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SUMMARY

Medical images segmentation is a key component in Diagnostic Radiology, and has a lot
of clinical application areas, including disease diagnosis and surgery intervention. Accu-
rate segmentation of medical images is still a challenge due to complicated anatomical
structures and non-ideal image quality. In this thesis, aiming to solve two contours seg-
mentation problems, a two-layer levelset method with an efficient distance constraint
is proposed, which can be used to detect two contours simultaneously. With the dis-
tance constraint, not only the level set evolution at two levels is regularized, but also
physical information of wall thickness can be imposed. In the proposed method, a soft
distance constraint is designed to ensure that unclear boundaries in locations with poor
image quality can be detected. The feasibility and reliability of the proposed distance
constraint are verified. Due to the proposed distance constraint, evolution speed of the
level set function around boundaries can be limited effectively, so that it is much eas-
ier for unclear boundaries to be detected. Compared to former works, the breakthrough
and advantages of the proposed method are discussed and analyzed. Then, the pro-
posed method is applied to segment advanced MRI SPACE left atrium (LA) data. For-
mer works are also compared in implementation process. The accuracy of the proposed
method is evaluated by quantitative evaluation methods, which reports that the average
perpendicular distance (APD) and dice similarity coefficient (DSC) for endocardium and
epicardium of LA both show a high agreement with groundtruth. Compared to manual
annotation from experience observers, the proposed method achieved an APD of less
than 1mm and a DSC of around 0.95, for the LA segmentation at both inner and outer
contours. Even in locations with poor image quality, the proposed method still performs
very well, which proves that the proposed method is accurate and robust. the proposed
method can also be easily extended to the 3D situation. Moreover, to test flexibility and
applicability of the proposed method, MRI CINE left ventricle (LV) data is used. The
results show that the proposed method has an excellent performance on LV images seg-
mentation, with an APD of less than 1.5mm and an DSC of 0.96, at both inner and outer
contours. Therefore, the proposed method can work very well in simultaneously seg-
menting two contours, and has a wide range of applications in segmenting anatomical
structures from medical image analysis.

Keywords: Image segmentation, Two-layer levelset, Distance constraint
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1
INTRODUCTION

You cannot teach a man anything;
You can only help him discover it in himself.

Galileo Galilei

1.1. BACKGROUND

1.1.1. IMAGE SEGMENTATION

‘ Image segmentation is the process of assigning a label to every pixel in an image such
that pixels with the same label share certain characteristics.’ This is the definition

about image segmentation in Wikipedia. Briefly, it aims to extract interests of objects
from background or to separate different objects. It plays a key role from image process-
ing to image analysis [1], which can be shown in Fig.1.1.

Figure 1.1: The role of image segmentation in image engineering

1
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Figure 1.2: Example of LA MR SPACE image

From 70’s last century, image segmentation has been a typical topic, which attracted
many academic researchers. One image can be segmented with respect to some charac-
teristics or computed properties, such as shapes, colors, intensities, or textures. Because
of the complexity of images, how to accurately extract our interested information from
one image becomes a hot issue. Since it is hard to represent a general characteristic for
different objects from different images, there does not exist a general algorithm to suit
for every image segmentation problem.

According to features of image scenes, it can be divided into the simple scene and
the complex scene [2]. Images with simple scenes normally have small amount of ob-
jects and simple characteristics, such as synthetic images, non-noise images and images
with uniform and homogeneous regions. In the other side, if one image has some inter-
ferences like complicated objects, unclear boundaries and nonlinear noise, the image
scene can be regarded as a complex scene. And most medical images belong to com-
plex scenes. For example, because of the inhomogeneous main magnetic field, MRI im-
ages are always inhomogeneous and have much random noise. Especially, the irregular
shapes of human tissues make segmentation problems more complicated. Such inter-
ferences in complex scenes are really big challenges to image segmentation.

1.1.2. SPACE-MRI OF LEFT ATRIUM

Magnetic resonance imaging (MRI) is an advanced diagnostic imaging technology,
which is very powerful and can show anatomic information of soft tissues. Especially,
compared to traditional computed tomography (CT), MRI produces zero dose and does
not have any side-effects on human body. There are many sequences available in ap-
plications of MR imaging, and different sequences can be applied to detect different di-
agnostic information. The novel 3D SPACE (Sampling Perfection with Application opti-
mized Contrasts using different flip angle Evolution) MRI sequence [3] is the state-of-art
technique enabling visualizing the LA wall in fine detail, as shown in Fig.1.2.

1.2. MOTIVATION FOR LEFT ATRIAL WALL SEGMENTATION
Atrial fibrillation (AF) originating from the left atrium (LA) is the most common car-

diac electrophysiological disorder worldwide. The anatomical structure of LA is shown
in Fig.1.3. Tissue characteristics of the LA wall can provide valuable information for de-
termining the treatment strategy for AF patient [4]. Segmentation of the LA walls from
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Figure 1.3: Anatomic structure of LA

Figure 1.4: Example of Manual delineated LA SPACE MR image

SPACE MRI is of a high clinical interest.

In clinical research, the inner wall of LA is named endocardium, and the outer wall
of LA is named epicardium. Traditionally, the endocardial contour and the epicardial
contour are both delineated by experts, as shown in Fig.1.4. It always consumes a lot of
time, and heavily relies on subjective judgment and experience of radiologists. If there is
a method to detect the inner wall and outer wall of LA automatically, the efficiency of di-
agnostic process will definitely increase and the workload of radiologists will be released
in a big degree.

1.3. RESEARCH CHALLENGE

Although the SPACE MRI sequence already has an excellent performance in imaging
Left Atrium walls, the image is still not a perfect one to analyze and there exist some in-
terference. As shown in Fig.1.2, apart from the noise, there are so many nearby objects,
which can be considered as interference to extract endocardium and epicardium of LA.
Due to the empty visualization of LA cavity, it is not difficult to detect endocardium, and
some applications have been used in [5]. However, unlike short-axis Left Ventricle MR
images with high quality and regular shapes, in most cases, boundaries between epi-
cardium of LA and background are not clear, which are hard to be recognized. Moreover,
the irregular shape and small thickness of LA walls increase the difficulty of segmen-
tation. Therefore, how to extract endocardium and epicardium of LA simultaneously
becomes a tough challenge.
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1.4. OBJECTIVES
Aiming to extract two layers of LA wall simultaneously, an efficient algorithm should

been designed, which would generate desirable distance constraints between two con-
tours. The algorithm should work well in the 2D situation and could be extended to 3D
volumes. Moreover, the method should have an excellent performance in validation on
different datasets.

1.5. OUTLINES
This thesis is combined with five chapters.

Chapter 1 gives a brief overview of image segmentation problems and our special
SPACE-MR LV images. The challenge and objectives of this thesis are also described.

Chapter 2 describes the reason why level set methods are chosen to solve our seg-
mentation problems. Some classic and common level set methods are demonstrated.

Chapter 3 proposes the mathematical theory of our two-layer level set method with
the distance constraint. The parameters in our method are analyzed in detail. Com-
pared to former works, the breakthrough and advantages of our method are explained.
Moreover, the validation on a synthetic image of our method is verified.

Chapter 4 presents the implementation of our method on in vivo data. The feasibil-
ity and robustness of the proposed distance constraint are proved, and the accuracy of
our method is compared with other state-of-art methods. The quantitative evaluations
of segmentation on training datasets and validation datasets are demonstrated. Further-
more, our method is extended to LV images segmentation, and the results are reported.

Chapter 5 gives a brief conclusion of the whole thesis work.
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2
DESCRIPTION OF LEVEL SETS

2.1. WHY USING LEVEL SET METHODS

T HERE are several classical image segmentation methods, including thresholding, re-
gion break and merge, and edge detection [1]. Compared to these traditional meth-

ods, level set methods have some outstanding advantages. First, because level set meth-
ods are based on a energy minimization framework, it is easy to be formulated and gen-
erate prior information into the energy function [2]. Then, level set methods can han-
dle topology changes very well [3] and promise smoothness of evolution curves, which
means that level set can be applied to segment objects with complicated structures, such
as human organs. Combined with features of our SPACE MR images, it is possible for
level set methods to adapt to segment LA walls with irregular shapes. Especially, some
constraints, such as average LA wall physical thickness, are able to be generated into the
solution solving process.

The level set method can deal with complex 2D/3D structures without explicitly spec-
ifying the object shape. Therefore, level set methods would be the first choice to deal
with our problem. Next, in the following part of this chapter, the advantages of level set
methods will be introduced in detail.

2.2. DEVELOPMENT OF LEVEL SET METHODS

Level set methods were first proposed by Osher and Sethian in 1988 to solve hydrome-
chanics problems [4]. Level set methods was introduced to image segmentation area
from 90’s last century [5], which played an important role in geometric active contour
model. Compared to Snake model which is called parametric active contour model [6],
contours in level set methods are not represented as parameterized curves and not lim-
ited by topological changes [7]. It means that level set methods can detect several objects
simultaneously without prior information, and can decrease calculation complexity.

7
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Figure 2.1: Implicit expression and topology changes of curve

2.2.1. BASIS OF LEVEL SET METHODS
In level set methods, geometric active contours are represented implicitly as level sets

function.

MATHEMATIC EXPRESSION OF GEOMETRIC ACTIVE CONTOUR MODEL

A parameterized 2D curve can be explicitly represented as C (s, t ) = (
x (s, t ) , y (s, t )

)
,

where s is arc length parameter, and t is time.
−→
N represents unit normal vector of curve

C , so that the following partial differential equation (PDE) can be used to represent evo-

lution process of C towards
−→
N direction:

∂C

∂t
= F (C )

−→
N (2.1)

where F (C ) is the evolution speed of curve C towards
−→
N . This curve evolution model

has two main problems: (1) Because of the discontinuity of curve, it is not easy to get
an accurate solution from PDE; (2) Since topological changes of parametric curves are
limited, the range of model applications is heavily constrained [4].

To solve above problems, level set function is introduced.
In order to represent C implicitly, a level set function can be defined as φ(x, y, t ) :

R2 ×R+ → R, which is a signed distance function. It can be said that curve C varies with
function φ . Therefore, there is{

C (0) = {
(x, y) |φ(x, y,0) = 0

}
C (t ) = {

(x, y) |φ(x, y, t ) = 0
} (2.2)

In Eq. 2.2, closed curve C is represented by 0-level set of functionφ, so that the curve
evolution problem is converted to analysis of level set function φ. Implicit expression
and topology changes of curve is shown at Fig.2.1.

Therefore, the evolution PDE equation of level set function φ can be written as:

∂φ

∂t
= F

∣∣5φ∣∣ (2.3)

which is Hamilton–Jacobi equation [8] and also called level set equation [4]. Eq.2.3
promises that active contour C is always 0-level set of function φ,

{
φ(C , t ) = 0

}
.
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DEFINITION OF LEVEL SET FUNCTION

In traditional level set methods, implicit function φ is defined as a signed distance

function, which satisfies
∣∣5φ∣∣ = 1 [3]. Set

−→
X = (

x, y
)

as one arbitrary pixel in 2D im-

age domain Ω,
−→
XC represent pixel sets in closed curve C , so that the minimum Eulerian

distance between
−→
X and curve C is :

d
(−→

X
)
= mi n

(−→
X −−→

XC

)
,
−→
X ∈Ω (2.4)

If R1 represents inside region of curve C and R2 represents outside region of curve C ,

curve C can be implicitly represented by a Lipschitz continuous level set functionφ
(−→

X
)
,

and
∣∣∣φ(−→

X
)∣∣∣= d

(−→
X

)
. There is:

φ
(−→

X
)
=


+d

(−→
X

)
if
−→
X ∈ R1

0 if
−→
X ∈−→

XC

−d
(−→

X
)

if
−→
X ∈ R2

(2.5)

Since implicit function φ(x, y) varies with time t , one dimension higher level set
function φ(x, y, t ) is produced. However, during the process of curve evolution, level set
function φ could derive sharp shape or shocks, which has a very negative effect on fur-
ther computation. In other words, because of the discrete of digital images and noises,
level set function may lose signed distance characteristic. To solve this problem, func-
tion φ should be reinitialized periodically to keep it as a signed distance function [5].
Several methods have been proposed to solve the re-initialization problem [5, 7, 9], but
it has a heavy influence on speed of curve evolution and accuracy of solution [10]. It
means that if possible, re-initialization should be avoided. Li [11] first proposed an ad-
vanced level set method without re-initialization in 2005, which is based on a new varia-
tional formulation. The method was perfected and named as DRLSE (Distance Regular-
ized Level Set Evolution) in 2010 [12]. Li’s method creatively generated an energy term(∣∣5φ∣∣−1

)2 into the level set energy minimization framework to force
∣∣5φ∣∣ close to 1,

which avoids re-initialization perfectly.

2.2.2. COMMON APPLICATIONS OF LEVEL SET METHODS

Current level sets methods can be divided into two categories. One is edge-based method,
which depends on information along edges between objects. The other one is region-
based method, which focuses on region information of different objects.

EDGE-BASED

Edge information was first applied in level set methods, and it is mainly based on gra-
dient information of image [13, 14]. Here a popular edge-based level set model is intro-
duced. If I (x, y) is an image, a new edge indicator function can be defined as:

g = 1

1+|5G ∗ I |2 (2.6)
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where G is Gaussian kernel. Gradient information of image I is embedded in function g .
When I has a big gradient, corresponding function g will have a small value. An energy
functional can be defined as:

ε= L+ A (2.7)

where L is the length term, and A is acceleration term. With level set function φ(x, y),
these two terms is defined as:

L =λ
∫

I
gδ

(
φ

)∣∣5φ∣∣d xd y (2.8)

A = υ
∫

I
g H

(−φ)
d xd y (2.9)

where λ > 0 and υ are weighting coefficients, δ
(
φ

)
is Dirac function, H

(
φ

)
is Heaviside

function. When minimizing the energy functional, length term calculates 0 level con-
tour length and smoothes the curve, and g in this term is to guide 0 level contour move
towards object boundaries. In acceleration term, because

∫
H

(−φ)
d xd y computes the

area of inside region of 0 level contour, υ > 0 can control 0 level contour to shrink and
υ < 0 can control 0 level contour to expand. When 0 level contour is close to object
boundaries with big gradients, function g with small values will slow down the expand-
ing or shrinking evolution process, which stop 0 level curve to be over-evoluted.

This edge-based method can be extended to a level set method without re-initialization
[11]. Only an extra regularization term is required in the extended method, which is:

R =µ
∫

I

1

2

(∣∣5φ∣∣−1
)2 d xd y (2.10)

where µ> 0 is weighting coefficient.

Therefore, according to gradient descent method, solutions to minimization of the

energy functional is ∂φ
∂t = − ∂ε

∂φ , with ∂ε
∂φ = ∂L

∂φ + ∂A
∂φ + ∂R

∂φ . The final evolution equation is
obtained as:

∂φ

∂t
=λδ(

φ
)

di v

(
g

5φ∣∣5φ∣∣
)
+υgδ

(
φ

)+µ(
52φ−di v

( 5φ∣∣5φ∣∣
))

(2.11)

And the evolution time step 4t should satisfy Courant-Friedrichs-Lewy (CFL) condition
µ4 t ≤ h2/4 [12, 15], where the space step h = 1 in computer system. Therefore, there is
µ4 t ≤ 1/4.

In traditional reinitialization level set methods, in order to realize the regularization
of level set function,

∣∣5φ∣∣ is enforced to be 1 in every iteration time. In Li’s method
in [11],

∣∣5φ∣∣ is encouraged to be close to 1, but not enforced. However, Li’s method
shows an excellent performance, which means that his method can be used to replace
the traditional reinitialization process of level set functions.



2.2. DEVELOPMENT OF LEVEL SET METHODS

2

11

Figure 2.2: Domain representation of Level set method

REGION-BASED

The first region-based level set method was proposed by Chan and Vese in 2001, which is
called piecewise constant model (PC) [3]. After that, many other region-based methods
were developed, such as piecewise smooth model (PS) [16] and Markov random field
driven region-based model [17]. Among these such many methods, PC and PS, as two
classical region-based models, will be introduced in this thesis.

PC Model Piecewise constant model is named from piecewise constant function. For
an image I on domain Ω, (x, y) is an arbitrary pixel on I . Let Ω− represents inside re-
gion of contour C , Ω+ represents outside region of contour C , so that there is energy
functional:

ε=λ1
∫
Ω− | I

(
x, y

)− c1
∣∣2 d xd y +λ2

∫
Ω+ | I

(
x, y

)− c2
∣∣2 d xd y +υ |C |

where λ1, λ2, υ are weighting coefficients, c1, c2 are two constants that estimate av-
erage image intensity in domainΩ− andΩ+, respectively. The last term is to smooth the
contour C . The function of first two data fitting terms is more like the function of stan-
dard deviation in mathematics, which computes errors. If the ’standard deviation’ gets
the minimum value, the object can be extracted accurately from background.

Compared to Edge-based methods, PC model has a good performance on segment-
ing objects without clear boundaries. However, since PC model is based on global in-
formation of image I , it has a very high requirement to homogeneity of domainΩ− and
Ω+. It means that PC model can only show a good performance on images with simple
scenes, and is not applicable to inhomogeneous images.

This PC model can be easily introduced into level set method by adding level set
function, as show in Fig.2.2. And the level set function is embedded in the Heaviside
function H(φ), where 1−H(φ) represents domainΩ− and H(φ) representsΩ+.

PS Model In order to overcome the disadvantages of PC model, PS model was pro-
posed, which can be used to segment inhomogeneous images [16]. Similar to param-
eters in PC model, an image I (x, y) and two subdomains Ω− and Ω+ are also defined
in PS model. However, two new smooth functions need to be introduced here, which
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are u−(x, y) in domain Ω− and u+(x, y) in domain Ω+ . The energy functional can be
expressed as:

ε=λ1
∫
Ω+

∣∣u+− I
∣∣2 d xd y +λ2

∫
Ω− |u−− I |2 d xd y +µ∫

Ω+
∣∣5u+∣∣2 +µ∫

Ω− |5u−|2 +υ|C |
where λ1, λ2, µ, υ are weighting coefficients. The first two terms are data fitting term,

the third and forth terms are smoothing terms to smooth u+ and u−, the last term is the
smoothing term to keep contour C be smooth. The smooth functions u+ and u− can be
obtained by minimizing the energy functional respect to u+ and u−, respectively. Since
functions u+ and u− also have a denoising effect in their corresponding domain, PS has
the ability to resist inhomogeneity and processes images with complex scenes.

Similar to PC model, PS model also can be easily extended to level set methods by
generating Heaviside function with level set function.

PS model also has obvious drawbacks [18]. Besides updatingφby solving PDE, smooth-
ing functions u+ and u− are also required to be updated by solving two PDEs in each
iteration time. This heavily increases the computational complexity, which means that
computation process will consume a lot of time. Therefore, it is not easy to apply PS
model in practice.

MULTIPHASE LEVEL SETS

Normally, if only one object need to be extracted, one 0-level set of one level set func-
tion is required. However, in many cases, there are more than 2 objects to be extracted,
and 0-level set of one level set function is not enough to represent all objects. To solve
this problem, there are two methods. One uses multiple level sets of single level set func-
tion to represent different contours. The other one uses 0-level set of multiple level set
functions to detect different objects.

Chan and Vese proposed a creative framework to solve segmentation problems when
more than two regions need to be segmented [16]. How to represent different regions
with limited level set functions is the key of this framework. Now, assume that the image
I (x, y) has two objects with junctions, and two level set functions φ1, φ2 will be used.
Therefore, each region can be expressed in Fig.2.3, where the red curve represents 0
level set of φ1, and the green curve represents 0 level set of φ2. Based on signed fea-
tures of φ1, φ2, images can be represented as four subdomains:

{
Ω00 :φ1 > 0,φ2 > 0

}
,{

Ω01 :φ1 > 0,φ2 < 0
}
,
{
Ω10 :φ1 < 0,φ2 > 0

}
,
{
Ω11 :φ1 < 0,φ2 < 0

}
.

Based on PC model, there is the level set energy functional:

ε=λ1

∫
Ω

(I − c11)2 (
1−H

(
φ1

))
(1−H

(
φ2

)
)d xd y +λ2

∫
Ω

(I − c10)2 (
1−H

(
φ1

))
(H

(
φ2

)
)d xd y

+λ3

∫
Ω

(I − c01)2 (
H

(
φ1

))
(1−H

(
φ2

)
)d xd y +λ4

∫
Ω

(I − c00)2 (
H

(
φ1

))
(H

(
φ2

)
)d xd y

+υ1

∫
Ω

∣∣5H
(
φ1

)∣∣+υ2

∫
Ω

∣∣5H
(
φ2

)∣∣
(2.12)

where λ1, λ2, λ3, λ4, υ1, υ2 are weighting coefficients, c11, c10, c01, c00 are estimated
constants of average image intensities in corresponding subdomains.
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Figure 2.3: Multiplephase representation of several level set functions

By minimizing Eq.2.3, two 0 level sets of two corresponding level set functions can
be obtained. Different weighting coefficients in each level set function can be modified
to detect different types of objects.

If there are N level set functions, 2N objects can be represented at most. Based on
this multiphase level sets framework, other methods like PS model can also be easily
used.

However, sometimes there are some constraints or connections among different ob-
jects. These constraints or connections can be considered as the prior information. If
they can be taken advantages in our methods, the accuracy must be increased. But how
to embed constraints or connections among different level set functions remains a chal-
lenge.

Besides this framework, the other one with only one level set function is also an ideal
framework. The basic idea of this is to use several level sets (0,1,2...) of one level set func-
tion to represent different objects. This framework will be used in our method, which is
going to be described concretely later.
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3
THEORY OF TWO LAYER LEVEL SET

METHOD

This chapter introduces our method concretely, including mathematics theory and ap-
plication to synthetic images. Breakthrough work in our method compared to former
methods is also described.

3.1. PROBLEM ANALYSIS AND CHALLENGES

A S shown in Fig.1.2, the complexity of Left Atrium structure heavily increases diffi-
culty of the segmentation problem. Besides irregular shapes of LA walls, there are

also other interferences in the segmentation process, including nearby objects and un-
clear boundaries between outer wall and background. Image quality is also an important
factor.

Because of the sufficient data library and high image quality with mature imaging
technique, current double-walls segmentation normally focuses on the left ventricle (LV)
walls. However, compared to SPACE-MR images of LA, short-axis LV images have a
higher quality and less interference objects around LV walls, as shown in Fig.3.1. The
shape of short-axis LV is also relatively regular, which is close to a circle. Moreover, the
thickness of LV walls is about 4 times of LA walls, which means that LV walls have a bigger
tolerance to segmentation errors than LA. Therefore, the problem of LA walls segmen-
tation is more complicated and much tougher, and it is impossible to apply any current
methods directly to deal with this LA walls segmentation problem.

However, as shown in Fig.3.1, there is a common point between LV walls and LA
walls, which is that inner wall (epicardium) contours are contained in outer wall (en-
docardium) contours. This leaves us possibility to continue our work based on former
research work. Moreover, an idea of the level set framework in [1] could be studied and
transferred into our method.

In physiology, there is useful prior information of LA walls. The thickness of human
LA walls is typically in a fixed range, which can be considered as a physical constraint. If

17
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(a) A short-axis MR LV image (left row) and inner (red)
and outer (green) wall contours of LV (right row) [1]

(b) A SPACE-MR LA image (left row) and inner (red)
and outer (green) wall contours of LA (right row)

Figure 3.1: Examples of short-axis LV image and SPACE-MR LA image

this constraint can be introduced in our method, it will be very useful to the final results.

3.2. FRAMEWORK DEFINITION
Let an image I defined on a domainΩ⊂ℜ2, and x is one arbitrary pixel on I with x ∈ I . By
defining one level set function and setting two threshold, we are able to simultaneously
identify two contours, the endocardial and epicardial left atrial wall. The level set func-
tionφ is defined on domainΩ⊂ℜ. 0-level and k-level contours represent inner wall and
outer wall of LA, which are defined as C0 = {

x :φ (x) = 0
}

and Ck = {
x :φ (x) = k

}
respec-

tively. In our method, value of φ in region inside inner wall is set to below zero. Because
C0 and Ck are two closed contours, domainΩ is divided into 3 parts,Ω1 =

{
x :φ (x) < 0

}
,

Ω2 =
{

x : 0 <φ (x) < k
}
,Ω3 =

{
x :φ (x) > k

}
, as shown in Fig.3.2.

In order to distinguish different regions during evolution process, Heaviside function
H is introduced here. Normal heaviside function H is not enough for recognizing three
regions, so that a ’new-heaviside’ function can be organized as Mi

(
φ (x)

) = 1 for x ∈Ωi

and Mi
(
φ (x)

) = 0 for x ∉ Ωi , i = 1,2,3. This new function can be further expressed as
follows: 

M1
(
φ (x)

)= 1−H
(
φ (x)

)
,x ∈Ω1

M2
(
φ (x)

)= H
(
φ (x)

)−H
(
φ (x)−k

)
,x ∈Ω2

M3
(
φ (x)

)= H
(
φ (x)−k

)
,x ∈Ω3

(3.1)

where M1
(
φ (x)

) = 1 in subdomain Ω1, and M1
(
φ (x)

) = 0 in subdomains Ω2 and Ω3.
M2

(
φ (x)

)= 1 in subdomainΩ2, and M2
(
φ (x)

)= 0 in subdomainsΩ1 andΩ3. M3
(
φ (x)

)=
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Figure 3.2: Schematic map of Level sets

1 in subdomain Ω3, and M3
(
φ (x)

) = 0 in subdomains Ω1 and Ω2. This ’new-heaviside’
function promises computation independence of image information from each subdo-
main during curve evolution process.

3.3. ENERGY FORMULATION
In our method, the energy functional is defined as:

ε
(
φ

)= D(φ)+L(φ)+R(φ) (3.2)

where D(φ) is data fitting term, L(φ) is contour length regularization term, and R(φ) is
distance constraint and regularization term.

3.3.1. DATA FITTING TERM
For expressing data fitting term, region-scalable fitting (RSF) model is imposed [2]. This
is a region-based level set model, and it processes the data information in a scalable
region. As shown in Fig. 3.2, region inside the dashed line is the scalable area centered
at y, and f1(y), f2(y), f3(y) are constants that are estimated average image intensities in
their local area. Therefore, there is energy functional:

D
(
φ(x)

)= 3∑
i=1

λi

∫ (∫
K

(
x−y

)∣∣I (x)− fi
(
y
)∣∣2 Mi

(
φ (x)

)
dx

)
dy (3.3)

where λi is the weighting coefficients, K
(
x−y

)
is kernel or window to define the size of

scalable region, and fi
(
y
)= K∗(Mi (φ(x))I )

K∗Mi (φ(x)) , i = 1,2,3.

3.3.2. LENGTH TERM
Contour length term can be defined as υ |C |, which aims to keep smoothness of two con-
tours. It can be expressed as:

L(φ(x)) = υ1

∫ ∣∣5H
(
φ (x)

)∣∣dx+υ2

∫ ∣∣5H
(
φ (x)−k

)∣∣dx (3.4)
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Figure 3.3: Schematic map of Level sets

where υ1 and υ2 are the weighting coefficients.
∣∣5H

(
φ (x)

)∣∣ calculates the absolute gra-
dient value of Heaviside function across 0-level set contour, which means that the sum of∣∣5H

(
φ (x)

)∣∣ along 0-level set contour is small, 0-level set contour will be smooth. There-
fore, the first term is to smooth 0-level set contour, the second term is to smooth k-level
set value.

3.3.3. DISTANCE CONSTRAINT TERM
This term is the most creative term in our method, which can not only keep curve evo-
lution in order, but also promise distance between 0 and k level evolute smoothly. Es-
pecially, it can protect contours to converge accurately around unclear boundaries. The
energy functional is expressed as:

R
(
φ (x)

)=µ∫
1

2

(∣∣5φ (x)
∣∣−α (x)

)2 dx+ω
∫

|5α (x)|2 dx+η
∫

(α (x)−T h)2 dx (3.5)

where µ, ω and η are weighting coefficients, α(x) is a distance constraint function, T h =
k

dc
, and dc is a constant (in pixel) defined by physical information of LA wall thickness.

The first term in Eq.3.5 is to regularize level set function. In our method, reinitializa-
tion of level set function is not required. However, although this non-reinitialization
idea originates from Li’s method [3], it plays more functions in our method. In Li’s
method, regularization of level set function is realized by encouraging

∣∣5φ∣∣ to be 1. In
our method, by encouraging level set function to be α, the level set function can also be
regularized. Function α plays a key role in our method. Besides this regularization role,
this term builds an important connection between 0-level and k-level set contours. The-
ory of this connection is shown in Fig.3.3. Assume that thickness between 0 and k-level
set contours is d , so that a gradient function can be obtained as

∣∣5φ∣∣= (k −0)/d = k/d .
α is a connection between 0 and k-level set, it is also a constraint between these two
contours, which can promise the distance between these two contours varies smoothly
only if α varies smoothly.

The second term is to keep function α(x) vary smoothly and then evolution of φ can
be smooth. Driven by Data fitting term, α(x) will continue evaluating, and the evolution
will stop until 0 and k-level set contours lay on boundaries of objects. This can promise
an accurate distance d between two contours.

The third term aims to guide α vary in a reasonable range, which is different from
DR2LS model [1]. Compared to the hard constraint of constant α [4], function α is a
soft constraint to the distance between 0 and k-level contours and is more accurate and
has a wide application range to objects with different thicknesses. However, in unclear
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boundaries, evolution of function α in [1] may be easily out of control. Therefore, the
parameter T h is designed to hard constraint the evolution of α, and finally only have a
soft effect on distance between 0 and k level set.

3.4. SOLUTIONS TO ENERGY MINIMIZATION
Based on the energy functional, the curve evolution problem is transferred to convex
optimization problem, which is a minimization problem. The gradient descent method
can be used, where search direction and evolution step are required to be computed [5].
Besides given a starting point φ ∈ domε

(
φ

)
, there are 3 steps in the gradient descent

method:

Step 1: Search Direction 4φ=−5ε
(
φ

)
Step 2: Choose step size 4t

Step 3: Update φ=φ+ t ·4φ
where the given starting point is initialization in our method.

3.4.1. EVOLUTION DIRECTION
According to gradient descent method, evolution direction to minimization of varia-

tional energy formulation are ∂φ
∂t = − ∂ε

∂φ = −
(
∂D
∂φ + ∂L

∂φ + ∂R
∂φ

)
and ∂α

∂t = − ∂R
∂α , so that there

are:

∂φ

∂t
=λ1δ

(
φ

)
e1 −λ2

(
δ

(
φ

)−δ(
φ−k

))
e2 −λ3δ

(
φ−k

)
e3

+ (
υ1δ

(
φ

)+υ2δ
(
φ−k

))
di v

5φ∣∣5φ∣∣
+µ(52φ−α)

di v
5φ∣∣5φ∣∣

(3.6)

with
∂α

∂t
=µ(∣∣5φ∣∣−α)+2ω52α−2η (α−T h) (3.7)

where δ
(
φ

)
is Dirac function which is the derivative of Heaviside function H . Based on

the relation between integration and convolution, ei = (K ∗1) I 2 − 2I
(
K ∗ fi

)+K ∗ f 2
i ,

i = 1,2,3. In each iteration, α and φ are alternatingly updated.

3.4.2. EVOLUTION STEP
As shown in section 2.2.2, the evolution step 4t should satisfy CFL condition, where
µ4 t ≤ 1/4. Since there is µ> 0 in our method, 4t can be set in a reasonable value, such
as 4t = 0.1 with µ= 1.

3.5. ANALYSIS TO KEY PARAMETERS AND COEFFICIENTS
In level set methods, parameters take a very important role, which could decide the qual-
ity of final result. Different values of parameters have different effects on the evolution,
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and an excellent combination of parameters values is highly required. Based on func-
tions of each parameter in the energy functional, the direction to obtain optimal param-
eters is clear.

3.5.1. WEIGHTING COEFFICIENTS
In our methods, there are three types of weighting coefficients. One is for usage of data,
one is for curve smooth, and the last one is to regularize level set function and constraint
distance between two contours.

DATA WEIGHTINGS

λ1, λ2 and λ3 are coefficients to control weightings of three data regionsΩ1,Ω2 andΩ3,
which decide how many contributions data from different regions can do. As shown in
Fig.1.2, SPACE-MRI has a good performance in visualization of empty LA cavity, and a
poor image quality can be seen outside epicardium. Moreover, there is no clear bound-
ary between epicardium and background. It means that data information from subdo-
main Ω1 can be regarded as reliable data, and information from subdomain Ω3 can not
be trusted. Therefore, data from subdomain Ω1 should take domination during evolu-
tion process, which means that λ1 should have a higher value than λ3. In other words,
reliable data in subdomain Ω1 can increase the accuracy of results, and the negative ef-
fect from non-uniform subdomainΩ3 should be decreased.

CURVE SMOOTH COEFFICIENTS

υ1 and υ2 can control the smoothness of 0 and k-level set curves, respectively. The dif-
ference of this two parameters should not have a key influence to the final result.

REGULARIZATION COEFFICIENTS

There are two functions for distance constraint term, which are regularization of level
set function and distance constraints between two contours. Therefore, µ is the coeffi-
cient to regularize the level set function,ω and η are coefficients to control weightings of
distance constraints. Moreover, ω decides how important α should vary smoothly, and
hard or soft constraint to α from T h highly depends on value of η. There are no clear
relations between values of µ and ω. But the value of η should smaller than ω, other-
wise, this distance constraint term will be a hard constraint like the situation when α is
a constant.

3.5.2. OTHER PARAMETERS
Apart from weighting coefficients, other parameters also plays an important role in our
method.

PREDEFINED PARAMETERS

Parameters k and T h should be defined before curve evolution. k is a parameter that
is expressed in level set function. Values of k have a negligible effect on the final result,
which has been proved in several papers [1, 4, 6] and also verified in our method. How-
ever, value of k should be decided based on global initialization of level set function.

The size of kernel K plays an important role in our method. A big size can increase
the robustness for initialization, but the robustness for inhomogeneity will be decreased.
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Figure 3.4: Schematic initialization of Level set function

Moreover, a big size of K will heavily increase the complexity when computing convo-
lution. Although the inhomogeneity in our datasets are not severe, a big size of K is not
desirable in our method.

T h is a key factor in our method. Because of T h’s constraint to α, distance con-
straints to thickness between 0 and k contours become more flexible and suitable to our
problem. Based on the physical information of thickness of LA wall [7] and resolution
of our image data, value of T h can be set in a range from 5 to 10. And the result is not
sensitive to the T h value in this range.

PARAMETERS FOR INITIALIZATION

In level set method, initialization is a vital beginning. In most level set methods, because
0 level set gradually expands or shrinks during evolution process, what objects can be
detected is sensitive to the location of initial 0 level set. Therefore, the location of initial
0 level set directly decides the accuracy of final results.

The theory described above in this thesis is based on an assumption, which is that
the value of level set function inside 0 level set is negative value. In our two layers level
set method, since k is positive value, the initial values of level set function divergent out-
wardly, as shown in Fig.3.4. c0 < 0 is initial value of level set functionφ in subdomainΩ1,
k/2 is is initial value of φ in subdomainΩ2, and 2k is initial value of φ in subdomainΩ3.
Although our method is not sensitive to the value of k, it is necessary to set a relatively
big value. Because in our method, absolute value of gradient of level set function

∣∣5φ∣∣ is
encouraged to be corresponding value in function α, a reasonable value of k can make
a clear difference among values of level set function in different subdomains. Therefore,
an ordered evolution process is promised and there will be no undesirable new contours
emerged.

The value of c0 is also very important. Especially, if big evolution iteration times are
required, it is necessary to let c0 have a big absolute value. Otherwise, level set function
in subdomainΩ1 may easily over-evolve and emerge new 0 level set contours.
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3.6. COMPARISON TO FORMER WORKS

Since Vese proposed multiphase level set method in 2002 [8], several algorithms are de-
veloped to embed various prior information. However, most of them are very compli-
cated and difficult to implement. In [1, 4], two-layer level set methods with distance
regularization have been proposed, which are excellent inspirations for two-layer seg-
mentation problems. One is a region-based level set method based on a simple function
α, the other one is a edge-based level set method based on a constant α. These two
methods are both developed to deal with left ventricle wall segmentation problems.

CONSTANT α

In this method,
∣∣5φ∣∣ is encouraged to be a constant α, which is a hard distance con-

dition. Distance between 0 and k level set contours will be encouraged to be close to
k/

∣∣5φ∣∣. Since k/
∣∣5φ∣∣ is about equal to k/α, the distance will be fixed to a value around

k/α.

In application of two layer level set methods, the main goal is to detect the thickness
between two contours. Based on anatomical information, the thickness of LA wall is not
strictly a constant. Once the thickness is fixed, it is no significance to do this automatic
detection. In other words, if the thickness is not equal to or around k/α, the result will
be not accurate, unless the boundary is clear enough and the data fitting term takes
an absolute domination. This hard constraint constant α could be used in the edge-
based method [4], where objects have obvious edges. But it is not easy to meet situations
when there are very clear boundaries. Therefore, although this method can get a result
on objects with a regular shape and clear boundaries, it heavily limits the data driven
evolution process.

FUNCTION α(x)

Compared to constant α, function α is required to update during each evolution iter-
ation time. In the initialization step, function α is also initialized. To keep the dis-
tance between two contours evolve in order, the distance between two contours should
vary smoothly. The evolution should stop when contours arrive at desirable boundaries.
Moreover, the distance constraint is introduced by function α. Therefore, function α

should vary smoothly.

The evolution speed of level set function will slow down when 0 and k level contours
are close to the actual boundaries, only if there exit clear boundaries. However, it works
not well when boundaries are not clear and the levels are easily over-evolved, so that the
result will be not accurate.

NEW FOR OUR METHOD

Aiming to obtain an accurate result in all boundaries, including unclear and clear bound-
aries, a constraint to function α is proposed in our method. It can control the evolution
speed when the detected distance is close to real distance, it is helpful to detect the actual
boundaries.
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(a) Original synthetic image (b) Initialization of 0-level set contour

Figure 3.5: 0-level set initialization of synthetic image

(a) The result of 0-level set contour evolu-
tion

(b) Initialization of 0 and k level set contour
based on the result of 0-level set contour

Figure 3.6: Initialization of two-layer level set function

3.7. VALIDATION TEST ON SYNTHETIC IMAGES
In this section, performance of former works and our method are tested on the syn-
thetic image. The original image and initialization is shown in Fig.3.5. The result from
one-layer level set function is applied to realize the initialization of two-layer level set
function, as shown in Fig.3.6. The final results of these three methods are compared in
Fig.3.7.

Noise is added to the synthetic image. The results of 3 methods are almost the same
and all of them can be considered to be accurate. The reason for the same results is the
clear boundaries, where the data fitting term takes the absolute domination during the
evolution process and the hard constraint of constant α is not such hard any more.

In this synthetic image validation test, our method is verified to have a good per-
formance, which at least has as the good performance as former works. Therefore, our
method has potential to be further applied on experiment images.
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(a) The result of ’Constant α’
method

(b) The result of ’Function α’
method

(c) The result of our method

Figure 3.7: Comparison of 3 methods
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4
IMPLEMENTATION AND

EVALUATION

4.1. IMPLEMENTATION STEPS

I NITIALIZATION of level set function is a very important factor in most level set meth-
ods. To obtain the best performance of our method, there are two steps in implemen-

tation of our method.
In the first step, a preliminary segmentation of endocardial contour is implemented.

Because of the good quality of LA cavity, an Edge-based level set method called DRLSE
is applied here [1]. In this step, a rough contour can be obtained, as shown in Fig.4.1(a).

In the second step, two-layer level set function is initialized based on the result from
step 1. The location of endocardial contour from the first step is used to represent the
location of 0-level set in two-layer level set function. And based on this initialization of 0-
level set, the initialized location of k-level set can be defined by erosion. Since initialized
locations of 0 and k level set contour are defined, initialization of our two layer level set
function can be set, as shown in Fig.4.1(b).

4.2. EVALUATION CRITERIA
Evaluation methods are applied to judge the performance of one method. Differences
between detected results and ground-truth should be quantitative. An accurate and
practical evaluation criteria is highly required. To promise the objective of evaluation
results, only one evaluation is not enough. Therefore, in our method, two reliable and
popular evaluation criterias are applied, which are widely used in MICCAI challenge and
segmentation problems.

4.2.1. DICE SIMILARITY COEFFICIENTS
Dice Similarity coefficients (DSC) method is also called ’overlap’ method generally. It is
a method to quantify percentage of the overlapping area between detected results and
ground-truth. Assume that A is the detected region obtained from our method, and

27



4

28 4. IMPLEMENTATION AND EVALUATION

(a) The result in First step (b) Initialization of two-layer level set func-
tion in Second step

Figure 4.1: Initialization of two-layer level set function

Figure 4.2: Sketch map of DSC

region B is the reference in ground-truth, as shown in Fig.4.2. Therefore, the Dice Simi-
larity coefficient can be represented as:

DSC = 2×|A∩B |
|A|+ |B | (4.1)

where |A∩B | is the overlapping area between region A and reference B, |A| is the area of
region A and |B | is the area of reference region B.

The value of DSC is between 0 and 1. A high value of DSC means a high correlation
between region A and reference B , which represents a high accuracy of the compared
method.

In our method, DSC is calculated regarding to endocardium and epicardium, respec-
tively. These two DSCs indicate the performance on segmenting endocardium and epi-
cardium in our method.

4.2.2. AVERAGE PERPENDICULAR DISTANCE
Average perpendicular distance (APD) is a parameter to quantify differences between de-
tected contours in our method and reference contours in ground-truth. APD measures
the average distance from our detected contour to the corresponding reference contour,
where all contour points should be taken into account. The sckech map is shown in
Fig.4.3.

The APD must be a positive value. Especially, a smaller value of APD implies a better
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Figure 4.3: Sketch map of APD [2]

match between the detected contour and the reference contour. In other words, if the
APD is smaller, the accuracy of our method is better.

In our method, APD will be computed regarding to endocardium and epicardium, re-
spectively. The performance on segmenting endocardium and epicardium of our method
will be quantified by these two APDs.

4.3. DATASETS
As described in section 1.1.2, the datasets we use are from SPACE-MRI. These datasets
are collected by The Johns Hopkins Hospital. The machine is 1.5T Siemens Aera. Images
in 2D are isotropic with 1.5mm slice thickness in 3D, the resolution is 0.625×0.625×1.5
mm. Each individual slice was manually annotated by experienced clinical observers,
on both endocardial and epicardial borders.

As an advanced technique, there are 10 sets of SPACE-MR LA data available. Each set
of data includes 30 to 40 slices. Apart from 2 sets of data with heavy artifacts, 8 sets of
data could be used. 2 sets of data (N = 75) are applied for training, and the rest (N = 189)
are for testing. LA01 and LA05 are training data, LA03, LA07, LA09, LA10, LA06, LA08 are
datasets for validation.

4.4. PARAMETERS
In section 3.5, functions and significance of parameters have been analyzed and de-
scribed.

We erod the rough segmentation form first step of the endocardial region by 10 pixels
as the input of our proposed two-layer level set method.

In our method, c0 is -20, k is set to be 20. In data fitting term, λ1 = 0.1, λ2 = 0.001,
λ3 = 0.002. In length term, ν1 = 0.005× 255× 255, ν2 = 0.001× 255× 255. In distance
constraint term, µ = 1, ω = 0.25, η = 0.1, T h = 5 with dc = 4. Given the wall thickness
range of LA (1-3mm), we use dc = 4 for the LA.

The evolution step 4t is defined to be 0.1, which satisfies the CFL condition when
µ= 1 as described in section 3.4.2.

The kernel K is a Gaussian kernel with standard deviation σ= 3, and the size of K is
set to be 13.
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[3]. Although the estimated Dirac function has already approximated to be an

ideal Dirac function, there are still some small side lobes, which may cause that regions
far away from 0 and k level sets may emerge new contours during level set function evo-
lution process. However, because of the distance constraint term and small ε, this inter-
ference can be almost eliminated.

The function fi , ei with i = 1,2,3 and α are updated at each iteration time before
updating level set function φ, the formulations can be seen in section 3.3.1 and 3.4.1.

4.5. EFFECT OF DISTANCE CONSTRAINT
In this section, the advantage and reliability of distance constraint in our method are
presented and analyzed. Compared to distance constraint in ’Constant α’ method, our
constraint is proved to be more flexible and robust in more application situations.

4.5.1. DISTANCE CONSTRAINT IN OUR METHOD
In this section, the sensitivity of our method to value dc is examined and discussed. A
weak sensitivity to the value dc will prove that the parameter dc in our method is efficient
and reliable. Based on the physical information of LA wall, our method with 6 different
dc values from 4 to 9 is implemented. APD and DSC of endocardium and epicardium to
the ground-truth are used to evaluate accuracy of the results.

The sensitivity to values of dc of our method is indicated in Fig.4.4, which is expressed
by APD and DSC. As shown in Fig.4.4(a), for 6 different integers of dc , the APDs in terms
of endocardium vary in a extremely small range from 0.385 to 0.408 mm, which can be
considered as that different dc values have no effect on the accuracy of the detected en-
docardial contours. Compared to endocardial contour, the APDs in terms of epicardium
shows a little bigger fluctuation from 0.583 to 0.738 mm. However, this fluctuation is
very slight and smooth, which means that accuracy of detected epicardial contours is
not sensitive to the value of dc .

The DSCs of detected contours to the ground-truth are shown in Fig.4.4(b). DSCs in
terms of endocardium are between 0.973 and 0.978, and the DSCs in terms of epicardium
vary from 0.965 to 0.971. These variations caused by values of dc is really small enough
and can be negligible.

Therefore, the accuracy of detected contours doesn’t rely on values of dc , which means
that a reasonable value of dc takes a weak domination during evolution process. Accord-
ing to the physical information, thickness of LA wall is approximately within a range. In
our implementation, it is reasonable that dc can be set as an average value of LA thick-
ness.

4.5.2. DISTANCE CONSTRAINT IN ’CONSTANT α’ METHOD
In this section, ’Constant α’ method with different values of α is implemented. And the
effect of different constants α is discussed.

Different from APD in other sections, the definition of APD in this section is aver-
age perpendicular distance between 0 and k level sets contours. Therefore, the relation
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(a) Accuracy of our method in terms of APD with differ-
ent dc

(b) Accuracy of our method in terms of DSC with differ-
ent dc

Figure 4.4: Results of our method with different dc

between values of α and detected thickness can be represented. However, instead of
defining values of α, values of distance d are defined here, where α can be calculated by
α= k/d .

The 26th slice of LA05 dataset is used as an example. The average manual (groundtruth)
thickness of LA wall is 2.567 mm (4.1 in pixel), which is the basis for next comparison.
Set d (in pixel) to be integer from 4 to 9, the results are shown in Fig.4.6(a).

From Fig.4.5(c) to Fig.4.5(e), the epicardial contours are gradually expanding. Ex-
panding of detected epicardial contours highly depends on the value of d , where a big
value of d will cause a big expanding of epicardial contour.

For quantitative evaluation, in ’Constant α’ method, the detected thickness of LA
wall can be shown in Fig.4.6(a). The distance between detected contours increases grad-
ually with increased d values, which means that the detected thickness of LA walls highly
relies on the predefined value d . It can be concluded that the constant α shows a nega-
tive effect on detecting accurate boundaries. Since thickness of LA wall can not be a fixed
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(a) Original image (b) Ground-truth (c) Result with d = 3

(d) Result with d = 7 (e) Result with d = 10

Figure 4.5: Results with different d in ’Constant α’ method

(a) Detected thickness with different d values com-
pared to groundtruth thickness in ’Constant α’
method

(b) Detected thickness with different dc values com-
pared to groundtruth thickness in our method

Figure 4.6: Effects of different d or dc values on detected thickness of LA wall compared between ’Constant α’
method and our method
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value and has a little wider range, ’Constant α’ method can not be applied to solve our
LA wall segmentation problem. Therefore, in next sections, only ’Function α’ method
will be discussed.

Furthermore, results of our method with different dc values are reported in Fig.4.6(b).
When dc changes from 4 to 10, detected thickness of LA wall varies slightly between 2.4
and 3.1 mm. Compared to results in Fig.4.6(a), values of dc show a much slighter and
smoother effect on final results in our method. This comparison implies the outstanding
advantage of our method, which is that our distance constraint is much less sensitive
to values of dc than the hard constraint in ’Constant α’ method. In other words, the
segmentation results in our method do not highly rely on the values of dc , which is really
important in detecting the real boundaries. Therefore, the feasibility and reliability of
the distance constraint in our method are again proved.

4.6. EXPERIMENT AND COMPARISON
In this section, our training datasets are tested, and results of our method are evaluated
and analyzed. Moreover, since in section 4.5.2, ’Constant α’ method has been proved to
be meaningless in terms of our situation, only ’Functionα’ method is taken into account
in this section. Results of ’Functionα’ method are compared with results in our methods.

4.6.1. LA01 DATASET

OVERVIEW

The parameters for implementation are defined in section 4.4. Our method is imple-
mented in terms of all slices in LA01 dataset, and an example of the segmentation result
from one slice is shown in Fig.4.7.

As we can see in Fig.4.7(a), although the LA cavity has a good visualization quality,
the epicardium is blurry and almost mixes with boundary in some regions. Compared to
groundtruth in Fig.4.7(b), the result of our method in Fig.4.7(d) shows a high agreement
with groundtruth. And the evolution in regions with unclear boundaries is efficiently
controlled in our method. However, the result shown in Fig.4.7(c) from ’Function α’
method has a bad performance in these regions with unclear boundaries, which can be
regarded as an over-evolved process.

This comparison proves that our method has a much better performance than ’Func-
tion α’ method in regions with unclear boundaries.

One important thing should be noticed here. Because of the image quality or the
special shape of LA, some parts of LA wall can not be recognized even by experienced
experts. It is not possible to delineated all the contours accurately. Therefore, in regions
without visualized endocardium or epicardium, experienced experts will use a straight
line to represent which regions are not visualized and can not be considered in the final
result, as shown in Fig.4.7(b). However, this judgment is indeed subjective and varies
with different experts, and computers don’t have the ability to recognize this situation.
Therefore, contours which are represented by straight lines should be not taken into ac-
count in our evaluation.
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(a) Original image (b) Ground-truth

(c) Result of ’Function α method’ (d) Result of our method

Figure 4.7: Example of segmentation result from training dataset LA01 (23rd slice)

QUANTITATIVE EVALUATION

In last section, a preparatory comparison is judged. In this section, quantitative evalua-
tion and comparison are expressed, which is more reliable and intuitive. The accuracy
of detected endocardial and epicardial contours is showed and discussed separately.

Evaluation results with comparison are shown in Fig.4.8. As we can see, the differ-
ence of APDs and DSCs in terms of endocardial contour is not much. Because endo-
cardial contours are relatively clear and easy to be detected, two methods both have a
good performance on detecting endocardial contours. However, compared to ’Function
α’ method, our method still shows a better convergence and a higher accuracy for both
APDs and DSCs in terms of endocardium.

The comparison of APDs and DSCs in terms of epicardium is shown in Fig.4.8(b) and
4.8(d). Besides a better convergence, our method performs much better than ’Function
α’ method in terms of both APDs and DSCs. Because epicardial contours don’t have
clear boundaries with background, it is easy for ’Function α’ method to jump over un-
clear boundaries without constraints in our method. This result fulfills our analysis and
expectation.

4.6.2. LA05 DATASET

Similar to training dataset LA01, results from LA05 is shown in this section.

An example of segmentation results from dataset LA05 is shown in Fig.4.9. From the
anatomical image in Fig.4.9(a), more than half part of the epicardial contour is heavily
blurry. It extremely increases difficulty of the segmentation problem. If evolution speed
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(a) APD for endocardial contour (b) APD for epicardial contour

(c) DSC for endocardial contour (d) DSC for epicardial contour

Figure 4.8: The accuracy of our method with comparison to ’Function α’ method on dataset LA01

can not limited when k-level sets are close to these boundaries, the over-evolution will
happen with high possibility. This limitation is included in our method, but not included
in ’Function α’ method. Therefore, based on observation, Fig.4.9(d) has obvious more
accuracy than Fig.4.9(c).

For more intuitive statistics, boxplots in terms of APDs and DSCs are presented in
Fig.4.10. APDs for endocardial contour by our method shows a little more accuracy than
’Function α’ method, which agrees with results in dataset LA01. The reason is also that
endocardium is clear enough to be detected. Compared to LA01, epicardial boundaries
is much weaker in dataset LA05. Therefore, the difference in terms of results for epi-
cardium should be obvious between two methods. As shown in Fig.4.10(b) and 4.10(d),
results from our method is more accurate, where APDs have smaller values and DSCs
have bigger values.

4.6.3. OVERVIEW TO TRAINING DATASETS

In this section, results from training datasets LA01 and LA05 are quantified to values,
which can be read in Table.4.1 and 4.2. The tables summarize concrete values of APDs
and DSCs in terms of endocardial and epicardial contours, with mean values and stan-
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(a) Original image (b) Ground-truth

(c) Result of ’Function α method’ (d) Result of our method

Figure 4.9: Example of segmentation result from training dataset LA05 (26th slice)
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(a) APD for endocardial contour (b) APD for epicardial contour

(c) DSC for endocardial contour (d) DSC for epicardial contour

Figure 4.10: The accuracy of our method with comparison to ’Function α’ method on dataset LA05
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Table 4.1: APDs of training datasets in terms of different methods

Dataset APD
Function α method Our method
endo epi endo epi

LA01 0.828±0.437 1.586±0.483 0.764±0.266 0.768±0.308
LA05 0.601±0.191 1.424±0.325 0.557±0.180 0.648±0.183

Table 4.2: DSCs of training datasets in terms of different methods

Dataset DSC
Function α method Our method
endo epi endo epi

LA01 0.882±0.167 0.915±0.031 0.937±0.037 0.953±0.014
LA05 0.944±0.024 0.908±0.325 0.951±0.014 0.943±0.027

dard deviation. The formula in the tables is expressed as ’mean ± standard deviation’.
The ’endo’ in the tables means endocardial contours, and ’epi’ represents epicardial con-
tours.

As shown in tables, the results of our method have a much better accuracy than the
results of ’Function α’ method in terms of both APDs and DSCs, especially for the epi-
cardial contours. Therefore, our methods are proved to be useful and efficient to detect
both endocardial and epicardial contours. It is potential to be applied in all datasets,
which is also called validation checking.

4.7. VALIDATION FOR ALL DATASETS
In this section, the validation of our method to all datasets is implemented and analyzed.

4.7.1. STATISTICAL OVERVIEW

In last section, performance of our method on training datasets has demonstrated to be
excellent. However, if one method could be considered as a feasible and robust method,
it is essential to test the validation on different datasets of that method. Therefore, our
method is implemented on all the rest datasets, including LA03, LA04, LA06, LA07, LA09
and LA10.

For intuitive observation, APDs of endocardial contours and epicardial contours in
terms of all the validation datasets are presented in Fig.4.11.

The values of APDs in terms of endocardial contours concentrate below 1 mm, which
is a little smaller than APDs in terms of epicardial contours. The reason can be explained
as endocardial contours in SPACE-MR LA images have a better visualization than epi-
cardial contours. The accuracy of both detected endocardial contours and epicardial
contours are good and desirable.

Values of DSCs are demonstrated in Fig.4.12. The distribution of DSCs values is
smooth, and most of the values are located around 0.95. Same to the reason for smaller
APDs values in terms of endocardial contours, values of DSCs in terms of endocardial
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(a) APDs of our method in terms of endocardium on
different datasets

(b) APDs of our method in terms of epicardium on dif-
ferent datasets

Figure 4.11: APD values of our method on validation datasets

contours have a better convergence than epicardial contours.

More quantitative results are shown in Table.4.3 and 4.4, including the results of
training datasets and validation datasets. Therefore, based on APDs and DSCs, our method
has an excellent performance on validation data.

Furthermore, summarized statistical accuracy of results is demonstrated in Fig.4.13.
This statistic implies the whole performance of our method on all datasets, and the sta-
tistical distribution fulfills our expectation.

Accuracy of results on validation datasets have an excellent agreement with train-
ing datasets, which means that our method is effective and validated. Therefore, our
method has an excellent performance in detecting endocardial contours and epicardial
contours in SPACE-MR LA images.Therefore, based on APDs and DSCs, our method has
an excellent performance on validation data.
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(a) DSCs of our method in terms of endocardium on
different datasets

(b) DSCs of our method in terms of epicardium on dif-
ferent datasets

Figure 4.12: DSC values of our method on validation datasets

4.7.2. EXAMPLE OF SEGMENTATION RESULTS
In this section, segmentation results of different datasets are shown compared with cor-
responding groundtruth. In each dataset, 3 slices are selected, including one of begin-
ning slices, one of middle slices and one of ending slices.

Examples of segmentation results of LA03, LA04, LA06, LA07, LA09 and LA10 are
shown in Fig.4.14, Fig.4.15, Fig.4.16, Fig.4.17, Fig.4.18, Fig.4.19, respectively.

The sample slices of different datasets have been presented. Although the detected
contours have an obvious difference in regions where there are ’double straight lines’
in groundtruth, it can not be considered as an error, because these are no boundaries
at all in those regions, as described in section 4.6.1. As we can see, the segmentation
results have a high agreement with groundtruth. Furthermore, our method works well
on majority of slices, including beginning slices, middle slices and ending slices. The
accuracy and robustness of our method is proved again.
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Table 4.3: Accuracy of APD in terms of training data and validation set (mean ± standard deviation)

Endocardial APD (mm) Epicardial APD (mm)
Training datasets 0.670±0.252 0.714±0.264
Validation datasets 0.748±0.207 0.851±0.227

Table 4.4: Accuracy of DSC in terms of training data and validation set (mean ± standard deviation)

Endocardial DSC Epicardial DSC
Training datasets 0.943±0.030 0.949±0.021
Validation datasets 0.952±0.018 0.950±0.019

(a) The accuracy of our method for summarized
datasets, with APDs evaluation

(b) The accuracy of our method for summarized
datasets, with DSCs evluation

Figure 4.13: Statistical distribution of whole validation datasets
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(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.14: Examples of segmentation results of LA03 (Bottom row), with corresponding groundtruth (Top
row)

(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.15: Examples of segmentation results of LA04 (Bottom row), with corresponding groundtruth (Top
row)
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(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.16: Examples of segmentation results of LA06 (Bottom row), with corresponding groundtruth (Top
row)

(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.17: Examples of segmentation results of LA07 (Bottom row), with corresponding groundtruth (Top
row)



4

44 4. IMPLEMENTATION AND EVALUATION

(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.18: Examples of segmentation results of LA09 (Bottom row), with corresponding groundtruth (Top
row)

(a) Ground-truth (b) Ground-truth (c) Ground-truth

(d) Beginning slice (e) Middle slice (f) Ending slice

Figure 4.19: Examples of segmentation results of LA10 (Bottom row), with corresponding groundtruth (Top
row)
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Figure 4.20: An example of segmentation results of 3D

(a) Original image (b) Ground-truth (c) Result of our method

Figure 4.21: An example of segmentation results of LV data

4.8. EXTENSION TO 3D
Our above works solve segmentation problems based on 2D image. Normally, if we as-
semble segmentation results of 2D slices into 3D view, the adjacent contours may not be
continuous. Therefore, in order to obtain a more continuous 3D surface contours, our
method is extended to 3D problem. And dataset LA01 will be used as an example in this
section. The contours in 3D are continuous and shows two smooth surfaces, as shown
in Fig.4.20.

4.9. APPLICATION TO LEFT VENTRICLE (LV ) IMAGES
In this section, our method is extended to solve LV segmentation problems. As described
in section 1.3, MRI CINE LV images have a better visualization quality than LA images.
However, if our method can successfully used in LV images, our method would be widely
applicable. In total, 131 short-axis MRI CINE LV images at end-diastole (ED) with resolu-
tion 1.75×1.75 mm are used. Given the wall thickness range of LV (10-20 mm), we used
different d values with the LA, dc = 8 for the LV. Moreover, besides dc , only values of λ1,
λ2 and λ3 need to be modified when we extend our method from LA application to LV
application. The example segmentation results are shown in Fig.4.21.

The segmentation results of our method show a high agreement with ground-truth.
The quantitative evaluation is applied by APD and DSC methods, as presented in Fig.4.22
and Table.4.5, 4.6. The APDs in terms of endocardial contours and epicardial contours



4

46 4. IMPLEMENTATION AND EVALUATION

(a) Accuracy of our method in terms of APD

(b) Accuracy of our method in terms of DSC

Figure 4.22: Evaluation results of our method on LV data

are both around 1 pixel. The corresponding DSCs show a good performance with almost
all values around 0.95.

Table 4.5: Accuracy of APD in terms of LV (mean ± standard deviation)

Endocardial APD (mm) Epicardial APD (mm)
LV data 1.053±0.318 1.391±0.426

Our method can be applied on LV data and has an excellent performance, which
means our method can be easily extended to more kinds of data and is potential to be
widely applicable.

4.10. DISCUSSIONS
From above sections, the breakthrough in our method compared to former methods is
presented and proved to be reliable. After testing in training datasets, our method is ap-
plied to validate validation datasets. With same defined parameters to training datasets,
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Table 4.6: Accuracy of DSC in terms of LV (mean ± standard deviation)

Endocardial DSC Epicardial DSC
LV data 0.964±0.012 0.962±0.020

our method has an excellent performance on segmenting validation datasets. For check-
ing the applicability and robustness, our method is extended to LV data at end-diastole.
The accuracy of results is within a desirable range.



4

48 REFERENCES

REFERENCES
[1] C. Li, C. Xu, C. Gui, and M. D. Fox, Distance regularized level set evolution and its

application to image segmentation, IEEE transactions on image processing 19, 3243
(2010).

[2] Evaluation methods of lv segmentation challenge, http://smial.sri.utoronto.
ca/LV_Challenge/Evaluation.html, mICCAI CHALLENGE, 2009.

[3] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on image
processing 10, 266 (2001).

http://smial.sri.utoronto.ca/LV_Challenge/Evaluation.html
http://smial.sri.utoronto.ca/LV_Challenge/Evaluation.html


5
CONCLUSION

In this thesis, background of our LA segmentation problem is firstly analyzed. Aiming
to solve the LA wall segmentation problem, a two-layer level set method is proposed to
detect two contours (endocardial contour and epicardial contour) simultaneously. Es-
pecially, an efficient distance constraint is introduced, which has been proved to be fea-
sible and reliable. With the distance constraint, the evolution speed of the level set func-
tion around boundaries is effectively limited, so that even unclear boundaries could be
detected without over-evolution. Moreover, the proposed distance constraint term not
only regularizes the level set evolution at two levels, but also guarantees the distance be-
tween two level sets contours varies smoothly. Compared to other state-of-art methods,
the advantage and feasibility of our method are demonstrated. Experiment with quan-
titative and qualitative evaluations proves that our method has a good performance and
robustness in segmenting LA walls. Furthermore, our method is extended to LV segmen-
tation, and the accuracy of results is within a desirable range. In the future, our method is
potential to apply in more anatomical structures segmentation problems from medical
image analysis.
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