/10.1029/WR016i002p00297 

Field, C. B. (2012). Managing the risks of extreme events and disasters to advance climate change 

adaptation: special report of the intergovernmental panel on climate change. Cambridge 

University Press. 

Frei, A., Kunkel, K. E., & Matonse, A. (2015). The Seasonal Nature of Extreme Hydrological Events 

in the Northeastern United States. Journal of Hydrometeorology, 16(5), 2065–2085. 

https://doi.org/10.1175/JHM-D-14-0237.1 

Gao, Y., Merz, C., Lischeid, G., & Schneider, M. (2018). A review on missing hydrological data 

processing. Environmental Earth Sciences, 77(2), 47. https://doi.org/10.1007/s12665-018-7228-6 

Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L., & Olden, J. D. (2009). Development of representative 

indicators of hydrologic alteration. Journal of Hydrology, 374(1–2), 136–147. 

https://doi.org/10.1016/j.jhydrol.2009.06.009 



75 

 

García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data 

preprocessing: methods and prospects. Big Data Analytics, 1(1), 9. 

https://doi.org/10.1186/s41044-016-0014-0 

Gellens, D., & Roulin, E. (1998). Streamflow response of Belgian catchments to IPCC climate change 

scenarios. Journal of Hydrology, 210(1–4), 242–258. https://doi.org/10.1016/S0022-

1694(98)00192-9 

Glaser, R., Riemann, D., Schönbein, J., Barriendos, M., Brázdil, R., Bertolin, C., Camuffo, D., 

Deutsch, M., Dobrovolný, P., van Engelen, A., Enzi, S., Halíčková, M., Koenig, S. J., Kotyza, O., 

Limanówka, D., Macková, J., Sghedoni, M., Martin, B., & Himmelsbach, I. (2010). The 

variability of European floods since AD 1500. Climatic Change, 101(1–2), 235–256. 

https://doi.org/10.1007/s10584-010-9816-7 

Hall, J., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Burlando, P., 

Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Gaál, L., Gorbachova, L., Gül, A., Hannaford, 

J., Kiss, A., Kjeldsen, T., Kohnová, S., … Blöschl, G. (2015). A European Flood Database: 

facilitating comprehensive flood research beyond administrative boundaries. Proceedings of the 

International Association of Hydrological Sciences, 370, 89–95. https://doi.org/10.5194/piahs-

370-89-2015 

Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan Kaufmann. 

Hannaford, J., Buys, G., Stahl, K., & Tallaksen, L. M. (2013). The influence of decadal-scale 

variability on trends in long European streamflow records. Hydrology and Earth System 

Sciences, 17(7), 2717–2733. https://doi.org/10.5194/hess-17-2717-2013 

Haug, G. H., Günther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A., & Aeschlimann, B. (2003). 

Climate and the Collapse of Maya Civilization. Science, 299(5613), 1731–1735. 

https://doi.org/10.1126/science.1080444 

Hawkins, E., & Sutton, R. (2011). The potential to narrow uncertainty in projections of regional 

precipitation change. Climate Dynamics, 37(1–2), 407–418. https://doi.org/10.1007/s00382-010-

0810-6 

Hintze, J. L., & Nelson, R. D. (1998). Violin Plots: A Box Plot-Density Trace Synergism. The 

American Statistician, 52(2), 181–184. https://doi.org/10.1080/00031305.1998.10480559 

Hisdal, H., Stahl, K., Tallaksen, L. M., & Demuth, S. (2001). Have streamflow droughts in Europe 

become more severe or frequent? International Journal of Climatology, 21(3), 317–333. 

https://doi.org/10.1002/joc.619 

Hussain, Md., & Mahmud, I. (2019). pyMannKendall: a python package for non parametric Mann 

Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556. 

https://doi.org/10.21105/joss.01556 

Ide, T. (2018). Climate War in the Middle East? Drought, the Syrian Civil War and the State of 

Climate-Conflict Research. Current Climate Change Reports, 4(4), 347–354. 

https://doi.org/10.1007/s40641-018-0115-0 

Intergovernmental Panel on Climate Change (Ed.). (2014). Climate Change 2013 – The Physical 

Science Basis. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324 

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202 



76 

 

KENDALL, M. G. (1938). A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1–2), 

81–93. https://doi.org/10.1093/biomet/30.1-2.81 

KOUTSOYIANNIS, D. (2003). Climate change, the Hurst phenomenon, and hydrological statistics. 

Hydrological Sciences Journal, 48(1), 3–24. https://doi.org/10.1623/hysj.48.1.3.43481 

Kudyba, S. (2014). Big Data, Mining, and Analytics. Auerbach Publications. 

https://doi.org/10.1201/b16666 

Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., 

Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., 

Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Flood risk and climate change: global and 

regional perspectives. Hydrological Sciences Journal, 59(1), 1–28. 

https://doi.org/10.1080/02626667.2013.857411 

Kundzewicz, Z. W., & Robson, A. J. (2004). Change detection in hydrological records—a review of 

the methodology / Revue méthodologique de la détection de changements dans les chroniques 

hydrologiques. Hydrological Sciences Journal, 49(1), 7–19. 

https://doi.org/10.1623/hysj.49.1.7.53993 

Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-Term Trends in Extreme Precipitation 

Events over the Conterminous United States and Canada. Journal of Climate, 12(8), 2515–2527. 

https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2 

Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., Hanasaki, N., Wada, Y., Zhang, 

X., Zheng, C., Alcamo, J., & Oki, T. (2017). Water scarcity assessments in the past, present, and 

future. Earth’s Future, 5(6), 545–559. https://doi.org/10.1002/2016EF000518 

Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series and 

partial duration series methods for modeling extreme hydrologic events: 1. At‐site modeling. 

Water Resources Research, 33(4), 747–757. https://doi.org/10.1029/96WR03848 

Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A., Rogger, M., Salinas, J. L., 

Borzì, I., & Parajka, J. (2018). Detection of trends in magnitude and frequency of flood peaks 

across Europe. Hydrological Sciences Journal, 63(4), 493–512. 

https://doi.org/10.1080/02626667.2018.1444766 

Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. 

https://doi.org/10.2307/1907187 

Mardia, K. V. (1975). Statistics of Directional Data. Journal of the Royal Statistical Society: Series B 

(Methodological), 37(3), 349–371. https://doi.org/10.1111/j.2517-6161.1975.tb01550.x 

Marsh, T. J., & Monkhouse, R. A. (1993). Drought in the United Kingdom, 1988-92. Weather, 48(1), 

15–22. https://doi.org/10.1002/j.1477-8696.1993.tb07217.x 

McMillan, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. Hydrological 

Processes, 34(6), 1393–1409. https://doi.org/10.1002/hyp.13632 

McMillan, H., Westerberg, I., & Branger, F. (2017). Five guidelines for selecting hydrological 

signatures. Hydrological Processes, 31(26), 4757–4761. https://doi.org/10.1002/hyp.11300 

Mediero, L., Kjeldsen, T. R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., 

Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., 

Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R. A. P., Roald, L. A., … 

Þórarinsson, Ó. (2015). Identification of coherent flood regions across Europe by using the 



77 

 

longest streamflow records. Journal of Hydrology, 528, 341–360. 

https://doi.org/10.1016/j.jhydrol.2015.06.016 

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., 

& Stouffer, R. J. (2008). Stationarity Is Dead: Whither Water Management? Science, 319(5863), 

573–574. https://doi.org/10.1126/science.1151915 

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 

202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012 

Montanari, A., & Koutsoyiannis, D. (2014). Modeling and mitigating natural hazards: Stationarity is 

immortal! Water Resources Research, 50(12), 9748–9756. 

https://doi.org/10.1002/2014WR016092 

Morgenthaler, S. (2009). Exploratory data analysis. Wiley Interdisciplinary Reviews: Computational 

Statistics, 1(1), 33–44. https://doi.org/10.1002/wics.2 

Oki, T., & Kanae, S. (2006). Global Hydrological Cycles and World Water Resources. Science, 

313(5790), 1068–1072. https://doi.org/10.1126/science.1128845 

Olden, J. D., & Poff, N. L. (2003). Redundancy and the choice of hydrologic indices for characterizing 

streamflow regimes. River Research and Applications, 19(2), 101–121. 

https://doi.org/10.1002/rra.700 

Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather 

Bureau. 

Peña‐Angulo, D., Vicente‐Serrano, S. M., Domínguez‐Castro, F., Lorenzo‐Lacruz, J., Murphy, C., 

Hannaford, J., Allan, R. P., Tramblay, Y., Reig‐Gracia, F., & El Kenawy, A. (2022). The Complex 

and Spatially Diverse Patterns of Hydrological Droughts Across Europe. Water Resources 

Research, 58(4). https://doi.org/10.1029/2022WR031976 

Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., & Sanderson, B. M. (2017). Precipitation 

variability increases in a warmer climate. Scientific Reports, 7(1), 17966. 

https://doi.org/10.1038/s41598-017-17966-y 

Petrow, T., & Merz, B. (2009). Trends in flood magnitude, frequency and seasonality in Germany in 

the period 1951–2002. Journal of Hydrology, 371(1–4), 129–141. 

https://doi.org/10.1016/j.jhydrol.2009.03.024 

POFF, N. (1996). A hydrogeography of unregulated streams in the United States and an examination 

of scale‐dependence in some hydrological descriptors. Freshwater Biology, 36(1), 71–79. 

https://doi.org/10.1046/j.1365-2427.1996.00073.x 

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & 

Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769–784. 

https://doi.org/10.2307/1313099 

Poff, N. L., & Ward, J. V. (1989). Implications of Streamflow Variability and Predictability for Lotic 

Community Structure: A Regional Analysis of Streamflow Patterns. Canadian Journal of 

Fisheries and Aquatic Sciences, 46(10), 1805–1818. https://doi.org/10.1139/f89-228 

Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. (1998). A spatial assessment of 

hydrologic alteration within a river network. Regulated Rivers: Research & Management, 14(4), 

329–340. 



78 

 

Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing 

Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163–1174. 

https://doi.org/10.1046/j.1523-1739.1996.10041163.x 

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley. 

https://doi.org/10.1002/0471725382 

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological 

Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989X.7.2.147 

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the 

American Statistical Association, 63(324), 1379–1389. 

https://doi.org/10.1080/01621459.1968.10480934 

Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 

years. Nature, 491(7424), 435–438. https://doi.org/10.1038/nature11575 

Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., 

Fendekova, M., & Jódar, J. (2010). Streamflow trends in Europe: evidence from a dataset of 

near-natural catchments. Hydrology and Earth System Sciences, 14(12), 2367–2382. 

https://doi.org/10.5194/hess-14-2367-2010 

Steirou, E., Gerlitz, L., Apel, H., & Merz, B. (2017). Links between large-scale circulation patterns 

and streamflow in Central Europe: A review. Journal of Hydrology, 549, 484–500. 

https://doi.org/10.1016/j.jhydrol.2017.04.003 

Stewart, B. (2015). Measuring what we manage – the importance of hydrological data to water 

resources management. Proceedings of the International Association of Hydrological Sciences, 

366, 80–85. https://doi.org/10.5194/piahs-366-80-2015 

Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E., & Phillips, A. S. (2015). Quantifying the 

Role of Internal Climate Variability in Future Climate Trends. Journal of Climate, 28(16), 6443–

6456. https://doi.org/10.1175/JCLI-D-14-00830.1 

Tselepidaki, I., Zarifis, B., & Asimakopoulos, D. N. (1992). Low precipitation over Greece during 

1989?1990. Theoretical and Applied Climatology, 46(2–3), 115–121. 

https://doi.org/10.1007/BF00866091 

Tukey, J. W. (1962). The Future of Data Analysis. The Annals of Mathematical Statistics, 33(1), 1–67. 

http://www.jstor.org.tudelft.idm.oclc.org/stable/2237638 

Van Loon, A. F., & Laaha, G. (2015). Hydrological drought severity explained by climate and 

catchment characteristics. Journal of Hydrology, 526, 3–14. 

https://doi.org/10.1016/j.jhydrol.2014.10.059 

von Uexkull, N., Croicu, M., Fjelde, H., & Buhaug, H. (2016). Civil conflict sensitivity to growing-

season drought. Proceedings of the National Academy of Sciences, 113(44), 12391–12396. 

https://doi.org/10.1073/pnas.1607542113 

Vorogushyn, S., & Merz, B. (2013). Flood trends along the Rhine: the role of river training. Hydrology 

and Earth System Sciences, 17(10), 3871–3884. https://doi.org/10.5194/hess-17-3871-2013 

Walker, K. F., Sheldon, F., & Puckridge, J. T. (1995). A perspective on dryland river ecosystems. 

Regulated Rivers: Research & Management, 11(1), 85–104. 

https://doi.org/10.1002/rrr.3450110108 



79 

 

Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the Drought Phenomenon: The Role of 

Definitions. Water International, 10(3), 111–120. https://doi.org/10.1080/02508068508686328 

Wilhite, D. A., & Pulwarty, R. S. (2017). Drought and Water Crises (D. Wilhite & R. S. Pulwarty, 

Eds.). CRC Press. https://doi.org/10.1201/b22009 

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, 

N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., 

Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). 

The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 

3(1), 160018. https://doi.org/10.1038/sdata.2016.18 

Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, 

B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., & Ward, P. J. (2016). Global 

drivers of future river flood risk. Nature Climate Change, 6(4), 381–385. 

https://doi.org/10.1038/nclimate2893 

Wolman, M. G., & Miller, J. P. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. 

The Journal of Geology, 68(1), 54–74. https://doi.org/10.1086/626637 

  

 



A
Data-and-trend analysis code

1 import numpy as np
2 import pandas as pd
3 import os
4 import glob
5 import datetime
6 from tqdm import tqdm
7 import pickle
8

9 "A␣Python␣function␣called␣process_dataframes␣is␣written.␣␣This␣function␣takes␣4␣input␣
parameters:␣The␣directory,␣the␣prefix,␣the␣suffix␣and␣an␣empty␣dictionary."

10 def process_dataframes(directory, prefix, suffix, dictionary):
11 for file_path in tqdm(glob.glob(os.path.join(directory, prefix + '*' + suffix))):
12 # Extract the identifier from the file name
13 identifier = os.path.basename(file_path)[len(prefix):-len(suffix)]
14

15 # Read the Excel file into a pandas DataFrame
16 df = pd.read_excel(file_path)
17

18 # DATAFRAME PROCESSING...
19 # Check if the date is written in serial date values
20 if isinstance(df['Date'][0], np.int64):
21 # Convert serial date values to datetime values
22 serial_dates = df['Date']
23 actual_dates = []
24 for serial_date in serial_dates:
25 actual_date = datetime.datetime(1900, 1, 1) + datetime.timedelta(days=

serial_date - 2)
26 actual_dates.append(actual_date)
27 df['Date'] = actual_dates
28 df.dropna(axis=0, inplace=True)
29

30 # Remove years with less than 300 days of data
31 df_grouped = df.groupby(df['Date'].dt.year)['Mean␣daily␣flow']
32 entries_per_year = df_grouped.count()
33 threshold = 300
34 mask = entries_per_year < threshold
35 years_to_remove = entries_per_year[mask].index
36 df = df[~df['Date'].dt.year.isin(years_to_remove)]
37

38 dictionary[identifier] = df
39

40 return dictionary
41

42

43 # Set directory
44 directory = r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data'
45

46 # Dutch data
47 prefix = 'N_'
48 suffix = '_Q_daily.xlsx'

21



22

49 Ndataframes = process_dataframes(directory, prefix, suffix, {})
50

51 # French data
52 prefix = 'F_'
53 suffix = '_Q_daily.xlsx'
54 Fdataframes = process_dataframes(directory, prefix, suffix, {})
55

56 # Luxembourg data
57 prefix = 'L_'
58 suffix = '_Q_daily.xlsx'
59 Ldataframes = process_dataframes(directory, prefix, suffix, {})
60

61 # Germany data
62 prefix = 'G_'
63 suffix = '_Q_daily.xlsx'
64 Gdataframes = process_dataframes(directory, prefix, suffix, {})
65

66 # Belgium data
67 prefix = 'B_'
68 suffix = '_Q_daily.xlsx'
69 Bdataframes = process_dataframes(directory, prefix, suffix, {})
70

71 #Write dataframes into local files
72 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Fdataframes.pkl','wb') as file:
73 pickle.dump(Fdataframes, file)
74

75 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Bdataframes.pkl','wb') as file:

76 pickle.dump(Bdataframes, file)
77

78 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Gdataframes.pkl','wb') as file:

79 pickle.dump(Gdataframes, file)
80

81 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Ndataframes.pkl','wb') as file:

82 pickle.dump(Ndataframes, file)
83

84 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Ldataframes.pkl','wb') as file:

85 pickle.dump(Ldataframes, file)

Dataframe_preprocessing.py

1 import pickle
2 import matplotlib.pyplot as plt
3 from Dataframes import *
4 from tqdm import tqdm
5 import numpy as np
6

7 def Define_record_length(df):
8 max = df.groupby(df['Date'].dt.year)['Mean daily flow'].max()
9 years = max.index

10 yearlist = years.values
11 start_year = years[0]
12 end_year = years[-1]
13 record_length = len(years)
14

15 return start_year, end_year, record_length, yearlist
16

17 lengthslist = []
18 startlist = []
19 endlist = []
20 yearslist = []
21

22 for identifier in tqdm(Bdataframes):
23 df = Bdataframes[identifier]
24 dfw = df.copy()
25 start_year, end_year, record_length, years = Define_record_length(dfw)



23

26 lengthslist.append((record_length))
27 startlist.append(start_year)
28 endlist.append(end_year)
29 for year in (years):
30 yearslist.append((year))
31

32 for identifier in tqdm(Fdataframes):
33 df = Fdataframes[identifier]
34 dfw = df.copy()
35 start_year, end_year, record_length, years = Define_record_length(dfw)
36 lengthslist.append((record_length))
37 startlist.append(start_year)
38 endlist.append(end_year)
39 for year in (years):
40 yearslist.append((year))
41

42 for identifier in tqdm(Gdataframes):
43 df = Gdataframes[identifier]
44 dfw = df.copy()
45 start_year, end_year, record_length, years = Define_record_length(dfw)
46 lengthslist.append((record_length))
47 startlist.append(start_year)
48 endlist.append(end_year)
49 for year in (years):
50 yearslist.append((year))
51

52 for identifier in tqdm(Ldataframes):
53 df = Ldataframes[identifier]
54 dfw = df.copy()
55 start_year, end_year, record_length, years = Define_record_length(dfw)
56 lengthslist.append((record_length))
57 startlist.append(start_year)
58 endlist.append(end_year)
59 for year in (years):
60 yearslist.append((year))
61

62 for identifier in tqdm(Ndataframes):
63 df = Ndataframes[identifier]
64 dfw = df.copy()
65 start_year, end_year, record_length, years = Define_record_length(dfw)
66 lengthslist.append((record_length))
67 startlist.append(start_year)
68 endlist.append(end_year)
69 for year in (years):
70 yearslist.append((year))
71

72 # Create a figure with three subplots
73 fig, axes = plt.subplots(1, 3, figsize=(15, 5))
74

75 # Create the histogram of the available years
76 count_years, bin_years, pat = axes[0].hist(yearslist, bins = (max(yearslist) - min(yearslist)

+ 1), range = [min(yearslist), max(yearslist)], edgecolor = 'black')
77 maxbin_years = int(np.round(bin_years[count_years.argmax()]))
78 pdf_years = count_years / sum(count_years)
79 cdf_years = np.cumsum(pdf_years)
80

81 axes[0].set_ylabel('# of entries')
82 axes[0].set_xlabel('Year')
83 axes[0].set_title('Histogram of data availability per year')
84

85 ax_cdf_years = axes[0].twinx()
86 ax_cdf_years.plot(bin_years[1:], cdf_years, color = 'red')
87 ax_cdf_years.set_ylim([0,1])
88

89 # Create the histogram of the record lengths
90 count_lengths, bin_lengths, pat = axes[1].hist(lengthslist, bins = (max(lengthslist) - min(

lengthslist) + 1), range = [min(lengthslist), max(lengthslist)], edgecolor = 'black')
91 maxbin_lengths = int(np.round(bin_lengths[count_lengths.argmax()]))
92 pdf_lengths = count_lengths / sum(count_lengths)
93 cdf_lengths = np.cumsum(pdf_lengths)
94
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95 axes[1].set_xlabel('Record length [year]')
96 axes[1].set_title('Histogram of the record lengths')
97

98 ax_cdf_lengths = axes[1].twinx()
99 ax_cdf_lengths.plot(bin_lengths[1:], cdf_lengths, color = 'red')

100 ax_cdf_lengths.set_ylim([0,1])
101

102 # Create a histogram of the starting years
103 count_start, bin_start, pat = axes[2].hist(startlist, bins = (max(startlist) - min(startlist)

+ 1), range = [min(startlist), max(startlist)], edgecolor = 'black')
104 maxbin_start = int(np.round(bin_start[count_start.argmax()]))
105 pdf_start = count_start / sum(count_start)
106 cdf_start = np.cumsum(pdf_start)
107

108 axes[2].set_xlabel('Year')
109 axes[2].set_title('Histogram of the first years of the timeseries ')
110

111 ax_cdf_start = axes[2].twinx()
112 ax_cdf_start.plot(bin_start[1:], cdf_start, color = 'red')
113 ax_cdf_start.set_ylabel('CDF')
114 ax_cdf_start.set_ylim([0,1])
115

116

117 plt.tight_layout()
118 plt.savefig(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\Results\

Figures\timeseries_histograms.png')
119 plt.show()

Timeseries_information.py

1 """Function to determine the annual average streamflow, returns the corresponding years
to be used as index values"""

2

3

4 def Annual_averages(df):
5

6 # Create a copy of the input dataframe, so it is not altered
7 dfw = df.copy()
8

9 # Group the streamflow column by year and determine the mean value for each year
10 annual_averages = dfw.groupby(dfw['Date'].dt.year)['Mean daily flow'].mean() # Compute

the mean value for each year
11 annual_averages = annual_averages.rename('Average annual flow [m3/s]')
12 years = annual_averages.index
13 return annual_averages, years

Annual_averages.py

1 """Function created to determine both the magnitude and timing of Annual maximum flow"""
2 def Annual_maximum_flows(df):
3 # Create a copy of the input dataframe, so it is not altered
4 dfw = df.copy()
5

6 # Group the streamflow column by year and determine the maximum value for each year
7 Annual_maxima = dfw.groupby(dfw['Date'].dt.year)['Mean daily flow'].max()
8 Annual_maxima = Annual_maxima.rename('Annual maximum flow')
9

10 # Group the streamflow by year and determine where the maximum value occurs each year
11 dfw['Year'] = dfw['Date'].dt.year
12 dfw_grouped = dfw.groupby(dfw['Date'].dt.year)
13 max_flow_dates = dfw_grouped.apply(lambda x: x.loc[x['Mean daily flow'].idxmax()]['Date

']) #Returns timestamp of maximum streamflow occurence
14 day_of_year = max_flow_dates.dt.dayofyear #Convert the timestamp to Julian date
15 return Annual_maxima, day_of_year

Annual_maximum_flow.py

1 import numpy as np
2 import pandas as pd
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3

4 "Function created to determine both the magnitude and timing of Annual 7-day minimum flow"
5 def Annual_7day_minimum(df):
6 # Create a copy of the input dataframe, so it is not altered
7 dfw = df.copy()
8 dfw = dfw.reset_index(drop=True) # Reset the index values in order for the loop to work.

The index values have not been reset in pre-processing
9

10 # Create a new column which calculate the difference in dates between two consecutive
rows.

11 dfw['Date'] = pd.to_datetime(dfw['Date'])
12 dfw['Difference in dates'] = dfw['Date'].diff().dt.days
13

14 # Create a new column which contains the total 7-day streamflow
15 Streamflow_7days = np.empty(len(dfw))
16 Streamflow_7days.fill(99999999) # Fill the array with 99999, values which can not be

calculated will still have this value. This does not affect the analysis any further
17 Streamflow = dfw['Mean daily flow']
18 Date_differences = dfw['Difference in dates']
19 for i in range(len(Streamflow_7days) - 6):
20 if all(Date_differences[i : i + 7] == 1): # Check whether the 7 values which are to

be used are all consecutive days. Otherwise the value would be incorrect
21 Streamflow_7days[i + 3] = Streamflow[i] + Streamflow[i + 1] + Streamflow[i + 2] +

Streamflow[i + 3] + Streamflow[i + 4] + Streamflow[i + 5] + Streamflow[i +
6] #Fill the

22

23 # Write a new column in the dataframe, group the column by year and determine the minimum
value per year

24 dfw['7-day streamflow total'] = Streamflow_7days
25 Annual_minima = dfw.groupby(dfw['Date'].dt.year)['7-day streamflow total'].min()
26 Annual_minima = Annual_minima.rename('Annual minimum 7-day flow')
27

28 # Group the streamflow by year and determine where the minimum value occurs each year
29 dfw['Year'] = dfw['Date'].dt.year
30 dfw_grouped = dfw.groupby(dfw['Date'].dt.year)
31 min_flow_dates = dfw_grouped.apply(lambda x: x.loc[x['7-day streamflow total'].idxmin()

]['Date'])
32 day_of_year = min_flow_dates.dt.dayofyear # Convert the timestamp to Julian date
33 return Annual_minima, day_of_year

Annual_minimum_7day_flow.py

1 import pandas as pd
2

3 def Low_pulse_statistics(df):
4 # Create a copy of the input dataframe, so it is not altered
5 global day
6 dfw = df.copy()
7

8 # Create lists to save the output data
9 countlist = []

10 durationlist = []
11

12 # Determine the threshold value, and group the streamflow by year
13 threshold = dfw['Mean daily flow'].quantile(q = 0.25)
14 dfw['Date'] = pd.to_datetime(dfw['Date'])
15 dfw['Year'] = dfw['Date'].dt.year
16 grouped_dfw = dfw.groupby('Year')
17

18 # Loop through the streamflow data for each year
19 for year, data in grouped_dfw:
20 streamflow_data = data['Mean daily flow']
21

22 exceed_count = 0 # Set the exceed count to 0
23 duration_sum = 0 # Set the duration sum to 0
24 period_start = None # Create a variable called period_start which will be used to

calculate the duration of each pulse
25 prev_exceed = False # Create a boolean to check whether a period has started or not
26

27 # Loop through the daily streamflow data
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28 for day, streamflow in streamflow_data.items():
29 if streamflow < threshold: # Check whether the streamflow value drops below the

threshold
30 if not prev_exceed: # Check whether a period has already started
31 period_start = day
32 prev_exceed = True # Start the period
33 else:
34 if prev_exceed: # Check if a period has ended
35 duration = (day - period_start) # Determine period duration
36 duration_sum += duration
37 exceed_count += 1 # Add 1 to the pulse count
38 period_start = None # Reset period_start
39 prev_exceed = False # Stop the period
40

41 # Check if there is a period ongoing until the end of the data
42 if prev_exceed:
43 duration = (day - period_start)
44 duration_sum += duration
45 exceed_count += 1
46

47 average_duration = duration_sum / exceed_count if exceed_count > 0 else 0 #
Determine the mean duration of the period

48

49 countlist.append(exceed_count)
50 durationlist.append(average_duration)
51 return countlist, durationlist

Low_flow_pulses.py

1 import pandas as pd
2

3 def High_pulse_statistics(df):
4 # Create a copy of the input dataframe, so it is not altered
5 global day
6 dfw = df.copy()
7

8 # Create lists to save the output data
9 countlist = []

10 durationlist = []
11

12 # Determine the threshold value, and group the streamflow by year
13 threshold = dfw['Mean daily flow'].quantile(q = 0.75)
14 dfw['Date'] = pd.to_datetime(dfw['Date'])
15 dfw['Year'] = dfw['Date'].dt.year
16 grouped_dfw = dfw.groupby('Year')
17

18 # Loop through the streamflow data for each year
19 for year, data in grouped_dfw:
20 streamflow_data = data['Mean daily flow']
21

22 exceed_count = 0 # Set the exceed count to 0
23 duration_sum = 0 # Set the duration sum to 0
24 period_start = None #C reate a variable called period_start which will be used to

calculate the duration of each pulse
25 prev_exceed = False # Create a boolean to check whether a period has started or not
26

27 # Loop through the daily streamflow data
28 for day, streamflow in streamflow_data.items():
29 if streamflow > threshold: # Check whether the streamflow value exceeds the

threshold
30 if not prev_exceed: # Check whether a period has already started
31 period_start = day
32 prev_exceed = True # Start the period
33 else:
34 if prev_exceed: # Check if a period has ended
35 duration = (day - period_start) # Determine period duration
36 duration_sum += duration
37 exceed_count += 1 # Add 1 to the pulse count
38 period_start = None # Reset period_start
39 prev_exceed = False # Stop the period
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40

41 # Check if there is a period ongoing until the end of the data
42 if prev_exceed:
43 duration = (day - period_start)
44 duration_sum += duration
45 exceed_count += 1
46

47 average_duration = duration_sum / exceed_count if exceed_count > 0 else 0 #
Determine the mean duration of the period

48

49 countlist.append(exceed_count)
50 durationlist.append(average_duration)
51 return countlist, durationlist

High_flow_pulses.py

1 import pickle
2 from tqdm import tqdm
3 from Annual_averages import *
4 from Annual_maximum_flow import *
5 from Annual_minimum_7day_flow import *
6 from High_flow_pulses import *
7 from Low_flow_pulses import *
8

9 N_areas = pd.read_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\
PyCharm\Catchment_characteristics\N_Discharge_Gauges.xlsx', index_col = 'ID', usecols =
[0,3]).sort_index()['Catchment Area [km2]']

10 L_areas = pd.read_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\
PyCharm\Catchment_characteristics\L_Discharge_Gauges.xlsx', index_col = 'ID', usecols =
[0,3]).sort_index()['Catchment Area [km2]']

11 B_areas = pd.read_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\
PyCharm\Catchment_characteristics\B_Discharge_Gauges.xlsx', index_col = 'ID', usecols =
[0,3]).sort_index()['Catchment Area [km2]']

12 G_areas = pd.read_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\
PyCharm\Catchment_characteristics\G_Discharge_Gauges.xlsx', index_col = 'ID', usecols =
[0,3]).sort_index()['Catchment Area [km2]']

13 F_areas = pd.read_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\
PyCharm\Catchment_characteristics\F_Discharge_Gauges.xlsx', index_col = 'ID', usecols =
[0,3]).sort_index()['Catchment Area [km2]']

14

15

16 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Fdataframes.pkl', 'rb') as file:

17 Fdataframes = pickle.load(file)
18 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Bdataframes.pkl', 'rb') as file:
19 Bdataframes = pickle.load(file)
20 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Gdataframes.pkl', 'rb') as file:
21 Gdataframes = pickle.load(file)
22 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Ndataframes.pkl', 'rb') as file:
23 Ndataframes = pickle.load(file)
24 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Ldataframes.pkl', 'rb') as file:
25 Ldataframes = pickle.load(file)
26

27 "Function written to calculate all the signatures at once" \
28 "Input = Dictionary with the raw dataframes (grouped by country)" \
29 "Output = Dictionary containing the dataframes with all of the signatures determined annually

"
30 def Calculate_all_signatures(dict,areas):
31 signatures = {} # Create a dictionary like the pre-processed unanalysed dataframe

dictionary
32 # Loop through the input dictionary
33 for identifier, area_value in zip(dict.keys(), tqdm(areas)):
34 if not pd.isna(area_value): # Check if the area_value is not NaN
35 df = dict[identifier]
36 Annual_maxima, Maxima_dates = Annual_maximum_flows(df) # Calculate Annual maxima

and julian dates
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37 Annual_minima, Julian_dates_minima = Annual_7day_minimum(df) # Calculate Annual
7-day minima and Julian dates

38 averages, years = Annual_averages(df) # Calculate annual averages and the
corresponding year (to be used as indices)

39 High_flow_counts, High_flow_duration = High_pulse_statistics(df) # Calculate
high flow pulse counts and mean durations

40 Low_flow_counts, Low_flow_duration = Low_pulse_statistics(df) # Calculate low
flow pulse counts and mean durations

41

42 averages = (averages / 1000 / area_value) * 86400 # Normalize Qavg by dividing
it by the catchment area. Then convert to mm

43 Annual_maxima = (Annual_maxima / 1000 / area_value) * 86400 # Normalize AMF by
dividing it by the catchment area. Then convert to

44 Annual_minima = (Annual_minima / 1000 / area_value) * 86400 # Normalize AmF7 by
dividing it by the catchment area. Then convert to mm

45

46 # Create dataframe, using the years as index values. Append all signatures
47 dfS = pd.DataFrame(data=averages, index=years)
48 dfS['Annual maximum flow [mm]'] = Annual_maxima
49 dfS['Julian date of AMF [-]'] = Maxima_dates
50 dfS['Annual minimum 7-day flow [mm]'] = Annual_minima
51 dfS['Julian date of AmF7 [-]'] = Julian_dates_minima
52 dfS['High flow pulse count [count/year]'] = High_flow_counts
53 dfS['High flow pulse duration [days]'] = High_flow_duration
54 dfS['Low flow pulse count [count/year]'] = Low_flow_counts
55 dfS['Low flow pulse duration [days]'] = Low_flow_duration
56

57 # Write the dataframe in the dictionary using the identifier as the key
58 signatures[identifier] = dfS
59 return signatures
60

61 Bdataframes_signatures = Calculate_all_signatures(Bdataframes, B_areas)
62 Gdataframes_signatures = Calculate_all_signatures(Gdataframes, G_areas)
63 Ndataframes_signatures = Calculate_all_signatures(Ndataframes, N_areas)
64 Ldataframes_signatures = Calculate_all_signatures(Ldataframes, L_areas)
65 Fdataframes_signatures = Calculate_all_signatures(Fdataframes, F_areas)
66

67

68 # Write dataframes into local files
69 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\

PROCESSABLE_DATA\Fdataframes_signatures0.pkl','wb') as file:
70 pickle.dump(Fdataframes_signatures , file)
71

72 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Bdataframes_signatures0.pkl','wb') as file:

73 pickle.dump(Bdataframes_signatures , file)
74

75 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Gdataframes_signatures0.pkl','wb') as file:

76 pickle.dump(Gdataframes_signatures , file)
77

78 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Ndataframes_signatures0.pkl','wb') as file:

79 pickle.dump(Ndataframes_signatures , file)
80

81 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\Data\
PROCESSABLE_DATA\Ldataframes_signatures0.pkl','wb') as file:

82 pickle.dump(Ldataframes_signatures , file)

Calculate_signatures.py

1 from pymannkendall import original_test
2 import numpy as np
3 """" All trends slopes, except for the timing signatures, are calculated by using the

original_test from the pymannkendall package"""
4

5

6 def MannKenndallAMF(dict):
7 slopelist = []
8 plist = []
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9 taulist = []
10 slist = []
11 meanlist = []
12

13 for identifier in dict:
14 df = dict[identifier]
15 result = original_test(df['Annual maximum flow [mm]'], alpha=0.10)
16 slopelist.append(result[7])
17 meanlist.append(np.mean(df['Annual maximum flow [mm]']))
18 plist.append(result[2])
19 taulist.append(result[4])
20 slist.append(result[5])
21 return slopelist, plist, taulist, slist, meanlist
22

23 def MannKenndallADF(dict):
24 slopelist = []
25 plist = []
26 taulist = []
27 slist = []
28 meanlist = []
29

30 for identifier in dict:
31 df = dict[identifier]
32 result = original_test(df['Average annual flow [m3/s]'], alpha=0.10)
33 slopelist.append(result[7])
34 meanlist.append(np.mean(df['Average annual flow [m3/s]']))
35 plist.append(result[2])
36 taulist.append(result[4])
37 slist.append(result[5])
38 return slopelist, plist, taulist, slist, meanlist
39

40 def MannKenndallAmF7(dict):
41 slopelist = []
42 plist = []
43 taulist = []
44 slist = []
45 meanlist = []
46

47 for identifier in dict:
48 df = dict[identifier]
49 result = original_test(df['Annual minimum 7-day flow [mm]'], alpha=0.10)
50 slopelist.append(result[7])
51 meanlist.append(np.mean(df['Annual minimum 7-day flow [mm]']))
52 plist.append(result[2])
53 taulist.append(result[4])
54 slist.append(result[5])
55 return slopelist, plist, taulist, slist, meanlist
56

57 def MannKenndallHFPD(dict):
58 slopelist = []
59 plist = []
60 taulist = []
61 slist = []
62 meanlist = []
63

64 for identifier in dict:
65 df = dict[identifier]
66 result = original_test(df['High flow pulse duration [days]'], alpha=0.10)
67 slopelist.append(result[7])
68 meanlist.append(np.mean(df['High flow pulse duration [days]']))
69 plist.append(result[2])
70 taulist.append(result[4])
71 slist.append(result[5])
72 return slopelist, plist, taulist, slist, meanlist
73

74 def MannKenndallHFPC(dict):
75 slopelist = []
76 plist = []
77 taulist = []
78 slist = []
79 meanlist = []
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80

81 for identifier in dict:
82 df = dict[identifier]
83 result = original_test(df['High flow pulse count [count/year]'], alpha=0.10)
84 slopelist.append(result[7])
85 meanlist.append(np.mean(df['High flow pulse count [count/year]']))
86 plist.append(result[2])
87 taulist.append(result[4])
88 slist.append(result[5])
89 return slopelist, plist, taulist, slist, meanlist
90

91 def MannKenndallLFPD(dict):
92 slopelist = []
93 plist = []
94 taulist = []
95 slist = []
96 meanlist = []
97

98 for identifier in dict:
99 df = dict[identifier]

100 result = original_test(df['Low flow pulse duration [days]'], alpha=0.10)
101 slopelist.append(result[7])
102 meanlist.append(np.mean(df['Low flow pulse duration [days]']))
103 plist.append(result[2])
104 taulist.append(result[4])
105 slist.append(result[5])
106 return slopelist, plist, taulist, slist, meanlist
107

108 def MannKenndallLFPC(dict):
109 slopelist = []
110 plist = []
111 taulist = []
112 slist = []
113 meanlist = []
114

115 for identifier in dict:
116 df = dict[identifier]
117 result = original_test(df['Low flow pulse count [count/year]'], alpha=0.10)
118 slopelist.append(result[7])
119 meanlist.append(np.mean(df['Low flow pulse count [count/year]']))
120 plist.append(result[2])
121 taulist.append(result[4])
122 slist.append(result[5])
123 return slopelist, plist, taulist, slist, meanlist

MannKendall.py

1 import numpy as np
2 from tqdm import *
3 from pymannkendall import original_test
4 "Function written to determine the circular statistics of the timing signatures"
5 "Input: Julian dates and the days in the corresponding years"
6 "Output: Average date of occurrence(D), concentration around the average date(R), the angular

values (theta) and the Theil slope estimator"
7

8

9 def determine_circular_statisticsAMF(dict):
10 betalist = []
11 plist = []
12

13 for identifier in tqdm(dict):
14 df = dict[identifier]
15 timing = df['Julian date of AMF [-]']
16 "Determine the number of days in each year"
17 years = timing.index
18

19 m = 365.25 # Average number of days in a year
20

21

22 "Calculate the estimated trend in timing using Theil-Sen slope estimator"
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23 theil_combinations = [] # Create an empty list to store all the combinations in
24 for i in timing.index:
25 for j in timing.index: # Double for loop to capture all the possible pairs of

years
26 if j != i: # if statement to skip pairs where the years are identical, to

avoid errors
27 if timing[j] - timing[i] >= m / 2:
28 k = -m
29 elif timing[j] - timing[i] <= -m / 2:
30 k = m
31 else:
32 k = 0 # k makes the adjustment for the circular nature of the dates
33 combination = ((timing[j] - timing[i] + k) / (j - i)) # Calculate the

difference in timing between a pair of years
34 theil_combinations.append(combination) # Append the difference in timing

to the list
35 beta= np.median(theil_combinations) # Calculate the slope estimator by taking the

median of all the combinations
36

37 trend_MK = original_test(timing, alpha=0.10)
38 p = trend_MK[2]
39

40 betalist.append(beta)
41 plist.append(p)
42

43 return betalist, plist
44

45 def determine_circular_statisticsAmF7(dict):
46 betalist = []
47 plist = []
48

49 for identifier in tqdm(dict):
50 df = dict[identifier]
51 timing = df['Julian date of AmF7 [-]']
52 "Determine the number of days in each year"
53 years = timing.index
54

55 m = 365.25 # Average number of days in a year
56

57

58 "Calculate the estimated trend in timing using Theil-Sen slope estimator"
59 theil_combinations = [] # Create an empty list to store all the combinations in
60 for i in timing.index:
61 for j in timing.index: # Double for loop to capture all the possible pairs of

years
62 if j != i: # if statement to skip pairs where the years are identical, to

avoid errors
63 if timing[j] - timing[i] >= m / 2:
64 k = -m
65 elif timing[j] - timing[i] <= -m / 2:
66 k = m
67 else:
68 k = 0 # k makes the adjustment for the circular nature of the dates
69 combination = ((timing[j] - timing[i] + k) / (j - i)) # Calculate the

difference in timing between a pair of years
70 theil_combinations.append(combination) # Append the difference in timing

to the list
71 beta= np.median(theil_combinations) # Calculate the slope estimator by taking the

median of all the combinations
72

73 trend_MK = original_test(timing, alpha=0.10)
74 p = trend_MK[2]
75

76 betalist.append(beta)
77 plist.append(p)
78

79 return betalist, plist
80

81

82 def calculate_Z_circular(data):
83 # Convert the pandas Series to a NumPy array
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84 data_array = data.to_numpy()
85

86 n = len(data_array)
87 m = 365.25
88 S = 0
89 for i in range(n - 1):
90 for j in range(i + 1, n):
91 if data_array[j] - data_array[i] >= m / 2:
92 k = -m
93 elif data_array[j] - data_array[i] <= -m / 2:
94 k = m
95 else:
96 k = 0 # k makes the adjustment for the circular nature of the dates
97 S += np.sign(data_array[j] - data_array[i] + k)
98

99 var_S = (n * (n - 1) * ((2 * n) + 5)) / 18
100

101 if var_S == 0:
102 Z = 0
103 else:
104 if S == 0:
105 Z = 0
106 elif S < 0:
107 Z = (S - 1) / np.sqrt(var_S)
108 elif S > 0:
109 Z = (S + 1) / np.sqrt(var_S)
110

111 return Z

Circular_statistics.py

1 from Filter_timeseries_dates import filter_timeseries_by_year
2 from Signatures_and_catchments import *
3 import numpy as np
4 import pandas as pd
5 from tqdm import *
6 from Circular_statistics import calculate_Z_circular
7

8 "Function written to create a heatmap based on the combination of start and end years" \
9 "Only uses gauges available for the fifth period"

10

11 filtered_signatures_B = filter_timeseries_by_year(B_signatures, B_id, 1960, 2019)[0]
12 filtered_signatures_F = filter_timeseries_by_year(F_signatures, F_id, 1960, 2019)[0]
13 filtered_signatures_G = filter_timeseries_by_year(G_signatures, G_id, 1960, 2019)[0]
14 filtered_signatures_L = filter_timeseries_by_year(L_signatures, L_id, 1960, 2019)[0]
15 filtered_signatures_N = filter_timeseries_by_year(N_signatures, N_id, 1960, 2019)[0]
16

17 # Create an empty dictionary to store the combined result
18 combined_signatures = {}
19

20 # Update the combined dictionary with individual dictionaries
21 combined_signatures.update(filtered_signatures_B)
22 combined_signatures.update(filtered_signatures_F)
23 combined_signatures.update(filtered_signatures_G)
24 combined_signatures.update(filtered_signatures_L)
25 combined_signatures.update(filtered_signatures_N)
26

27

28 def calculate_heatmap_dataframe_timing(signature):
29 # Define the index and column values
30 end_years = list(range(1980, 2020)) # Reversed end years (2020 to 1980)
31 start_years = list(range(1960, 2000))
32

33 # Create an empty DataFrame with specified index and columns
34 heatmap_data = pd.DataFrame(index=end_years[::-1], columns=start_years)
35

36 for start_year in tqdm(start_years):
37 for i in range(40):
38 end_year = min(2019, (start_year + 20 + i))
39 zlist = []
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40 for identifier in combined_signatures:
41 df = combined_signatures[identifier]
42 filtered_df = df[(df.index >= start_year) & (df.index <= end_year)]
43 sig = filtered_df[signature]
44 z = calculate_Z_circular(sig)
45 zlist.append(z)
46 if end_year == 2020:
47 break
48 average_z = np.average(zlist)
49 heatmap_data.at[end_year, start_year] = average_z
50

51 # Replace NaN values with 0
52 heatmap_data_filled = heatmap_data.fillna(0)
53 return heatmap_data_filled
54

55

56 timing_names = ['Julian date of AmF7 [-]', 'Julian date of AMF [-]']
57 heatmap_dict = {}
58

59 for name in timing_names:
60 heatmap_df = calculate_heatmap_dataframe_timing(name)
61 heatmap_dict[name] = heatmap_df

heatmap_Z_timing.py

1 from Filter_timeseries_dates import filter_timeseries_by_year
2 from Signatures_and_catchments import *
3 import numpy as np
4 import pandas as pd
5 from tqdm import *
6 from pymannkendall import original_test
7 from Circular_statistics import calculate_Z_circular
8

9 "Function written to create a heatmap based on the combination of start and end years" \
10 "Only uses gauges available for the fifth period"
11

12 filtered_signatures_B = filter_timeseries_by_year(B_signatures, B_id, 1960, 2019)[0]
13 filtered_signatures_F = filter_timeseries_by_year(F_signatures, F_id, 1960, 2019)[0]
14 filtered_signatures_G = filter_timeseries_by_year(G_signatures, G_id, 1960, 2019)[0]
15 filtered_signatures_L = filter_timeseries_by_year(L_signatures, L_id, 1960, 2019)[0]
16 filtered_signatures_N = filter_timeseries_by_year(N_signatures, N_id, 1960, 2019)[0]
17

18 # Create an empty dictionary to store the combined result
19 combined_signatures = {}
20

21 # Update the combined dictionary with individual dictionaries
22 combined_signatures.update(filtered_signatures_B)
23 combined_signatures.update(filtered_signatures_F)
24 combined_signatures.update(filtered_signatures_G)
25 combined_signatures.update(filtered_signatures_L)
26 combined_signatures.update(filtered_signatures_N)
27

28 def calculate_heatmap_dataframe(signature):
29 # Define the index and column values
30 end_years = list(range(1980, 2020)) # Reversed end years (2020 to 1980)
31 start_years = list(range(1960, 2000))
32

33 # Create an empty DataFrame with specified index and columns
34 heatmap_data = pd.DataFrame(index=end_years[::-1], columns=start_years)
35

36 for start_year in tqdm(start_years):
37 for i in range(40):
38 end_year = min(2019, (start_year + 20 + i))
39 zlist = []
40 for identifier in combined_signatures:
41 df = combined_signatures[identifier]
42 filtered_df = df[(df.index >= start_year) & (df.index <= end_year)]
43 sig = filtered_df[signature]
44 z = original_test(sig, alpha=0.10)[3]
45 zlist.append(z)
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46 if end_year == 2020:
47 break
48 average_z = np.average(zlist)
49 heatmap_data.at[end_year, start_year] = average_z
50

51 # Replace NaN values with 0
52 heatmap_data_filled = heatmap_data.fillna(0)
53 return heatmap_data_filled
54

55 def calculate_heatmap_dataframe_timing(signature):
56 # Define the index and column values
57 end_years = list(range(1980, 2020)) # Reversed end years (2020 to 1980)
58 start_years = list(range(1960, 2000))
59

60 # Create an empty DataFrame with specified index and columns
61 heatmap_data = pd.DataFrame(index=end_years[::-1], columns=start_years)
62

63 for start_year in tqdm(start_years):
64 for i in range(40):
65 end_year = min(2019, (start_year + 20 + i))
66 zlist = []
67 for identifier in combined_signatures:
68 df = combined_signatures[identifier]
69 filtered_df = df[(df.index >= start_year) & (df.index <= end_year)]
70 sig = filtered_df[signature]
71 z = calculate_Z_circular(sig)
72 zlist.append(z)
73 if end_year == 2020:
74 break
75 average_z = np.average(zlist)
76 heatmap_data.at[end_year, start_year] = average_z
77

78 # Replace NaN values with 0
79 heatmap_data_filled = heatmap_data.fillna(0)
80 return heatmap_data_filled
81

82 timing_names = ['Julian date of AmF7 [-]', 'Julian date of AMF [-]']
83 names = ['Annual minimum 7-day flow [mm]', 'Average annual flow [m3/s]', 'Annual maximum flow

[mm]', 'Low flow pulse count [count/year]', 'High flow pulse count [count/year]', 'Low
flow pulse duration [days]', 'High flow pulse duration [days]']

84 heatmap_dict ={}
85

86 for name in timing_names:
87 heatmap_df = calculate_heatmap_dataframe_timing(name)
88 heatmap_dict[name] = heatmap_df
89 for name in names:
90 heatmap_df = calculate_heatmap_dataframe(name)
91 heatmap_dict[name] = heatmap_df
92

93 with open(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\Results\
Heatmaps\Heatmaps_z_average','wb') as file:

94 pickle.dump(heatmap_dict, file)

Sensitivity_heatmap.py

1 def filter_timeseries_by_year(dict, IDframe, start_year, end_year):
2 filtered_dictionary = {} # Create a new empty dictionary
3 ID = IDframe
4 for identifier, idframe in zip(dict, ID.iterrows()):
5 df = dict[identifier]
6 years = df.index
7 idx, row = idframe
8

9 # Check if both start_year and end_year are present in the years list
10 if (start_year in years) and (end_year in years):
11 # Filter the dataframe to keep only data between start_year and end_year
12 filtered_df = df[(df.index >= start_year) & (df.index <= end_year)]
13

14 # Update the filtered dictionary and saved_entries list
15 filtered_dictionary[identifier] = filtered_df
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16 else:
17 ID = ID.drop(idx)
18 return filtered_dictionary, ID

Filter_timeseries_dates.py

1 from Circular_statistics import determine_circular_statisticsAMF
2 from Circular_statistics import determine_circular_statisticsAmF7
3 from Filter_timeseries_dates import filter_timeseries_by_year
4 from MannKenndall import *
5 from Signatures_and_catchments import *
6

7 "Function to perform the full-scale trend analysis on all of the selected signatures"
8 "Input: Catchment dataframes, Signatures dictionary, first and final year of the desired

period"
9 "Output: Catchment dataframe containing the desired trend parameters for the selected

signatures"
10

11 def full_scale_trend_analysis(signatures_dictionary , catchments_dataframe , start_year,
end_year):

12

13 'First begin with filtering both the signatures dictionary and catchments dataframe to
ensure they are the same length'

14 filtered_signatures , catchments_filtered = filter_timeseries_by_year(
signatures_dictionary , catchments_dataframe , start_year, end_year)

15

16 results = catchments_filtered.copy()
17

18 results['beta_AMF_timing '], results['p_AMF_timing '] = determine_circular_statisticsAMF(
filtered_signatures)

19 results['beta_AmF7_timing '], results['p_AmF7_timing '] = determine_circular_statisticsAmF7
(filtered_signatures)

20

21 results['beta AMF'], results['p AMF'], results['tau AMF'], results['s AMF'], results['
mean AMF'] = MannKenndallAMF(filtered_signatures)

22 results['beta ADF'], results['p ADF'], results['tau ADF'], results['s ADF'], results['
mean ADF'] = MannKenndallADF(filtered_signatures)

23 results['beta AmF7'], results['p AmF7'], results['tau AmF7'], results['s AmF7'], results
['mean AmF7'] = MannKenndallAmF7(filtered_signatures)

24 results['beta HFPC'], results['p HFPC'], results['tau HFPC'], results['s HFPC'], results
['mean HFPC'] = MannKenndallHFPC(filtered_signatures)

25 results['beta HFPD'], results['p HFPD'], results['tau HFPD'], results['s HFPD'], results
['mean HFPD'] = MannKenndallHFPD(filtered_signatures)

26 results['beta LFPC'], results['p LFPC'], results['tau LFPC'], results['s LFPC'], results
['mean LFPC'] = MannKenndallLFPC(filtered_signatures)

27 results['beta LFPD'], results['p LFPD'], results['tau LFPD'], results['s LFPD'], results
['mean LFPD'] = MannKenndallLFPD(filtered_signatures)

28

29 return results
30

31 # Running of the results over period 1
32 results_B = full_scale_trend_analysis(B_signatures, B_id, 2000, 2019)
33 results_N = full_scale_trend_analysis(N_signatures, N_id, 2000, 2019)
34 results_G = full_scale_trend_analysis(G_signatures, G_id, 2000, 2019)
35 results_F = full_scale_trend_analysis(F_signatures, F_id, 2000, 2019)
36 results_L = full_scale_trend_analysis(L_signatures, L_id, 2000, 2019)
37

38 results_G = results_G.drop([309, 470])
39

40 results_L.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period1\L_results.xlsx', index = False)

41 results_B.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period1\B_results.xlsx', index = False)

42 results_G.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period1\G_results.xlsx', index = False)

43 results_F.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period1\F_results.xlsx', index = False)

44 results_N.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period1\N_results.xlsx', index = False)

45
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46 full_results = pd.concat([results_L, results_F, results_G, results_N, results_B])
47 full_results.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\

Results\Trend_Analysis\Period1\full_results.xlsx', index = False)
48

49 # Running of the results over period 2
50 results_B = full_scale_trend_analysis(B_signatures, B_id, 1990, 2019)
51 results_N = full_scale_trend_analysis(N_signatures, N_id, 1990, 2019)
52 results_G = full_scale_trend_analysis(G_signatures, G_id, 1990, 2019)
53 results_F = full_scale_trend_analysis(F_signatures, F_id, 1990, 2019)
54 results_L = full_scale_trend_analysis(L_signatures, L_id, 1990, 2019)
55

56 results_G = results_G.drop([309, 470])
57

58 results_L.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period2\L_results.xlsx', index = False)

59 results_B.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period2\B_results.xlsx', index = False)

60 results_G.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period2\G_results.xlsx', index = False)

61 results_F.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period2\F_results.xlsx', index = False)

62 results_N.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period2\N_results.xlsx', index = False)

63

64 full_results = pd.concat([results_L, results_F, results_G, results_N, results_B])
65 full_results.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\

Results\Trend_Analysis\Period2\full_results.xlsx', index = False)
66

67 # Running of the results over period 3
68 results_B = full_scale_trend_analysis(B_signatures, B_id, 1980, 2019)
69 results_N = full_scale_trend_analysis(N_signatures, N_id, 1980, 2019)
70 results_G = full_scale_trend_analysis(G_signatures, G_id, 1980, 2019)
71 results_F = full_scale_trend_analysis(F_signatures, F_id, 1980, 2019)
72 results_L = full_scale_trend_analysis(L_signatures, L_id, 1980, 2019)
73

74 results_G = results_G.drop([470])
75

76 results_L.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period3\L_results.xlsx', index = False)

77 results_B.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period3\B_results.xlsx', index = False)

78 results_G.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period3\G_results.xlsx', index = False)

79 results_F.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period3\F_results.xlsx', index = False)

80 results_N.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period3\N_results.xlsx', index = False)

81

82 full_results = pd.concat([results_L, results_F, results_G, results_N, results_B])
83 full_results.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\

Results\Trend_Analysis\Period3\full_results.xlsx', index = False)
84

85 # Running of the results over period 4
86 results_B = full_scale_trend_analysis(B_signatures, B_id, 1970, 2019)
87 results_N = full_scale_trend_analysis(N_signatures, N_id, 1970, 2019)
88 results_G = full_scale_trend_analysis(G_signatures, G_id, 1970, 2019)
89 results_F = full_scale_trend_analysis(F_signatures, F_id, 1970, 2019)
90 results_L = full_scale_trend_analysis(L_signatures, L_id, 1970, 2019)
91

92 results_G = results_G.drop([470])
93

94 results_L.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period4\L_results.xlsx', index = False)

95 results_B.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period4\B_results.xlsx', index = False)

96 results_G.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period4\G_results.xlsx', index = False)

97 results_F.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period4\F_results.xlsx', index = False)

98 results_N.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period4\N_results.xlsx', index = False)
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99

100 full_results = pd.concat([results_L, results_F, results_G, results_N, results_B])
101 full_results.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\

Results\Trend_Analysis\Period4\full_results.xlsx', index = False)
102

103 # Running of the results over period 5
104 results_B = full_scale_trend_analysis(B_signatures, B_id, 1960, 2019)
105 results_N = full_scale_trend_analysis(N_signatures, N_id, 1960, 2019)
106 results_G = full_scale_trend_analysis(G_signatures, G_id, 1960, 2019)
107 results_F = full_scale_trend_analysis(F_signatures, F_id, 1960, 2019)
108 results_L = full_scale_trend_analysis(L_signatures, L_id, 1960, 2019)
109

110 results_G = results_G.drop([470])
111

112 results_L.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period5\L_results.xlsx', index = False)

113 results_B.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period5\B_results.xlsx', index = False)

114 results_G.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period5\G_results.xlsx', index = False)

115 results_F.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period5\F_results.xlsx', index = False)

116 results_N.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\
Results\Trend_Analysis\Period5\N_results.xlsx', index = False)

117

118 full_results = pd.concat([results_L, results_F, results_G, results_N, results_B])
119 full_results.to_excel(r'C:\Users\dstou\Documents\Civiel\Master\MscThesis\Programming\PyCharm\

Results\Trend_Analysis\Period5\full_results.xlsx', index = False)

Trend_analysis.py



B
Tables representing distribution of

trends

Signature: AmF7 timing Positive trend Negative trend No trend All
Significant n = 35 (3.5)% n = 13 (1.3%) n = 0 (0%) n = 48 (4.7%)

Period 1 Not significant n = 611 (60.4)% n = 334 (33.0%) n = 18 (1.8%) n = 963 (95.3%)
All n = 646 (63.9)% n = 347 (34.3%) n = 18 (1.8%) n = 1011 (100%)
Significant n = 19 (2.2)% n = 24 (2.8%) n = 0 (0%) n = 43 (4.9%)

Period 2 Not significant n = 433 (49.8)% n = 354 (40.7%) n = 40 (4.6%) n = 827 (95.1%)
All n = 452 (52.0)% n = 378 (43.4%) n = 40 (4.6%) n = 870 (100%)
Significant n = 8 (1.2)% n = 132 (20.2%) n = 0 (0%) n = 140 (21.4%)

Period 3 Not significant n = 113 (17.3)% n = 380 (58.0%) n = 22 (3.4%) n = 515 (78.6%)
All n = 121 (18.5)% n = 512 (78.2%) n = 22 (3.4%) n = 655 (100%)
Significant n = 6 (1.4)% n = 103 (23.4%) n = 0 (0%) n = 109 (24.7%)

Period 4 Not significant n = 41 (9.3)% n = 283 (64.2%) n = 8 (1.8%) n = 332 (75.3%)
All n = 47 (10.7)% n = 386 (87.5%) n = 8 (1.8%) n = 441 (100%)
Significant n = 4 (1.7)% n = 38 (16.1%) n = 0 (0%) n = 42 (17.8%)

Period 5 Not significant n = 17 (7.2)% n = 174 (73.7%) n = 3 (1.3%) n = 194 (82.2%)
All n = 21 (8.9)% n = 212 (89.8%) n = 3 (1.3%) n = 236 (100%)

Table B.1: Distribution of the AmF7 timing trends

38



39

Signature: AMF timing Positive trend Negative trend No trend All
Significant n = 32 (3.2)% n = 21 (2.1%) n = 0 (0%) n = 53 (5.2%)

Period 1 Not significant n = 366 (36.2)% n = 578 (57.2%) n = 14 (1.4%) n = 958 (94.8%)
All n = 398 (39.4)% n = 599 (59.2%) n = 14 (1.4%) n = 1011 (100%)
Significant n = 24 (2.8)% n = 15 (1.7%) n = 0 (0%) n = 39 (4.5%)

Period 2 Not significant n = 544 (62.5)% n = 260 (29.9%) n = 27 (3.1%) n = 831 (95.5%)
All n = 568 (65.3)% n = 275 (31.6%) n = 27 (3.1%) n = 870 (100%)
Significant n = 7 (1.1)% n = 8 (1.2%) n = 0 (0%) n = 15 (2.3%)

Period 3 Not significant n = 212 (32.4)% n = 388 (59.2%) n = 40 (6.1%) n = 640 (97.7%)
All n = 219 (33.4)% n = 396 (60.5%) n = 40 (6.1%) n = 655 (100%)
Significant n = 10 (2.3)% n = 8 (1.8%) n = 0 (0%) n = 18 (4.1%)

Period 4 Not significant n = 140 (31.7)% n = 253 (57.4%) n = 30 (6.8%) n = 423 (95.9%)
All n = 150 (34.0)% n = 261 (59.2%) n = 30 (6.8%) n = 441 (100%)
Significant n = 26 (11.0)% n = 7 (3.0%) n = 0 (0%) n = 33 (14.0%)

Period 5 Not significant n = 114 (48.3)% n = 78 (33.1%) n = 11 (4.7%) n = 203 (86.0%)
All n = 140 (59.3)% n = 85 (36.0%) n = 11 (4.7%) n = 236 (100%)

Table B.2: Distribution of the AMF timing trends

Signature: AmF7 magnitude Positive trend Negative trend No trend All
Significant n = 7 (0.7)% n = 535 (52.9%) n = 0 (0%) n = 542 (53.6%)

Period 1 Not significant n = 88 (8.7)% n = 380 (37.6%) n = 1 (0.1%) n = 469 (46.4%)
All n = 95 (9.4)% n = 915 (90.5%) n = 1 (0.1%) n = 1011 (100%)
Significant n = 66 (7.6)% n = 168 (19.3%) n = 0 (0%) n = 234 (26.9%)

Period 2 Not significant n = 253 (29.1)% n = 373 (42.9%) n = 10 (1.1%) n = 636 (73.1%)
All n = 319 (36.7)% n = 541 (62.2%) n = 10 (1.1%) n = 870 (100%)
Significant n = 14 (2.1)% n = 361 (55.1%) n = 0 (0%) n = 375 (57.3%)

Period 3 Not significant n = 64 (9.8)% n = 216 (33.0%) n = 0 (0.0%) n = 280 (42.7%)
All n = 78 (11.9)% n = 577 (88.1%) n = 0 (0.0%) n = 655 (100%)
Significant n = 30 (6.8)% n = 146 (33.1%) n = 0 (0%) n = 176 (39.9%)

Period 4 Not significant n = 89 (20.2)% n = 174 (39.5%) n = 2 (0.5%) n = 265 (60.1%)
All n = 119 (27.0)% n = 320 (72.6%) n = 2 (0.5%) n = 441 (100%)
Significant n = 18 (7.6)% n = 65 (27.5%) n = 0 (0%) n = 83 (35.2%)

Period 5 Not significant n = 56 (23.7)% n = 96 (40.7%) n = 1 (0.4%) n = 153 (64.8%)
All n = 74 (31.4)% n = 161 (68.2%) n = 1 (0.4%) n = 236 (100%)

Table B.3: Distribution of the AmF7 magnitude trends
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Signature: ADF magnitude Positive trend Negative trend No trend All
Significant n = 0 (0.0)% n = 314 (31.1%) n = 0 (0%) n = 314 (31.1%)

Period 1 Not significant n = 70 (6.9)% n = 627 (62.0%) n = 0 (0.0%) n = 697 (68.9%)
All n = 70 (6.9)% n = 941 (93.1%) n = 0 (0.0%) n = 1011 (100%)
Significant n = 16 (1.8)% n = 112 (12.9%) n = 0 (0%) n = 128 (14.7%)

Period 2 Not significant n = 250 (28.7)% n = 492 (56.6%) n = 0 (0.0%) n = 742 (85.3%)
All n = 266 (30.6)% n = 604 (69.4%) n = 0 (0.0%) n = 870 (100%)
Significant n = 3 (0.5)% n = 436 (66.6%) n = 0 (0%) n = 439 (67.0%)

Period 3 Not significant n = 19 (2.9)% n = 197 (30.1%) n = 0 (0.0%) n = 216 (33.0%)
All n = 22 (3.4)% n = 633 (96.6%) n = 0 (0.0%) n = 655 (100%)
Significant n = 11 (2.5)% n = 60 (13.6%) n = 0 (0%) n = 71 (16.1%)

Period 4 Not significant n = 89 (20.2)% n = 281 (63.7%) n = 0 (0.0%) n = 370 (83.9%)
All n = 100 (22.7)% n = 341 (77.3%) n = 0 (0.0%) n = 441 (100%)
Significant n = 6 (2.5)% n = 39 (16.5%) n = 0 (0%) n = 45 (19.1%)

Period 5 Not significant n = 48 (20.3)% n = 143 (60.6%) n = 0 (0.0%) n = 191 (80.9%)
All n = 54 (22.9)% n = 182 (77.1%) n = 0 (0.0%) n = 236 (100%)

Table B.4: Distribution of the ADF magnitude trends

Signature: AMF magnitude Positive trend Negative trend No trend All
Significant n = 9 (0.9)% n = 111 (11.0%) n = 0 (0%) n = 120 (11.9%)

Period 1 Not significant n = 181 (17.9)% n = 705 (69.7%) n = 5 (0.5%) n = 891 (88.1%)
All n = 190 (18.8)% n = 816 (80.7%) n = 5 (0.5%) n = 1011 (100%)
Significant n = 9 (1.0)% n = 204 (23.4%) n = 0 (0%) n = 213 (24.5%)

Period 2 Not significant n = 147 (16.9)% n = 506 (58.2%) n = 4 (0.5%) n = 657 (75.5%)
All n = 156 (17.9)% n = 710 (81.6%) n = 4 (0.5%) n = 870 (100%)
Significant n = 8 (1.2)% n = 271 (41.4%) n = 0 (0%) n = 279 (42.6%)

Period 3 Not significant n = 54 (8.2)% n = 319 (48.7%) n = 3 (0.5%) n = 376 (57.4%)
All n = 62 (9.5)% n = 590 (90.1%) n = 3 (0.5%) n = 655 (100%)
Significant n = 27 (6.1)% n = 20 (4.5%) n = 0 (0%) n = 47 (10.7%)

Period 4 Not significant n = 185 (42.0)% n = 204 (46.3%) n = 5 (1.1%) n = 394 (89.3%)
All n = 212 (48.1)% n = 224 (50.8%) n = 5 (1.1%) n = 441 (100%)
Significant n = 32 (13.6)% n = 11 (4.7%) n = 0 (0%) n = 43 (18.2%)

Period 5 Not significant n = 99 (41.9)% n = 92 (39.0%) n = 2 (0.8%) n = 193 (81.8%)
All n = 131 (55.5)% n = 103 (43.6%) n = 2 (0.8%) n = 236 (100%)

Table B.5: Distribution of the AMF magnitude trends



41

Signature: LFPC Positive trend Negative trend No trend All
Significant n = 100 (9.9)% n = 23 (2.3%) n = 0 (0%) n = 123 (12.2%)

Period 1 Not significant n = 369 (36.5)% n = 211 (20.9%) n = 308 (30.5%) n = 888 (87.8%)
All n = 469 (46.4)% n = 234 (23.1%) n = 308 (30.5%) n = 1011 (100%)
Significant n = 68 (7.8)% n = 69 (7.9%) n = 0 (0%) n = 137 (15.7%)

Period 2 Not significant n = 170 (19.5)% n = 226 (26.0%) n = 337 (38.7%) n = 733 (84.3%)
All n = 238 (27.4)% n = 295 (33.9%) n = 337 (38.7%) n = 870 (100%)
Significant n = 284 (43.4)% n = 16 (2.4%) n = 0 (0%) n = 300 (45.8%)

Period 3 Not significant n = 158 (24.1)% n = 30 (4.6%) n = 167 (25.5%) n = 355 (54.2%)
All n = 442 (67.5)% n = 46 (7.0%) n = 167 (25.5%) n = 655 (100%)
Significant n = 103 (23.4)% n = 22 (5.0%) n = 0 (0%) n = 125 (28.3%)

Period 4 Not significant n = 103 (23.4)% n = 35 (7.9%) n = 178 (40.4%) n = 316 (71.7%)
All n = 206 (46.7)% n = 57 (12.9%) n = 178 (40.4%) n = 441 (100%)
Significant n = 82 (34.7)% n = 15 (6.4%) n = 0 (0%) n = 97 (41.1%)

Period 5 Not significant n = 63 (26.7)% n = 17 (7.2%) n = 59 (25.0%) n = 139 (58.9%)
All n = 145 (61.4)% n = 32 (13.6%) n = 59 (25.0%) n = 236 (100%)

Table B.6: Distribution of the LFPC trends

Signature: HFPC Positive trend Negative trend No trend All
Significant n = 10 (1.0)% n = 101 (10.0%) n = 0 (0%) n = 111 (11.0%)

Period 1 Not significant n = 108 (10.7)% n = 463 (45.8%) n = 329 (32.5%) n = 900 (89.0%)
All n = 118 (11.7)% n = 564 (55.8%) n = 329 (32.5%) n = 1011 (100%)
Significant n = 105 (12.1)% n = 15 (1.7%) n = 0 (0%) n = 120 (13.8%)

Period 2 Not significant n = 295 (33.9)% n = 92 (10.6%) n = 363 (41.7%) n = 750 (86.2%)
All n = 400 (46.0)% n = 107 (12.3%) n = 363 (41.7%) n = 870 (100%)
Significant n = 7 (1.1)% n = 73 (11.1%) n = 0 (0%) n = 80 (12.2%)

Period 3 Not significant n = 74 (11.3)% n = 179 (27.3%) n = 322 (49.2%) n = 575 (87.8%)
All n = 81 (12.4)% n = 252 (38.5%) n = 322 (49.2%) n = 655 (100%)
Significant n = 65 (14.7)% n = 29 (6.6%) n = 0 (0%) n = 94 (21.3%)

Period 4 Not significant n = 85 (19.3)% n = 38 (8.6%) n = 224 (50.8%) n = 347 (78.7%)
All n = 150 (34.0)% n = 67 (15.2%) n = 224 (50.8%) n = 441 (100%)
Significant n = 42 (17.8)% n = 14 (5.9%) n = 0 (0%) n = 56 (23.7%)

Period 5 Not significant n = 41 (17.4)% n = 17 (7.2%) n = 122 (51.7%) n = 180 (76.3%)
All n = 83 (35.2)% n = 31 (13.1%) n = 122 (51.7%) n = 236 (100%)

Table B.7: Distribution of the HFPC trends
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Signature: LFPD Positive trend Negative trend No trend All
Significant n = 510 (50.4)% n = 3 (0.3%) n = 0 (0%) n = 513 (50.7%)

Period 1 Not significant n = 439 (43.4)% n = 34 (3.4%) n = 25 (2.5%) n = 498 (49.3%)
All n = 949 (93.9)% n = 37 (3.7%) n = 25 (2.5%) n = 1011 (100%)
Significant n = 142 (16.3)% n = 23 (2.6%) n = 0 (0%) n = 165 (19.0%)

Period 2 Not significant n = 451 (51.8)% n = 219 (25.2%) n = 35 (4.0%) n = 705 (81.0%)
All n = 593 (68.2)% n = 242 (27.8%) n = 35 (4.0%) n = 870 (100%)
Significant n = 293 (44.7)% n = 13 (2.0%) n = 0 (0%) n = 306 (46.7%)

Period 3 Not significant n = 276 (42.1)% n = 57 (8.7%) n = 16 (2.4%) n = 349 (53.3%)
All n = 569 (86.9)% n = 70 (10.7%) n = 16 (2.4%) n = 655 (100%)
Significant n = 112 (25.4)% n = 17 (3.9%) n = 0 (0%) n = 129 (29.3%)

Period 4 Not significant n = 172 (39.0)% n = 110 (24.9%) n = 30 (6.8%) n = 312 (70.7%)
All n = 284 (64.4)% n = 127 (28.8%) n = 30 (6.8%) n = 441 (100%)
Significant n = 58 (24.6)% n = 22 (9.3%) n = 0 (0%) n = 80 (33.9%)

Period 5 Not significant n = 73 (30.9)% n = 62 (26.3%) n = 21 (8.9%) n = 156 (66.1%)
All n = 131 (55.5)% n = 84 (35.6%) n = 21 (8.9%) n = 236 (100%)

Table B.8: Distribution of the LFPD trends

Signature: HFPD Positive trend Negative trend No trend All
Significant n = 11 (1.1)% n = 157 (15.5%) n = 0 (0%) n = 168 (16.6%)

Period 1 Not significant n = 259 (25.6)% n = 573 (56.7%) n = 11 (1.1%) n = 843 (83.4%)
All n = 270 (26.7)% n = 730 (72.2%) n = 11 (1.1%) n = 1011 (100%)
Significant n = 22 (2.5)% n = 96 (11.0%) n = 0 (0%) n = 118 (13.6%)

Period 2 Not significant n = 258 (29.7)% n = 476 (54.7%) n = 18 (2.1%) n = 752 (86.4%)
All n = 280 (32.2)% n = 572 (65.7%) n = 18 (2.1%) n = 870 (100%)
Significant n = 10 (1.5)% n = 215 (32.8%) n = 0 (0%) n = 225 (34.4%)

Period 3 Not significant n = 80 (12.2)% n = 346 (52.8%) n = 4 (0.6%) n = 430 (65.6%)
All n = 90 (13.7)% n = 561 (85.6%) n = 4 (0.6%) n = 655 (100%)
Significant n = 20 (4.5)% n = 56 (12.7%) n = 0 (0%) n = 76 (17.2%)

Period 4 Not significant n = 145 (32.9)% n = 211 (47.8%) n = 9 (2.0%) n = 365 (82.8%)
All n = 165 (37.4)% n = 267 (60.5%) n = 9 (2.0%) n = 441 (100%)
Significant n = 6 (2.5)% n = 45 (19.1%) n = 0 (0%) n = 51 (21.6%)

Period 5 Not significant n = 58 (24.6)% n = 125 (53.0%) n = 2 (0.8%) n = 185 (78.4%)
All n = 64 (27.1)% n = 170 (72.0%) n = 2 (0.8%) n = 236 (100%)

Table B.9: Distribution of the HFPD trends
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Signature: AmF7 timing Positive trend Negative trend No trend All
Significant n = 4 (1.7)% n = 1 (0.4%) n = 0 (0%) n = 5 (2.1%)

Period 1 Not significant n = 149 (63.4)% n = 78 (33.2%) n = 3 (1.3%) n = 230 (97.9%)
All n = 153 (65.1)% n = 79 (33.6%) n = 3 (1.3%) n = 235 (100%)
Significant n = 1 (0.4)% n = 7 (3.0%) n = 0 (0%) n = 8 (3.4%)

Period 2 Not significant n = 115 (48.9)% n = 102 (43.4%) n = 10 (4.3%) n = 227 (96.6%)
All n = 116 (49.4)% n = 109 (46.4%) n = 10 (4.3%) n = 235 (100%)
Significant n = 0 (0.0)% n = 58 (24.7%) n = 0 (0%) n = 58 (24.7%)

Period 3 Not significant n = 28 (11.9)% n = 144 (61.3%) n = 5 (2.1%) n = 177 (75.3%)
All n = 28 (11.9)% n = 202 (86.0%) n = 5 (2.1%) n = 235 (100%)
Significant n = 2 (0.9)% n = 59 (25.3%) n = 0 (0%) n = 61 (26.2%)

Period 4 Not significant n = 16 (6.9)% n = 153 (65.7%) n = 3 (1.3%) n = 172 (73.8%)
All n = 18 (7.7)% n = 212 (91.0%) n = 3 (1.3%) n = 233 (100%)
Significant n = 4 (1.7)% n = 38 (16.1%) n = 0 (0%) n = 42 (17.8%)

Period 5 Not significant n = 17 (7.2)% n = 174 (73.7%) n = 3 (1.3%) n = 194 (82.2%)
All n = 21 (8.9)% n = 212 (89.8%) n = 3 (1.3%) n = 236 (100%)

Table B.10: Distribution of the AmF7 timing trends, using only gauges that have a record length of at least 60 years

Signature: AMF timing Positive trend Negative trend No trend All
Significant n = 4 (1.7)% n = 2 (0.9%) n = 0 (0%) n = 6 (2.6%)

Period 1 Not significant n = 67 (28.5)% n = 160 (68.1%) n = 2 (0.9%) n = 229 (97.4%)
All n = 71 (30.2)% n = 162 (68.9%) n = 2 (0.9%) n = 235 (100%)
Significant n = 4 (1.7)% n = 9 (3.8%) n = 0 (0%) n = 13 (5.5%)

Period 2 Not significant n = 131 (55.7)% n = 81 (34.5%) n = 10 (4.3%) n = 222 (94.5%)
All n = 135 (57.4)% n = 90 (38.3%) n = 10 (4.3%) n = 235 (100%)
Significant n = 2 (0.9)% n = 3 (1.3%) n = 0 (0%) n = 5 (2.1%)

Period 3 Not significant n = 76 (32.3)% n = 137 (58.3%) n = 17 (7.2%) n = 230 (97.9%)
All n = 78 (33.2)% n = 140 (59.6%) n = 17 (7.2%) n = 235 (100%)
Significant n = 5 (2.1)% n = 5 (2.1%) n = 0 (0%) n = 10 (4.3%)

Period 4 Not significant n = 82 (35.2)% n = 125 (53.6%) n = 16 (6.9%) n = 223 (95.7%)
All n = 87 (37.3)% n = 130 (55.8%) n = 16 (6.9%) n = 233 (100%)
Significant n = 26 (11.0)% n = 7 (3.0%) n = 0 (0%) n = 33 (14.0%)

Period 5 Not significant n = 114 (48.3)% n = 78 (33.1%) n = 11 (4.7%) n = 203 (86.0%)
All n = 140 (59.3)% n = 85 (36.0%) n = 11 (4.7%) n = 236 (100%)

Table B.11: Distribution of the AMF timing trends, using only gauges that have a record length of at least 60 years
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Signature: AmF7 magnitude Positive trend Negative trend No trend All
Significant n = 2 (0.9)% n = 126 (53.6%) n = 0 (0%) n = 128 (54.5%)

Period 1 Not significant n = 19 (8.1)% n = 88 (37.4%) n = 0 (0.0%) n = 107 (45.5%)
All n = 21 (8.9)% n = 214 (91.1%) n = 0 (0.0%) n = 235 (100%)
Significant n = 21 (8.9)% n = 47 (20.0%) n = 0 (0%) n = 68 (28.9%)

Period 2 Not significant n = 59 (25.1)% n = 107 (45.5%) n = 1 (0.4%) n = 167 (71.1%)
All n = 80 (34.0)% n = 154 (65.5%) n = 1 (0.4%) n = 235 (100%)
Significant n = 8 (3.4)% n = 128 (54.5%) n = 0 (0%) n = 136 (57.9%)

Period 3 Not significant n = 20 (8.5)% n = 79 (33.6%) n = 0 (0.0%) n = 99 (42.1%)
All n = 28 (11.9)% n = 207 (88.1%) n = 0 (0.0%) n = 235 (100%)
Significant n = 15 (6.4)% n = 70 (30.0%) n = 0 (0%) n = 85 (36.5%)

Period 4 Not significant n = 46 (19.7)% n = 101 (43.3%) n = 1 (0.4%) n = 148 (63.5%)
All n = 61 (26.2)% n = 171 (73.4%) n = 1 (0.4%) n = 233 (100%)
Significant n = 18 (7.6)% n = 65 (27.5%) n = 0 (0%) n = 83 (35.2%)

Period 5 Not significant n = 56 (23.7)% n = 96 (40.7%) n = 1 (0.4%) n = 153 (64.8%)
All n = 74 (31.4)% n = 161 (68.2%) n = 1 (0.4%) n = 236 (100%)

Table B.12: Distribution of the AmF7 trends, using only gauges that have a record length of at least 60 years

Signature: ADF magnitude Positive trend Negative trend No trend All
Significant n = 0 (0.0)% n = 107 (45.5%) n = 0 (0%) n = 107 (45.5%)

Period 1 Not significant n = 7 (3.0)% n = 121 (51.5%) n = 0 (0.0%) n = 128 (54.5%)
All n = 7 (3.0)% n = 228 (97.0%) n = 0 (0.0%) n = 235 (100%)
Significant n = 3 (1.3)% n = 32 (13.6%) n = 0 (0%) n = 35 (14.9%)

Period 2 Not significant n = 63 (26.8)% n = 137 (58.3%) n = 0 (0.0%) n = 200 (85.1%)
All n = 66 (28.1)% n = 169 (71.9%) n = 0 (0.0%) n = 235 (100%)
Significant n = 1 (0.4)% n = 157 (66.8%) n = 0 (0%) n = 158 (67.2%)

Period 3 Not significant n = 7 (3.0)% n = 70 (29.8%) n = 0 (0.0%) n = 77 (32.8%)
All n = 8 (3.4)% n = 227 (96.6%) n = 0 (0.0%) n = 235 (100%)
Significant n = 6 (2.6)% n = 28 (12.0%) n = 0 (0%) n = 34 (14.6%)

Period 4 Not significant n = 35 (15.0)% n = 164 (70.4%) n = 0 (0.0%) n = 199 (85.4%)
All n = 41 (17.6)% n = 192 (82.4%) n = 0 (0.0%) n = 233 (100%)
Significant n = 6 (2.5)% n = 39 (16.5%) n = 0 (0%) n = 45 (19.1%)

Period 5 Not significant n = 48 (20.3)% n = 143 (60.6%) n = 0 (0.0%) n = 191 (80.9%)
All n = 54 (22.9)% n = 182 (77.1%) n = 0 (0.0%) n = 236 (100%)

Table B.13: Distribution of the ADF trends, using only gauges that have a record length of at least 60 years
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Signature: AMF magnitude Positive trend Negative trend No trend All
Significant n = 2 (0.9)% n = 25 (10.6%) n = 0 (0%) n = 27 (11.5%)

Period 1 Not significant n = 34 (14.5)% n = 173 (73.6%) n = 1 (0.4%) n = 208 (88.5%)
All n = 36 (15.3)% n = 198 (84.3%) n = 1 (0.4%) n = 235 (100%)
Significant n = 0 (0.0)% n = 54 (23.0%) n = 0 (0%) n = 54 (23.0%)

Period 2 Not significant n = 29 (12.3)% n = 150 (63.8%) n = 2 (0.9%) n = 181 (77.0%)
All n = 29 (12.3)% n = 204 (86.8%) n = 2 (0.9%) n = 235 (100%)
Significant n = 1 (0.4)% n = 99 (42.1%) n = 0 (0%) n = 100 (42.6%)

Period 3 Not significant n = 24 (10.2)% n = 109 (46.4%) n = 2 (0.9%) n = 135 (57.4%)
All n = 25 (10.6)% n = 208 (88.5%) n = 2 (0.9%) n = 235 (100%)
Significant n = 14 (6.0)% n = 13 (5.6%) n = 0 (0%) n = 27 (11.6%)

Period 4 Not significant n = 83 (35.6)% n = 121 (51.9%) n = 2 (0.9%) n = 206 (88.4%)
All n = 97 (41.6)% n = 134 (57.5%) n = 2 (0.9%) n = 233 (100%)
Significant n = 32 (13.6)% n = 11 (4.7%) n = 0 (0%) n = 43 (18.2%)

Period 5 Not significant n = 99 (41.9)% n = 92 (39.0%) n = 2 (0.8%) n = 193 (81.8%)
All n = 131 (55.5)% n = 103 (43.6%) n = 2 (0.8%) n = 236 (100%)

Table B.14: Distribution of the AMF trends, using only gauges that have a record length of at least 60 years

Signature: LFPC Positive trend Negative trend No trend All
Significant n = 20 (8.5)% n = 4 (1.7%) n = 0 (0%) n = 24 (10.2%)

Period 1 Not significant n = 103 (43.8)% n = 41 (17.4%) n = 67 (28.5%) n = 211 (89.8%)
All n = 123 (52.3)% n = 45 (19.1%) n = 67 (28.5%) n = 235 (100%)
Significant n = 21 (8.9)% n = 20 (8.5%) n = 0 (0%) n = 41 (17.4%)

Period 2 Not significant n = 47 (20.0)% n = 51 (21.7%) n = 96 (40.9%) n = 194 (82.6%)
All n = 68 (28.9)% n = 71 (30.2%) n = 96 (40.9%) n = 235 (100%)
Significant n = 92 (39.1)% n = 8 (3.4%) n = 0 (0%) n = 100 (42.6%)

Period 3 Not significant n = 67 (28.5)% n = 8 (3.4%) n = 60 (25.5%) n = 135 (57.4%)
All n = 159 (67.7)% n = 16 (6.8%) n = 60 (25.5%) n = 235 (100%)
Significant n = 54 (23.2)% n = 9 (3.9%) n = 0 (0%) n = 63 (27.0%)

Period 4 Not significant n = 55 (23.6)% n = 22 (9.4%) n = 93 (39.9%) n = 170 (73.0%)
All n = 109 (46.8)% n = 31 (13.3%) n = 93 (39.9%) n = 233 (100%)
Significant n = 82 (34.7)% n = 15 (6.4%) n = 0 (0%) n = 97 (41.1%)

Period 5 Not significant n = 63 (26.7)% n = 17 (7.2%) n = 59 (25.0%) n = 139 (58.9%)
All n = 145 (61.4)% n = 32 (13.6%) n = 59 (25.0%) n = 236 (100%)

Table B.15: Distribution of the LFPC trends, using only gauges that have a record length of at least 60 years
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Signature: HFPC Positive trend Negative trend No trend All
Significant n = 2 (0.9)% n = 19 (8.1%) n = 0 (0%) n = 21 (8.9%)

Period 1 Not significant n = 30 (12.8)% n = 104 (44.3%) n = 80 (34.0%) n = 214 (91.1%)
All n = 32 (13.6)% n = 123 (52.3%) n = 80 (34.0%) n = 235 (100%)
Significant n = 21 (8.9)% n = 4 (1.7%) n = 0 (0%) n = 25 (10.6%)

Period 2 Not significant n = 60 (25.5)% n = 33 (14.0%) n = 117 (49.8%) n = 210 (89.4%)
All n = 81 (34.5)% n = 37 (15.7%) n = 117 (49.8%) n = 235 (100%)
Significant n = 2 (0.9)% n = 30 (12.8%) n = 0 (0%) n = 32 (13.6%)

Period 3 Not significant n = 25 (10.6)% n = 69 (29.4%) n = 109 (46.4%) n = 203 (86.4%)
All n = 27 (11.5)% n = 99 (42.1%) n = 109 (46.4%) n = 235 (100%)
Significant n = 33 (14.2)% n = 15 (6.4%) n = 0 (0%) n = 48 (20.6%)

Period 4 Not significant n = 55 (23.6)% n = 20 (8.6%) n = 110 (47.2%) n = 185 (79.4%)
All n = 88 (37.8)% n = 35 (15.0%) n = 110 (47.2%) n = 233 (100%)
Significant n = 42 (17.8)% n = 14 (5.9%) n = 0 (0%) n = 56 (23.7%)

Period 5 Not significant n = 41 (17.4)% n = 17 (7.2%) n = 122 (51.7%) n = 180 (76.3%)
All n = 83 (35.2)% n = 31 (13.1%) n = 122 (51.7%) n = 236 (100%)

Table B.16: Distribution of the HFPC trends, using only gauges that have a record length of at least 60 years

Signature: LFPD Positive trend Negative trend No trend All
Significant n = 109 (46.4)% n = 2 (0.9%) n = 0 (0%) n = 111 (47.2%)

Period 1 Not significant n = 112 (47.7)% n = 10 (4.3%) n = 2 (0.9%) n = 124 (52.8%)
All n = 221 (94.0)% n = 12 (5.1%) n = 2 (0.9%) n = 235 (100%)
Significant n = 27 (11.5)% n = 10 (4.3%) n = 0 (0%) n = 37 (15.7%)

Period 2 Not significant n = 129 (54.9)% n = 59 (25.1%) n = 10 (4.3%) n = 198 (84.3%)
All n = 156 (66.4)% n = 69 (29.4%) n = 10 (4.3%) n = 235 (100%)
Significant n = 95 (40.4)% n = 7 (3.0%) n = 0 (0%) n = 102 (43.4%)

Period 3 Not significant n = 100 (42.6)% n = 25 (10.6%) n = 8 (3.4%) n = 133 (56.6%)
All n = 195 (83.0)% n = 32 (13.6%) n = 8 (3.4%) n = 235 (100%)
Significant n = 54 (23.2)% n = 10 (4.3%) n = 0 (0%) n = 64 (27.5%)

Period 4 Not significant n = 88 (37.8)% n = 62 (26.6%) n = 19 (8.2%) n = 169 (72.5%)
All n = 142 (60.9)% n = 72 (30.9%) n = 19 (8.2%) n = 233 (100%)
Significant n = 58 (24.6)% n = 22 (9.3%) n = 0 (0%) n = 80 (33.9%)

Period 5 Not significant n = 73 (30.9)% n = 62 (26.3%) n = 21 (8.9%) n = 156 (66.1%)
All n = 131 (55.5)% n = 84 (35.6%) n = 21 (8.9%) n = 236 (100%)

Table B.17: Distribution of the LFPD trends, using only gauges that have a record length of at least 60 years
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Signature: HFPD Positive trend Negative trend No trend All
Significant n = 0 (0.0)% n = 52 (22.1%) n = 0 (0%) n = 52 (22.1%)

Period 1 Not significant n = 26 (11.1)% n = 157 (66.8%) n = 0 (0.0%) n = 183 (77.9%)
All n = 26 (11.1)% n = 209 (88.9%) n = 0 (0.0%) n = 235 (100%)
Significant n = 3 (1.3)% n = 19 (8.1%) n = 0 (0%) n = 22 (9.4%)

Period 2 Not significant n = 78 (33.2)% n = 132 (56.2%) n = 3 (1.3%) n = 213 (90.6%)
All n = 81 (34.5)% n = 151 (64.3%) n = 3 (1.3%) n = 235 (100%)
Significant n = 3 (1.3)% n = 66 (28.1%) n = 0 (0%) n = 69 (29.4%)

Period 3 Not significant n = 23 (9.8)% n = 143 (60.9%) n = 0 (0.0%) n = 166 (70.6%)
All n = 26 (11.1)% n = 209 (88.9%) n = 0 (0.0%) n = 235 (100%)
Significant n = 5 (2.1)% n = 24 (10.3%) n = 0 (0%) n = 29 (12.4%)

Period 4 Not significant n = 66 (28.3)% n = 136 (58.4%) n = 2 (0.9%) n = 204 (87.6%)
All n = 71 (30.5)% n = 160 (68.7%) n = 2 (0.9%) n = 233 (100%)
Significant n = 6 (2.5)% n = 45 (19.1%) n = 0 (0%) n = 51 (21.6%)

Period 5 Not significant n = 58 (24.6)% n = 125 (53.0%) n = 2 (0.8%) n = 185 (78.4%)
All n = 64 (27.1)% n = 170 (72.0%) n = 2 (0.8%) n = 236 (100%)

Table B.18: Distribution of the HFPD trends, using only gauges that have a record length of at least 60 years
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