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Preface

This thesis was written as part of the bachelor Applied Mathematics at the Delft Univer-
sity of Technology. The last quarter of the academic year is intended to set up a research
project, to attain better research skills, to become better at academic writing and to
become familiar with a mathematical concept. After finishing the thesis, a thesis defence
is held.

This thesis is written for peers, i.e. third year students in applied mathematics. It
is assumed that the reader of this thesis has prior knowledge in linear algebra as well as
algebra on an undergraduate level.

Readers who are interested in the two methods to construct group invariant subspaces
of C|G|, where G is a group, can read chapters 3 and 4. Chapter 3 uses change of basis
matrices whereas chapter 4 uses the grand orthogonalisation method. If the reader is not
yet familiar with representation theory it is recommended to read chapter 1.

I would like to thank my supervisors dr. Jeroen Spandaw and dr. Paul Visser for their
enormous help in this project. In the first weeks of this project Jeroen Spandaw has
provided extensive notes covering the basis of representation theory and an abundance of
worked out examples. Moreover, I could always ask questions if I were to be stuck and
Jeroen Spandaw and Paul Visser patiently gave me a fountain of feedback and explana-
tions in our weekly online meetings, which I am sincerely thankful for. I am grateful that
I have had the privilege and opportunity to work together with the both of them. Thanks
for accompanying me in this project. Thank you Jeroen Spandaw. Thank you Paul Visser.

Delft, 26 August 2021
Quirijn van Gulik
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Summary

Representation theory is a branch in mathematics that studies group homomorphisms
between a group and the automorphism group of a vector space. A special representation
that every group has is the regular representation. This representation permutes all ele-
ments of the group in a vector space which dimension is equal to the order of the group.
Within this vector space there are group invariant subspaces. There are several methods
to finding representation invariant subspaces of this vector space.

This thesis aims to do two things: First of all, this thesis aims to give the reader
an introduction to representation theory, presenting various key concepts, definitions and
theorems. Moreover, ways to construct character tables are presented along with multiple
worked out examples. Second, the regular representations of D4 and Q8 are decomposed
into representation invariant subspaces of C8. To this end, two methods were used.

The first method (A), proposed by dr. Jeroen Spandaw, works out all the possible
decompositions of the vector space a regular representation acts on. This is quite a la-
borious process in which change of basis matrices, expressed in several parameters, will
have to be made for all generators of the considered group. The second methods (B),
proposed by dr. Paul Visser, is known as the grand orthogonalization method and makes
use of an extended version of the character table of the considered group.

Both methods are perfectly fine to make a desired decomposition. However, method A
takes a lot more computational effort than method B to come up with the desired result.
The benefit of using method A over method B is that method A considers all possible
decompositions, whereas method B only considers one of the infinitely many that are
possible.

Summary for the general audience

Representation theory is a combination of two fundamental branches of mathematics,
namely group theory, i.e. theories that describe symmetry, and linear algebra. Symme-
tries can be found all throughout mathematics, physics and other disciplines. In physics
for example, conservation laws follow from symmetries in the laws of nature. More-
over, the heat capacity of materials depends strongly on the amount of symmetry of the
molecules that make up the material. In mathematics, laying oranges in a basket forms
a certain symmetrical grid. A final example is the fact that the well-known abc-formula
cannot be extended to an abcdef -formula for equation ax5 + bx4 + cx3 +dx2 + ex+ f = 0
due to restrictions given by symmetries. Symmetries found in different objects might be
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classified as the same symmetry and vice versa, certain symmetries can be found in a
wild variety of locations and concepts.

An introduction to the branch of mathematics called ‘representation theory’ will be
given. Along with worked out examples, definitions and ensuing results, the reader will
get familiar with the key concepts of representation theory. After that, two methods were
presented to break-up a higher-dimensional space into smaller dimensional spaces. One
of these methods takes more time to apply, but covers all cases. The other method is a
lot faster, especially for higher dimensions, but does cover only one of the infinitely many
cases.
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List of Symbols

Symbol Description

G group
g element of G
χ character
V vector space

Aut(V ) the group of automorphisms of V
v vector in V
h positive definite Hermitian inner product
H representation invariant positive definite Hermitian inner product
k the class number of G, i.e. the number of conjugacy classes
N the order of G, i.e. |G|
ρ representation
f homomorphism of representations
Cn the cyclic group of order n
Dn the dihedral group of order 2n
Q8 the quaternion group
Sn the permutation group on n elements
An the alternating group on n elements

SO(3) the group of orthonormal 3× 3-matrices with det = 1
SU(2) the group of unitary 2× 2-matrices with det = 1
T the tetrahedral group
2T the binary tetrahedral group
O the octahedral group
2O the binary octahedral group
I the icosahedral group
2I the binary icosahedral group
Rn the group of vectors consisting of real numbers
Cn the group of vectors consisting of complex numbers
H the group of quaternions
H1 the group of quaternions of length 1

Please note that the symbol descriptions mentioned in the List of Symbols stand unless
stated otherwise.
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Introduction

Symmetries can be found all throughout mathematics, physics and other disciplines. In
physics for example, conservation laws follow from symmetries in the laws of nature.
Moreover, the heat capacity of materials depends strongly on the amount of symmetry
of the molecules that make up the material. In mathematics, placing as many spheres as
possible in a space forms a certain symmetrical lattice. A final example, “which played an
important role in the historical development of group theory” [13], is the fact that there
does not exist an ‘abcdef -formula’ to find all the complex roots of a given fifth degree
equation, ax5 + bx4 + cx3 + dx2 + ex+ f = 0. This was proven again using symmetries.
Representations, which are symmetries in the realm of linear algebra, found in different
objects might be classified as the same symmetry and vice versa, certain symmetries can
be found in a wild variety of locations and concepts.

Elementary particles are described by representation theory. Different types of parti-
cles use different irreducible representations of the same overall symmetry group. Their
study is of great importance in understanding particle physics on a fundamental math-
ematical basis. Maybe the regular representation of the icosians, 2I, can be used to
describe the Standard Model of particles, because each family of particles seems to re-
quire irreducible representations of the same size. This is a conjecture by dr. Paul Visser.

The aim of this thesis is to build up to ways a vector space a regular representation
acts on can be split into representation invariant subspaces. Moreover, the representation
theory needed to get to this result is extensively treated to make the process understand-
able for undergraduates in applied mathematics. Treating representation theory is a goal
of this thesis on its own and more emphasis goes to the making of group tables. Several
standard books, theses and unpublished notes were consulted to study the representation
theory. For the splitting of the vector space in representation invariant subspaces two
methods were suggested, one by dr. Jeroen Spandaw and one by dr. Paul Visser. These
methods were described and compared to each other.

This thesis will be structured in the following way. In chapter 1 an extensive de-
scription of the relevant information concerning representation theory will be presented.
Chapter 2 will provide character tables of some elementary groups. More importantly,
the methods to make group tables that were presented in chapter 1 will be used. The
images of the irreducible representations of the groups D4 and Q8 will also be presented
with respect to a chosen basis. These two groups will have a role in chapters 3 and 4.
Chapter 3 and chapter 4 will each present a method to split a vector space a regular rep-
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resentation acts on. Moreover, in chapter 3 the groups D4 and Q8, which have the same
order, will be compared as to how their only multidimensional (4-dimensional) isotypical
vectorspaces can be split.

This thesis is for a large part based on personal communication with dr. Jeroen Span-
daw and dr. Paul Visser. Moreover, several standard books were consulted. These books
are [3], [4], [6], [8], [9], [11], [14], [15] and [16]. Most content in this thesis is already well
established in the field of representation theory. If no source is explicitly stated upon a
statement, either this statement is backed up by several of the standard books mentioned
or this statement is of my own work. If a source is cited, either this information is less
standard, which happens in section 4, or it is cited or paraphrased from that particular
standard source.

Lastly, to avoid some unnecessary repetition, a short list of symbols is given.
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Chapter 1

Representation theory

This chapter aims to state and explain some of the key concepts in representation theory.
These concepts are well known in the literature, but may not be familiar to the reader.
Chapter 1 offers an introduction to representation theory.

First the concept of a representation will be given (section 1.1). Then the direct
sum of representations and accompanying theorems will be treated (section 1.2). In the
following sections Schur’s lemma (section 1.3) and Schur orthogonality (section 1.4) will
be illustrated. After that, the dual representation (section 1.5) and tensor products are
treated (section 1.6). In section 1.7 the regular representation will be presented. Lastly,
in section 1.8, methods that help to construct a character table are presented.

1.1 What is a representation?

In this section the framework in which a representation is defined is given, accompanied
with some other definitions. Furthermore, an example regarding representations will be
presented.

1.1.1 The definition of a representation

A group G can be said to act on a set X. The following definition defines this concept:

Definition 1.1. Let X be a set. G is said to act on X if there exists a map f : G×X → X,
given by (g, x) 7→ g • x such that:

Identity: e • x = x for allx ∈ X
Compatibility: (g1g2) • x = g1 • (g2 • x) for all g1, g2 ∈ G andx ∈ X

Here e is the identity of G. If G acts on X, then the map f is an action of G on X. [5,
p. 97]

In representation theory such a group action is slightly modified to form a group ho-
momorphism. Instead of f : G×X → X, a map ρ : G→ XX is defined. In representation
theory, the set X has to be a vector space V . The definition of a representation is given:
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Definition 1.2. A representation of G on V is a group homomorphism ρ from G to the
group of automorphisms of V :

ρ : G→ Aut(V ).

It is said that the dimension of the representation ρ is the dimension of V . [10, p. 24]

These two interpretations of a representation are interchangeable by setting g • v =
ρ(g)(v) for all g ∈ G, v ∈ V , for g•v as defined in definition 1.1 and for ρ a representation
as defined in definition 1.2. Indeed, let f be an action of G on V and let ρ : G→ Aut(V )
such that ρ(g)(v) = g • v for all g ∈ G and v ∈ V . Now

ρ(g1g2)(v) = (g1g2) • v = g1 • (g2 • v) =

g1 • (ρ(g2)(v)) = ρ(g1)(ρ(g2)(v)) = (ρ(g1) ◦ ρ(g2))(v),

making ρ a group homomorphism.

Conversely, let ρ be a representation and let f : G×V → V be given by (g,v) 7→ g •v
such that g • v = ρ(g)(v) for all g ∈ G and v ∈ V . Now

e • v = ρ(e)(v) = v

and

(g1g2) • v = ρ(g1g2)(v) = (ρ(g1) ◦ ρ(g2))(v) = ρ(g1)(ρ(g2)(v)) = g1 • (g2 • v).

Remark 1.3. Sometimes, instead of stating that ρ acts on V , it is stated that G acts on
V .

From now on all vector spaces that are considered will be finite-dimensional. Some
of the definitions and theorems defined later in this thesis are also properly defined for
infinite-dimensional vector spaces. However, in this thesis, we are only interested in
finite-dimensional vector spaces. After choosing a basis for V , the following function is
obtained:

ρ : G→ GL(n,K).

Changing the basis of V sets:
ρ′ : g 7→ Pρ(g)P−1, (1.1)

where P is a change of basis matrix. Such a change of basis should not alter the essence
of a representation ρ. ρ and ρ′ are said to be equivalent. From now on, all vector spaces
that are considered will be over the complex field, K = C. To this end, a representation
is a group homomorphism

ρ : G 7→ GL(n,C).

Thus, depending on whether or not a basis for V is chosen, either a representation is
a homomorphism

ρ : G→ Aut(V ),

or a representation is a homomorphism

ρ : G→ GL(n,C).

Now that a representation is properly defined, another important definition is given:
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Definition 1.4. The character χ of ρ is the map

χ : G→ K, g 7→ χ(g) := tr(ρ(g)).

[12, p. 11]

Indeed, the choice of basis vectors for V does not affect χρ(g), since

χρ′(g) = tr(ρ′(g)) = tr(Pρ(g)P−1) = tr(P−1Pρ(g)) = tr(ρ(g)) = χρ(g).

Here P is a change of basis matrix as in equation 1.1.

Moreover, all elements of G within the same conjugacy class have the same character.
Indeed,

χρ(gg0g
−1) = tr(ρ(gg0g

−1)) = tr(ρ(g)ρ(g0)ρ(g−1)) = tr(ρ(g)ρ(g−1)ρ(g0)) =

tr(ρ(gg−1)ρ(g0)) = tr(ρ(eg0)) = tr(ρ(g0)) = χρ(g0)

for any g ∈ G, which is shown in lemma 1.5.

Lemma 1.5. All elements of G within the same conjugacy class have the same character.

Lastly, three other definitions are given:

Definition 1.6. A vector space W ⊆ V is said to be representation invariant if for a
representation ρ : G → Aut(V ), ρ(g)(w) ∈ W for any g ∈ G and w ∈ W . In particular,
W is said to be representation invariant under ρ or ρ-invariant if this holds for that
particular ρ.

Definition 1.7. ρ is said to be faithful if it is injective.

Definition 1.8. The degree of ρ, noted as deg(ρ), is the dimension of the vector space
V that ρ acts on.

Remark 1.9. Sometimes, instead of the degree of a representation, we speak of the di-
mension of a representation.

Since ρ is a group homomorphism, it holds that ρ(e1) = e2. Here e1 is the identity
element of the group G and e2 is the identity element of Aut(V ), which is, chosen any
basis, In, where n is the dimension of V . Hence

Corollary 1.10. χρ(e1) = n =: Dim(V ) = deg(ρ) for any group G and vector space V .
Here e1 is the identity element of G.

1.1.2 Example

Take for example (G,V ) = (S3,C3). The group S3 can act on C3 by permuting the
complex axes. That is, taking f as in definition 1.1, f acts on C3 as follows:

f((1), (x1, x2, x3)>) = (x1, x2, x3)>

f((13), (x1, x2, x3)>) = (x3, x2, x1)>

f((123), (x1, x2, x3)>) = (x3, x1, x2)>

,

,

,

f((12), (x1, x2, x3)>) = (x2, x1, x3)>

f((23), (x1, x2, x3)>) = (x1, x3, x2)>

f((132), (x1, x2, x3)>) = (x2, x3, x1)>.
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Or, equivalently, regarding definition 1.2

ρ((1)) : (x1, x2, x3)> 7→ (x1, x2, x3)>

ρ((13)) : (x1, x2, x3)> 7→ (x3, x2, x1)>

ρ((123)) : (x1, x2, x3)> 7→ (x3, x1, x2)>

,

,

,

ρ((12)) : (x1, x2, x3)> 7→ (x2, x1, x3)>

ρ((23)) : (x1, x2, x3)> 7→ (x1, x3, x2)>

ρ((132)) : (x1, x2, x3)> 7→ (x2, x3, x1)>.

Due to the linearity of Aut(V ), only the basis vectors for V have to be considered
to define how ρ acts on V . In general, let ρ : G → Aut(V ) be a representation of G on
V . Let {b1,b2, . . . ,bn} be a basis for V , where the vector space V has dimension n.
Suppose ρ(g)(bj) = a1,jb1 + a2,jb2 + · · ·+ an,jbn, then

ρ(g) =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 .

The standard basis for C3, {e1, e2, e3}, is taken. Now

ρ((12))(e1) = e2

ρ((12))(e2) = e1

ρ((12))(e3) = e3

,

,

,

ρ((23))(e1) = e1

ρ((23))(e2) = e3

ρ((23))(e3) = e2.

Hence,

ρ((12)) =

0 1 0
1 0 0
0 0 1

 , ρ((23)) =

1 0 0
0 0 1
0 1 0

 . (1.2)

Due to the fact that a representation is a group homomorphism, only the generators
of G have to be considered. All function values of ρ for other group elements g ∈ G follow
from the fact that ρ(g1g2) = ρ(g1) ◦ ρ(g2). For completeness, the function values ρ(g) for
the other g ∈ G are given as well:

ρ((1)) =

1 0 0
0 1 0
0 0 1

 , ρ((123)) =

0 0 1
1 0 0
0 1 0


ρ((23)) =

1 0 0
0 0 1
0 1 0

 , ρ((132)) =

0 1 0
0 0 1
1 0 0

 .
1.2 Direct sum

1.2.1 The definition of the direct sum of representations

A direct sum of two functions is defined as follows: Let f : A→ B and g : C → D be two
arbitrary functions. Then:

(f ⊕ g)(a, c) := (f(a), g(c)),

6



with (a, c) ∈ (A,C). However, the direct sum domain of two representation is taken as G
instead of (G,G). The definition of the direct sum of representations is given (definition
1.11):

Definition 1.11. let ρ1 : G→ Aut(V1) and ρ2 : G→ Aut(V2) be two representations of
the same group G. Now,

(ρ1 ⊕ ρ2) := g 7→ (ρ1(g), ρ2(g)).

The direct sum of two representations ρ1 : G → Aut(V1) and ρ2 : G → Aut(V2) as
defined in definition 1.11 is again a representation. The codomain of ρ1 ⊕ ρ2 is the auto-
morphism group of the well known direct sum of vector spaces V1 ⊕ V2: Aut(V1 ⊕ V2).

Given bases for V1 and V2, let the matrices Aρ1 and Aρ2 represent ρ1(g) and ρ2(g)
respectively. Then

Aρ1⊕ρ2 =

[
Aρ1 0
0 Aρ2

]
(1.3)

represents ρ1(g)⊕ ρ2(g).

The definition of (ir)reducibility of representations is given (definition 1.12):

Definition 1.12. If ρ is the direct sum of two or more representations, then ρ is said
to be reducible. Any of the representations taking part in the direct sum of ρ is a
subrepresentation of ρ. If ρ is not reducible, ρ is said to be irreducible.

Irreducible representations will have an essential role in representation theory as they
are the ‘building blocks’ of all the representations of a group.

Remark 1.13. Let ρ1 : G → Aut(V1) and ρ2 : G → Aut(V2) be two representations.
Sometimes, instead of noting that ρ1 is a subrepresentation of ρ2, it is stated that V1
or χ, where χ = χρ1 , is a subrepresentation of V2 or χ′, where χ′ = χρ2 . Moreover,
sometimes, instead of noting that ρ is (ir)reducible, V1 or χ is said to be (ir)reducible
instead. Any alike statement can also be made. Whenever this is done, there is no
ambiguity regarding which representations are meant.

1.2.2 Essential theorems on representation theory regarding di-
rect sums

Corollary 1.14. Let ρ be the direct sum of two subrepresentations: ρ = ρ1 ⊕ ρ2. Then
deg(ρ) = deg(ρ1) + deg(ρ2)

Corollary 1.14 follows directly from the definition of the direct sum of representations.

Theorem 1.15. Let ρ1 : G→ Aut(V1) and ρ2 : G→ Aut(V2) be representations. Let ρ
= ρ1 ⊕ ρ2. Then χρ(g) = χρ1(g) + χρ2(g) for all g ∈ G.

Regarding theorem 1.15, it is said that the character of the (direct) sum is the sum of
the characters.

Yet another definition is given, definition 1.16, as well as a theorem (theorem 1.17):
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Definition 1.16. Let ρ : G→ V be a representation. An inner product 〈· | ·〉 on V is said
to be representation invariant under ρ if 〈v1 |v2〉 = 〈ρ(g)(v1) | ρ(g)(v2)〉 for all g ∈ G
and v1,v2 ∈ V .

Theorem 1.17. Let ρ : G→ V be a representation, where V is a finite-dimensional inner
product space, equipped with a ρ-invariant positive definite Hermitian inner product 〈· | ·〉.
If W ⊆ V is a ρ-invariant subspace of V , then W⊥ is a ρ-invariant subspace of V as well.
Moreover, ρ = ρ1 ⊕ ρ2, where ρ1 acts on W and ρ2 acts on W⊥, and V = W ⊕W⊥.[12,
p. 14]

In order to apply theorem 1.17, a representation invariant positive definite Hermitian
inner product is needed. Such an inner product can be made of a positive definite Her-
mitian inner product h : V × V → C, as is stated in lemma 1.18. The proof of lemma
1.18 is clearly treated by B. Steinberg ([14, pp. 21,22]).

Lemma 1.18. Let h : V × V → C be a positive definite Hermitian inner product. Then
the inner product H : V × V → C defined as

H(v1,v2) :=
1

|G|
∑
g∈G

h(ρ(g)(v1), ρ(g)(v2)) (1.4)

is a representation invariant, under the chosen ρ, positive definite Hermitian inner prod-
uct.

Using lemma 1.18, the following corollary is obtained.

Corollary 1.19. Any representation ρ : G → Aut(V ) has a basis b1 . . .bn for V such
that the matrix ρ(g) with respect to this basis is unitary for all g ∈ G. Here a matrix A

is unitary if AA
T

= I. Moreover, χ(g−1) = χ(g). [12, p. 13]

As follows from theorem 1.17, a representation ρ on a vector space V that has a
representation invariant subspace W under ρ can be written as the direct sum of two
subrepresentations. These subrepresentations act on a lower dimensional vector space
than deg(ρ). The vector spaces these representations act on can have representation
invariant subspaces themselves. If such a vector space does not have a representation
invariant subspace it must be irreducible. Finally, since V is finite-dimensional, the
following corollary, corollary 1.20, holds:

Corollary 1.20. Any reducible representation decomposes as the direct sum of irre-
ducible representations. [3, p. 7][12, p. 14]

1.3 Schur’s lemma

Most of this section is based on hints given by dr. Jeroen Spandaw. Again, for nuances,
inspiration and theory, the mentioned standard books were also consulted.

1.3.1 The definition of a homomorphism of representations

Definition 1.21. Let ρ1 : G → Aut(V1) and ρ2 : G → Aut(V2) be two representations.
A homomorphism between representations ρ1 and ρ2 is a linear map f : V1 → V2 such
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that

f(ρ1(g)(v)) = ρ2(g)(f(v)), (1.5)

for all g ∈ G and v ∈ V1.

If such a homomorphism f between representations as described in definition 1.21 is
bijective, then f is said to be an isomorphism of representations and ρ1 and ρ2 are said
to be isomorphic, denoted by ρ1 ∼= ρ2. This implies that V1 and V2 are isomorphic vector
spaces, denoted by V1 ∼= V2. In order for f to be an isomorphism of representations,
V1 ∼= V2 is necessary, but not sufficient. [12, p. 37]

An extension of this definition of a homomorphism between representations is obtained
by setting ρ1 : G1 → Aut(V1) and ρ2 : G2 → Aut(V2), where G1 6= G2. A homomorphism
between ρ1 and ρ2 is then defined as a linear map f : V1 → V2 such that

f(ρ1(g)(v)) = ρ2(h(g))(f(v)),

where h(g) is a group homomorphism from G1 to G2.

1.3.2 Properties of homomorphisms of representations

Suppose such a homomorphism f between representations as described in section 1.3.1
exists. We are interested in determining which homomorphisms between representations
are possible. At the end of this section Schur’s lemma will be presented.

Schur’s lemma part 1

let K ⊆ V1 be the kernel of a homomorphism f of representations ρ1 : G→ Aut(V1) and
ρ2 : G→ Aut(V2). Let k ∈ K. By definition, f(k) = 0. This implies that ρ2(g)(f(k)) = 0
for all g ∈ G. This in turn implies that f(ρ1(g)k) = 0. Hence, ρ1(g)k ∈ K. Thus, K is a
representation invariant, under ρ1, vector space. Therefore, K is a subrepresentation of
V1.

By definition f(v) ∈ Im(f) for any v ∈ V1. We have ρ1(g)v ∈ V1, since ρ1 is a
representation, thus f(ρ1(g)v) ∈ Im(f). Hence ρ2(g)(f(v)) ∈ Im(f) and Im(f) is a sub-
representation of V2.

Suppose ρ1 is irreducible. Since K is a subrepresentation of V1 and ρ1 is irreducible,
we have either K = {0} or K = V1. If K = V1, then f : v 7→ 0 for all v ∈ V1. If however,
K = 0, then f is injective. Thus, if V1 is irreducible, then f = 0 or f is injective.

Now suppose instead that ρ2 is irreducible. Since Im(f) is a subrepresentation of V2,
but ρ2 is irreducible, we have either f = 0 or Im(f) = V2. If f = 0, then f : v 7→ 0 for
all v ∈ V1. If however, Im(f) = V2 then f is surjective. Thus, if V2 is irreducible, then
f = 0 or f is surjective.

Now suppose both V1 as well as V2 are irreducible. Suppose f 6= 0. Then, f is
injective, since V1 is irreducible and f is surjective, since V2 is irreducible. Hence, f = 0

9



or f is bijective. In other words,

Im(f) = {0} or f is an isomorphism of representations. (1.6)

Now, suppose V1 and V2 are both irreducible and ρ1 � ρ2. f can not be an isomor-
phism, thus f is the zero-map.

Schur’s lemma part 2

Now we consider the case ρ1 = ρ2. We denote this representation ρ1 = ρ2 as ρ, which is
still assumed to be irreducible, and the corresponding vector space V1 = V2 as V . Now,
suppose again that V is irreducible. Clearly, if f is a multiple of the identity map, then
f is a homomorphism of representations. Next it will be shown that these are the only
options for a homomorphism of representations f in the above mentioned circumstances.

f : V → V is a linear map of complex vector spaces, thus f has complex eigenvalues.
That is, there exists λ ∈ C and v ∈ V \ {0} such that f(v) = λv. Let λ0 be such a λ.
Indeed,

(f − λ0 · id)v = 0, (1.7)

where id is the identity map.

As mentioned, λ0 · id is a homomorphism of representations. f is a homomorphism
of representations as well. Hence, their difference, f − λ0 · id is also a homomorphism of
representations. Since equation 1.7 holds for both the zero vector, 0, and at least one
other vector v ∈ V , ker(f − λ0 · id) 6= 0. Thus this kernel equals V itself. Therefore,
f(v) = λ · v for all v ∈ V . In conclusion:

f = λ · id (1.8)

Last of all, suppose again that V1 and V2 are irreducible. Moreover, suppose that
ρ1 ∼= ρ2, but ρ1 and ρ2 are not necessarily identical. Since ρ1 and ρ2 are isomorphic there
exists an invertible function h, such that h(ρ1(g)(v) = ρ2(g)(h(v)).

Let f : V1 → V2 be an arbitrary homomorphism of representations. Since h and
f are both homomorphisms of representations, F := f ◦ h−1 is also a homomorphism
of representations. F is a homomorphism of representations from V2 to V2, where ρ2
acts twice on V2. Indeed ρ2(g)((f ◦ h−1)(v)) = ρ2(g)(f(h−1(v))) = f(ρ2(g)(h−1(v))) =
f(h−1(ρ2(g)(v))) = (f ◦ h−1)(ρ2(g)(v)), where v ∈ V2. Thus F = λ · v. But then
f = F ◦ h = (λ · id) ◦ h = λh, which makes f either an isomorphism or the zero map.

Schur’s lemma complete

Equations 1.6 and 1.8 give exactly Schur’s lemma, which is given in lemma 1.22.

Lemma 1.22 (Schur’s lemma). Let ρ1 : G → Aut(V1) and ρ2 : G → Aut(V2) be two
irreducible representations of a group G. Then,

1. If f : V → W is a homomorphism of representations, then either f = 0 or f is an
isomorphism of representations.
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2. If f : V → V is an isomorphism of representations where the same representation
ρ works on both vector spaces V , then f is a scalar multiple of the identity iso-
morphism of representations, i.e. for a particular c ∈ C \ {0}: f(v) = cv for all
v ∈ V.

Schur’s lemma is at the very basis of representation theory as numerous sources, see
the introduction, show. In the following sections, 1.4, 1.5, 1.6 and 1.7, more important
theorems in representation theory will be presented. It goes too far to prove all of them,
hence, for a proof of some theorems there is referred to other sources, again, see the
introduction.

In the following sections, the irreducible representations of a group will be described
in great detail. Moreover, a method to decompose a representation into its irreducible
parts will be shown. Irreducible representations take an important role in the process of
grand orthogonalization.

1.4 Schur orthogonality

In this section a method to decompose a representation into its irreducible parts will be
shown, accompanied with elementary and powerful theorems. Most important, the Schur
orthogonality theorem will be presented.

1.4.1 The decomposition of a representation into irreducible rep-
resentations is unique

Corollary 1.20 in subsection 1.2.2 can be extended to theorem 1.23, which reads as follows.

Theorem 1.23. The decomposition of a reducible representation into irreducibles is
unique. [12, p. 14]

Theorem 1.23 is of great importance in representation theory. Treating any of the in-
finitely many representations, indeed one can always make a new representation by taking
the direct sum of two other representations, can be reduced to treating the irreducible
representations it is made up of.

Moreover, we are interested in the exact decomposition of such a reducible representa-
tion. To this end, in the next subsection the Schur orthogonality theorem, theorem 1.25,
and several corollaries are presented.

1.4.2 Schur orthogonality

First an inner product is defined:

Definition 1.24. Let f1, f2 be functions on G. Then,

〈f1 | f2〉 :=
1

|G|
∑
g∈G

f1(g)f2(g). (1.9)

This inner product will be called the Schur inner product. [12, p. 14]
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This inner product is Hermitian. Notice that inner product 1.9 is conjugate linear in
the second argument whereas inner product 1.4 is conjugate linear in the first argument.
Now in theorem 1.25 the Schur orthogonality theorem is presented.

Theorem 1.25 (Schur orthogonality). Let G be a group with class number k. Then,

1. G has exactly k irreducible representations, ρ1, ρ2, . . . , ρk.

2. The characters of the irreducible representations, χ1, χ2, . . . χk, are orthonormal
with respect to the Schur inner product.[12, p. 14][9, p. 680][11, p. 15]

Corollary 1.26. An abelian group G of order N has precisely N one-dimensional irre-
ducible representations.

Corollary 1.26 follows directly from theorem 1.25 and the fact that the class number,
i.e. the amount of conjugacy classes, of an abelian group equals its order.

The following two very useful corollaries, corollary 1.27 and corollary 1.28, follow from
the Schur orthogonality theorem.

Corollary 1.27. The decomposition of any representation ρ of G into irreducible repre-
sentations, ρ1, ρ2, . . . , ρk is given by

ρ = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mkρk.

Here, the multiplicities mj are unique and are determined by

mj = 〈χρ |χρj 〉.

[12, p. 15]

Corollary 1.28. Let χ be the character of a representation ρ. ρ is irreducible if and only
if 〈χρ |χρ〉 = 1, where 〈· | ·〉 is the Schur inner product. [13]

Corollary 1.28 gives us a criterion that works two ways to check whether or not a
representation is (ir)reducible.

Lastly, one more corollary will be presented, corollary 1.29.

Corollary 1.29. Two representations are isomorphic if and only if they have the same
character. [12, p. 14]

Indeed, representations are entirely characterized by their character! The study of
irreducible representations and their characters is therefore of the highest interest. Indeed,
this is where the focus is on in the remaining part of this thesis.

1.4.3 Isotypical vector spaces are orthogonal

Let ρ = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mkρk be a representation acting on a vector space W . For
each i = 1, 2, . . . , k, miρi is said to be an isotypical component or isotypical representation
of ρ. Let the isotypical component m0ρ0 of ρ act on the vector space V0 ⊆W . V0 is said
to be an isotypical vector space of W , ρ or m0ρ0.

The following theorem, theorem 1.30, holds. This theorem will be proven in this
subsection. The proof is made by dr. Jeroen Spandaw.
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Theorem 1.30. Let ρ : G → Aut(V ). Isotypical subspaces of V are orthogonal when
considering a ρ-invariant positive definite Hermitian inner product.

To prove theorem 1.30, let ρ1 be an irreducible subrepresentation of a representation
ρ, which acts on V . Let S be the sum of all ρ-invariant subspaces of V that ρ1 acts on,
so S is ρ-invariant itself, and let U be any irreducible subspace of S that ρ1 acts on. Let
ρ2 be an irreducible subrepresentation of ρ which is not isomorphic to ρ1. Let S′ be the
sum of all ρ-invariant subspaces of V that ρ2 acts on, so S′ is ρ-invariant itself, and let
U ′ be any irreducible subspace of S′ that ρ acts on.

S and S′ are indeed isotypical vector spaces: Suppose there exists such a vector space
U in V . If U is unique, then S = U . Otherwise there exists another such vector space
in V , say Ũ . By irreducibility of U and Ũ , U ∩ Ũ = {0}, so U ⊕ Ũ ⊆ S. If U ⊕ Ũ ⊂ S,
then there exists yet another such vector space U. This process terminates as S is finite-
dimensional. Hence S =

⊕
ρ1. The same argument holds for S′. Now, V = S⊕S′⊕ . . . .

It has to be proven that any non-isomorphic irreducible subrepresentations of V , here
noted as U and U ′, are H-orthogonal on V . Here orthogonality is taken with respect to
any chosen ρ-invariant positive definite Hermitian inner product H : V × V → C.

To this end, let π : V → S be the H-orthogonal projection from V on S. In other
words, if v ∈ V , v can be uniquely decomposed as v = v1 + v2, where v1 ∈ S and
v2 ∈ S⊥. Now, π(v) = v1. Let p : U ′ → S be the same function as π, but with a smaller
domain.

It will be proven that the function π is a homomorphism of representations, i.e. that
π(ρ(g)v) = ρ(g)(π(v)) for all v ∈ V . This is the same as proving that π(ρ(g)(v1 +v2)) =
ρ(g)(v1), which is, due to the linearity of ρ, the same as proving that π(ρ(g)(v1) +
ρ(g)(v2)) = ρ(g)(v1). By the linearity of π, this is the same as proving that

π(ρ(g)(v1)) + π(ρ(g)(v2)) = ρ(g)(v1).

Since v1 ∈ S and since S is ρ-invariant, ρ(g)v1 is also in S. Hence π(ρ(g)(v1)) =
ρ(g)(v1). Thus is has to be proven that π(ρ(g)(v2)) = 0. This is true: Indeed, let
v2 ∈ S⊥, then ρ(g)v2 ∈ S⊥ for all g ∈ G, since S⊥ is ρ-invariant (see theorem 1.17).

In conclusion, π : V → S is a homomorphism of representations. Then the restriction
of V to the ρ-invariant subspace U ′ of V , p : U ′ → S is a homomorphism of representa-
tions as well.

It will be shown that the only homomorphism of representations between U ′ and S is
the zero-map. To this end let q be an arbitrary homomorphism of representations between
U ′ and S. Indeed, due to the irreducibility of U ′, either ker(q) = {0} or ker(q) = U ′.
Suppose ker(q) = {0}. Then q is injective. Hence, q′ : U ′ → Im(U ′) is bijective and
Im(U ′) ⊆ S is isomorphic to U ′. However, by uniqueness of decomposition of represen-
tations, see corollary 1.27, the only irreducible subrepresentations of S are ρ1, not ρ2,
which acts on U ′. Hence Im(U ′) can not be isomorphic to a subrepresentation of S.
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The only possibility is that ker(q) = U ′, or, in other words, that q : U ′ → S is the
zero-map. Indeed, p : U ′ → S must be the zero-map as well. So every v ∈ U ′ splits as
v = 0 + v2 with v2 ∈ S⊥. Hence, all elements of U ′ are H-orthogonal to S. Therefore
S ⊥H S′. We conclude that any non-isomorphic isotypical vector spaces are orthogonal
under H, which is what had to be proven.

1.5 Dual representation

Every representation ρ has a so-called dual representation. Its definition is given as
follows:

Definition 1.31. Let ρ : G → Aut(V ) be a representation and let f : V → C be an
element of Hom(V,C). The dual representation of ρ, denoted as ρ∗, acts on Hom(V,C).
Given g ∈ G and f ∈ Hom(V,C), the dual representation is defined by:

ρ∗(g) • f : v→ f(ρ(g−1)(v)).

The vector space Hom(V,K) is also called the dual vector space and is noted as V ∗.
The definition of the dual representation is of the same form as mentioned in defini-

tion 1.1. When denoting the dual representation as in definition 1.2, we get ρ∗ : G →
Aut(Hom(V,C)). For any representation ρ : G→ Aut(V ), such a dual representation ρ∗

exists.

It is true that this definition actually gives rise to a representation. To this end,

ρ∗(g2g1) • f = v→ f(ρ∗((g2g1)−1)(v))

= v→ f(ρ∗(g−11 g−12 )(v))

= v→ f((ρ∗(g−11 )ρ∗(g−12 ))(v))

= v→ f((ρ∗(g−11 )(ρ∗(g−12 )(v))

= v→ (ρ∗(g1) • f)((ρ∗(g−12 )(v))

= ρ∗(g2) • (ρ∗(g1) • f)

The following theorem can be attained (theorem 1.32):

Theorem 1.32. Let ρ be a representation with character χ. The character of its dual,
ρ∗, equals χ. [12, p. 26]

1.6 Tensor products

The tensor product can be seen, somewhat analogously to the direct sum, as a direct
product. In this section the tensor product will be properly defined. Then an important
theorem will be stated, namely that characters can be multiplied, forming again a repre-
sentation.

In order to achieve this, first definition 1.33 will be given.
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Definition 1.33. Let F : V ×W → Z be a bilinear map, where V,W and Z are vector
spaces. (Z,F ) is said to be universal if for any G : V ×W → U , there is a unique linear
map φ : Z → U such that G = φ ◦ F . [3, p. 471][12, p. 28]

Such a universal bilinear map as defined in definition 1.33 can be shown to exist [12,
p. 28] and be unique up to a unique linear isomorphism. This gives rise to definition 1.34.

Definition 1.34. Let V be a n-dimensional vector space and letW be an am-dimensional
vector spaces. The tensor product of V and W is the unique, up to unique linear isomor-
phisms, vector space denoted as V ⊗W such that there is a universal bilinear mapping
F : V ×W → V ⊗W,v×w 7→ v⊗w, with v ∈ V and w ∈W . Moreover, let b1.b2 . . .bn

be a basis for V and let c1.c2 . . . cm be a basis for W . Also, let V ⊗W := Cnm be the
vector space that consists of n×m-matrices and where ei,j is the matrix with value 1 for
the element on the i-th row and j-th columns and all zeros elsewhere. Now the unique uni-
versal bilinear map F : V ×W → V ⊗W is given by: F : V ×W → V ⊗W,F (bi, cj) = ei,j.
Extending this function bilinearly gives:

F

 n∑
i=1

xibj,

m∑
j=1

yjcj

 =

n∑
i=1

m∑
j=1

xiyiei,j.

Indeed V ⊗W has dimension nm. F (v, w) with v ∈ V and w ∈ W is denoted as v ⊗ w.
[12, p. 29]

Corollary 1.35. if b1.b2 . . .bn be a basis for V and if c1.c2 . . . cm be a basis for W .
Then b1⊗ c1, . . . ,bi⊗ cj, . . . ,bn⊗ cm = e1,1, . . . , ei,j, . . . , en,m is a basis for V ⊗W . [3,
p. 471][12, p. 29]

Somewhat analogous to the definition of direct sums of functions and representations
of the same group in subsection 1.2.1, tensor products for functions whose domain is a
vector space and for representations of the same group will be defined.

Definition 1.36. Let f : A→ V1 and g : C → V2 be two arbitrary functions. Then:

(f ⊗ g)(a, c) := f(a)⊗ g(c),

with (a, c) ∈ (A,C).

However, in contrast to definition 1.36, the direct sum domain of two representation
is taken as G instead of (G,G). Now:

Definition 1.37. let ρ1 : G→ Aut(V1) and ρ2 : G→ Aut(V2) be two representations of
the same group G. Now,

(ρ1 ⊗ ρ2) := g 7→ ρ1(g)⊗ ρ2(g),

or equivalently:
(ρ1 ⊗ ρ2) = g 7→ ρ1(g)⊗ ρ2(g).

The tensor product of two representations ρ1 : G → Aut(V1) and ρ2 : G → Aut(V2)
as defined in definition 1.37 is again a representation. The codomain of ρ1 ⊗ ρ2 is the
automorphism group of V ⊗W .

The following useful theorem, theorem 1.38, that is analogous to theorem 1.15, holds:
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Theorem 1.38. Let ρ1 : G→ Aut(V1) and ρ2 : G→ Aut(V2) be representations. Let ρ
= ρ1 ⊗ ρ2. Then χρ(g) = χρ1(g) · χρ2(g) for all g ∈ G. [9, p. 668]

Regarding theorem 1.38, it is said that the character of the (tensor) product is the
product of the characters. To this end, the multiplying of characters gives rise to a new,
possibly reducible, representation.

1.7 The regular representation

Let G = {g1, g2, . . . gN}, N = |G|, be a group. There exists a faithful representation
of G of dimension |G|, named the regular representation (ρ). Let {e1, e2, . . . eN} be
the standard basis for the |G|-dimensional vector space CN . The regular representation
permutes all basis vectors, with respect to the corresponding group operations. In other
words, let gi, gj , gk ∈ G. If gi ◦ gj = gk, then we define

ρ(gi)(ej) := ek

. The word ‘regular’ means ‘transitive’ as well as ’free’, where ‘transitive’ means:

For allx, y ∈ X, there exists a g ∈ G such that g • x = y.

And were ‘free’ means:

If g • x = x, then g = e.

[10, p. 23] Here, X is the set of the standard basis vectors.

The character of the regular representation is as follows. Since ρ permutes the standard
basis vectors and since, if g 6= e, ρ(g)(ei) 6= ei, all diagonal elements of ρ(g) equal 0, hence
χρ(g) = 0 for all g ∈ G\{e}. If g = e, then χρ(g) = deg(ρ) = N by corollary 1.10. This
is stated in lemma 1.39.

Lemma 1.39. Let ρ be the regular representation of G. The character of ρ equals
(N, 0, 0, . . . , 0). Here N = |G|.

Using lemma 1.39, the decomposition of the regular representation into irreducible
components will be obtained. The multiplicities of the irreducible representations ρi, i =
1, 2, . . . , k where k is the class number of G are obtained by taking the Schur inner product
of ρi with ρ, by corollary 1.27. To this end:

mi = 〈χρ |χρj 〉 =
1

N

∑
g∈G

χρ(g)χρi(g)

=
1

N
(N · χρi(e) + 0 · χρi(g2) + ·+ 0 · χρi(gN ))

=
1

N
(N · χρi(e))

= deg(ρi).

This results in corollary 1.40.
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Corollary 1.40. The multiplicity mi of the i-th irreducible representation ρi in the
regular representation ρ is equal to deg(ρi), i.e.

ρ = d1ρ1 ⊕ d2ρ2 ⊕ · · · ⊕ dkρk.

Here di = deg(ρi) and k is the class number of G. Moreover,

χρ = d1χρ1 + d2χρ2 + · · ·+ dkχρk .

Evaluating this in g = e gives

|G| = χρ(e) =

k∑
i=1

diχρi(e) =

k∑
i=1

d2i . (1.10)

[12, p. 18]

The regular representation will take a prominent role in the remaining part of this the-
sis. In chapters 3 and 4, the vector space CN , N = |G|, G acts on will be decomposed as

the direct sum of ρ-invariant vector spaces. Indeed, CN will be splitted into
∑k
i=1 di =: S

irreducible representation invariant vector spaces. In each chapter of chapters 3 and 4 a
method in order to achieve this will be described.

In lemma 1.18 an ρ-invariant inner product H was defined. When considering the
regular representation (ρ), the standard complex inner product is ρ-invariant as well.
This is stated in theorem 1.41. From now on, when referring to orthogonal vectors, this
is meant in the context of the standard complex inner product.

Theorem 1.41. The standard complex inner product is representation invariant for the
regular representation.

1.8 Ways to construct a character table

In subsection 1.8.1 will be defined what a character table is. Calculating character ta-
bles can be quite cumbersome. So far several helpful ways to find new characters were
discussed. In this section, even more methods will be presented in order to find new
characters.

1.8.1 What is a character table?

As noted in subsection 1.4.2, the study of irreducible representations and their characters
is of the highest interest. A character table is a way to present all characters of all
irreducible representations in a convenient way. A character table is of the following
form:
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Table 1.1: The general form of a character table. Here ‘χρi(Conjugacy classj)’ means the
value of χρi(g) for some g in conjugacy class j.

Conjugacy class1 Conjugacy class2 . . . Conjugacy classk
ρ1 χρ1(Conjugacy class1) χρ1(Conjugacy class2) . . . χρ1(Conjugacy classk)
ρ2 χρ2(Conjugacy class1) χρ2(Conjugacy class2) . . . χρ2(Conjugacy classk)

...
...

...
. . .

...
ρk χρk(Conjugacy class1) χρk(Conjugacy class2) . . . χρk(Conjugacy classk)

As, by lemma 1.5, all elements of a conjugacy class have the same character, the
different conjugacy classes are considered in a character table rather than the individual
group elements g ∈ G. Moreover, since the number of irreducible representations of G is
the same as its class number, a character table is square.

A character table can be expanded by adding for example the orders of the elements
in a conjugacy class, which are the same for all elements in the same conjugacy class.
Moreover, the order of the conjugacy class itself can be added. In the rest of this chapter
several methods that can help to construct a character table will be presented.

1.8.2 Orthogonality of the columns of a character table

As already seen in theorem 1.25, the rows of a character table are orthonormal with
respect to the Schur inner product. However, the columns are also orthogonal, as stated
in the following corollary (1.42).

Corollary 1.42. The columns of a character table are orthogonal considering the stan-
dard complex inner product. The columns are even orthonormal considering the following
inner product for two columns ci and cj :

〈ci | cj〉 =

√
|Ci||Cj |
|G|

k∑
l=1

al,ial,j .

Here ai,j is an entry of the matrix A which represents the character table of a group G.

1.8.3 Basic methods to construct a character table

First of all, equation 1.10 in section 1.7 is of great use. Squaring the first column of the
character table component-wise and adding all these squares gives the order of G. This
rule reduces the amount of possible dimensions the irreducible representations can have
considerably. This method is used extensively and is a great way to start any character
table.

The trivial representation is the representation that sends all elements of G to e2,
where e2 is the identity element of V G acts on. Choosing a basis for V , the trivial
representation sends all elements of G to 1. For any group G, the trivial representation
is always the first row in the character table.
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When considering one-dimensional representations, the characters of these represen-
tations are the same as the 1 × 1-dimensional matrices ρ(g), with g ∈ G, no matter the
chosen basis for V ρ acts on. Every ρ(g) only has one degree of freedom. It is worth trying
to make equations that enormously reduce the possible one-dimensional representations
to a treatable amount of options.

Corollary 1.19 stated that χ(g−1) = χ(g). This fact can help in making a character
table.

In section 1.6 we have seen that characters can be multiplied. When multiplying char-
acters new, possible reducible, representation might be formed. In practice, this method
proves to be very useful.

Suppose ρA = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mkρk and ρB = n1ρ1 ⊕ n2ρ2 ⊕ · · · ⊕ nkρk are two
representations of which the vector spaces V1 ⊆W and V2 ⊆W they act on respectively
are known. The decomposition of ρA and ρB might not be known. It can be easier to
decompose the representation that works on ρA ∩ ρB (see corollary ??), provided that
ρA ∩ ρB 6= {0}.

1.8.4 Filtering out known irreducible representations

Given is a representation ρ = m1ρ1 ⊕ · · · ⊕mlρl where ρ1, . . . , ρl are irreducible repre-
sentations. Suppose we know the character of l − 1 of these irreducible representations.
Beforehand, it is not known what the value of l is, whether or not these l − 1 characters
correspond to irreducible representations and whether or not they partake in the direct
sum of ρ.

In order to determine whether or not such a representation ρi, i = 1, . . . , l− 1 is irre-
ducible, we calculate the Schur inner product of ρi with itself, i.e 〈χρi , χρi〉. As seen in
corollary 1.28, χρi is irreducible if and only if 〈χρi , χρi〉 = 1.

As we have seen in corollary 1.27 in subsection 1.4.2, we can check the multiplicity of
an irreducible representations ρi within the representation ρ by taking their Schur inner
product 〈χρi , χρ〉. Suppose this irreducible representation ρi is in fact part of the decom-
position of ρ into irreducible representations, then χρ −miχρi is again a representation.

Check whether or not χρ −miχρi is irreducible. If this representation is irreducible,
then the obtained character might be new and can be added to the character table. If
this representation is reducible, then take another known irreducible representation and
check whether or not this irreducible representation is part of the decomposition of the
newly obtained reducible representation. This can be done until a newly obtained rep-
resentation is irreducible. If a newly obtained representation is indeed irreducible, we
have successfully ’filtered out’ all the other irreducible representations in ρ with respect
to their multiplicities.

Remark 1.43. In fact, any representation that is a subrepresentation of ρ can be ‘filtered
out’.
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1.8.5 Taking the orthogonal complement of W in V

Suppose a vector space W is a representation invariant subspace of V , where ρ acts on.
By theorem 1.17, W> in V is a subrepresentation of V . Suppose moreover that the
images of ρ and the subrepresentation of ρ acting on W are known. The character of the
subrepresentation of ρ acting on W> might be new and can be added to the character
table. Indeed, this is the same as ‘filtering out’ the representation acting on W from ρ.
However, now the actual representation acting on W> is known, not just the character.

1.8.6 The pulling back method

Let G be a group of which we want to state the character table. Let N be a normal
subgroup of G. Hence, G/N is a quotient group. Suppose we know a representation of
G/N , that is, we have a homomorphism ρ : G/N → Aut(V ), where V a vector space.
There also exists at least one group homomorphism from G to G/N , namely the canonical
(or natural) homomorphism: φ : G→ G/N, φ(a) = aN .

Consider lemma 1.44.

Lemma 1.44. Let G1, G2 be two groups and let f : G1 → G2 be a group homomorphism.
Then all elements in a conjugacy class of G1 are mapped to one conjugacy class of G2.

Now, ρ2 = ρ ◦ φ is again a homomorphism. Let C be a conjugacy class of G. ρ(C) is,
or is part of, a conjugacy class in G/N by lemma 1.44, which has a single character in the
character table. Hence, only by looking at the function ρ, the characters in the character
table of G/N can be transferred to the character table of G, taking into account which
conjugacy classes of G are mapped to which conjugacy classes of G/N by ρ. We call this
process ‘pulling back’.
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Chapter 2

The groups Cn, V4, S3, Q8, D4,
T and 2T

In this chapter several group tables will be made using the theorems and methods de-
scribed in section 1. The groups that will be treated are Cn, V4, S3, D4, Q8 and T ∼= A4.
Certain elementary properties of these groups will be regarded as known, such as their
conjugacy classes and normal subgroups. The other rotation groups, besides T , of the
Platonic solids as well as their double covers will briefly be introduced. Moreover, the
explicit images of the irreducible representations of D4 and Q8 will be determined. In
chapter 3 and chapter 4 two methods to find representation invariant subspaces of CN ,
where N is the order of a group G, will be presented.

2.1 The character table of Cn

As described in theorem 1.25 in subsection 1.4.2, the number of irreducible representations
of a group equals it’s class number, i.e. the amount of conjugacy classes G has. As Cn is an
abelian group, it has n conjugacy classes, thus n irreducible representations. Intuitively,
as Cn denotes circular operations, rotations of the plane will be a good starting point.
Indeed, multiplying with one-dimensional complex matrices, given a basis for V with
dim(V ) = 1, of the form

exp

(
ai

2 · π
n

)
, (2.1)

with a = 1, 2 . . . n, agrees with the representation requirements.

To this end, the group elements of Cn are numbered agreeing to their power. g1
generates all of Cn. g1 can be any element of expression 2.1. Hence all n irreducible
representations are already given. The character table is given in table 2.1.
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Table 2.1: Character table of Cn

Conjugacy class {e} {c1} . . . {cn−1}
χ1 1 exp

(
i 2·πn

)
. . . exp

(
(n− 1)i 2·πn

)
χ2 1 exp

(
2i 2·πn

)
. . . exp

(
(n− 2)i 2·πn

)
...

...
...

. . .
...

χn 1 exp
(
(n− 1)i 2·πn

)
. . . exp

(
i 2·πn

)

2.2 The character table of V4

As V4 is abelian, it’s class number is the order of the group itself, which is four. Let
the elements of V4 be denoted as e, a, b and c, where e is the identity element. As these
representations are all one-dimensional, the following equations hold:

χρ(g)2 = χρ(e) = 1, (2.2)

for g ∈ {a, b, c}. Hence, a, b, c ∈ {1,−1}. Moreover, the following equation holds:

χρ(a) · χρ(b) = χρ(c) (2.3)

These two equations, 2.2 and 2.3, result in the character table in table 2.2.

Table 2.2: Character table of V4

Conjugacy class {e} {a} {b} {c}
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

2.3 The character table of S3

More often than not there are several ways in which a character table can be obtained.
In this section three ways to obtain the character table of S3 will be shown. In subsection
2.3.1 equations related to one-dimensional representations and Schur orthogonality are
used. In subsection 2.3.2 a three-dimensional interpretation and a check for reducibility
are used. Lastly, in subsection 2.3.3 the same 3-dimensional interpretation as in subsec-
tion 2.3.2 is used, however instead of checking for reducibility, an orthogonal complement
is taken.

There are more ways to find the character table of S3 than the ones presented here.
Multiple ways are shown to give the reader a view on the ways several lemma’s, theorems
and corollaries described in chapter 1 can be used. What is more, in certain situations
certain methods work better than others. By presenting several ways, the process of
making character tables and all that can come with it is treated in a more comprehensive
way.
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The conjugacy classes of S3 and the dimension of its representations

The conjugacy classes of S3 are: {(1)}, {(12), (13), (23)} and {(123), (132)}. Hence, S3

has three different irreducible representations. By corollary 1.40 |S3| =
∑3
i=1 d

2
i . Hence,

the representations ρ1, ρ2, ρ3 have degree one, one and two respectively.

2.3.1 One-dimensional representations and Schur orthogonality

The first representation is again the standard representation. The second representation
is one-dimensional, so we try to make equations that result in the character, and even
image, of ρ2. The following equations hold:

χρ2(1) = χρ2((123)(123)(123)) = χρ2(((123))3

χρ2(1) = χρ2((123)(132)) = χρ2((123))2

Hence, χρ2((123)) = 1. Now, since χρ2((12)(12)) = χρ2(e), either χρ2((12)) = 1 or
χρ2((12)) = −1. The first option gives the standard representation, hence the second
option gives the second representation.

Now using Schur orthogonality, the last character is obtained, which makes the char-
acter table of S3 complete, see table 2.3.

Table 2.3: Character table of S3

Conjugacy class {e} {(12)} {(123)}
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Using equations for one-dimensional representations does not always complete a char-
acter table. That is why another way to make the character table of S3 will be presented.

2.3.2 Filtering out irreducible representations

Let S3 act on C3 as described in subsection 1.1.2. The matrices ρ((12)) and ρ((123)) are
then as in equation 1.2. The following character is obtained: χ : (3, 1, 0). This character
is reducible since 32 > 6 or alternatively, since 〈χ |χ〉 6= 1.

The trivial character, χtrivial is a subcharacter of χ. Indeed, 〈χtrivial |χ〉 = 1 6= 0.
Therefore, χnew = χ−χtrivial is again a character of a representation of S3. This character,
however, is irreducible. Indeed 〈χnew |χnew〉 = 1. Again, for example, Schur orthogonality
can be used to obtain the last character of S3.

2.3.3 Taking an orthogonal complement

Again, let S3 act on CN as described in subsection 1.1.2. Notice that the trivial repre-
sentation acts on the space W = Span(1, 1, 1)> ⊂ C3. By theorem 1.17, W⊥ in V is also
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acted on by a representation, say ρ′, of S3.

Vectors (1,−1, 0)> and (1, 0,−1)> form a basis for W⊥. Making matrices ρ′((12))
and ρ′((23)) with respect to this basis gives:

ρ((12)) =

[
−1 −1
0 1

]
, ρ((23)) =

[
0 1
1 0

]
.

Again, the character χ = (2, 0, 1) is obtained. Moreover, all matrices ρ′(g), for all g ∈ S3

are obtained for a particular basis. Again, for example, Schur orthogonality can be used
to obtain the last character of S3.

2.4 The character tables of Q8 and D4

The group Q8 consists of the quaternion elements

1,−1, i,−i, j,−j, k,−k

and the group D4 consists of all rotations (r) and reflections (s) of the square, i.e.

e, r, r2, r3, s, r ◦ s, r2 ◦ s, r3 ◦ s,

where e is the identity element. Both of these groups have the same order, and, as we
will see, the character tables of Q8 and D4 are the same. Hence, they are treated in the
same section.

We start by stating the conjugacy classes of both Q8 and D4. The conjugacy classes
of Q8 are

({1}, {−1}, {i,−i}, {j,−j}, {k,−k}).

The conjugacy classes of D4 are

({e}, {r2}, {r, r3}, {s, r2 ◦ s}, {r ◦ s, r3 ◦ s}).

Now we take a look at the dimensions di of the irreducible representations of D4. Since
D4 has 5 conjugacy classes, it also has 5 irreducible representations, see theorem 1.25.
We know that by corollary 1.40, |D4| =

∑5
i=1 d

2
i . All di are in N, so the only possible

option based on this theorem is: (d1, d2, d3, d4, d5) = (1, 1, 1, 1, 2). The same holds for the
group Q8.

Note that e, r2 is a normal subgroup of D4. Hence D4/{e, r2} ∼= C2×C2
∼= V4 is a quo-

tient group ofD4. Using the pulling back technique as described in section 1.8.6 and know-
ing the characters of the irreducible representations of C2 × C2

∼= V4 beforehand, we al-
ready know the following four characters ofD4: (1, 1, 1, 1, 1), (1, 1, 1,−1,−1), (1, 1,−1, 1,−1)
and (1, 1,−1,−1, 1).

Now, by using Schur orthogonality of irreducible representations, the last character of
the character table of D4 can be calculated: (2,−2, 0, 0, 0). Hence, we know the characters
of all irreducible representations of D4. The character table is given in table 2.4.
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Table 2.4: Character table of D4

Conjugacy class {e} {r2} {r, r3} {s, r2 ◦ s} {r ◦ s, r3 ◦ s}
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

The group Q8 has {1,−1} as normal subgroup. We have Q8/{1,−1} ∼= V4. Again,
using the pulling back method as described in section 1.8.6 and using Schur orthogonality,
we find the same character table for Q8 as for D4, see table 2.5.

Table 2.5: Character table of Q8

Conjugacy class {1} {−1} {i,−i} {j,−j} {k,−k}
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

2.5 The Platonic solids

Platonic solids are the three dimensional objects that consist of regular polygons. Sub-
sections 2.5.1 and 2.5.2 will be mainly based on the thesis of G.M.C. van Ittersum.

2.5.1 The groups SO(3) and SU(2)

The special orthogonal group, denoted by SO(3), is the group of linear rotations of a
three-dimensional real vector space. Its elements can be represented by all orthonormal
3 × 3-matrices. The group operation is defined by composition of linear mappings. The
group SO(3) is at the basis of the rotation groups of the Platonic solids as soon will be
shown.

The group SU(2) consists of all 2×2-dimensional unitary matrices with det = 1. Each
of these matrices can be represented by a unit quaternion, also known as a versor. The
group of unit quaternions, which is isomorphic to SU(2), is denoted as H1. [2]

A rotation of a vector in three-dimensional space can be interpreted as a quaternion
multiplication. To this end, given an orthonormal basis, let x = (x1, x2, x3) be a vector in
a three-dimensional vector space V . To apply quaternion multiplication, with q ∈ H1, the
vector x is denoted as the quaternion 0 + x1i+ x2j + x3k. Indeed, qxq−1 is again of the
form 0+ai+bj+ck, which will be the vector (a, b, c) in V with respect to the chosen basis.
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In fact the mapping SU(2) → SO(3), ρ(q) : x → qxq−1 is a group homomorphism.
This homomorphism is two-to-one [17, p. 113],[13]. This two-to-one map can be used to
form so called binary groups of the rotation groups of the Platonic solids. These binary
groups are denoted as 2T , 2O and 2I. Their order is twice the order of their rotational
counterpart. 2T , 2O and 2I are said to be double covers of T , O and I respectively. They
are the pre-image of, respectively, the groups T , O and I under the given two-to-one
group homomorphism. These six groups will be further illustrated in subsection 2.5.2.

2.5.2 The groups T , 2T , O, 2O, I and 2I

The groups T , O and I are the rotation groups of the Platonic solids in R3. The group T
rotates the tetrahedron, the group O rotates the cube and its dual, the octahedron, and
the group I rotates the icosahedron as well as its dual, the dodecahedron. T , O and I are
respectively called the tetrahedral group, the octahedral group and the icosahedral group.
As these groups rotate the three-dimensional Platonic solids such that the Platonic solids
are mapped onto themselves in three-dimensional space and preserve orientation, these
groups are finite subgroups of SO(3) [17, p. 141], [8, p. 3]. In fact, T , O and I are, besides
the cyclic groups Cn and the dihedral groups Dn, the only subgroups of SO(3)[17, p. 114].
Moreover, by the two-to-one mapping from SU(2) to SO(3), the groups 2T , 2O and 2I
are subgroups of SU(2).

2.5.3 The character table of T ∼= A4

The tetrahedral group T is isomorphic to A4 [7, p. 16]. To this end, we consider the group
A4. The conjugacy classes of A4 are

1 = {e}
2 = {(12)(34), (13)(24), (14)(23)}

3a = {(123), (134), (142), (243)}
3b = {(132), (143), (124), (234)}.

Here 1, 2 and 3 stand for the order of the elements in that particular conjugacy class.

Since A4 has 4 conjugacy classes, it also has 4 irreducible representations, see theorem
1.25. We know that by corollary 1.40, |A4| =

∑4
i=1 d

2
i . All di are in N, so the only

possible option based on this theorem is: (d1, d2, d3, d4) = (1, 1, 1, 3).

Note that V4 is a normal subgroup of A4. Hence A4/{V4} ∼= C3 is a quotient
group of A4. Using the pulling back technique as described in section 1.8.6 and know-
ing the characters of the irreducible representations of C3 beforehand, we know al-
ready the following three characters of A4: (1, 1, 1, 1), (1, 1, exp

(
i 2·π3

)
, exp

(
i 4·π3

)
) and

(1, 1, exp
(
i 4·π3

)
, exp

(
i 2·π3

)
).

Now, by using Schur orthogonality of irreducible representations, the last character of
the character table of A4 can be calculated: (3,−1, 0, 0). Hence, we know the characters
of all irreducible representations of A4. The character table is given in table 2.6.
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Table 2.6: Character table of T

Conjugacy class 1 2 3a 3b
χ1 1 1 1 1
χ2 1 1 exp

(
i 2·π3

)
exp

(
i 4·π3

)
χ3 1 1 exp

(
i 4·π3

)
exp

(
i 2·π3

)
χ4 3 −1 0 0

2.5.4 The character table of 2T

This subsection is based on pp.51-56 of [12]. Since 2T is a subgroup of H1, its elements
can be represented by unit quaternions. The conjugacy classes of 2T are the following

1 = {1}
2 = {−1}

3a =

{
−1

2
(1± i± j ± k)| 0 or 2 minuses

}
3b =

{
−1

2
(1± i± j ± k)| 1 or 3 minuses

}
4 = {(±i± j ± k)|}

6a =

{
1

2
(1± i± j ± k)| 0 or 2 minuses

}
6b =

{
1

2
(1± i± j ± k)| 1 or 3 minuses

}
.[12, p. 54]

Again, by corollary 1.40, |2T | =
∑7
i=1 d

2
i . All di are in N and the only possible option

is: (d1, d2, d3, d4, d5, d6, d7) = (1, 1, 1, 2, 2, 2, 3).

The group {1,−1} is a normal subgroup of 2T . Hence 2T/{1,−1} ∼= T is a quotient
group of 2T . Using the pulling back technique and knowing the characters of the irre-
ducible representations of T beforehand, we know already the following four characters
of 2T :

χ1 = (1, 1, 1, 1, 1, 1, 1)

χ2 =

(
1, 1, exp

(
i
2 · π

3

)
, exp

(
i
4 · π

3

)
, 1, exp

(
i
2 · π

3

)
, exp

(
i
4 · π

3

))
χ3 =

(
1, 1, exp

(
i
4 · π

3

)
, exp

(
i
2 · π

3

)
, 1, exp

(
i
4 · π

3

)
, exp

(
i
2 · π

3

))
χ7 = (3, 3, 0, 0,−1, 0, 0).

Now we define a two-dimensional representation, say ρ4, of 2T . Since all elements of
2T are unit quaternions, as are all elements of Q8, the same representation as in subsec-
tion 3.2.2 will be described is taken. Again, as will be done in subsection 3.2.2, {1, j} is
chosen as basis for H ∼= C2.
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To obtain χ4, ρ4(a+ bi+ cj + dk) with respect to the basis {1, j} is determined. To
this end,

ρ4(a+ bi+ cj + dk)(1) = a− bi− cj − dk = a− bi+ (−c− di)j
ρ4(a+ bi+ cj + dk)(j) = j(a− bi− cj − dk) = c− di+ aj + bk = c− di+ (a+ bi)j.

Hence,

ρ4(a+ bi+ cj + dk) =

[
a− bi c− di
−c− di a+ bi

]
.

Now, χ4(a+bi+cj+dk) = a−bi+a+bi = 2a. Taking the real part of an element of each
of the seven conjugacy classes an multiplying with two gives chi4 : (2,−2,−1,−1, 0, 1, 1).

In order to obtain χ5 and χ6, theorem 1.38 is used. First, the product of χ2 and χ4

is taken. This gives

χ2χ4 =

(
2,−2,−exp

(
i
2 · π

3

)
,−exp

(
i
4 · π

3

)
, 0, exp

(
i
2 · π

3

)
, exp

(
i
4 · π

3

))
.

The Schur inner product of χ2χ4 with itself equals one, thus χ2χ4 is a newly obtained
irreducible character of 2T , say χ5.

In the same way χ6,

χ3χ4 =

(
2,−2,−exp

(
i
4 · π

3

)
,−exp

(
i
2 · π

3

)
, 0, exp

(
i
4 · π

3

)
, exp

(
i
2 · π

3

))
,

is obtained as the product of χ3 and χ4.

The complete character table of 2T is given in table 2.7.

Table 2.7: Character table of 2T

Conjugacy class 1 2 3a 3b 4 6a 6b
χ1 1 1 1 1 1 1 1
χ2 1 1 exp

(
i 2·π3

)
exp

(
i 4·π3

)
1 exp

(
i 2·π3

)
exp

(
i 4·π3

)
χ3 1 1 exp

(
i 4·π3

)
exp

(
i 2·π3

)
1 exp

(
i 4·π3

)
exp

(
i 2·π3

)
χ4 2 −2 −1 −1 0 1 1
χ5 2 −2 −exp

(
i 2·π3

)
−exp

(
i 4·π3

)
0 exp

(
i 2·π3

)
exp

(
i 4·π3

)
χ6 2 −2 −exp

(
i 4·π3

)
−exp

(
i 2·π3

)
0 exp

(
i 4·π3

)
exp

(
i 2·π3

)
χ7 3 3 0 0 −1 0 0
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Chapter 3

Comparing the groups Q8 and
D4

In this chapter we will compare the groups Q8 and D4 as a worked out example for
how the first method, proposed by dr. Jeroen Spandaw, splits C8, where the regular
representation (ρ) acts on, into ρ-invariant subspaces. Doing this for both Q8 as well as
for D4 is especially useful as these two groups have the same character table. Here Q8

consists of the quaternion elements

1,−1, i,−i, j,−j, k,−k

and D4, consists of all rotations and reflections of the square, i.e.

e, r, r2, r3, s, r ◦ s, r2 ◦ s, r3 ◦ s,

where e is the identity element.

First of all, C8 will be split into ρ-invariant isotypical components for D4 as well as
for Q8 (section 3.1). After that, the isotypcial components of higher dimensions (≥ 2)
will be split into its representation invariant parts (section 3.2). Last of all, the regular
representation will be shown in block diagonal form for both Q8 and D4.

3.1 Splitting the regular representations of Q8 and D4

into isotypical subrepresentations

In this section C8 will be split into ρ-invariant isotypical components. This is done for
the group D4 in subsection 3.1.1 and for the group Q8 in subsection 3.1.2.

3.1.1 Splitting the regular representation of D4 into isotypical
subrepresentations

First the regular representation (ρ) is defined by numbering the group elements of D4

and making a basis for C8. To this end, let g1 = e, g2 = r2, g3 = r, g4 = r3, g5 = s, g6 =

29



r2 ◦s, g7 = r◦s, g8 = r3 ◦s and let e1, e2, . . . , e8 be the standard basis of C8. As stated in
section 1.7, if gi ◦ gj = gk, with gi, gj , gk ∈ G, then the regular representation ρ is defined
as ρ(gi)ej := ek.

Now that the character tables for Q8 as well as D4 are made, we are interested in
an actual decomposition of the regular representation (ρ) into all subrepresentations. By
corollary 1.27, the regular representation ρ splits in all the irreducible representations as
follows:

ρ = d1ρ1 ⊕ d2ρ2 ⊕ . . .⊕ dkρk,

where k is the number of irreducible representations and di is the dimension of the irre-
ducible representation ρi for all i. Hence:

D4 : ρ = ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4 ⊕ 2ρ5

Q8 : ρ = ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4 ⊕ 2ρ5.

Since the regular representation can be written as a direct sum of irreducible rep-
resentations, there exist matrices corresponding to elements of Aut(C8) in which these
matrices are in blockdiagonal form. Different irreducible representations will be pairwise
orthogonal, see theorem 1.30. To this end, we will find vectors in C8 corresponding to
exactly one irreducible subrepresentation of ρ.

From the character table it is known that D4 has four representations of dimension
one. This means that one of such a representation is the span of a single vector, say
x = (x1, x2, x3, x4, x5, x6, x7, x8)>. For such a one-dimensional representation, say ρi, i =
1, 2, 3, 4, the following equations hold:

ρ(g1)x = χρi(g1)x

ρ(g2)x = χρi(g2)x

...

ρ(g8)x = χρi(g8)x.

For instance, for the trivial representation (ρ1) of ρ the following equations hold:

ρ(g1)x = x

ρ(g2)x = x

...

ρ(g8)x = x.
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Equivalently,

x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7 + x8e8 = x1e1 + x2e2 + · · ·+ x8e8

x2e1 + x1e2 + x4e3 + x3e4 + x6e5 + x5e6 + x8e7 + x7e8 = x1e1 + x2e2 + · · ·+ x8e8

x4e1 + x3e2 + x2e3 + x1e4 + x8e5 + x7e6 + x5e7 + x6e8 = x1e1 + x2e2 + · · ·+ x8e8

x3e1 + x4e2 + x1e3 + x2e4 + x7e5 + x8e6 + x6e7 + x5e8 = x1e1 + x2e2 + · · ·+ x8e8

x5e1 + x6e2 + x8e3 + x7e4 + x1e5 + x2e6 + x4e7 + x3e8 = x1e1 + x2e2 + · · ·+ x8e8

x6e1 + x5e2 + x7e3 + x8e4 + x2e5 + x1e6 + x3e7 + x4e8 = x1e1 + x2e2 + · · ·+ x8e8

x7e1 + x8e2 + x5e3 + x6e4 + x3e5 + x4e6 + x1e7 + x2e8 = x1e1 + x2e2 + · · ·+ x8e8

x8e1 + x7e2 + x6e3 + x5e4 + x4e5 + x3e6 + x2e7 + x1e8 = x1e1 + x2e2 + · · ·+ x8e8.

Equivalently,

(x1, x2, x3, x4, x5, x6, x7, x8) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x2, x1, x4, x3, x6, x5, x8, x7) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x4, x3, x2, x1, x8, x7, x5, x6) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x3, x4, x1, x2, x7, x8, x6, x5) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x5, x6, x8, x7, x1, x2, x4, x3) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x6, x5, x7, x8, x2, x1, x3, x4) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x7, x8, x5, x6, x3, x4, x1, x2) = (x1, x2, x3, x4, x5, x6, x7, x8)

(x8, x7, x6, x5, x4, x3, x2, x1) = (x1, x2, x3, x4, x5, x6, x7, x8).

Equivalently,
x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8.

Hence, the subrepresentation ρ1 of ρ is generated by the vector (1, 1, 1, 1, 1, 1, 1, 1)> =: a1.

We can do this for any one-dimensional representation. We get the following subspaces
of C8, representing all the one-dimensional representations of D4:

The subrepresentation ρ1 of ρ is generated by the vector (1, 1, 1, 1, 1, 1, 1, 1)> =: a1

(3.1a)

The subrepresentation ρ2 of ρ is generated by the vector (1, 1, 1, 1,−1,−1,−1,−1)> =: a2

(3.1b)

The subrepresentation ρ3 of ρ is generated by the vector (1, 1,−1,−1, 1, 1,−1,−1)> =: a3

(3.1c)

The subrepresentation ρ4 of ρ is generated by the vector (1, 1,−1,−1,−1,−1, 1, 1)> =: a4.
(3.1d)

Now, only subrepresentation 2ρ5 of ρ still needs to be found. This representation is
orthogonal to ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4 in C8. A basis for

Null


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1

 =: V5
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is for instance:

B =





1
−1
0
0
0
0
0
0


,



0
0
1
−1
0
0
0
0


,



0
0
0
0
1
−1
0
0


,



0
0
0
0
0
0
1
−1




, (3.2)

with b1,b2,b3,b4, the respective basis vectors.

However,

ρ(s)(b1) = ρ(s)(e1 − e2) = e5 − e6 = b3

ρ(s)(b2) = ρ(s)(e3 − e4) = e8 − e7 = −b4

ρ(s)(b3) = ρ(s)(e5 − e6) = e1 − e2 = b1

ρ(s)(b4) = ρ(s)(e7 − e8) = e4 − e3 = −b2.

Hence,

ρV5
(s) =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,
with respect to b1,b2,b3,b4. This matrix is not in block diagonal form. Thus z1b1 +
z2b2, with z1, z2 ∈ C is not a representation invariant subspace. If we let b′2 := b3 and
b′3 := b2 however, we get:

ρV5
(s) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,
which is block diagonal. But then,

ρV5(r) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,
which is not block diagonal.

Unfortunately, no two vectors out of b1,b2,b3,b4 will form a representation invariant
subspace of V5. However, such a representation invariant subspace, and therefore block
diagonal matrices ρv5(g) for all g ∈ G exists as 2ρ5 is reducible. We write V5 = V 1

5 ⊕
V 2
5 , where V 1

5 and V 2
5 are two two-dimensional representation invariant subspaces of

V5. Notice that ρv5(g) is block diagonal for all g ∈ G if ρv5(g) is block diagonal for all
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generators of G. In the next subsection 3.1.2 we will find all possible basis vectors of V5
such that two representation invariant subspaces, V 1

5 and V 2
5 , are formed. That is, half

of the found basis vectors for V5 will be a basis for V 1
5 and the other half will be a basis

for V 2
5 .

3.1.2 Splitting the regular representation of Q8 into isotypical
subrepresentations

Again, the group elements are numbered, this time of group Q8. To this end, let
g1 = 1, g2 = −1, g3 = i, g4 = −i, g5 = j, g6 = −j, g7 = k, g8 = −k and let e1, e2, . . . , e8 be
the standard basis for C8.

The four one-dimensional representations within the regular representation of Q8, ρ,
are found analogously to the ones of D4. They are precisely as in equations 3.1x.

The subspace V5 as mentioned in subsection 3.1.1 and the basis B for V5 as in equation
3.2 can also be completely copied. However, the representation acting on this space must
be different, as Q8 is different from D4.

i and j are generators for Q8. ρ of these generators on the basis vectors of B result
in:

ρ(i)(b1) = ρ(i)(e1 − e2) = e3 − e4 = b2

ρ(i)(b2) = ρ(s)(e3 − e4) = e2 − e1 = −b1

ρ(i)(b3) = ρ(s)(e5 − e6) = e7 − e8 = b4

ρ(i)(b4) = ρ(s)(e7 − e8) = e6 − e5 = −b3

ρ(j)(b1) = ρ(s)(e1 − e2) = e5 − e6 = b3

ρ(j)(b2) = ρ(s)(e3 − e4) = e8 − e7 = −b4

ρ(j)(b3) = ρ(s)(e5 − e6) = e2 − e1 = −b1

ρ(j)(b4) = ρ(s)(e7 − e8) = e3 − e4 = b2.

Hence,

ρV5
(i) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



ρV5
(j) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,
which are not both block diagonal.
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3.2 Splitting irreducible representations of D4 and Q8

of dimension ≥ 2 into their irreducible components

In section 3.1 C8 is split into representation invariant, with respect to the regular represen-
tation, isotypical components. In this section these isotypical components will be further
decomposed. In subsection 3.2.1 this will be done for the group D8 and in subsection
3.2.2 this is done for the group Q8.

3.2.1 Splitting irreducible representations of D8 of dimension ≥ 2
into its irreducible components

Consider the elements of D4 to act on a square (in R2), where r is a rotation of π2 radians
and s is a reflection in the x-axis. This gives the unique irreducible two-dimensional
representation of D4 (ρ5). Take e1 and e2 as basis vectors for C2. Now,

ρ5(r) =

[
0 −1
1 0

]
ρ5(s) =

[
1 0
0 −1

]
.

The mappings of the other six group elements of D4 follow from these two generators of
D4 (r and s).

Hence, the block matrices of 2ρ5 = ρ5 ⊕ ρ5 of the generators of D4 are given by:

(2ρ5)(r) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



(2ρ5)(s) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
which are both block diagonal.

In order to find all possible basis vectors C = (c1, c2, c3, c4) of 2ρ5 such that (2ρ5)(g)
with respect to the basis C are block diagonal for all g ∈ G, all possible change of basis
matrices L must be found such that

L ◦ (2ρ5)(g) ◦ L−1 = ρV5
(g) (3.3)

for all g ∈ G, or equivalently, for all generators of G. Here ρv5 is taken with respect to
the basis B. In this way,
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The matrices L that agree with equation 3.3 for the generators of D4, i.e. r and s,

g = r :


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

L = L


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



g = s :


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

L = L


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
are of the form:

L =


p q r s
−q p −s r
p −q r −s
q p s r

 .
We have det(L) = 4(ps− qr)2. Thus L will be invertible if and only if ps 6= qr.

Now, the vectors of the basis C are formed by expressing the columns of P in the
basis B. To this end, let B′ =

[
b1 b2 b3 b4

]
. Now, let C ′ = B′L. The columns of

C ′, expressed in B form a basis for 2ρ5 in C8. This results in:

c1 = pb1 − qb2 + pb3 + qb4

c2 = qb1 + pb2 − qb3 + pb4

c3 = rb1 − sb2 + rb3 + sb4

c4 = sb1 + rb2 − sb3 + rb4,

which gives

c1 = p(e1 − e2)− q(e3 − e4) + p(e5 − e6) + q(e7 − e8)

c2 = q(e1 − e2) + p(e3 − e4)− q(e5 − e6) + p(e7 − e8)

c3 = r(e1 − e2)− s(e3 − e4) + r(e5 − e6) + s(e7 − e8)

c4 = s(e1 − e2) + r(e3 − e4)− s(e5 − e6) + r(e7 − e8).

Hence,

c1 = (p,−p.− q, q, p,−p, q,−q)>

c2 = (q,−q, p,−p,−q, q, p,−p)>

c3 = (r,−r,−s, s, r,−r, s,−s)>

c4 = (s,−s, r,−r,−s, s, r,−r)>,

where, indeed, C = (c1, c2, c3, c4) is a basis for 2ρ5 acting on V5 ⊂ C8.

Moreover, {c1, c2} and {c3, c4} both form a basis for V 1
5 and V 2

5 ⊂ C8 respectively.
V 1
5 and V 2

5 are not fixed, as they depend on the parameters p, q, r, s. These specific basis
vectors, although dependent on their parameters, define all possible subspaces V 1

5 and
V 2
5 ⊂ C8, but are by no means the only possible basis vectors for V 1

5 and V 2
5 , since a

basis transformation can always be performed. Notice that z1c1 + z2c2 and z3c3 + z4c4,
with z1, z2, z3, z4 ∈ C do not need to be orthogonal, but are allowed to.
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3.2.2 Splitting irreducible representations of Q8 of dimension ≥ 2
into its irreducible components

First, we define the two-dimensional representation ρ5 of Q8. All elements of Q8 can be
seen as unit quaternions. Hence, these elements might act on the one-dimensional vector
space H1, where H is the set of quaternions. Setting ρ5(g) : v 7→ g · v, where g ∈ Q8 and
v ∈ H1, will not work as the complex linearity is violated. Indeed,

ρ5(g)(z · v) = g · z · v
z · ρ5(g)(v) = z · g · v,

which are not equal in general for g ∈ G and z ∈ C.

Multiplication from the right will resolve this problem. However, ρ5 is not a group
homomorphism anymore. Indeed,

ρ5(g)(z · v) = z · v · g
z · ρ5(g)(v) = z · v · g.

However,

ρ5(g1g2)(v) = v · g1g2
(ρ5(g1) · ρ5(g2))(v) = v · g2g1.

Finally, setting ρ5(g) : v 7→ v · g−1 is a proper representation:

ρ5(g)(z · v) = z · v · g−1

z · ρ5(g)(v) = z · v · g−1

ρ5(g1g2)(v) = v · g−12 g−12

(ρ5(g1) · ρ5(g2))(v) = v · g−12 g−12 .

Now, this one-dimensional quaternionic vector space, with multiplication from the
left, can be seen as a two-dimensional complex vector space. That is, every element
a+ bi+ cj + dk ∈ H1 will be written as (a+ bi) + (c+ di)j, with a+ bi and c+ di ∈ C.
As a basis for this vector space we take {1, j}. Now,

ρ5(i)(1) = 1 · i−1 = −i
ρ5(i)(j) = j · i−1 = i · j
ρ5(j)(1) = 1 · j−1 = −j
ρ5(j)(j) = j · j−1 = 1.

Hence,

ρ5(i) =

[
−i 0
0 i

]
ρ5(j) =

[
0 1
−1 0

]
.
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Again, we find all matrices L such that the following two equations hold:

i :


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ◦ L = L ◦


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 ,

j :


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ◦ L = L ◦


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .
The matrices L that agree with these two equations are of the form:

L =


p q r s
pi −qi ri −si
q −p s −r
qi pi si ri

 .
det(P ) = −4(ps− qr)2. If and only if ps 6= qr, P will be invertible.

Lastly, finding basis vectors for V 1
5 and V 2

5 as seen in the previous subsection 3.2.1
gives:

d1 = p(e1 − e2) + pi(e3 − e4) + q(e5 − e6) + qi(e7 − e8)

d2 = q(e1 − e2)− qi(e3 − e4)− p(e5 − e6) + pi(e7 − e8)

d3 = r(e1 − e2) + ri(e3 − e4) + s(e5 − e6) + si(e7 − e8)

d4 = s(e1 − e2)− si(e3 − e4)− r(e5 − e6) + ri(e7 − e8)

Hence,

d1 = (p,−p.pi,−pi, q,−q, qi,−qi)> (3.8a)

d2 = (q,−q,−qi, qi,−p, p, pi,−pi)> (3.8b)

d3 = (r,−r, ri,−ri, s,−s, si,−si)> (3.8c)

d4 = (s,−s,−si, si,−r, r, ri,−ri)> (3.8d)

{d1,d2} is a basis for V 1
5 and {d3,d4} is a basis for V 2

5 . Although the character tables
of D4 and Q8 are the same, the spaces V 1

5 and V 1
5 found for Q8 are different from these

spaces found for D4.

3.3 The regular representation of D4 in block diagonal
form

In order to let V 1
5 and V 2

5 be orthogonal, the following must be true:

c1 ⊥ c3

c1 ⊥ c4

c2 ⊥ c3

c2 ⊥ c4.
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This results in the following equations:

〈c1, c3〉 = 0

〈c1, c4〉 = 0

〈c2, c3〉 = 0

〈c2, c4〉 = 0,

which comes down to pr + qs = 0.

However, this criterion is not necessary in order to make ρ(g) a block diagonal matrix
for all g ∈ G. To this end, we conclude:

ρ(r) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0



ρ(s) =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


with basis (a1,a2,a3,a4, c1, c2, c3, c4) where the choice of p, q, r, s ∈ C for the basis C is
free. ρ(g) for other g ∈ G follow from multiplication of the generator matrices ρ(r) and
ρ(s) above.
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Chapter 4

Grand orthogonalization

As we have seen in chapter 3, finding the representation invariant subspaces of the regular
representation of a group G can be quite cumbersome. There is a faster way however:
grand orthogonalization. The advantage of using this method over the method described
in chapter 3 is that it is faster. However, not all possible representation invariant subspaces
are found, but only one instance. First the goal of grand orthogonalization will be briefly
stated in section 4.1. Then the way the grand orthogonalization method works will be
described in section 4.2.

4.1 The goal of grand orthogonalization

Let ρ be the regular representation of a group G on CN where N = |G|. CN can be split

up in
∑k
i di =: S transversal representation invariant vector spaces. Here transversal

means the following: If V1 and V2 are two vector spaces such that V1 ∩ V2 = {0}, then
V1 and V2 are said to be transversal vector spaces. Here k is the number of irreducible
representations, and thus conjugacy classes, of G and di is the dimension of the i-th irre-
ducible representation of G. To this end let CN =

⊕S
i=1 Vi. This splitting is not unique

as can be seen in chapter 3. Grand orthogonalization is a method in which the goal is to
make one of the infinitely many possible bases for CN such that all vector spaces Vi ⊆ CN
are the span of a subset of these basis vectors.

In order to apply the grand orthogonalization method, not only the characters of ρi(g)
for each irreducible representation ρi and each g ∈ G are needed, but also the actual
matrices of ρi(g) are needed, each vector space Vi accompanied with a basis. These
requirements were also applicable in the process executed in chapter 3.

4.2 The way the grand orthogonalization method works

The matrices which represent elements of Aut(Vi) have dimension di × di. Hence, such a
matrix has d2i individual entries. For one element g ∈ G, take all corresponding matrices
ρi(g), where ρi is the i-th irreducible representation. All these matrices have to be unitary.
This is always possible by corollary 1.19. Now, summing over all these matrices, the total
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number of entries of these k matrices is

k∑
i=1

d2i = N,

as seen in corollary 1.40.

Since the above mentioned equation holds, taking all entries of the described matrices
forms a vector in CN . These vectors are exactly the vectors which split CN in the desired
way. The way this works is best explained in an example:

Take the group Q8. We make the character table, but instead of characters χi(g),
we take the corresponding matrices given the basis {1, j} analogous to chapter 3. Since
ρi(g1) 6= ρi(g2) necessarily, although g1 and g2 are in the same conjugacy class, the
‘character table’ is also extended horizontally, displaying all elements g ∈ G individually.
We call this ‘character table’ the extended character table. Indeed,

Table 4.1: Extended character table of Q8

Conjugacy class 1 −1 i −i
ρ1 1 1 1 1
ρ2 1 1 1 1
ρ3 1 1 −1 −1
ρ4 1 1 −1 −1

ρ5

[
1 0
0 1

] [
−1 0
0 −1

] [
−i 0
0 i

] [
i 0
0 −i

]
Conjugacy class j −j k −k

ρ1 1 1 1 1
ρ2 −1 −1 −1 −1
ρ3 1 1 −1 −1
ρ4 −1 −1 1 1

ρ5

[
0 1
−1 0

] [
0 −1
1 0

] [
0 −i
−i 0

] [
0 i
i 0

]
.

Now each column in table 4.1 has 8 entries. These entries will form the coordinates
of vectors in C8. These vectors are formed by placing the columns of a matrix from left
to right beneath each other. Then, these vectors will be placed in a matrix L−1. This
results in:

L−1 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −i i 0 0 0 0
0 0 0 0 −1 1 −i i
0 0 0 0 1 −1 −i i
1 −1 i −i 0 0 0 0


.
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This matrix L−1 is the matrix as described in equation 3.3! Now the matrix L is given
by:

L =



1
8

1
8

1
8

1
8

1
4 0 0 1

4
1
8

1
8

1
8

1
8 − 1

4 0 0 − 1
4

1
8

1
8 − 1

8 − 1
8

1
4 i 0 0 − 1

4 i
1
8

1
8 − 1

8 − 1
8 − 1

4 i 0 0 1
4 i

1
8 − 1

8
1
8 − 1

8 0 − 1
4

1
4 0

1
8 − 1

8
1
8 − 1

8 0 1
4 − 1

4 0
1
8 − 1

8 − 1
8

1
8 0 1

4 i
1
4 i 0

1
8 − 1

8 − 1
8

1
8 0 − 1

4 i −
1
4 i 0


.

These columns can then be expressed in the chosen basis for CN . However, this cho-
sen basis was (e1, e2, . . . , e8). Thus the wanted basis vectors are exactly the columns of L.

Indeed, these vectors were already found in chapter 3 in equations 3.1 and 3.8. In
equation 3.8, take 

p
q
r
s

 =


0
1
4
1
4
0

 or


p
q
r
s

 =


1
4
0
0
1
4

 .
In conclusion, the grand orthogonalization method gives a basis for CN such that all

vector spaces Vi ⊆ S are the span of a subset of these basis vectors. In particular,

C8 = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ 2V5,

where:

V1 = Span





1
8
1
8
1
8
1
8
1
8
1
8
1
8
1
8




V2 = Span





1
8
1
8
1
8
1
8
− 1

8
− 1

8
− 1

8
− 1

8





V3 = Span





1
8
1
8
− 1

8
− 1

8
1
8
1
8
− 1

8
− 1

8




V4 = Span





1
8
1
8
− 1

8
− 1

8
− 1

8
− 1

8
1
8
1
8




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V 1
5 = Span





1
4
− 1

4
1
4 i
− 1

4 i
0
0
0
0


,



0
0
0
0
− 1

4
1
4
1
4 i
− 1

4 i




V 2
5 = Span





0
0
0
0
1
4
− 1

4
1
4 i
− 1

4 i


,



1
4
− 1

4
− 1

4 i
1
4 i
0
0
0
0




.

A proof of the grand orthogonalisation method is given by V. Bharati [1, pp.24-
27]. The proof first states that the rows of L are orthonormal, hence the name ‘grand
orthogonalisation’. It also states that there are no zero vectors as rows of L. After that,
the theorem states that the rows of L form a basis for CN , which then implies that the
columns of L form a desired basis.
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Conclusion

The purpose of this thesis was to build up to ways to split a vector space that the regular
representation of a finite group G acts on into representation invariant subspaces. In
order to do this, two methods were described and used. The first method is suggested by
dr. Jeroen Spandaw and the second method, which is called the grand orthogonalisation
method, is suggested by dr. Paul Visser. Both methods make use of matrices which form
the images of the irreducible representations that make up the regular representation,
under a certain, arbitrary, basis. Moreover, the first method makes use of change of basis
matrices. In order to treat both methods, representation theory was treated. This was a
purpose of this thesis on its own.

Comparing both methods, none of the two can be considered the best. Both methods
have advantages and disadvantages. The first method constructs all possible bases that
split a vector space that a regular representation acts on into representation invariant
subspaces. The second method, grand orthogonalisation, only constructs one such basis,
making method two less complete than method one. However, method one makes use
of change of basis matrices which are |G| × |G|-dimensional, where |G| is the order of a
group G. To do calculations with these matrices takes time. Moreover, basis vectors for
vectorspaces consisting of isotypical components of the regular representations are needed
for this method as well, which can be hard to obtain. This work and time is not needed
to apply the second method.

This thesis reviewed two methods, but did not optimise them. In that regard, two
recommendations are given. First, other methods can be compared to the two methods
considered in this thesis. Second, the two considered methods can be further optimised.
The first method might be a better candidate for this, as it could be that the construction
of the change of basis matrices can be done faster due to properties of representations.
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Appendix A

Proofs

Proof theorem 1.15. Let ρ1 : G→ Aut(V1) and ρ2 : G→ Aut(V2) be two representations
of the same group G to finite-dimensional vector spaces V1 and V2. Let ρ = ρ1⊕ρ2. Now,

χρ(g) = tr(ρ(g)) = tr(ρ1(g)⊕ ρ2(g)) = tr(ρ1(g)) + tr(ρ2(g)) = χρ1(g) + χρ2(g).

The proof of theorem 1.17 is based on a proof given by dr. Jeroen Spandaw ([12,
p. 14]).

Proof theorem 1.17. Suppose W ⊆ V is a representation invariant subspace of V . Let
g ∈ G and let u ∈W⊥, i.e. < w |u >= 0 for all w ∈W . For W⊥ to be a group invariant
vector space it has to be proven that ρ(g)(u) is also in W⊥, i.e. < w | ρ(g)(u) >= 0 for
all w ∈ W . Since W is representation invariant and since every ρ(g) is invertible, for all
g ∈ G, there exists a w′ ∈W such that ρ(g)(w′) = w. Hence,

< w | ρ(g)(u) >=< ρ(g)(w′) | ρ(g)(u) >=< w′ |u >= 0

W and W⊥ are both representation invariant vector spaces. ρ1 : G → W and ρ2 :
G→W⊥ are both representations. Indeed, ρ = ρ1 ⊕ ρ2, where ρ1 acts on W and ρ2 acts
on W⊥, and V = W ⊕W⊥. [12, p. 14]

Proof corollary 1.19. Let ρ : G→ Aut(V ) be a representation. Let H be a positive defi-
nite Hermitian inner product that is ρ-invariant. Such an inner product exists by lemma
1.18. Let b1 . . .bn be an orthonormal basis for V with respect to the inner product H.
Let A(g) be the matrix of ρ(g) for g ∈ G with respect to the given orthonormal basis.

The following relation holds:

ρ(g0)(bj) =

n∑
i=1

ai,jbi
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. By orthonormality of the basis vectors this implies

A(g)i,j = H(bi,

n∑
i=1

A(g)i,jbi)

= H(bi, A(g)i,j(bj))

This gives

A−1(g)i,j = A(g−1)i,j

= H(bi, A(g−1)i,jbj)

= H(A(g)i,jbi,bj))

= H(bj, A(g)i,jbi)

= A(g)j,i.

Hence A−1(g) = A>(g) for all g ∈ G and A(g) is unitary for all g ∈ G.

Moreover, since A(g) is unitary for all g ∈ G,

χ(g−1) = Tr(A(g−1)) = Tr(A(g)−1) = Tr(A(g)top) =

Tr(A(g)) = Tr(A(g)) = χ(g)[12][p. 13][18]

Proof Corollary 1.27. By theorem 1.23 ρ decomposes uniquely into irreducible represen-
tations. By the linearity in the first argument of the Schur inner product, see equation
1.9, it holds that:

〈χρ |χρj 〉 = 〈m1χρ1 +m2χρ2 · · ·+mkχρk |χρj 〉 =

k∑
i=1

mi〈χρi |χρj 〉.

By theorem 1.25, Schur orthogonality,

〈χρi |χρj 〉 =

{
1 if i = j

0 else.

But then,
k∑
i=1

mi〈χρi |χρj 〉 = mj

and we conclude mj = 〈χρ |χρj 〉.

Proof Corollary 1.28. (⇒): Suppose ρ is irreducible. Then χρ is orthonormal to the
characters of all the irreducible representations by theorem 1.25. Hence 〈χρ |χρ〉 = 1.
(⇐): Let ρ be a representation. By corollary 1.27 and theorem 1.25,

〈χρ |χρ〉 =

k∑
i=1

mi, (A.1)
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where i, k and mi are as in corollary 1.27. Suppose 〈χρ |χρ〉 = 1. Since all mi in equation
A.1 are greater or equal to 0 and are integral, only 1 mi is equal to 1 whereas the rest is
0. Hence, ρ is irreducible.

Proof theorem 1.41. When considering the standard basis for CN , ρ(g) is a permutation
matrix for all g ∈ G, where ρ is the regular representation. A permutation matrix is
always unitary. Hence, the standard complex inner product is ρ-invariant.

Proof corollary 1.42. Take the character table of any group G. We see this character
table as a matrix A where the rows are the characters and the columns are the charac-
ters of particular conjugacy classes. By theorem 1.25, the rows of a character table are
orthonormal with respect to the Schur inner product. Divide all entries in the character
table A by

√
|G| and multiply the entries in column j by

√
|Cj where |Cj | is the order

of the j-th conjugacy class, which is in the j-th column of A. C(g) is defined as the
conjugacy class g belongs to. Let B be this modified character table. Now, the rows in
the modified character table are orthonormal under the standard complex inner product.
Indeed, take two rows of the modified character table, say ri and rj . Now

〈ri | rj〉standard =

k∑
l=1

bi,lbj,l

=

k∑
l=1

√
|Cl|√
|G|

ai,l

√
|Cl|√
|G|

aj,l

=
∑
g∈G

1

|C(g)|

√
|C(g)|√
|G|

χi(g)

√
|C(g)|√
|G|

χj(g)

=
1

|G|
∑
g∈G

χi(g)χj(g)

=

{
1 if i = j

0 if i 6= j.

Since the modified character table, seen as a matrix B, is unitary, it’s columns are or-
thonormal as well. Now, multiplying each entry bi,j in the modified character table by√
|G|
|Cj | gives the original character table again. Since each column of B is only multiplied

by a factor, the columns of matrix A, which is the original character table is also, are
still orthogonal. In fact, the columns of a character table are even orthonormal with the
following inner product defined for two columns ci and cj :

〈ci | cj〉 =

√
|Ci||Cj |
|G|

k∑
l=1

al,ial,j .

Proof lemma 1.44. Let G1, G2 be two groups and let f : G1 → G2 be a group homomor-
phism. Now consider C to be a conjugacy class of G1. Take a, b ∈ C arbitrary. Since
a and b are in the same conjugacy class, there exists g ∈ G, such that gag−1 = b. Now
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f(b) = f(gag−1) = f(g) ◦ f(a) ◦ f(g−1) = f(g) ◦ f(a) ◦ f(g)−1, which is in the same
conjugacy class as f(a). Hence, all elements of a conjugacy class of the domain of f are
mapped by a group homomorphism to one conjugacy class of the codomain of f .

49


	Preface
	Summary
	List of symbols
	Introduction
	Representation theory
	What is a representation?
	The definition of a representation
	Example

	Direct sum
	The definition of the direct sum of representations
	Essential theorems on representation theory regarding direct sums

	Schur's lemma
	The definition of a homomorphism of representations
	Properties of homomorphisms of representations

	Schur orthogonality
	The decomposition of a representation into irreducible representations is unique
	Schur orthogonality
	Isotypical vector spaces are orthogonal

	Dual representation
	Tensor products
	The regular representation
	Ways to construct a character table
	What is a character table?
	Orthogonality of the columns of a character table
	Basic methods to construct a character table
	Filtering out known irreducible representations
	Taking the orthogonal complement of W in V
	The pulling back method


	The groups Cn, V4, S3, Q8, D4, T and 2T
	The character table of Cn
	The character table of V4
	The character table of S3
	One-dimensional representations and Schur orthogonality
	Filtering out irreducible representations
	Taking an orthogonal complement

	The character tables of Q8 and D4
	The Platonic solids
	The groups SO(3) and SU(2)
	The groups T, 2T, O, 2O, I and 2I
	The character table of T .5-.5.5-.5.5-.5.5-.5A4
	The character table of 2T


	Comparing the groups Q8 and D4
	Splitting the regular representations of Q8 and D4 into isotypical subrepresentations
	Splitting the regular representation of D4 into isotypical subrepresentations
	Splitting the regular representation of Q8 into isotypical subrepresentations

	Splitting irreducible representations of D4 and Q8 of dimension 2 into their irreducible components
	Splitting irreducible representations of D8 of dimension 2 into its irreducible components
	Splitting irreducible representations of Q8 of dimension 2 into its irreducible components

	The regular representation of D4 in block diagonal form

	Grand orthogonalization
	The goal of grand orthogonalization
	The way the grand orthogonalization method works

	Conclusion
	Bibliography
	Appendices
	Proofs

