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Abstract

The fight against the illegal hunting of African wildlife is a never-ending pro-
cess. In order to preserve animal habitats and save them from extinction, many
national parks utilize surveilling solutions to prevent, detect and locate intrud-
ers. One strategy to detect and locate the illegal hunters or so-called poachers
is to detect and locate the gunshot sounds using an acoustic surveillance sys-
tem consisting of embedded devices scattered within the park. The embedded
devices–so-called end-nodes surveil the environment continuously, processing the
sound events gathered and converted to audio by the acoustic sensors. Then,
using a deep learning algorithm, any sound event classified as a gunshot is re-
ported to the authorities.

This research study proposes a deep learning model for gunshot sound recog-
nition in African wildlife. It also investigates a potential correlation between
gunshot sound recognition accuracy, signal-to-noise ratio (SNR), and shooter
distance.

To this end, gunshot and ambient sounds such as Savanna wildlife, rain, and
thunder were collected and synthesized to simulate different scenarios. Vari-
ous experiments were conducted using this data to investigate the influence of
different parameters on gunshot recognition accuracy.

Our analysis revealed the negative effect of the weather conditions, such as
rain and thunderstorms, on the model accuracy. The obtained results also
showed a positive correlation between the gunshot recognition accuracy and
SNR. Since SNR is negatively correlated to the shooter distance when both
noise and signal levels are constant, we have proved that the gunshot recognition
accuracy also negatively correlates with the distance.

Finally, a single CNN (convolutional neural network) model is proposed for
gunshot sound recognition in African wildlife. The model performs acceptably
in three different weather conditions. The gunshot recognition accuracy for five
shooting ranges is also provided based on the uncovered correlation.
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“For instance, on the planet Earth, man had always assumed that he was more
intelligent than dolphins because he had achieved so much—the wheel, New

York, wars and so on—whilst all the dolphins had ever done was muck about in
the water having a good time. But conversely, the dolphins had always believed
that they were far more intelligent than man—for precisely the same reasons.”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Preface

Surveillance systems have been one of the most researched topics within human
history. From building watchtowers to installing wireless sensor networks within
a property to automated machine learning techniques, many solutions have been
introduced to the problem. Surveillance systems are primarily used to detect
and prevent intrusion or illegal activity. Advance in technology has opened many
possibilities in this field. The Internet of Things (IoT) and wireless technologies
allow us to detect and alert unwanted activities almost instantly.

The Chengeta project is aimed at exploiting the newest advances in IoTs to
get closer to preserving wildlife and stopping illegal hunting. I was fascinated
when this project was pitched to me, and I knew at the moment that this is
what I would like to work on for my master’s thesis. I believe that it is our
responsibility as humans to do our part to save the life on land. This project is
my opportunity to have helped me reach this goal.

Many people have helped me during this thesis. Firstly, I would like to thank
Arjan and Babak for their enthusiasm, support, and guidance during my thesis.
Secondly, I would like to thank Marco for all his help and time. Thirdly, I
would like to thank Jie for the insight and feedback he provided. Additionally,
I would like to thank the Alten group for offering me the opportunity to work
on this project and always providing help when needed. Finally, I would like
to thank my family for all their love and support, without whom I would have
never reached this point in my life and career.

Deniz Danaei

Delft, The Netherlands
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Chapter 1

Introduction

The hunting of wildlife by humans is a long-standing practice in many communi-
ties, and it continues in numerous forms throughout the world. In order to pre-
serve animal habitats and save them from extinction, hunting has been declared
illegal in many countries and wildlife sanctuaries over the world. The surveil-
lance of illegal hunting or so-called poaching is challenging since the authorities
are forced to control vast territories spread over hundreds of kilometers, often
without any infrastructure available and sometimes under complex geological
conditions [1]. Even though international organizations have offered solutions
such as banning the trade of animal products and establishing local conser-
vancy committees, poaching is still a key concern for many wildlife sanctuaries
[1]. Consequently, many national parks have had to look for active solutions
to prevent, detect and locate intruders. Various manual surveillance techniques
have been implemented, such as employing park rangers and installing gates
and barriers. As technology advances, many novel intelligence-driven solutions
are offered to the poaching problem, such as tracking the animals, motion and
vibration detectors, and making the protected territory smart [2].

Intelligence-driven solutions for anti-poaching are usually based on IoT [3, 4,
2]. Internet of Things (IoT) is the physical objects embedded with (wireless)
sensors that have processing ability and are able to connect and exchange data
over the Internet or other communications networks [5]. The concept of these
solutions is to detect unusual activities with sensors and alert the authorities
using their communication system. The utilized sensors can be motion and
vibration detectors, RFID tags and ultrasonic technology, video cameras, or
acoustic sensors such as microphones. Motion sensors require a clear line of sight
in order to be operatable [6] and therefore are not a viable solution in regards
to denser outdoor areas. Video cameras can gather valuable information and,
combined with current image processing methods, could provide accurate results
for poaching prevention; however, they are costly to implement in vast open
areas and consume much power. Using microphones and acoustic surveillance
can be a viable solution for the cost-accuracy trade-off [7, 8, 9].

Chengeta Wildlife [10] is an organization that directly supports anti-poaching
efforts on the ground in Africa. One solution they seek is to detect and pinpoint
gunfire within the national parks. Such a system would allow the rangers to
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chase the poachers more efficiently, as their general location would be revealed.
This project is dedicated to providing Chengeta with an anti-poaching system
based on acoustic surveillance to detect gunshot sounds in wildlife.

The desired system consists of a base station and embedded devices–so-called
end-nodes scattered within the park that surveil the environment continually.
End-nodes process the sound events gathered and converted to audio by the
acoustic sensors. Then, using a deep learning algorithm, any sound event clas-
sified as a gunshot is reported to the base station. Subsequently, the location
of the sound source will be estimated in the base station with the information
gathered from the nodes using localization techniques. The project is further
split into the gunshot sound recognition system, embedded device design, com-
munication system design, and locating the sound source.

This graduation thesis is dedicated to building the gunshot sound recognition
system utilizing a deep learning algorithm. The process involves preparing a
dataset and creating and improving a CNN model that recognizes and classi-
fies gunshot sounds in the African Savanna. To estimate the detection range
of the end-nodes, this study also aims to research and investigate a potential
correlation between the shooter distance and the sound recognition accuracy.

1.1 Problem Statement

Gunshot detection in wildlife can be considered a sub-field of surveillance sys-
tems that have been investigated extensively in the past. With the renaissance
that deep learning has brought in many areas of signal processing, surveillance
systems have also been updated to use deep learning as a state-of-the-art so-
lution. From the use of image processing and ultra-wideband (UWB) signal
classification [11] in intrusion detection systems to avoiding Human-animal con-
flict [4, 3], and to scream and gunshot detection systems [12], deep learning
methods have been a reliable way of implementing innovations in surveillance.

The problem of detecting gunshot sound in wildlife however, is not fully
investigated yet. There are solutions offered by Ghiurcau Et al. in their works of
TESPAR [13, 14, 15] to classify humans, birds, and cars using acoustic sensors.
There are studies regarding gunshot detection systems in urban areas and noisy
environments [12, 16, 17, 18]. However, none of the mentioned studies provide
a solution for gunshot detection in wildlife using deep learning.

This thesis aims to: provide a deep learning model for gunshot sound detection
in African savanna and investigate the model accuracy range when deployed on
the end-nodes.

1.2 Document Structure

In Chapter 2, related works relevant to this thesis are presented. Chapter 3 then
explains the basic concepts in signal processing and deep learning used in this
thesis. It also provides information regarding gunshot acoustics. Subsequently,
Chapter 4 describes the methods and tools used during the experiments, followed
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by Chapter 5 presenting the results. Finally, Chapter 6 discusses the obtained
results along with ideas for possible future research.
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Chapter 2

Related work

As stated in Chapter 1, gunshot detection in wildlife can be considered a sub-
field of surveillance systems and intrusion detection systems. Both fields have
been investigated extensively through the years. In this Chapter, related works
to this research study are presented in three separate Sections. Section 2.1
reviews the intrusion detection systems similar to this research study. Followed
by Section 2.2 surveying gunshot acoustic detection systems. Finally, Section
2.3 browses through challenges involved in applying deep learning methods in
audio processing.

2.1 Intrusion Detection Systems

The intrusion detection applications vary from guarding private property to
protecting a natural reserve and avoiding the human-wildlife conflict. How-
ever, the core concept remains the same, and they all utilize sensor networks
to detect unwanted activities. For instance, in [4] authors have proposed "an
automated wild animal detection and repellent system" that uses motion sensors
and cameras to alert if wild animals are likely to enter a specified area. First,
motion sensors are placed to sense the intrusion activity, and if there is any,
the camera is initiated to record and live stream the event. A YOLOv3 model
is then used to process the received image from the camera to confirm if the
detected intrusion is, in fact, accurate. The system then repels the animal back
to the forest by playing a buzzer sound and flashlights. Similarly, in [3], authors
have proposed a system that uses motion sensors and cameras to detect animal
intrusion and communicate to a central station using LoRaWAN technology.

In [11] however, the deployed intrusion detection system, is based on UWB
technology. The wireless sensor network placed in the area analyzes the charac-
teristics of UWB signals upon object entry, and by extracting the signal features
using a convolutional neural network(CNN), the object is classified as a human
or an animal.

From intrusion detection systems proposed, the closest to this research study
is the work of Ghiurcau Et al. [13, 14, 15] which aim to classify the sounds that
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originate from humans, birds, and cars. The proposed solution is based on sound
classification and TESPAR algorithm–a language made for describing complex
waveforms in digital terms [19]. Ghiurcau Et al. have created a 3-class database
and have added several types of noise (white Gaussian noise, rain sound, and
wind sound) to simulate different outdoor environments.

Introducing environmental sounds to the dataset used in [14] is proven helpful
to simulate more realistic and general data. Such as many other related works
mentioned in the following Section, our work is also motivated to utilize the
environmental sounds.
On the other hand, [14] has incompatibilities to our case, such as the lack of the
gunshot sounds within the experimental data. Additionally, the classification
method is desired to be a deep learning model in this study. However, in [14]
sound classifications are directly done on the binary matrices resulted from zero-
crossing points in the audio signals [14].

2.2 Gunshot Acoustic Detection

The problem of detecting the gunshot acoustic and locating the shooter has
been studied extensively for the purpose of military or civil applications. The
earlier works on shooter localization are directly based on analyzing the gunshot
acoustics. For instance, in [20], authors have proposed a solution for shooter
localization based on the time difference of acoustic muzzle blast (MB) from the
gunfire and the ballistic shock wave (SW) from the bullet at each sensor (micro-
phones). The shooting direction is also revealed based on SW detection time.
Their solution, however, is assumed to be on a perfectly synchronized network
and highly accurate microphones. This method may not be applicable for civil
projects due to the extensive costs. Chapter 3.3 looks closely to the character-
istics of gunshot acoustic, and the effects of the recordings and environmental
factors.

Another similar work in this topic is the gunshot and scream detection system
proposed in [12]. The system classifies the scream or gunshot event from ambient
noise. The authors have focused on a thorough comparison of feature extraction
methods to reduce the dimensionality of the problem and have proposed a fea-
ture vector that gives acceptable results at a more negligible computational cost.
They obtained an accuracy of 90% and a false rejection rate of 8% using two
Gaussian mixture models (GMM) in parallel to discriminate between screams
and noise, as well as gunshots and noise. One of the experiments they carried
out is to investigate the effects of the noise level on the classification accuracy
by adding noise to the audio events, changing the Signal-to-Noise ratio from 0
to 20dB, with a 5dB step. Their results have verified a performance degradation
as the SNR decreases.

Another work on gunshot detection is presented in [17]. Authors have com-
pared the classification accuracy of gunshots in different settings of clean, mildly
noisy, and heavily noisy environments. Their database contains example sounds
of handclapping, balloons explosions, rifle and pistol shots, and speech. They
have compared different feature extraction methods and used a Hidden Markov
model (HMM) for classification. The novelty of the proposed method is that
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before classifying the audio event, it is compared to a gunshot template, and
then a threshold value is used to determine whether it is a gunshot. The au-
thors claim to have achieved a computationally cheap procedure and comparable
performance to algorithms adapted from speech processing, especially in noisy
environments and in impulsive sound classification tasks.

From the subject of template matching, another novelty for gunshot detection
is presented in [21]. Ahmed et al. have proposed a system that is impervious to
noise with low computational complexity. It consists of a two-step approach, an
impulsive event detection framework followed by a relatively complex gunshot
recognition stage. In the second stage, a template matching measurement is used
to train a Support Vector Machine (SVM) classifier. The database used for the
study consist of G3 and MP5 gunshot sounds acquired for shooter distances
of 100, 200, and 300 meters. Also, ambient sounds like claps, door slams, and
people talking are used as outsider signals for the gunshot recognition system.
The authors have also mapped their model accuracy to three SNR thresholds.
The false alarm rate for a minimum of 10 dB is 5%, which drops to 2% for an
SNR value of 25dB.

In contrast to the systems reviewed above, recent works on gunshot detection
utilize deep learning methods such as Artificial and Convolutional Neural Net-
works (ANN, CNN, respectively). For example, in [22], authors have compared
the model accuracy of the ANN model to SVM. The main objective of their
study is to present a gunshot detection system that can be used on a smart-
phone for patrolling soldiers. The system classifies the captured sounds into
one of six different kinds of gunfire, AK-47, AR15, .38 Caliber, Shotgun, 9-mm.,
and .45 Caliber. They have also added different noise levels to compare two
model accuracy for different SNRs. The nature of the injected noise, however,
is unclear. Their results show a drastic improvement for lower SNRs when using
ANN.

In [18], Bajzik et al. have investigated the usage of different image processing
methods in the field of audio event recognition. Several convolutional models
and the effect of signal downsampling are analyzed on gunshot sounds mixed
with background sounds such as traffic noise, human voice, and other forms of
environmental sounds. Authors have also visualized different two-dimensional
representations of the audio signals, such as spectrograms, MFCCs, and simi-
larity matrix, and used the combination of them to train the CNN network.

Finally, the closest work to this project is [16]. Authors have proposed a low-
cost and accurate gunshot detection system that autonomously identifies and
alerts authorities of gunfire occurrences in a city. They have collected sound
clips from online audio databases as well as clips recorded in residential areas
and at a gun range. One and two-dimensional CNNs were then trained on
the sound data and spectrograms to recognize gunshots. The model was also
deployed on an embedded device to test at a gun range. The authors state
that the model performance began to diminish when the device was 225 meters
away from the site of gunfire. When stationed more than 300 meters away, it
could no longer recognize any samples as true positive. Even though the papers
reviewed in this Section have offered various solutions for gunshot detection,
each has a certain incompatibility to the case study investigated in this thesis.
For instance, none of the gunshot detection systems proposed have included
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sounds for wildlife simulations. Moreover, only one of the proposed solutions
has considered the recognition model to be deployed on an embedded device
[16]. This solution, however, is only accurate for a radius of 300 meters, and it
would be costly to implement it in a park that expands over thousands of acres
since so many nodes will be required.

It is worth mentioning that some of the design choices and methods used in
the mentioned works are borrowed in this research study. For instance, instead
of exploring classical machine learning models, CNN models are chosen as the
state-of-the-art solutions. Additionally, the idea of altering the noise level and
simulating different SNR values [12, 21] is also done in this research study.

Finally, One novelty introduced in this research study is mapping the shooter
distance to SNR and model accuracy range. Since the gunshot recognition model
is aimed to be deployed on the end-nodes, it is desired to investigate the model
accuracy in different ranges.

2.3 Deep Learning Challenges for Audio Process-
ing

Even though most of the reviewed works utilize deep learning methods, there
are still challenges to overcome. It is true that deep learning has outperformed
traditional audio processing methods, which as a result, has enabled practical
applications on a larger scale such as speech processing, music, and environ-
mental sound recognition [23]. However, deep learning is known to be most
beneficial when applied to large training datasets. Unlike the availability of
ImageNet for the breakthrough of deep learning in computer vision, there is no
such a well-labeled dataset that can be shared across domains, including speech,
music, and environmental sounds [23].

Another important difference between image and audio processing is feature
extraction methods. For instance, raw audio samples form a one-dimensional
time-series signal which is fundamentally different from two-dimensional images.
Audio signals are commonly transformed into two-dimensional time-frequency
representations for processing. However, the two axes, time and frequency, are
not homogeneous as horizontal and vertical axes in an image. Furthermore,
images are instantaneous snapshots of a target and are often analyzed as a
whole or in patches with little order constraints; however, audio signals have
to be studied sequentially in chronological order. These properties gave rise to
audio-specific solutions [23].

From the practical applications of deep learning in audio processing, acoustic
gunshot detection can fit the environmental sound recognition (ESR) branch.
ESR is one of the challenging subjects due to the noisy nature of the signals
and the small quantity of labeled data that is readily available. Even though
the performance of core techniques in this field has been steadily improving,
their effectiveness still tends to be degraded under very noisy conditions. For
instance, one of the various issues that need to be addressed for the practical
use of ESR technology is to improve sound-source separation performance. One
promising approach is the development of more powerful modeling techniques
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such as those based on deep learning [24].

On the other hand, The well-known publicly available datasets for ESR such
as AudioSet [25] and UrbanSound8k [26] are not necessarily suited for every
project. This is because environmental sounds are very diverse and case de-
pendant. A solution introduced to this problem is data generation and data
augmentation. For example, according to [27] for environmental sounds, lin-
early combining training examples along with their labels improves generaliza-
tion. Likewise, for source separation, models can be trained successfully using
synthesized datasets by mixing separated tracks.

Having stated the related works and the challenges above, the next Chapter
looks closer to the basic concepts one should be familiar with to grasp the
work done on this study thoroughly. These concepts are then used to design
experiments in Chapter 4.
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Chapter 3

Background

This chapter provides background information regarding the topics covered in
this research study. Section 3.1 provides general information about signal and
audio processing. Subsequently, Section 3.2 demonstrates how shooter distance
can be mapped to different SNRs, and how the gunshot recognition accuracy
might link to the distance. Next, Section 3.3 discusses gunshot sound charac-
teristics. Section 3.4 looks through the topics of interest in deep learning.

3.1 Audio Signal Processing

Audio signal processing is a subfield of signal processing concerned with the
electronic manipulation of audio signals. Audio signals are electronic represen-
tations of sound waves. Before looking deeper into audio signal processing, the
key difference between sound and audio is worth mentioning. Sound is me-
chanical wave energy, whereas audio is made of electrical energy that represents
sound electrically [28].

Sound, in physics, is produced in the form of a pressure wave consisting of
compressions and rarefactions traveling through a medium [29]. It is made by
a vibrating object causing the surrounding air molecules to vibrate [30]. Sound
waves are generally made of many overlapping frequencies that, when combined,
yield the character of the sound itself. As humans, we are generally born to hear
within the frequency range of 20 Hz to 20 kHz (audible sound). Frequencies be-
low 20 Hz (Infrasound) and above 20 kHz (Ultrasound) are inaudible to humans.
Four major sound properties are used to differentiate sounds: pitch, a method
for organizing sounds based on a frequency-based scale, amplitude (loudness or
softness) determining the relative loudness of a sound wave, duration, and tim-
bre. Timbre is the quality of a musical note and is related to the presence of
harmonics of a primary frequency.

Section 3.1.1 looks into noteworthy audio features, and Section 3.1.2 explains
the concept of signal-to-noise ratio.
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3.1.1 Audio Features

As stated in Section 3.1, audio signals are electronic representations of sound
waves. Audio can be further differentiated into two categories of analog and
digital. As with most engineering topics, each domain has pros and cons. The
specific application, performance requirements, transmission medium, and op-
erating environment can determine whether analog or digital signaling (or a
combination) should be used [31].

The process of converting an analog into a digital signal is called sampling.
This process is done by an Analog-Digital Converter (ADC) converter. The
resolution of the ADC, or the sampling rate, determines the quality of the digital
sound. A commonly seen unit of sampling rate is Hertz (Hz), which indicates
"samples per second". The most common audio sampling rates that cover the
entire range of human hearing are 44.1 kHz, 48 kHz, 88.2 kHz, or 96 kHz [32].

Performing an in-depth analysis of an audio signal requires the extraction of
the appropriate parameters of the audio signal. This process is called audio fea-
ture extraction [33]. The most important audio features can be categorized into
time, frequency, and time-frequency domains. The following sections describe
some of the well-known techniques reported in each domain.

Time Domain

Possibly the most significant trait of time-domain features is that they do not
require applying any change or transformation on the original audio signal.
Thus, any computation could be performed directly on the samples of the signal
itself [33]. Figure 3.3 presents a time-domain representation of an audio signal.

Figure 3.1 – Time domain presentation of an audio signal from
[34]. In time domain, the signal can be presented with a one
dimensional vector of amplitudes in time units (µs, ms or second).
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It is worth mentioning again that sound is a Longitudinal wave, meaning
it is produced in the form of a pressure wave consisting of compressions and
rarefactions [35]. The concept comes into the picture where compression is a
period of higher pressure than the ambient pressure (for instance, when the
output is 0), and rarefaction is a period where the pressure is lower than the
ambient pressure. One type of representing the longitudinal waves is to call the
ambient pressure zero, model the compressions as positive and the rarefactions
as negative values of the amplitude [35].

Some of the notable time domain features are Zero-Crossing Rate (ZCR),
Amplitude Envelope (AE), and Short-time energy (STE). ZCR defines the num-
ber of times the audio signal waveform crosses the zero amplitude level, which
provides a rough estimator of the dominant frequency component of the signal.
AE aims to extract the maximum amplitude within each time frame, which can
be used for detecting the beginning of a sound. STE can be defined as the aver-
age energy per signal frame, which could be utilized in detecting the transition
from unvoiced to voiced speech.

Frequency Domain Features

Any audio recording can be decomposed into multiple signals with different
frequencies and magnitudes. Since the recordings are within the time domain,
they need to be converted to their representation in the frequency domain to
extract the underlying frequencies. Such conversion is done by performing a
Fast Fourier Transform (FFT) calculation. Since digital signals use discrete
values, a Discrete Fourier Transform (DFT) calculation must be performed to
convert it to the frequency domain. Figure 3.2 shows the frequency domain
representation of the signal from Figure 3.1. This Figure depicts the existing
frequencies within the audio signal and their magnitude. Some of the notable
frequency domain features are Band Energy Ratio (BER), Spectral Flux (SF),
and Spectral Centroid (SC). BER provides the relation between the lower and
higher frequency bands, which is mostly used in music/speech discrimination
and music classification [36]. SF describes sudden changes in the frequency en-
ergy distribution of sounds, which can be applied to detect significant changes in
the spectral distribution. Finally, SC describes the center of gravity of spectral
energy. In other words, it gives the frequency band where most of the energy is
concentrated.

Time-frequency Representation

These features combine both the time and frequency components of the audio
signal. The time-frequency representation is obtained by applying the Short-
Time Fourier Transform (STFT) on the time domain waveform. For example,
consider an audio recording split into frames of predefined interval size. STFT
is when Fourier Transform is performed on each frame separately. In contrast
with the Fourier Transform calculation performed on the entire recording, STFT
reveals the frequencies that appear at different moments in time. Some examples
of this feature domain are Spectrogram, Mel-spectrogram, and MFCC.
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Figure 3.2 – Frequency domain presentations of an audio signal.
The y axis presents the magnitude of the frequencies (x axis)
within the audio signal. Figures are from Article [34]

• Spectrogram is a visual way of representing the signal power or signal
"loudness" overtime at various frequencies present in a particular wave-
form. This signal representation allows one to examine the power level
difference at different frequencies and how these levels fluctuate over time
for each chosen frequency. Figure 3.3a shows a spectrogram on a linear
scale, and Figure 3.3b present it on log scale.

• Mel-Spectrogram is a spectrogram where the frequencies are converted
to the Mel scale. Humans do not perceive frequencies on a linear scale.
They are better at detecting differences in lower frequencies than higher
frequencies. For example, they can easily tell the difference between 500
and 1000 Hz but will hardly differentiate between 10 kHz and 10.5 kHz,
even though the distance between the two pairs are the same [38]. The
Mel scale maps frequencies to equally spaced pitches or Mels. Conversion
from frequency (f) to Mel scale (m) is given by Equation 3.1.

m = 2595. log (1 +
f

700
) (3.1)

While linear audio spectrograms are ideal for applications where all fre-
quencies have equal importance, Mel-spectrograms are better suited for
audio classification applications and applications that need to model hu-
man hearing perception. Figure 3.4a displays the Mel-Spectrogram of
three audio event.

• Mel Frequency Cepstral Coefficients (MFCCs) are coefficients that
collectively make up an MFC (mel-frequency cepstrum). The information
of the rate of change in spectral bands of a signal is given by its cepstrum
[39]. A cepstrum is a spectrum of the log of the spectrum of the time signal.
Mel-frequency cepstrum utilizes the Mel scale for frequency band spacing
which approximates the response of the human auditory system. Whereas
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(a) Linear scale

(b) Log scale

Figure 3.3 – Time-frequency domain presentation of the audio
signal from Figure 3.1. Figures are borrowed from [34]

the normal spectrum uses linear spacing for frequency bands. Figure 3.4
shows the Mel-spectrograms and MFCCs of three audio signals.

The MFCC feature extraction technique includes windowing the signal,
applying the DFT, taking the log of the magnitude, and then warping the
frequencies on a Mel scale, followed by applying the inverse DCT.

MFCCs use a reduced set of frequency bands; however, this process removes
information and destroys spatial relations [23]. Depending on the task, it might
be feasible to use log-mel spectrums. Nevertheless, most of the related works
presented in this study use MFCCs for acoustic feature representation of the
gunshot audio, showing acceptable results. Additionally, MFCCs yield lower
computation time since the number of parameters for training the deep learning
model is lower than Mel spectrograms. If used in the end-nodes, calculating the
MFCCs and classifying the sound events would take less time than using Mel
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spectrograms.

3.1.2 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) means the dimensionless ratio of the signal power
to the noise power contained in a recording [40]. In audio processing, SNR is
a measure to compare the level of the desired signal to the level of background
noise and is often expressed in decibels. Higher ratios than 1:1 (greater than 0
dB) indicate higher signal levels than noise [41]. Based upon the definition of
decibel, if signal and noise are expressed in decibels (dB) as:

Psignal,dB = 10 log10(Psignal) (3.2)
Pnoise,dB = 10 log10(Pnoise) (3.3)

The SNR can be calculated with the equation below:

SNR = Psignal,dB − Pnoise,dB (3.4)
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(a)

(b)

Figure 3.4 – (a) Mel spectrograms and (b) MFCCs of audio
signals from a guitar, kick and snare. Figures are borrowed from
[37].
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3.2 Mapping SNR to Distance

This section investigates the correlation between sound pressure level and the
distance of the sound source from the receiver. The first step of this investigation
is to look into the sound pressure levels of gunshots and the possible sound
sources within the savanna wildlife. The final purpose of this section is to link
the SNR to distance. If there is a correlation between the gunshot recognition
accuracy and SNR, we can map it to the shooter’s distance from the receiver
(microphones). Equation 3.5 presents this hypothesis.

(distance ∝ SNR) ∧ (SNR
?∝ Accuracy) ⇒ distance

?∝ Accuracy (3.5)

According to [42, 43, 44], average unsuppressed gunshot level is around 150dB
close to the gun. Following the inverse-square law for acoustics, the sound
pressure of a spherical wavefront radiating from a point source decreases by
50% as the distance is doubled; measured in dB, the decrease is 6.02 dB [45]. In
[44], the authors present the result of experimental shootings done to measure
the noise level of the firearms. Conducted experiments confirm the reduction in
sound level for each doubling of distance, which follows the inverse square law
as expected.

The sound level of Savanna wildlife is assumed to be at an average value
of 60dB. This assumption is based on the gathered information presented the
Table 3.1. African wildlife has some of the loudest animal sounds in the world
[46], which mostly happens during the mating season. Since the louder sounds
are less frequent than the sound of vegetation, bugs, and birds, the savanna
sound level for this project is assumed to be 60 dB on average throughout the
experiments. However, it should be noted that the momentary values differ
from one point in time to another.

Noise source Sound Pressure Level (dB)
Thunderclap 120
Hyena, Hippo, Lion, African Elephant 112
African Cicada 107
Noise from trees wind speed 8m/s 60
Moderate rainfall 50
Bird calls (44 dB); lowest limit of urban ambient sound 40
Quiet rural area 30
Light rain 30
Quiet forest wind speed 1 m/s 20
Buzzing fly 4

Table 3.1 – Examples of different sound levels [47, 48, 46]

Except for thunderstorms, rainfall sound level typically measures around 20 ∼
30 dB [49], which can increase to 60dB during heavy rainfall. However, this is
dependent mainly on the surface that the rainfall lands. For example, rainfall
on metal roofs is much louder than on soil.

A clap of thunder typically registers about 120 dB near the groundstroke.
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Nevertheless, the sound level picked by the microphone depends on the distance
to the sound source.

Taking into consideration the facts presented above and the SNR definition
on dB scale explained in section 3.1.2, Table 3.2 presents an approximation of
gunshot sound pressure at different distances to the receiver. The SNR values
are calculated based on the assumption that the background noise is constant
at 60 dB. It is worth emphasizing that the mappings are only an approximation,
and the precise values depend on many parameters such as atmospheric density,
humidity, temperature, surroundings, etc.

Shooter distance Sound Level* (SPLdB) SNRdB

1m 150 90
10m 125 60
100m 105 45
1km 85 25
10km 60 0

Table 3.2 – Distance-related decrease of sound level for gunshot
[50]. This table is calculated based on the assumption that the
background noise is constant from microphone’s point of view.
*Sound levels are calculated related to the gunshot sound level
being 150dB on average within one meter of a gunfire.

Since the signal-to-noise ratios are investigated on a linear scale in this study
4.1.2, Table 3.3 presents the linear SNR, its relative dB changes, and its mapping
to the shooter distance. For instance, assuming that the background noise level
(Savanna ambient sounds) is 60 dB if the linear SNR and its relative SPL (dB)
change are 2:1 and 6 dB, respectively, the shooter distance from the acoustic
sensor would be around 5 km.

Linear Ratio
(X:1)

dB Change in Root Power Quantity
Sound level (SPLdB)

Transmitter-Receiver
Shooter Distance

(km)
1:1 0 dB >10
2:1 6 dB 4.7
3:1 10 dB 3
4:1 12 dB 2.4
5:1 14 dB 1.9

Table 3.3 – Linear ratio of SNR and its relative SPLdB change
[51]. The background noise is assumed to be 60 dB, and the
gunshot sound level is assumed to be 150 dB near gun. The
distances are calculated based on Table 3.2.

3.3 Gunshot Audio Signal

Assessing and evaluating gunshot acoustics requires a thorough understanding
of the gunshot sound characteristics. Firearm sound is made up of one or more
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discrete acoustic events. However, the presence of these events depends on the
type of the gun, ammunition, microphone position, and even the surrounding
environment. In the following Section 3.3.1, some of the main characteristics
of the gunshot sound is addressed. Subsequently, the practical and theoretical
issues encountered in gunshot sound analysis is presented in Section 3.3.2.

3.3.1 Gunshot Acoustics

Two primary attributes characterize gunfire and enable the detection of gun-
fire discharges; the Muzzle Blast and Supersonic Projectile. Once the gunpow-
der combustion is complete, the firearm itself may produce much more subtle
mechanical sounds. These sounds can only be detected if the microphone is
sufficiently close to the firearm to pick up the tell-tale sonic information [52].

• Muzzle Blast: A conventional firearm uses confined combustion of gun-
powder to propel the bullet out of the gun barrel. Even though the sound
of the explosion emits from the gun in all directions, the majority of the
acoustic energy expels in the direction the gun barrel is pointing. Muzzle
Blast is the explosive shock wave and sound energy emanating from the
barrel, which typically lasts for less than three milliseconds [53].

• Supersonic Projectile: If the bullet travels at supersonic speed, the
second source of acoustic gunshot information is present. The supersonic
projectile’s passage through the air emits an acoustic shock wave, which
expands in conic fashion behind the bullet, with the wavefront propagating
outward at the speed of sound. The angle at which the shock wave cone
expands is dependent on the bullet’s speed [53].

Figure 3.5 – Signal received by a microphone located 180 m
from a firing gun. The speed of the bullet is 767 m/s and it
passes the microphone at a distance of 30 m. The shockwave
from the supersonic bullet reaches the microphone before the
muzzle blast [54].
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3.3.2 Analysis of Gunshot Recordings and Environmental
Effects

The presence of acoustic events in the firearm sound depends on several parame-
ters and will affect the detection procedure. Hence, when building an acoustical
gunshot detection system, it is crucial to consider these parameters. In other
words, different scenarios should be introduced into the training data to gener-
alize the deep learning model.

Consider the microphone placement; As depicted in Figure 3.6, Supersonic
Projectile expands behind the bullet in conic fashion and not in every direc-
tion, which means that depending on the microphone’s position, the projectile’s
expanding shock wave cone may vary in strength or even not intercept the mi-
crophone at all. Additionally, the muzzle blast would also be of lesser amplitude
than for the shots made with the muzzle facing towards the microphone [53].

Other acoustic events that may be present within the firearm sound are the
reflection of both the shock wave and the muzzle blast. Like any other physical
wave phenomena, they are subject to modifications as they propagate. This
means that the microphone will also receive the acoustic pressure waves arriving
later from other directions due to reflections and scattering [53]. Figure 3.7
shows the audio signal that the microphone recorded in different distances and
positions. It is also worth reminding that the significance of the reflections
depends on the environment. For instance, the amount of the reflection will
vary from indoors to rural areas, mountainsides, or wide-open areas.

Bullet

Shock Wave Trajectory

Gun Barrel

Figure 3.6 – Shock wave geometry for a supersonic projectile.
The Mach Angle θM is small for (V/c) ≫ 1, and close to 90◦ for
(V/c) ≈ 1[53]

The muzzle blast acoustic wave may be influenced by the surrounding obsta-
cles, ground surface, temperature and wind gradients in the air, and atmospheric
absorption. A recording microphone located close to the firearm could detect
the direct sound of the muzzle blast as the primary acoustical signal. However,
the further the microphone is located from the firearm, the higher the chance
that the direct sound path is obscured. The received signal might therefore
exhibit propagation effects, multi-path reflections, and reverberation. Another
discrepancy in the received signal might be caused by a fire gun with a sup-
pressor. Suppressors are designed to reduce the muzzle blast’s audible report
to lower the likelihood of detection or prevent hearing damage. Thus, a decent
gunshot acoustical detection system that relies on the muzzle blast must take
the possibility of suppressor use into account.
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(a) Oblique trajectory toward the micro-
phones

(b) Perpendicular trajectory, <1 meter
offset

(c) Perpendicular trajectory, 8 meter off-
set

(d) Opposing trajectory (muzzle pointed
away from microphones)

Figure 3.7 – Different positioning of a two-channel microphone
[53]

3.4 Deep Learning for Audio Processing

This Section aims to explain some of the deep learning subjects used in general.
Since deep learning is a sub-field of machine learning, the common concepts of
machine learning are introduced in Section 3.4.1. Subsequently, Section 3.4.2
overviews the concepts of Neural Networks and methods used in this research
study.

3.4.1 Basics of Machine Learning

Machine learning is a sub-field of artificial intelligence (AI) focusing on using
data and algorithms for the program to imitate the way that humans learn,
gradually improving its accuracy [55]. A machine learning model is the gener-
ated output of a learning or training procedure through the use of statistical
methods and data.

There are several steps to generate a machine learning model. After the
problem is defined, the first requirement is to collect and process data that the
model will be trained on. Subsequently, a training algorithm, so-called a model,
is chosen. There are a variety of techniques that can be used for the learning
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procedure, such as supervised, unsupervised, and reinforcement learning.

Next, regardless of the method, the learning system of a machine learning
algorithm breaks out into three main parts; a Decision Process, an Error Func-
tion, and a Model Optimization Process. In general, machine learning algorithms
make a prediction or classification based on some input data. Subsequently, A
loss function evaluates the model’s prediction, and based on the known exam-
ples, makes a comparison to assess the model’s accuracy. Finally, if the model
can be improved and fit better to the training data, the weights are modified to
reduce the discrepancy between the known examples and the model estimate.
The algorithm will repeat this process and optimize the model, updating weights
autonomously until a threshold of accuracy has been met [56].

The learning process or fitting is distinguished between two general categories
of supervised and unsupervised. Supervised techniques are used to predict or
explain the data. It is done using previous input-output pairs to predict output
for new input [57]. By contrast, unsupervised machine learning evaluates data
in terms of similarities called traits. These traits are, in turn, used to form
clusters of items [57].

No machine learning algorithm necessarily fits every purpose. Depending on
the needed output, different learning algorithms can be chosen. e.i., to build
a gunshot recognition system, a CNN can be trained based on previous pairs
of gunshot audio events-labels to classify the presence of gunshot sound in an
audio frame.

To improve the model’s performance, the model must be able to generalize. In
other words, high accuracy on the dataset that the model is trained on does not
necessarily mean that the model has comparable results on unseen data. For this
reason, the dataset is usually split into three sets during the training process.
The model is trained on the "training" set, while its performance is observed
on the "validation" set. Subsequently, the model accuracy is determined based
on its performance on the "test" set.

Confusion Matrix

In the case of classification problems, a commonly used metric for accuracy
measurements is the Confusion matrix. A confusion matrix provides valuable
information about the accuracy of different labels/classes. The rows of the
matrix represent the instances in an actual class, and the columns represent the
instances in a predicted class, or the other way around [58]. Table 3.4 presents
a confusion matrix for binary classification. If the actual values are defined as
True and False, and the predictions are presented as Positive an Negative, each
element in the confusion matrix are as below. A matrix similar to an identity
matrix indicates a %100 accurate model. FP and FN are the classification
algorithm’s errors.

Furthermore, useful metrics such as Recall, Precision, Accuracy can be ex-
tracted from the confusion matrix. The metrics for binary classification are
explained below.
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aaaaaaaaa
Actual

Predicted
N P

N TN FP
P FN TP

Table 3.4 – Confusion matrix for binary classification. TN is
True Negatives, FP is False Positives, FN is False Negatives, and
TP is True Positives.

• Accuracy: is the percentage of correctly predicted classes.

Accuracy = (TN + TP )/(P +N) (3.6)

• Recall: is the percentage of correctly predicted positive class.

Recall = TP/(TP + FN) (3.7)

• Precision: is the ratio between the True Positives and all the Positives.

Precision = TP/(TP + FP ) (3.8)

3.4.2 Deep Learning

Deep learning is a sub-field of Machine learning based on artificial neural net-
works. It can use unstructured data in its raw form as input and automatically
determine the features that separate various classifications of data from one an-
other. As opposed to machine learning, deep learning does not require human
intervention to extract data features. Hence it allows to scale the learning pro-
cess in more extensive ways [55]. Deep Learning models are designed to emulate
how the human brain works to deal with abstractions and problems that are
poorly defined [55]. They analyze data with a logical structure similar to how
humans conclude [59]. To understand how deep learning algorithms work, one
must get familiar with neural networks.

Neural Network

A neural network or an artificial neural network (ANN) is a series of algorithms
that attempts to seek and understand underlying relationships in a set of data
via a process that mimics the human brain.

A neural network consists of three or more layers: an input layer, one or
many hidden layers, and an output layer. Data is obtained through the input
layer, modified in the hidden layer(s), resulting in the output layer. Each layer
contains a number of nodes that are connected to the next layer of nodes, as
depicted in Figure3.8.

At a basic level, one can model the neural network similar to linear regression,
where the nodes are associated with a weight (wi) and a bias (bi). The algebraic
formula for a single node is then y =

∑i=1
m wixi + bi where xi are inputs or
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Input Layer Output LayerHidden Layer

Figure 3.8 – A simple Neural Network

former layer nodes and y is the output or a next layer node. Subsequently, an
activation function is used to define whether the produced y value is going to
be transformed and passed to the next layer in the network. The most famous
activation functions are ReLU, Sigmoid, and Tanh.

Depending on the problem, one activation function might perform better than
the others. For example, the sigmoid function generally works better in the case
of classifiers [60]. However, to find the best fit, it is advised to begin with one
of the functions and test the others. For instance, in this project, the activation
function chosen for the initial CNN model is ReLU. However, all of the activation
functions are used and compared to find the best fit in the later stages.

ReLu: f(x) =

{
x if x > 0
0 if x ≤ 0

(3.9)

Sigmoid: S(x) =
1

1 + e−x
(3.10)

Tanh: tanh(x) =
ex + e−x

ex + e−x
(3.11)

While it is implied within the name, it is worth mentioning that the "deep"
in deep learning refers to the depth of layers in a neural network. A deep model
is a neural network that consists of more than three layers, including the inputs
and the output, i.e., DNN (Dense NN). While DNNs are fully connected, deep
models may consist of other variations of the neural networks such as CNN,
RNN, or a combination of them, as well as a combination of neural networks
and classical machine learning algorithms at later stages.

CNN

A Convolutional Neural Network (CNN) is a kind of artificial neural network,
most commonly applied to analyze visual imagery. The name is derived from
the mathematical operation called convolution that such networks utilize. CNNs
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are specialized neural networks that use convolution in place of general matrix
multiplication in at least one of their layers [61].

Figure 3.9 – Architecture of LeNet-5, a convolutional NN, here
used for digits recognition. Each plane is a feature map, i.e., a
set of units whose weights are constrained to be identical [62].

CNNs have three main types of layers, Convolutional layers, pooling, and a
fully connected (FC) layer(s) [63]. While convolutional layers can be followed
by additional convolutional or pooling layers, the fully connected layer is the
final layer. A visual representation of a CNN model, a LeNet-5 Architecture,
is shown in Figure 3.9. The model consists of two sets of convolutional and
average pooling layers, followed by a flattening convolutional layer, then two
fully-connected layers, and finally a softmax classifier [62].

A convolutional layer operates by extracting features from the input using a
filter. With each layer, the CNN increases in its complexity, identifying greater
portions of the input [63]. Earlier layers focus on simple features, i.e., in the case
of image processing, colors and edges. As the image data progresses through
the layers of the CNN, it starts to recognize larger elements or shapes of the
object until it finally identifies the intended object [63].

After extracting the features by the convolution layer, pooling is usually used
to reduce the number of parameters for the successive layers. Two common types
of pooling layers are max pooling and average pooling. A max pooling layer
downsamples the input by taking the maximum value over a certain window
on the input data. An average pooling layer downsamples the input data by
calculating the average value of the input data over a certain window [63].

Before the data is put into the fully connected layers, it is usually flattened
to reduce dimensionality. It is converted from a matrix to a vector with only
one dimension. Subsequently, fully connected or dense layers are used as the
final part of the model. The last layer classifies the input based on the features
extracted through the previous layers and their different filters [63].

Hyperparameter Optimization

When building a deep learning model, there are design parameters that de-
fine the model architecture. For instance, in the case of a CNN model, these
parameters are the number of layers, number of nodes per layer, kernel size,
learning rate, optimizers, and activation functions. This so-called hyperparam-
eters govern the training process. Hyperparameter optimization, also known
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as tuning, is the problem of choosing a set of hyperparameters to optimize a
learning algorithm [64].

There are several reasons for using hyperparameter optimization instead of
relying on intuition [65], such as vanishing or exploding gradient, encountering
local optima. Additionally, tuning the hyperparameters yields an optimal model
by finding the best tuple.

Hyperparameter tuning works by running multiple trials in a single training
job [66]. Each trial is a complete execution of the training application with
values chosen for hyperparameters, set within the specified limits [66]. There
are several methods for hyperparameter tuning, such as Grid search, Random
search, Bayesian optimization.

Since only the Bayesian optimization is used for hyperparameter tuning in
this project, a brief explanation of this method is explained below:

Bayesian optimization[64]

"Bayesian optimization builds a probabilistic model of the function mapping
from hyperparameter values to the objective evaluated on a validation set. By
iteratively evaluating a promising hyperparameter configuration based on the cur-
rent model and then updating it, Bayesian optimization aims to gather obser-
vations revealing as much information as possible about this function and, in
particular, the location of the optimum."

With stating the related works and the necessary background information,
the next Chapter aims to present the methods used for this research study.
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Chapter 4

Methodology

This chapter discusses the methods and experimental setup used in the project.
The project consists of three steps:

• Collecting and preparing data.

• Training CNN models for different weather conditions as well as SNR
values to investigate a possible correlation between model accuracy and
SNR.

• Building and optimizing a single model for gunshot detection in African
wildlife.

First, Section 4.1 explains how the data is obtained, altered, and created
to meet the needs of this research study. Subsequently, Section 4.2 explains
the experiments done using deep learning techniques to investigate the central
hypothesis of this research study. Finally, Section 4.3 overviews the tools and
packages used in this thesis.

4.1 Data Preparation

This section describes how the data is prepared for deep learning experiments.
First, the data collection is explained. Subsequently, the data augmentation
methods and the algorithm to create synthetic data are explained.

As discussed in Chapter 2, one of the challenges in Environmental sound
detection is the diversity of the case studies and the lack of a complete unit
dataset that covers them all. To the best of the author’s knowledge, there are no
publicly available datasets suited to the needs of this research study. However,
there are famous audio datasets such as AudioSet or UrbanSound8K that include
gunshot sounds, among other events that have a low rate of occurrence within
this study. For instance, it is unlikely that urban noises such as vehicle and
traffic noises, constructions, or indoor activities such as inaudible cafe noise,
music take place within the savanna wildlife. Therefore, including these events
in this project will only introduce unnecessary diversity and complexity.
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Hence, only the gunshot sounds are collected from publicly available datasets
listed bellow:

• UrbanSound8K

• 5 gunshot sounds [67]

• Gunshot audio dataset [68]

• Sound Events for Surveillance Applications [69]

The collected gunshot sounds are mostly pure signals, meaning there is no
background noise. However, outdoors, specifically, the wildlife, is unlikely to
be completely silent. One can usually hear a diverse range of sounds within
the savanna wildlife; for instance, leaves rustling, wind, birds, insects, animal
sounds, rain, and thunder. Therefore, some ambient sounds are collected to
create a more realistic simulation of what microphones’ will pick up within
the field. The ambient sounds are treated as background noise for the gunshot
sounds. To be more precise, the dataset created for this research is audio samples
that are ambient sounds, with a chance of gunfire happening in 50% of the
samples. This method is also used in [19, 12, 21, 22, 18]. The Ambient sounds
collected from recordings hosted on YouTube are listed below:

• Savanna sounds; Two long tracks of ambient sounds in savanna wildlife
recorded by George Vlad [70, 71]. One track is recorded in the daytime
and the other at night. Insect chirps, distant bird calls, and occasional
animal sounds are recognizable within the recording.

• Rainfall [72]; Since Savannas have 6 - 8 months wet summer season on
average [73], rainfall sounds are also collected to simulate the rainy days.

• Thunder [74]; During the dry season, lightning often strikes the ground
[73]; hence the thunder sounds.

The following section explains how the samples are created using the collected
sounds.

4.1.1 Data Synthesis

After collecting the raw tracks, taking the advice of [27], new samples are syn-
thesized using data augmentation methods to introduce more diversity and gen-
eralization to the dataset. The main idea is to stack multiple tracks on top of
each other and create less pure signals. The resulting signals, thus, contain
ambient sounds1, which simulates a more realistic environment.

Since the tracks are collected from different datasets, they are of different
lengths. For example, gunshot sounds are one to twenty seconds long. The
longer tracks include silent sections and gunfire at an arbitrary moment. The
savanna, rain, and thunder soundtracks are an hour-long at least. All the tracks

1Ambient sounds and background noise refer to the same thing and might be used inter-
changeably within the context.
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are fixed at a desired duration, ten seconds for equal data distribution and re-
moving any time-based bias. The longer tracks are split into ten-second frames,
and the shorter ones are extended by adding a silent section; this resulted in
more than 200 tracks per sound category.

Each track is then defined as a signal layer that has a few properties2:

• Source, the path to the signal file.

• Duration: The fixed duration of the signal after loading. Shorter signals
are padded with zeros.

• Max time shift: The maximum range of time-shifting in seconds, applied
on the signal. The signal starts later or earlier to make sure the model
can detect sounds at different points in time.
The time-shifting is a random value within the range assigned when the
signal is loaded. It is, thus, varied for every signal.

• Max amplitude: The relative amplitude maximum applied to the signal;
After the signals are normalized between (−1, 1), they are scaled to the
desired max amount to simulate Signal-to-Noise ratio.

After assigning the signal layers’ parameters, they are stacked on top of each
other, and a new sample is synthesized.

The steps taken for data augmentation are stated in the Algorithm 1. Vari-
able n defines the number of samples chosen per category, p is the number of
categories, and 2p is the number of possible permutations between signal layers
within the synthesized samples. i.e., n = 100, p = 2 if one hundred files are
selected from two categories of savanna and gunshots, in total, using this algo-
rithm, n.2p = 400 samples are synthesized.

The data created using this algorithm is a vector of MFCCs or raw waveforms
and their corresponding labels, gunshot or no gunshot.

4.1.2 Modeling the SNRs

To model different SNRs, five separate datasets are created using the algorithm
explained in 1. The only difference between them is the amplitude scale of the
gunshot sounds. The reason behind this is to model the shooter’s distance from
the microphones. The greater distance will result in a lower sound level, which
would be harder to distinguish from the background noise. Table 4.1 shows
the relative amplitude scales of the samples within the five datasets. SNRi:1

represents a dataset that the gunshot sound level is i times the background noise
in all the samples containing gunfire sound.

2Created samples contain at least one signal layer
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Algorithm 1 Data Generator
Require: valid address to the categories
Ensure: an array including the synthesized samples

Define the layers and their parameters
Determine possible permutations of the layers; 2p =
for i = 0 to i < 2p do

Create randomized vectors of size n with time-shifting and amplitude pa-
rameters

Load n signals per category
Apply time-shifting and amplitude scaling on all loaded signals
Stack all layers on top of each other, resulting in a total of n2p stacked

signals
Apply feature extraction for all stacked signals if specified
Label the synthesized sample into a binary category with respect to the

presence of gunshot sound. (gunshot, no gunshot)
Save the extracted features or raw signals to a file

end for

Dataset Relative Amplitude Ratio
Gunshot Background Noise

SNR1:1 1 1
SNR2:1 2 1
SNR3:1 3 1
SNR4:1 4 1
SNR5:1 5 1

Table 4.1 – Five separate datasets used in the project. The
only difference between them is the amplitude scale of gunshot
sounds. Higher SNR happens when the shooter is closer to the
microphone.

4.2 Experiments

The next challenge after preparing the data is to build an acoustic gunshot recog-
nition model and investigate the potential correlation between the transmitter-
receiver distance and the accuracy of the sound recognition algorithm. This Sec-
tion presents the experiments conducted for this research study. First, the fixed
configurations throughout the experiments are discussed, such as the dataset
split ratio (train, test, and validation set)—subsequently, the motivation and
design of the experiments are presented. Finally, a single deep learning model
is proposed to deploy on the end-nodes.

Deep learning models for various settings are trained to detect gunshot sounds
using the datasets created with the method described in Section 4.1.1. Through-
out the experiments, data is split into three sets of training, validation, and test,
with a ratio of 0.55 : 0.2 : 0.25, respectively. The gunshot recognition is treated
as a binary classification problem, and the model performance is evaluated on
the test set using the confusion matrix and the accuracy metric explained in
Section 3.4.1. Table 4.1 presents the confusion matrix layout for the experi-
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Figure 4.1 – Confusion matrix layout throughout the experi-
ments.

Category Parameter Value

Training parameters Optimizer SGD
Learning rate 0.01

1st Convolutional layer
Filters 32
Kernels (3,3)

Activation ReLU
Max pooling Size 2

2nd Convolutional layer
Filters 16
Kernels (3,3)

Activation ReLU
Max pooling Size 2

1st Dense layer Units 500
Activation ReLU

2nd Dense layer Units 250
Activation ReLU

Table 4.2 – CNN model parameters

ments. The architecture and the parameters of the initial CNN model used for
the experiments is presented in Figure 4.2 and Table 4.2. The input features
used for the experiments are 13 MFCC bins, and the epoch and batch size for
the model fitting process is 100, and 8 respectively. Unless stated otherwise,
this configuration is kept fixed throughout the project.

4.2.1 SNR Effect on the Model Accuracy

The first experiment investigates the correlation between gunshot recognition
accuracy and SNR. The data used for this experiment consist of Savanna am-
bient and gunshot sounds, such as presented in Table 4.1. Savanna sounds are
always present within the samples, with half of them being the daytime sounds
and the other half nighttime sounds. Gunshot sounds are only present in 50%
of the samples. Two hundred samples are selected from each category, which
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conv2d_input: InputLayer float32
input:

output:

[(None, 200, 13, 1)]

[(None, 200, 13, 1)]

conv2d: Conv2D float32
input:

output:

(None, 200, 13, 1)

(None, 200, 13, 32)

max_pooling2d: MaxPooling2D float32
input:

output:

(None, 200, 13, 32)

(None, 100, 6, 32)

conv2d_1: Conv2D float32
input:

output:

(None, 100, 6, 32)

(None, 98, 4, 16)

max_pooling2d_1: MaxPooling2D float32
input:

output:

(None, 98, 4, 16)

(None, 49, 2, 16)

flatten: Flatten float32
input:

output:

(None, 49, 2, 16)

(None, 1568)

dense: Dense float32
input:

output:

(None, 1568)

(None, 500)

dense_1: Dense float32
input:

output:

(None, 500)

(None, 250)

dense_2: Dense float32
input:

output:

(None, 250)

(None, 1)

Figure 4.2 – CNN model layout used for the experiments
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yields 200× 22 = 800 samples in total per dataset. The model is fit for the five
SNR datasets created in Section 4.1.2 each with a sample size of 800.

The initial CNN model presented in Figure 4.2 and Table 4.2 is used for
training. The accuracy of the five trained models is then compared to see if the
noise level, ergo the shooter distance, affects the predictions.

4.2.2 Rain and Thunder Effect

This experiment aims to investigate the weather effects on the model accuracy.
In addition to the Savanna ambient sounds, rain and thunder sounds are added
to the training data. It is expected that weather conditions affect the gunshot
recognition accuracy. The experiment is done in two parts:

Part One

In the first part, the effects of rain and thunder are separately inspected at
different levels. This part aims to see how heavy and light rainfalls influence
classification accuracy. The same goes for thunderstorms. Depending upon the
nature of the lightning and its distance from the acoustic sensor, thunder sound
can range from a long, low rumble to a sudden, loud crack [75]. The thunder
sounds are inspected to see if they would wrongly be classified as False Positives.

Table 4.3 presents the datasets used for this part. Two hundred files are se-
lected from each category. Since the effect of rain and thunder are separately an-
alyzed in this experiment, three sound categories are selected each time. Hence
the sample size of each dataset is 200 × 23 = 1600. Note that for this part of
the experiment, rain or thunder sounds are always present within the samples.
Same as the first experiment, the CNN model presented in Figure 4.2 is used
for training.

Dataset Relative Amplitude Ratio
Gunshot Savanna ambient Rain Thunder

Rain1:1 1 1 1 -
Rain1:2 2 1 1 -

Thunder1:1 1 1 - 1
Thunder1:2 2 1 - 1

Table 4.3 – Supplementary datasets used for experiment 4.2.2.
The purpose of this experiment is to observe the effects of differ-
ent levels of rain and thunder sounds separately.

Part Two

In the second part of the experiment, it is assumed that both rain and thunder
might occur within the samples to introduce more randomness to the training
set. Table 4.4 shows the five datasets used for this experiment. Note that the
Savanna sounds are always present within all the samples. The other three
categories, rain, thunder, and gunshot sounds, each have an independent 50%
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chance of occurring, and if they do, their related power ratio will be the same
as in Table 4.4. One hundred files are selected from each category, so each SNR
dataset has 100× 24 = 1600 samples.

Since more noise is injected into the training data, a decrease is expected in
the model accuracy. Same as the former experiments, the CNN model presented
in Figure 4.2 is used for training, and the model is fit five times.

Dataset Relative Amplitude Ratio
Gunshot Savanna ambient Rain Thunder

SNR1:1 1 1 1 1
SNR2:1 2 1 1 1
SNR3:1 3 1 1 1
SNR4:1 4 1 1 1
SNR5:1 5 1 1 1

Table 4.4 – Five separate datasets that simulate different signal-
to-noise ratios. Rain and thunder sounds are introduced as back-
ground noise. The difference between the datasets are the am-
plitude scale of gunshot sounds. Higher SNR happens when the
shooter is closer to the microphone.

4.2.3 Sample Size Effect

This experiment investigates the sample size effect on the model accuracy. It
is expected that the accuracy increases with the sample size. The data used in
this experiment contains all four sound categories, such as in Table 4.4. The
sample size, n× 24, is increased based on the number of files chosen from each
category. This experiment is done on one type of SNR dataset. The CNN
model introduced in Figure 4.2 and Table 4.2 is trained for four sample sizes.
The accuracy of the trained models is then evaluated on a fixed test set. It is
expected for the model accuracy to increase for larger sample sizes.

4.2.4 Hyperparameter Tuning for CNN Model

For CNN model, instead of relying on intuition for model parameter values,
hyperparameter optimization explained in Section 3.4.2 is used. SNR Datasets
used for this experiment are the same as Table 4.4. Savanna sounds are al-
ways present within all the samples. The other three categories, rain, thun-
der, and gunshot sounds, each have an independent 50% chance of occurring.
One hundred files are selected from every category, so each SNR dataset has
100× 24 = 1600 samples.

Hyperparameter tuning is done five times for the CNN model since there are
five SNR datasets. Bayesian optimization is used for hyperparameter tuning.
Table 4.6 shows the search space prepared for the oracle. The maximum num-
ber of convolution layers is calculated with Equation 4.1. In this Equation, p
represents the pooling layer size, and x represents the input size. Note that this
experiment will result in five separate models. The purpose is to show the effect
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of hyperparameter optimization on the accuracy for different SNR levels. It is
expected to see an increase in model accuracy for all five models.

n =
⌊
logp(x)

⌋
(4.1)

Algorithm Bayesian Optimization
Objective Maximum validation accuracy
Max trials 100
Patience 10

Table 4.5 – hyperparameters optimization setting

Parameters Range
Number of convolution layers Defined by Equation 4.1, p = 2; [1, 3]
Number of dense layers [1, 5]

Optimizers SGD, Adam, RMSProp, Adadelta,
Adagrad, Adamax, Nadam, Ftrl

Learning rate 0.01, 0.001, 0.0001
Number of convolutional filters per layer [8, 64], Step: 4
Convolutional kernel size (x and y) [3,10]
Convolutional activation ReLU, Sigmoid, tanh
Max pooling size (for each conv. layer) Fixed; 2
Dense layer units per layer [50, 500], Step: 50
Dense layer activation ReLU, Sigmoid, tanh

Table 4.6 – Hyperparameter tuning search space for CNN model

GPU vs. CPU

In the final part of this experiment, the hardware used for training the CNN
model is compared. Again, Hyperparameter tuning is used in the training pro-
cess. The data used for this experiment contains all four sound categories, such
as in Table 4.4. One hundred files are selected from each sound category, so the
sample size is 1600. The model is trained for five SNR datasets once using CPU
and GPU.

The purpose is to see if the hardware choice for training affects the model
performance. Alternatively, if deployed on the end-nodes, model accuracy must
not change for different hardware.

4.2.5 Feature Extraction Effect on Model Accuracy: Raw
Waveform Vs. MFCC

This experiment investigates the effect of input features on accuracy. In this
project, two types of features are extracted from the synthesized data, MFCCs
and Raw Waveforms.
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MFCCs are used with success in many papers focused on audio classification
problems [76, 7, 77]. Features such as the Discrete Wavelet Transform (DWT)
or Mel spectrograms could also have promising results but will not be discussed
further. On the other hand, Raw waveforms avoid hand-designed features, which
should better utilize the improved modeling capability of deep learning models.
However, this incurs higher computational costs and data requirements, and
benefits may be difficult to realize in practice [23].

When raw waveforms are used as input, feature extraction is entirely left to
the convolution layers. This type of data only contains amplitude values in the
time domain and can be expressed as vectors with n elements. For the Time-
domain series, a specific type of Convolutional neural network, called 1D (one
dimensional), is used.

SNR Datasets used for this experiment are the same as Table 4.4. One hun-
dred files are selected from each category, so each SNR dataset has 100× 24 =
1600 samples. Hyperparameter optimization is used to find the best fitting for
1D CNN models. The tuning setting is the same as in Table 4.5, and the search
space is presented in Table 4.7. Note that the tuning is done for each dataset
separately; hence, five models are built in this experiment, and the hyperpa-
rameters might vary from one model to another. The accuracy of the models
then are compared to those from the experiment 4.2.4

In this project, a sampling rate of fs = 48000 and duration of 10 seconds
are used for audio signals, which produce vectors with n = 480000. Training
a deep learning model with such a large input vector can be time consuming
depending on the system. To reduce the size of the signal vector, the average
value for every 0.5 milliseconds is used. 0.5 milliseconds cover a = 24 elements
in the original vector which is calculated with Equation 4.3, where Fs = 48000
and the time is s = (0.5/1000) = 0.0005 seconds. This leads to a reduced input
vector by a factor of 24. The new input vector thus contains 20000 elements.
(calculated with Equation 4.3 where Fs = 48000, s = 10 seconds).

n = Fs ∗ s (4.2)

n =
Fs ∗ s
a

(4.3)

Parameters Range
Number of convolution layers Defined by Equation 4.1, p = 25,x = 20000; = [1, 3]
Number of dense layers [1, 5]
Number of convolutional filters per layer [8, 64], Step: 8
Convolutional kernel size (x and y) [2,100]
Convolutional activation ReLU, Sigmoid, tanh
Max pooling size (for each conv. layer) Fixed; 25
Dense layer units per layer [50, 1000], Step: 50
Dense layer activation ReLU, Sigmoid, tanh

Table 4.7 – Hyperparameter tuning search space for one-
dimensional CNN
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4.2.6 Combining SNR datasets

The end goal of the study is to come up with a single model that has acceptable
accuracy for different noise ratios and different weather conditions. In other
words, the gunshot recognition algorithm should be accurate enough for various
weather conditions and different SNRs. This experiment is designed to extend
the training data to all SNR datasets. The SNR datasets used for this experi-
ment are the same as Table 4.8 which is a repetition of 4.4. The data consist of
all four sound categories. Savanna sounds are always present within the sam-
ples, with half of them being the daytime sounds and the other half nighttime
sounds. The other three categories, rain, thunder, and gunshot sounds, each
have an independent 50% chance of occurring.

Dataset Relative Amplitude Ratio
Gunshot Savanna ambient Rain Thunder

SNR1:1 1 1 1 1
SNR2:1 2 1 1 1
SNR3:1 3 1 1 1
SNR4:1 4 1 1 1
SNR5:1 5 1 1 1

Table 4.8 – Five separate datasets that will be combined in
this experiment. The difference between the datasets are the
amplitude scale of gunshot sounds. Higher SNR happens when
the shooter is closer to the acoustic sensor. Savanna sounds are
present in all the samples. However the other three sound cate-
gories have a 50% chance of occurrence.

In this experiment, SNR datasets are added on top of each other in four steps
to observe the effect of noise level diversity on the accuracy. Starting from the
dataset SNR5:1, dataset SNR4:1 is added on top of the training data. The
accuracy of the newly fit model is then compared to the accuracy of the model
trained only for dataset SNR4:1. It is desired that the model learn the gunshot
pattern from the higher SNRs and perform better on the lower SNRs. Figure
4.3 presents the idea of the first step.

Similarly, datasets SNR5:1 and SNR4:1 are added on top of dataset SNR3:1.
The accuracy of the newly trained model is then compared to the accuracy
of the model trained only on the dataset SNR3:1. This process is repeated
for SNR2:1, and SNR1:1. Figure 4.4 presents the idea of the last step of this
experiment.

The experiment is divided into two parts to separate the sample size effect
from the new diversity introduced to the training data. First, the total sample
size is kept fixed. For instance, if in Figure 4.3 the first model is trained on
1600 samples, this will also be the case in the second model. In other words, to
train the second model, 800 files are selected from both datasets SNR5:1, and
SNR4:1, so the total size will still be 1600. Likewise, in Figure 4.4 the sample
size will be 1600. The data used for training the second model in this Figure
consists five SNR datasets, 5 : 1, 4 : 1, 3 : 1, 2 : 1, and 1 : 1. Hence, 320 samples
are selected from each dataset.
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CNN ModelSNR4:1
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SNR4:1
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for SNR4:1
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for SNR4:1

Compare
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Figure 4.3 – Comparing the accuracy of two CNN models for
SNR = 4 : 1. The first model is trained on one noise levels, while
the second model is trained on two noise levels.

In the second part, however, the number of samples selected from each dataset
is fixed; hence, the total sample size increases. For instance, if in Figure 4.3 the
sample size of the first model is 1600, the second model will be trained on
3200 samples. This means that 1600 files are selected from both SNR5:1, and
SNR4:1 datasets. Likewise, in Figure 4.4, the second model will be trained on
8000 samples since the training data contains five different SNR datasets 5 : 1,
4 : 1, 3 : 1, 2 : 1, and 1 : 1.

4.2.7 Final Proposition

After conducting various experiments and observing the effects of different pa-
rameters on the gunshot classification accuracy, a unique model is proposed for
gunshot detection in wildlife. Hence, the dataset characteristics and size, input
features, and model parameters will be determined based on the experiments’
results.

4.3 Tools

This section describes the hardware setting and software tools used for the
experiments.

The programming language used for this project is Python. According to
Statistics Times [78], Python is one of the top three most used programming
languages in 2021 and the most used programming language for deep learning
projects due to excellent community support and an extensive set of libraries
[79].

Figure 4.5 presents the high-level flowcharts of the data synthesis and model
training to give an idea of which libraries are used where. The important Python
libraries used in this project are listed below. Since Tensorflow and Keras have
user-friendly interfaces and large community support, they are used to a great
extent in this project.
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Figure 4.4 – Comparing the accuracy of two CNN models for
SNR = 1 : 1. The first model is trained on one noise levels, while
the second model is trained on five noise levels.

• Librosa: "A python package for music and audio analysis [80]." After
gathering the soundtracks, to load and analyze .wav audio files Librosa
package is used.

• Pydub: "Manipulate audio with a simple and easy high level interface
[81]." This library is used for data preparation, to split longer audio files
and extend shorter ones by adding silent segments.

• Tensorflow: "an end-to-end open-source platform for machine learning
[82]." This library has been used extensively in both parts of data syn-
thesis and model training. After loading and preparing the raw signals,
Tensorflow library is used to generate the new data and extract MFCCs
if chosen. This library is also used in model training, optimization, and
evaluation.

• Keras: is a deep learning API that runs on top of TensorFlow [83]. Keras
has been used to build the CNN models and optimize them in this project.

• Keras Tuner: A library developed to implement hyperparameter opti-
mization for models made with the Keras library. Keras Tuner is used for
Hyperparameter optimization in this project. This tool makes it easier to
define a search space and leverage algorithms to find the best hyperpa-
rameter values. The Bayesian Optimization technique is selected from the
existing hyperparameter optimization techniques [84].
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• Matplotlib: is a comprehensive plotting library in Python [85]. This
library is used to depict the data analyses, plotting the CNN model archi-
tecture, and confusion matrices.

The hardware and operating system used for the experiments are listed bellow:

• GPU: NVIDIA GeForce GTX 1070

– 1920 CUDA cores

– 16 GB Shared Memory

– 356.46 GB/s Memory Bandwidth

– 1632 MHz Graphics clock

• CPU: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

• RAM: 32.0 GB

• Operating System: Windows 10 64-Bit
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Chapter 5

Results

This section presents the results of the data and the experiments designed for
this research study using the tools and methods previously described in Chapter
4. Section 5.1 analyzes the acquired and prepared data. Section 5.2 presents
the results of the experiments overviewed in Section 4.2.

5.1 Dataset Analysis

This Section overviews the acquired data explained in Section 4.1, and created
datasets using the algorithm 1.

Table 5.1 shows the total duration of the soundtracks and the number of files
per category after splitting. As stated in Section 4.1, before generating the new
data, all the audio tracks are altered to be of ten-seconds length. The collected
ambient sounds that are more than an hour-long have been split into ten-second
frames. The gunshot tracks are also split or padded with silent segments into
ten-second frames depending on their prior length.

Category Total Duration Number of Files
African Savanna Daytime 1 hour, 40 seconds 365
African Savanna Nighttime 1 hour, 8 seconds 361
Rain 1 hour, 40 seconds 365
Thunder 1 hour, 8 seconds 361
Gunshots - 261

Table 5.1 – Total duration of the soundtracks and the number
of files per category after split

For further analysis, a Python script is used to extract existing frequencies
within the data. Figure 5.1 presents the results, which are grouped by sound
category. The y axis represents the scaled FFT magnitude (all values are scaled
to the range [0, 1]), and the x axis represents the frequency range in Hertz on a
logarithmic scale. This analysis indicates that the FFT magnitude is higher in
low-frequencies for all categories except the African savanna daytime sounds.

45



Figure 5.1a shows the frequency magnitudes for the savanna ambient sounds.
The nighttime sounds have more low-frequency components compared to day-
time. In both tracks, birdcalls and insect sounds are the most audible. A peak
is observed around 5 kHz for both day and night, which was suspected to be
the birdcalls.

To investigate this claim, additional tracks were gathered [86, 87, 88] which
are sounds from various African birds. As presented in Figure 5.2a, the birdcall
frequencies are from 1 Hz to 20 kHz. The magnitudes of frequencies from 1
to 5 kHz seem to be higher. However, there are also magnitude peaks around
500 Hz and 8 kHz. This observation is in line with the research done on bird
hearings in [89]. The author claims that the avian hearing is primarily sensitive
to sounds from 1 to 4 kHz, and depending on the species, the upper hearing
limit can reach up to 20kHz.

Figure 5.1b shows the frequency magnitudes for rain and thunder. Both
categories have low-frequency components, 0 − 100Hz. Thunder soundtracks
also contain components in the 100− 1000Hz frequency range.

1 10 100 1000 10000 100000
Frequency (Hz)

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

FF
T 

m
ag

ni
tu

de

african_savanna_day
african_savanna_night

Savanna Sounds

(a) Frequency magnitudes of savanna sounds

1 10 100 1000 10000 100000
Frequency (Hz)

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

FF
T 

m
ag

ni
tu

de

thunder
rain

Rain and Thunder

(b) Frequency magnitudes of rain and thunder

1 10 100 1000 10000 100000
Frequency (Hz)

0.0

0.1

0.2

Av
er

ag
e 

FF
T 

m
ag

ni
tu

de

Gunshots

Gunshots

(c) Frequency magnitudes of gunshot sounds

Figure 5.1 – Existing frequencies of acquired data

Figure 5.1c shows the frequency magnitudes for the gunshot sounds. The
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Figure 5.2

FFT magnitude of gunshot sounds is lower on average than other categories.
As explained in Section 3.3.1, gunshot signal has two primary attributes, Muzzle
Blast and Supersonic Projectile. One might expect larger magnitudes for higher
frequencies due to the shockwave presence in the gunshot sound. However, it is
worth reminding that the presence of a shockwave and its magnitude in gunshot
signal depends on the distance and angle between the bullet trajectory and the
acoustic sensor. Moreover, acoustic sensor characteristics have a non-negligible
influence on the reproduced frequencies, which is looked at closely in Section
6.1. Unfortunately, there are no data indicating the shooting distance, angle,
and microphone types used in the recordings.

For closer inspection, gunfire audio signals of a hunting rifle and an assault
rifle are selected from [90]. Figures 5.3, 5.4 show the time and frequency domain
representation of the gunshot sounds in two settings of far and close. Both
Muzzle Blast and the shock wave are present within the signals. However, there
are no traces of supersonic frequencies in the frequency-domain representation,
which again shows the non-negligible influence of the recording microphones.
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Figure 5.3 – Time and frequency domain representation of the
308-Bolt-Action Rifle in two settings, far, and close.
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Figure 5.4 – Time and frequency domain representation of the
5.56-AR15 Assault Rifle in two settings, far, and close.
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5.1.1 Synthesized Samples

The first step in creating new samples with Algorithm 1 is to define the sound-
tracks as signal layers. Each signal layer has a few properties as stated in Section
4.1.1. Table 5.2 presents the configuration for all the categories used in the ex-
periments. The signal layers are all fixed at ten seconds. Rain and thunder
sounds have random value time shifts with a maximum of five-second. A single
gunshot sound happens at an arbitrary moment within the ten-second frames.
The amplitude of gunshot sounds is varied depending on the specified SNR. If
all four categories are chosen, there would be four signal layers. Following the
Algorithm 1, the possible permutations would be sixteen.

Data Category Fixed Duration Max Time Shift Max Amplitude Scale
Savanna Sounds 10s 0 1

Rain 10s ±5s 1
Thunder 10s ±5s 1

Gunshot Sounds 10s Arbitrary SNRs

Table 5.2 – Signal layer configuration for all the sound categories

If chosen, the datasets created with the algorithm have an independent binary
probability for each category. The savanna sounds are chosen to always be
present in the samples; however, half are selected from the daytime sounds
and the other half from nighttime sounds. Equation 5.1 represents the possible
permutations for four signal layers. For each permutation, one of the options
from the tuples is selected.

[savannadaytime, savannanighttime], [rain,−], [thunder,−], [gunshot,−] (5.1)

As explained in Section 4.1.2, separate datasets are created to model each
SNR. Each dataset size is calculated with the Equation n.2p explained in Section
4.1.1.

A visual representation of a random sample generated with the Algorithm
1 is shown in Figures 5.5,5.6. If chosen, with a window size of 50ms, MFCC
features are extracted, resulting in a matrix of size (13, 200). As demonstrated
in Figures 5.5,5.6, when the SNR is higher, the gunshot sound pattern is more
distinct. Figures 5.7,5.8 visualizes the MFCCs of the same sample for the SNRs.
Even though MFCCs are less readable for the human eye, the distinction in the
lowest bin is still evident.

5.2 Experiments

In order to determine the best acoustic gunshot recognition model, different
experiments are performed. This Section presents the results of the experiments
described in Section 4.2. The performance measure of the models is based on
the confusion matrix and the accuracy metric. The main goal is to achieve the
highest possible prediction accuracy on the test set.
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Figure 5.5 – Signal stacks of a random sample for SNR levels
of 1 and 2
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Figure 5.7 – Extracted MFCC features of the sample presented
in Figure 5.5 for SNR levels of 1 and 2.
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Figure 5.8 – Extracted MFCC features of the sample presented
in Figure 5.6 for SNR levels of 3 and 4.
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5.2.1 SNR Effect on the Model Accuracy

To explore the effect of SNR on the model accuracy, a 2-dimensional CNN model
with fixed initial parameters is used. As mentioned in Section 4.2.1, the data
used for this experiment consist of Savanna ambient and gunshot sounds such
as in Table 4.1. Two hundred samples are selected from each category, yielding
200 × 22 = 800 samples per dataset. The model is trained for five separate
datasets, each with a sample size of 800.

Figure 4.2 and Table 4.2 present the CNN model architecture and parameters
used for the experiment. The model consist of two convolution layers, and two
fully connected dense layers. The performance of each trained model is then
evaluated on its test set. Table 5.3 shows the results of these evaluation. As
predicted, the SNR and the model accuracy are positively correlated. The model
accuracy in detecting gunshots is better when the SNR is higher, or in other
words, the gunshot sound is louder. Considering the correlation between the
distance and the SNR investigated in Section 3.2, the obtained results indicate
that the model accuracy is also correlated with the shorter distance.

Dataset Confusion
Matrix Accuracy

SNR1:1

[
0.9 0.1
0.2 0.8

]
0.85

SNR2:1

[
0.96 0.04
0.06 0.94

]
0.95

SNR3:1

[
0.98 0.02
0.03 0.97

]
0.97

SNR4:1

[
0.99 0.01
0.02 0.98

]
0.98

SNR5:1

[
0.98 0.02
0 1

]
0.99

Table 5.3 – Confusion matrix and ac-
curacy of CNN model trained for five
SNRs. There are two sound categories
present in the samples, Savanna and gun-
shots

Dataset Confusion
Matrix Accuracy

SNR1:1

[
0.45 0.55
0.52 0.48

]
0.46

SNR2:1

[
0.83 0.17
0.21 0.79

]
0.81

SNR3:1

[
0.93 0.07
0.07 0.93

]
0.93

SNR4:1

[
0.99 0.01
0.04 0.96

]
0.97

SNR5:1

[
0.99 0.01
0.01 0.99

]
0.99

Table 5.4 – Confusion matrix and ac-
curacy of CNN model trained for five
SNRs. All four sound categories are
present in the samples, Savanna and gun-
shots, rain and thunder.

5.2.2 Rain and Thunder Effect

This experiment investigates thunder and rain effects on gunshot recognition
accuracy. The experiment is done in two parts as explained in Section 4.2.2.

Part One

In the first part, the effects of rain and thunder are investigated separately. To
investigate the effect of rain, both Savanna and rain sounds are present in all
the samples, and there is a 50% chance of gunshot sound occurring. Similarly,
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only Savanna, thunder, and gunshot sounds are selected to investigate the effect
of thunderstorms.

These configurations are presented in Table 4.4. The sample size of each
dataset is 1600. Figure 4.2 and Table 4.2 present the CNN model architecture
and parameters.

Table 5.5 shows the accuracy achieved for each datasets. The first row of
both Tables are repeated from Table 5.3 for comparison. Comparing the results
shows that weather condition significantly affects acoustic gunshot recognition.
This indicates that on rainy days or during thunderstorms if the shooter is far
from the acoustic sensor, the probability of positively detecting gunshot sound
(TP) is drastically lower.

If the rainfall or thunderstorm is louder than the assumed Savanna ambient
sounds, the acoustic sensor hearing range is narrowed, and the gunshot sound
level must be louder than the background noise. This means that if the shooter
distance is far enough that the SNR value drops below 1, the gunshot signal
becomes unusable; hence, the model performance will be limited to a closer
range.

Additionally, false-positive and false-negative predictions considerably increase
during thunderstorms and rainfalls. Therefore, if deployed on the end-nodes,
this model would only be reliable for closer ranges during these weather condi-
tions. If this problem is overlooked, many poaching activities might be missed,
or the false alarms would result in unwanted trips to the field for the rangers.

Dataset Confusion
Matrix Accuracy

No rain,
thunder

[
0.9 0.1
0.2 0.8

]
0.85

Rain1:1

[
0.42 0.58
0.55 0.45

]
0.43

Rain1:2

[
0.74 0.26
0.28 0.72

]
0.73

Dataset Confusion
Matrix Accuracy

No rain,
thunder

[
0.9 0.1
0.2 0.8

]
0.85

Thunder1:1

[
0.47 0.53
0.43 0.57

]
0.52

Thunder1:2

[
0.82 0.18
0.25 0.75

]
0.78

Table 5.5 – Rain and Thunder Effect on gunshot detection ac-
curacy. in Rain/Thunderi:j , i and j are the relative amplitude
ratio of rain/thunder and gunshot sound respectively.

Part Two

In the second part of this experiment, both rain and thunder can happen within
a sample. The signal level configurations are the same as presented in Table 4.4.
The Savanna ambient sounds are always present, and the other three categories
have a 50% chance of happening within the samples. The sample size of each
dataset is 1600. Same as the former experiment the CNN model architecture
and parameters used for this experiment is as Figure 4.2 and Table 4.2.

Table 5.4 shows the confusion matrix and accuracy achieved for each trained
model. Comparing the results with Table 5.3, once more prove that weather
conditions affect the acoustic gunshot recognition, especially for smaller SNR
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values. However, this effect is negligible for higher SNRs, meaning if shooter
distance is close enough so that SNR > 5, gunshot detection is assured.

Based on the assumptions made for sound levels in Section 3.2, if the back-
ground noise level is 60 dB, SNR ≥ 5 would translate to a gunshot sound
pressure more than 74 dB. According to Table 3.2, if the near-gun sound pres-
sure would be 150 dB in an open area, 74 dB sound pressure would happen
if the shooter is approximately 2 km from the acoustic sensor. However, this
distance might be smaller due to the influence of humidity, temperature, and
environmental structures on the sound waves.

Finally, it should be noted that these results are based on our initial CNN
model. It might be the case that the model performance increase when hyper-
parameter optimization is used for the CNN model. This claim is investigated
closely in Section 5.2.4.

5.2.3 Sample Size Alteration

This experiment aims to compare the model accuracy for different sample sizes.
The data used for the experiment contains all four sound categories, such as in
Table 4.4. The CNN model introduced in Figure 4.2 is used for this experiment.
The model is trained for Dataset SNR3:1 for four sample sizes. Model perfor-
mance is evaluated on a fixed test set. The results are presented in Table 5.6.
As expected, the model accuracy increases with the sample size. On the other
hand, training time increases with this growth. This indicates that a trade-off
can be achieved between the sample size and the accuracy.

Sample
Size

Confusion
Matrix Accuracy

320
[
0.83 0.17
0.8 0.92

]
0.87

800
[
0.96 0.04
0.11 0.89

]
0.92

1600
[
0.93 0.07
0.07 0.93

]
0.93

3200
[
0.96 0.08
0.04 0.92

]
0.94

Table 5.6 – The effect of sample size on model accuracy for
dataset SNR3:1

5.2.4 Hyperparameter Tuning for CNN Model

This experiment aims to increase the CNN model accuracy using hyperparame-
ter tuning for the CNN model. The sample size is 1600. The search space for the
hyperparameters is presented in Table 5.7, and the hyperparameters optimiza-
tion setting are presented in Table 4.5. Note that the training is done for each
dataset separately, hence the tuning process. As a result, the hyperparameters
might vary from one model to another.
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The results achieved from this experiment demonstrate a nonlinear increase
in the model accuracy. For SNR = 1 this increase is 25%, which drops bellow
5% for SNR ≥ 2. This shows that when the signal-to-noise ratio is higher, the
significance of the hyperparameter tuning lessens.

Dataset Confusion Matrix Accuracy Initial CNN Accuracy

SNR1:1

[
0.53 0.47
0.28 0.72

]
0.62 0.46

SNR2:1

[
0.93 0.07
0.21 0.79

]
0.86 0.81

SNR3:1

[
0.92 0.08
0.02 0.98

]
0.95 0.93

SNR4:1

[
0.98 0.02
0.01 0.99

]
0.98 0.97

SNR5:1

[
0.99 0.01
0.01 0.99

]
0.99 0.99

Table 5.7 – Confusion matrix and accuracy of CNN models with
hyperparameter optimization trained for five SNRs.

Additionally, FN and FP predictions are observed for each SNR dataset.
Tables 5.8 and 5.9 present the percentage of each category causing these errors.
Table 5.8 shows that for lower SNRs, all three categories can cause false-negative
predictions. This error, however, is mostly due to the presence of rain. For
higher SNRs, though, only two categories of rain and thunder are responsible
for the wrong predictions.

Table 5.9, on the other hand, reveals that most of the false-positive predictions
are due to the presence of thunder. Another interesting fact that this analysis
reveals is that certain bird calls and insect sounds cause wrong predictions.
Figures 5.10 and 5.9 present some of the falsely predicted samples that include
the mentioned animal sounds.

SNR datasets Total number of
FN predictions only Savanna Rain Thunder

SNR1:1 55 30% 51% 37%
SNR2:1 41 18% 57% 51%
SNR3:1 4 0 100% 100%
SNR4:1 2 0 100% 100%
SNR5:1 3 0 66% 100%

Table 5.8 – Total number of FN predictions from test sets of
each SNR dataset. Additionally, the wrong predictions are fur-
ther investigated to observe which categories were present in the
samples.

GPU Vs. CPU

This experiment compares the effect of the used hardware on the accuracy of
the CNN model. The data used for this experiment contains all four sound
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SNR datasets Total number of
FP predictions only Savanna Rain Thunder

SNR1:1 95 24% 42% 55%
SNR2:1 15 33% 14% 54%
SNR3:1 17 30% 18% 60%
SNR4:1 4 25% 0 75%
SNR5:1 2 100% 0 0

Table 5.9 – Total number of FP predictions from test sets of
each SNR dataset. Additionally, the wrong predictions are fur-
ther investigated to observe which categories were present in the
samples.

categories, such as in Table 4.4. One hundred files are selected from each sound
category, so the sample size is 1600. The CNN model is trained for five SNR
datasets once using CPU and GPU. Hyperparameter tuning is used for CNN
model optimization in both scenarios.

Table 5.10 shows the accuracy achieved using both hardware for SNR datasets.
The model accuracy remains almost the same. The slight accuracy deviation
observed is suspected to be due to the indeterministic nature of GPU when used
for model training.

The advantage of using GPU for model training is the shortened training
time. This process, though, does not affect the evaluation phase. This means
that if deployed on the end-nodes, the model accuracy will be independent of
the end-node hardware.

Dataset Accuracy
GPU CPU

SNR1:1 0.62 0.65
SNR2:1 0.86 0.85
SNR3:1 0.95 0.95
SNR4:1 0.98 0.98
SNR5:1 0.99 0.99

Table 5.10 – Comparing the accuracy achieved for CNN model
using CPU vs. GPU for five SNR datasets

5.2.5 Feature Extraction Effect: Raw Waveform Vs. MFCC

This experiment focuses on the input type of the model. Raw waveforms are
used instead of extracting and using MFCCs. Feature extraction is, therefore,
entirely left to the convolution layers of the model. This type of data only
contains amplitude values in the time domain and is called one-dimensional data.
Therefore, the CNN model chosen for the training is of type one-dimensional.
The datasets used for this experiment contain all four sound categories. The
sample size is 1600. Hyperparameter tuning is used to find the best fitting. The
results of the experiment are presented in Table 5.11.
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Figure 5.9



Figure 5.10
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Comparing the results presented in Table 5.11 to the results of Experiment
5.2.4 presented in Table 5.7 reveals that the accuracy is almost the same for
both feature extraction methods. More over, other than the longer training
time when using raw waveforms, loading and classifying samples are four times
slower in the model evaluation phase. This shows that when the computational
power is limited and working in real-time is a crucial factor, MFCC feature
extraction is a better judgment.

However, note that if the signals were not downsampled as explained in Sec-
tion 4.2.5, the one-dimensional CNN model might have been more accurate. It
might be the case that crucial information about the signal is lost when the
sample rate decreases.

Dataset Confusion Matrix Accuracy MFCC Accuracy

SNR1:1

[
0.52 0.48
0.29 0.71

]
0.61 0.62

SNR2:1

[
0.85 0.15
0.19 0.81

]
0.83 0.86

SNR3:1

[
0.87 0.13
0.03 0.97

]
0.92 0.95

SNR4:1

[
0.94 0.06
0.03 0.97

]
0.95 0.98

SNR5:1

[
0.95 0.05
0.01 0.99

]
0.97 0.99

Table 5.11 – Confusion matrix and accuracy of 1D-CNN models
trained for five SNRs. The input data is raw waveforms.

5.2.6 Combining SNR datasets

This experiment is designed to extend the training data to all the SNR datasets.
For simplicity, the initial CNN model is used. The results are then compared
to the Table 5.4 from experiment 5.2.2. The SNR datasets used for this experi-
ment are presented in Table 4.4. The data consist of all four sound categories.
Savanna sounds are always present within the samples, with half of them be-
ing the daytime sounds and the other half nighttime sounds. The other three
categories, rain, thunder, and gunshot sounds, each have an independent 50%
chance of occurring.

SNR datasets are inserted into the training data in four steps. Starting from
the dataset SNR5:1, dataset SNR4:1 is added on top of the training data. The
accuracy of the newly fit model is then compared to the accuracy of the model
trained only for dataset SNR4:1. This process is repeated for datasets SNR3:1,
SNR2:1, and SNR1:1 as explained in Section 4.2.

This experiment is done in two parts:
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Part One

First, the total sample size is fixed at 1600. For instance, 800 samples from
both datasets SNR5:1, and SNR4:1, are selected for model training in the first
step, so the total size is 1600. Table 5.12 shows the sample size per SNR dataset
in every step. As presented in this Table, the model accuracy for the targeted
SNR decreases in every step, except for SNR1:1, which is a modest improvement.
This indicates that introducing SNR diversity at the cost of keeping the training
size constant has no positive influence on classification accuracy.

Sample Size per
Dataset Present SNR Datasets Target SNR Model

Accuracy
Initial
Accuracy

800 5:1, 4:1 4:1 0.93 0.97
533 5:1, 4:1, 3:1 3:1 0.69 0.93
400 5:1, 4:1, 3:1, 2:1 2:1 0.57 0.81
320 5:1, 4:1, 3:1, 2:1, 1:1 1:1 0.52 0.46

Table 5.12 – CNN model accuracy for a target SNR. Total
sample size is fixed at 1600. SNR datasets are combined together
in four steps.

Part Two

In the second part, however, the sample size per SNR dataset is constant; hence,
the total sample size increases in every step. For instance, in the first step,
1600 samples from both datasets SNR5:1, and SNR4:1, are selected for model
training, so the total size is 3200. Table 5.13 shows the total sample size in
every step. As presented in this Table, the model accuracy for the targeted
SNR increases in every step. This improvement is more significant for smaller
SNRs. Unlike the first part of this experiment, this indicates that introducing
SNR diversity and increasing the sample size enhances the gunshot classification
accuracy remarkably.

Total Sample
Size Present SNR Datasets Target SNR Model

Accuracy
Initial
Accuracy

3200 5:1, 4:1 SNR4:1 0.98 0.97
4800 5:1, 4:1, 3:1 SNR3:1 0.98 0.93
6400 5:1, 4:1, 3:1, 2:1 SNR2:1 0.91 0.81
8000 5:1, 4:1, 3:1, 2:1, 1:1 SNR1:1 0.80 0.46

Table 5.13 – CNN model accuracy for a target SNR. The sample
size of every dataset is fixed at 1600. Hence, total training data
size increases in every step.

5.2.7 Final Proposition

After conducting various experiments and observing the effects of different pa-
rameters on the gunshot classification accuracy, we propose a single model for
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gunshot detection in African wildlife.

Since the model should perform in different noise ratios, all the SNR datasets
are combined in the training data. Additionally, experiment 5.2.2 showed that
the weather conditions affect the model accuracy; hence, the same configuration
used for the SNR datasets is repeated for this part. Table 5.14 presents this
configuration again. The Savanna ambient sounds are always present, and the
other three categories have a 50% chance of happening within the samples.

Dataset Relative Amplitude Ratio
Gunshot Savanna ambient Rain Thunder

SNR1:1 1 1 1 1
SNR2:1 2 1 1 1
SNR3:1 3 1 1 1
SNR4:1 4 1 1 1
SNR5:1 5 1 1 1

Table 5.14 – Five SNR datasets that are combined together for
training the final model.

Based on the results from experiment 5.2.3, 200 files are selected from each
category. This yields 200 × 24 = 3200 samples per SNR dataset and a total
sample size of 5 × 3200 = 160k. Subsequently, based on the promising results
obtained in experiment 5.2.4, hyperparameter optimization is used for CNN
model training. The model is trained on GPU to accelerate the training time.
Finally, the MFCC features are chosen for model input, based on the comparison
done in experiment 5.2.5.

SNR Model Accuracy in Different Weathers
Clear Sky Rain Thunderstorm Rain/Thunder

1:1 0.85 0.73 0.75 0.67
2:1 0.97 0.96 0.93 0.89
3:1 0.98 0.97 0.98 0.97
4:1 0.99 0.99 0.99 0.98
5:1 0.99 0.99 0.99 0.98

Table 5.15 – The accuracy of the final model proposed for this
study for five SNR values and four weather condition

Table 5.16 presents the CNN model parameters chosen by the oracle. The
model has three convolutional and five dense layers. To evaluate the model, a
new test set is built. As stated in table 5.1 from Section 5.1, the data gathered
for this study resulted in approximately 260 files per sound category. Since
200 files from each category are selected for training, 60 files per category are
remained to synthesize a test set. To evaluate the model accuracy for each SNR
and each weather condition separately, the data is synthesized in 20 different
configurations, five SNR, four different weather conditions.

Once again, the Savanna sounds are present in all the test set samples. In
Clear Sky, the background noise is only Savanna ambient sounds. In the Rain
set, all samples have the rain sounds as well. Similarly, the samples from Thun-
derstorm set have Savanna ambient and thunder sounds in the background.
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Model Layers Parameters Model Layers Parameters

Convolution layer 1

Convolutional filters: 40
Kernel size: [3, 3]
Strides: [1, 1]
Activation function: ReLU

Pooling layer 1
MaxPooling2D
Pool size: [2, 2]
Strides: [2, 2]

Convolution layer 2

Convolutional filters: 28
Kernel size: [4, 3]
Strides: [1, 1]
Activation function: Sigmoid

Pooling layer 2
MaxPooling2D
Pool size: [2, 2]
Strides: [2, 2]

Convolution layer 3

Convolutional filters: 24
Kernel size: [4, 3]
Strides: [1, 1]
Activation function: ReLU

Pooling layer 3
MaxPooling2D
Pool size: [2, 2]
Strides: [2, 2]

Dense layer 1 Units: 200
Activation: Sigmoid

Dense layer 2 Units: 100
Activation: tanh

Dense layer 3 Units: 100
Activation: tanh

Dense layer 4 Units: 300
Activation: ReLU

Dense layer 5 Units: 1
Activation: Sigmoid

Table 5.16 – Hyperparameters chosen for CNN model by the
oracle

Finally, the Rain/Thunder set has all three sound categories in the background.
In every set, there is a 50% chance for gunshot sounds. Table 5.15 presents the
evaluation results on the test set. The results show that the model is nearly
perfect for SNR > 2. However, the model accuracy drops significantly when
both rain and thunder sounds are present within the samples. To provide more
details about the predictions, Table 5.21 presents the confusion matrix of each
test category. These Tables show that the highest rate of wrong predictions
are for SNR = 1 : 1, and these predictions are mostly false-negatives. This
outcome, however, is not unexpected; SNR = 1 means that the gunshot signal
amplitude is not louder than the background noise. Additionally, as explained
in Section 5.1, the supersonic frequencies are unfortunately absent from the
gunshot signals. Hence, it would be more difficult for the model to distinguish
the gunshots.

Another insight observed from Tables 5.21 is the low rate of false-positive
predictions, which is an advantage itself since it almost eliminates the chance of
false alarms. On the other hand, the FN predictions drop to zero for SNR > 3,
except when rain and thunderstorms happen simultaneously. This means that
the model never misses the gunshot sounds for SNR values larger than 3.

Finally, using the SNR-distance mapping from Table 3.3 and the obtained
model accuracy for different SNRs, the correlation between the shooter distance
and the gunshot detection accuracy is depicted in Figure 5.11. This figure is
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based on the assumptions that the background noise level is constantly 60 dB,
regardless of the weather condition, and that the Gunshot sound level is 150
dB near the gun (< 1m). While the model accuracy looks promising for the
shooter distances up to a few kilometers from the acoustic sensor (< 6km), it
should be noted that the actual values are suspected to be lower when deployed
on the end-nodes. This, of course, is due to the parameters left out of this
research study, such as geographical conditions, signal degradation, humidity,
temperature, and acoustic sensor characteristics.
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Figure 5.11
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SNR Confusion
Matrix Accuracy

1:1
[
0.98 0.02
0.28 0.72

]
0.85

2:1
[
0.98 0.02
0.03 0.97

]
0.97

3:1
[
0.98 0.02
0.02 0.98

]
0.98

4:1
[
0.98 0.02
0 1

]
0.99

5:1
[
0.98 0.02
0 1

]
0.99

Table 5.17 – Clear Sky

SNR Confusion
Matrix Accuracy

1:1
[
0.97 0.03
0.51 0.49

]
0.73

2:1
[
0.97 0.03
0.05 0.95

]
0.96

3:1
[
0.96 0.04
0.02 0.98

]
0.97

4:1
[
0.98 0.02
0 1

]
0.99

5:1
[
0.98 0.02
0 1

]
0.99

Table 5.18 – Rain

SNR Confusion
Matrix Accuracy

1:1
[
0.99 0.01
0.49 0.51

]
0.75

2:1
[
0.98 0.02
0.11 0.89

]
0.93

3:1
[
0.99 0.01
0.02 0.98

]
0.98

4:1
[
0.98 0.02
0 1

]
0.99

5:1
[
0.98 0.02
0 1

]
0.99

Table 5.19 – Thunderstorm

SNR Confusion
Matrix Accuracy

1:1
[
0.98 0.02
0.63 0.37

]
0.67

2:1
[
0.97 0.03
0.19 0.81

]
0.89

3:1
[
0.97 0.03
0.03 0.97

]
0.97

4:1
[
0.97 0.03
0.01 0.99

]
0.98

5:1
[
0.97 0.03
0.01 0.99

]
0.98

Table 5.20 – Rain/Thunder

Table 5.21 – Confusion matrices for each test configuration pre-
sented in 5.15.
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Chapter 6

Discussion, Conclusion and
Recommendations

In this thesis, a deep learning model is proposed to detect gunshot acoustics in
the Savanna wildlife. Existing solutions for intrusion detection mostly do not
cover gunshot sounds. On the other hand, existing gunshot detection systems
do not cover wildlife scenarios. We have created a dataset for this specific case
study, including ambient sounds from African Savanna, rainfall, thunderstorms,
and gunshot sounds. A CNN model is then trained to detect gunshot sounds.
Two feature extraction methods are evaluated for the model input. We have
also investigated the model accuracy deviation in different weather conditions
and noise levels. Additionally, we have investigated the correlation between the
shooter distance, signal-to-noise ratio, and model accuracy.

The experiments results confirm that the model accuracy is correlated with
the SNR and hence, the distance. The model accuracy decreases when SNR is
lower. If the shooter is far, the gunshot sound pressure reaching the acoustic
sensor would be smaller, ergo, the SNR, which causes the model accuracy to
decrease.

It is also revealed that the weather conditions such as rainfalls and thunder-
storms have a non-negligible negative influence on gunshot detection accuracy.
If the weather conditions result in louder noise than the assumed threshold noise
level (in this case, Savanna ambient sounds), the detection range is narrowed.
This result was already expected since the higher noise level would translate
into smaller SNR, and if SNR < 1, the signal is unusable, and the model
performance would be meaningless.

Comparing MFCCs and raw waveforms for CNN model input showed that
both yield approximately the same accuracy. This comparison implies that if
the computation complexity, power consumption, and real-time response are
crucial aspects, using MFCCs would be more efficient.

Finding and modeling the correlation between the shooter (sound source) dis-
tance, SNR, and the gunshot detection accuracy is beneficial for many reasons,
such as system reliability, end-node grid size, and project cost. For instance, to
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implement this project on the field, the distance between the end-nodes must
be determined beforehand. The acoustic surveillance system must cover the en-
tire protected area. As shown in Figure 6.1, based on the grid-size (end-nodes
distance), three conditions may occur. If the end-nodes are too far from one
another, there will be uncovered areas, and the system will fail to recognize and
report if the shooter is located within the blind spot. On the other hand, if the
end-nodes are too close to each other, the whole field will be covered; however,
the number of nodes will increase, which aside from extra cost, may introduce
more complexity to the system. This is where finding the correlation between
model accuracy and the shooter distance becomes useful.

(a)

(b)

(c)

Figure 6.1 – Three conditions for end-node distances. (a) Close
distance results in a large overlap area. (b) Far distance results
in an uncovered area (c) The optimal distance of the end-nodes

6.1 Limitations

Like most research studies, this thesis has some limitations due to the over-
all research design. This Section presents these limitations to provide a more
accurate picture of what can and cannot be concluded from this work.

As explained repeatedly in this thesis, a suitable dataset for this specific
case study was not publicly available. Hence, the raw data is gathered from
different sources, and new samples are synthesized with the purpose of a real-life
simulation. In other words, created samples and imitated noise levels are done
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on the signals using mathematical calculations, with some level of randomness in
signal amplitudes and time of occurrence. Hence, it might be the case that the
weather conditions and noise level imitations diverge from reality. For instance,
in rainy weather, the wildlife activity may retrieve from the usual amount,
and hence, the ambient sound level might be lower than the assumed amount.
Plus, it might be the case that the gunshot sound disrupts the wildlife, and the
ambient sound becomes louder or change abruptly, i.e., birdcall increase.

On the other hand, the frequency analysis of the raw tracks indicates that the
magnitude of frequencies above 10 kHz is significantly low. Even though this
is acceptable for background sounds, it is lost information in a gunshot signal.
As already mentioned in Section 5.1, the presence of a shockwave in gunshot
signal, and therefore the higher frequencies, beside the gun type, and the firing
angle, depends on the recording microphone characteristics.

A microphone’s Frequency Response Line[91] shows the sensitivity of a micro-
phone to various frequencies. For instance, Figure 6.2, shows Shure SM57 mi-
crophone’s frequency-specific sensitivity. According to this Figure, Shure SM57
sensitivity is degraded compared to its average line from 40 Hz to 200 HZ, and
around 15 kHz. This indicates that the ultrasound frequencies in the gunshot
sounds recorded with this microphone will have a negligible magnitude.

On the other hand, the frequency response line of Earthworks M50 presented
in Figure 6.3 looks almost steady for all the frequencies from 5 Hz to 50 kHz.
This implies that the higher frequencies will become apparent if gunshot sounds
are recorded with this type of microphone.

Figure 6.2 – Shure SM57 Frequency Response Graph [91]. The
Y-axis is the relative sensitivity in decibels (dB)

Another limitation worth mentioning is the absence of details in the model
output. Gunshot detection in wildlife is treated as a binary classification in this
study. Hence, the classification algorithm does not provide details about the
number of shots or the timestamp of the event within the ten-second frame,
which may raise concerns about the true-positive classifications. For instance,
if a gunshot and other similar sounds are present within a sample, and the
prediction is true, it is unknown if the prediction is true for the right reason.
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Figure 6.3 – The Earthworks M50 Frequency Response [91]

However, the probability of this case is small since the frequency signature of
similar sound events is different. The probability of this event will even decrease
more if the supersonic signature of the gunshots is present within the data.

6.2 Conclusions and Future Work

In this research study, we have investigated the problem of gunshot detection
in wildlife and the possibility of an acoustic-based solution for poaching pre-
vention. We have simulated the African savanna sounds and proposed a deep
learning model to classify gunshots in different weather conditions. We have also
investigated the correlation between the model accuracy and shooter distance
to help estimate system reliability and the end-node grid size.

Although this work presents promising results for gunshot detection in wildlife,
there is still room for improvement and further research. We propose the fol-
lowing topics that we feel will improve the system:

• Gathering actual data: Instead of synthesizing the data and simulat-
ing the environment, One can create significantly detailed and accurate
data by actually recording the sounds in the field. If collected this way,
there will be control over parameters that were out of our hands in this
research. For instance, if the shooter distance is known at the recording
time, it would help verify and even refine the model. Alternatively, choos-
ing suitable acoustic sensors will avoid the loss of signal information such
as high-frequency data. Finally, recording the gunshot sounds in different
distances and angles would introduce diversity to the dataset known to
the developer.

• Feature extraction methods: Even though using MFCCs has yielded
acceptable results in this study, investigating other features might prove
helpful. For instance, different features could lead to better accuracy or
less computation complexity. In addition, training a model with multiple
inputs (different feature vectors) may increase the model accuracy.

• Timestamping the events: To provide details about the events within
the time frames and verify the true-positive predictions, one can design a
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model that detects the exact time of gunshot within the frame. This may
help to know the number of shots within the time frames. It can also clear
doubts about the nature of true-positive predictions.

• Multi-class and multi-label classification: This work can be extended
to detect other events as well. For instance, detecting vehicle sounds or
human speech can also help the poaching prevention process. Addition-
ally, having multiple labels would provide more information which might
help the decision-making process. In other words, if the model can also
recognize the presence of birdcalls, insect sounds, and weather conditions
within the time frames, the system can classify the events with more con-
fidence.
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