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Fast Building Instance Proxy Reconstruction for
Large Urban Scenes

Jianwei Guo"Y, Member, IEEE, Haobo Qin

and Hui Huang

Abstract—Digitalization of large-scale urban scenes (in partic-
ular buildings) has been a long-standing open problem, which
attributes to the challenges in data acquisition, such as incom-
plete scene coverage, lack of semantics, low efficiency, and low
reliability in path planning. In this paper, we address these chal-
lenges in urban building reconstruction from aerial images, and
we propose an effective workflow and a few novel algorithms for
efficient 3D building instance proxy reconstruction for large urban
scenes. Specifically, we propose a novel learning-based approach
to instance segmentation of urban buildings from aerial images
followed by a voting-based algorithm to fuse the multi-view in-
stance information to a sparse point cloud (reconstructed using a
standard Structure from Motion pipeline). Our method enables
effective instance segmentation of the building instances from the
point cloud. We also introduce a layer-based surface reconstruction
method dedicated to the 3D reconstruction of building proxies
from extremely sparse point clouds. Extensive experiments on both
synthetic and real-world aerial images of large urban scenes have
demonstrated the effectiveness of our approach. The generated
scene proxy models can already provide a promising 3D surface
representation of the buildings in large urban scenes, and when
applied to aerial path planning, the instance-enhanced building
proxy models can significantly improve data completeness and
accuracy, yielding highly detailed 3D building models.

Index Terms—Urban scene reconstruction, photogrammetry,
instance segmentation, aerial path planning, surface reconstru-
ction.
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1. INTRODUCTION

IGITIZING large-scale urban scenes is of great interest in
D computer vision and computer graphics communities [1],
[2], [3], [4], as a 3D representation of urban scenes is essential
for various real-world applications, such as urban planning,
navigation, and environmental simulations. Compared to ex-
pensive vehicle-mounted or airborne LiDAR-based data acqui-
sition approaches, aerial-based photogrammetry sensing using
unmanned aerial vehicles (UAVs) provides a more affordable
and flexible way to capture detailed geometry of complex urban
scenes [5], [6], [7], [8].

The mainstream UAV-based aerial imaging methods typically
follow a coarse-to-fine paradigm that requires two flight passes.
The first pass captures an unknown scene quickly using a pre-
defined pattern and generates a conservative approximation of
the scene geometry that is referred to as a scene proxy. Such a
coarse model is then used for aerial path planning in the second
pass in which the flights of image acquisition are performed
along an optimized trajectory to produce a more complete and
better reconstruction. Previous works strive to improve the sec-
ond pass on aerial path planning [8], [9], [10], [11], [12], while
less attention has been paid to the first pass on 3D scene proxy
generation. In practice, scene proxies are generated based on
either simple extrusion of building footprints [13] or surface
mesh reconstruction using dense point clouds [8], [9], [10],
which has limitations such as low geometric accuracy, long
capture process, and high demands of on-site computing power.
Recently, [11] compute 2.5D proxies by detecting shadows from
satellite images. This method relies heavily on satellite images
with noticeable shadows and flat scene grounds, which has
limited accuracy in practice. We argue that generating more
accurate and tightly enclosed 3D scene proxies would improve
the quality of planned aerial paths.

In this paper, we aim to address the open problem of high-
quality building instance proxy generation from multi-view
aerial images. This is a great challenge due to three reasons:
(1) First, existing image-based 3D reconstruction workflows can
robustly recover camera poses and a sparse 3D point cloud via
Structure from Motion (SfM). It is also possible to generate
a dense point cloud by using Multiple View Stereo (MVS)
for better proxy reconstruction. However, the MVS step has
high computational demands, especially for large urban scenes,
which limits the scalability of previous methods [8]. In this
work, we resort to using only sparse SfM data for efficient proxy
generation. (ii) Second, the sparsity, incompleteness, noise, and
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Fig. 1.

Reconstruction of a large (2.9 km?) downtown central scene. Left: the coarse input point cloud computed from 7,000 images and the building instance

proxies reconstructed using our method (130 seconds on a commodity desktop computer). Right: the final detailed 3D model of the entire scene with building
instance information inherited from the proxies, which is reconstructed (via ContextCapture running 10 days on a high-end server cluster) from 50,305 images

acquired based on our proxy-derived drone aerial path.

outliers in the data pose great challenges to proxy reconstruction.
For example, high-rise buildings are typically captured by only
a few hundred points, and low buildings are often partially oc-
cluded by nearby buildings and trees. Previous point-based [14],
[15] or primitive-based [16], [17] surface reconstruction meth-
ods require dense and complete point clouds as input, and thus
cannot recover faithful structures from such corrupted data. (iii)
Lastly, building instance information of the scene is lacking.
Such information is crucial for distinguishing nearby buildings
to improve safety in data acquisition and enable fine-grained
path planning to capture finer building details. Moreover, such
information also promotes 3D models for a wider range of
practical applications.

To address the above-mentioned challenges, we propose a
novel workflow that enables efficient 3D building proxy re-
construction at the instance level, suitable for large-scale urban
scenes. Due to the extreme sparseness and incompleteness, the
value of SfM points is often considered low and has been
overlooked in past research. In this work, we re-examine its
value because the SfM points still retain key features of build-
ing structures. Our main finding is that the sparse inputs are
already sufficient for high-quality proxy reconstruction with
high efficiency, which is made possible by our building instance
segmentation and layer-based building proxy reconstruction
methods. To obtain building instances, we introduce a neural
network dedicated to generating building instance masks from
aerial images. The multi-view instance masks are then fused with
the sparse point cloud, and the building instances are obtained
by exploiting the cross-modality information. With the building
instance information, we propose a new layer-based surface
extraction method to obtain a watertight and manifold mesh
for each building, yielding an instance-enriched 3D model of
the entire scene. The obtained 3D building proxies can already

provide a lightweight surface representation of the scene. In
particular, they enable more reliable and fine-grained aerial path
planning for image acquisition toward urban reconstruction at a
higher level of detail.

The main contributions of our work include:

1) a novel workflow for efficient 3D building proxy recon-
struction at the instance level for large-scale urban scenes
from aerial images, which enables fine-grained aerial path
planning to recover finer details of urban buildings.

2) InstFormer, a novel neural network that extracts building
instance masks from aerial images, and a voting-based
multi-view instance fusion algorithm that exploits cross-
modality information for effective building instance seg-
mentation in sparse and noisy point clouds.

3) alayer-based building proxy reconstruction algorithm that
can generate lightweight surface models of urban build-
ings from extremely sparse point clouds.

4) Two benchmark datasets for urban scene segmentation and
reconstruction, respectively. The first one is for instance
segmentation of buildings, which contains 720 aerial im-
ages captured from four cities with varying flight altitudes,
and with buildings manually annotated. The other one is a
synthetic benchmark with three large-scale virtual scenes
dedicated to comprehensive evaluations of flight planning
and 3D urban reconstruction.

II. RELATED WORK
A. 3D Geometric Proxy Generation

3D proxy reconstruction aims at automatically creating 3D
coarse models from images or point clouds. One category of
methods obtains a simplified representation of buildings by
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leveraging mesh decimation approaches. Such methods typi-
cally reconstruct a dense mesh model from the input points [18]
followed by a simplification process exploiting geometric cues,
such as quadric error metric [19], planar proxies [20], [21],
[22], [23], [24], or general quadric surfaces [25], [26]. Another
line of work attempts to detect geometric primitives from point
clouds [27] and assemble primitive shapes into a coarse poly-
hedron. For example, Chauve et al. [28] propose an adaptive
decomposition of 3D space induced by planar primitives and
form a watertight polygonal mesh by Delaunay triangulation.
Lin et al. [29] fit parametric building blocks to the input LIDAR
data for building reconstruction. Monszpart et al. [30] explore
relation-based primitive fitting to provide compact and simpli-
fied representations of urban scenes. Nan and Wonka [17] and
Kelly et al. [31] propose optimization approaches based on inte-
ger programming to approximate the geometry of the buildings.
Bauchet and Lafarge [32] design a kinetic data structure for
partitioning the space into convex polyhedra, from which the
underlying surface mesh can be extracted with a min-cut formu-
lation. Alternative methods are also proposed to reconstruct 2.5D
building models [33], [34] including roofs [35] from LiDAR
input or images. These methods require dense and relatively
high-quality 3D point clouds as input, which are usually not
feasible or expensive to satisfy with practical data acquisition
systems, and thus they cannot guarantee plausible results due to
the requirement of detecting a complete set of primitives from
such corrupted data with severe missing structures.

B. Aerial Path Planning for Urban Scene Reconstruction

The goal of aerial path planning is to obtain high-quality tra-
jectories for reliable and efficient data acquisition using UAVs,
to enable high-quality 3D reconstruction of large-scale scenes.
This challenging task is closely related to image-based scene
reconstruction [36] and view selection (e.g., Next-Best-View
planning [37], [38]). In contrast to the conservative fixed-height
trajectories of zigzag patterns used by commercial software
for oblique photography (e.g., DJI-Terra” and PIX4D), current
research interests focus on maximizing scene coverage and
meanwhile minimizing the trajectory length. Roberts et al. [9]
and Hepp et al. [10] design novel scene coverage models and
employ submodularity to select candidate views. Koch et al. [39]
further utilize semantic information obtained using neural net-
works to optimize flight paths, where the semantics of the
proxy model are used to define free and occupied airspace. This
method relies on a semi-automatic approach to extract target
objects and is limited to small-scale scenes. Smith et al. [8]
introduce reconstructability heuristics into view optimization
and develop novel optimization approaches to maximize recon-
struction quality. Zhang et al. [13] jointly optimize the view
selection and path planning in a single step by considering both
scene reconstruction and path quality.

While paying less attention to scene proxy generation, most
previous path planning methods [6], [8], [9], [10] reconstruct
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an MVS dense mesh to estimate the scene geometry and flyable
airspace. Although they can efficiently obtain dense points from
down-sampled images [6] or only a small set of images [8], MVS
is still the most time-consuming process in these pipelines. The
high computational cost hinders its usage in processing large-
scale scenes containing densely populated buildings. Different
from previous methods, our work explores the value of the sparse
StM points together with prior knowledge about urban build-
ings. We propose a novel workflow for reliable building proxy
generation from such often overlooked data and demonstrate
its applicability in aerial path planning for large-scale urban
reconstruction.

C. Instance Segmentation

To ensure safety and improve flexibility in data acquisition
using UAVs, we propose to exploit building instance informa-
tion of the scene. A large volume of methods has been pro-
posed for the task of 2D instance segmentation [40], which can
be roughly categorized into proposal-based and proposal-free
methods. Proposal-based methods consider a top-down strategy
that generates region proposals based on object detection and
then predicts an instance mask within each proposal. According
to the number of stages required for object positioning and mask
generation, these methods can be further divided into single-
stage (e.g., YOLACT [41]), two-stage (e.g., Mask-RCNN [42],
mask scoring R-CNN [43], PANet [44]), and multi-stage (e.g.,
Cascade R-CNN [45], Hybrid Task Cascade [46], SCNet [47])
methods. On the contrary, proposal-free methods work in a
bottom-up manner. They first produce per-pixel predictions
and then group pixels into object instances ([48], [49], [50],
[511, [52]). Our approach is multi-stage based on the Cascade
architecture [45], and we further improve the performance of the
multi-stage detectors by strengthening the correlation between
different tasks (i.e., classification, detection, and segmentation)
using the global context information. Although some recent
work uses dual-pathway transformers for building extraction
from remote sensing images [53], [54], they only address se-
mantic segmentation by solving a binary classification problem.

Benefiting from point set learning neural networks such as
PointNet++ [55], many 3D instance segmentation methods have
been proposed [56], [57], [58], [59]. These methods can already
achieve encouraging results on small-scale indoor scenes, but
it is still challenging to extend them to outdoor scenes due
to the lack of annotated 3D instance segmentation datasets.
Chen et al. [52] introduce a multi-view instance segmentation
framework for 3D buildings. They perform 2D roof instance
segmentation on the height-enhanced multi-view images for
better performance. This method relies on the input dense
mesh models to generate usable height maps. In our work, the
mesh models are not available, and we thus directly use sparse
point clouds for 3D instance segmentation. Recently, several
direct 3D instance segmentation methods (such as HAIS [60],
SoftGroup [61] and Mask3D [62]) have improved the instance
segmentation performance on a large-scale outdoor dataset,
STPLS3D [63]. However, these learning-based methods rely on
dense points that are not available for our low-altitude UAV
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Algorithm overview. Given a set of aerial images, we first propose an instance segmentation neural network, the InstFormer, to predict per-building

instance masks in each view. Meanwhile, we generate a sparse point cloud from the input images using the SfM technique. Then by combining the 2D instance
masks and the 2D-3D correspondences, we present a voting-based multi-view instance fusion algorithm to segment all 3D building instances. Finally, a novel
layer-based surface reconstruction method is proposed to generate a 3D scene proxy with all semantically parsed buildings.

images. Actually, they cannot extract sufficient point features
from sparse point clouds. A comparison between SfM sparse
point clouds and the mainstream available datasets is shown in
Supplementary Materials, available online. In this paper, we take
advantage of the matured 2D instance segmentation and 2D-3D
correspondences to achieve precise 3D instance segmentation
of urban buildings from sparse points.

III. OVERVIEW

The goal of this work is to enable effective and efficient 3D
proxy generation for individual buildings of a scene from a set of
aerial images, which further allows reliable aerial path planning
for detailed urban reconstruction. The input images are captured
by a drone equipped with RGB cameras. We perform the initial
aerial capture using a simple pre-defined overhead trajectory
pattern [9].

An overview of our algorithm is outlined in Fig. 2, which
consists of two novel modules: 3D building instance segmenta-
tion (Section I'V) and layer-based proxy generation (Section V).
Given the input aerial images, we first propose a new instance
segmentation neural network, called InstFormer, to predict per-
building instance masks in multi-view images. Considering the
dense distribution of buildings and occlusion caused by nearby
buildings and trees, our instance segmentation is performed on
the nadir images only, where the building roofs are fully visible
and can be reliably segmented without ambiguity. We recover
camera poses and generate a sparse point cloud from the input
images by using SfM, where the correspondences between the
feature points of the images and the reconstructed 3D points
are also obtained. Based on the roof instance masks and the
2D-3D correspondences, we present a voting-based multi-view
instance fusion mechanism that filters out over-segmented and
invalid instances. The remaining masks are then projected back
into the 3D space to segment the entire buildings. Since the StM
point cloud is typically sparse and has large missing regions
(see Fig. 2), it is problematic to generate a faithful mesh from
such data using existing reconstruction methods such as Poisson
surface reconstruction [14]. To this end, we introduce an effi-
cient layer-based proxy reconstruction algorithm that exploits
structure priors of buildings to extract a volume mesh from

such corrupted data. Following that, we obtain a manifold and
watertight proxy model of each building by removing its interior
redundant faces.

IV. 3D BUILDING INSTANCE SEGMENTATION

Building instance segmentation serves as the foundation for
reliable aerial path planning and semantic-aware 3D scene re-
construction. For point clouds with plausible density and com-
pleteness (e.g., MVS point clouds), it is straightforward to apply
a 3D object detector [64], [65] or a 3D instance segmentation
method [56], [57] to directly extract the 3D building instances. In
our work, the sparse point clouds generated by SfM suffer from
missing data, high levels of noise, and outliers, which hinder the
direct application of these methods to robustly detect or segment
3D building instances. In this work, we take advantage of the fast
development in image-based instance segmentation and 2D-3D
correspondences (though a limited number) to achieve precise
3D instance segmentation of urban buildings from sparse point
clouds.

A. 2D Building Instance Segmentation

Although the existing 2D instance segmentation net-
works [42], [43], [45] have excellent performance on datasets
such as MS-COCO [66], they are difficult to generalize directly
to urban scenes due to large variations in the sizes and densities
of building instances in a scene. We propose a novel instance
segmentation neural network, called InstFormer, to produce ac-
curate segmentation masks of dense buildings. We observe that
the buildings in oblique images are more likely to be occluded
by the nearby buildings or trees, while they typically do not
overlap in nadir images. This motivates us to perform instance
segmentation using nadir images. To train and evaluate our
neural network, we create a new dataset by collecting real-world
aerial images and annotating all the building instances in these
images (see Section VI-A).

Fig. 3 summarizes the network architecture of InstFormer that
predicts accurate instance masks for buildings at the pixel level.
Since an input aerial image is of high resolution, we split the
image into multiple overlapping blocks before feeding it into the
neural network. To handle the unbalanced distribution of sample
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Fig.3. Network architecture of InstFormer for dense and multi-scale building
instance segmentation. The network consists of three key modules: Backbone,
Neck, and Head. The TF-Encoder adopts a Vision Transformer as the backbone
to extract the feature pyramid. The Neck module, including a CARAFE Up-
sampler [67] and a DyHead, is then applied to fuse and enhance the extracted
features. In the Head module, we use a 3-stage cascade structure comprising of
three Bounding Box Heads and one Mask Head to locate and generate instance
masks in a coarse-to-fine manner.

categories and avoid over-fitting, InstFormer adopts a 3-stage
cascade structure comprising of three Box branches (i.e., the
Bounding Box Head in Fig. 3). The Box branches in the first two
stages are responsible for gradually outputting coarse bounding
boxes of buildings, and the counterpart in the last stage refines
the box predictions and generates the instance masks. In the
following, we briefly describe the key modules of InstFormer,
and a more detailed illustration of the network architecture as
well as the advantages of each module are provided in the
Supplementary Materials, available online.

Overview of InstFormer: Instance segmentation typically in-
volves three sub-tasks: detecting, classifying, and segmenting
objects. Therefore, InstFormer adopts a hybrid task cascade
(HTC) architecture. First, multiple tasks such as detection, mask
prediction, and semantic segmentation are combined at each
stage to form a joint multi-stage processing pipeline, allowing
each stage to benefit from the other tasks. Second, contextual
information goes through an extra branch for stuff segmentation,
and a directional path is added to allow information to direct
flow across stages. Overall, the HTC architecture effectively
improves the flow of information not only across stages but also
between tasks.

In our implementation, InstFormer consists of three key mod-
ules: Backbone, Neck, and Head. Given an input image block,
we first utilize the Pyramid Vision Transformer [68] as the
backbone to extract the feature pyramid (FP, see the TF-Encoder
layer in Fig. 3), which generates high-resolution feature maps
for images with dense and varying-scale instances. To further
increase the receptive field to aggregate contextual information,
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Fig. 4. Visualization of class activation maps. The building class score is
mapped back to the previous transformer layer to emphasize the distinctive
areas of buildings. Regions with high response values are shown in red, while
regions with medium and low response values are indicated in green and blue,
respectively.

a Neck module (including a Upsampler and a DyHead) based
on the self-attention mechanism is applied to efficiently fuse and
enhance the FP. After that, the enhanced features are fed into a
Pooler layer to obtain fixed-size feature maps, which are further
sent to a Generic Rol Extractor to extract the regions of interest
(ROIs). Then the ROIs extracted in each stage are sent to the
corresponding Bounding Box heads to predict the final bounding
boxes. At the same time, we also use the Global Context (glbctx)
head combined with a Feature Relay (FR) head to strengthen the
correlation between classification, detection, and segmentation
tasks. Finally, a Mask head uniformly processes the output of
the FR and glbctx heads and generates accurate instance masks.
To sum up, the proposed InstFormer can be mathematically
formulated as follows:

Y™ =R (x,by1), b =B ( box) J M
w;na*k =R (xz,b;), my:=M, (]: (w agk,mmfl)) , (2

where « is the feature map extracted from the backbone. At
stage ¢, we use a region-wise pooling operator R to extract the
ROI-wise box features £} based on the feature map x and
the bounding box b;_; predicted in stage ¢ — 1. Meanwhile,
the mask features ™* can be obtained by pooling x and b;.
The prediction boxes b, and masks m; are learned from the
Bounding Box head B; and Mask head M, respectively. F is a
feature fusion operator and m ., represents the accumulated
mask features taken from stage 1 to ¢ — 1. In Fig. 4, we use
the class activation maps (CAMs) to get the informative regions
used by our InstFormer to identify the category of buildings. The
high-response areas are buildings, and the low-response areas
are backgrounds, indicating that we can represent the buildings
well and make discriminative localization.

Loss Functions: Since there are only two concerned categories
(i.e., buildings and background), we adopt the cross-entropy
loss LS for the binary classification. To make the bounding
box location more accurate, we use a Complete-IoU (CloU)
loss [69] as regression loss function £, . Another cross-entropy
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Fig. 5. Illustration of the voting-based instance fusion. In the first image
(denoted by #1), the building in the light purple box is incorrectly separated
and in all the three images, the red box only covers a small part of one
building, leading to inaccuracy or under-segmentation. By fusing the masks from
multi-view images based on a voting mechanism, an accurate 3D segmentation
is achieved.

loss £k js used to predict the instance mask. Moreover, we also
utilize the loss term £¢°°* introduced in SCNet [47] to obtain
effective global contextual features and output multi-labels, so
that we can use these features later to perform more accurate
multi-view instance fusion. Finally, we perform end-to-end
multi-task training by minimizing the total loss function as
follows:
3
L= Z a (Egls + £ieg) + chask + ,%Cglbctx- 3)

t=1

The hyperparameter vector & = [y, o, ] are the weights of
classification and regression losses corresponding to each stage.
The hyperparameter /3 is the weight of the mask loss. To maintain
the consistency of IoU distribution between training and infer-
ence samples, we set 3 = Zle o to avoid over-fitting. Finally,
~ corresponds to the loss weight of the global contextual feature,
which is set to v = 3 by default. The stage loss weights are set
to a = [1,0.5,0.25].

B. Voting-Based Multi-View Instance Fusion

The InstFormer network outputs a set of building masks
from multi-view images, where multiple instance masks may
correspond to the same building. To separate different buildings
in a 3D point cloud, one has to identify the masks belonging to
the same building and then correlate them with their counterparts
in the 3D point cloud. Establishing the correspondences between
multiple masks is not straightforward due to the segmentation
errors in 2D images. For example, one building correctly seg-
mented in a few images could be separated in other views; or
there are false positive buildings. A few such examples are given
in Fig. 5.

To reliably fuse the error-prone instance masks from multiple
views, we propose a voting-based approach to filter out the
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over-segmented and false positive masks. Let D! = {LIM/ W
denote the set of all detected building instances in an image I,
where LIM is referred to as the k-th local instance mask in
image /. With the mapping 7 (provided by the SfM system)
between the 2D feature points in the images and the sparse point
cloud, we can obtain a set of 3D points Py, that correspond to the
2D feature points located in LIM},. Besides, for the current image
I, we retrieve a set of neighboring images Z (1) according to the
mapping 7, and in Z([) each neighboring image contributes to
the reconstruction of any subset of points in Pr;. Next, each
image J € Z(I) casts a vote v(J||I;) for each LIMY in image
I by checking the visibility of the 3D points Py in image J.
Specifically, we look into the number of instance masks from
which all points in Py, are visible to determine if the vote is
valid. The following three cases are considered for scoring:

e u(J||I;;) = 0. This is not a valid vote, which usually hap-
pens in two cases: (1) Image J contributes the recon-
struction of Prj, but only a small part of the building has
been captured by image .J and thus the building was not
detected by our InstFormer; (2) The instance segmentation
network recognizes non-building objects located in LIMZ
as buildings, while no error occurs in image J.

e u(J||I;;) = 1, which means the local instance masks in
both image I and J belong to the same building. This is
the desired case and is thus considered a valid vote.

e u(J||I;) > 2. This is also not a valid vote. It indicates that
the 3D points P are segmented into multiple different
instances in image J. This happens when image .J provides
a correct segmentation but the local instance mask LIMj, in
image [ is under-segmented, or the segmentation in image
I is correct but the corresponding building in image J is
over-segmented.

To determine whether a local instance mask in image [ is
valid, we use all images in Z(I) to vote for LIM} and ob-
taina voting vector V = {v(J1||Ix), v(Jo|| k), . . ., v(Jn]||1k)}
We return the result with the maximal scores: v(Ij)
Mode{v(JiHIk)‘fil}, and further determine if the current
instance is correctly segmented by:

True, ifv (I) = 1;
False, else.

Flag (LIM}) = { 4)
For image I, we first discard the invalid local instance masks.
Then for each correct mask, we record in image .J a list of valid
local instance masks that generate a valid vote, i.e., v(J||I) =
1. After processing all images similarly, the correspondences
between local instance masks in different images have been
established. Thus, a group of local instance masks belonging
to the same building instance are collected. The 3D instance
segmentation is then achieved by combining the 3D points
corresponding to each local instance mask in each group.

V. LAYER-WISE PROXY GENERATION

After 3D instance segmentation, we obtain a single point
cloud for each building. As shown in Fig. 6(a), the point cloud
of the building is severely under-sampled and noisy, and in par-
ticular, important structures such as large parts of the facade are
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(d) Dominant Profiles (e) Dominant Point Sets (f) Proxy Geometry  (g) Watertight Surface (h) Proxy Profile

Illustration of the proposed slicing-based proxy generation. Our algorithm takes a sparse point cloud (without normal information) as input (a), which is

uniformly sliced into a sequence of layers along the vertical direction (b). We generate a global projected point set for each layer by projecting the 3D points from
all its above layers onto it (c). According to point and area gains (i.e., Gpoint and Gareq in (5)), we extract a set of dominant structural profiles, whose supporting
planes are visualized in (d), and their corresponding global projected point sets are shown in (e). We then extrude the dominant structural profiles to form the proxy
geometry (f), where the colored planes denote the presence of interior faces. Finally, an incremental surface extraction is conducted to obtain a watertight mesh,

for which a profile of the proxy is shown in (h).

commonly missing. To handle such corrupted data, we propose
a new slicing-based surface reconstruction method based on
the fact that urban buildings typically have piecewise constant
profiles along the vertical direction.

Terminology: The input point cloud of a building is first
uniformly sliced into a sequence of raw slabs along the vertical
direction, see Fig. 6(b) for an example. Each slicing plane is
called alayer, and the space between two adjacent layers is called
alayer space. Each layer is also associated with two entities: the
local projected point set formed by projecting the corresponding
3D points in the above adjacent layer space onto it; and a global
projected point set formed by projecting the 3D points in all
above layer spaces onto it. From the global projected point set,
we extract the 2D convex hull denoted as a potential structural
profile. Here we use the convex hull instead of a-shape because
the input point cloud is too sparse that c-shape will generate
an incomplete set of faces to reveal the actual profile of the
building. In contrast, a convex hull can create an extra safety
buffer when the reconstructed 3D building is used for deriving
UAV trajectories. Next, we extract a set of dominant structural
profiles (Fig. 6(d)), each of which has significant structural
differences from its neighboring ones. The dominant structural
profiles together provide sufficient information to characterize
the shape of the building.

Proxy Reconstruction: The layers (F1,...,Fx) are sorted
from the top to bottom. Let PP; denote the local projected point set
of the i-th layer and N i the number of 3D points in the k-th layer
space Sy, we have PSP, = Conv(|J!_, P;), where Conv
denotes the operation of extracting a convex hull. Similarly,
PSP, and PSPy, denote the potential structural profiles
corresponding to the upper and lower layers of Si, respectively.

From the above definition, the shape of PSPy (i.e., the
potential structural profile at the bottom) constitutes the 2D
building footprint. We then search the other dominant structural
profiles (DSP;) from the top to bottom. We identify DSP;
(i.e., the top dominant structural profile) as the first potential
structural profile whose surface area is larger than a threshold 6,
where 6 = 0.2 - Area(PSP ) by default. For each potential
structural profile PSP;, we compute its structure difference

Algorithm 1: Layer-Wise Proxy Reconstruction.

Input: Sparse point cloud P of a building and the
number of layers K
Output: Building proxy geometry
1 Initialize the potential structural profile set Ule PSP ;
2 Initialize the dominant structural profile set DSP «+ &;
Compute the total area of 2D building footprint:

Areayoiq — Area (PSPk)
foreach PSP; in | JI*, PSP, do

3 if Area; > 0.2 - Areatotq: then

4 m < j;

5 DSP; « PSP,,;

6 k<« 2;

7 break;

8 end

9 end
10 foreach PSP; in U;:i-u PSP; do

11 According to Eq. 5, compute 3D points number gain

Gz(ajo)i‘nt ;

12 if G;JO)M > 7 then

13 According to Eq. 5, compute the area gain G
14 if G > ¢ then

15 DSPkfl < PSijl,'

16 DSP; < PSP;;

17 k<« k+1;

18 end

19 end

20 continue;
21 end

22 Extrude polyhedral cells from DSP to assemble the
proxy geometry.

with the previously identified dominant structural profile DSP;.
A new dominant structural profile can be identified only if the
structure difference is sufficiently large. Specifically, in the local
projected point set of layer F;, we count the number (Noy:)
of points that are located outside of the shape of PSP ;_;. To
be robust against noise, we also compute the area difference
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between PSP ; and the previously identified dominant structural
profile DSP;. Then PSP; is said to be a dominant structural
profile if it satisfies the following two criteria:

j N, ; Area(PSP,)
GU) =2 >y QY = DI > 5
point = 3 =M Girea = Kradsp,) © 0 O

where the default thresholds are setton = 0.2 and ¢ = 1.1. We
identify all dominant structural profiles by iteratively processing
all potential structural profiles from the top to bottom. See
Algorithm 1 for more details. Please note that when a new
dominant structural profile (PSP;) is identified, the position
and shape of the previous dominant structural profile should
also be updated. Thus, we use PSP ;_; to replace the previous
dominant structural profile. The reason is that although the shape
of PSP ;_ is similar to the previous dominant structural profile,
PSP;_; has a larger convex hull which is more suitable for
satisfying the safety requirement.

Finally, we extrude each dominant structural profile from
bottom to up until it touches the upper dominant structural profile
to obtain a convex polyhedral cell. These polyhedral cells are
then stacked together to form the complete volume of the proxy
geometry.

Surface Extraction: Now we have reconstructed a proxy
geometry by assembling multiple polyhedral cells, which can
already be directly used for visualization. Such models con-
tain many interior faces due to the direct stacking process
(see Fig. 6(f) for an illustration), making them unsuitable for
aerial path planning, because existing aerial path planning al-
gorithms [8], [11], [12] require to sample the outer surface of a
building to compute reconstructability.

Based on the fact that the surface area of the dominant struc-
tural profiles is monotonously increasing from the top to bottom,
we perform incremental surface extraction to ensure only the
outer surface of a building is obtained. Specifically, when we
extrude a dominant structural profile (that is a 2D convex hull),
we exclude part of its top faces that are within the 2D projection
of its immediate upper dominant structural profile (except for
the top-most one) and its complete bottom (except for the
bottom-most one). Finally, the restricted Delaunay triangulation
method is used to triangulate newly added areas to generate a
watertight mesh model.

Non-Buildings Reconstruction: Compared with urban build-
ings that span a wide range of height, non-building objects
(e.g., ground and trees) are less critical for aerial path planning
because UAVs typically fly above a certain altitude to avoid
collisions. In this work, we reconstruct the overall proxy of
non-buildings by adopting a bilinear interpolation method given
its higher efficiency compared to the Poisson reconstruction
method. Specifically, we first project the non-building points
to the ground plane and build a 2D grid with a one-meter
resolution to uniformly sample the projected area. Then we lift
each vertex of the grid to a height value interpolated from its
adjacent 3D points. This way, a 2.5D mesh is efficiently created
to approximate the non-buildings. The proxies of both buildings
and non-buildings together allow safe aerial path planning.
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VI. EXPERIMENTAL RESULTS

In this section, a set of experiments were conducted on both
synthetic and real urban scenes of different scales to validate the
proposed approach. After introducing our new datasets, we start
with inspecting the performance of InstFormer against state-
of-the-art instance segmentation methods. The effectiveness of
our proxy reconstruction for path planning is then qualitatively
and quantitatively evaluated by comparing it with several 3D
proxy generation approaches. Finally, we apply our approach to
capture real-world scenes to achieve high-quality 3D reconstruc-
tions. All experiments were conducted on a desktop computer
equipped with an Intel i7-7700 k processor with 4.2 GHz and
32 GB RAM. We implemented InstFormer in PyTorch based on
MMDetection toolbox [70]. Offline training of InstFormer was
on two NVIDIA GeForce RTX-A6000 (48 GB memory) GPUs,
and AdamW was selected as the optimizer. We trained it for 30
epochs on two datasets (our proposed dataset and the Mapping
Challenge [71]), with training times of 12 hours and 72 hours,
respectively.

A. Datasets

Aerial Instance Segmentation Dataset: For the training and
evaluation of InstFormer, we have created a new dataset consist-
ing of 720 nadir images from four cities captured with varying
flight altitudes, and all building instances in these images have
been manually annotated by eight students of computer science,
using the annotation tool of LabelMe [72]. A few annotated
images from the building instance segmentation dataset are
shown in the Supplementary Materials, available online. Unlike
existing instance segmentation datasets (e.g., COCO, PASCAL
VOC) that all target general objects, we focus on multi-view
images of buildings captured by drones for 3D urban building
reconstruction, where the photos capture both roofs and facades
with high resolution. Besides, building scales vary largely, and
different buildings overlap from different perspectives. These
characteristics pose quite new challenges to instance segmenta-
tion.

Proxy and Scene Reconstruction Dataset: For a comprehen-
sive quantitative evaluation, we first test our method on synthetic
scenes with ground-truth geometry, which allows a quantitative
assessment of the reconstruction performance. Although there
exist several virtual scenes that have been created in the previous
work [8], [10], [11], the covered scenes are small in size and
contain only a few (smaller than 10) buildings in each scene. In
this work, we introduce a new synthetic benchmark with three
larger-scale virtual scenes containing dozens of buildings (see
Table 1), rich geometric details, and realistic appearances. For
each scene, we use the Unreal Engine' and the physical engine of
Airsim?® to simulate the drones to capture the scene and generate
highly realistic images. Table I reports the detailed statistics of
our new dataset. Please refer to the Supplementary Materials,
available online, and video for the visualization of the three
virtual scenes.

i_[Online]. Available: https://www.unrealengine.com/
§[Online]. Available: https://microsoft.github.io/ AirSim/
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TABLE I
STATISTICS ON THE NINE TEST SCENES FROM THE PROXY AND SCENE
RECONSTRUCTION DATASET

Scene | Data Type #Img_proxy ~#3DInst #SfM_pts #Img_final Area (m?)

AK-1 (Fig. 8) Synthetic 95 30 354 2581 40000
JPN-1 (Supplementary Materials) | Synthetic 106 17 966 938 15912
CT-1 (Supplementary Materials) | Synthetic 82 32 336 2036 18721
Downtown (Fig. 1) Real 7,000 255 625 50305 2959358
Residence-1 (Fig. 7) Real 766 126 479 7835 471390
Residence-2 (Fig. 7) Real 198 19 380 24765 800842
Campus (Fig. 9) Real 1539 12 5713 5391 209812
Polytech (Supplementary Materials) Real 500 1 7134 1230 11162
SI-PARK (Supplementary Materials) Real 1019 14 676 4285 497754
#Img proxy and #Img final denote the numbers of images for proxy and final reconstruction, respectively. #3DInst is the number of
building instance proxies in cach scene. #StM pts is the average number of STM points per building instance.
TABLE II

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART 2D INSTANCE
SEGMENTATION METHODS ON THE PROPOSED DATASET

Object Detection Instance Segmentation

Methods ‘

\
| AP APso APz APr | AP APsg  APrs AP
Mask R-CNN 489 709 547 504 | 483 714 548 499
Swin Transformer 475 70.6 52.1 488 | 471 721 52.4 48.5
ConvNext-V2 491 708 545 516 | 486 710 545  50.0
Mask2Former 541 762 604 557 | 525 768 584  53.6
Cascade Mask R-CNN | 489  69.3 549 504 | 472 69.5 541 487
DetectoRS 53.6 750 58.7 552 | 51.7 758 588 534
SCNet 51.8 746 578 533 | 50.6 758 575 522
InstFormer 54.9 77.0 61.8 56.5 | 53.1 77.9 59.7 54.8

The best result of each measurement is marked in bold.

We also evaluate our method on a dataset of six real urban
scenes. All images were captured using a DJI Phantom 4 RTK,
which is a single-camera drone with a focal length of 24 mm.
The images for the proxy reconstruction were captured using
the aerial paths generated by [9]. After the reconstruction of the
3D scene proxies using our proposed method, we used [11] to
generate the optimized aerial paths for the second-pass image
capturing. Table I reports the statistics of this dataset. Note that
we use ContextCapture to produce SfM sparse point clouds and
MYVS reconstruction given its high efficiency. However, we do
not rely on any specific package. The open-source packages,
such as COLMAP, VisualSFM, and PMVS, can also be used.

B. Evaluation on Instance Segmentation

Comparison on 2D Instance Segmentation: The performance
of InstFormer is first thoroughly evaluated by quantitative com-
parisons with state-of-the-art instance segmentation methods
including Cascade models (Cascade Mask R-CNN [45], De-
tectoRS [73], SCNet [47]) and none-cascade models (Mask
R-CNN [42], Mask2Former [74], Swin Transformer [75],
ConvNeXt-V2 [76]). We retrain and test all these models on
our new aerial instance segmentation dataset. The evaluation
metric is the standard average precision calculated using mask
Intersection-over-Union (IoU). It measures the precision be-
tween predictions and ground-truth annotations in a range of
IoU thresholds, e.g., AP5o and AP75 denoting the scores with
IoU thresholds of 50% and 75%, while AP indicating the average
score with IoU thresholds from 50% to 95% with a step size of
5%. Since buildings are relatively large objects in the scene,
we also compute AP, for evaluating the average precision of
large instances. Table II reports the quantitative results of these
segmentation methods. The comparison shows that the proposed
InstFormer achieves the best performance for both building
detection and instance segmentation, indicating the superiority
of our model on large-scale building instance segmentation.
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TABLE III
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART 2D INSTANCE
SEGMENTATION METHODS ON THE MAPPING CHALLENGE DATASET [71]

Methods | Object Detection | Instance Segmentation
| AP APy APr; APL | AP APg APr; APy
Mask R-CNN 747 947 86.2 899 | 682 946 829  80.7
Swin Transformer 781 949 90.6 885 | 744 949 89.1 84.1
ConvNext-V2 83.0 959 927 952 | 791 959 91.7  90.0
Mask2Former 832 96.1 928 947 | 784 96.1 915 895
Cascade Mask R-CNN | 80.3 959 91.7 926 | 750 959 90.2  86.4
DetectoRS 81.0 957 91.7 940 | 770 957 904 887
SCNet 740 947 855 889 | 69.7 942 833  84.0
InstFormer 841 96.9 93.8 958 | 80.5 96.8 92.8  90.9

The best result of each measurement is marked in bold.

We have also evaluated all of the methods using another public
large-scale dataset from Mapping Challenge [71], aiming to de-
tect buildings from high-resolution satellite imagery in different
urban settings. This dataset consists of a training set of 280,741
images (300x300 pixels), a validation set of 60,317 images,
and a test set of 60,697 images. Table III shows the quantitative
prediction results, and it can be seen that Instformer continues to
achieve the best performance. The comparison in terms of APy,
shows the perception capacity of Instformer for large buildings.
Meanwhile, the best value of AP indicates the superiority of
our model in multi-scale building instance segmentation. In
terms of object detection, Instformer consistently achieves the
best AP, the key evaluation metric in the Mapping Challenge.
Moreover, Instformer also performs the best in terms of APy, in
object detection, which further proves its advantage over other
alternatives in detecting large buildings.

Instance Segmentation of Dense Reconstruction: It is difficult
to quantitatively evaluate instance segmentation directly in 3D
due to the lack of ground truth. Thus, we carried out a visual
inspection by transferring the instance segmentation result on
sparse points to the dense mesh obtained in the final recon-
struction. Specifically, we extract the building footprint by first
projecting all of the sparse points to the ground and constructing
the a-shape from the projection points. Then for each point in
the dense mesh, we find the closest instance in the sparse cloud
and with its projection point located within the corresponding
building footprint. A KD-tree is used to accelerate the process
of querying the closest point. Figs. 1 and 7 show our instance
segmentation results on three large urban scenes, in which both
building proxies and dense meshes are accurately segmented.

C. Evaluation on Synthetic Scenes

Experimental Setup: We conduct synthetic experiments in a
virtual environment that is built on Unreal Engine and Airsim
simulator. In the initial pre-acquisition phase, a UAV equipped
with a single camera performs high-altitude flight, capturing the
ground surface with a vertical perspective for full coverage imag-
ing (with an 80% along-track overlap and a 70% across-track
overlap). This step results in nadir aerial images. Subsequently,
we compute a sparse point cloud which is used to construct
a proxy model. We use the path planning algorithm proposed
by [11] for evaluation, which first generates a rich initial view
set according to uniformly sampled points on the surface of the
proxy model. Then a Max-Min optimization is proposed to select
aminimal set of viewpoints that maximize the reconstructability
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Fig.7.
(bottom) real scenes. The three rows of each scene demonstrate the building
instance proxies, the final textured mesh of the scene, and the scene mesh with
highlighted building instances, respectively. The building instances are randomly
colored.

Instance segmentation results on the Residence-1 (top) and Residence-2

under the same number of viewpoints. An effective flight path is
created, which passes through all selected viewpoints, to guide
the second fine-grained image collection. Finally, the collected
images are fed into ContextCapture for detailed reconstruction.

Evaluation Metrics: To quantitatively evaluate the scene
proxy reconstruction, we follow the metrics that are commonly
used in previous path planning methods [8], [11], [13]. The proxy
model is indirectly evaluated by comparing the quality of the
final reconstructed detail model after the second flight, because
the proxy model affects path planning which in turn determines
the quality of the final reconstruction.

Specifically, we use the point-level metrics introduced by [8]
to compute the reconstruction quality: Error and Completeness.
Error measures the geometric accuracy of the reconstruction. It
is computed as the average distance between the vertices of the
ground-truth model and the reconstruction. Considering noise
and outliers, this metric is evaluated on the majority of the points,
i.e., 90% and 95% of the points that have a distance smaller
than x centimeters. A smaller Error value indicates a higher
accuracy. Completeness measures the coverage of the ground
truth by the reconstructed model. We compute the minimal
distance between the points on the ground truth to their closest
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points on the reconstruction, and Completeness is then defined
as the percentages of the distances smaller than a threshold. A
larger Completeness value indicates higher completeness.

Comparisons: We compare the quality of our layer-wise proxy
(denoted as LWPxy) against those generated by several proxy
alternatives, including the coarse proxy by finding the bounding
box of the point cloud of each segmented building, 3D convex
hull of each building, and a surface approximation approach
as the intermediate proxy based on cloth simulation filtering
(CSF) [77]. Note that both coarse and 3D convex hull models
are automatically built based on our instance segmentation for
a fair comparison. Moreover, we adopt the MVS dense mesh
reconstructed by the commercial software, ContextCapture, as
a fine proxy.

We conduct the comparison using the three virtual scenes.
Specifically, we first generate building proxies using each com-
peting method and then derive a flight trajectory using the same
aerial path planning algorithm [11]. The visualization results of
path planning for different proxy models can be found in the
Supplementary Materials, available online. Finally, the drone is
flown along the generated path to capture images to reconstruct
a fine-grained 3D scene model. To ensure a fair comparison
between different proxies, we follow the protocol proposed
by [8] and constrain the number of planning viewpoints to be
as consistent as possible, resulting in a similar total number of
final captured photos. This way, the path lengths and acquisition
times for different methods are also similar. By fixing the number
of images, we can isolate the effect of camera position on
reconstruction quality, where the camera position is related to
the proxy model.

Table IV reports the quantitative evaluation results of proxy
generation and final reconstruction. We can see that the effi-
ciency of our proxy generation method and the face number in
the reconstructed proxy are comparable to the simple coarse
and 3D convex hull approaches, while CSF and MVS dense take
much longer time and result in larger models. In terms of final
reconstruction quality, our approach generally attains higher
scores than other alternatives, which can be observed from the
Error and Completeness measures, indicating its superiority to
better capture scene geometries including the details. We can
also observe that MVS dense does not demonstrate the best
results. This is because the point cloud reconstructed from only
nadir images has serious incompleteness (especially near the
vertical surfaces), resulting in proxy models with large holes
and inaccuracies (see Fig. 8). A visual comparison of the proxies
and final scene reconstructions associated with the five methods
is demonstrated in Fig. 8. Compared to the fine proxy of MVS
dense, our proxy is more compact yet still achieves comparable
or even better reconstructions. From these comparisons, we
can conclude that with a more accurate proxy geometry, our
approach can achieve better accuracy and completeness, leading
to better-detailed reconstruction.

Effect of InstFormer: As has been shown, instance segmen-
tation plays a crucial role in the proposed urban reconstruction
pipeline. To evaluate the efficacy of instance segmentation, we
have implemented two baseline approaches based on directly
slicing the scene to generate a scene proxy. The first baseline
is denoted by No-seg which slices and layers the entire scene

Authorized licensed use limited to: TU Delft Library. Downloaded on May 22,2025 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.



7277

GUO et al.: FAST BUILDING INSTANCE PROXY RECONSTRUCTION FOR LARGE URBAN SCENES

Convex Hull CSF MVS Dense LWPxy

Coarse

YA

/14

Visual comparison on the virtual scene AK-1, for evaluating different scene proxies for aerial path planning. The top row shows the generated proxies

Fig. 8.

from the sparse input (please refer to Fig. 6 in the supplementary materials, available online, for the input sparse points), and then the proxy geometries are used

for path planning to collect more images to generate the final reconstruction results (demonstrated in the second row). The blown-up views in the rest of the figure

show the details of the 3D reconstructions.
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TABLE IV
QUANTITATIVE EVALUATION AND COMPARISON ON PROXY GENERATION AND FINAL 3D RECONSTRUCTION ON THREE SYNTHETIC DATASETS
. Prox Prox Prox Error] Error] Comp.t  Comp.T Comp.T

Scene fflmages SFM(min)  Method  po "0 FaceNum.  Size (Mb) 90% (cm) 9% (cm) 2cm (%) 5om (%) 10 cm (%)
Coarse 0.87 18189 0.65 8.43 18.14 29.41 57.49 70.25
Convex Hull 0.95 20101 0.66 8.77 20.99 29.54 57.65 70.20
AK-1 95 2.7 CSF 2.33 49737 1.86 8.16 18.00 29.52 57.23 69.51
MVS Dense 15 503729 404 8.44 18.66 29.84 57.74 70.39
LWPxy 1.16 20990 0.73 7.88 16.06 30.12 57.87 70.12
Coarse 0.7 9392 0.33 7.76 20.35 28.59 47.58 56.02
Convex Hull 0.77 10724 0.38 6.68 17.89 28.94 47.71 55.85
JPN-1 106 3.08 CSF 1.83 46357 1.73 7.05 18.24 28.50 47.14 55.45
MVS Dense 11.5 343195 27.7 7.15 18.81 28.97 47.79 56.02
LWPxy 0.92 11652 043 6.46 17.81 29.14 47.98 56.12
Coarse 1.08 8833 0.31 3.54 12.36 33.73 51.88 57.01
Convex Hull 1.15 11059 0.39 2.98 8.26 33.89 52.11 57.00
CT-1 82 24 CSF 2.58 35659 1.30 2.99 7.14 33.21 51.56 56.63
MVS Dense 12.92 255001 18.9 3.34 10.86 34.14 52.16 57.08
LWPxy 1.28 12509 0.42 2.90 7.24 33.83 52.23 57.16

For the final reconstruction, Error and scene coverage (measured by Completeness) are recorded. #Images denotes the number of pre-captured photos for proxy reconstruction. The
first- and second-place performances are highlighted using bold and italic fonts, respectively. LWPxy represents our layer-wise proxy.

TABLE V
ABLATION STUDY ON THE EFFECT OF INSTANCE SEGMENTATION AND
INSTFORMER
Acc.] Acc.| Comp.T  Comp.t  Comp.T

Scene  Method  gn0 "y 950 (cm) 2cm (%) 5cm (%) 10 em (%)
AK-T LWDxy 7.88 16.06 30.12 57.87 70.12
Clustering 8.93 21.69 29.88 57.80 70.27
No-seg 8.27 17.98 29.84 57.86 70.34
JPN-1 LWPxy 6.46 17.81 29.14 47.98 56.12
Clustering 8.25 19.83 27.25 46.29 54.75
No-seg 7.13 17.58 28.17 47.27 55.65
CT-1 LWPxy 2.90 7.24 33.83 52.23 57.16
Clustering 3.02 7.10 32.75 51.25 56.18
No-seg 3.48 8.89 32.53 51.32 56.61

We compare the performance of our instFormer-based pipeline with two baseline methods. Noseg:
directly slice and layer the entire scene without instance segmentation. Clustering: segment the
buildings based on 3D clustering.

The best result of each measurement is marked in bold.

directly without instance segmentation. For the projected points
of each layer, we calculate a polygon contour using the 2D
a-shape algorithm. The polygon contours of all the layers
stacked together approximate the coarse geometry of a build-
ing, serving as the scene proxy model. The second baseline
approach to achieving the segmentation of buildings is based
on clustering. First, we use the CSF method [77] to roughly
segment the buildings from the ground. The building points are
then projected to the ground plane, and we use DBSCAN [78]
to cluster the points into building instances. After that, the
same slicing algorithm is applied to generate the scene proxy.
We have applied these methods to three virtual scenes, and
the results are demonstrated in Table V. From the results,
we can see that though these alternative approaches can also
achieve a rough approximation of the scene, their final re-
construction quality is much lower than our results based on
InstFormer.

D. Evaluation on Real Scene Reconstruction

In this section, we discuss the results of our method applied
to real scenes and conduct a comparison with baselines.

Quantitative Evaluation: We plan aerial paths based on the
proxy models generated using our method and other alternatives
for areal scene called Polytech (visualized in the Supplementary
Materials, available online). Then we capture the scene using
the derived aerial paths for high-quality building reconstruction,
and we compare the results using different proxy generation

methods. The Polytech scene contains a single complex building,
for which a high-quality complete point cloud is acquired using
a LiDAR scanner with a ranging accuracy of 2 mm. From
the laser scan, a ground-truth mesh is reconstructed for the
quantitative evaluation of the methods. Table VI summarizes
the evaluation results. Similar to the results on the synthetic
scenes, our approach achieves the best performance in terms
of Completeness. The performance regarding the Error metric
is also generally comparable to that of MVS dense. The over-
all comparison demonstrates that our approach can efficiently
generate lightweight proxy models and yield an accurate and
complete final scene reconstruction.

Visual Comparison and Detail Recovery: Next, we evaluate
the performance of our method on real-world reconstruction
using several large outdoor scenes. Figs. 1 and 7 show the results
of our proxies and the final textured models of three scenes
of different scales. To better understand the superiority of our
proxy generation approach, we compare the final reconstruc-
tion results to those obtained from other proxy reconstruction
methods. The reconstructed models on the Campus scene are
shown in Fig. 9, where we also make a comparison of the details
of the reconstructed models. The zoomed-in views reveal that
our approach can recover more geometric details. The visual
comparisons on the real scenes of Polytech and SI-PARK are
provided in the Supplementary Materials and video, available
online.

Flexible Capture by Instance Planning: With the instance
segmentation of all buildings, we can plan a more accurate and
complete path for each building, which enables fine-grained and
flexible data capture to obtain a more accurate reconstruction.
To achieve that, we have tested two different strategies for aerial
path planning using the same algorithm [11]:

® Plan_single: Generate a single flight trajectory for each

building based on the instance information.

® Plan_all: Generate an optimized trajectory for the entire

scene containing all buildings.

Fig. 10 demonstrates the derived aerial paths and the final
reconstruction results of the Campus scene. With the strategy of
Plan_all, all buildings are captured at the same time but on differ-
ent days, and some buildings are not fully covered. Therefore, the
reconstructed model easily contains noticeable visual artifacts,
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TABLE VI
QUANTITATIVE COMPARISON OF PROXY GENERATION AND FINAL 3D RECONSTRUCTION (I.E., THE RECONSTRUCTION QUALITY, ERROR, AND SCENE COVERAGE,
COMPLETENESS) OF PATHS PRODUCED BY USING DIFFERENT PROXIES ON THE REAL SCENE POLYTECH

. Prox Prox Prox Error] Error] Comp.t  Comp.T Comp.T

Scene  #lmages SFM(min)  Method — po ML g RN G (Mb)  90% (m) 95% (om)  2om () 5cm (%) 10 om (%)
Coarse 2.84 70434 217 63.97 111.34 15.67 44.92 58.82
Convex Hull 2.95 66705 2.65 63.65 108.74 9.83 36.73 57.81
Polytech 500 34.15 CSF 233 122216 491 67.93 111.46 12.68 46.36 62.27
MVS Dense 487 6102497 111 63.12 105.81 15.23 49.15 64.12
LWPxy 3.08 61735 2.5 65.32 106.02 15.96 49.77 64.17

The best result of each measurement is marked in bold.

Convex Hull

H
i
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Fig.9.

which can be observed from the finer-level details in Fig. 10. In
contrast, with the guidance of instance information, fine-grained
path planning can be performed for each building. Besides,
viewpoints focusing on the same building can be integrated into
a flight path, which enables more efficient capture of important
building details.

E. Limitations

Our layer-wise proxy reconstruction method is designed
based on the assumption that building geometry is described by

MVS Dense

S RE B R B
MIEEGLE ETELETDn
B Syamye

Visual comparison on the real scene Campus, for evaluating the effect of different proxy generation methods on the performance of the final reconstruction.
Please zoom in to the blown-up views to see the details of the 3D reconstructions.

an arrangement of stacked prisms, making it particularly suitable
for the majority of high-rise buildings in reality. However, for
buildings with slanted roofs, our method can only approximate
them with flat tops. In rare cases where buildings have a top
wider than the bottom, our method will also fail. Fig. 11 shows
our reconstruction results on two such examples. Though the
reconstructed proxy does not deliver the exact geometry of the
roofs, it still conveys the overall building geometry, and it is
sufficient for planning high-quality aerial paths to ensure image
capturing with better coverage and at a finer level of detail in
another pass of data acquisition.
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Fig. 10.
aerial path planning and the generation of consistent texture maps.

Fig. 11.  Our proxy generation method does not deliver the exact geometry of
slanted roofs (left) and buildings with a wider top than the bottom (right).

VII. CONCLUSION AND FUTURE WORK

We have presented a novel workflow and two algorithms for
efficient and effective 3D building instance proxy reconstruction
for large urban scenes. Our workflow attempts high-quality
urban reconstruction from a different perspective, i.e., by gen-
erating high-quality 3D building proxies rather than pure aerial

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 11, NOVEMBER 2024

Plan_single

Visual comparison of the final reconstruction results using two different aerial path planning strategies. The instance information enables fine-grained

path optimization. Extensive experiments on several large urban
scenarios have validated the effectiveness and practicality of
the proposed workflow and its main modules. Specifically, the
building proxies generated using our method can better express
the scene geometry compared to previous methods, and they are
particularly suitable for generating finer-grained aerial paths to
further improve the accuracy and enrich the geometric detail of
architectural models.

Our work reveals that improving the quality of building prox-
ies provides a straightforward way to address several challenges
in UAV data acquisition for high-quality urban reconstruction,
such as incomplete scene coverage, lack of semantics, low
efficiency, and low reliability of path planning. In future work,
we plan to extend this idea to other common urban objects,
such as trees and bridges, to allow the creation of semantic-rich
detailed 3D models of scenes.
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