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PREFACE

This report is a result of the cooperation between the Data Processing Divi­

sion of Rijkswaterstaat and the Mathematical Physics Croup of the Twente Uni­

versity 'ofTechnology. This cooperation exists already for many years on an

informal basis and has been formalized occasionally by a contract between our

institutes.

The first contract -"Contract MARTHA"- was carried out during a 2 years period

in 1979-1981 and its main object was to investigate the usefulnes of Kalman

filters for tidal motion problems in instationary situations using shallow

water equations to describe the dynamics. Although good results were obtained

in predicting the water levels in the mouth of the Eastern Scheldt, on the

basis of on-line measurements of water levels in the North Sea along the Dutch

and Belgian coast, it turned out that more reliable predictions for the water

levels could be obtained by inc1uding in the existing open sea model for the

water movements along the coast also a model describing the water movements in

the Eastern Scheldt estuary. This point of view has been formulated as a new

research project -"Contract MARTHA 11"- which has been carried from november

1983 until september 1984.

As in the first project it was our intention to use simple mathematical mode1s

containing stochastic parameters which, by using Kalman filters, are contin­

uously adapted to changing external conditions, e.g. the meteorological situa­

tion, the bottom condition, etc.

The design and testing of the Kalman filter for the Eastern Scheldt model as

weIl as the design of the procedure to link it to the existing filter for the

open sea tidal model bas been performed at the Twente University of Technology

by the first two authors. Further refinement and turing of the filter has been

accomplished by the first and the third author at the Data Processing Division

of Rijkswaterstaat

I
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The authors wish to express their gratitude to the Data Processing Division

for their financial support, and in particular to ir. W.F. Volker for his

helpful suggestions and the fruitful discussions during the period of this

research project.

Paul G.J. ten Brummelhuis

Bartele de Jong

Arnold W. Heemink
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H(tk)

Y(tk)
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space coordinates

time coordinate

velocity

water levels above some reference level (here: N.A.P.)

undisturbed water level

depth of the bottom below the reference level

cross-sectional area

width of a channel branch

wetted perimeter

acceleration of gravity

Coriolis coefficient

wind velocity

"set-up" against the coast

wind stress coefficient

angular frequency

wavelength of a tidal constituent

phase angle

angle between V and the positive x-axis

angle between V and the positive y-axis

friction coefficients

reflection coefficient in boundary condition

distances in the computational grid

QLx, ts:' tJ: = tJ:k = tk+l - tk
weighting parameter in the Preissmann scheme

deterministic state vector, t = tk

realisations of ~(tk)

input vector, t = tk

state transition matrices tk + tk+1 (deterministic)

measurement vector, t = tk
stochastic state vector, t = tk

state transition matrix of the stochasic systems

state transition matrix of the filter

stochastic measurement vector, t = tk

system noise, t = tk

measurement noise, t = tk
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nonlinear measurement verctor, t - tk

actual measurement realisation

(linear) mean operator

mean (expectation) of ~(tk+i) ,i) 0

covariance matrix of !(tk+i) ,i) 0

covariance matrix of ~(tk)

covariance matrix of y(tk)

Kalman gain matrix

r.m.s. error
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CHAPTER 1

I INTRODUCTION.

I

This report gives an exposition of the applications Kalman filters and the

related nonlinear filters offer when used in models describing tidal motion

in seas and estuaries. In addition to methods that are ~enerally used in this

field, for example deterministic and black-box models, Kalman filters can

provide significant contributions in particular situations. Although it is not

our intention to claim that the use of Kalman filters is the most fruitful

method for all problems, it will be shown that these filters exhibit some

specific useful properties, not present in the above mentioned conventional

methods. Before explaining the fundamental ideas of the Kalman filter and its

advantages and disadvantages a short review will be given of other known

methods.

I
I
I
I

I

The class of deterministic models is based on hydrodynamical equations, both

one- and two dimensional, and a well-chosen schematization of the geometry of

the area involved. Once such a qualitative model is established certain ele­

ments in it can be adjusted to represent an observed proces under different

circumstances as closely as possible. Referring to certain elements one may

think of parameters in empirical relations such as bottem friction- and wind

stress coefficients or, more drastically, the path-length of some stream­

section in a complicated geometry. This tuning of the model is necessary since

no model is perfect. The incompleteness is caused by the lack of knowledge to

describe certain effects in mathematically correct formulae, e.g. by using

empirical relations, or the inability to incorporate in the model non dominant

features that lie beyond the restrictions of the model, for example a two di­

mensional effect can not be dealt with in a one dimensional model. However in

many cases these deterministic models can be tuned to give good .reconstruc­

tions of observed phenomena. When the required adaptions during the tuning of

the model prove to be relatively small compared to some reference in a basic

model, many aspects in the area of model research can be pursued and quali­

tative and/or quantitative conclusions may be drawn. In this case the relia­

bility of quantitative conclusions depends on the degree to which the effects

that can be tuned act as a compensation for physical influences which are not

incorporated in the model. For example, the interpretation of a bottom

I
I
I
I
I
I
I

I
I
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friction coefficient depends on the correctness of the prescribed geometry of

the stream sections. Another conclusion of the discus sion above is that these

models are not very suited to represent physical behaviour in periods when the

external meteorological conditions are changing because these changes require

adaptions in the input parameters of the model. In the area of tidal predic­

tions these problems are known in situations a storm developes. Examples of

deterministic mathematical models are the IMPLIC and WAQUA modeis, like GENO,

describing the tidal motion in the entire North Sea [Voogt, 1984].

I

I
I

I

A different approach is found in black-box modelling. By analyzing observation

series over very long periods of time a number of parameters is estimated

which indicate the correlations between the various physical components of a

state. When observations are available "on line" these models make it possib1e

to process these new data in a simple and rapid way. The use of these black

box models is however limited by the assumption of stationarity of the obser­

ved process resulting in less reliable predictions during instationary situa­

tions. Another disadvantage of these models is that they are not based on

physical laws, so the interpretation of the parameters is not very clear, a1-

though certain physical characteristics are hidden in its structure. The black

box models have been applied to numerous problems in the field of water move­

ments, particulary when predictions over certain periods of time are required,

such as predictions of swell energy [Poulisse, 1984].

I

I
I
I
I

A characteristic property of the first approach is the mathematical formula­

tion of the physical phenomema on which the model is based, an essential point

in the second approach is the choice of the model on the basis of huge obser­

vation series. These premises are combined in a (stochastic) Kalman filter.

I

I

The basis of such a filter is a deterministic model description in which the

state vector is conceived as a random variabie. This implies that the state of

the model at time. is not only represented by a real valued vector (as in

deterministic modelling) but also by means of

a measure for the uncertainty of this vector, and

- a measure of the correlation between the various components of the state

vector at time ••

I
I

I
I
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The Kalman filter algorithm now defines a way to compute the ~y-o~~t~~n in

time, from ~ to "+ ~",of the 'optimal estimate of the state in a least square

sence, based on physical laws and information from measurements. Two ways

which lead to an estimate of the state at time" + ~~ are:

(i) -

I
I (ii)-

by computing an estimate, based on the optimal estimate of the state

at time " (dependent on previous observations) which serves as an

initial condition for the deterministic model which describes the

evolution of the state, (locally) in time. The uncertainty of this

computed estimate depends on the uncertainty of the optimal estimate

at time" and the model errors, since the description of the evolu­

tion in time is only an approximation.

by measuring a number of quantities which are related to the state

vector and are affected by measurement errors.

I

I

I

Essential is that both results contain information about the state at time

~ + ~". The last step to complete the evolution in time is to derive an

optimal estimate where all available information is weighted according to its

reliability. The final result is that optimal estimates are found, not only

for the observed quantities (which are in many cases the water levels) but for

all components of the state vector because of the correlations between them.

In particular, certain parameters can be estimated. Strictly spoken, para­

meters are assumed to be constant and independent of other physical quantities

which induces the absence of correlations with other components of the state

vector. However, since in many models empirical relations are used the ap­

pearing parameters do not fuifil this statement, e.g. recount the dependence

of the friction coefficient in tidal motion on the phase of the tide. The

filter algorithm prescribed above enables us to adapt the various parameters

to varying circumstances, the socalied adaptive filtering.

I
I
I
I
I

I
Besides this application in the field of model research one can put the

emphasize on the construct ion of an optimal initial condition for a model in

order to give predictions of the behaviour of a physical process in time. The

calculation indicated in point (i) is in fact a prediction over a time inter­

val ~~, the length of which is determined by the sampling frequency. The pre­

diction interval can of course be extended and this is pursued in the sub­

sequent chapters of this report to compute short term predictions of the tidal

motion in the Duch coastal area.

I
I
I
I
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I

A third application of the stochastic filter is the use in the optimization of

the distribution of sampling points. In that case we focus our attention to

the uncertainties of the optimal estimates and the variation of these uncer­

tainties when sampling points are added or removed. The positions of a limited

number of sampling points and the nature of the sampled quantities are chosen

as to provide as much information as possible.

I
I
I
I
'I
I
I
I
I
I
I
I
I
I
I

This exposition shows the wide range of applicabitily of Kalman filters which

does not imply however that it is always the best suited method, this should

be assured in every particular situation. One of the major advantages of the

filter is its recursive character: once a measurement is processed its influ­

ence is totally stored in the new optimal estimate of the state vector, in­

cluding the associated uncertainty and the correlations. It is therefore very

suited to be used on-line. Although the filter is based on a number of

assumptions concerning the nature of the model - and measurement errors, it

does not suffer from stationarity assumptions and is able to reconstruct also

instationary behaviour. The importance of this feature is expressed by the

fact that predictions of the water levels in the mouth of the Eastern Scheldt

are more important during stormy periods than in situations when the tide

follows the astronomical pattern. Besides these positive features the Kalman

filter has also some negative properties. Without simplifications in the

filter algorithm it is merely impossible to implement a two dimensional model

in a filter on a conventional computer because of the rather huge computation

time and memory access that is required. The recent emerge of parallel proces­

sors however can provide a qualitative step ahead in this field. 50, for tidal

motions in which a two-dimensional effect is obvious, for example the Coriolis

effect, Kalman filters will not be able to generate predictions with a great

reliability if a strictly one dimensional physical model is used: the optimal

estimates must always be found within the limits of the underlying model. The

following approaches can be distinguished:

Retain a simple, possibly linear, two dimensional deterministic model and

approximate the computations of the algorithm. This may lead to the "steady­

state" filter where the weighting of every measurement is constant and the

time consuming part of the computation can be performed once, off-line. In

literature several variations on this principle are available [Lainiotis,

1978, Morf, 1974 ].
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- Use a nonlinear one dimensional model and perform the standard algorithm.

The required computation time and memory access is highly dependent on the

dimension of the state vector and necessitates the use of a crude grid.

The results which are achieved with this last approach are reflected in this

evaluation.

In chapter 2 the deterministic model is given to describe the tidal motion in

the southern part of the North Sea and the Eastern Scheldt estuary. Special

attention is paid to empirical relations that are used to correct for some two

dimensional effects.

Chapter 3 contains the theoretical aspects, brought in a tutorial way, of the

Kalman filter and the related nonlinear filters. Also the specification of the

nonlinear filters is given which are based on the model described in chapter

2. The main results of all the applications can be found in chapter 4 where as

in chapter 5 the conclusions are drawn and some recommendations are formulated.
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I CHAPTER 2

I
THE OETERMINISTIC 1-0 HOOEL OF THE TIDAL MOTION IN THE OUTCH COASTAL AREA.

I
§ 1 Introduction

I
In this chapter a simple mathematical model will be developped to describe the

tidal motion in the Outch coastal area. The water motions along the coast and

in the Eastern Scheldt estuary will be modelled in a different way. This is

done for two reasons. First the geometries in the mentioned areas require dif­

ferent functions to express the dependence of the geometry from the coordi­

nates and the waterlevel and second the description of the two-dimensional ef­

fects in the tidal motion along the coast needs additional care. However, both

descriptions of the tidal motion are based on the 1-0 shallow water equations

supplemented with empirical relations.

I,
I
I
I
I

The characteristics of the tidal motion in the southern part in the southern

of the North Sea will be discussed in a quatitative way in §§ 2,3 including

the influence of the meterological phenomena on it. Moreover, the validity of

the 1-0 approach will become clear.

I In §4 the 1-0 shallow water equations are given where the analogy between the

two subsystems is shown. The model should be completed by boundary conditions.

By writing the dynamical equations in the socalled canonical form apropriate

boundary conditions can be found in a straightforward way and this form also

suggests a physical interpretation we will refer to in the chapters 3 and 4.

I
I
I

The §§ 5 and 6 consist of a complete mathematical model and a discussion of

the specific modelling aspects for the considered area along the Outch coast.

This model, stated in a differential form, is discretized into sets of differ­

ence equations by using finite difference methods. Again, it appears to be

necessary to use different procedures to discretize the equations describing

the flow in the estuary. This is pursued in § 7.

I
I
I
I
I
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§ 2 The tidal mot ion in the southern part of the North Sea

The Coriolis force, generated by the earth's rotation, strongly influences the

tidal motion in the southern part of the North Sea. This section deals with

the theory of Kelvin waves, i.e.waves influenced by the Coriolis effect to

characterize the specific character of the considered tidal motion.

I
I

The Kelvin wave is the analytical solution of the linear 2-D shallow water

equations along a straight (coast) line,

I

(2.1.) ou + oh 0g -=ot ox

(2.2) fu + oh 0g -=ày

(2.3) oh + D Ou 0-=
ot ox

I

I
I
I
I
I

where u(x,y,t) and h(x,y,t) are respectively the velocity in the direction of

the coast line and the water level above some reference, f the Coriolis coef­

ficent, D the constant depth and g is the acceleration of gravity.

Furthermore it is assumed that the veloeities perpendicular to the coast and

the convection can be neglected. The absence of bottom friction does not

influence the essential properties of the solution, it only simplifies the

formulae. A detailed treatment can be found in Dronkers [1964].

If the x-coordinate axis coincides with the coast line, the solution of eq.~

(2.1) - (2.3) can be found by separation of variables. For waves of frequency

w it is

I
I

(2.4) h(x,y,t) = A exp( - f (y+b) ) cos (~ - wx +~) + h
Igö 19D 0

(2.5) u(x,y,t) = h(x,y,t)1

I
the amplitude of the wave is decreasing in the positive y direction in case

the x and y axes are orientated as indicated in fig. 2.1 and f > 0

I
I
I



I -8-

I

I
------

L_----- x-----I

I b

I
I
I

Fig. 2.1 The propagation of a Kelvin wave along a straight coast line

I

Pay attention to the fact that the Coriolis force induces a purely two dimen­

sional effect but that the propagation of the wave is following a straight

line along the coast and is in essence one dimensional.

I
The occurence of amphidromic points (latin: flowing in all directions) where

the vertical tide is constant while the velocities can not be neglected in

general, is now related to the interaction of two Kelvin waves with the same

frequency w , moving in opposite direction between two straight coast lines,

see fig. 2.2
I
I ~.J ..!_/

I ,-_--~_ ..-,
---- 'C •, Z •(?_-~~~I

I
I
I
I

À
2

Fig. 2.2 Two Kelvin waves, propagating along a straight line in opposite

direction

I
The postion of the amphidromic points cl and c2 can be computed easily. The

À
distance between Cl and c2 proves to be ï with À the wavelength of the tidal

wave·

I
I
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Because the semi diurnal M2 tidal component is highly dominant, the theory of

Kelvin waves mentioned above can be applied to give a qualitative description

of the tidal motion in the southern part of the North Sea. Although the North

Sea has a large width, the condition of negligible velocities perpendicular to

the coasts of England, Belgium and the Netherlands if compared to the veloci­

ties parallel to the coasts is fulfilled [Dronkers, 1964].I
I
I

The tidal wave, being a Kelvin wave, enters the southern part of the North Sea

along the English coast where it has a maximum amplitude. This wave is almost

completely reflected at the Street of Dover due to the small size of the tres­

pass and propagates therefore along the coasts of Belgium and the Netherlands

again in northern direction together with the tidal wave entering from the

Street of Dover. So the tidal motion in this part of the North Sea is mainly

generated by the interaction of two Kelvin waves, moving in opposite direction

and is, in essence, a one-dimensional phenomenon, see fig. 2.3.

I
I
I ·.4

I

. .
-- ISOPHASES: PHASE IN DECOIIE[S
-----ISOA_~ITUDES : ",",PLlTUOE IN m

I

I
I
I
I
I
I

Fig. 2.3 The M2 tide in the southern part of the North Sea

I
I
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I § 3 Meteorological effects

I The meteorological circumstances affect the water movement in three different

ways. The first to be mentioned here is the influence of the atmospheric pres­

sure on the water level through the gradient of the pressure.I
I

Secondly, the wind exerts a force on the water surface till a steady state 1s

reached in which the force due to the wind field is compensated by the gra­

dient of surface tension. In literature empirical relations can be found to

I describe this steady state [Bretschneider, 1966, 1967].

V Y:
F = Cd-w D+h

(2.6)
ds _11!wll V 2

= Cddy _ -g- g(D+h)

I
I
I
I

with !J,J force of the wind field..set-up .. of the waters

V = wind velocity vector, V = liV I!I-I

Cd = wind stress coefficient

I
I 1)

y

I Fig. 2.4 "Set-up" against the coast

I
I

Comparison of the two effects leads to the conclusion that the influence of

the atmospheric pressure is very small in the southern part of the North Sea,

where the depth is less then 50 m [Timmerman, 1975].

I
I

The third meteorological effect on the tidal motion is the external surge,

defined as the effect on the water level due to meteorological influences

occuring outside the North Sea. These may include considerable atmospheric

pressure gradients above the very deep Atlantic Ocean or strong wind fields

over the shallow waters, north of Scotland. These external surges, entering

the North Sea, propagate approximately along the same lines the M2 tide does.I
I



I -ll-

I
I § 4 The dynamical equations and boundary,con~Htions

I From the previous sections the arguments can be derived to justify the ap­

proach to describe the propagation of the tidal wave in the southern part of

the North Sea within a 1-D model, because the dominant features can be for­

mulated proper1y using only one spatial coordinate.I
I
I

The other part of the geometry we are concerned with is an estuary where the

width of the branches is very sma1l compared to the wave lengths of the tida1

constituents. Therefore, a 1-D assumption has been made with respect to the

propagation of the tidal wave in the estuary. Consequently, there is much cor­

respondence between the dynamical equations governing the flow in the area

along the coast and in the estuary itself.I
I The dynamical equations express the conservation of mass and momentum for a

flow in a horizontal plane of infinite dimensions where x is the longitudina1

and y the transverse direction. By neglecting the velocities in the transverse

(=y) direction, which implicates D(x,y) Q D(x), the 2-D shallow water equa­

tions can be transferred to

I
(2.8 )

2
êu + ou + êh + u Iu I V cos<jJ- 0at u öx g <X IJ. D+h - Cd D+h-

2
a oh + fu _ C V sin<jJ= 0
o Dy d D+h

I (2.7)

(2.9 ) oh + ~~ (u(D+h» = 0
ot UA

I
with

I

I

h(x,y,t) = water level

u(x,t) velocity

D(x) = depth

IJ. = friction coefficient

Cd = wind stress coefficient

I

I <jJ

f

= wind velocity

= angle between the direct ion of the wind and the positive x-axis

coriolis coefficient

V

I
I
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The-eq~s' (2.7) and (2.9) define the tida1 motion a10ng the x-axis whi1e eq.~

(2.8) gives the dependence of h(x,y,t) on y. The set (2.7) - (2.9) is a gener­

a1ization of (2.1) - (2.3) and incorporates the Kelvin waves.

I From eq. (2.8) we can derive the 1inear expression

I
I

(2.10) ( ) h( ) + 1. { f ( ) v2Sin~} { }h x,Y , t = x,y0 't g - u x,y0 't - Cd D+h (x Y t)· y-y0
, 0'

I

to approximate the variation of the water level with y. In these equations

u(x,y,t) denotes the velocity, averaged over the depth D(x), which may depend

on the transverse coordinate y due to the Corio1is force and wind effects. If

eq. (2.8) is rep1aced by eq. (2.10) this dependence is neg1ected and

u(x,y,t) = u(x,t) can be interpreted as a velocity, averaged over a cross-

I
I

sectiona1 area A(x,h) of arbitrary

~!I i
,lil;'. /1
/I/////J

·/i"/Ii//'
'I· ' I / .'/ / ;' / , V+h

," /·:'1:' / //', 1
. ,-/.. .'! I i / .' . I

(/ /.!. l"l/)
x I///L'ttt

/ ,/ I tJ."./ 1/,
,j" A=b (V+h)

width b = b(x,h), see fig. 2.Sa

0x Ij )I

I
I
I

(a) (b)

Fig. 2.S

I
This approach with u(x,t) being the velocity, averaged over A(x,h) is one of

the assumptions used to derive a formu1ation which expresses the conservation

of mass and momentum in case of a sma11 dimension (width b(x,h» in the trans­

verse direction, see fig. 2.Sb.

I Now with h(x,t) = h(x,y,t) averaged over y, and after integration over A(x,h)

one finds [Cunge, Ro11y & Verwey, 1978]I
I

(2.11) 00+ 00+ oh + 11 ululP _ C V2 È cos ,1.= 0
öt u ox g ex r- A d A 't'

I
I

oh 1 QuA
(2 •12) ot + b' ex = 0
with P the wetted perimeter,instead of eq.~ (2.7) - (2.9).
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I
The eq.~ (2.7), (2.9) and (2.10) describing the tidal motion along the coast

and eq.~ (2.11) and (2.12) used in the estuary have the same structure. This

correspondence is noticed, even more obvious, by putting them in the socalled

canonical form. This canonical form offers the opportunity to interprete the

tidal motion (or more general: water motion) in terms of two interacting

travelling waves, propagating in opposite direction. Moreover it leads in a

straightforward way to a prescription of apropriate boundary conditions.

I
I
I

Starting from a general set of partial differential equations in conservation

form

I
Ou ou
Ot + C(~) ~ + !'i(~) = 0 , where ~

I
I
I

eq.~ (2.13) and (2.14) can be derived from eq.~ (2.7) and (2.9) by using the

eigenvalues and corresponding eigenrows of the matrix C(~) [Abbot, 1970].

(2.14) [__2_ + (u - Ig(D+h» ~_] (u - 2 Ig(D+h»ot UIl.

ulul + v2cos~
~ D+h Cd D+h

2
_ uiui + C V cos~

= ~ D+h d D+h

(2.13) [o~ + (u + Ig(D+h) ~] (u + 2/g(D+h» =

I
I
I

The transformed eq.~ (2.11) and (2.12) are simllar to eq.~ (2.13) and (2.14)

A u mOAif D + h is replaced by band a term - b x- OK is added to the right hand

sides of eq.~ (2.13) and (2.14).

I
The dynamical equations can now he interpreted as equations descrihing the

propagation (left hand side terms of eq.~ (2.13) and (2.14» and the defor­

mation (right hand side terms) of quantities

I u ± 2/g(D+h).

I
I

dx
Along the characteristic directions dt = u ± Ig(D+h) in the (x,t)-plane

(~+~. dx) (u
öt eJx dt ± 2/g(D+h) = ~t (u ± 2/g(D+h» = ~ ulu 1+ C

D+h d

2V cos~
D+h

I
I

Dwith Dt the total or material derivative.



Consequence

The Quasi Riemann Invariants (Q.R.I.) u ± 2/g(D+h) propagate in the direction

~~ = u ± Ig(D+h) and while propagating are deformed by friction forces,

meteorological effects and (possibly) geometrical variations. Since the flows

I
I
I
I
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I associated with tidal motions are sub-critical

in opposite direction,

u < Ig(D+h) the Q.R.I. move

I
I
I
I
I
I

Fig. 2.6 The course of the characteristics in the (x,t)-plane for subcritical

flow

On the basis of the earlier mentioned physical interpretation of eq.~ (2.13)

and (2.14) it is easy to formulate boundary conditions corresponding with the

physical configuration of the boundary. We consider the following cases:I
I
I

1. Total reflection at closed boundaries

u = 0 or

(2.15) u - 2 Ig(D+h) =

I
[u + 21g(D+h))

I
2. A formulation of partial reflection at a boundary can be achieved by intro­

ducing a reflection coeffient p which is the quotient of the fluctuating

parts of u - 2/g(D+h) and u + 2/g(D+h)

I (2.16) {u - 2/g(D+h) + 2/g(D+h )} = - piu + 2/g(D+h) - 2/g(D+h )}, 0 ç p '"1,o 0

h is the undisturbed water level
oI

I
I
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I
I
I

3. A free outflow boundary implies that ref1ection is on1y generated by fric­

tion. Since the amplitude of u - 2/g(D+h) + 2/g(D+h ) wil1 he sma11, a zeroo
order approximation of a non ref1ective boundary condition can be obtained

by assuming ~ = 0 and neg1ecting the wind inf1uences (Cd-O):

I u- 2/g(D+h) + 2/g(D+h )
o o (compare eq. (2.16) with p = 0)

I
I

A first order approximation is found using the solution of the 1inearized

system:

Oh+H oU+U oy = 0
Ot Ox Ox

êu+uêu+ oY+TJu=Oêt Ox g OxI
I which is

I
I

[

U(X, t)l
h(X,t)_= Cl exp(ax) [ ~ j- + C2 exp (-ax)[ at] + [~~ J

iw iw __ o_~J
g

iW
where a = ---

I
I

A non ref1ective boundary condition implies Cl = 0 (the amplitude of the

ref1ected wave equa1s zero).

I
The 1inear re1ation au(x,t) + ~(x,t) = Co represents in first order a non­

reflective boundary condition if a + ~/!!. h- iT]= 0 •g w

I
I

Using the series Tay10r expansion ~_ ~T] ~

approximation for E «1 is found

1 _ iT] + ••• a first orderw

I (2.17) [Verboom, 1982]

I
Note that the non-ref1ectiveness depends on the frequency w.

I
I
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§ 5 The model along the coast.

The previous sections dealt with severa1 aspects related to the tidal motion

in the southern part of the North Sea. Now they will be put together to form a

comprehensive model of the propagation of the tidal wave along the coast.

The basis of our mathematical model consists of eq.~ (2.7) and (2.9). Eq.

(2.10) will be used late on when the stochastic model is specified. As the

tidal wave and the external surges propagate approximately in the northern

direction a measured water level may be used as a boundary condition in point

1 (which coincides with a sampling point) to drive the deterministic model,

when in B.G.2 a weakly-reflective boundary condition is imposed, see fig. 2.7.

The absence of a wave propagating in the southern direction causes the water

level in point 1 to be completely determined by the ingoing Q.R.I. Conse­

quently, in point 1, both formulations of a boundary condition initiate equiv­

alent input signals.
- -Wopiuv..e tÜ!e6

-- .. - c.coJtd.<.na..te QuA
I!l ü.de gauge

V(al:tc v, d.

Fig. 2.7

____ ...··km

The 1-D model along the coast.

The 1-D model mentioned above proves ta be inadequate to represent the inter­

nal wind effect perpendicular to the coast properly. Therefore the model will

be expanded by an empirical relation (2.18) between wind and set-up against

the coast. Let s(t) be the set-up for y = 0 the empirical law, derived from

eq. (2.6) by Schalkwijk [1947], may be used to express this relatianship

(2.18) s(t) = W2(t-'t) sin (<r<t-'t»where ya constant and 'tthe time delay

Another shortcoming of the model is the inability of incorporating influences

in the area between the tide gauge station 0.5.10 and B.G.2 due to reflected

waves generated in the Eastern Scheldt. These influences are not found in
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I
I 0.5.10 itself because any reflected wave is damped in all directions, like a

cylindrical wave. This spheric damping cannot be dealt with in a 1-D model.

50, in order to preserve the essence of a tidal wave propagating in northern

direction, we are bound by the above formulation with a weakly reflective

boundary condition in B.G.2 and the empirical treatment of the internal wind

effect.

I
I
I Summarized

I
I

I

The model is apropriate to describe the propagation of the tidal wave up

to 0.5.10 with reasonable accuracy, also accomplished by the fact that un­

wanted effects of imposed weakly-reflective boundary condition in B.G.2 are

totally dissipated between B.G.2 and 0.5.10.

The computed tidal motion in the area north of 0.5.10 can show deviations

from the sampled data for reasons mentioned above and a possible influence

in B.G.2 of a tidal wave propagating south.

Since it is rather essential to know the tidal motion in the mouth of the

Eastern Scheldt, where the tide gauge station 0.5.4 is situated the model

just presented should be expanded with a schematization of the Eastern

Scheldt which will be done in the next section.

I

I
I 40

----- Jteai. dep:th

modeUed depthI
I

30

10

--- ----I 20

I
I
I 10 20 30 40 50 60 70

dcst.osu:« (k.m) -~)

I Fig. 2.8 Geometry of the area along the coast.

I
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§6 The Eastern Scheldt model

I In § 4 the analogy between the eq.~ (2.7), (2.9) and eq.~ (2.11), (2.12) was

shown. For the Easthern Scheldt model the latter set of equations will be used

which governs the flow in a channel with a specific geometrical configuration

expressed by the quantities P, A and b which are functions of the spatial co­

ordinate and the water level.
I
I
I
I
I
I
I
I
I

Fig. 2.9 gives an overview of the chosen stream sections in the Eastern Scheldt.

The basic idea for this choice is rather simple in the mouth of the Eastern

Scheldt there are three major flood gates whereas downstream two branches can

be distinguished leading to Rak Zuid and Bergen op Zoom. The proposed schema­

tization is therefore a maximal tolerabie simplification.

I
I
I
I

Rak

Zui.d Be.\·LLc:..Hd
BVLgUl o~ Zoom

RazVtMj polde/t

Fig. 2.9 Schematization of the Eastern Scheldt geometry.

I
I

In the schematization above a number of points can be found where more than

one coordinate-direction is apparent as for example Zierikzee. Locally the

one-dimensional dynamical equations are not applicable. We should therefore

impose in these points additional continuity conditions to connect the

branches. A local distortion of the one-dimensional approach is assumed since

the dimension of the area is very small compared to the wavelength of the

tidal wave. The continuity demands involve obviously a netto-mass flow equal

to zero, see fig. 2.10.

I
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I
~l

~3-----------------
I

Fig. 2.10

I (2.19) u(l,t).A(l,h(l,t» + u(2,t).A(2,h(2,t» u(3,t).A(3,h(3,t»

I u2Besides (2.18), we state continuity of the quantity h + O:Lg , see figure 2.11.

I
I

I Fig. a.i i .

I
(2.20) h(i,t) + 0:••

1.J
= h(J',t)+ u2(j,t)

O:ij 2g

I
The value of the constant 0:,. , 0 ..0:,. .. 1 depends on the mutual ratio of

1J 1J
the velocities in the points i and j. For IU(j,t)1 > lu(i,t)1we

resulting in continuity of energy-heads whereas for lu(j,t)1 <
take 0:,.

1J
lu(i,t)1

1

I 0:" « 1 is suitable [Dronkers, 1964].
1J

I This constant 0:" can also be found in the convective term in the conservation
1J

ocu2Alaw of momentum: OK. 0: is a correction factor with respect to the velocity

I
I

profiles over a cross-sectional area since momentum is transported by the 10-

cal velocities and not with the average velocities u which occur in our mathe­

matical model.

I
I

Connection with the model along the coast

According to the conclusions at the end of § 5 the connection between the two

models must consist of the transfer of some quantity at 0.S.10 for which we

take the water level h (this can be done because a reflection wave is absent

I in 0.S.10).

But again in the stream sections 0.S.10 - 0.S.9 and 0.S.10 - 0.S.4 no reflec­

ted wave other than due to friction may occur see fig. 2.9. However in 0.S.4

and 0.S.9 reflection waves will be apparent. Our approach will now be the

following. Near 0.S.4 and 0.S.9 we introduce artificial (internal) bounderies,

see figure 2.12.

I
I
I
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I P2..-------~to Z-iWQze.e

I
O.S.JO P 2 !!.e.pJte!.le.n-U O. S • 9

I Fig. 2.12 Internal boundary near 0.S.9

I Now we are bound to prescribe for Pl a weakly reflecting boundary condition of

the form

I
(2.17) e IX n~ (u - 2/g b) + 1" u = 0

I The connection between the two models will be completed when we specify the

transfer of some quantity between Pl and P2· A logical choice would be to

stateI
I (2.18)

I since the tidal wave is assumed to propagate from O.S.lO to 0.S.4/0.S.9.

Numerical results with the Kalman filter however showed that the phase of this

I
I

driving signal (2.18) was not consistent with reality: although the amplitude

of u + 21s ~ JPl was correct the signal arrived too late. In other words the

tidal wave which enters the Eastern Scheldt at 0.S.4/0.S.9 is not totally

determined by the wave propagating from O.S.lO the way it was proposed in our

model.I
I At this point the conclusion must be that the rather linear modelling is too

simple and that, for instance, the influences of the geometrical variations

are greater than can be represented by specifying only two single channel

branches in the area.I
I
I

The occurence of a reflection wave in P2 causes a phase shift of the water

level in P2 if compared to the waterlevel in Pl· By enlarging artificially the

length of the stream sections between O.S.lO and 0.S.4/0.S.9 this phase shift

in the waterlevels can be compensated. But the transfer of water levels be­

tween Pl, P2 would mean that the reflection wave in P2 was ignored in the

sense that it would have no effect on the amplitude or mean of the water levelI
I
I
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Another possibility is to treat the transfer between PI and P2 (the interior

boundary) in the same way compatibility relations are motivated to conneet

various branches, for example around Zierikzee. The advantages of this ap­

proach are that no longer is assumed that the tidal wave propagating from

0.S.10 totally determines the arriving wave in the mouth of the estuary and

some flexibility is achieved in describing the phase of the waterlevel in P2•

It would be correct to remark here that in fact we are dealing with some

aspects of a black-box approach to represent the flow in this particular area

which seems necessary if a one dimensional model is used on a crude grid.

§ 7 Discretization

In order to find a solution (either deterministic or stochastic) the partial

differential equations are discretized on a grid QLK,&. Two discretization

schemes are used to meet the specific demands of the different geometries and

the conditions which are imposed by the use in a Kalman filter algorithm.

The weIl known Lax Wendroff scheme, fig. 2.13, is used to discretize the model

along the coast, eq.~ (2.7) - (2.9).

(n+l,i)

n+~ - - - - - _1-
I

(n,i-1) (n,i) (n,i+l)I
I
I

i-~ i+\

éU é!.(U)
The numerical solution of (1 + ex + .Q_(U)= 0 is found according to

n+~ {u n n} tr. {F n n }.!!. i+\ = \ _ i-I + .!!. i+1 -"!]i{ _(Q_ i+1) - !_(.!!. i) -

tx: 1 n n}-2 \2_(Ui) +G(U i+1)

U ~+1 = U n _ & {F(U n+\) - F(U n+\) } - tr. G(U ~)
_ 1 = i 7i( __ i+\ __ i-\ __ 1

Fig. 2.13 The Lax Wendroff scheme
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I
I

I

This explicit scheme has mainly been chosen because of its stability charac­

teristics, i.e. the waves with a high frequency (2~-waves) are damped out.

This is important since the corrections that will he provided by the Kalman

filter algorithm using measurements introduces a considerable amount of short

waves on the grid. Since the physical damping (friction force) is small (great

depth of the North Sea) the above mentioned numerical mechanism is necessary

for the dissipation of these short waves.

Besides these essential reasons the use of an explicit scheme makes the Kalman

filter more transparent than an implicit one.

As a disadvantage the strict CFL-condition may be mentioned which limits the

time step to 7.5 min in this model, [Heemink, 1980].

I
I

I
I
I

I

The geometry of the estuary poses other priorities. Since physical damping is

more apparent here the argument of numerical damping of high frequency waves

fails.

Since in estuarine problems implicit methods are recommended [Cunge, Holly &

Verwey, 1980] for their unconditional linear stability (no limitation to the

time steps other than for accuracy reasons) and straightforward treatment of

boundary conditions the implicit Preissmann 4 points scheme is chosen to

discretize the Eastern Scheldt model [ten Brummelhuis, 1984] which is also

used in the deterministic IMPLIC models.

I
I

I

(n+1,i) (n+1,i+1)

1 l}
(n,i) (n,i+1)

I

I
I
I

The Partial derivatives Ol = 1 [ n+1+ n+l _ un _
U~+1]ot T7f u i ui+1 i

are represented as
ru 0 n+1 n+1] 1-0 n n
1i"= /si{ [ui+1 u . + 7iX" [ui+1 u.

1 1

0 n+1 n+1 1-0 n n
u =2 [ u i + ui+1 + z- [ui + ui+1], 0 " 0 " 1

I
Fig. 2.14 Discretization on the grid QLK tt:usingthe Preissmann 4 points,

I scheme

I
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I
I CHAPTER 3

I
I

DISCRETE FILTER THEORY

§1 Introduction

I
This chapter contains a description of the discrete filter theory with the

emphasis on the Kalman filter theory as presented by Kalman and Bucy [1960,

1961]. The theoretical exposures will not be given via full mathematical

proofs of the formulae but will be brought in a tutorial way to express the

fundamental principles. The filters will be directly linked to the sets of

difference equations which are derived in chapter 2. The discrete version of

the filters is used since the solution of the differential equations describ­

ing the dynamics of the problem appears only possible in a numerical way,

implying a discretization of the equations in both space and time.

I
I
I
I
I

I

Since the Kalman filter theory is essentially derived for linear systems, this

case will be treated in §§ 2 and 3 where the charateristics and the basic as­

sumptions of the theory are pointed out. In § 4 extensions to nonlinear pro­

bIems are given, resulting in approximated filters which have proved to be

useful in practical applications where filters based on a linear system de­

scription are inadequate. A frequently used approximated filter is the ex­

tended Kalman filter. Herein, the linear Kalman filter theory is applied after

alocal linearization in both space and time of the orginal nonlinear dyna­

mical equations. The reader who is already familiar with the Kalman filter

theory can inmediately proceed to § 5 where (Kalman) filters are specified,

based on the dynamical models stated in chapter 2.

I
I

I
I

§ 2 Linear filtering theory

Basic to the discussion below will be a deterministic system description of

the form

I
(3.1)

I with x(t ) the n-state vector, u(tk) an n-input vector (boundary conditions)- k -

I
I
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I
I
I

for t = tk = k !J. tand 4(tk+1, tk) the n x n state transition matrix, independent of

both Z(tk) and x(tk+l)· In many cases 4(tk+1, tk) = 4>(tk+1-tk)

expressing that the actual time is not involved, only the time difference

between two time levels. Eq. (3.1) can be found by either using an explicit

method of discretization of the linear (partial) differential equations or

after a formal inversion of eq. (3.2)I
I
I
I

(3.2)

which is the result of using an implicit method of discretization of these

equations. Formal inversion of (3.2) yields

I
I

where ~ tk+1, tk) =

..... -1
~(tk+l) = A (tk+1,

-1
A (tk+1, tk)· B(tk+1, tk) and

tk) ~(tk+1)•

This procedure shows the equivalence of eq.~ (3.1), and (3.2), so the method

of discretization is irrelevant in this linear case.

I
I

The transformation of the deterministic system (3.1) to a stochastic system

offers the opportunity to use the information provided by measurements which

are related to (some components of) the state vector ~(tk+l). If these

I
I

measurements are sampled every t = tk+1, k ) 0 an m -

~(tk+l) can be defined which is related to ~(tk+l) by
the m x n -matrix M

measurement vector

means of

(3.3)

I

Let !(tk+1) be an :stimate of X(tk+l) as computed from eq. (3.1) with

!(tk) = !(tk) and ~(tk) the optimal estimate of !(tk) then the right hand

side of eq. (3.3) is a prediction of ~(tk+l) based on eq. (3.1) or eq. (3.2)
A

and !(tk). The difference between the actual measurement data ~(tk+l) and

M !(tk+1) is due to

I
I

I
- measurement errors in f(tk+1),

- incomplete description, eq.~ (3.1), (3.2) of the real physical

system (modelled by the system nOise),

I
A

- propagation errors due to uncertainties in !(tk)

I
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Our aim is now to extract from i(tk+l) and F(tk+l) a new optimal

estimate !(tk+l) for !(tk+l).

Example

Rewrite eq. (3.1) as !(tk+l) = «tk+l, tk) !(tk) + ~(tk+l) which gives an

estimate !(tk+l) of !(tk+l) which is affected by errors that are mentioned

above after the second and third dash. Symbolically:

g(tk+l) = ~(tk+l)+ ~ ~(tk+l) with ~(tk+l) representing the true state.

Otherwise, the observation F(tk+l) is also affected by errors:

i( tk+l) = M ~(tk+l) + ~ z(t ) In case 11 = In' the identity matrix, one finds
- k+l

two estimations of the true state ~(tk+l)· Herein, ~ ( ) and ~ ( ) are
~ tk+l ! tk+l

i(tk+l) which are bounded by e(x) and e(z)the unknown errors in !(tk+l) and

respectively, so

lIe ( ) 11 'e(z)
- ! tk+l

y, k ) 0

If optimality is defined to be the minimal error in the sense that
...
1I~(tk+l)- ~(tk+l) 11 is minimal for some suitable vector norm then the optimal

...
estimation ~(tk+l) can be easily be derived:

e(z) ~ + e(x)
e(x) + e(z) • ~(tk+l) e(x) + e(z) • !(tk+l)

= ;(t ) + e(x)
- k+l e(x) + e(z)

This procedure could be used in situations where m = n and M = In. But in

tidal motion problems, for instance, the most common situation is that the

components of ~(tk+l) represent the water levels and the velocities in the

various points but only water levels are sampled in the modelled area, so

these measurements cannot influence the velocities in a forma! way. Therefore,

even in this simplified (= linear) case the procedure shows its shortcomings.
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I

I

This can be overcome by assuming !(tk+l), j(tk+l), ~ x(t ) and ~ (t ) to be
- k ~ k+I

realisations of the random variables !(tk+l), ~(tk+l)' ~(tk) and

y(tk+l) (~(tk+l) is deterministic) which can be described by means of proba­

bility density functions, (p.d.f.). These functions, see for instance fig.

3.1, now define

- a measure for the errors in the various components of !(tk+l) in the sense

of a root mean square error

- a correlation between the components for a certain time t = tk+1 which

enables us to correct all components of ~(tk+l) using only a limited number

of measurements (m < n).

The solution to our problem is to evaluate the p.d.f. of ~(tk) (and ~(tk+l»

in time which will be done in two steps.

aprediction based on the system description, including the system noise,

and optimal estimate of !(tk)

- a correction step by incorporating the measurement data i(tk+l) , being a

realisation of the random variabie ~(tk+l).

I
I
I
I

I
I
I

I
i /
j'/---~~-----------

/
/
/,,,

/

I
I
I

I
I

Fig. 3.1 Probability density function fX(xl,x2) of the random variable

X (Xl'X2)

I
The first step towards the discrete Kalman filter algorithm now consists of an

assumption about the nature of the p.d.f. of all the random variables: the

p.d.f.~are Gaussian which implies that they are completely specified by two

parameters: the mean or the expectation (an n-vector) and the covariance

(an n x nmatrix). This contrary to most p.d.f._!.which are characterized by an

infinite set of parameters. Although it is theoretically not necessary to

restrict ourselves to p.d.f._!.whichare Gaussian, this assumption simplifies

I
I
I
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I
I

the filter equations drastically [Jazwinski, 1970, Maybeck, 1979].

In terms of random variables the system description is

(3.4al)

I
I
I
I

or:

(3.4)

(3.4b)

I

Suppose for a certai~ time t = tk a Gaussian random variabie X(tk) is specified.

The mean of ~~tk) = ~(k/k) and the covariance = P(k/k), symbolically written

as ~(tk) ~ N(~(k/k), P(k/k». The p.d.f. of ~(tk) is based on all

F( tk-i) for t = tk-i which are realisations of Z(tk-i) , 0 ~ i "k. The p,d,f..!.
of ~(tk) and y(tk+1) are characterized as N(O, Q(k» resp. N(O, R(k+1» which

implies that ~(tk+1) and Z(tk+1) do not suffer from systematic deficiencies due

to the incompleteness of eq•.!. (3.4a) and (3.4b).This is expressed by the fact that

the mean of both ~(tk) and y(tk+1) is zero. Moreover, the intensity of these noise

sequences is uniformly distributed over all frequencies, which gives the explanation

of the expression the ~(tk) and y(tk+1) are Gaussian white noise sequences.

I

I
I
I

A

Eq. (3.4a) now gives the relation to compute the mean !(k+1/k) and covariance

P(k+1/k) of the random variable ~(tk+l) , again based on the fact that the data

z( tk-i) are realisations of ~(tk-i)' 0 ~ i ~ k , Applying the linear mean operator

E to eq. (3.4a) gives

I (3.5) X(k+1/k) !l EX(tk+l) = E {~tk+1,tk)X(tk) + ~(tk+1) + GW(tk)}

= ~tk+1,tk) EX(tk) + ~(tk+1) + G E~(tk)

I
I (3.6) P(k+l/k) ~ E ~(tk+1) - X(k+1/k) }{x(tk+1)-X(k+l/k) }T

T
E {«tk+l,tk)[X(tk)- !(k/k)] + GW(tk~}{·}

~tk+1,tk)P(k/k)J(tk+1,tk) + GQ(k)GT
I
I
I
I
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I
I
I

-In the calculation above an expression for both X(k+l/k) and P(k+l/k) is

derived by using

- the Gaussian property of the random variables X(tk) and H(tk)

- the mutual independence of ~(tk) and H(tk)

- The Gaussain property of ~(tk+l) which follows from the linear relation

(3.4a).I
I
I
I
I

-X(k+l/k) is the optimal (in the sense of least square error) prediction of the

state ~(tk+l) regarding the available measurement data, the system noise and

measurement noise. Note that the influence/information of

F(tk+1), 0 (i (k on ~(tk+l) is totally transmitted via K(tk) (more precise:

I

-via ~(k/k) and P(k/k», in other words the filter is recursive:

the previous measurement data need not be stored or used to compute new pre­

dictions. This is one of the major advantages the Kalman filter offers when

implemented on a computer.

To start the filtering procedure an initial condition has to be specified- -~(to) ~N(~(O/O), P(O/O» • This mean ~(O/O) and covariance P(O/O) are in

many cases poorly known. Since the only available information are the data at

the starting time to and the knowledge of ~he user of the Kalman filter.

In the same way the p.d.f. of ~(tk+l) ~N(~(k+l/k), P(k+l/k) was derived

~(tk+..t)'based on measurements ~"ttk_l)'0 (i (k, can be specified using eq.~

I
I
I
I

- -(3.5), (3.6) with ~(k/k) and P(k/k) subsequently replaced by ~(k+r/k) and

P(k+r/k), 1 (r c ..t.
When new data f(tk+1) become available these can be used to update X(tk+1).

If the measurements noise y( tk+1) .:N(O, R(k+l» is independent from

~(tk+l)' ~(tk) the new estimation of ~(tk+l) is again Gaussian:

!(tk+l) ~N(~(k+l/k+l), P(k+l/k+l», whereI
I (3.7) - D

~(k+l/k+l) = E ~(tk+l) ~(k+l/k) + K(k+l) {i'(tk+1)- M ~(k+l/k) }

I
I

(3.8)

P(k+l/k+l) ~ E ~(tk+l) - ~(k+l/k+l) }~(tk+l) - !(k+l/k+l)}T

= {I - K(k+l)M}P(k+l/k)

I
I

The n x m matrix K(k+l) which is found in eq.~ (3.7) and (3.8) is the socal1ed

Kalman gain matrix and is derived according to
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I
I (3.9) K(k+l) = P(k+l/k) MT {M P(k+l/k)MT + R(k+l)}-l.

I The derivation of this last equation tends to be complicated and is omitted

here. The interested reader is referred to Jazwillski [1970]. .r---------------------~
I
I
I vl(tk· 1)",N(O,Q(k+i-I»I - +1-

J ~_~~ ~l~
I
I X(tk .)",~ I - +1!(tk)",N(!(k k),P(klk» (::':=1)1 ~
I ~Hi(l-:+ilk+i-l),P(k+ilk+i-l) ~ I
I s I---------~---------~

input quantities

i:=i+l

I time delay 1 I
E I
DI
I I
C I
TI
I I

I
I
I

(i = 1)

I
I

time delay

k:=k+l

I
K(k+ 1)=P(k+ 1Ik)MTCHP (k+1 Ik)MT +R(k+ 1)F I

I
I Fig. 3.2 Flow diagram of the Kalman filter

§ 3 Stability of the filter

I The Kalman filter, as derived in t~e previous section, is said to compute

optimal estimates of the random variables !(tk). This feature does however not

imply that the filter is stable.I
I In order to define filter stability it is usefull to rewrite eq. (3.7) in

~(k+l/k+l) = {I - K(k+l) M} ~(k+l/k) + K(k+l) ;(tk+l)

I
I

...
= {I - K(k+l) M}{«tk+l, tk) !(k/k) + y(tk+1)} + K(k+l) i'(tk+l)

= l'(tk+l, ~) .!(k/k) + {I - K(k+l) M} ~(tk+l) + K(k+l) ;(tk+l)

I
I

where K(k+l) is determined by eq. (3.9).
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I

I

Here 'F(tk+1, tk) is the state transition matrix o_f_the filter. The filter is

said to be stabie if there exists a constant cl < 0 such that

I1 'F(tk+1, tk) I1 < cl ' 11· 11 being a suitable matrix norm. The filter is

uniform asymptotically stable if there exist constants

C2' C3 > 0 .: 11 'F(tk+1, tk)l' < C3exp {-C2(tk+1 - to)}· Uniform asymptotical

stabi:ity implies that bounded inputs ~(tk+1) and !(tk+1) produce bounded out­

puts ~(k+1/k+1). It guarantees that the effect of the initial condition-
A

X(t ) - N(X(O/O), P(O/O» is forgotten as more and more information becomes
- 0 - - ...
available. This is important since ~(O/O) and P(O/O) are often poor1y known.

Furthermore, uniform asymptotical stability also guarantees the dissipation of

numerical errors in P(k/k) which are symmetrie and positive definite matrices.

The significanee of this characteristic is obvious since the Kalman filter

algorithm is proned to numerical difficulties [Bierman, 1977].

I
I

I
I
I
I
I

I
I

To obtain stability criteria the common approach is to introduce the system

theoretical concept of controllability and observability, both introduced by

Kalman [1960, 1961]. However, in this report another approach is adopted which

suites the nature of the problems considered here bet ter. The dynamical equa­

tions are namely of the hyperbolic type which means that they can be inter­

preted in terms of characteric directions, as is done in chapter 2, section 5

to derive apropriate conditions. We shall refer to this point in chapter 4. It

can be shown that for the model described in chapter 2

I

111 - K(k+1) M 11 c 1 Y k) 0

I and therefore

I
I

Y k) 0

I
I

This last inequality states that the Kalman filter is (uniform asymptotically)

stable if the underlying deterministic model (eq. (3.1» is (uniform asymp­

totically) stabie and implies that the filter is always more stabie than the

original system. This stability improvement property is a very desirabie

characteristic.

I
I
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I
I
I

§ 4 NQnHnear. filtering

I

As an extension to the linear Kalman filter which is described in § § 2 and 3

we now turn to the nonlinear case. Although full mathematical proofs of

properties like observability and filter stability are not available nonlinear

filters appear to be a usefull tooI in cases where linear filters show an

insufficient performance. This can be explained by the fact that the use of

observations, deduced from essentially nonlinear physical phenomena to correct

the vector of a linear system, could introduce large disturbances in the

system which may easily lead to unphysical behaviour.

I
I
I In this section various forms of nonlinear filters are given. The basic

concept of a nonlinear filter is that the system equations (3.10)

I (3.10)

I
I

and and u are n-vectors are approximated by

a Taylor series expansion around some nominal trajectory {g(t .) }
J

j ..0

I
I

(3.H)

+~2

I +

I
I + .1

2

I
I

Here, the second order derivatives are only symbolically written as

and for n > 1.

I
I
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I A nonlinear filter can be derived if the nominal solution {i(tj)} , j ) 0 and

the order of the Taylor series expansion is specified.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Linearized Kalman filter

Let i(t.)}, j )0 be a deterministic solution of eq. (3.10) which is
J

computed independently from the filtering procedure. If the second order

i-f
derivatives

and 2 are neglected eq. (3.11) becomes
~(tk)

(3.12)

or, using eq. (3.10) with x(t.) = x(t.)
- J - J

j ) 0,

(3.13)

~
A = [Öt(t )] ~

- k+1 !(tk+1)

which is equivalent with eq. (3.2) ~

B = [~(tk)] ih )
- k

The linear Kalman filter can now be applied to eq. (3.14)where a white system

noise sequence W_(tk)is added and random variables 8K(t.) = X(t.) - x(t.)
- J - J - J

are introduced

(3.14) A &t(t.+1)= B êx(t.) + W(t.) with A, B defined above .
- - J - J - J

The optimal estimate of the mean and covariance of !(tk+1), based on eq.

(3.14) and measurement data Z'( t .), 1 'j (k are now found according to
- J
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-
~(k+1/k)

- ~ -1-
= ~(k+l/k) + !(tk+l) = A B ~(k/k) + g(tk+1)

= A-IB ~(k/k) - F(tk)} + !(tk+1)(3.15a)

(3.15b) P(k+l/k) = A-I {B.P(k/k).BT + Q(k) } A-T

....
The next step in the filter algorithm to compute !(k+l/k+l) and P(k+1/k+l) are

performed according to eq.~ (3.7)-(3.9) which can be applied without resumption.

Crucial to the application of this filter algorithm is that II!(tk) - ~'<tk)I1 is

small for all k ) 0 • This assumption can however easily be violated. If for example

in tidal motions a phase shift appears between the computed water levels represented

in i(tk) and their true value 11!(tk) - i(tk) I1wil! grow substantially.

The extended Kalman filter

is more suited to provide that 11!(tk)- !(tk) 11is smal! since !'(tk) is not

calculated in advance but is derived from

(3.16)

which implies that the nominal solution ~(t.)} is influenced by the measure­
J

ment data z(t.) as soon as these are available. The filter algorithm is essen­
- 1-

tially the same as the linearized Kalman filter but the approach is rather
....

different. So in first_order ~(k+1/k) = !(tk+1) • This follows from eq.

(3.ISa) with F(k/k) = ~(k/k) • The other filter equations are equivalent with

eq.~ (3.1Sb), (3.7)-(3.9).

This extended Kalman filter is widely used in nonlinear filtering problems.

The ability of this filter to reconstruct the state from noisy initial data

and observations however can only be deduced from numerical experiments with

socalied "truth - modeis", examples can be found in the next section.

Second order filters

The first order filters are based on a set of linear system equations which

are derived by alocal and instantaneous linearization of the original
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11 nonlinear eq.~ C3.10) to apply the linear Kalman filter algorithm. It is

therefore that no difference is found wether an explicit or implicit method of

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

discretization is used: the derived system is linear on both time levels. This

analogy disappears when in the Taylor series expansion terms up to second

order are retained.

-
Take again .!Ctk)= ~Ck/k), fCá:k, i'Ctk+l» = gCt.tk,!Ck/k» + ~Ctk+l). Then

eq. C3.17) is found.

C3.17)

~ -
= [àK{t )]- C~Ctk) - ~Ck/k» +

- k XCk/k)

2

+ 1 [0 ~] CXCt ) _ ~(k/k»(~Ctk) _ ~Ck/k»T
T ~C tk)2 ~(k/k) - k

In case of an explicit discretization: !,(ltk, ~Ctk+l» = ~Ctk+l) eq. (3.17)

reduces to eq. (3.18)

C3.18)

2

+ 1 [0 ~] (XCt ) _ ~Ck/k»(~Ctk) _ ~(k/k»T
ï ~(tk)2 ~(k/k) - k

Application of the E operator to eq. C3.18) results in

(3.19)
- 1 cfg

/) .....C ) + " [ ] P(k/k)~(k+l k = ~ tk+1 L 2 -
~C tk) ~(k/k)·
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I For common nonlinear i(l1:k, ~(tk+1» eq. (3.17) leads to

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(3.20) ~ -
[êiX(t )]_ (~(k+1/k) - ~(tk+1» +

- k+1 ~(tk+1)

ê?f
+} [- 2]_ {P(k+1/k) + [~(k+1/k) - !(tk+l)]2} =

~(tk+1) x(tk+1)

_ 1
-2

A comparison between eq.~ (3.19) and (3.20) learns that eq. (3.19) computes
A A

~(k+1/k) independently from P(k+1/k) whereas ~(k+1/k) and P(k+1/k) are coupled

in eq. (3.20). Moreover, the equation associated with eq. (3.20) to compute

P(k+1/k) is nonlinear with respect to P(k+1/k) and contains terms like
A _ 2

[ ~(k+1/k) - ~(tk+1)] which are not easy to deal with. These difficu1ties do

not arise when !(l1:k, ~(tk+1» =~(tk+1)' requiring

(3.21)

with a = î (resulting in the Gaussian second order filter) or

a = } (Truncated second order filter) [Maybeck, 1982].

The second order filters require much more computational time and memory if

compared with the extended kalman filter, whereas the benefits are not always

clear. The full second order filter algorithm is therefore seldom used,

especially not when i( &k' ~(tk+1» is nonlinear in ~(tk+1) •

A compromis in applying the second order effects in achieved by neglecting the

quadratic forms of P(k+1/k) and P(k/k) in the relation to compute P(k+1/k)

which means that this approximated relation equals the extended Kalman filter

algorithm. Now, the for greater part of the computational efforts to
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I
I incorporate the second order effects has vanished but the essence is retained.

This approximation introduces the "bias correction terms"

I 1 -J-~
2" {[ 2]" P(k/k)

~(tk) X(k/k)

I in eq. (3.20).

I The effects of these second onder terms will be pointed out according to the

numerical results in the tidal motion problem which can be found in chapter 4.

I § 5 Specification of the filter

I
I

The difference equations, derived in chapter 2, form the basis of the system

description to be used in the filter. The nonlinearity of these equations

necessitates the use of the extended Kalman filter algorithm where possibly

bias correction terms can be added.

I

I

The state vector ~(tk) contains components which represent the water level and

the velocity at the various grid points. However, there are more unknown

quantities in the system, for example the (chezy)parameter ~ in the friction

term, the reflection coefficients pand Tlin the boundary conditions and the

wind stresscoeffecient Cd' All these parameters are to some extent unknown and

can be conceived as random variables. The evolution in time is assumed to be

very simpie: it is expected that they behave like system constants, so the relation

between a parameter pet = tk+1) and pet = tk) is pet = tk+l) = pet = tk) + W(tk)'

W(tk) being a component of the white noise sequence !i(tk):::N(O, Q(k» • By

adding the noise a random character of the parameter can be taken into

I
I
I

I account.

I Model along the coast (Model I)

Based on the system representation, compare eq. (3.10),

I
I the stochastic model to describe the propagation in time of the stochastic

proces ~(tk)} isI·
I
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I
I (3.14)

....
= ~(~k,~(k/k»(~(tk)

....
~(k/k» + H(tk)

I

I

where ~(tk) is the white noise and !(tk+1) = ~(~tk' ~(k/k»

In deriving the measurement equation one hat to consider that, in general, the

sampling points or tide gauges where the water level is measured, are not

located exactlyon the x-axis. However, by means of eq. (2.10) it is possible

to correct the water level perpendicular to the x-axis, taking into account

the effects of the wind in the y-direction and the Coriolis force. Using this

equation we can express the sampled water level as a nonlinear function of the

state !(tk) • Suppose ;(tk) is a scalar measurement data and a realisation of

the scalar random variable Z(tk) taken at the sampling point, see fig. 3.3

I

I
I
I \ \

\

\
\
\
\

I
\
\
\

I
~,._._.-'1-'-'-'"

\

\
\I
•

. .-L6ophMe. Une-6
.6ampUYl.g poin.:t

I Fig. 3.3 Location of sampling points with respect to the x-axis.

I In this case the measurement equation is

I
I (3.22)

I
I

Here ~y is the distance between the measurement station and the x-axis, see

fig. 3.3, and V(tk) the scalar measurement noise. Since in general

\CdV2D1: ~ 1« I fu I the term dealing with the wind effect has been

I
I
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I
I omitted. To account for local effects a parameter ai is introduced in the

measurement equation:

I
I (3.23)

I
with ai «1.

Generalizing this scalar case yields the vector

(3.24)I
I
I

The x-axis is chosen such that the sampling point at x = xl is located exactly

on the x-axis, this

I (3.25)

I As mentioned before, the ~, Cd and also the ai are not constant but have

essentially a random character. Therefore, these parameters are estimated together

with the water levels and velocities by augmenting the n-state vector:I
I
I

In order the apply the filter equations (3.7)-(3.9) are must find a constant

m x n - measurement matrix M. This matrix M can be found in a similar way the

nonlinear eq. (3.10) is linearized (locally and instantaneously by means of

F(tk+l) and ~(k/k» to use in the extended Kalman filter algorithm. Here,

this linearization leads toI
I
I
I

(3.26)
'"= M(~(tk+l) - !(tk+1» + y(tk+1)

In chapter 2, section 5 the boundary conditions were prescribed:

I
I
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I
I an oscillating water level to "drive" the model,

a weakly reflective boundary condition, eq. (2.17) with Tl= 0

I
I

u - 241= constant

I
If, for t = tk, predictions of the water levels and velocities are required,

eq (3.14) is solved (repeatedly), see also fig. 3.2. As initia1 conditions the

estimate of the state ~(tk) is used. However, at the boundary (x = xl)

Nieuwpoort the water level has to be predicted too. This can be estab1ished by

performing a harmonic analysis of the water level at this location [Dronkers,

1964, 1975J:I
I (3.27)

I
I

where Ai' v. and ~. are respectively the amplitude, frequency and phase of the
1 1

i-th harmonic constituent, and set) the non tidal part of the water level,

i.e. mainly determined by meteorological effects. Now s(tk) is a component of

the state vector ~(tk) and can be predicted using eq. (2.18). Therefore, the

prediction of hl(t), t > tk is given byI
I
I

(3.28)

I
I
I

2 "" ""+ Y V (t - 1:) cos (<I(t- 1:) - <1>0» - s(tk)

I

.where eq. (2.18) is substituted. Since both h1(tk) and s(tk) are components of

!(tk) they are estimated by the filter and can be used to predict the water

level h1(t), t > tk by means of eq. (3.28).

I
I
I
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I
I The Eastern Scheldt model (Model 11)

I

Comparing this model with the model along the coast, the following differences

can be noted:

a simpier (= linear) relationship between ~(tk) and ~(tk) because the

dependence of the water level on the y-direction may be neglected in the

estuary, so the sampling points are identified with grid points. Therefore,

the parameters ai are absent.

Random friction parameters are assigned to every channel branch between two

sampling points. The fact that in Model I only one random friction

parameter ~ is introduced depends on the necessary random parameters ai

which represent already some frictional effects.

In the boundary conditions, random variables ~, p estimated by the filter.

This gives the n-state vector

I
I
I

I
I
I

with r = number of grid points in Model 11

I s number of channel branches.

I In deterministic sense the linking of the two models is quite simpie: in Model I

the water level in 0.S.10 is computed which serves as the boundary condition

for Hodel Ir. In our stochastic approach this cannot be applied without

modification. One of the assumptions is that the two models are stochastically

independent which implies that the set of available measurements must be

divided in two disjoint subsets, are is used in Model I the other in Model 11.

Since the grid point which represents 0.S.10 occurs in both modeis, see fig.

2.9.This measurement can only he used in I or 11. This independency is

suggested by the fact that the tidal motion in the Eastern Scheldt does not

influence the water movement in the area outside the estuary. So, if the

measurements from 0.S.10 are used to correct the predicted solution in Model

I, these cannot be used in Model 11. This of course has less practical than

theoretical significance. Our solution to this problem, which somewhat

I
I
I
I
I A

violates the assumed stochastic independence, is to use the estimate h(k/k) in

model I of the water level at 0.S.10 as artificial measurements with the

associated measurement noises found from the covariance P(k/k).I
I
I
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I
I
I
I
I
I
I

CHAPTER 4

APPLICATION TO TIDAL MOTION PROBLEMS

§ 1 Introduction

I
I

In the previous part of this report a stochastic model was formulated to de­

scribe the tidal motion in the Dutch coastal area. Now, the results obtained

with this model will be commented. An essential feature of the filtering pro­

cedure is the computation of (sub)-optimal estimates of the state vector using

all available information, both from the mathematical model and the measure­

ment data. The performance of the filter is judged bij checking whether the

residuals possess their theoretical statistical properties which can be deriv­

ed from the model. To fulfil this criterion unknown quantities should be spe­

cified which is accomplished by the socalled turing of the filter, i.e. the

assignment of values to the variances of the system- and measurement noise.

Usually this is a rather complicated process that is carried out by trial and

error. In addition to these variances the initial state should be prescribed.

Since the dynamical equations are of the hyperbolic type every signal (expres­

sed in terms of Quasi Riemann Invariants) entering the system will vanish

after a limited period of time. Consequently, the specification of the initial

state is less important than the variances of the noise sequences.

I
I
I

I
I

Earlier in this report we mentioned several applications to use the filter

as a descriptive model in which certain parameters are estimated simultane­

ously,

- as an algorithm to optimize the location of sampling points in a network

- as a system to predict the water levels (and velocities) in the considered

geometrical area.

I
With this last application one has to remember that variations in quantities

as the water velocity and height propagate through the system in a limited

time. This property restricts the length of the time interval predictions are

still influenced by the (sub)-optimal estimates of the state vector which acts

now as an initial condition to perform the predictions. This time interval isI
I
I
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I
I rather simply derived by considering characteristic lines in the (x,t)-domain,

see chapter 2, section 4.

I
I

I

In the following sections attention will be payed to all these aspects, illus­

trated with numerical results using real data. The data from 11-13 September '75

are used to tune the filter in circumstances without significant meteoro10gical

effects. However, it is important to study the necessary adaptations in the

variances of the noise sequences in periods when meteorological effects are

strongly influencing the tidal motion. As will be pointed out later only minor

changes are needed to optimize the performance of the filter which means that

the system- and measurement noise sequences are relatively time-invariant, a

very convenient property when the model is used to predict the water levels

on-line.

I

I
I

I

The availability of measurement data during the 5 weeks period from 11 January -

15 February '83 made it possible to test the filter behaviour extensively, also

under extreme situations with wind velocities up to 24 ms-1 and water levels

above 3.5 m + N.A.P. in the mouth of the Eastern Scheldt. This long period also

enabled us to analyze the estimates, particularly those which represent parameters.

These parameters appear as random variables in system equations, based on

certain physical concepts. The analysis may show the random character of the

parameters, e.g. whether or not it has a white noise behaviour. For example it

is possible to derive the dependence of a wind stress coefficient on the wind

velocity, or how the phase of the tide is correlated with the estimates of the

friction coefficients.

I
I

I
I
I
I

One of the first studies relating to tidal motions in seas and estuaries has

been performed by Budgell and Unny [1982]. Their study considered the

following aspects:

- a description of the water movement in a tidal river in Canada,

computational aspects of the filter algorithm.

I

I

Although the geometrical configuration and the dynamical equations are to a

certain extent identical with the model of the Eastern Scheldt, some

differences in the implementation should be noted:

- the parameter estimation is not included in the (extended Kalman) filter

algorithm, but the parameters are adapted by means of a separate maximum

I

I
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I
I
I
I

likelihood estimation procedure,

the occurence of matrices of high dimension (the covariance matrices)

can easily lead to numerical operations which require huge compatation

time and memory assess, as is also stated in chapter 3. The use of an

implicit method of discretization is even worsening the case because ma­

trix inversions are necessary when the extended Kalman filter is ap­

plied, eq.(3.4a2). The use of matrix partitioning techniques, as per­

formed by Budgell and Unny, makes it is possible to approximate the al­

gorithm by substituting the matrix inversion by an inversion operation

on a matrix of a much smaller dimension,

- their primary attention was not to perform predictions over longer

periods of time (only predictions, half an hour ahead were computed)

while further meteorological influences on the tide were only of minor

significance.

I
I
I
I
I
I
I
I

The stochastic model requires, besides a formulation of the dynamics, an in­

terpretation of the geometry which is expressed in terms of the cross-sec­

tional area (A), the channel width (b), the wetted perimeter (P) and the depth

(D). These geometrical functions are specified for each grid point. The crude

grid makes it difficult to attain certain geometrical influences on the tidal

motion that are due to local variations of the bottom surface between the grid

points, despite a possible correct prescription of the geometry in these points.

The effect of these model errors can be studied by using "truth-models". In

literature it is indicated [Chiu, 1978] that these tests are on effective way

to study the filter behaviour. These experiments yield information with re­

spect to the following points:

- the way in which certain errors are compensated by the filter. A ques­

tion to be posed is whether or not reliable values for the water levels

can be reproduced from noisy data, in case the geometry is disturbed and

how these disturbances effect the simultaneous estimated quantities.

the ability of the filter to reconstruct all states. This necessary

property limits the number and the character of the quantities that we

wish to estimate. If we focus our attention on the parameter estimation

it will be clear that not every parameter, conceived as a random

I
I
I
I
I
I
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I
I

I

variabie, can be recontructed from measurements of water levels: there

has to be a correlation between the water levels and the particular

parameters via the correlation coefficient from P(k+l/k).

Moreover, only an overall effect can be derived from the measurements,

e.g. a frictional effect between two sampling points. Difficulties arise

when between two sampling points also a wind effect has to be estimated.

The associated water levels do not provide enough information to decom­

pose the residual into its correct components. The introduction of such

unreconstructable parameters does not reduce the r.m.s. error of the

residual and makes the parameter estimation less transparent, so this

should be omitted.

I
I
I

I The importance of these tests is even more stressed by the lack of mathemat­

ical proofs concerning the convergent behaviour of the estimates in time in

the case of nonlinear filters and the complications due to the hyperbolic

character of the dynamical equations.
I
I

I

After this preliminary step was carried out [Heemink, 1980, ten'Brummelhuis,

1984] rea1 data from 11-13 September 1975 were used to tune the filter.

Representative results of,the predictions, half an hour ahead, are shown in

fig.s 4.1-4.4 where the high- and low waters of the astronomica1 tide are a1so

indicated to mark the meteorological influences. To compare the accuracy of

the half hour predictions, the r.m.s. errors

I

I
(4.1) 1 N }2

O. = N L {h.(k+l/k) - m.(tk+1)
J k=L J J

j = 1,2, •••,8

I are calculated with hj(k+1/k) the predictions at point j

mj(tk+1) the sampled water levelI
I

Zierik- Stave- Steenb. Rak Wemel- Bergen

a(cm) 0.S.4 0.S.9 zee nisse Sas Zuid dinge op Zoom

0j 5.1 6.2 3.3 6.8 3.7 4.7 5.5 7.0

(0 ) . 4.1 5.3 1.7 6.1 2.3 3.6 4.6 6.3
p J

I
I
I Table I: The r.m.s. errors according to eq.~ (4.1) and (4.2)

I
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The standard deviation of the measurement errors (om) are assumed to be

2.8 - 3.0 cm in this period, so the error of the predicted water levels can

be derived from

(4.2) 2(0 ),
P J

= cl: - (0 )~
J m J

I and are given in the last row of tab1e I. The filter is said to be tuned when

the residual satisfies its theoretical statistical properties which can be

derived from the model.

I
I

First, the residual bias shift, derived from

N

(4.3) B(ias)

I should be zero.

I
I

'" 2The second property is that values of 0, ,eq. (4.4), and
J

from eq, (4.1) must match: cr 2= 0 2
j j

2
0, , calculated
J

(4.4)
~ 2= P + (cr )2vJ' " ,JJ m J

I with P .. the variance of h ,(k+1Ik), P .. € P(k+1 Ik)
JJ J JJ

I To achieve the (sub)-optimal behaviour of the filter the statistical proper­

ties of the system- and measurement noise sequences must be specified.

I ...
The variance of X(tk+1) : N(~(k+1/k),P(k+1/k» has two components

- the variance, propagated by means of the state transition matrix
-1

~(tk+1,tk) or A (tk+1,tk) B(tk+1,tk) , eq. (3.4a)I
I - the variance of the system noise ~(tk) •

I
I

A global measure of the variance of the components of ~(tk) can be found by

assuming that p(k/k) is only weakly amplified by the state transition matrix

to derive P(k+l/k), since the eigenvalues of ~(tk+l,tk) are ( 1 (in absolute

sence) for stability reasons. Therefore, the local error (which is represented

by the system noise) varies between 1 - 5 cm for the water levels.

I
I
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I
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I

The system noise can be used in different ways. Essentially, a system noise

sequence is associated with a dynamical equation or a boundary - c.q. compa­

tibility condition to represent its local error. If an explicit method of dis­

cretization is used to derive a system of nonlinear difference equations, this

noise is assigned to a specific random variabie which is computed by means of

this equation. When the method of discretization necessitates a number of com­

putational time steps ~t to cover the interval ~~ between two measurements

(for accuracy reasons or a strict CFL - condition) the system noise can be ap­

plied every ~t.

Via implicit methods of discretization the system noise is introduced in the

expressions by means of the terms

I
I
I

I
I

(4.5) -1 -TA Q(k) A , using eq. (3.4a2) to compute P(k+1/k).

I
The transformation (4.5) makes the effect of the system noise correlated in

space, even if Q(k) is chosen as a diagonal matrix. Another effect of the im­

plicit formulation is that the varianee of the noise sequence of a dynamical

equation is equally distributed over the water levels and the veloeities in

the neighbouring grid points of the stream section.

After investigating the various ways our conclusion with respect to the use of

the system noise is that the system noise acts like an integrated quantity

over the time interval [~,~ + ~~] and that it is favourable to assume that the

system noise sequences are correlated in space. This can be achieved by intro­

ducing in Q(k) off-diagonal elements * 0 or by means of eq. (4.5) in case of

implicit methods of discretization.

I
I
I
I
I Another way to deal with model errors is to conceive system parameters as ran­

dom variables. In the estimates of these parameters oscillations can be noted

which are the model corrections the filter carries out to reduce the r.m.s.

error of the residual. In the next section this aspect will be treated more

explicit.

I
I
I

The results, acquired with data from the 11 Januari - 15 Februari '83 period

are weIl comparable to the results obtained with the data from the tuning

period. However, the instationary behaviour of the tide ( in this period 2

major storms occured) will influence the residuals to some extent. The speci-I
I
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I
I

I
I

fication of the system noise varianee is the same as in the tuning periode

Examples of the half hour predictions are shown in fig.s 4.5 - 4.10 where the

meteorological influences are apparent. The r.m.s. errors, according to eq.

4.1, are presented in table 11, where a distinction is made between periods

with

I
weak }
moderate

- (III) strong

- (I)

- (11) meteorological influences

I ------- .

o(cm) 0.S.4 Zierikzee Steenb. Sas Rak Zuid Wemeldinge

0(1) 5.5 3.7 5.1 5.2 5.7

0(11) 6.0 4.7 5.7 5.9 6.3

O(III) 7.0 6.2 5.8 7.4 6.8

o(average) 6.0 4.6 5.4 6.3 6.1

o(tuning) 5.1 3.3 3.7 4.7 5.5

I
I
I
I
I
I
I
I
I Table 11: The r.m.s. errors for sampling points in the Eastern Scheldt.

I
I
I
I
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I

The r.m.s. errors of the residuals are inçrea~~ i! ~çompared to those of the

tuning period (last row in table 11). In absolute sence the increase varies

between 0.4 and 1.4 cm. The effect of the meteorological circumstances is also

seen in these results: the r.m.s. error is enlarged, but not dramatically, if

rather strong wind velocities occur, having values up to 24 ms-1•

Another quantity which reflects the filter behaviour is the residual bias shift,

defined by eq. (4.3). For the far greater part of the residuals the calculated

B is only some mm, but occasionally it can increase to 1.0-1.2 cm (averaged

over a days period) when the meteorological circumstances change.

I
I

I
I
I

I

In chapter 3 it is explained that several forms of the filter algorithm easily

lead to computational difficulties. For this reason the full second order ap­

proximation is seldom used. After the extended Kalman filter was tuned the

bias correction terms, eq. (3.20) are added. As expected, the r.m.s. errors of

the residuals are diminuished, about 3 - 7%. The nonlinear effects are

therefore non-dominant which is mainly due to the crude grid that makes the

geometry smooth: the nonlinearity, expressed by the second order terms, are

strongly influenced by the prescribed geometry.

I

I
I

§ 3 Parameter estimation

I

The system noise represents in the stochastic model the model errors which

determine the reliability of the estimates to some extent. The socalIed adap­

tive filtering is used to compensate these errors by estimating several system

parameters simultaneously. Since a large number of estimates is available we

are able to employ an harmonic analysis [Dronkers, 1964, 1975, Godin, 1972].

I

I This method describes the time dependent behaviour of the parameter estimates

by a series of independent harmonic functions:

I
(4.6) c(t) = c +o

I
with

I
I
I
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parameter

mean level

amplitude of the i-th harmonie constituent

nodal correction for Ai

phase of the i-th harmonie constituent

nodal correction for ~i

= astronomieal frequency of the i-th harmonie constituent.

The most important eonstituents were seleeted by a harmonie analysis of the water

levels registered at 0.S.4 using a time serie of one year (1983).

From the 5 weeks period we seleeted a 3 weeks period, large enough to distin­

guish the important M2 and S2 eomponents in the estimates of reflection - and

friction coefficients, see fig. 4.11 - 4.13. In table 111 the results of the

analysis are shown for the reflection coeffieient p at Rak Zuid.

w. Ai ~i(degr.)i.

name degr./hour (*10-2)

MFM 1.64 4.13 166.6

Ol 13.94 1.37 20.2

Kl 15.04 0.38 0.4

MU2 27.97 0.57 199.3

M2 28.98 2.01 10.9

S2 30.00 1.14 37.2

MN4 57.42 0.59 276.1

M4 57.97 0.59 285.9

MS4 58.98 0.48 214.8

M6 86.96 0.23 101.5

2MS6 87.97 0.05 81.9

Mean level = 0.980 energy ratio 56%

Table 111: Harmonie analysis of the reflection coefficient at Rak Zuid.
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The M2 and M4 conponents are apparently used to amplify the M4 tidal con­

stituent in the water levels (and velocities) near the boundary. The occurance

of these specific harmonics indicated that our assumption of the noise se­

quence being white is violated somewhat: the energy is not equally distributed

over the whole frequency domain. The mean level of p is very close to the unit

value nl. 0.980 so the boundary at Rak Zuid is said to be almost totally reflec­

tive and the velocities are, in absolute sense, smaller than 0.2 ms-1•

A similar behaviour should be expected for the reflection coefficient at Bergen

op Zoom. Since the geometry of the estuary branch between Zierikzee and Bergen

op Zoom is much more complicated than the geometry between 5tavenisse and Rak

Zuid, greater model errors and to be expected, so the estimates of P posses

harmonics with an amplitude that are greater than those in the former case.

The mean level is also different from the unit value (0.890), accomplished by the

fact that the sampling point is not exactly located near a closed boundary.

For the friction coefficients the results are summarized in table IV. It can

be noted that there is a remarkable difference between the energy ratios. Only

13% of the energy in the estimates of the friction coefficient between 0.5.4

and Zierikzee is found in the tidal constituents whereas 40% for the friction

coefficient between Zierikzee and Stavenisse. From this difference one may not

draw the conclusion that in one of the cases the model errors are greater than

in the other, but something can be said about the nature of the model errors.

First, a white noise sequence may be interpreted here as a sequence of har­

monics without dominant tidal constituents. The low energy ratio (13%) there­

fore accounts for model errors that are due of the incompleteness of the pres­

cribed dynamics.
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w. Ai $i(degr,) Ai $i(degr.)1

name degr./hour (* 10-6) (* 10-6)

MFM 1.64 154.4 177 .1 82.0 2.3

Ol 13.94 9.9 74.6 22.4 230.4
Kl 15.04 13.5 155.0 13.1 257.8

MU2 27.97 10.0 80.0 18.8 116.8
M2 28.98 12.6 24.3 73.0 243.4

S2 30.00 12.4 45.2 36.0 339.5

M4 57.97 6.2 236.8 7.9 252.7

MS4 58.98 1.9 277 .9 3.0 116.4

M6 86.95 1.0 305.0 11.2 11.0

2MS6 87.97 3.0 309.8 13.0 110.9

mean level 1.48* 10-4 2.03* 10-4

energy ratio 13.0% 40.0%

streamsection 0.S.4 - Zierikzee Zierikzee - Stavenisse

Table IV Harmonic analysis of the coefficients ~ , (~ = Chezy-2)g g

In chapter 2 (page 20) it has been noticed already that the dynamics of the

tidal motion in the mouth of the Eastern Scheldt cannot easily be represented

in a one-dimensional model which causes the "whiteness" of the estimates of

the friction coeffecient between 0.S.4 and Zierikzee. On the other hand wrong

or insufficient prescription of the dynamics will cause systematic oscilla­

tions of the estimates. For example, the frictional effect is moddeled

as ~lulP with u the velocity, averaged over over the cross-sectional area A.

But the friction is essentially related in the local velocity ub at the

bottom, so the harmonical behaviour of ~ could be interpreted as a correction

for this discrepancy*. However, an incorrect prescription of the geometry may

also cause harmonics of tidal frequencies.

D+h* Recount the dependence of ~ via the logarithmic rule: ~ - In D
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PERIOD 20-22 January 1983

Friction coefficient ~ between Zierikzee andg
i

- .,!
Stavenisse

time (hrs.)

Fig.4.13a
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PERIOD 23-25 January 1983

f ··]Jb Z"k dFriction coef 1C1ent - etween 1er1 zee an
g Stavenisse
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time (hrs.)

I Fig. 4. 13b
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From table IV it can also be seen that the amplitudes of the MFM constituent

are significant, suggesting that the coefficients ~ at neap tide differ from

those at spring tide. However, for all these points, no definitive conclusions

can be drawn whether or not this behaviour is due to changing effects (in the

physical sense) or to model errors, but it would seem correct to remark that

the results which are achieved in this way can be used ot improve the model.

I
I

I For the representation of the exchange of momentum between a wind field and

the water the empirical relation

I
I

(4.7) or
2V cos q.
D+h is used, see eq. (2.6)

I

In literature it is a well-known fact that the wind stress coefficient depends

on V (and q.),which are treated as input quantities in the filter. Since Cd

is estimated the indirect influence of V and q.may be found by analyzing the

computed estimates of Cd' If we restrict ourselves to the Cd in the Eastern

Scheldt model, the procedure is as follows: A main direction is chosen as a

reference to de define a windangle q.a'We should further note that the Cd is a

global parameter which is determined by a total of factors relating both to

the physical properties of the mathematical model, see fig. 4.14.

I

I
I
I NORTH SEA

-.I
main d.uz.ec.tion

I .-_- -
I
I Fig. 4.14

I
I
I
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Fig. 4.15 shows the relation between Cd and V cos ~a when the horizontal axis
-1is partitioned in 50 subintervals of length 6V = 0.5 ms and the correspond-

ing Cd value is just the average value of Cd which is found of wind velocities

between V and V + 6V. This treatment assumes in fact an uncorrelated sequence

of estimates for Cd in time, which is of course not the case, i.e. the Kalman

filter derives corrections for the instanteneous (sub)- optimal estimates. The

argument to justify the analysis is that due to the large number of estimates

(N = 1680) systematic trends in the correlations are removed.

In case of on-shore wind the Cd coefficient is relatively constant at a value

9.3 * 10-7 for wind velocity components below 12 ms-1, and increases linear

with Vcos ~ > 12 ms-1• If one takes into account that the wind velocity,a
observed in the Eastern Scheldt, is approximately 80% of the value, registered

at B.G.2, for on-shore winds [Langerak, 1984] the shape of this curve and the

scale of the axes are very similar to those, found from other experiments

[Timmerman, 1975] and illustrates the physical behaviour of the filter that

can be adequately used in the area of model research.

The estimates of the Cd coefficient for the off-shore wind velocity components

deviate largely from the average estimates for on-shore winds, although also a

constant value (5.8 * 10-7) is found. This striking difference can be ex­

plained by two reasons: first, the exchange of momentum is different for off­

and on-shore winds, or secondly, which is more plausible, the measured wind

velocities at B.G.2 and in the Eastern Scheldt are differently correlated in

the considered cases. In that case the results illustrate an input errors, and

if and equal Cd coefficient is assumed the 80% correction for on-shore winds

must be replaced by an 63% correction in case of off-shore winds.

From eq. (4.7) it is seen that the exchange of momentum is assumed to be inde­

pendent of the water velocity u. A further analysis of the Cd estimates for

on-shore winds in pursued, by dividing the estimates into two categories:

- Cd for ebb (UZierikzee) < 0)

Cd for flood (uZierikzee) < 0)

and than averaging the Cd-values for the two categories separately. However,

this procedure does not provide any argument to reformulate the empirical re­

lation, eq. (4.7), and to introduce a relative wind velocity between V and u

instead of V. The absence of a correlation with ebb or flood states that the

described interaction is a local effect at the water surface and also suggests

that wind fields can influence the flow pattern within the water, causing a
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counter current along the bottom of the stream section ot maintain potential

energy. The effect of ebb and flood is possibly noted in the estimates of the

friction coefficients, but will only be measurable if V exceeds 25 ms-l

[Langerak, 1984].

I
I

§4 Optimization of sampling networks.

I
One of the interesting applications of Kalman filters can be found in opti­

mizing sampling networks, as indicated in chapter 1. Although a complete trea­

tise of an optimization procedure is beyond the scope of this report, the basic

idea of filter interpolation is illustrated. Filter interpolation deals with

the influence (domain) of information provided by measurement data, and which

is dependent on

- the location of the sampling points in a network,

- the sampling quantity, and

- the associated measurement error.

I
I
I
I Now consider a network, as shown in fig. 4.16 where the

-,
-,

I
,,

I c F

I

I D

I
I
I fig. 4.16

I
I
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gridpoints A, B, C and F are also sampling points. The estimations ~(k+1/k+l)

which result from the filter algorithm are based on the measurement data from

A, B, C and F. These data however also influence the estimated states in D and

E, which are obtained by interpolation. This based on the discrete dynamica1

equations.

Returning to the tidal motion problem, one can identify, for instance, C with

Zierikzee, D with Stavenisse and F with Steenbergse Sas. In "normal" situa'"

tions, the measurement data from Stavenisse are used to correct the half hour

predictions. A measure for the information provided by these data can be de­

duced by comparing the estimates in a "nor:nal" situation with those obtained

from experiments where the measurement data from Stavenisse are not processed

in the filter, see fig.s 4.17 - 4.18. These examples show that in the consid­

ered period the role of these data cannot be fully overtaken by the remaining

data. To specify this difference the r.m.s. errors are calculated, table 11, 111.

I
I
I
I

I
I
I
I (4.8)

N
= ~ L {Z(tk) - h(k/k-l)}2

k=l

1 N A 2- L {;(tk) - h(k/k)}
N k=l

= ~ Ï {;(tk) - [~h (kik) + (1-~) hst (k/k)]}2
N k=l z

I
I with

I N = number of time steps

~(tk) = measurement data from Stavenisse, t = tk

h(k/k+1) = predicted water level at Stavenisse, t = tk
A

h(k/k) = estimated water level at Stavenisse, t = tk
A

h (kik) = estimated water level at Zierikzee, t = tk
AZ

hstCk/k) = estimated water level at Steenbergse Sas, t = tk

~ weighting parameter, o < ~ < 1

I
I
I
I
I
I
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Fig. 4.17 Half hour predictions of the water level at Stavenisse in case the

local measurements are neglected.

CJp(cm)

With 6.5

processing the data
~
z(tk), k = 1,2, •••,N

Without 8.3

Table 11: The r.m.s. errors CJpof the predictions at Stavenisse
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-1.00

-1.50

A

Fig. 4.18 The estimates h(k/k) of the water level at Stavenisse in case the

local measurements are neglected.

°c(cm) ol(cm)

With < 2.8 -
processing the data

~
z(~), k = 1,2,••.,N

Without 4.3 5.9

Table 111 The r.m.s. errors 0c and ot of the estimates at Stavenisse.
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The neglect of the measurement data from Stavenisse induce~ an increase of the

standard deviations, both of the predictions as weIl as the estimates, see

fig.s 4.17-4.18, which is most obvious in the periods before high tide. The

effect of the filter interpolation is seen in table 111: although we may

conclude that the processing of the data ;(tk), k = 1,2, •••,N gives the best

result (a r.m.s. error smaller than the standard deviation of the measurement

error), the interpolation based on the discrete dynamical equations is

superior to the linear interpolation between Zierikzee and Steenbergse Sas.

I
I

I

I

These experiments can be performed for all sampling points to study the neces­

sity of keeping a particular tide gauge in operation*, once maxima1 allowable

r.m.s. errors are established. This procedure assumes that the three quan­

tities, determining the information contained in the measurement data are

invariable. On the other hand however, the installation of new sampling points

requires experiments (now using simulated data) to answer the following ques­

tions to achieve a maximal benefit of the investments:

- where should the sampling point be located,

- what quantity should be sampled,

within what accuracy should the sampling be performed?

I
I
I

I
I

§ 5 Short-term predictions

I

In predicting the water level and veloeities in the Dutch coastal area the

boundary condition at point 1 (Nieuwpoort) has to be extrapolated. This is

done by harmonic analysis of the tide and by estimating the set-up, see

chapter 2, section 6. Since, in general, the extrapolation will not be

accurate, this restricts the prediction capability of the filter. Therefore,

before discussing the medium range predictions, we define a prediction

horizon. This prediction horizon is the maximum length of the time interval

during which the computed predictions are uninfluenced by the extrapolated

boundary condition at Nieuwpoort (grid point 1 in the model).

I

I
I
I
I * Note that the removal of sampling points can mathematically be simulated by

introducing a large standard deviation of the measurement error for certain

data, so its reliability approximates zero.I
I



The dynamical equations (2.7) - (2.8) and (2.11) - (2.12) are of the hyper­

bolic type so every signal (expressed as Q.R.I.s) propagates along the eharae­

teristies in the (x,t)-domain with a limited velocity, eq.~ (2.13, (2.14).

The extrapolated boundary condition ean be coneeived as a disturbed signal

wh lch implies that the prediction horizon is determined by the path of the

characteristic which enters the (x,t)-domain at point 1 at a time following

the time. the most recent data are sampled, see fig. 4.19. Consequently,

the predictions which are based on measurements at time t ( • can be computed

in the shaded area. It is seen that the limited propagation speed accounts for

a space dependent prediction horizon: it is limited to 2.0 hrs at 0.S.4,

0.S.9, to 2.5 hrs at Zierikzee and 3.S hrs at Rak Zuid en Bergen op Zoom.

Related to this pre~ietion horizon we ean now apply a concept of stochastic

observability which restriets the observability domain t? all points P with a

domain of dependence (for t > T) which lies within the area, limited by the curve

C, the 1ine t==r and the boundaries, and coincides with the shaded area in

fig. 4.19 [Goodson, 1970J •

I
I
I
I
I
I
I
I
I
I

T + J.S hrs.

I
T + 3.0 hrs.

I
T + 2.5 hrs.

I
T + 2.0 hrs.

I
T + 1.5 hrs,

I
I
I t T
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Nieuwpoort

I
I

O.S.lO Zierik­
zee

Bergen
op Zoom

0.S.4

0: s.9
Steenb. Rak Zuid
Sas

Fig. 4.19 The space dependent predietion horizon. The curve C is determined

I
d _--

by -~ = u r-g(I}+h).
dt
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In the ~i6'S-4.20-4.37 representative examples are shown of the short term

predictions of the water levels in levels in the sampling points. The fig.s 4.20-

4.24 are drawn from the results during the tuning period (11-13 September '75)

whereas the remaining are derived from the two storm periods 18-20 Januari '83

and 31 Januari - 2 February '83. The influence of the storm is again marked by

the difference between the actual and the astronomical tide.

I

I

I

The performance of the filter with respect to the prediction of water levels

in the Eastern Scheldt depends on several aspects such as

- the prediction of the boundary condition, derived from the model along

the coast,

- the changing meteorological circumstances,

- the variations of the estimated parameters in time.

The most striking difference between the sampled data and the predictions of

the water level at point 7, see fig. 2.11, which serves as the boundary

condition is the apparent phase shift of the M4 constituent at low tide. This

deviation is more obvious during the storm periods than during the tuning

period, compare fig. 4.20 and fig.s 4.25-4.26, 4.32-4.33, and it propagates

through the Eastern Scheldt as a disturbance wave along the characteristics.

The errors of the Eastern Scheldt model can amplify these disturbances, while

in other cases the interaction with disturbance waves from Rak Zuid or Bergen

op Zoom accounts for a smaller deviation. This is seen at the second high tide

at Steenbergse Sas, fig.s 4.28a-4.28c, where the prediction, 3 hrs. ahead, is

more closely following the actual tide than the prediction, computed 2 hrs.

ahead.

I
I
I
I
I

I
I

The fact that the errors of the predictions from the model along the coast

seem to be relatively large is mainly due to the influence of the

meteorological circumstances which is much greater at open sea than in the

estuary. The meteorological effects must actually be deduced from the action

of a wind field on the water surface. But since the measurements, registered

at B.G.2, were the only available data from the 5 weeks period_we had to take

the local registration to be valid for the entire area. However, this is

highly improbable. In order to relate the deviations to the meteorological

influence a vector quantity is indicated which denotes the wind registration

at B.G.2, a vector length of 1 cm corresponds to a wind velocity of 15 ms-l.

The local character of the wind field at B.G.2. is illustrated by the

I
I
I
I
I
I
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diviations that occur at the second low tide (31 Januari '83) and originates

in the areas at the boundaries. The reason of this interpretation is based on

the rapid and strong variation of the Cd coefficient while the wind registra­

tion changes marginally during a period of several hours and the other estima­

ted parameters do not indicate any sudden adaptation. So, we must assume that

the registered wind field is not globally correct and obviously causes large

errors.

Another source of errors with respect to the meteorological effects is the

orientation of the coordinate axis, e.g. if a front enters the southern part

of the Nort Sea from the North Western direct ion it shows up earlier at the

mouth of the estuary than it does at Nieuwpoort and therefore the predictions,

computed several hours ahead, are in error, as is also seen in the period

18-20 Januari '83. This is a shortcoming of our l-D approach to model the

propagation of the tidal wave in storm periods.

I
I
I

I
I

I

In case of considerable variations of the parameter values, as ~compared to the

prediction period, we mayalso expect rapid growth of the deviations of the

predicted water levels in time. This is illustrated by the behaviour of the

reflection coefficient p at Rak Zuid. In storm periods, p changes occasionally

by 10% within 1.5 hrs. just before high tide and the same change in reverse in

the next 1.5 hrs. This affects the short term predictions at Rak Zuid, see

fig.s 4.29a-4.29c while a similar behaviour is noticed at Bergen op Zoom.

From the fig.s 4.28a-4.28d it is seen that the disturbance) initiated at Rak

Zuid propagates backward and is first noticed in the predictions at

Steenbergse Sas computed 1.0 hour ahead.

For the friction coefficients the above mentioned effect is only minor. First,

the variations of ~ are smaller and second, their influence is more globally.

If the short term predictions are of primary importance this could suggest to

specify the variance of the system noise component W(tk), associated with the

solution equation

I
I
I
I

I
I
I
I

at a lower level to dissipate and retardate the effect of the residuals on the

correct ion of the parameter by influencing the Kalman gain matrix.

I
I
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I
I CHAPTER 5

CONCLUSIONS

I
I

From the results, presented in chapter 4, we will summarize the essential

points:

- The filter, based an a 1-0 deterministic model and a discretization on a

crude grid proves to be effective in describing and predicting the tidal

motion in the Dutch coastal area.I
I The' various applications that have been shown can all be performed with

the same model, the specific use requires on1y another interpretation of

the resu1ts, see the optimization of sampling networks.

The tuning of the filter is re1atively time-invariant which implies that

the (sub)-optimality is preserved under different meteorological

circumstances. This feature and the fact that the filter algorithm is

recursive makes it very suited to use on-line, for obtaining short term

predictions.

One of the arguments to start this MARTHA-II research project was to

improve the predictions in the mouth of the Eastern Scheldt [Heemink, 1981].

The table below shows the r.m.s. errors of the predicted water levels at

0.S.4,

I
I
I
I
I -----Ir .m,s, error r.m.s error r.m.s. error j

I
pred. 0.5 hrs. pred. 1.0 hrs. pred. 1.5 hrs.

ahead ahead ahead

MART HA-I 9 (cm) 13 (cm) 16 (cm)

11-13 Sept. '75

MARTHA-II 5.1 7.4 9.3

11-13 Sept. '75

I
I
I
I
I TABLE IV: The r.m.s. errors, found at 0.S.4.

I
I
I
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I

I

We may conclude that the connection with the Eastern Scheldt model

reduces the r.m.s. errors in the mouth of the estuary significant1y.

By means of a tuned filter it is possible to detect measurement errors:

the residuals must match their computed mean and variance al. A

measurement is said to be in error of the actual value if the residual

exceeds the 2o-bound.

- Model - and input errors can be deduced from the estimates, but

definitive and quantitative conclusions must be postponed since these

are disturbed by the simplicity of tne model. For example, the g10bal

geometry does not distinguish the storage width from the live width

which again influences the estimates of the friction coefficients ~. On

the other hand the relation between the wind stress coeficient Cd and

the wind velocity V cos ~a that is derived, see fig. 4.15 permits more

definitive conclusions with respect to the real values of Cd and the

input errors of the wind velocity and - angle, see section 2.

However the simu1taneous parameter estimation is a very favourable

property of the filter since it can provide useful information with

respect to the value (or behaviour) of certain parameters and also

indicates a way to improve the model: despite the simplicity of the

model it is possible to trans late various adaptations in the parameter

estimation into physical effects.

- The tuning of the filter requires some experience to assign the correct

intensities to the noise variables but it is not more time-consuming

than the tuning of a determinist ic model which is mainly due to the

relatively time-invariance of the noise specification.

- The extended Kalman filter is based on a local linearization of the

dynamical equations. This is acceptable since the effect of the second

order terms is (relatively) small, and their neglect does noet imply a

severe violation of the dynamics of our model. The small contubution of

the second order terms is caused by the smoothness of the restricted

geometrical schematization to limit the system dimension.

- The shortcomings of our model, mentioned above, make it hard to draw

definitive conclusions at all points and influence the prediction

capability of the filter. For example, it would be desirabie to treat

the meteor010gical circumstances as an integrated (over the coastal

area) input quantity instead of a registration of a local wind field

which is taken to be va1id for the entire area. The short term

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
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predictions in storm periods are illustrating the necessity of this

adaptation, see section 5.

Therefore it is perhaps useful to develop a model on a finer grid where

the geometrical configuration can easily he changed and which has a

greater resolution capacity with respect to the various sources of

error.
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