
Delft Center for Systems and Control

Distributed Spatial Predictive
Formation Control - Laboratory
development and experimental
study

J.F. de Winkel

M
as

te
ro

fS
cie

nc
e

Th
es

is

Distributed Spatial Predictive
Formation Control - Laboratory

development and experimental study

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

J.F. de Winkel

March 26, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

This thesis describes the development of the Delft Center for Systems and Control (DCSC)
Networked Embedded Robotics Lab (NER) and a novel distributed formation control algo-
rithm to showcase the lab’s experimental capabilities. The lab environment is built to support
ground as well as aerial robotic platforms featuring a netted environment and state-of-the-art
camera localization system. Both the hardware and software infrastructure considered in this
work were chosen to provide an easy interface for students to run distributed experiments with
a focus on code reusability. To this end, the Robot Operating System (ROS) was chosen as
a software framework as it provides drivers for most robotics platforms, libraries for common
tasks such as localization and navigation, communication between software nodes on different
hardware, and its widespread use and acceptance by the robotics community. The devel-
oped algorithm to showcase the multi-robot coordination capabilities of the laboratory uses
a model predictive based formation controller with a coordinate transform from Euclidean to
spatial coordinates where the agents’ position is expressed in terms of traveled path length
and path deviation. The method was implemented on multiple iRobot Create platforms with
independent computing power. A distributed formation controller was achieved by applying
a consensus algorithm on the traveled path length. Results show that the desired formations
can be achieved even while tracking a target path. Implementation of the complete experi-
ment in ROS illustrates that the developed laboratory setup and its components (hardware
and software architecture) are capable of running distributed robotics experiments.

Master of Science Thesis J.F. de Winkel

ii

J.F. de Winkel Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Motivation . 1
1-2 Research Objectives . 2
1-3 Thesis organization . 2

2 Distributed Spatial Predictive Formation Control 3
2-1 Formation control . 3
2-2 Spatial Predictive Control . 6

2-2-1 Trajectory tracking using Model Predictive Control 6
2-2-2 Conversion to spatial dynamics . 7
2-2-3 Adaptation for unicycle robots . 10
2-2-4 Path generation . 11

2-3 Spatial Predictive Formation Control . 11
2-3-1 Formation definition . 12
2-3-2 Formulation of Optimal Controller . 12

2-4 Simulation results . 13
2-4-1 Formation of 6 agents . 14
2-4-2 Formation of 12 agents . 18

2-5 Summary . 24

3 Development of the Networked Embedded Robotics Lab 25
3-1 Robotic Middleware . 25
3-2 Layout of the Networked Embedded Robotics Lab 28
3-3 Currently available robots . 30

3-3-1 Create . 30

Master of Science Thesis J.F. de Winkel

iv Table of Contents

3-3-2 Sphero . 32
3-3-3 Hovercraft . 32
3-3-4 Parrot AR . 33
3-3-5 Matrice DJI 100 . 34

3-4 Localization hardware . 34
3-5 Laboratory architecture . 35
3-6 Development options . 36
3-7 Experiment interaction . 37
3-8 Web-based interactive manual . 38

4 Experimental demonstration of Distributed Spatial Predictive Formation Control 41
4-1 Implementation aspects . 41

4-1-1 Latency analysis . 43
4-2 Experimental results . 44

4-2-1 Formation of 3 agents . 45
4-2-2 Agent failure . 49
4-2-3 Evaluation . 52

5 Conclusions 55
5-1 Summary on Spatial Predictive Formation Control 55
5-2 Summary on laboratory development . 55
5-3 Recommendations on future developments . 56

A Overview of Robotic Middleware 59

B Code 63
B-1 Unicycle model . 63
B-2 Objective function implementation . 65
B-3 Path planner . 68
B-4 Spatial conversion . 71
B-5 Spatial controller . 72

Bibliography 77

Glossary 81
List of Acronyms . 81

J.F. de Winkel Master of Science Thesis

List of Figures

2-4 Unicycle robot . 6
2-5 Construction of a Frenet frame on a curved geometry 8
2-6 Definition of spatial-dependent dynamics [1] . 9
2-7 Generating Dubin’s Path [2] . 11
2-8 Control structure for two agents i and j . 13
2-9 Graphic depiction of formation control simulations 15
2-10 Connected, undirected graph for 6 agents . 15
2-11 Movement of the formation in the x-y plane . 16
2-12 Path tracking offsets . 17
2-14 Formation keeping errors with respect to front agent 18
2-13 Agent velocities . 19
2-15 Connected, undirected graph for 12 agents . 20
2-16 Movement of the formation in the x-y plane . 21
2-17 Path tracking offsets . 22
2-18 Agent velocities . 23
2-19 Formation keeping errors with respect to front agent 24

3-1 Simplified depiction of software separation in nodes 26
3-2 View of the lab area with desks and PCs . 28
3-3 Design of camera placement in gutter . 29
3-4 Gutter around the lab perimeter with mounted cameras 29
3-5 Deployable safety net for drones . 30
3-7 Sphero by Orbotix [3] . 32
3-8 Hovercraft . 33
3-9 Parrot AR Drone 2.0 [4] . 33

Master of Science Thesis J.F. de Winkel

vi List of Figures

3-10 Net deployed in front of PCs . 34
3-11 Matrice DJI 100 [5] . 34
3-12 OptiHub [6] . 35
3-13 Motive tracking software [7] . 35
3-14 Proposed hardware setup for the lab . 36
3-15 Proposed software setup for the lab . 37
3-16 Logitech Gamepad for remote control of agents 38
3-17 Starting page of the interactive lab website . 39
3-18 Example of an interactive experiment page for tracking control 39

4-1 ROS node graph for distributed formation control experiment 42
4-2 Local latency measured with 197 samples . 43
4-3 Network latency measured with 61 samples . 44
4-4 Connected, undirected graph for 3 agents . 44
4-5 Movement of the formation in the x-y plane . 45
4-6 Path tracking offsets . 46
4-7 Agent velocities . 47
4-8 Formation keeping errors with respect to front agent 48
4-9 Movement of the formation in the x-y plane . 49
4-10 Path tracking offsets . 50
4-11 Agent velocities . 51
4-12 Formation keeping errors with respect to front agent 52

J.F. de Winkel Master of Science Thesis

List of Tables

2-1 Hardware specifications for simulation PC . 14
2-2 Controller and model parameters used in simulation 14
2-3 Formation definition . 15
2-4 Formation definition . 20

4-1 Controller and model parameters used in simulation 42

A-1 Overview of Robotic Middleware Part 1 . 60
A-2 Overview of Robotic Middleware Part 2 . 60
A-3 Overview of Robotic Middleware Part 3 . 61
A-4 Properties of robotic middleware [8] . 62

Master of Science Thesis J.F. de Winkel

viii List of Tables

J.F. de Winkel Master of Science Thesis

Acknowledgements

I would like to sincerely thank all who assisted me during my work on this thesis, most notably
my supervisor dr.ir. Tamás Keviczky for his patience and support. I hope my work on the
robotics enviroment for DCSC will be of continued use in the future.

Delft, University of Technology J.F. de Winkel
March 26, 2017

Master of Science Thesis J.F. de Winkel

x Acknowledgements

J.F. de Winkel Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Research on robotics platforms often requires extensive knowledge in multiple domains, such
as electrical engineering, mechanical engineering, and computer science. For control students,
however, the emphasis is placed on developing novel control algorithms. Practical implemen-
tation of these algorithms requires work in all aforementioned domains. To provide as much
help as possible in this practical implementation a reliable and functional lab environment is
necessary. Such a lab environment means providing students with a plug-and-play hardware
and software infrastructure, detailed manuals and a collection of experiments allowing them
to choose and run existing algorithms and only modify parts relevant to their research. To
provide such a lab environment a highly modular software framework will be required with
support for a broad set of hardware components.

The primary research goal of the lab environment to be developed are distributed, or net-
worked, experiments and as such this thesis highlights the development and practical imple-
mentation of a novel distributed spatial predictive formation control method showcasing the
capabilities of the new DCSC Networked Embedded Robotics Laboratory. This method re-
quires localization, state estimation, consensus and control of multiple robotic agents and will,
therefore, provide examples on all relevant topics to control students working on a practical
implementation of their experiment in the Networked Embedded Robotics Lab.

Spatial Predictive Control (SPC) is a relatively new approach where coordinates of an agent
are expressed not in Euclidean space but in length traveled along a given path s and a
tangential offset from this path ey. This method is highly suitable for path following and
obstacle avoidance and can be used as a high-level path planning method, for instance for
automated car-like robots. Extending this method to support multiple agents to move as a
formation along a given path provides an interesting research topic and can easily be extended
to different platforms.

Master of Science Thesis J.F. de Winkel

2 Introduction

1-2 Research Objectives

This thesis work distinguishes between the following research objectives:

• Develop a laboratory environment consisting of multiple robotic platforms, computers
to use for control algorithms and development, a motion capture system to track robots
and the necessary hardware to support communication between all components.

• Provide software support for multiple, ground as well as aerial, robotics platforms.

• Focus on usability and reusability of the setup for future students by providing detailed
instructions on working with hardware and reusable code.

• Implement multiple demos showcasing the lab’s platforms and capabilities.

• Develop a novel distributed formation control approach for path following based on
Spatial Predictive Control and consensus algorithms.

1-3 Thesis organization

In the following chapters, the development of the distributed formation control algorithm,
the laboratory setup, and its components, and the obtained experimental results will be
discussed. Chapter 2 provides the mathematical background on the Spatial Predictive Control
and Consensus algorithms and the developed formation control algorithm that this thesis
work contributes. In Chapter 3, details are given on available software infrastructures for
robotics and the choices made in engineering the laboratory setup with a detailed view of
all components and robotic platforms that are available to students. Chapter 4 provides the
results of the practical implementation of the formation control experiment in the laboratory
setup. Finally, Chapter 5 contains conclusions on the overall result of the developed laboratory
setup and experiment as well as recommendations for future improvements.

J.F. de Winkel Master of Science Thesis

Chapter 2

Distributed Spatial Predictive
Formation Control

The research done in this thesis consists of a combination of formation control and a state-
of-the-art path tracking method called Spatial Predictive Control. This combination is re-
searched with the aim of developing a distributed formation controller for a group of unicycle
type robots. First, an overview of formation control methods is given with a focus on consensus
approaches, which will be used to describe information flow between agents in a formation.
Then the mathematical background is provided for the Spatial Predictive Control method
that is used to provide path tracking capabilities to the mobile agents. These two methods
are then combined for agents with unicycle dynamics. Simulation results are provided for the
resulting control algorithm.

2-1 Formation control

Formation control is an important subject within the study of multi-agent systems as it has the
possibility to increase the overall system effectiveness compared to single agent systems. Some
examples are the cooperative movement of large objects, exploration or search and rescue
missions. Also, the option of using cheaper hardware and the lower chance of failure compared
to using a single agent are important reasons for using multi-agent systems. Formation
control for these multi-agent systems is an extensively studied subject with multiple solutions.
Typically these methods are categorized as leader-follower, virtual structure, potential field,
and consensus methods [9].

Leader-follower methods work by appointing one mobile agent as a leader whilst another agent
is appointed as a follower. Control laws for follower agents are designed based on a distance
keeping constraint between the leader and the follower. Two types of distance constraints are
most prominent, l-l and l-φ controllers. In l-l control, Figure 2-1a, one agent keeps a fixed
distance to two leader agents. In l-φ control, Figure 2-1b, the follower keeps a relative distance
and angle to a single leader agent. The leader-follower approach can be implemented using

Master of Science Thesis J.F. de Winkel

4 Distributed Spatial Predictive Formation Control

any control structure, for instance using feedback linearization [10] or optimization algorithms
[11].

(a) Relative distance control (b) Relative distance and angle control

As an extension of leader-follower control, virtual structures were introduced. In a virtual
structure algorithm, instead of following an existing leader agent, the leader is defined in
software. This adaptation makes a formation control algorithm more robust as the failure of
a leader agent does not comprise it [12]. Typically in virtual structure approaches the leader
is defined as a rigid body containing the locations of all agents in the formation. From the
position or trajectory of this virtual rigid body, the desired position and trajectories for other
agents are computed using their desired offset from the rigid bodies’ center of mass.

Potential field methods work by creating artificial potentials between an agent and its goal.
These potentials can be viewed on a two-dimensional plane as peaks and valleys. The gradients
on these potential fields are used as force or velocity inputs for a mobile agent such that it’s
attracted to valleys and pushed away from peaks. This method is typically used for path
generation purposes, such as [13], but is also applicable to formation control [14]. The main
issue with potential field approaches is the existence of local minima within the field, allowing
an agent to get stuck. Workarounds for this problem exist, such as adding a centrifugal force
to the input force computed from the potential field [15].

Consensus methods for formation control focus on using a description of information flow
between multiple agents to design control laws that prove that a formation, given a certain
connection topology, converges. The parameters that are used for convergence are referred
to as the information state and the connection topology of a formation is described using
graph theory [16]. Graph theory describes connectivity using graphs that consist of nodes
N , representing agents within a formation, and edges E , representing an information sharing
connection to another agent. Graphs can either be directed (information flows along an
edge in only one direction) or undirected (information flow is bi-directional) and they can be
connected (a path from one node to another is always available) or disconnected (there are
one or multiple nodes that cannot be reached from another node) [16]. Figure 2-2a shows
an example of directed graph, where agent communication is one-directional. Figure 2-2b
shows an example of an undirected graph where communication is bi-directional. Figure 2-2c
shows an example of a graph without a spanning tree, meaning that not all nodes in the
graph receive information from others. The previously mentioned leader-follower and virtual
structure methods can also be described as a consensus problem where information flows in
only one way, a directed graph, from the (virtual) leader to the follower.

In [17], graph based consensus approaches are suggested for formation keeping whilst following
a constant or time-varying reference, a trajectory, for systems with dynamics ξ̇ = ui. A

J.F. de Winkel Master of Science Thesis

2-1 Formation control 5

(a) Directed graph with spanning tree (b) Undirected graph with spanning tree

(c) Directed graph without spanning tree

formation keeping consensus algorithm is given for connected, directed or undirected, graphs
for situations where the reference is or is not known to all agents. For these consensus methods,
a graph G described by the pair (N , E) is used with an adjacency matrix A, a square matrix
that indicates whether nodes are connected not. It is given by A = [aij] where aii = 0 and
aij > 0 if (j, i) ∈ E . In the case of multi-agent systems that should converge to a constant
reference state, the control input for each agent is given as (2-1).

ui = −
n∑
j=1

gijkij(ξi − ξj)− gi(n+1)αi(ξi − ξr) (2-1)

Where kij > 0 and α = 0 are a weights and gij = 1 if information flows from agent i to j as
given in the adjacency matrix and otherwise gij = 0. Similarly if the agent i) has access to
the reference state then gi(n+1) = 1 and otherwise gi(n+1) = 0. As can be seen, the velocity
input for this system becomes a weighted sum of formation errors and path tracking errors.
When following a trajectory the reference state is time varying, ξ̇r = f(t, ξr). In this case, if
the path is known to all agents, Figure 2-3a, (2-2) guarantees convergence for the formation
along the path.

ui = gi(n+1)f(t, ξr)−
n∑
j=1

gijkij(ξi − ξj)− gi(n+1)αi(ξi − ξr) (2-2)

If the reference state however is time varying and not known to all agents, Figure 2-3b, (2-3)
is used.

ui = 1
ηi

n∑
j=1

gijkij [ξ̇j − γi(ξi − ξj)] + 1
ηi
gi(n+1)αi[f(t, ξr)− γi(ξi − ξr)]

ηi = gi(n+1)αi +
n∑
j=1

gijkij

(2-3)

As can be seen, depending on the communication topology and availability of the reference
information state for all agents, solutions exist to reach convergence of an information state.
In this section, four formation control methods have been described. All of these methods can
be used for centralized or distributed control. The consensus approach will be implemented as
it is the most general method allowing the study of multiple different connection topologies.

Master of Science Thesis J.F. de Winkel

6 Distributed Spatial Predictive Formation Control

(a) Reference path available to all agents (b) Reference path available to single agent

2-2 Spatial Predictive Control

Spatial Predictive Control is a type of Model Predictive Control used for path tracking pur-
poses, where the dynamics of a vehicle are expressed in a spatial-dependent form rather then
time-dependent. This section provides a short mathematical background on Model Predictive
Control for trajectory tracking, using a unicycle type robot, after which the transformation
to spatial-dependent dynamics is provided.

2-2-1 Trajectory tracking using Model Predictive Control

Differential drive, or unicycle, type robots, Figure 2-4, are simple robots with two separately
actuated wheels and one free wheel. This type of robot has nonholonomic and nonlinear
dynamics as given in (2-4).

Figure 2-4: Unicycle robot

ẋẏ
θ̇

 =

v cos(θ)
v sin(θ)
w

 (2-4)

J.F. de Winkel Master of Science Thesis

2-2 Spatial Predictive Control 7

The error dynamics given a desired reference pose can be described as (2-5).ẋeẏe
θ̇e

 =

 cos(θr) sin(θr) 0
− sin(θr) cos(θr) 0

0 0 1


x− xry − yr
θ − θr

 (2-5)

When tracking a trajectory, the reference pose
[
xr yr θr

]T
will be time-varying. Model

Predictive Control (MPC) is a technique that can be used to predict the tracking errors, as
defined by the error dynamics, over a finite horizon and find control inputs that minimize
this error. Each sampling time, the predicted tracking error is defined as an optimization
problem. This optimization problem is then solved after which the first optimal input in the
calculated sequence of inputs is applied to the system. In the next sampling time, this process
is repeated. For any reference trajectory the general optimal control problem at time t is as
(2-14) [18].

min
u

∫ t+Tp

t
F (x(τ), u(τ))dτ (2-6)

subject to:
ẋ(τ) = f(x(τ), u(τ))

u(τ) ∈ U ∀τ ∈ [t, t+ Tc]
x(τ) ∈ X ∀τ ∈ [t, t+ Tp]

‖x(t+ Tp)‖P ≤ β‖x(t)‖P β ∈ [0, 1)

(2-7)

With F (x, u) = ‖x‖Q+‖u‖R and Q and R are positive definite matrices used as weights on the
tracking error and input respectively. Tp represents the length of the prediction horizon, Tc
represents the control horizon with Tc ≤ Tp. Finally (2-7) provides input constraints U , state
constrains X , and a contractive constraint that defines the required amount of contraction
between the initial and final state.

2-2-2 Conversion to spatial dynamics

In the optimal control problem (2-14) a trajectory tracking controller was designed. A trajec-
tory is a path parametrized in time, e.g. a set of poses p(t) =

[
x(t) y(t) θ(t)

]T
that describe

where an agent should be at each moment in time. This assumes that a trajectory generation
algorithm is used that is capable of generating feasible poses in time without violating vehicle
dynamics constraints. A more general approach would be using a path, a set of poses that
is not parametrized in time, and define the optimal control problem such that it tracks the
path in a desired amount of time regarding the vehicle dynamics and constraints. To this
end, the optimal control problem can be reformulated in such a way that it can be solved in
a time-invariant manner. In [1, 19] this problem is solved by applying a transformation from
time-dependent agent dynamics to spatial-dependent dynamics. These spatial-dependent dy-
namics require expressing the pose of a mobile agent in terms of its progression s along a
known reference path and its deviation in distance and heading angle ey and eψ respectively.
This transformation is typically done using a Frenet frame [20]. A Frenet frame is a frame
that can be defined on each point of the differential geometry of a curve. It is defined by

Master of Science Thesis J.F. de Winkel

8 Distributed Spatial Predictive Formation Control

a vector tangent −̂→T (s), and vector normal −̂→N (s) to a curve as shown in Figure 2-5. These
vectors are defined as (2-8)[19].

−→
T (s) = ∂2fpath(s)

∂s
,

−̂→
T (s) =

−→
T (s)
‖
−→
T (s)‖2

−→
N (s) = ∂2fpath(s)

∂s2 ,
−̂→
N (s) =

−→
N (s)
‖
−→
N (s)‖2

(2-8)

The desired heading at each point on the path is defined by the angle between tangent vector
and the x-axis whilst the curvature of the path is defined by magnitude of the normal vector.

Figure 2-5: Construction of a Frenet frame on a curved geometry

Using the above transformation of a Cartesian coordinate frame to a Frenet frame the dy-
namics of the mobile agent can be transformed as depicted in Figure 2-6. The state vector
for the mobile agent is defined as ξs =

[
ẏ ẋ ψ̇ eψ ey

]T
where ẋ and ẏ represent vehicle

velocity along the corresponding axis, ψ is the path heading angle and ψ̇ its rate of change,
and eψ and ey represent the vehicle heading angle and position error with respect to the path
respectively.

J.F. de Winkel Master of Science Thesis

2-2 Spatial Predictive Control 9

Figure 2-6: Definition of spatial-dependent dynamics [1]

The vehicle velocity along the path v(s) can be defined in terms of angular velocity and radius
of curvature. By projecting the absolute vehicle velocity in ẋ and ẏ in the direction of the
reference heading, a transformation from velocity defined in the Cartesian coordinate frame
to the Frenet frame can be made.

vs = (ρ− ey) · ψ̇s
= ẋ · cos(eψ)− ẏ · cos(eψ)

(2-9)

Where vs is the speed of the mobile agent along the given path, ρ is the radius of curvature
and ψs is vehicle heading at the current position along the path.

ṡ = ρ · ψ̇s = ρ

ρ− ey
· (ẋ · cos(eψ)− ẏ · cos(eψ)) (2-10)

Using the following simple relationships it is possible to express the path and heading error
of the vehicle as derivatives of the traveled path length s.

ξ
′ = dξ

dt

dt

ds
= ξ̇

ṡ
(2-11)

e
′
ψ = (ψ − ψs)

′ = ψ̇

ṡ
− ψ′

s (2-12)

e
′
y = ėy

ṡ
= ẋ · cos(eψ)− ẏ · cos(eψ)

ṡ
(2-13)

Where it should be noted that the time as a function of s can be retrieved by integrating
t

′ = 1
ṡ . The resulting error dynamics can be used to define a new optimal control problem

Master of Science Thesis J.F. de Winkel

10 Distributed Spatial Predictive Formation Control

with respect to s in stead of t that aims at minimizing tracking errors and maintaining a
reference velocity along the path.

min
u

∫ s+Hp

t
F (η(s), ηref(s), u(s), du

ds
(s)))ds (2-14)

subject to:
dξ

ds
(s) = f(ξ(s), u(s)) (2-15)

Where η =
[
ẋ ψ̇ eψ ey

]T
and F (η, ηref, u,

du
ds) = ‖η−ηref‖Q+‖u‖R+‖duds ‖S with Q, R and

S positive definite matrices as weights on tracking error, input, and input change respectively.
The weight on input change is added to generated smoother inputs. Discretizing the error
dynamics using dξ

ds(s) = ξ(s+∆s)−ξ(s)
∆s allows the optimal control problem to be formulated as

(2-16).

min
u

s+Hp∑
k=s
‖ηk,s − ηrefk,s‖

2
Q + ‖uk,s‖2R + ‖∆uk,s‖2S (2-16)

The resulting controller calculates the optimal linear and angular input velocities that allow
an agent to track a reference path with desired velocity. Note that the state η contains
terms for path deviation and angle error. By setting these terms to zero, an agent will follow
the reference path exactly. Using ey 6= 0 will generate control inputs such that an agent
will follow the path at a specified offset. This feature will be used specify a formation with
multiple agents.

2-2-3 Adaptation for unicycle robots

The previously given conversion to spatial vehicle dynamics assumes the use of a bicycle
model [1]. In contrast, this thesis work uses unicycle type robots. The difference between
these two modeling approaches is the presence of slip. Since a unicycle is not subjected to
slip, the error dynamics can be simplified assuming ẏ = 0.

ẏ
′ = ÿ

ṡ
, ẋ

′ = ẍ

ṡ
, ψ̇

′ = ψ̈

ṡ
(2-17)

e
′
ψ = (ψ − ψs)

′ = ψ̇ − ψ′
s (2-18)

e
′
y = ėy

ṡ
= ẋ · cos(eψ)− ẏ · cos(eψ)

ṡ
(2-19)

e
′
y = ėy

ṡ
= ẋ · cos(eψ)

ṡ
(2-20)

The spatial vehicle dynamics can then discretized for use in the prediction model.

ṡs = ρs
ρs − ey

· ẋs · cos(eψ) (2-21)

eψs+∆s = eψs + ∆s(ψ̇s − ψ
′
s) (2-22)

eys+∆s = eys + ∆sẋs · cos(eys)
ṡs

(2-23)

J.F. de Winkel Master of Science Thesis

2-3 Spatial Predictive Formation Control 11

2-2-4 Path generation

The spatial predictive controller is capable of handling any smooth path. In this thesis work
a simple path generating method called Dubin’s path [21] will be used. Dubin’s method
produces a path that consists of three either curved C or straight S parts. Paths can be
either C − S − C or C − C − C as seen in figure 2-7. The length of the curved parts is
determined by the minimal turning radius of the chosen mobile agent.

Figure 2-7: Generating Dubin’s Path [2]

This path generation method relies on a vehicle model called Dubin’s car with the following
dynamics:

ẋ = v cos(θ), ẋ = v sin(θ), θ̇ = w (2-24)

Where v ≥ 0. As can be seen, this model is similar to the unicycle but adds a constraint
backward motion. The definition of a path as a set of straight and curved parts is convenient
for the spatial predictive control algorithms since it can be simplified as the tracking error
dynamics are simulated using the radius of curvature of the path which means ρ = 0 for
straight parts and ρ = R for curved parts where R is the turning radius of the vehicle. This
allows the path to be partitioned in three segments (2-25).

0 < s ≤ s1 ρ = ρ1

s2 < s ≤ s2 ρ = ρ2

s3 < s ≤ s3 ρ = ρ3

(2-25)

2-3 Spatial Predictive Formation Control

The previously derived Spatial Predictive controller provides path tracking for a single mobile
agent with a fixed reference input. Extending this controller for formation control requires
choosing these reference inputs such that mobile agents keep a predefined distance to each
other whilst tracking the path. These reference inputs will be determined using a consensus
approach based on which agents in a formation have the ability to share information. Then
the final control structure will be defined.

Master of Science Thesis J.F. de Winkel

12 Distributed Spatial Predictive Formation Control

2-3-1 Formation definition

Formation control methods, as specified before, use distance and heading angle constraints
between agents to construct a formation.

d2
ij = (xi − xj)2 + (yi − yj)2

∆θij = θi − θj
(2-26)

Using these constraints yields a rigid formation, implying that the formation maintains its
shape while tracking the reference path. In this thesis work, in contrast to the rigid formation
definition, the distance keeping constraint between agents will be defined as (2-27).

∆sij = si − sj (2-27)

This implies that agents will keep a specified distance between each other with respect to the
reference path, similar to cars driving behind each other on a road. Furthermore, agents will
be given an offset to the path center by defining eyi = di.

The SPC method requires that an agent has access to the reference path. Reviewing Section
2-1, a formation of agents with single integrator dynamics with access to a time-varying
reference state reach consensus using (2-28).

ẋi = ui = gi(n+1)f(t, ξr)−
n∑
j=1

gijkij(ξi − ξj)− gi(n+1)αi(ξi − ξr) (2-28)

As can be seen, the velocity for each agent is determined based on the path tracking error
and distance error between agents that have an information sharing connection. This exact
approach will be used to extend the Spatial Predictive Control method by calculating reference
velocities ṡref;i along the path that balance formation keeping and path tracking.

ṡref ;i = ui

ui = ṡref;form − Σn
j=1gijkij(sref ;i − sref ;j)

(2-29)

Where gij is a scalar weight, and kij = 1 if an agent i and j are connected, and otherwise
kij = 0.

2-3-2 Formulation of Optimal Controller

The optimal control problem for path following given the spatial error dynamics for the
unicycle is defined in (2-30). The cost function aims at minimizing the path deviation ey,
angle deviation eψ, reference path velocity ṡref and inputs U and ∆U . Each agent within the
formation chooses its path reference velocity based on the consensus algorithm.

min
u

s+Hp∑
k=s
‖eref ;y;i − ey;i,s‖2Q1 + ‖eψ;i,s‖2Q2 + ‖ṡref ;i − ṡi,s‖2Q3 + ‖Uk,s‖2R1 + ‖∆Uk,s‖2R2 (2-30)

The cost function has a prediction horizon of Hp∆s meters where ∆s is the discretization
step size.

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 13

The final controller combining the formation control and tracking control step consists of
multiple parts. First, for a known starting and ending pose x0 and xf a path is generated
using Dubin’s method. This path is computed centrally to ensure each agent within the
formation tracks the same path. Then, using the path and reference velocity each agent
computes its optimal control problem and executes the calculated input. The updated state
is shared with other agents within the formation according to the predefined communication
topology.

Figure 2-8: Control structure for two agents i and j

Figure 2-8 depicts the control structure for two agents i and j. As can be seen, the controllers
for each agent are separate subsystems that both have access to the same path. If agent j is
connect to i, aij = 1 resulting in information flow from agent j to i and an updated formation
keeping velocity. If there is no information flow, aij = 0. Similarly, if agent i is connected to
j, aji = 1 and aji = 0 otherwise.

2-4 Simulation results

Simulations have been performed using the Robot Operating System ROS [22] where every
part of the defined controller is run as a separate software node. Details on the use of ROS
are given in Chapter 3. Two different formations have been simulated consisting of 6 and
12 unicycles respectively. The path generation node, formation controller and unicycle nodes

Master of Science Thesis J.F. de Winkel

14 Distributed Spatial Predictive Formation Control

have all been implemented in Python. For n agents, 2n + 1 software nodes are launched.
Each node is executed as an independent program. The unicycle simulation nodes use a
sampling time of 20 Hz and publish updated poses at the same interval. The control nodes
calculate a new control input at a rate of 10 Hz. Since every node is run separately, these
processes are not synchronized and therefore are not guaranteed to publish control inputs or
poses simultaneously. Python code for the unicycle simulation is found in the Appendix in
Section B-1 and for the controller in Section B-2, B-3, B-4, and B-5. The optimal control
problem is solved using a Sequential Least Squares Programming (SLSQP) [23] algorithm
as implemented in the Python library SciPy [24]. The simulations are run on a PC with
specifications according Table 2-1 and the configuration of the controller parameters is given
in Table 2-2.

Property Value

Processor 4x Intel(R) Xeon(R) CPU E5603 @ 1.60GHz
Memory 4037MB

Graphics card GeForce GTX 580

Table 2-1: Hardware specifications for simulation PC

Parameter Value

Unicycle model sampling interval ∆t 0.05 s
Controller sampling interval 0.1 s
Controller spatial step size ds 0.1 m
Controller prediction horizon Hp 0.5 m
Controller control horizon Hc 0.5 m
Controller reference velocity ṡref 0.2 ms
Controller consensus constant gij 0.3
Control weight path deviation Wey 100
Control weight heading error Weψ 5
Control weight reference velocity Wṡ 2
Control weight input change Wdu 1
Input linear velocity bounds vmin 0.01 m/s
Input linear velocity bounds vmax 1 m/s
Input angular velocity bounds wmin -0.5 rad/s
Input angular velocity bounds wmax 0.5 rad/s

Table 2-2: Controller and model parameters used in simulation

2-4-1 Formation of 6 agents

The first formation experiment contains 6 nodes connected as shown in Figure 2-10. As can
be seen, each node has access to the reference path as is required by the Spatial Predictive
Controller. The relative positions of agents in the formation are defined with respect to the
front agent as given in Table 2-3.

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 15

(a) Formation containing 6 nodes (b) Formation containing 12 nodes

Figure 2-9: Graphic depiction of formation control simulations

Parameter Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Relative path distance ∆s 0 m -0.25 m -0.50 m -1 m -0.75 m -0.5 m
Path center offset ey 0 m -0.1 m -0.1 m 0 m 0.1 m 0.1 m

Table 2-3: Formation definition

Figure 2-10: Connected, undirected graph for 6 agents

Master of Science Thesis J.F. de Winkel

16 Distributed Spatial Predictive Formation Control

Figure 2-11 shows how the formation progresses along Dubin’s path. Since the formation
definition is not rigid, the formation deforms in curved path parts.

−1.0 −0.5 0.0 0.5 1.0 1.5
x [m]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

y
[m

]

Reference Path 1
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

Figure 2-11: Movement of the formation in the x-y plane

Figures 2-12a and 2-12b provide the path and heading angle deviation for each agent respec-
tively. As the formation starts moving at t = 4 the path error ey can be seen to fluctuate for
each agent around its reference value. For the path heading error the same can be stated,
the reference being zero. Both values do not fully converge to zero. This problem is twofold.
First, the optimal controller balances between tracking a given reference velocity, path head-
ing error, path deviation and input size. The rate of convergence for each of these states
can be influenced using the controller weights. For instance, increasing the weight on path
deviation error might improve convergence but it would at the same time increase the heading
angle error as the agent will have to change its heading angle more to reach the right offset.
The controller weights for each state can further tuned to decrease the error seen in this sim-
ulation. Second, both the controller and model are implemented as separate software nodes
that synchronized and run at different sampling times. Therefore, the model will not perfectly
perform as simulated in the optimal controller. This mismatch is also reflected in these val-
ues. The maximum measured position error in this experiment with the given configuration
is 1.099 cm and the maximum angle error 5.3◦. Figures 2-13a and 2-13b show the linear and
angular velocities as calculated by the controller and executed by the model. When Dubin’s

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 17

0 5 10 15 20 25
t [s]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
ey

 [
m

]

Agent 1
Agent 2

Agent 3
Agent 4

Agent 5
Agent 6

(a) Path center deviation ey

0 5 10 15 20 25
t [s]

−0.05

0.00

0.05

0.10

0.15

ep
si

 [r
ad

]

Agent 1
Agent 2

Agent 3
Agent 4

Agent 5
Agent 6

(b) Heading angle deviation eψ

Figure 2-12: Path tracking offsets

Master of Science Thesis J.F. de Winkel

18 Distributed Spatial Predictive Formation Control

path is first sent to each agent, movement per agent is not initialized simultaneously. This
introduces jitter at the start of the experiment as the reference velocity update algorithm
produces fluctuating values for each agent. At (t = 5 when the formation enters the first
curved path section this disturbance has been resolved and the formation is formed. Also
it can be seen that the computed linear velocity is higher for agents that drive on the outer
part of a curve and lower for agents that drive on the inner part of a curve. Figure 2-14 gives
an overview of the formation keeping errors between the front agent 1 and agents 5-6. The
maximum formation keeping error was measured to be 8 cm. As can be seen the formation
keeping error fluctuates at the same instances the heading angle and path deviation values
fluctuate which is when switching from a straight to curved path section and vice versa.

0 5 10 15 20 25
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

s
[m

]

s2 - s1
s3 - s1

s4 - s1
s5 - s1

s6 - s1

Figure 2-14: Formation keeping errors with respect to front agent

2-4-2 Formation of 12 agents

The simulation experiment using 6 agent is repeated with 12 to demonstrate the scalability
of the developed control algorithm. Figure 2-15 depicts the connectivity graph and Table 2-4
provides the formation configuration.

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 19

0 5 10 15 20 25
t [s]

0.0

0.1

0.2

0.3

0.4

0.5
v

[m
/s

]
Agent 1
Agent 2

Agent 3
Agent 4

Agent 5
Agent 6

(a) Linear velocities v

0 5 10 15 20 25
t [s]

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

w
 [r

ad
/s

]

Agent 1
Agent 2

Agent 3
Agent 4

Agent 5
Agent 6

(b) Angular velocities w

Figure 2-13: Agent velocities

Master of Science Thesis J.F. de Winkel

20 Distributed Spatial Predictive Formation Control

Parameter Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Relative path distance ∆s 0 m 0 m -0.5 m -0.5 m -1 m -1 m
Path center offset ey -0.08 m 0.08 m 0.08 m -0.08 m -0.08 m 0.08 m

Parameter Agent 7 Agent 8 Agent 9 Agent 10 Agent 11 Agent 12

Relative path distance ∆s 0 m 0 m -0.5 m -0.5 m -1 m -1 m
Path center offset ey -0.2 m 0.2 m -0.2 m 0.2 m -0.2 m 0.2 m

Table 2-4: Formation definition

Figure 2-15: Connected, undirected graph for 12 agents

Studying Figure 2-16 it can be seen that the formation tracks the path accurately. The
maximum path deviation error is found during the initialization of the experiment at t =
5 for agent 1 with a value of 14 cm. This offset is resolved at t = 12 as the formation
progresses normally. This initialization error occurs due to the number of processes that are
run simultaneously for this experiment. The peak in the path deviation error during the start
of the experiment is also due to initialization as it is the point in time where the controller is
provided Dubin’s path.

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 21

−3 −2 −1 0 1
x [m]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
[m

]

Figure 2-16: Movement of the formation in the x-y plane

Master of Science Thesis J.F. de Winkel

22 Distributed Spatial Predictive Formation Control

0 5 10 15 20 25
t [s]

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ey
 [

m
]

Agent 1
Agent 2
Agent 3

Agent 4
Agent 5
Agent 6

Agent 7
Agent 8
Agent 9

Agent 10
Agent 11
Agent 12

(a) Path center deviation ey

0 5 10 15 20 25
t [s]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

ep
si

 [r
ad

]

Agent 1
Agent 2
Agent 3

Agent 4
Agent 5
Agent 6

Agent 7
Agent 8
Agent 9

Agent 10
Agent 11
Agent 12

(b) Heading angle deviation eψ

Figure 2-17: Path tracking offsets

J.F. de Winkel Master of Science Thesis

2-4 Simulation results 23

0 5 10 15 20 25
t [s]

0.0

0.1

0.2

0.3

0.4

0.5
v

[m
/s

]

Agent 1
Agent 2
Agent 3

Agent 4
Agent 5
Agent 6

Agent 7
Agent 8
Agent 9

Agent 10
Agent 11
Agent 12

(a) Linear velocities v

0 5 10 15 20 25
t [s]

−1.0

−0.5

0.0

0.5

1.0

w
 [r

ad
/s

]

Agent 1
Agent 2
Agent 3

Agent 4
Agent 5
Agent 6

Agent 7
Agent 8
Agent 9

Agent 10
Agent 11
Agent 12

(b) Angular velocities w

Figure 2-18: Agent velocities

Master of Science Thesis J.F. de Winkel

24 Distributed Spatial Predictive Formation Control

0 5 10 15 20 25
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

s
[m

]

s1 - s3
s1 - s3
s1 - s4

s1 - s5
s1 - s6
s1 - s7

s1 - s8
s1 - s9
s1 - s10

s1 - s11
s1 - s12

Figure 2-19: Formation keeping errors with respect to front agent

The maximum formation keeping error that occurs in Figure 2-19 is 19.9 cm which is more
than double the maximum error during the experiment with 6 agents. The main reason for
bigger offset can be found in the angular velocity, Figure 2-18b, which is satured at w = −0.5
during curved sections of the path for agents at the outside of the curve. Comparing this
formation to the previous it can be seen that the path center deviation for the outer agents is
double. This larger turning radius requires angular velocity higher than allowed, leading to
saturation. As long as this saturation occurs, the formation keeping error grows. This shows
that when selecting a formation, the path offset should be chosen such that at a desired
reference velocity the input should not saturate.

2-5 Summary

In this chapter a distributed formation controller was developed by combining a consensus
approach with the Spatial Predictive Control method. The resulting controller is able to
achieve and maintain a formation of unicycle type robots whilst tracking a reference path
within certain error bounds. The resulting controller implementation is scalable to any num-
ber of nodes as the controller does not have to run centrally and does not need access to
position information of all agents.

J.F. de Winkel Master of Science Thesis

Chapter 3

Development of the Networked
Embedded Robotics Lab

The goal of the Networked Embedded Robotics Lab is to provide an easy-to-use and reliable
setup promoting code reusability to make sure a student’s work can be adopted by others. This
chapter focuses on the software and hardware infrastructure necessary to achieve this. First
an overview of robotic middleware, software libraries that contain often used functionality, will
be given. Then details are provided on the implemented hardware and software infrastructure,
the available robotics platforms. Last, examples are given for experiment interaction based
on the lab infrastructure.

3-1 Robotic Middleware

As mentioned in the research objectives, an important feature of the lab’s software infras-
tructure should be usability and re-usability. This involves using standardized libraries and
modular frameworks. These libraries and frameworks come in the form of robotic middleware.
Some of this middleware focuses on providing optimized and generalized methods for tasks
like state estimation whilst others focus more modularity through standardized messaging
protocols. Functionality of robotic middleware can be listed as follows [25]:

• Simplification of the development process.

• Support communications and interoperability.

• Provide efficient utilization of available resources.

• Provide heterogeneity abstractions.

• Support integration with other systems.

• Offer often-needed robot services.

Master of Science Thesis J.F. de Winkel

26 Development of the Networked Embedded Robotics Lab

• Provide automatic resource discovery and configuration.

As many robotic middleware frameworks are available, this section will be limited to some of
the most used frameworks. A more detailed overview is given in appendix A.

Robot Operating System (ROS) is as at the time of writing the most widely accepted robotic
middleware in the academic world. It is an open source project for distributed robotics
maintained and first released in 2007 by Willow Garage [22]. Its goal is to simplify the
complex process of developing robotic software. ROS does this by providing users the tools
to separate large software projects into multiple smaller programs, called nodes, that can
be developed and run separately. For separation of software into smaller nodes, ROS uses
the publish/subscribe model. With the publish/subscribe interaction scheme, subscribers
register their interest in an event and are subsequently asynchronously notified of events
generated by publishers. Figure 3-1 provides an example of a typical distribution of nodes
for the control of a robotic platform. The platformś driver exchanges information with the
physical hardware. This implies setting control commands and reading sensor information. A
simple ROS driver for a platform would publish sensor information to other nodes and would
subscribe to generate control commands and send these to the physical hardware. A state
estimation node would process sensor information and a controller node would use these to
generate control commands. As can been seen, nodes communicate directly with each other
though the register to a central node called the roscore. This is a node that keeps track of all
other nodes running within the ROS ecosystem and allows them to find each other.

Figure 3-1: Simplified depiction of software separation in nodes

Figure 3-1 displays a simplified situation and in general, more software nodes are used. The
main benefit of this publish-subscribe model is re-usability. By standardizing the information
type that is shared between nodes such as state estimators, it becomes trivial to re-purpose
them for new projects without any programming. By letting students in the Networked
Embedded Robotics Lab uses this programming paradigm, all developed software will be
highly modular. This modularity allows students to develop software to can be re-purposed
or improved upon with less effort that it would normally as they can focus solely on the
nodes that are important to their research. On top of the publish-subscribe model, ROS
also supplies multiple tools for use in experiments such as a 3D visualization tool called
RViz.Due to ROS’s popularity software nodes for many types of applications and robotic

J.F. de Winkel Master of Science Thesis

3-1 Robotic Middleware 27

platforms are available and shared among researchers. Examples of implementations such as
collision avoidance methods in [26] using quad-rotors or indoor navigation in [27] or outdoor
autonomous quad-copter swarms using GPS in [28] are widely available.

Orocos, Open Robot Control Software, is a collection of C++ libraries for kinematics, dy-
namics and filtering. It can be used as a standalone package but is also used as a basis for
other robotic middleware[29]. It was first introduced in 2001 by the University of Leuven [30].
It’s released under the LGPL, lesser GPL, license. Examples of applications are autonomous
cars, compliant motion task specification, visual servoing and 3D motion tracking. Orocos
consists of three main features: a Bayesian filtering library, a kinematics and dynamics li-
brary and the Orocos toolchain. Orocos uses C for real-time development, C++ for higher
lever algorithms, XML for configuration purposes, Modelica for modeling and CORBA [31]
for communication between software components. The Bayesian filtering library [32] provides
methods such as (extended) Kalman filters and Particle filters. The kinematics and dynam-
ics library (KDL) provides methods for modeling and controlling kinematic chains found in
complex multilink robotics. Motion can be defined by convenient geometrical objects and
coordinates can be easily be converted between coordinate reference frames. In [33] the KDL
library is used to derive Jacobians for two robotics arms and let them perform a cooperative
task with several constraints as well as keeping track of people in the vicinity. The Orocos
toolchain is a tool to design real-time applications using a modular approach. It also provides
extensions to other robotics frameworks such as ROS, Rock and Yarp which will be covered
later. The most interesting component is the Real-Time Toolkit (RTT). The RTT provides
OS abstraction, scripting tools and communication tools with a focus on real-time behavior
allowing for lock-free data exchange. In [34] Orocos is used to design a real-time controller
for a robotic manipulator.

The Player project is a robot simulation suite, allowing to move simulated as well as real
robots through a virtual environment. It is one of the first major robotic middleware frame-
works and on of the most used. There is support for a large number of robots and it is a
popular software suite. Development started at the University of Southern California and
was released on Source Forge in 2001 under the GPL license [35, 36]. Player is, in essence, a
very minimal robotic framework. It provides a communication method between several com-
ponents of a complex software system. Components such as actuators, sensors and robots are
all clients in Player where Player itself acts as a server to all communication needs. Clients
can be written in virtually any software environment that allows the use of TCP sockets and
can be as complex or easy as desired. A distinction can be made between drivers, communi-
cating with hardware directly providing specific code for a specific robot base or sensor and
interfaces which process driver data. The device driver might, for instance, provide simplified
information such as a robot’s position or a distance measurement from a sensor while a client
can use this data to perform operations. Drivers could also be virtual for simulation purposes
[36]. By making this separation interface code can remain unchanged when swapping hard-
ware. A large set of robotic platforms and sensors is supported within the Player project.
With the release of Player 2.0 several improvements have been made [37]. Communication
can now be performed using CORBA, JINI and shared memory on top of using TCP and uses
a queue-based communication system for each Player driver. Also originating from Player
are Stage and Gazebo which are 2D and 3D simulation environments respectively. They can
interact with Player or other frameworks (such as ROS) and be used to simulate experiments
as well as visualize and control real robotic agents. It is also possible to combine virtual

Master of Science Thesis J.F. de Winkel

28 Development of the Networked Embedded Robotics Lab

agents with real agents for instance letting a user control a virtual leader robot which real
robots follow.

Due to the widespread use of ROS, it has been chosen as the primary framework on which
this lab is built. ROS support is available for all components in the lab. In this section, all
used software and code that is used will be referenced. As new versions of ROS are released
often, ROS Indigo [38] has been chosen as at the time of writing it is the best supported and
recommended version.

3-2 Layout of the Networked Embedded Robotics Lab

The networked embedded robotics lab was constructed within an area of 4300mm wide,
9500mm deep and 3600mm high. Just outside this area, desks with multiple PCs and control
hardware were placed.

Figure 3-2: View of the lab area with desks and PCs

Around the perimeter of the ceiling, a camera system for robot tracking needed to be mounted
and a design was made as seen in Figure 3-3. A metal gutter, as often used in stores, was
chosen and implemented as shown in Figure 3-4. This type of gutter is wide and allows the
transport of cables as well as mounting the cameras and several other peripherals.

J.F. de Winkel Master of Science Thesis

3-2 Layout of the Networked Embedded Robotics Lab 29

Figure 3-3: Design of camera placement in gutter

Figure 3-4: Gutter around the lab perimeter with mounted cameras

Finally, since the lab environment is to be used for aerial robots, a safety net needed to be
installed. To this end, rails were installed on the bottom of the metal gutter, to supported
a net that can be easily deployed and removed. Figure 3-5 shows the net within the lab
environment. The net is made from two parts that can be attached to each other using
velcro.

Master of Science Thesis J.F. de Winkel

30 Development of the Networked Embedded Robotics Lab

Figure 3-5: Deployable safety net for drones

3-3 Currently available robots

The Networked Embedded Robotics Lab currently provides five different robotics platforms
for experimental use ranging from ground based to aerial platforms. This section provides a
short description of each of these platforms and the methods used to control them.

3-3-1 Create

The lab setup hosts mobile as well as aerial robotic platforms, but this thesis work focuses
on the Create [39] by iRobot, a variant of the popular Roomba, platform. The Create is a
programmable differential drive robot. For localization purposes, it uses rotary encoders on
the wheels and has an IMU onboard. Furthermore, it has a front bumper that serves as a
tactile sensor allowing for very basic mapping. Lastly, it has an IR detector on the front that
can detect virtual IR walls.

On top of the Creates, a small laptop (netbook) is mounted, which can be used to run control
algorithms, and two Cricket sensors by MIT [42] for self-localization. Cricket sensors employ
RF and ultrasonic communication to determine the distance between two or more units. It
first sends an RF signal to other units indicating that it will send an ultrasonic signal. Units
detecting this will then wait until they receive this ultrasonic signal and determine the time
difference of arrival (TDOA). This translates directly a into distance. Combining the distance
to multiple Crickets with known locations, set up around the perimeter of the lab area, allows
a Create to determine its own location. The Create can be controlled remotely by sending
commands over Wi-Fi to the attached laptop on a custom network to minimize interference.

Controlling the Create is done using the ROS control library for the popular TurtleBot [43],
a commercial robotic platform built on top of a Create which is mounted with a netbook and
camera. This control library accepts velocity inputs in the form of a Twist, six dimensional
velocity vector, and is actively maintained and provides a stable code base to work on [44].

J.F. de Winkel Master of Science Thesis

3-3 Currently available robots 31

(a) The iRobot Create [40] (b) Cricket sensor [41]

(c) iRobot Create with Cricket Sensors and Netbook

Master of Science Thesis J.F. de Winkel

32 Development of the Networked Embedded Robotics Lab

3-3-2 Sphero

The Sphero by Orbotix is a small, rolling robot. The Sphero features a Segway-like robot in
a plastic spherical shell. These robots have various onboard sensors to measure its motion
and collisions. The Sphero has been used in the lab are for Simultaneous Localization and
Mapping (SLAM) experiments [45] to build a map of a rectilinear environment using only
collision detection. Communication with a Sphero is done via Bluetooth. In experiments up
to six Spheros were controllable simultaneously through a single Bluetooth connection.

Figure 3-7: Sphero by Orbotix [3]

The Sphero is used within the lab enviroment with unofficial ROS drivers referenced at the
Orbotix development website [46]. Using this software multiple units can easily be connected
and controlled using velocity input commands similar to the TurtleBot drivers.

3-3-3 Hovercraft

Hovercrafts are interesting platforms for transportation as they can cover both ground and
water. In the Networked Embedded Robotics lab, research is done towards the control of
a formation of low-cost hovercraft platforms in order to collaborate in the transportation of
large materials. The model available in the lab is produced by Ikarus. Originally these units
are controlled through RF, but these units have been outfitted with Arduinos with Wi-Fi
communication. Software has been developed to control them via through TCP/IP, allowing
control through ROS and Matlab. Experiments have been conducted in waypoint tracking
for the hovercraft.

J.F. de Winkel Master of Science Thesis

3-3 Currently available robots 33

Figure 3-8: Hovercraft

3-3-4 Parrot AR

Parrot AR Drones are popular low-cost drones available in the lab. These drones provide an
interesting platform to simulate various space type scenarios. The Parrot AR Drone creates
a custom Wi-Fi network which can be connected to for remote control. Extra Wi-Fi adapters
are available in the lab area to connect to these drones. Previous research with these platforms
has been done in controlling the position of a slung mass [47].

Figure 3-9: Parrot AR Drone 2.0 [4]

In order to safely perform experiments with drones, deployable nets have been installed to
prevent drones leaving the lab area.

Master of Science Thesis J.F. de Winkel

34 Development of the Networked Embedded Robotics Lab

Figure 3-10: Net deployed in front of PCs

3-3-5 Matrice DJI 100

The DJI Matrice is a more heavy duty drone than the Parrot. This drone provides stable
flight and its functionality can be extended by adding more sensors. The platform is new to
the lab and has not yet been used in practical experiments.

Figure 3-11: Matrice DJI 100 [5]

3-4 Localization hardware

An IR camera system by OptiTrack will be used [48]. A total of 16 Flex 13 camera’s will
be available for external localization. This will allow experimental validation of localization
algorithms or for control of robots which cannot perform self-localization. The camera system

J.F. de Winkel Master of Science Thesis

3-5 Laboratory architecture 35

Figure 3-12: OptiHub [6]

will be connected to a PC by 3 OptiTrack hubs. This PC will run only the software needed
for this camera system.

Figure 3-14 shows an overview of the interconnected components.

Figure 3-13: Motive tracking software [7]

3-5 Laboratory architecture

The previously mentioned platforms are all tied together through a single architecture pro-
viding communication methods, localization options and control options. In Figure 3-14 the
complete hardware setup is shown. As can be seen, the Optitrack Cameras are connected
to a dedicated Windows PC running the OptiTrack software, Motive, to gather and stream
agent poses to all machines in the network. This is done via the OptiTrack, VRPN, or Trackd
streaming protocols. This data is collected on the ROS Host PC where a ROS node, mo-
cap_optitrack, converts it into a ROS topic for each separate agent. From the ROS host
PC communication is established over ROS to each Netbook where a driver is running for

Master of Science Thesis J.F. de Winkel

36 Development of the Networked Embedded Robotics Lab

Figure 3-14: Proposed hardware setup for the lab

basic velocity tracking on the Create. Attached to the Netbook, as seen in figure 3-6c, are
two Cricket sensors. These sensors communicate to Crickets installed around the perimeter
of the lab for an alternate localization option to the Optitrack system. Figure 3-3 shows an
example of the cameras and Crickets installed around the perimeter of the lab. Since both the
netbook and host PC run ROS, it is required to synchronize their clocks. For this, Chrony
[49] is recommended by ROS. The host PC is configured as an NTP server and the Netbooks
synchronize their time.

3-6 Development options

ROS provides several choices in term of programming languages and development software.
By default, the ROS library supports development in C++ and Python. For students that
wish to use C++, Eclipse and CodeBlocks have been pre-installed. For students that prefer
Python, Spyder has been installed. As of Matlab 2015b, ROS is also natively supported
with the Matlab Robotics Toolbox. This toolbox provides all ROS functionality. Matlab can
be used to create a ROScore and publish or subscribe to running ROS nodes. This allows
students who do not wish to deviate from Matlab to seamlessly integrate their software with
all previous developments.

If experiments are still in the simulation stage, students can make use two different software
packages. First ROS provides the RViz package which is able to render markers and simple
shapes to show the state or pose of a robot. Second, the popular Gazebo is installed, a
graphical simulator complete with physics simulation. For different robotic platforms, models
can be found online and run within Gazebo. Gazebo then exposes ROS topics that can be

J.F. de Winkel Master of Science Thesis

3-7 Experiment interaction 37

Figure 3-15: Proposed software setup for the lab

hooked into in order to create a simulation of an experiment with using the actual robotic
platform or building a custom simulator. If the experiment works, it can be ported to the
actual platform just by running the driver node of the robot itself rather than Gazebo.

3-7 Experiment interaction

The DCSC Networked Embedded Robotics Lab currently provides several methods to interact
with experiments:

• Using a rosnode to calculate and send inputs directly to a controller.

• By using the rosbridge_server [50] package and sending input commands through web-
sockets.

• By interfacing rosjoynode and using a game controller te remotely control experiments.
A demo has been built by building a small software node that takes input from the
joynode topic and sends velocity commands to the sphero cmd_vel topic.

Master of Science Thesis J.F. de Winkel

38 Development of the Networked Embedded Robotics Lab

Figure 3-16: Logitech Gamepad for remote control of agents

3-8 Web-based interactive manual

Since the rosbridge_server package provides web socket access to all software nodes running in
ROS, it is possible to not only create interactive experiments, but also an interactive manual
or guide to working with the lab setup. An initial version of this has been created for the
current lab setup. A web server has been installed on the ROS host PC running Nginx as
a web server configured with PHP. Using a popular PHP web framework called CodeIgniter
a simple website has been developed showcasing some of the platforms available in the lab
and some interactive guides have been built to start working with the lab setup. These
guides include a basic tracking control experiment with a single Create, a formation control
experiment with multiple Creates and a demo experiment to work with the Sphero. Each
experiment goes through the commands in Linux needed to open a terminal, starting a roscore
and launching an experiment. Students are then expected to investigate the working of these
files as to be able to create their own versions of other experiments and to get acquainted
with ROS.

J.F. de Winkel Master of Science Thesis

3-8 Web-based interactive manual 39

Figure 3-17: Starting page of the interactive lab website

Figure 3-18: Example of an interactive experiment page for tracking control

Master of Science Thesis J.F. de Winkel

40 Development of the Networked Embedded Robotics Lab

J.F. de Winkel Master of Science Thesis

Chapter 4

Experimental demonstration of
Distributed Spatial Predictive

Formation Control

4-1 Implementation aspects

The algorithm as described in Chapter 2 is implemented as a series of ROS nodes, all written
in Python. For basic control of linear and angular velocity of the Create, the ROS drivers
for the Turtlebot have been used. The Turtlebot is an often used robotic platform used
with ROS based on an iRobot Create, a netbook and Kinect camera by Microsoft. With
the exception of the Kinect, this solution is very similar to the implementation as used in
the Networked Embedded Robotics Lab. On the ROS host PC, a roscore node is active, the
mocap_optitrack node to distrbute agent’s poses over ROS and a rosbridge_server node for
web control. Based on the Dubin’s path generator developed [51] for Python, a lightweight
central path planner node has been developed that takes a goal pose for the formation of
Creates from the web control panel and computes a path which is submitted to control nodes
running on the netbooks for each Create respectively. These control nodes take the current
pose of their Create from mocap_optitrack and convert it to a spatial pose by finding the
closest point on the path computed by the central planner. This spatial pose is given to other
controllers connected on the graph and is used for the optimization routine. A complete
overview of the software nodes is generate by using the rqt_graph package and can be seen
in Figure 4-1.

Master of Science Thesis J.F. de Winkel

42 Experimental demonstration of Distributed Spatial Predictive Formation Control

Figure 4-1: ROS node graph for distributed formation control experiment

Parameter Value

Unicycle model sampling interval ∆t 0.05 s
Controller sampling interval 0.1 s
Controller spatial step size ds 0.1 m
Controller prediction horizon Hp 0.5 m
Controller control horizon Hc 0.5 m
Controller reference velocity ṡref 0.2 ms
Controller consensus constant gij 0.3
Control weight path deviation Wey 100
Control weight heading error Weψ 5
Control weight reference velocity Wṡ 2
Control weight input change Wdu 1
Input linear velocity bounds vmin 0.01 m/s
Input linear velocity bounds vmax 1 m/s
Input angular velocity bounds wmin -0.5 rad/s
Input angular velocity bounds wmax 0.5 rad/s

Table 4-1: Controller and model parameters used in simulation

J.F. de Winkel Master of Science Thesis

4-1 Implementation aspects 43

4-1-1 Latency analysis

An important aspect in the practical implementation of this experiment is the measurement of
communication delay or latency between different software nodes and hardware. High latency
can severely limit performance if not accounted for. Reviewing Figure 4-1 there are several
nodes that require information from other nodes, all these transitions introduce communica-
tion delay to the experiment either due to network latency due to communication between
devices or internal latency due to the overhead of communication through ROS. Figure 4-2
shows a histogram for latency due to ROS measured on a local system. Figure 4-3 provides the
same measurement but between ROS nodes on different devices within the network. These
measurements provide a basis for the analysis of total latency within this experiment. The
latency between nodes on the same or on different devices on the network was measured by
sending a ROS message from one node to another, bouncing it back, and measuring the time
the two-way communication took. The latency for one-way communication is estimated to
be half that time.

The latency introduced by separating ROS nodes can be seen to be approximately 1 ms and
the latency from ROS node on another device within the network was measured to be 4 ms. In
contrast, the controller in this experiment employs a sampling time of 100ms. The maximum
measured latency values however were 11.55 ms and 73.3 ms respectively. These values are
likely caused by the fact the ROS is not a real-time framework. If real-time performance is
required, it is based to allocate all critical real-time code in a single software node.

0 2 4 6 8 10 12
latency [ms]

0

50

100

150

200

sa
m

p
le

s
[-

]

Figure 4-2: Local latency measured with 197 samples

Master of Science Thesis J.F. de Winkel

44 Experimental demonstration of Distributed Spatial Predictive Formation Control

0 10 20 30 40 50 60 70 80
latency [ms]

0

10

20

30

40

50

60

sa
m

p
le

s
[-

]

Figure 4-3: Network latency measured with 61 samples

4-2 Experimental results

In the practical experiment a triangular formation of three Creates has been tested using the
Spatial Predictive controller. The formation controller was tested under normal conditions
and under the condition of agent failure. The connectivity graph for these experiments is
given in Figure 4-4

Figure 4-4: Connected, undirected graph for 3 agents

J.F. de Winkel Master of Science Thesis

4-2 Experimental results 45

4-2-1 Formation of 3 agents

The triangular formation features three Creates. One agent moves along the path center while
the two others keep a distance of ∆ey = ±0.25m of the center and stay ∆s = 0.6m behind
the front vehicle. The Creates communicate on a fully connected graph. As can be seen in
Figure 4-6a the maximum path distance error is 7cm which is consistent with the simulations.
the maximum distance keeping error is found to be 6.48 cm. For reference, the Create has a
body diameter of 33.8 cm.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x [m]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
[m

]

Reference Path 1
Agent 1
Agent 2
Agent 3

Figure 4-5: Movement of the formation in the x-y plane

Master of Science Thesis J.F. de Winkel

46 Experimental demonstration of Distributed Spatial Predictive Formation Control

0 5 10 15 20 25
t [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
ey

 [
m

]
Agent 1 Agent 2 Agent 3

(a) Path center deviation ey

0 5 10 15 20 25
t [s]

−0.2

−0.1

0.0

0.1

0.2

ep
si

 [r
ad

]

Agent 1 Agent 2 Agent 3

(b) Heading angle deviation eψ

Figure 4-6: Path tracking offsets

J.F. de Winkel Master of Science Thesis

4-2 Experimental results 47

0 5 10 15 20 25
t [s]

0.0

0.1

0.2

0.3

0.4

0.5
v

[m
/s

]
Create 1 Create 2 Create 3

(a) Linear velocities v

0 5 10 15 20 25
t [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

w
 [r

ad
/s

]

Create 1 Create 2 Create 3

(b) Angular velocities w

Figure 4-7: Agent velocities

Master of Science Thesis J.F. de Winkel

48 Experimental demonstration of Distributed Spatial Predictive Formation Control

0 5 10 15 20 25
t [s]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

s
[m

]

s2 - s1 s3 - s1

Figure 4-8: Formation keeping errors with respect to front agent

J.F. de Winkel Master of Science Thesis

4-2 Experimental results 49

4-2-2 Agent failure

When an agent in the formation fails, the consensus algorithm will try to update the path
reference velocity for each connected vehicle such that is slows down, waiting for the vehicle.
The same triangular formation as before is considered here, but a certain point it is stopped.
Figure 4-9 shows that agent 3 is stopped for a short period halfway the path.

−1.0 −0.5 0.0 0.5 1.0 1.5
x [m]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

y
[m

]

Reference Path 1
Agent 1
Agent 2
Agent 3

Figure 4-9: Movement of the formation in the x-y plane

At t = 14 the effect of stopping agent 3 can be seen in the calculated linear input velocities
in Figure 4-11a. As soon the vehicle stops, the controller tries to accelerate it in an attempt
to keep up with the other agents. The other agents can be seen to slow down, waiting for the
other vehicle. At t = 22 the agent is allowed to continue and it quickly rejoins the formation.

Master of Science Thesis J.F. de Winkel

50 Experimental demonstration of Distributed Spatial Predictive Formation Control

0 5 10 15 20 25 30
t [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
ey

 [
m

]
Agent 1 Agent 2 Agent 3

(a) Path center deviation ey

0 5 10 15 20 25 30
t [s]

−0.2

−0.1

0.0

0.1

0.2

ep
si

 [r
ad

]

Agent 1 Agent 2 Agent 3

(b) Heading angle deviation eψ

Figure 4-10: Path tracking offsets

J.F. de Winkel Master of Science Thesis

4-2 Experimental results 51

0 5 10 15 20 25 30
t [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
v

[m
/s

]
Create 1 Create 2 Create 3

(a) Linear velocities v

0 5 10 15 20 25 30
t [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

w
 [r

ad
/s

]

Create 1 Create 2 Create 3

(b) Angular velocities w

Figure 4-11: Agent velocities

Master of Science Thesis J.F. de Winkel

52 Experimental demonstration of Distributed Spatial Predictive Formation Control

0 5 10 15 20 25 30
t [s]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

s
[m

]

s2 - s1 s3 - s1

Figure 4-12: Formation keeping errors with respect to front agent

4-2-3 Evaluation

The Spatial Predictive Formation Controller converges the group agents to the desired forma-
tion in both simulation and practical experiment, even when confronted with vehicle failure.
Within the formations, however, as can been seen in Figures 4-5 and 4-9 offsets, within
bounds, are present due to noise and modeling errors. These errors are present due to several
reason:

• Controller tuning: As this thesis work focused on experimental validation of the Spa-
tial Predictive Control method as a formation controller, no specific performance goals
were formulated. To this end, the controller has not been tuned towards optimal perfor-
mance and can still be improved. This implies adjusting the prediction horizon, spatial
discretization step size, and state weights. Choosing the right weight can drastically
improve performance.

• Modeling errors: The ideal unicycle model is a simple kinematic model and assumes
frictionless motion and direct achievement of input velocities. Although the Creates
behave very well according to this ideal unicycle model, unmodeled dynamics remain.
These dynamics differ for each agent due to the level of wear of its components. Propa-
gating this modeling error through the spatial predictive controller increases the error.

J.F. de Winkel Master of Science Thesis

4-2 Experimental results 53

• Timing issues: Each controller and model used in the simulation and experiment
runs as a separate process and processes are therefore not publishing their information
synchronously. This implies the time between calculating and executing a control input
can come close to twice controllers sampling time of 10 Hz. On top of that, latency,
although measured, has not been implemented in the current controller which can also
increase errors.

• Camera noise: Although the OptiTrack cameras have millimeter precision, in some
areas the tracking performance can deteriorate due to infrared noise and insufficient
camera coverage. This will result in jitter in the reported agent pose which will propa-
gate into the controller as well as consensus algorithm. This problem is well visualised
in the agent heading angle errors in Figure 4-6b and 4-10b.

Master of Science Thesis J.F. de Winkel

54 Experimental demonstration of Distributed Spatial Predictive Formation Control

J.F. de Winkel Master of Science Thesis

Chapter 5

Conclusions

The goal of this thesis was to develop a robotics lab capable of state-of-the-art robotics
experiments. As a validation of the lab, a novel distributed formation control algorithm was
developed implemented. This chapter provides a summary of the contributions that have
been made and concludes with recommendations for future developments.

5-1 Summary on Spatial Predictive Formation Control

Spatial Predictive Control is a novel path tracking method that uses a conversion from time-
dependent dynamics to spatial-dependent dynamics to generate path tracking inputs in a time-
independent manner. These spatial dynamics express an agents position in terms of traveled
path length and path offset. A Model Predictive Control structure is implemented to minimize
path deviation whilst traveling along the path with a given reference velocity. To convert this
method to a distributed formation control algorithm, consensus algorithms were introduced to
analyze the flow of information between multiple agents in a distributed formation. Defining
a formation keeping constraint between agents in terms of difference in traveled path length
allowed for the choice of a simple consensus controller that updates the reference velocity along
the path based on traveled path length only. The Model Predictive Controller using spatial-
dependent dynamics is then used to track this reference velocity accurately. The resulting
controller has been implemented and shown to work in both simulation and practice.

5-2 Summary on laboratory development

The development work performed on the laboratory resulted in a flexible and reliable setup
with interesting features such as web based control. The hardware infrastructure of the
Networked Embedded Robotics Lab features support for five different, three ground and two
aerial, robotics platform using different connection protocols. For localization purposes when
performing any experiment using these mobile platforms, a tracking system by Optitrack has

Master of Science Thesis J.F. de Winkel

56 Conclusions

been installed and configured. All these components are connected through multiple PCs and
a custom network. To provide students easy access to all of the hardware components in this
laboratory, Robot Operating System (ROS) has been implemented. ROS is a state-of-the-art
robotics libraries that provides the tools to separate complex robotics software into several
smaller nodes. ROS’s widespread acceptance and use imply that for virtually any robotics
function, a software node is available. This allows students to easily use software nodes
developed by other researchers or programmers and focus on the control algorithm they wish
to develop. As an example of this, the implementation of the Spatial Predictive Formation
controller was fully built in ROS on top of community built software nodes that connected to
localization system and provided drivers for the used robotics platforms.

5-3 Recommendations on future developments

• An initial start has been made with the implementation of all robotic platforms available
in the lab on ROS. Though fully functional for the Create and Sphero, work still has
to be done on integration of the Parrot AR, hovercraft and Matrice DJI in the default
ROS workflow. On top of this, more code examples can be developed to accommodate
students in getting started in the lab.

• Within the formation of the optimal control problem the reference path tracking velocity
is static at each evaluation and updated outside of the control loop through a consensus
step. This means that the distance between agents, and therefore required reference
keeping velocity, would remain fixed while moving along the path, or at least within
the evaluation of the optimal control problem. Assuming agents in the formation will
always make choose the optimal reference velocity, the position of other agents on the
graph can be updated within the optimal control problem thereby creating a better
estimate of the required reference keeping velocity at different positions along the path.
This can create smoother velocity profiles and minimize chatter due to the consensus
method. An example of this method is already given in the experiment description but
not yet implemented.

• Currently a kinematic unicycle model is employed for the iCreates but this does not
perfectly describe their dynamics. This effect is worsened by wear of the platforms and
is different for each iCreate. As a model predictive control structure is used, a good
model is a necessity. To achieve better results, a dynamic model should be implemented
and identified for each iCreate. This model could be implemented by either changing the
spatial predictive algorithm or could be implemented as a separate low-level controller
that uses the Spatial Predictive Controller as a high-level planner.

• The developed controller was not tuned for optimal performance as no specific per-
formance criteria were set. This was by choice, as the implementation of the spatial
predictive formation controller was meant for demonstration purposes. Performance of
the controller can be improved by further tuning the weights on the different control
states.

• The velocity updating consensus approach is used outside of the Spatial Predictive
Controller implying that the calculated reference velocity remains constant during the

J.F. de Winkel Master of Science Thesis

5-3 Recommendations on future developments 57

entire control horizon. The consensus equation can be implemented within the Spatial
Predictive Controller by making an assumption on how connected agents will update
their velocity. This will likely result in a smoother calculated control input as the change
in reference velocity while for formation keeping is reflected in the predictive control
step.

Master of Science Thesis J.F. de Winkel

58 Conclusions

J.F. de Winkel Master of Science Thesis

Appendix A

Overview of Robotic Middleware

Master of Science Thesis J.F. de Winkel

60 Overview of Robotic Middleware

Table A-1: Overview of Robotic Middleware Part 1

Features Orocos MRPT URBI CLARAty YARP

Simulation
Environment

No Yes No Yes No

Architecture C++ libraries C++ libraries Scripting lan-
guage

Decision and
function layer

Observer design
pattern

Standards ACE, TAO,
CORBA

None None ACE, TAO,
TCP, UDP

TCP, UDP

Distributed No No Yes Yes Yes
Security No No No Yes No
Fault toler-
ance

No No No Yes No

Real-time Yes Some libraries Yes Yes No
Dynamic
wiring

Yes No Yes Partially Yes

Open Source LGPL BSD GPL and Com-
mercial

Partially LGPL

Platforms Linux + Win-
dows

Linux + Win-
dows

Linux + Win-
dows

Linux Linux + Win-
dows

Table A-2: Overview of Robotic Middleware Part 2

Features MRDS MOOS Player ROS

Simulation
Environment

Yes Yes Stage (2D),
Gazebo (3D)

Rviz

Architecture Component-
based, REST

Publisher /
Subscriber

Client / Server Publisher /
Subscriber

Standards .NET, SOA TCP TCP, UDP RPC

Distributed Yes Yes Yes Yes

Security Yes No Yes No

Fault tolerance No No No Not explicit

Real-time No No No Yes

Dynamic wiring Yes Yes Yes Yes

Open Source No (L)GPL GPL BSD

Platforms Windows Linux & Win-
dows

Linux & Win-
dows

Linux

J.F. de Winkel Master of Science Thesis

61

Table A-3: Overview of Robotic Middleware Part 3

Features CARMEN Webots Rock Fawkes

Simulation Environment 2D Simulator Yes Yes, MARS Not included,
Gazebo can be
used

Architecture 3T hybrid ar-
chitecture

Multiprocess
architecture

Component
based

Component
based

Standards TCP, IPC Open Dynam-
ics Engine

Uses shared
memory

Uses shared
memory

Distributed Yes No No Yes

Security Yes No No No

Fault tolerance Yes No Yes No

Real-time No Yes Yes Yes

Dynamic wiring Yes Yes Yes Yes

Open Source GPL No, commercial GPL GPL

Platforms Linux Linux & Win-
dows

Linux & Win-
dows

Linux

Master of Science Thesis J.F. de Winkel

62 Overview of Robotic Middleware

Table A-4: Properties of robotic middleware [8]

Properties Description

Simulation
environments

Testing software before implementation on an actual robot can speed up de-
velopment considerably and prevent damage in experiments. Whether or not
a framework supports a simulation environment can be an important factor,
especially if expensive hardware is used. Another plus would be if the simula-
tion environment can also be used for user input on actual platforms allowing
combinations of virtual and real robots.

Architectural
approaches

Defines the used programming paradigms. Examples are Client/Server or Pub-
lisher/Subscriber models to separate software in components.

Communication
standards

Several protocols are available for platform independent data exchange, e.g.
CORBA, ICE, ACE and ODE. These protocols can be important when inter-
facing other software or when certain software restrictions are available.

Distributed
environment

This property defines whether software modules run and exchange data on
different machines, allowing for a distributed implementation.

Security In a controlled lab environment, security usually is not an issue. When de-
ploying robots in real applications however or when remote access is required,
communications should be safe. An example could be the support of SSL. For
the distributed robotics lab, this is not a requirement but it is a plus.

Fault toler-
ance

Using a framework in real situations requires a framework to detect and recover
from failures. Some frameworks explicitly incorporate these features whilst
others inherit them from their distributed design.

Real-time
support

Often in robotics real-time support is needed in order to guarantee safety or
stability.

Dynamic
wiring

Dynamic wiring allows connecting software components at runtime. If this
is supported the flow of data can be changed as desired, greatly increasing
usability.

J.F. de Winkel Master of Science Thesis

Appendix B

Code

B-1 Unicycle model

1 #!/usr/bin/env python
2 import rospy
3 import tf
4
5 from numpy . matlib import ∗
6 from scipy . optimize import ∗
7
8 from visualization_msgs . msg import Marker
9 from geometry_msgs . msg import Twist , Pose2D

10
11
12 class Model :
13
14 def __init__ (self) :
15
16 self . x = 0
17 self . y = 0
18 self . psi = 0
19 self . v = 0
20 self . w = 0
21
22 #Create rosnode
23 rospy . init_node (’create_spatial_sim’)
24
25 self . rate = rospy . Rate (20)
26 self . dt = 1/20 .
27
28 #Listen to velocity input
29 self . sub_vel = rospy . Subscriber (’cmd_vel’ , Twist , self . listen)
30 #Publish odometry data

Master of Science Thesis J.F. de Winkel

64 Code

31 self . pub_pose = rospy . Publisher (’ground_pose’ , Pose2D , queue_size
= 1)

32 self . pub_marker = rospy . Publisher (’marker’ , Marker , queue_size =
0)

33
34 #Start control loop
35 rospy . loginfo ("Spatial simulation initialized.")
36 self . move ()
37
38
39 def move (self) :
40
41 msg = Pose2D ()
42
43 while not rospy . is_shutdown () :
44
45 dxdt = (self . v) ∗ cos (self . psi)
46 dydt = (self . v) ∗ sin (self . psi)
47 dpsidt = self . w
48
49 self . x = self . x + dxdt ∗ self . dt
50 self . y = self . y + dydt ∗ self . dt
51 self . psi = self . psi + dpsidt ∗ self . dt
52 self . psi = (self . psi + pi) % (2 ∗ pi) − pi
53
54 msg . x = self . x
55 msg . y = self . y
56 msg . theta = self . psi
57
58 # Publish odometry message
59 self . pub_pose . publish (msg)
60
61 #print "%.2f %.2f %.2f" % (self.x,self.y,self.psi)
62 ellipse = Marker ()
63 ellipse . header . frame_id = "odom"
64 ellipse . header . stamp = rospy . Time . now ()
65 ellipse . type = Marker . CYLINDER
66 ellipse . pose . position . x = self . x
67 ellipse . pose . position . y = self . y
68 ellipse . pose . position . z = 0
69 ellipse . pose . orientation . x = 0 ;
70 ellipse . pose . orientation . y = 0 ;
71 ellipse . pose . orientation . z = 0 ;
72 ellipse . pose . orientation . w = 1 ;
73 ellipse . scale . x = .2
74 ellipse . scale . y = .2
75 ellipse . scale . z = .1
76 ellipse . color . a = 1.0
77 ellipse . color . r = 1.0
78 ellipse . color . g = 1.0
79 ellipse . color . b = 1.0
80
81 # Publish the MarkerArray

J.F. de Winkel Master of Science Thesis

B-2 Objective function implementation 65

82 self . pub_marker . publish (ellipse)
83
84
85 #################
86 self . rate . sleep ()
87
88 def listen (self , twist) :
89 self . v = twist . linear . x
90 self . w = twist . angular . z
91
92
93 if __name__ == ’__main__’ :
94 try :
95 m = Model ()
96 except rospy . ROSInterruptException : pass

B-2 Objective function implementation

1 #!/usr/bin/env python
2 """
3 Created on Fri Apr 1 08:59:50 2016
4
5 @author: Frank de Winkel
6 """
7
8 #Import numpy and scipy within their own namespace
9 import numpy as np

10 import scipy . optimize as sp
11 #from path import ExtendedDubins
12
13 class SpatialController :
14
15 def __init__ (self , Nc=5,Np=5,ds=0.05 , dsdt_ref=0.2 ,Wey=100 ,Wepsi=5,

Wdsdt=2,Wdu=1) :
16 """Initialization of Spatial Predictive Controller class
17 Parameters
18 ----------
19 Nc : int (default = 5)
20 Control horizon
21 Np : int (default = 5)
22 Prediction horizon , cannot be smaller than control horizon
23 ds : float (default = 0.1)
24 Spatial step size
25 dsdt_ref : float (default = 0.25)
26 Reference velocity along path
27 Wey : float (default = 10)
28 Cost function weight on path deviation
29 Wepsi : float (default = 10)
30 Cost function weight on heading angle deviation
31 Wdsdt : float (default = 1)
32 Cost function weight on reference speed deviation
33 Wdu : float (default = 1)

Master of Science Thesis J.F. de Winkel

66 Code

34 Cost function weight on input change
35 """
36
37 self . Nc = max (1 , int (Nc)) #Set control horizon
38 self . Np = max (1 , int (Nc) , int (Np)) #Set prediction horizon
39
40 #Construct bounds
41 self . v_min = 1E−2
42 self . v_max = .5
43 self . w_min = −.5
44 self . w_max = .5
45 self . bounds = []
46 for i in range (0 , self . Nc) :
47 self . bounds . insert (0 , (self . v_min , self . v_max))
48 self . bounds . append ((self . w_min , self . w_max))
49 self . bounds = tuple (self . bounds)
50
51 #Desired offset
52 self . dey = 0
53
54 #Create u0
55 self . u0 = np . concatenate ((np . ones (self . Nc) ∗dsdt_ref , np . zeros (

self . Nc)))
56 self . umin = np . concatenate ((np . ones (self . Nc) ∗self . v_min , np . ones (

self . Nc) ∗self . w_min))
57 self . umax = np . concatenate ((np . ones (self . Nc) ∗self . v_max , np . ones (

self . Nc) ∗self . v_max))
58
59 #Float inputs are divided by 1. to ensure that they are floats
60 self . ds = ds / 1 . #Spatial discretization step
61 self . dsdt_ref = dsdt_ref / 1 . #Reference path velocity
62 self . Wey = Wey / 1 . #Cost function weights
63 self . Wepsi = Wepsi / 1 .
64 self . Wdsdt = Wdsdt / 1 .
65 self . Wdu = Wdu / 1 .
66
67 def cost (self , u , dpsi , ey , epsi , vt , wt) :
68 """Spatial predictive cost function
69 Parameters
70 ----------
71 u : array of size (1 x 2*Nc)
72 linear and angular velocity vector
73 dpsi : array (1 x Np)
74 road heading angle difference vector
75 ey : float
76 path offset
77 epsi : float
78 heading angle error
79 Returns
80 -------
81 J : float
82 The total cost is returned based on the supplied input vector
83 """

J.F. de Winkel Master of Science Thesis

B-2 Objective function implementation 67

84
85 v = u [0 : self . Nc] #Retrieve linear velocity from input

vector
86 vd = np . diff (np . insert (v , 0 , vt)) #Change in linear

velocity
87 w = u [self . Nc : 2∗ self . Nc] #Retrieve angular velocity from input

vector
88 wd = np . diff (np . insert (w , 0 , wt)) #Change in angular

velocity
89
90 J = self . Wdu ∗ (vd . T . dot (vd) + wd . T . dot (wd)) #Initial value of

cost function
91
92 #Loop over prediction horizon
93 for i in range (0 , self . Np) :
94
95 vi = v [min (self . Nc−1,i)]
96 wi = w [min (self . Nc−1,i)]
97
98 dpsids = dpsi [i]
99 if dpsids == 0 :

100 ps = 9E9
101 else :
102 ps = 1 . / dpsids
103
104 #Get advancement along path w.r.t time
105 dsdt = 1 / (1 − ey / ps) ∗ vi ∗ np . cos (epsi)
106
107 #Advancement of angle and position error
108 deyds = vi ∗ np . sin (epsi) / dsdt
109 depsids = wi / dsdt − dpsids
110
111 #Update error
112 ey = ey + self . ds ∗ deyds
113 epsi = (epsi + self . ds ∗ depsids + np . pi) % (2 ∗ np . pi) − np .

pi
114
115 #Update cost
116 J = J + self . Wey ∗ (self . dey−ey) ∗∗2 + self . Wepsi ∗ epsi∗∗2 +

self . Wdsdt ∗ (dsdt−self . dsdt_ref) ∗∗2
117
118 return J
119
120 def minimize (self , dpsi , ey , epsi , v , w) :
121 """Calculate optimal control action
122 Parameters
123 ----------
124 dpsi : array of size (1 x Np)
125 Vehicle reference heading angle change
126 Returns
127 -------
128 u : tuple
129 Returns tuple of linear and angular velocity (v, w)

Master of Science Thesis J.F. de Winkel

68 Code

130 """
131
132 #Run the minimization algorithm
133 result = sp . minimize (self . cost , self . u0 , args=(dpsi , ey , epsi , v , w) ,

bounds=self . bounds , method="SLSQP")
134
135 for i in range (0 , self . Nc) :
136 self . u0 [i] = min (self . v_max , max (self . v_min , result .

x [i]))
137 self . u0 [self . Nc+i] = min (self . w_max , max (self . w_min , result .

x [self . Nc+i]))
138
139 #Return optimal input
140 return self . u0 [0] , self . u0 [self . Nc]

B-3 Path planner

1 #!/usr/bin/env python
2 """
3 Created on Fri Apr 1 08:59:50 2016
4
5 @author: Frank de Winkel
6 """
7
8 #Import numpy and scipy within their own namespace
9 import numpy as np

10 import scipy . optimize as sp
11 #from path import ExtendedDubins
12
13 class SpatialController :
14
15 def __init__ (self , Nc=5,Np=5,ds=0.05 , dsdt_ref=0.2 ,Wey=100 ,Wepsi=5,

Wdsdt=2,Wdu=1) :
16 """Initialization of Spatial Predictive Controller class
17 Parameters
18 ----------
19 Nc : int (default = 5)
20 Control horizon
21 Np : int (default = 5)
22 Prediction horizon , cannot be smaller than control horizon
23 ds : float (default = 0.1)
24 Spatial step size
25 dsdt_ref : float (default = 0.25)
26 Reference velocity along path
27 Wey : float (default = 10)
28 Cost function weight on path deviation
29 Wepsi : float (default = 10)
30 Cost function weight on heading angle deviation
31 Wdsdt : float (default = 1)
32 Cost function weight on reference speed deviation
33 Wdu : float (default = 1)
34 Cost function weight on input change

J.F. de Winkel Master of Science Thesis

B-3 Path planner 69

35 """
36
37 self . Nc = max (1 , int (Nc)) #Set control horizon
38 self . Np = max (1 , int (Nc) , int (Np)) #Set prediction horizon
39
40 #Construct bounds
41 self . v_min = 1E−2
42 self . v_max = .5
43 self . w_min = −.5
44 self . w_max = .5
45 self . bounds = []
46 for i in range (0 , self . Nc) :
47 self . bounds . insert (0 , (self . v_min , self . v_max))
48 self . bounds . append ((self . w_min , self . w_max))
49 self . bounds = tuple (self . bounds)
50
51 #Desired offset
52 self . dey = 0
53
54 #Create u0
55 self . u0 = np . concatenate ((np . ones (self . Nc) ∗dsdt_ref , np . zeros (

self . Nc)))
56 self . umin = np . concatenate ((np . ones (self . Nc) ∗self . v_min , np . ones (

self . Nc) ∗self . w_min))
57 self . umax = np . concatenate ((np . ones (self . Nc) ∗self . v_max , np . ones (

self . Nc) ∗self . v_max))
58
59 #Float inputs are divided by 1. to ensure that they are floats
60 self . ds = ds / 1 . #Spatial discretization step
61 self . dsdt_ref = dsdt_ref / 1 . #Reference path velocity
62 self . Wey = Wey / 1 . #Cost function weights
63 self . Wepsi = Wepsi / 1 .
64 self . Wdsdt = Wdsdt / 1 .
65 self . Wdu = Wdu / 1 .
66
67 def cost (self , u , dpsi , ey , epsi , vt , wt) :
68 """Spatial predictive cost function
69 Parameters
70 ----------
71 u : array of size (1 x 2*Nc)
72 linear and angular velocity vector
73 dpsi : array (1 x Np)
74 road heading angle difference vector
75 ey : float
76 path offset
77 epsi : float
78 heading angle error
79 Returns
80 -------
81 J : float
82 The total cost is returned based on the supplied input vector
83 """
84

Master of Science Thesis J.F. de Winkel

70 Code

85 v = u [0 : self . Nc] #Retrieve linear velocity from input
vector

86 vd = np . diff (np . insert (v , 0 , vt)) #Change in linear
velocity

87 w = u [self . Nc : 2∗ self . Nc] #Retrieve angular velocity from input
vector

88 wd = np . diff (np . insert (w , 0 , wt)) #Change in angular
velocity

89
90 J = self . Wdu ∗ (vd . T . dot (vd) + wd . T . dot (wd)) #Initial value of

cost function
91
92 #Loop over prediction horizon
93 for i in range (0 , self . Np) :
94
95 vi = v [min (self . Nc−1,i)]
96 wi = w [min (self . Nc−1,i)]
97
98 dpsids = dpsi [i]
99 if dpsids == 0 :

100 ps = 9E9
101 else :
102 ps = 1 . / dpsids
103
104 #Get advancement along path w.r.t time
105 dsdt = 1 / (1 − ey / ps) ∗ vi ∗ np . cos (epsi)
106
107 #Advancement of angle and position error
108 deyds = vi ∗ np . sin (epsi) / dsdt
109 depsids = wi / dsdt − dpsids
110
111 #Update error
112 ey = ey + self . ds ∗ deyds
113 epsi = (epsi + self . ds ∗ depsids + np . pi) % (2 ∗ np . pi) − np .

pi
114
115 #Update cost
116 J = J + self . Wey ∗ (self . dey−ey) ∗∗2 + self . Wepsi ∗ epsi∗∗2 +

self . Wdsdt ∗ (dsdt−self . dsdt_ref) ∗∗2
117
118 return J
119
120 def minimize (self , dpsi , ey , epsi , v , w) :
121 """Calculate optimal control action
122 Parameters
123 ----------
124 dpsi : array of size (1 x Np)
125 Vehicle reference heading angle change
126 Returns
127 -------
128 u : tuple
129 Returns tuple of linear and angular velocity (v, w)
130 """

J.F. de Winkel Master of Science Thesis

B-4 Spatial conversion 71

131
132 #Run the minimization algorithm
133 result = sp . minimize (self . cost , self . u0 , args=(dpsi , ey , epsi , v , w) ,

bounds=self . bounds , method="SLSQP")
134
135 for i in range (0 , self . Nc) :
136 self . u0 [i] = min (self . v_max , max (self . v_min , result .

x [i]))
137 self . u0 [self . Nc+i] = min (self . w_max , max (self . w_min , result .

x [self . Nc+i]))
138
139 #Return optimal input
140 return self . u0 [0] , self . u0 [self . Nc]

B-4 Spatial conversion

1 #!/usr/bin/env python
2 """
3 Created on Wed Mar 30 12:23:23 2016
4
5 @author: Frank de Winkel
6 """
7
8 from numpy . matlib import ∗
9

10 class SpatialConversion () :
11
12 def __init__ (self , ds = 1E−3) :
13 self . path = None
14 self . ds = ds / 1 .
15 self . sf = 0
16
17 def setPath (self , path) :
18 self . path = path
19
20 def getPath (self , s0 , s1 , ds) :
21 """Get path information between two points
22 Parameters
23 ----------
24 xs : array (1 x 3)
25 Initial pose
26 xf : array (1 x 3)
27 Final pose
28 Returns
29 -------
30 dpsi : array (1 x (s1-s0)/ds)
31 """
32
33 #result
34 res = []
35 #Derivative of angle error is given by
36 dpsids = diff (self . path [: , 2]) / self . ds

Master of Science Thesis J.F. de Winkel

72 Code

37 #max-index
38 imax = len (dpsids) − 1
39 #Create subsvector for control loop
40 for s in arange (s0 , s1 , ds) :
41 res . append (dpsids [min (s / self . ds , imax)])
42 return res
43
44 def getState (self , x) :
45 """Convert pose to spatial pose
46 Parameters
47 ----------
48 x : array (1 x 3)
49 Robot pose
50 Returns
51 -------
52 tuple : s, ey, epsi
53 """
54
55 #Find the index of the closest pose
56 dist_2 = sum ((self . path [: , 0 : 2] − x [0 : 2]) ∗∗2 , axis=1)
57 index = argmin (dist_2)
58
59 #Distance traveled along the path is given by index times

discretization size
60 s = self . ds ∗ index
61
62 #Get the closest pose
63 p = self . path [index]
64
65 #Determine deviation (check this code!!!!)
66 error = x [0 : 2] − p [0 : 2]
67 angle = −(p [2]+ pi /2)
68 R = array ([[cos (angle) , −sin (angle)] , [sin (angle) , −cos (

angle)]])
69 error = R . dot (error)
70 ey = error [0]
71
72 #angle error
73 epsi = (x [2] − p [2] + pi) % (2 ∗ pi) − pi
74
75 #Return result as tuple
76 return s , ey , epsi

B-5 Spatial controller

1 #!/usr/bin/env python
2 """
3 Created on Mon Apr 4 12:48:06 2016
4
5 @author: dcscm
6 """
7

J.F. de Winkel Master of Science Thesis

B-5 Spatial controller 73

8 import rospy
9 import numpy as np

10
11 from geometry_msgs . msg import Twist
12 from geometry_msgs . msg import Pose2D
13
14 from spc_conversion import SpatialConversion
15 from spc_dubins import SpatialController
16
17 from spatial . msg import SpatialPose
18 from spatial . msg import Path2D
19
20 class Controller :
21
22 def __init__ (self) :
23
24 rospy . init_node (’create_spatial_controller’)
25
26 self . conv = SpatialConversion ()
27 self . SPC = SpatialController ()
28
29 self . s = 0
30 self . ey = 0
31 self . epsi = 0
32 self . x = np . array ([0 , 0 , 0])
33 self . v = 0
34 self . w = 0
35
36 self . initialized = False
37
38 self . pub_velocity = rospy . Publisher (’cmd_vel’ , Twist , queue_size

=1)
39 self . pub_spatial_state = rospy . Publisher (’spatial_pose’ ,

SpatialPose , queue_size = 1)
40 self . sub_spatial_path = rospy . Subscriber (’/spatial/path’ , Path2D ,

self . setPath)
41 self . sub_state = rospy . Subscriber (’ground_pose’ , Pose2D , self .

setPose)
42
43 self . ds = rospy . get_param (’~ds’ , 0)
44 self . SPC . dey = rospy . get_param (’~dey’ , 0)
45 self . connected_to = rospy . get_param (’~connected_to’ , [])
46 self . subs = []
47 self . states = []
48 for node in self . connected_to :
49 self . states . append ([0 , node [1]])
50 self . subs . append (rospy . Subscriber (’/create’+str (node [0])+’/

spatial_pose’ , SpatialPose , self . getLeaders , callback_args=(
len (self . states)−1)))

51 rospy . loginfo ("Subscribed to /create"+str (node [0])+’/
spatial_pose’)

52
53 self . rate = rospy . Rate (10)

Master of Science Thesis J.F. de Winkel

74 Code

54
55 self . track ()
56
57 def setPath (self , path) :
58 points = []
59 for p in path . poses :
60 points . append ((p . x , p . y , p . theta))
61 self . conv . setPath (np . asarray (points))
62 self . conv . sf = path . length
63 self . initialized = True
64
65 def getLeaders (self , pose , index) :
66 self . states [index] [0] = pose . s
67
68 def setPose (self , pose) :
69 #Get pose from topic
70 self . x = np . array ([pose . x , pose . y , pose . theta])
71 #If path is available , convert to spatial pose
72 if self . initialized == True :
73 self . s , self . ey , self . epsi = self . conv . getState (self . x)
74 #Publish spatial pose
75 spatialPose = SpatialPose ()
76 spatialPose . s = self . s
77 spatialPose . ey = self . ey
78 spatialPose . epsi = self . epsi
79 self . pub_spatial_state . publish (spatialPose)
80
81 def track (self) :
82
83 twist = Twist ()
84
85 while not rospy . is_shutdown () :
86
87 if self . initialized == True :
88
89 self . SPC . dsdt_ref = 0
90 for state in self . states :
91 self . SPC . dsdt_ref = self . SPC . dsdt_ref + 0.3 ∗ ((state

[1] − self . ds) − (state [0] − self . s))
92 self . SPC . dsdt_ref = max (0 , min (1 , 0 . 2 − self . SPC . dsdt_ref

/ len (self . states)))
93
94 dpsi = self . conv . getPath (self . s , self . s+self . SPC . ds∗self .

SPC . Np , self . SPC . ds)
95
96 if self . s < self . conv . sf + self . ds + 0 . 5 :
97 v , w = self . SPC . minimize (dpsi , self . ey , self . epsi ,

self . v , self . w)
98 elif abs (self . epsi) > 0 . 0 5 :
99 v , w = self . SPC . minimize (dpsi , self . ey , self . epsi ,

self . v , self . w)
100 v = 0
101 else :

J.F. de Winkel Master of Science Thesis

B-5 Spatial controller 75

102 v , w = 0 , 0
103
104 self . v = v
105 self . w = w
106
107 twist . linear . x = v
108 twist . angular . z = w
109
110 self . pub_velocity . publish (twist)
111
112 #rospy.loginfo("%.3f , %.3f " % (self.ey, self.epsi))
113 #rospy.loginfo(self.states)
114
115 self . rate . sleep ()
116
117 if __name__ == ’__main__’ :
118 try :
119 c = Controller ()
120 except rospy . ROSInterruptException : pass

Master of Science Thesis J.F. de Winkel

76 Code

J.F. de Winkel Master of Science Thesis

Bibliography

[1] Y. Goa, A. Gray, J. V. Frasch, L. Theresa, E. Tseng, J. K. Hedrick, and F. Borrelli,
“Spatial Predictive Control for Agile Semi-Autonomous Ground Vehicles,” Proceedings
of the 11th International Symposium on Advanced Vehicle Control, 2012.

[2] S. LaValle, “Path generation.” http://planning.cs.uiuc.edu/img6687.gif, 2017.
[Online; accessed Januari 25, 2017].

[3] Sphero, “Orbotix.” https://images-na.ssl-images-amazon.com/images/I/
51h6bMLVNKL._SL1136_.jpg, 2017. [Online; accessed Jan 25, 2017].

[4] Parrot, “Parrot ar drone.” https://www.quadrocoptershop.nl/content/images/
thumbs/0000019_parrot-ardrone-20-geel.jpeg, 2016. [Online; accessed May 9,
2016].

[5] DJI, “Matrice dji 100.” http://asset1.djicdn.com/images/360/matrice100/
platform/0.png, 2017. [Online; accessed Januari 25, 2017].

[6] OptiTrack, “Optihub.” http://www.optitrack.com/products/optihub/, 2017. [On-
line; accessed Januari 25, 2017].

[7] OptiTrack, “Motive tracking software.” https://www.optitrack.com/static/images/
motiveTrackerScreenRigidBodySwarmCropped.png, 2017. [Online; accessed Januari
25, 2017].

[8] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography,” Journal of Robotics, vol. 2012, pp. 1–15, 2012.

[9] W. Guanghua, L. Deyi, G. Wenyan, and J. Peng, “Study on formation control of multi-
robot systems,” in Third International Conference on Intelligent System Design and
Engineering Applications, pp. 1335–1339, 2013.

[10] A. Fujimori, T. Fujimoto, and G. Bohacs, “Distributed Leader-Follower Navigation of
Mobile Robots,” in International Conference on Control and Automation (ICCA), vol. 2,
pp. 960–965, 2005.

Master of Science Thesis J.F. de Winkel

http://planning.cs.uiuc.edu/img6687.gif
https://images-na.ssl-images-amazon.com/images/I/51h6bMLVNKL._SL1136_.jpg
https://images-na.ssl-images-amazon.com/images/I/51h6bMLVNKL._SL1136_.jpg
https://www.quadrocoptershop.nl/content/images/thumbs/0000019_parrot-ardrone-20-geel.jpeg
https://www.quadrocoptershop.nl/content/images/thumbs/0000019_parrot-ardrone-20-geel.jpeg
http://asset1.djicdn.com/images/360/matrice100/platform/0.png
http://asset1.djicdn.com/images/360/matrice100/platform/0.png
http://www.optitrack.com/products/optihub/
https://www.optitrack.com/static/images/motiveTrackerScreenRigidBodySwarmCropped.png
https://www.optitrack.com/static/images/motiveTrackerScreenRigidBodySwarmCropped.png

78 Bibliography

[11] K. Kanjanawanishkul, X. Li, and A. Zell, “Nonlinear model predictive control of om-
nidirectional mobile robot formations,” in Second International Conference on Robot
Communication and Coordination. ROBOCOMM ’09., May 2009.

[12] K.-H. Tan and M. A. Lewis, “High-Precision Formation Control of Mobile Robots using
Virtual Structures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997.

[13] E. J. Gomez, F. Martinez Santa, and F. H. Martinez Sarmiento, “A Comparative Study
of Geometric Path Planning Methods for a Mobile Robot : Potential Field and Voronoi
Diagrams,” in II International Congress of Engineering Mechatronics and Automation
(CIIMA), pp. 1–6, IEEE, 2013.

[14] R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of multiple vehicle
formations using structural potential functions,” IFAC World Congress, pp. 346–352,
2002.

[15] M. Bartulovic, I. Palunko, and S. Bogdan, “Formation Control Using Adaptive
Parameter-Dependent Potential Functions,” in IEEE Conference on Control Applica-
tions (CCA), pp. 530–535, IEEE, 2014.

[16] W. Ren, “Consensus Based Formation Control Strategies for Multi-vehicle Systems,” in
Proceedings of the 2006 American Control Conference, pp. 4237–4242, June 2006.

[17] W. Ren, “Multi-vehicle Consensus with a Time-varying Reference State,” Systems &
Control Letters 56, pp. 474–483, 2007.

[18] K. Kanjanawanishkul, “MPC-Based Path Following Control of an Omnidirectional Mo-
bile Robot with Consideration of Robot Constraints,” Advances in Electrical and Elec-
tronic Engineering, 2015.

[19] A. Siddaramappa, “Rigid formation control using hovercrafts,” Master’s thesis, TU Delft,
Nov. 2015.

[20] M. P. Do Carmo, Differential geometry of curves and surfaces, vol. 2. Prentice-hall
Englewood Cliffs, 1976.

[21] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[22] W. Garage, “ROS Website.” http://www.ros.org/.

[23] D. Kraft, A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht,
Wiss. Berichtswesen d. DFVLR, 1988.

[24] S. Developers, “Scipy.org.” https://www.scipy.org/, 2017. [Online; accessed Januari
25, 2017].

[25] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for Robotics: A Survey,”
in IEEE Conference on Robotics, Automation and Mechatronics, pp. 736–742, IEEE,
September 2008.

J.F. de Winkel Master of Science Thesis

http://www.ros.org/
https://www.scipy.org/

79

[26] P. J. Conroy, “The Development of an Aerial Robotics Laboratory Highlighting the First
Experimental Validation of Optimal Reciprocal Collision Avoidance,” Master’s thesis,
University of Utah, Aug. 2013.

[27] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The Office
Marathon: Robust Navigation in an Indoor Office Environment,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 300–307, IEEE, May 2010.

[28] M. A. Ma’sum, G. Jati, M. K. Arrofi, A. Wibowo, P. Mursanto, and W. Jatmiko, “Au-
tonomous Quadcopter Swarm Robots For Object Localization and Tracking,” in Inter-
national Symposium on Micro-NanoMachatronics and Human Science (MHS), pp. 1–6,
IEEE, November 2013.

[29] KU Leuven, “OROCOS Website.” http://www.orocos.org/.

[30] H. Bruyninckx, “Open Robot Control Software: the OROCOS Project,” in Proceedings of
the 2001 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2523–
2528, IEEE, May 2001.

[31] O. M. Group, “Corba Website.” http://www.corba.org/.

[32] Gadeyne and Klaas, “BFL: Bayesian Filtering Library.” http://www.orocos.org/bfl,
2001.

[33] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter, “iTASC: a Tool for
Multi-Sensor Integration in Robot Manipulation,” in IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 426–433, IEEE,
August 2008.

[34] W. Fetter Lages, D. Ioris, and D. C. Santini, “An Architecture for Controlling the Bar-
rett WAM Robot Using ROS and OROCOS,” in Proceedings of ISR/Robotik 2014; 41st
International Symposium on Robotics, pp. 649–656, VDE, 2014.

[35] K. Stoy, “Player Stage Website.” http://playerstage.sourceforge.net/.

[36] M. Kranz, R. B. Rusu, A. Maldonado, M. Beetz, and A. Schmidt, “A Player/Stage Sys-
tem for Context-Aware Intelligent Environments,” in Proceedings of UbiSys’06, System
Support for Ubiquitous Computing Workshop, at the Annual Conference on Ubiquitous
Computing, 2006.

[37] T. H. J. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward a Practi-
cal Robot Programming Framework,” in Proceedings of the Australasian Conference on
Robotics and Automation (ACRA), 2005.

[38] W. Garage, “Ros indigo.” http://wiki.ros.org/indigo.

[39] iRobot, “iRobot Create.” http://www.irobot.com/.

[40] V. Robotics, “The irobot create.” http://verifiablerobotics.com/
CreateMATLABsimulator/create.jpg, 2016. [Online; accessed May 9, 2016].

[41] MIT, “Cricket sensor.” http://cricket.csail.mit.edu/pictures/cricketv2.jpg,
2016. [Online; accessed May 9, 2016].

Master of Science Thesis J.F. de Winkel

http://www.orocos.org/
http://www.corba.org/
http://www.orocos.org/bfl
http://playerstage.sourceforge.net/
http://wiki.ros.org/indigo
http://www.irobot.com/
http://verifiablerobotics.com/CreateMATLABsimulator/create.jpg
http://verifiablerobotics.com/CreateMATLABsimulator/create.jpg
http://cricket.csail.mit.edu/pictures/cricketv2.jpg

80 Bibliography

[42] MIT, “Cricket Main Website.” http://cricket.csail.mit.edu/.

[43] TurtleBot, “Turtlebot Robotic Platform.” http://turtlebot.com/.

[44] T. R. Wiki, “Turtlebot Robotic Platform ROS Package.” http://wiki.ros.org/
turtlebot.

[45] S. Kandasamy, “Slamming with spheros: An impact-based approach to simultaneous
localization and mapping,” Master’s thesis, TU Delft, Aug. 2015.

[46] M. Wise, “Sphero ROS Drivers.” https://github.com/mmwise/sphero_ros.

[47] R. P. K. Jain, “Transportation of cable suspended load using unmanned aerial vehicles,”
Master’s thesis, TU Delft, August 2015.

[48] OptiTrack, “OptiTrack Website.” http://www.optitrack.com/.

[49] R. Curnow and M. Lichvar, “Chrony.” https://chrony.tuxfamily.org/, 2017. [Online;
accessed Jan 25, 2017].

[50] C. Crick, “Ros and rosbridge: Roboticists out of the loop,” 7th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2012.

[51] F. Valentinis, “Path generation for the dubin’s car.” https://pypi.python.org/pypi/
dubins, 2017. [Online; accessed Januari 25, 2017].

J.F. de Winkel Master of Science Thesis

http://cricket.csail.mit.edu/
http://turtlebot.com/
http://wiki.ros.org/turtlebot
http://wiki.ros.org/turtlebot
https://github.com/mmwise/sphero_ros
http://www.optitrack.com/
https://chrony.tuxfamily.org/
https://pypi.python.org/pypi/dubins
https://pypi.python.org/pypi/dubins

Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

ROS Robot Operating System

NER Networked Embedded Robotics Lab

Master of Science Thesis J.F. de Winkel

82 Glossary

J.F. de Winkel Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Research Objectives
	Thesis organization

	Distributed Spatial Predictive Formation Control
	Formation control
	Spatial Predictive Control
	Trajectory tracking using Model Predictive Control
	Conversion to spatial dynamics
	Adaptation for unicycle robots
	Path generation

	Spatial Predictive Formation Control
	Formation definition
	Formulation of Optimal Controller

	Simulation results
	Formation of 6 agents
	Formation of 12 agents

	Summary

	Development of the Networked Embedded Robotics Lab
	Robotic Middleware
	Layout of the Networked Embedded Robotics Lab
	Currently available robots
	Create
	Sphero
	Hovercraft
	Parrot AR
	Matrice DJI 100

	Localization hardware
	Laboratory architecture
	Development options
	Experiment interaction
	Web-based interactive manual

	Experimental demonstration of Distributed Spatial Predictive Formation Control
	Implementation aspects
	Latency analysis

	Experimental results
	Formation of 3 agents
	Agent failure
	Evaluation

	Conclusions
	Summary on Spatial Predictive Formation Control
	Summary on laboratory development
	Recommendations on future developments

	Appendices
	Overview of Robotic Middleware
	Code
	Unicycle model
	Objective function implementation
	Path planner
	Spatial conversion
	Spatial controller

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

