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 a b s t r a c t

Active techniques have been introduced to give better detectability performance for cyber-attack 
diagnosis in cyber–physical systems (CPS). In this paper, switching multiplicative watermarking is 
considered, whereby we propose an optimal design strategy to define switching filter parameters. 
Optimality is evaluated exploiting the so-called output-to-output gain of the closed-loop system, 
including some supposed attack dynamics. A worst-case scenario of a matched covert attack is 
assumed, presuming that an attacker with full knowledge of the closed-loop system injects a stealthy 
attack of bounded energy. Our algorithm, given watermark filter parameters at some time instant, 
provides optimal next-step parameters. Analysis of the algorithm is given, demonstrating its features, 
and demonstrating that through initialization of certain parameters outside of the algorithm, the 
parameters of the multiplicative watermarking can be randomized. Simulation shows how, by adopting 
our method for parameter design, the attacker’s impact on performance diminishes.

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The widespread integration of communication networks and 
smart devices in modern control systems has increased the vul-
nerability of industrial systems to online cyber-attacks, e.g., In-
dustroyer, Blackenergy, etc. (Hemsley & Fisher, 2018). To
counter this, methods have been developed to improve security 
by achieving attack detection, mitigation, and monitoring, among 
others (Sandberg et al., 2022). This paper focuses on active attack 
diagnosis to mitigate stealthy attacks.

Active diagnosis techniques rely on the inclusion of additional 
moduli to control systems to alter the behavior of the system 
compared to information known by the attacker. For instance, 
the concept of additive watermarking introduced in Mo et al. 
(2015), where noise signals of known mean and variance are 
added at the plant and compensated for it at the controller. 
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This compensation, however, is not exact, causing some perfor-
mance degradation. Thus, trade-offs between performance and 
detectability are necessary (Zhu et al., 2023).

In encrypted control (Darup et al., 2021), the sensor data is 
encrypted, sent to the controller, and then operated on directly. 
Encrypted input signals are sent back to the plant for decryp-
tion. Although encryption is widespread in IT security, in control 
systems it presents some concerns, such as the introduction of 
time delays (Stabile et al., 2024), while it may present inherent 
weaknesses (Alisic et al., 2023).

In moving target defense (Griffioen et al., 2020), the plant 
is augmented with fictitious dynamics, known to the controller. 
The plant output is transmitted to the controller along with 
the fictitious states over a network under attack. The additional 
measurements then aide in the detection of attacks. This comes 
at the cost of higher communication bandwidth needs, which 
increases rapidly with the dimension of the augmented systems.

Other recently proposed works include two-way coding (Fang 
et al., 2019), a weak encryption technique, and dynamic mask-
ing (Abdalmoaty et al., 2023), which enhances privacy as well as 
security, have been shown to be effective against zero-dynamics 
attacks. Furthermore, filtering techniques for attack detection are 
proposed by Escudero et al. (2023), Hashemi and Ruths (2022), 
Murguia et al. (2020), while not focusing on stealthy attacks.

Multiplicative watermarking (mWM) has been proposed by 
the authors as a diagnosis technique (Ferrari & Teixeira, 2021). 
mWM consists of a pair of filters on each communication channel 
between the plant and its controller; the scheme is affine to weak 
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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encryption, whereby ‘‘encoding’’ and ‘‘decoding’’ are done by 
changing signals’ dynamic characteristics through inverse pairs of 
filters. This enables original signals to be recovered exactly, and 
thus does not lead to performance degradation.

One of the critical features of multiplicative watermarking 
is that to detect stealthy attacks, the mWM filter parameters 
must be switched over time. In this paper, an algorithm to op-
timally design the mWM parameters after a switching event is 
presented, enhancing detection performance, without changing 
the switching time.

To formalize the filter design problem, we suppose the de-
fender is interested in optimal performance against adversaries 
injecting covert attacks with matched system parameters (Smith, 
2015), including the mWM parameters prior to the switch. This 
scenario represents a worst case where malicious agents can 
take full control of the system while remaining undetected. Thus, 
the attack strategy is explicitly included within the formulation 
of the closed-loop system, and the mWM filters are chosen by 
solving an optimization problem minimizing the attack-energy-
constrained output-to-output gain (AEC-OOG) (Anand & Teixeira, 
2023), a variation of the output-to-output gain proposed in Teix-
eira, Sandberg et al. (2015).  The main contributions of this paper 
are:

1. the problem of optimally designing the switching mWM 
filters is formulated as an optimization problem, with the 
AEC-OOG is taken as the objective;

2. the worst-case scenario of a covert attack with exact
knowledge of plant and mWM filter parameters is embed-
ded within the design problem;

3. the feasibility of the optimization problem is shown to be 
dependent only on stability conditions;

4. a solution scheme is proposed to promote randomization 
of the mWM filter parameters such that an eavesdropping 
adversary cannot remain stealthy.

This builds on the results of Ferrari and Teixeira (2021), where 
the focus was on the design of the switching protocols, rather 
than the parameters themselves. Compared to previous work
(Gallo et al., 2021), this paper introduces an optimization problem 
which is always feasible (thanks to the use of AEC-OOG in the 
objective), while also considering a more sophisticated class of 
covert attacks, where the presence of watermark is known to 
the adversary. Moreover, this paper poses a different objective 
than Zhang et al. (2023); indeed, while Zhang et al. (2023) pro-
vided a design strategy to ensure certain privacy properties, in 
this paper we address the problem of optimal parameter design 
following a switching event.

The rest of the paper is organized as follows. After formulating 
the problem in Section 2, we propose our design algorithm in 
Section 3, and analyze its properties. It is then evaluated through 
a numerical example in Section 4, and concluding remarks are 
given Section 5.

2. Problem description

We consider the Cyber–Physical System (CPS) in Fig.  1. This 
includes plant P , controller and anomaly detector C, mWM filters 
W,Q, G,H, and the malicious agent A. The mWM filters are 
defined pairwise, namely {Q,W} and {G,H} are referred to as, 
respectively, the output and input mWM filter pairs.
2

Fig. 1. Block diagram of the closed-loop CPS including the plant P , controller 
C and watermarking filters {W,Q,G,H}. The information transmitted between 
P and C is altered by the adversary A. The dashed lines represent the network 
affected by the adversary.

2.1. Plant and controller

Consider a linear time-invariant (LTI) discrete-time (DT) plant 
modeled by: 

P :

⎧⎨⎩
xp[k + 1] = Apxp[k] + Bpuh[k]

yp[k] = Cpxp[k]
yJ [k] = CJxp[k] + DJuh[k]

(1)

where xp ∈ Rn is the plant’s state, uh ∈ Rm its input, yp ∈ Rp its 
measured output, and all the system’s matrices are of the appro-
priate dimension. Furthermore, suppose a (possibly unmeasured) 
performance output yJ ∈ RpJ  is defined, such that the performance 
of the system, evaluated over the interval [k−N +1, k], for some 
N ∈ N (Zhou et al., 1996), is given by:
J(xp, uh) = ∥yJ∥2

ℓ2,[k−N+1,k].

Assumption 2.1.  The tuples (Ap, Bp) and (Cp, Ap) are, respectively, 
controllable and observable pairs. ◁

Assumption 2.2.  The plant P is stable and xp[0] = 0. ◁

Assumption  2.2, necessary for the OOG to be meaningful (Teix-
eira, Shames et al., 2015), does not reduce generality, as stability 
can be ensured by a local (non-networked) controller (Hu & Yan, 
2007; Lin et al., 2023), whilst xp[0] = 0 can be considered because 
of linearity.

The plant is regulated by an observer-based dynamic con-
troller C, described by: 

C :

⎧⎪⎪⎨⎪⎪⎩
x̂p[k + 1] = Apx̂p[k] + Bpuc[k] + Lyr [k]

uc[k] = Kx̂p[k]
ŷp[k] = Cpx̂p[k]
yr [k] = yq[k] − ŷp[k]

(2)

where ̂xp ∈ Rn, ŷp ∈ Rp are the state and measurement estimates, 
uc ∈ Rm the control input. The matrices K  and L are the controller 
and observer gains respectively. Finally, the term yr  in (2) is the 
residual output, used to detect the presence of an attack: given a 
threshold ϵr , an attack is detected if the inequality ∥yr∥2

ℓ2,[0,Nr ]
≤

ϵr  is falsified for any Nr ∈ N+. Note that in (1)–(2) yq and uh, the 
outputs of Q and H (to be defined), are used as the input to the 
controller and the plant, respectively.

2.2. Multiplicative watermarking filters

Consider mWM filters defined as follows 

Σ :

{
xσ [k + 1] = Aσ (θσ [k])xσ [k] + Bσ (θσ [k])νσ [k]

(3)

γσ [k] = Cσ (θσ [k])xσ [k] + Dσ (θσ [k])νσ [k],
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with Σ ∈ {G,H,W,Q}, σ ∈ {g, h, w, q}, where g, h, w, q refer 
to variables pertaining to G,H,W,Q, respectively,2 xσ ∈ Rnσ  the 
state of Σ , νσ ∈ Rmσ  its input, γσ ∈ Rpσ  the output, and θσ [k] is 
a vector of parameters.

Definition 2.1 (mWM filter parameters). The parameter θσ [k] is 
taken to be the concatenation of the vectorized form of all matri-
ces Aσ (·), Bσ (·), Cσ (·),Dσ (·). ◁

The parameter θσ  is defined to be piecewise constant:
θσ [k] = θ̄σ [ki], ∀k ∈ {ki, ki + 1, . . . , ki+1 − 1}

where ki, i = 0, 1, . . . ∈ N+, are switching instants. In the 
following, with some abuse of notation, the time dependencies 
are dropped, with θσ  and θ+

σ  used to define the parameters before 
and after a switching instant, i.e., θσ = θσ [ki], θ+

σ = θσ [ki+1].
Furthermore, all filters are taken to be square systems,

i.e., mσ = pσ , ∀σ ∈ {g, h, w, q}, and define νg ≜ uc, νh ≜ ũg , νw ≜
yp, νq ≜ ỹw, γg ≜ ug , γh ≜ uh, γw ≜ yw, γq ≜ yq. Here, a tilde is 
used to highlight that ũg , ỹw are received through the insecure 
communication network and as such may be affected by attacks. 

Remark 2.1.  The objective of this paper is to optimally design 
the successive parameters of the mWM filters θ+

σ , given their 
value θσ . It remains out of the scope of the paper to address 
other aspects of the switching mechanisms, such as determining 
the switching time, or defining the jump functions for the states. 
Interested readers are referred to Ferrari and Teixeira (2021). ◁

Definition 2.2 (Watermarking pair). Two systems (W,Q) (3), are 
a watermarking pair if:

a. W and Q are stable and invertible, i.e., exists a positive 
definite matrix Zσ ≻ 0, σ ∈ {w, q} such that 
A⊤

σ ZσAσ − Zσ ≺ 0; (4)

b. if θw[k] = θq[k], yq[k] = yp[k], i.e., 

Q ≜ W−1 . ◁ (5)

Remark 2.2.  If Zσ  in (4) is the same for all θσ [k], k ∈ N, σ ∈

{g, h, w, q}, the mWM filters, on their own, are stable under ar-
bitrary switching, as they all share a common Lyapunov function. 
◁

Definition 2.3 (Zhou et al. (1996, Lemma 3.15)). Define the DT 
transfer function resulting from the system defined by the tuple 
(A, B, C,D) as G(z) =

[
A B
C D

]
, and suppose that D−1 exists. 

Then 

G−1(z) =

[
A − BD−1C BD−1

−D−1C D−1

]
(6)

is the inverse transfer function of G(z). ◁

Assumption 2.3.  The mWM parameters are matched, i.e.,
θw[k] = θq[k] and θg [k] = θh[k], ∀ k ∈ N. ◁

2.3. Attack model

Consider the malicious agent A located in the CPS as in Fig. 
1, capable of tampering with data transmitted between P and C. 

2 In the sequel whenever referring to the parameters of any one of the mWM 
filters, the subscript σ is used. Conversely, if referring to all parameters, θ is 
used.
3

Without loss of generality, the injected attacks are modeled as 
additive signals:
ũg [k] ≜ ug [k] + ϕu[k], ỹw[k] ≜ yw[k] + ϕy[k],

where ϕu[k] and ϕy[k] are actuator and sensor attack signals 
designed by the adversary A. To properly define our design al-
gorithm in Section 3, an explicit strategy for the attack signals 
ϕu and ϕy must be defined by the defender. In this paper, we 
focus on covert attacks (Smith, 2015), which remain undetected 
for passive diagnosis scheme.

The covert attack strategy, under Assumption  2.4 and 2.5, is as 
follows: the malicious agent A chooses ϕu[k] ∈ ℓ2e freely, while 
ϕy[k] satisfies: 

A :

⎧⎨⎩
xa[k + 1] = Aa(θ a)xa[k] + Ba(θ a)ϕu[k]

ya[k] = Ca(θ a)xa[k] + Da(θ a)ϕu[k]
ϕy[k] = −ya[k]

(7)

where xa ≜ [x⊤

h,a x⊤
p,a x⊤

w,a]
⊤ is the attacker’s state, and its 

dynamics are the same as the cascade of H,P,W , parametrized3 
by θ a

σ .

Assumption 2.4.  For all k ∈ [ki+1, ki+2], i ∈ N+, the attacker 
parameters θ a

σ [k] = θσ [ki], σ ∈ {h, w}. ◁

Assumption 2.5.  The attack energy is bounded and finite, i.e.,: 
∥ϕu∥

2
ℓ2

≤ ϵa, with ϵa known to C. ◁

Remark 2.3. Assumption  2.5 is introduced as it allows for guar-
antees that the algorithm proposed in Section 3 always returns 
a feasible solution (see Theorem  3.2). In general, while it may 
be that the adversary has limited energy (Djouadi et al., 2015), 
it is a strong assumption that the bound ϵa is known to the 
defender. Nonetheless, the attack energy bound ϵa may be seen as 
a design variable that, together with the chosen attack model (7), 
facilitates the definition of a systematic design of mWM filters 
by the defender. Further remarks regarding the consequences 
of Assumption  2.5 not holding are postponed to Remark  2.5, 
following the formal definition of the attack-energy-constrained 
output-to-output gain in Definition  2.4. ◁

2.4. Problem formulation

The objective of this paper is to propose a design strategy 
capable of optimally designing the mWM filter parameters θ+, 
supposing a covert attack is present within the CPS. To formulate 
a metric to be used to define optimality, the closed-loop CPS 
dynamics must be defined. Under the attack strategy (7), the 
closed-loop system with the attack ϕu as input and the perfor-
mance and detection output as system outputs can be rewritten 
as 

S :

⎧⎪⎨⎪⎩
x[k + 1] = Ax[k] + Bϕu[k]

yJ [k] = C̄Jx[k] + D̄Jϕu[k]

yr [k] = C̄rx[k]
(8)

where x =
[
x⊤
p , x⊤

h , x⊤
g , x⊤

c , x⊤
q , x⊤

w, x⊤
a
]⊤ is the

closed-loop system state, while yr  and yJ  remain the residual and 
performance outputs. All signals in (8) are also a function of the 
parameters θ+, but this dependence is dropped for clarity. The 
definition of the matrices in (8) follow from (1)–(3) and (7).

The defender aims to quantify (and later minimize) the maxi-
mum performance loss caused by a stealthy and bounded-energy 

3 Here, and throughout the paper, a super- or subscript a is used to indicate 
that a variable pertains to A.
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adversary on (8). This is done by exploiting the attack-energy-
constrained output-to-output gain (AEC-OOG) (Anand & Teixeira, 
2023). 

Definition 2.4 (AEC-OOG). The AEC-OOG of S in (8) is the value 
of the following optimization problem: 
sup

ϕu∈ℓ2e

∥yJ∥2
ℓ2

s.t. ∥yr∥2
ℓ2

≤ ϵr , ∥ϕu∥
2
ℓ2

≤ ϵa, x[0] = 0.
(9)

where ϵa is the energy bound of the attack signal, ϵr  is the 
detection threshold, and the value of (9) denotes the performance 
loss caused by a stealthy adversary. ◁

Problem 1.  Given θ at some switching time ki, i ∈ N+, find the 
optimal set of mWM filter parameters after a switching event θ+, 
such that the AEC-OOG of the system S in (8) is minimized. ◁

Remark 2.4.  Because of its dependence on the AEC-OOG, the 
solution of Problem  1 at time ki relies explicitly on the attack 
parameters θ a

[ki]. Given the malicious agent’s strategy outlined 
in Section 2.3, and Assumption  2.4, θ a

[ki] = θ+
[ki−1] is known to 

C, without any additional knowledge required. ◁

Remark 2.5.  We are now ready to formally treat the violation of 
Assumption  2.5. To do this, let us first remark on some properties 
of the AEC-OOG, which follow from using finite bounds ϵr  and 
ϵa. Firstly, as will be demonstrated in Theorem  3.2, the metric 
is always bounded, making it well suited for a design algorithm. 
Furthermore, it is explicitly related to both the H∞ metric and 
the original OOG proposed in Teixeira, Sandberg et al. (2015), 
for increasing values of ϵr  and ϵa, respectively (Anand & Teixeira, 
2023, Prop. 1). Finally, we can comment on the constraint on the 
attack energy. Consider the value of (9) under increasing values of 
ϵa, as well the OOG as defined in Teixeira, Sandberg et al. (2015). 
If the OOG is finite, there is some value ϵ̄a such that the AEC-OOG 
is the same as the OOG for all ϵa ≥ ϵ̄a. If there are exploitable zero 
dynamics, and the OOG is unbounded, ∥yJ∥2

ℓ2
 grows unbounded 

as ϵa → ∞. Thus, while θ+
σ , the solution to Problem  1, is only 

optimal for covert attacks satisfying ∥ϕu∥
2
ℓ2

≤ ϵa, it ensures that 
the effect of ϕu on yJ  is in some sense minimal if the attack energy 
constraint is violated. ◁

3. Optimal design of filters

3.1. Design problem

As summarized in Problem  1, the objective of the parameter 
design is to minimize the maximum performance loss caused by the 
adversary. This can be translated, exploiting (9), to the following 
optimization problem 
inf
θ+

L(θ+, θ a) (10)

L(θ+, θ a) =

⎧⎪⎪⎨⎪⎪⎩
sup

ϕu∈ℓ2e

∥yJ∥2
ℓ2

s.t. ∥yr∥2
ℓ2

≤ ϵr , ∥ϕu∥
2
ℓ2

≤ ϵa,

x[0] = 0, (4), (5),(7),(8)

(11)

In (10), L(θ+, θ a) represents the value of the maximum per-
formance loss caused by the adversary for any given pair of filters 
(θ+, θ a), and therefore is a suitable metric for the defender’s ob-
jectives. The optimization problem (10) is an infinite-dimensional 
optimization problem in signal space. Using Anand and Teixeira 
(2023, Lem. 3.1, Lem. 3.2), (10) is converted to an equivalent, 
finite-dimensional, non-convex optimization problem in Lemma 
3.1.
4

Lemma 3.1.  The infinite-dimensional optimization problem (10) is 
equivalent to the following finite-dimensional, non-convex optimiza-
tion problem 

inf
P,γ ,γa,θ+,Zσ

ϵrγ + ϵaγa

s.t. R +

[
C̄⊤

J C̄J − γ C̄⊤
r C̄r C̄⊤

J D̄J

D̄⊤

J C̄J D̄⊤

J D̄
⊤

J − γaIm

]
⪯ 0

(4), (5), γ ≥ 0, γa ≥ 0, P ⪰ 0, Zσ ≻ 0,

(12)

where R ≜

[
A⊤PA − P A⊤PB

B⊤PA B⊤PB

]
. □

Finding a solution to (12) solves Problem  1, as solving for 
θ+ achieves the minimal worst-case impact of a covert attack 
satisfying Assumption  2.4. Although (12) is convex in P, γ  and 
γa, it contains non-convex terms in A. As such, it cannot be easily 
solved via standard convex solvers (Lofberg, 2004).

3.2. Well-posedness of the impact metric (11)

Differently to our previous results (Gallo et al., 2021), using 
the AEC-OOG ensures that the optimization problem used for the 
design of the mWM parameters is always feasible, as summarized 
in the following.

Theorem 3.2.  Let the parameters θ+ be chosen such that (4), (5), 
and Assumption  2.2 hold. Then, the value of the metric L in (11) is 
bounded if the closed-loop matrix A in (8) is Schur stable. □

Proof.  Let ΣJ ≜ (A, B, C̄J , D̄J ) be the closed loop system from the 
attack input ϕu to the performance output yJ . The objective is to 
show that the value of (11) is bounded given Assumption  2.2, and 
for any given value of θ+ that satisfies (4) and (5). To this end, 
start by considering the optimization problem (11) without the 
constraint ∥yr∥2

ℓ2
≤ ϵr . The value of the resulting optimization 

problem is the H∞ gain of the system ΣJ , which is bounded, so 
long as ΣJ  is stable. Thus, (11) is bounded, as the optimal value 
of any maximization problem cannot increase under additional 
constraints.  ■

Note that the condition of the closed-loop matrix A being 
stable is required only at any given time k ∈ N, and not under 
switching. The problem of ensuring A is stable under switching is 
addressed in Ferrari and Teixeira (2021, Thm. 3).

3.3. Filter parameter update algorithm

As mentioned previously, the optimization problem (12) is 
non-convex and cannot be solved exactly. One approach to solve 
(12) is to reformulate the problem with Bi-linear Matrix inequal-
ities (BMI) and use some existing approaches in the literature 
to solve them (e.g., Dehnert et al. (2021), Dinh et al. (2011), 
Gallo et al. (2021), etc.), which however come with drawbacks. 
In light of this, here an exhaustive search algorithm, defined 
in Algorithm 1, is adopted, to show the main advantage of the 
proposed design problem (12).

The exhaustive search algorithm we propose can be sketched 
out as follows. Let the values of all matrices be chosen a priori, 
apart from Aσ , such that they satisfy (5). Thus, the objective is 
to find optimal values of Aσ  minimizing (12). Furthermore, to 
ensure tractability, let us restrict the matrices Aσ  to be diagonal. 
To guarantee stability of the watermark generating matrices, it 
is sufficient to constrain the diagonal elements to lie in (−1, 1). 
Discretizing this set into a grid of ns elements, sets Ah and Aq
are obtained, with cardinality nnh

s  and nnq
s , respectively. Thus, the 

exhaustive search algorithm searches for optimal matrices Ah, Aq, 
under the constraint (5). The complete algorithm is summarized 
in Algorithm 1, where the final step provides an ordering, in case 
multiple parameters obtain the same optimum.
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Algorithm 1. Filter parameters selection algorithm.  
Initialization: K , L, θ, θ a, γ ∗

= ∞

Result: θ+,∗

1: Pick random matrices Dh and Dq.
While ((Ah ̸= ∅)||(Aq ̸= ∅)), do:

2: Draw a matrix Ah from Ah and delete it from Ah.
3: If the inverse of Ah : Ag  obtained from (5) is unstable go to 

step 2.
4: Draw a matrix Aq from Aq and delete it from Aq.
5: If the inverse of Aq : Aw obtained from (5) is unstable go to 

step 4.
6: Derive the inverse filters using (5).
7: Using the values of the watermarking filters, and θ a, solve the 

convex optimization problem (12). Let us denote the value of 
(12) as γt .

8: If γt < γ ∗, update γ ∗
= γt and store the values of 

watermarking parameters, else go back to step (1).
end While

3.4. Randomizing the solution

Until now, the design of the algorithm has been purely deter-
ministic: given the parameters θ , (12) uniquely determines the 
parameters θ+. This provides optimal results, but it makes the ar-
chitecture vulnerable to attacks4 capable of identifying the mWM 
filter parameters, as the attacker can compute future values of 
θ by solving Algorithm 1. We therefore propose a method to 
counteract this vulnerability. Specifically, by initializing matrices 
Dq and Dh randomly in the first step of the algorithm, it can be 
shown that the resulting parameters θ+ are also random.

Theorem 3.3.  Let Dq[ki],Dh[ki] be the matrices defined in Step 1 
of Algorithm 1 at switching times ki, i = 0, 1, . . . ∈ N+. It is 
sufficient to select Dq[ki] ̸= Dq[kj] and Dh[ki] ̸= Dh[kj] to ensure 
that θ+

[ki] ̸= θ+
[kj], ∀i, j = 0, 1, . . . ∈ N+, i ̸= j. □

Proof.  The proof follows directly from the fact that, for any 
two state space realizations (A1, B1, C1,D1) and (A2, B2, C2,D2)
with compatible dimensions, it is sufficient for D1 ̸= D2 for the 
resulting transfer functions G1(z) ̸= G2(z) (Chen, 1984, Thm. 4.1). 
As a consequence, so long as Dh[ki] ̸= Dh[kj] and Dq[ki] ̸= Dq[kj], 
there are no mWM parameters such that the resulting closed loop 
transfer functions are the same. ■

Corollary 3.3.1.  Let Dh[ki],Dq[ki] be realizations of random vari-
ables. Then, the filter parameters θ+

[ki] are also randomized. □

To ensure that the parameters θ+ remain synchronous, it is 
necessary for the randomized values of Dh,Dq be the same on 
both plant and control side. The problem of selecting variables 
that are synchronized and (pseudo)random is a common issue in 
the secure control literature, and different solutions have been 
found, such as Zhang et al. (2022), Zhang et al. (2023).

4 The attacker in question is different to that defined in Section 2.3 where 
the attack strategy was considered as a design choice for the formulation of the 
optimization problem.
5

Table 1
System Parameters.
 Klm 1 Tlm 6 Tg 0.2  
 Th 4 Ts 0.1 R 0.05 

4. Numerical example

4.1. Plant description

Consider a power generating system (Park et al., 2019, Sec. 4) 
modeled by the dynamics:[

η̇1
η̇2
η̇3

]
=

⎡⎢⎣
−1
Tlm

Klm
Tlm

−2Klm
Tlm

0 −2
Th

6
Th

−1
TgR

0 −1
Tg

⎤⎥⎦[
η1
η2
η3

]
  

η

+

⎡⎣ 0
0
1
Tg

⎤⎦ u (13)

yp =
[
1 0 0

]  
Cp

η, yJ =
[
0 1 0

]  
CJ

η. (14)

Here, η ≜ [df ; dp + 2dx; dx], where df  is the frequency deviation 
in Hz, dp is the change in the generator output per unit (p.u.), 
and dx is the change in the valve position p.u. The parameters of 
the plant are listed in Table  1. The Discrete-Time system matrices 
(Ap, Bp, Cp,Dp) are obtained by discretizing the plant (13)–(14) 
using zero-order hold with a sampling time Ts = 0.1s.

The plant is stabilized locally with a static output feedback 
controller with constant gain Dc = 19. The gains in (2) are 
obtained by minimizing a quadratic cost, using the MATLAB com-
mand dlqr, resulting in:
K =

[
0.1986 −0.0913 −0.1143

]
L =

[
0.2735 −0.0509 −0.2035

]⊤
.

4.2. Initializing the mWM design algorithm

We consider a mWM filter of state dimension nσ = 2. The 
mWM filter parameters are initialized as Aq = 0.2I2, Bq = 0.7e2×1, 
Cq = 0.1e1×2, Bh = 0.2e2×1, Ch = 0.05e1×2, Ah = 0.3I2, Dq = 0.15, 
Dh = 0.1 where ea×b represents a unit matrix of size a × b. 
The other mWM matrices are derived such that they satisfy (5). 
All unspecified matrices are zero. Following Assumption  2.4, it is 
assumed that the filter parameters θ are known by the adver-
sary. To ensure randomization, as mentioned in Theorem  3.3, the 
parameters Dh and Dq are initialized in Algorithm 1 as random 
numbers within the range [0.1, 0.15]. We fix the parameters of 
all the mWM filter parameters at their initial value except for the 
matrix Aσ , σ ∈ {q, w, h, g}, i.e., our aim is to find a diagonal Aσ

that minimizes the value of the AEC-OOG.
As discussed in Section 3.3, Aq and Ah are matrices whose 

diagonal elements take values in (−1, 1). The exhaustive search 
is performed with a grid size of ns = 0.3, and the search is initial-
ized with ϵr = 1, ϵa = 50. Furthermore, for numerical stability, 
we modify the objective function of (12) to ϵrγ + ϵaγa + ϵptr(P), 
with ϵp = 0.1.

4.3. Result of algorithm 1

The optimal value of the matrices from the grid search are 
A∗
q = −0.05I2 and A∗

h = −0.65I2. The corresponding value of L
is 111.03. The value of Dq and Dh were 0.1479 and 0.1482 re-
spectively. The simulation is performed using Matlab 2021a with 
Yalmip (Lofberg, 2004) and SDPT3v4.0 solver (Toh et al., 2012). 
In the remainder, we compare the results obtained by repeated 
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Fig. 2. (Top) The attack signal ϕu in (15) and its equivalent ϕy from (7); (Middle) 
∥yr∥2

ℓ2,[0,k] , compared to ϵr ; (Bottom) ∥yJ∥2
ℓ2,[0,k] before and after the mWM 

parameters are updated.

Fig. 3. The values of L corresponding to the optimal and random values of the 
watermarking parameters.

computation of Algorithm 1 compared to defining constant and 
random parameters. Consider an adversary injecting the signals 
shown in Fig.  2, 

ϕu[k] =

{
150 if k mod 2 = 0
0 otherwise

(15)

into the actuators, and ϕy following (7).
Comparison with no parameter switching: The performance of 

the attack is shown in Fig.  2, for the cases without switching and 
when switching happens at the attack onset with the optimal 
filter parameters. Without switching θ , although the performance 
is strongly degraded, the attack remains stealthy. Instead, if the 
mWM parameters are changed, it is detected after 15s.

Comparison with random parameter switching: In this scenario, 
we suppose the mWM parameters are updated 5 times, by run-
ning Algorithm 1, and compared against 5 random updates of Aσ

— though their structure remains diagonal. The results, shown in 
terms of values of L for both cases, are shown in Fig.  3. Here, 
the parameters of Dh and Dq are the same as used for selecting 
the optimal parameters. Since the parameters are not chosen 
optimally, the value of L, the performance loss, is higher.

Time complexity: To conclude, let us discuss the complexity 
of Algorithm 1. All mWM parameters are fixed, apart from Aσ , 
which is a diagonal matrix of dimension nσ , and, for each diagonal 
element of Aσ , ns points of the interval (−1, 1) are searched. 
Given (5), only Ah and Aq must be defined, while Aw, Ag  are 
defined algebraically; thus, define nς = nq + nh. The complexity 
of the algorithm grows both in n  and in n . Specifically, the 
ς s

6

complexity is O(nnς
s ). Thus, it is exponential in the choice of 

nς  and polynomial in ns. We highlight that the average time of 
solution can be improved upon in two major ways. The first is 
via parallelization, as all SDPs can be solved independently; this 
provides a speed-up which depends on the number of compute 
nodes used to solve the problem. The second method relies on 
reducing the number of SDPs to be solved, by removing those 
values of Ah, Aq which do not lead to stable inverses, as defined 
by (6).

For the results presented here, a computer with an Intel Core 
i7-6500U CPU with 2 cores and 8 GB RAM was used. The algo-
rithm was run both with and without parallelization (paralleliza-
tion was achieved by using Matlab’s parfor command). Without 
parallelization, the algorithm took 384.25s to provide a result, 
whilst with parallelization this was 261.65s, a 31.9% speedup.

5. Conclusion and future works

An optimal design technique for the design of the parame-
ters of switching multiplicative watermarking filters is presented. 
The problem is formalized by supposing the closed-loop sys-
tem is subject to a covert attack with matching parameters. 
We propose an optimal control problem based on a formula-
tion of the attack energy constrained output-to-output gain. We 
show through a numerical example that this design improves 
detectability by increasing the energy of the residual output be-
fore and after a switching event. Future works include developing 
algorithms for optimal design and optimal switching times ensur-
ing that mWM does not destabilize the closed-loop system under 
switching with mismatched parameters, and studying non-linear
systems.
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